WO2019223111A1 - 利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用 - Google Patents

利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用 Download PDF

Info

Publication number
WO2019223111A1
WO2019223111A1 PCT/CN2018/098331 CN2018098331W WO2019223111A1 WO 2019223111 A1 WO2019223111 A1 WO 2019223111A1 CN 2018098331 W CN2018098331 W CN 2018098331W WO 2019223111 A1 WO2019223111 A1 WO 2019223111A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
active material
carbon dioxide
activated alumina
air
Prior art date
Application number
PCT/CN2018/098331
Other languages
English (en)
French (fr)
Inventor
唐成康
Original Assignee
成都威能士医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都威能士医疗科技有限公司 filed Critical 成都威能士医疗科技有限公司
Publication of WO2019223111A1 publication Critical patent/WO2019223111A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the invention belongs to the technical field of environmental protection, and particularly relates to a method and application for capturing and enriching carbon dioxide in the air by using an active material or a modified active material.
  • Amine-modified metal organic framework materials such materials have been reported in many literatures, but they are expensive and have not been available for large-scale applications.
  • Product sales; 4 low temperature separation, using two-stage compression condensation method to liquefy or solidify carbon dioxide into dry ice, and then distillation to separate carbon dioxide from liquefied or solidified impurities, this technology has high energy consumption, Special equipment is needed, which is not suitable for home applications; 5.
  • Membrane separation technology which is still in the research stage, is costly and cannot be applied on a large scale for the time being.
  • Mosquitoes are carriers of a variety of pathogens, and they spread a variety of diseases, including malaria and dengue fever, which seriously endanger human health.
  • chemical synthetic agents are widely used to kill mosquitoes. Although this method has certain effects, there is potential contamination of chemical synthetic agents, and the effects of excessive close contact for a long time on health cannot be ignored. Therefore, there is a need to develop a green and healthy method for catching insects.
  • the technical problem to be solved by the present invention is to provide a method capable of long-term and efficient adsorption of carbon dioxide in the air.
  • the technical means adopted by the present invention to solve the above technical problems is to provide a method for capturing and enriching carbon dioxide in the air.
  • the method uses an active material to capture and enrich carbon dioxide in the air at normal temperature and pressure; the active material is ions. Exchange resin, activated alumina or activated carbon.
  • the time for capturing and enriching carbon dioxide in the air is not less than 30 minutes.
  • the ion exchange resin is a hydroxide-type strong base-type anion exchange resin or a hydroxide-type weak-base anion exchange resin.
  • the particle size of the ion exchange resin is 0.1 to 5.0 mm.
  • the activated alumina is at least one of a ⁇ -type, a ⁇ -type, an ⁇ -type, a ⁇ -type, or a ⁇ - ⁇ -type.
  • the particle size of the activated alumina is 1-10 mm.
  • the activated carbon is at least one of wood activated carbon, nutshell activated carbon, coconut shell activated carbon, or coal-based activated carbon.
  • the particle diameter of the activated carbon is 1-10 mm.
  • the conditions for capturing and enriching carbon dioxide in the air further include a relative humidity not higher than 80%.
  • the present invention also provides another method capable of more effectively capturing and enriching carbon dioxide in the air, which uses modified active materials to capture and enrich carbon dioxide in the air at normal temperature and pressure;
  • the active material is modified activated alumina or modified activated carbon.
  • the time for capturing and enriching carbon dioxide in the air is not less than 30 minutes.
  • the modified active alumina is modified active alumina A, modified active alumina B, or modified active alumina C At least one of.
  • the modified active alumina A is an active oxide having a new structure formed by treating the active alumina with a metal hydroxide solution. aluminum.
  • the modified active alumina A is prepared by the following method: loading activated alumina into a reaction container, and then A metal hydroxide solution having a concentration of 0.1 to 3.0 M is added to the reaction vessel and circulated for 0.5 to 24 hours. After filtration, washing and drying, modified activated alumina A is obtained; wherein, the mass volume of the activated alumina and the metal hydroxide solution The ratio is 1: 0.5 to 10.
  • the modified active alumina B is formed after the activated alumina is treated with a carbonate solution or a bicarbonate solution. Activated alumina complex containing carbonate or bicarbonate.
  • the modified active alumina B is prepared by the following method: loading the activated alumina into a reaction container, and then A carbonate solution or a bicarbonate solution having a concentration of 0.1 to 5.0 M is added to the reaction container and circulated for 0.5 to 48 hours. After filtration, washing and drying, modified activated alumina B is obtained; among which, activated alumina and carbonate solution Or the mass-to-volume ratio of the bicarbonate solution is 1: 0.5-10.
  • the modified active alumina C is obtained by first treating the active alumina with a metal hydroxide solution and then subjecting it to a carbonate solution. Or bicarbonate solution treatment to form a carbonate or bicarbonate-containing activated alumina composite.
  • the modified active alumina C is prepared by the following method: loading the activated alumina into a reaction container, and then A metal hydroxide solution having a concentration of 0.1 to 5.0 M is added to the reaction container and circulated for 0.5 to 24 hours. After filtering, washing and drying, the obtained solid is charged into the reaction container, and then a carbonate having a concentration of 0.1 to 5.0 M is added. The solution or bicarbonate solution is added to the reaction container and circulated for 0.5 to 48 hours.
  • modified activated alumina C After filtration, washing, and drying, modified activated alumina C is obtained; wherein the mass-volume ratio of the activated alumina and the metal hydroxide solution is 1: 0.5 to 10; The mass-volume ratio of the activated alumina to the carbonate solution or the bicarbonate solution is 1: 0.5-10.
  • the modified activated carbon is a carbonate or hydrogen carbonate solution formed by treating the activated carbon with a carbonate solution or a bicarbonate solution. Salted activated carbon complex.
  • the modified activated carbon is prepared by the following method: loading the activated carbon into a reaction container, and then concentrating the concentration of 0.1 to 5.0
  • the carbonate solution or bicarbonate solution of M is added to the reaction vessel and circulated for 0.5 to 48 hours, and filtered, washed, and dried to obtain modified activated carbon; wherein the mass-volume ratio of activated carbon to the carbonate solution or bicarbonate solution is 1: 0.5 to 10.
  • the metal hydroxide is at least one of lithium hydroxide, potassium hydroxide, sodium hydroxide, or calcium hydroxide. .
  • the carbonate is at least one of sodium carbonate or potassium carbonate.
  • the bicarbonate is at least one of sodium bicarbonate or potassium bicarbonate.
  • the invention also applies the above-mentioned active material or modified active material to capture and enrich carbon dioxide in the air to capture insects. After the active material or modified active material captures and enriches carbon dioxide in the air, the active material or modified The carbon dioxide adsorbed in the active material is desorbed and can be used to catch insects.
  • insects are insects that rely on carbon dioxide to find targets, such as mosquitoes.
  • the desorption condition is high relative humidity higher than 40%, time 5 ⁇ 120min; when the material is activated alumina, activated carbon, modified activated alumina or modified activated carbon, the conditions for desorption are 100 to 500 ° C. and heating for 0.5 to 2 hours.
  • the device used is a mosquito trapping device, which includes:
  • An inner cylinder which is arranged in the outer casing and includes a top air inlet
  • a first wind power unit disposed in the outer shell and below the inner cylinder, and configured to generate an airflow entering the inner cylinder at an air inlet of the inner cylinder;
  • a mosquito collection unit is disposed below the outer casing and below the first wind power unit, communicates with the inner cylinder and is used to collect mosquitoes entering from the air inlet of the inner cylinder;
  • a carbon dioxide enrichment unit is disposed in the outer shell and adjacent to the inner cylinder, and a heating unit or a humidifying unit is provided in the inner shell.
  • the stomata are in communication with the atmosphere, and the top is a carbon dioxide escape outlet, wherein the carbon dioxide enrichment unit is loaded with an active material or a modified active material;
  • the second wind power unit is disposed at the bottom of the carbon dioxide enrichment unit and is configured to generate an airflow entering the carbon dioxide enrichment unit at a vent hole of the outer casing.
  • the device further comprises a mosquito attracting light source (CDC lamp, black light lamp, CCFL lamp or ultraviolet lamp), and the mosquito attracting light source is arranged in the The air inlet of the inner cylinder.
  • a mosquito attracting light source CDC lamp, black light lamp, CCFL lamp or ultraviolet lamp
  • the mosquito collection unit is detachably inserted under the outer shell and includes a first collector and a second collector, the The first collector is a round table structure with a large entrance and a small exit, the second collector is a cuboid or cube structure, and the first collector is set in the second collector, wherein the first collector
  • the collector further includes a filter mesh surrounding the round table structure, and the second collector further includes an air outlet hole at an outer portion.
  • the meaning of the mass-volume ratio is: the ratio of solids by mass and solutions by volume at the same order of magnitude, such as the mass and volume of activated carbon and carbonate solution or bicarbonate solution described above
  • the ratio is 1: 0.5 to 10, which can be the activated carbon in g, and the carbonate solution or bicarbonate solution in mL.
  • the present invention utilizes active materials and modified active materials to capture and enrich carbon dioxide in the air, desorbs carbon dioxide to capture insects, reduces the carbon dioxide content in the air, and makes full use of carbon dioxide; modified by the modification method of the present invention
  • the subsequent ability of the active material to capture and enrich carbon dioxide from the air has been greatly improved, and after a long-term adsorption-desorption cycle, it still maintains a relatively stable adsorption and desorption capacity for carbon dioxide;
  • the carbon dioxide used in the present invention is Existing substances in the air will not cause carbon dioxide production and greenhouse effect, and have good application prospects; using carbon dioxide in the air for insect capture is not only environmentally friendly but also can make full use of seemingly useless resources. Good utilization value, meanwhile, it is harmless to human body by adopting bionic method, and has good application prospect.
  • FIG. 1 is a schematic diagram showing an exploded structure of a mosquito trapping device according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the mosquito trapping device in FIG. 1.
  • FIG. 3 is a schematic plan view of the mosquito trapping device in FIG. 1.
  • FIG. 4 shows a schematic exploded structure of a mosquito trapping device according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural side view of the mosquito trapping device in FIG. 4.
  • FIG. 6 is a schematic plan view of the mosquito trap device in FIG. 4.
  • the invention provides two methods for capturing and enriching carbon dioxide in the air; specifically, one of the methods is to capture and enrich carbon dioxide in the air by using an active material at normal temperature and pressure; the active material is an ion exchange resin, active oxidation Aluminum or activated carbon.
  • Ion exchange resin is a polymer compound with functional group, network structure, and insolubility. It is widely used in water treatment, food industry, pharmaceutical industry, environmental protection and other industries.
  • Activated Alumina is a porous, highly Dispersed solid materials with a large surface area are widely used as catalysts and catalyst supports;
  • Activated Carbon is a specially treated carbon with numerous fine pores, a large surface area, and strong physical adsorption and chemistry Adsorption capacity.
  • the ion exchange resin (oxygen type), activated alumina, and activated carbon in the present invention can all adsorb and desorb carbon dioxide;
  • the ion exchange resin is a hydroxide type strong base type anion exchange resin or a hydroxide type weak base type anion exchange resin;
  • the activated alumina is at least one of ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type or ⁇ - ⁇ -type;
  • the activated carbon is at least one of wood activated carbon, nut shell activated carbon, coconut shell activated carbon, or coal-based activated carbon. Species.
  • Active material anion exchange resin adsorbs carbon dioxide at low relative humidity (not higher than 80%), and desorbs carbon dioxide at high relative humidity (higher than 40%). That is, in a specific experiment, the relative adsorption of carbon dioxide is required. The humidity is lower than the relative humidity of desorption; activated alumina or activated carbon adsorbs carbon dioxide in the air at normal temperature and pressure, and then heats it at 100 to 500 ° C for 0.5 to 5 hours, which can basically desorb the adsorbed carbon dioxide. In order to improve the working efficiency of the product and enrich carbon dioxide as much as possible, the time for the active material to capture and enrich carbon dioxide in the air is not less than 30 minutes.
  • modified active materials to capture and enrich carbon dioxide in air at normal temperature and pressure
  • the modified active materials are modified activated alumina or modified
  • the active carbon is modified by the above-mentioned activated alumina and activated carbon.
  • the time for the modified active material to capture and enrich carbon dioxide in the air is not less than 30 minutes; after the modified activated alumina or modified activated carbon adsorbs carbon dioxide in the air at normal temperature and pressure When heated at 100 to 500 ° C for 0.5 to 5 hours, the adsorbed carbon dioxide can be basically desorbed.
  • the modified activated alumina in the present invention can be obtained by modifying the activated alumina by three methods.
  • the modified activated alumina is at least one of the modified activated alumina A, the modified activated alumina B or the modified activated alumina C. One.
  • the modified activated alumina A is an activated alumina having a new structure formed by treating the activated alumina with a metal hydroxide (such as lithium hydroxide, potassium hydroxide, sodium hydroxide, or calcium hydroxide) solution;
  • a metal hydroxide such as lithium hydroxide, potassium hydroxide, sodium hydroxide, or calcium hydroxide
  • the metal hydroxide reacts with the activated alumina, the metal hydroxide corrodes the internal pores of the activated alumina, changes the pore volume and specific surface area of the activated alumina, thereby forming a new structure of the activated alumina;
  • the method is prepared by loading activated alumina into a reaction vessel, and then adding a metal hydroxide solution having a concentration of 0.1 to 3.0 M into the reaction vessel to circulate for 0.5 to 24 hours, and then filtering, washing, and drying to obtain modified active oxidation.
  • the modified activated alumina B is a carbonate or a bicarbonate (such as sodium bicarbonate or potassium carbonate) solution or a bicarbonate (such as sodium bicarbonate or potassium bicarbonate) solution
  • Bicarbonate enters the internal pores of activated alumina and physically combines with activated alumina to form an activated alumina composite containing carbonate or bicarbonate; it can be prepared by the following method: loading activated alumina into In the reaction vessel, a carbonate solution or a bicarbonate solution having a concentration of 0.1 to 5.0 M is added to the reaction vessel and circulated for 0.5 to 48 hours. After filtration, washing, and drying, modified activated alumina B is obtained; The mass-volume ratio of aluminum to a carbonate solution or a bicarbonate solution is 1: 0.5-10.
  • the modified activated alumina C is a carbonate or bicarbonate-containing active oxide formed after the activated alumina is treated with a metal hydroxide solution and then treated with a carbonate solution or a bicarbonate solution.
  • Aluminum composite can be prepared by loading activated alumina into a reaction container, and then adding a metal hydroxide solution having a concentration of 0.1 to 5.0 M into the reaction container for 0.5 to 24 hours, filtering, washing, After drying, the obtained solid is charged into a reaction container, and a carbonate solution or a bicarbonate solution having a concentration of 0.1 to 5.0 M is added to the reaction container and circulated for 0.5 to 48 hours.
  • the modified activity is obtained by filtering, washing and drying.
  • Alumina C wherein, the mass-volume ratio of the activated alumina and the metal hydroxide solution is 1: 0.5-10; and the mass-volume ratio of the activated alumina and the carbonate solution or bicarbonate solution is 1: 0.5-10.
  • the modified activated carbon in the present invention is treated with a carbonate solution or a bicarbonate solution.
  • the carbonate or bicarbonate enters the internal pores of the activated carbon, and is physically combined with the activated carbon to form a carbonate or bicarbonate-containing Activated carbon composite; it can be prepared by loading activated carbon into a reaction vessel, and then adding a carbonate solution or bicarbonate solution with a concentration of 0.1 to 5.0 M to the reaction vessel for 0.5 to 48 hours, after filtering, Washing and drying to obtain modified activated carbon, wherein the mass-volume ratio of activated carbon to carbonate solution or bicarbonate solution is 1: 0.5-10.
  • the washing is generally washed 1 to 5 times with deionized water with a volume of 1-6 times, and then washed at 50 to 50 times. Dry at 300 °C for 1 ⁇ 24h, then raise the temperature to 400 ⁇ 500 °C within 1 ⁇ 2h and vacuum dry for 24 ⁇ 36h to prevent oxidation reaction at high temperature.
  • the invention also applies the above-mentioned active material or modified active material to capture and enrich carbon dioxide in the air to capture insects. After the active material or modified active material captures and enriches carbon dioxide in the air, the active material or modified The carbon dioxide adsorbed in the active material is desorbed and can be used to catch insects.
  • the method of the present invention can efficiently capture insects that rely on carbon dioxide to find a target. For example, when a mosquito looks for a target, it mainly depends on carbon dioxide, heat, and some volatile chemicals. With an immediate response, carbon dioxide alone can attract mosquitoes without the aid of other odors.
  • activated alumina modified with a metal hydroxide solution activated alumina modified with a carbonate solution or bicarbonate solution, first modified with a metal hydroxide solution and then with a carbonate solution or carbonic acid
  • Activated alumina modified with hydrogen salt solution activated carbon modified with carbonate solution or bicarbonate solution have stronger carbon dioxide adsorption capacity, and can still maintain relatively stable carbon dioxide adsorption after long-term adsorption-desorption cycles. And desorption capacity. Therefore, the modified active material in the present invention is more suitable for application in catching insects.
  • the active material or the modified active material when the active material or the modified active material is applied to catch mosquitoes, the active material or the modified active material is placed in a mosquito trap device to assist or dominate the mosquito trap, and then the mosquito trap device is used to kill the mosquito.
  • a modified active material capable of adsorbing and desorbing carbon dioxide is preferably loaded in a mosquito trap.
  • a mosquito trap According to the feature that mosquitoes can rely on carbon dioxide to find a blood-sucking source, carbon dioxide in the air is enriched and released, resulting in an air inlet of the mosquito trap.
  • the local high concentration of carbon dioxide at the place attracts mosquitoes to approach and lures the mosquitoes to the axial direction of the air inlet, and then uses the airflow generated in the axial direction to quickly inhale the mosquitoes into the mosquito trapping device to air dry to death, completing the trapping and killing of mosquitoes. jobs.
  • the carbon dioxide used in the present invention originates from the atmosphere, is convenient to use, does not increase carbon dioxide in the air, and does not cause a greenhouse effect.
  • the mosquito trap device used in the present invention may be a device existing in the prior art, and is preferably a mosquito trap device with the following structure.
  • the activated alumina and activated carbon have the ability to adsorb carbon dioxide from the air, respectively, they are inferior to the modified activated alumina and the modified activated carbon have the ability to adsorb carbon dioxide from the air. Therefore, if activated mosquito traps of the present invention are loaded with activated alumina, Or activated carbon, it is best to set a mosquito attracting light source in the device at the same time to improve the attracting effect; if the mosquito attracting device of the present invention is loaded with ion exchange resin, modified activated alumina or modified activated carbon, then The mosquito-inducing light source may be provided or not.
  • FIG. 1 shows a schematic exploded structure diagram of a mosquito trap device according to an embodiment of the present invention
  • FIG. 2 shows a schematic side structure view of the mosquito trap device in FIG. 1
  • FIG. 3 shows a top view of the mosquito trap device in FIG. Schematic.
  • the mosquito trapping device includes an outer casing 1, an inner cylinder 2, a first wind power unit 10, a mosquito collection unit, a carbon dioxide enrichment unit 3, and a first Two wind power units 4.
  • the inner cylinder 2 is disposed in the outer casing 1.
  • the inner cylinder 2 includes an air inlet at the top end, and both airflow and mosquitoes can enter the inner cylinder 2 through the air inlet.
  • the first wind power unit 10 is disposed in the outer casing 1 and is located below the inner cylinder 2, and is used to generate an airflow entering the inner cylinder 2 through the air inlet of the inner cylinder 2. Among them, the first wind power unit 10 can make a large amount of air enter the inner cylinder 2 through the air inlet, and then generate an airflow toward the inside of the inner cylinder 2.
  • the first wind power unit 10 may be a component such as a fan or an exhaust fan.
  • the mosquito collection unit is disposed below the outer casing 1 and below the first wind power unit 10.
  • the mosquito collection unit is in communication with the inner cylinder 2 and is used to collect mosquitoes entering from the air inlet of the inner cylinder 2.
  • the mosquito collection unit includes a first collector 5 and a second collector 6, the first collector 5 is a round table structure with a large entrance and a small exit, and the second collector 6 is a cuboid or a cube.
  • the first collector 5 is sleeved in the second collector 6, wherein the first collector 5 further includes a filter 17 surrounding the round table structure, and the second collector 6 further includes an air outlet hole 14 located at an outer portion.
  • the present invention is not limited to the mosquito collecting unit having the above-mentioned structure, as long as the mosquito collecting effect entering the inner cylinder 2 can be realized.
  • the mosquitoes are sucked into the mosquito collection unit with the airflow generated by the first wind power unit 10, that is, they pass through the first collector 5 and enter the second collector 6, and the mosquitoes are left in the second collector 6 to dry to death.
  • the air is discharged through the air outlet holes 14.
  • the mosquito collection unit is detachably inserted under the outer casing 1, so that the mosquito collection unit can be easily cleaned and maintained.
  • the carbon dioxide enrichment unit 3 is disposed in the outer casing 1 and is disposed adjacent to the inner cylinder 2.
  • the carbon dioxide enrichment unit 3 includes an internal cavity and is provided with a heating unit 7 or a humidification unit 19 therein.
  • a vent hole 8 provided below 3 and provided on the outer casing 1 communicates with the atmosphere, and the top thereof includes an upper cover 18 for carbon dioxide to escape.
  • the carbon dioxide enrichment unit 3 is loaded with the above-mentioned active material or a modified active material.
  • the carbon dioxide enrichment unit 3 enriches carbon dioxide by the active material or modified active material loaded therein.
  • the loaded active material or modified active material is activated alumina, activated carbon, modified activated alumina
  • the heating unit 7 is used to heat the active material or the modified active material to release carbon dioxide;
  • the humidification unit 19 is used to increase the humidity of the active material, so that the active material releases carbon dioxide. Therefore, it is possible to form a locally high concentration of carbon dioxide at the air inlet of the device of the present invention, thereby attracting mosquitoes to approach and attract the mosquitoes to the axial direction of the air inlet, and then sucking in and realizing trapping through the airflow.
  • the heating unit 7 is a heating component such as a heating sheet and a resistance wire
  • the humidification unit 19 is a humidification component such as an ultrasonic humidifier or an electric heating humidifier.
  • the second wind power unit 4 is disposed at the bottom of the carbon dioxide enrichment unit 3 and is used to generate the airflow entering the carbon dioxide enrichment unit 3 in the vent hole 8 of the outer casing 1.
  • the second wind power unit 4 may be a component such as a fan or an exhaust fan.
  • the second wind power unit 4 When the second wind power unit 4 is turned on, the air enters the carbon dioxide enrichment unit 3 from the vent hole 8 below, and the active material or modified active material loaded in the carbon dioxide enrichment unit 3 adsorbs carbon dioxide in the air passing through, After a certain amount of carbon dioxide is adsorbed, the second wind power unit 4 can be turned off and the heating unit 7 or humidification unit 19 can be turned on to desorb the adsorbed carbon dioxide, and the carbon dioxide is then released to the device, especially the air inlet of the inner cylinder 2, Mosquitoes are then enriched and attracted.
  • FIG. 4 is a schematic diagram showing the exploded structure of a mosquito trap according to another embodiment of the present invention
  • FIG. 5 is a schematic view showing the side structure of the mosquito trap in FIG. 4
  • FIG. 6 is a schematic view of the mosquito trap in FIG. 4.
  • the device of the present invention may further include a mosquito attracting light source.
  • the mosquito attracting light source is disposed at the air inlet of the inner cylinder 2, and the carbon dioxide is combined with the light source to attract mosquitoes. , Can further improve mosquito catching efficiency.
  • the direction of the airflow generated by the first wind power unit 10 and the direction of the light emitted by the mosquito-inducing light source are concentrated in the axial direction of the inner cylinder 2.
  • the enriched carbon dioxide and mosquito-inducing light source attract mosquitoes to the axial direction of the air inlet of the inner cylinder
  • the air flow generated by the first wind unit 10 in the axial direction will attract the air inlet to the axial direction of the air inlet.
  • the mosquitoes are quickly inhaled into the mosquito collection unit and air-dried to death, which greatly improves the effect of trapping mosquitoes and achieves the purpose of efficiently killing mosquitoes.
  • the light source for attracting mosquitoes includes a lamp holder 11, a bulb 12, and a lampshade 13.
  • the bulb may be a CDC lamp, a black light lamp, an ultraviolet lamp, or a CCFL lamp.
  • the device of the present invention further includes a power supply control unit, the first wind power unit 10, the second wind power unit 4, the heating unit 7 or the humidification unit 19, and the mosquito attracting unit are respectively electrically connected to the power control unit to achieve effective control of the device.
  • the power control unit includes at least a photodiode 15, a power interface 16 and a power switch 9.
  • the carbon dioxide detection device used in the examples and comparative examples of the present invention is a portable carbon dioxide detector of the model SKY2000-CO2-M produced by Shenzhen Yuante Technology Co., Ltd.
  • Embodiments 1 to 13 of the present invention are performed 3 times in parallel at the same time, and the result is averaged 3 times, and the standard deviation is calculated.
  • the desorption box A is a carbon dioxide enrichment unit with a humidifying unit
  • the desorption box B is a carbon dioxide enrichment unit with a heating unit.
  • Example 1 Ion exchange resin adsorbs and desorbs carbon dioxide in air at normal temperature and pressure
  • Example 2 Activated alumina adsorbs and desorbs carbon dioxide in air at normal temperature and pressure
  • Example 3 Modified activated alumina with potassium carbonate, and adsorbing and desorbing carbon dioxide in the air at normal temperature and pressure
  • Example 4 Activated alumina modified with potassium bicarbonate, and adsorb and desorb carbon dioxide in air at normal temperature and pressure
  • Example 5 Sodium hydroxide modified activated alumina, and adsorbed and desorbed carbon dioxide in air at normal temperature and pressure
  • Example 6 Modified with sodium hydroxide and then potassium carbonate to modify activated alumina, and adsorb and desorb carbon dioxide in the air at normal temperature and pressure
  • step (3) Put different types of sodium hydroxide-modified activated alumina obtained in step (3) into five reaction columns, add 2500 mL of potassium carbonate solution, and circulate the solution in the reaction column for 24 h;
  • Example 7 Modified sodium hydroxide first, then activated alumina modified with potassium bicarbonate, and adsorb and desorb carbon dioxide in the air at normal temperature and pressure
  • step (3) Load different types of sodium hydroxide-modified activated alumina obtained in step (3) into five reaction columns, add 3000 mL of potassium hydrogen carbonate solution, and circulate the solution in the reaction column for 12 h;
  • Table 7 Results of adsorption and desorption of carbon dioxide in the air by first modifying sodium hydroxide and then potassium bicarbonate-modified activated alumina
  • Example 8 Activated carbon adsorbs and desorbs carbon dioxide in the air at normal temperature and pressure
  • Example 9 Activated carbon modified with potassium carbonate, and adsorb and desorb carbon dioxide in the air at normal temperature and pressure
  • Example 10 Activated carbon modified with potassium bicarbonate, and adsorb and desorb carbon dioxide in air at normal temperature and pressure
  • Example 11 The desorption box A is not loaded with any active materials under normal temperature and pressure, and the carbon dioxide concentration in the air is measured.
  • Example 12 The desorption box B is not loaded with any active material or modified active material under normal temperature and pressure, and the carbon dioxide concentration in the air is measured.
  • Example 13 Application effect test of active materials and modified active materials
  • the mosquito trap device used in this embodiment has the structure shown in FIG. 4 to FIG. 6, in which a mosquito trap light source is provided and the light bulb is a CDC lamp.
  • Example 14 Application effect test of active materials and modified active materials
  • the adopted mosquito trap device has the structure shown in FIG. 1 to FIG. 3, and no mosquito trap light source is provided.
  • the mosquito trap device of this embodiment is not loaded with active materials, and 150g Modified activated alumina, loaded with 150g of modified activated alumina (respectively using sodium hydroxide, potassium carbonate, first treated with sodium hydroxide and then potassium carbonate to modify, potassium bicarbonate, first treated with sodium hydroxide Modified with potassium bicarbonate treatment), 150g of unmodified activated carbon, 150g of modified activated carbon (modified with potassium carbonate and potassium bicarbonate treatment, respectively), and 150g of ion exchange resin The results are shown in Table 13.
  • the setting of the modified active material improves the mosquito trapping effect of the mosquito trapping device, and the mosquito trapping effect of the modified active material in the mosquito trapping device of this embodiment is better than that of the unmodified active material.
  • Mosquito trapping effect, the data before and after modification have statistical significance.
  • the present invention utilizes active materials and modified active materials to capture and enrich carbon dioxide in the air, and desorbs carbon dioxide to capture insects, reduces the carbon dioxide content in the air, and makes full use of carbon dioxide.
  • the ability of the active material to capture and enrich carbon dioxide from the air after being modified by the modification method of the present invention is greatly improved, and after a long-term adsorption-desorption cycle, it still maintains a relatively stable adsorption and desorption capacity for carbon dioxide. , And further improved the ability to catch insects, including the ability to catch mosquitoes.
  • the carbon dioxide used in the present invention is an existing substance in the air, does not cause carbon dioxide production and a greenhouse effect, and has good application prospects.
  • the invention is not limited to the foregoing specific embodiments.
  • the invention extends to any new feature or any new combination disclosed in this specification, and to any new method or process step or any new combination disclosed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

提供了一种利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用,属于环境保护技术领域。为了实现长期、高效吸附空气中的二氧化碳,提供了一种利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法,其中活性材料为离子交换树脂、活性氧化铝或活性炭,改性活性材料为改性活性氧化铝或改性活性炭,该方法在常温常压即可高效吸附空气中二氧化碳,并且将吸附的二氧化碳解吸出来,还能用于捕捉昆虫。

Description

利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用 技术领域
本发明属于环境保护技术领域,具体涉及一种利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及应用。
背景技术
随着人类社会的发展,空气中的二氧化碳浓度从工业革命前的1750年的280ppm逐渐上升到1999年的367ppm,2005年时迅速上升到379ppm。二氧化碳浓度的快速增加导致了严重的温室效应。如何降低空气中的二氧化碳浓度并充分利用二氧化碳,是学术界和工业界的热点。
由于空气中的二氧化碳浓度相对工业废气和天然气中的二氧化碳来说很低,工业上处理废气和天然气预处理的方法技术不适用于在常温常压下对其进行捕获及富集,常温常压下捕获及富集空气中的二氧化碳一直是一项很大的挑战。目前可行的方法和技术还不多,主要有:1、碱性溶液,虽然其吸收二氧化碳的过程成本低,但再生即解吸二氧化碳成本高昂;2、胺修饰的氧化物,虽然其吸附能力和稳定性均较好,但吸附时间往往长达数小时,导致工作效率偏低;3、胺修饰的金属有机骨架材料,这类材料文献报道很多,但其成本昂贵,还未见有供大规模应用的产品销售;4、低温分离,利用两阶段压缩冷凝的方法把二氧化碳液化或固化成干冰,再以蒸馏的方法,把二氧化碳从液化或固化的不纯物中分离出来,此技术能耗高、需专用设备,不适于家庭应用;5、膜分离技术,此技术还处于研究阶段,成本高,暂时无法大规模应用。
总体来说,在常温常压下对空气中的二氧化碳进行捕获及富集的传统方法缺点明显,而对新材料、新方法的研发还处于发展阶段,短期内无法得到大规模应用。因此,目前急需一种能够在常温常压下高效吸附空气中的二氧化碳的方法。
蚊子是多种病原的载体,传播包括疟疾、登革热等在内的多种疾病,严重危害人类健康。目前广泛使用化学合成药剂灭蚊,此方法虽有一定的效果,但化学合成药剂存在潜在的污染,长时间过多密切接触对健康的影响不容忽视。因此需要开发一种绿色健康捕捉昆虫的方法。
发明内容
本发明要解决的技术问题是提供一种能够长期、高效吸附空气中的二氧化碳的方法。
本发明解决上述技术问题所采用的技术手段是提供了一种捕获及富集空气中二氧化碳的方法,该方法利用活性材料在常温常压下捕获及富集空气中二氧化碳;所述活性材料为离子交换树脂、活性氧化铝或活性炭。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述捕获及富集空气中二氧化碳的时间为不少于30min。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述离子交换树脂为氢氧型强碱型阴离子交换树脂或氢氧型弱碱型阴离子交换树脂。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述离子交换树脂的粒径为0.1~5.0mm。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述活性氧化铝为γ型、ρ型、η型、χ型或χ-ρ型中的至少一种。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述活性氧化铝的粒径为1~10mm。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述活性炭为木质活性炭、果壳活性炭、椰壳活性炭或煤质活性炭中的至少一种。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,所述活性炭的粒径为1~10mm。
其中,上述所述的利用活性材料捕获及富集空气中二氧化碳的方法中,当活性材料为离子交换树脂时,捕获及富集空气中二氧化碳的条件还包括相对湿度不高于80%。
本发明为解决上述技术问题,还提供了另一种能够更有效捕获及富集空气中二氧化碳的方法,该方法利用改性活性材料在常温常压下捕获及富集空气中二氧化碳;所述改性活性材料为改性活性氧化铝或改性活性炭。
其中,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述捕获及富集空气中二氧化碳的时间为不少于30min。
其中,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝为改性活性氧化铝A、改性活性氧化铝B或改性活性氧化铝C中的至少一种。
其中,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝A为使用金属氢氧化物溶液处理活性氧化铝,形成的具有新结构的活性氧化铝。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝A由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~ 3.0M的金属氢氧化物溶液加入反应容器中循环0.5~24h,经过滤、洗涤、干燥,得改性活性氧化铝A;其中,活性氧化铝与金属氢氧化物溶液的质量体积比为1:0.5~10。
其中,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝B是为使用碳酸盐溶液或碳酸氢盐溶液处理活性氧化铝后,形成的含有碳酸盐或碳酸氢盐的活性氧化铝复合物。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝B由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性氧化铝B;其中,活性氧化铝与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
其中,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝C为先使用金属氢氧化物溶液处理活性氧化铝后,再经碳酸盐溶液或碳酸氢盐溶液处理,形成的含有碳酸盐或碳酸氢盐的活性氧化铝复合物。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性氧化铝C由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~5.0M的金属氢氧化物溶液加入反应容器中循环0.5~24h,经过滤、洗涤、干燥,将所得固体装入到反应容器中,再将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性氧化铝C;其中,活性氧化铝与金属氢氧化物溶液的质量体积比为1:0.5~10;活性氧化铝与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
其中,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性炭为使用碳酸盐溶液或碳酸氢盐溶液处理活性炭,形成的含有碳酸盐或碳酸氢盐的活性炭复合物。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述改性活性炭由以下方法制备得到:将活性炭装入到反应容器中,然后将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性炭;其中,活性炭与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述金属氢氧化物为氢氧化锂、氢氧化钾、氢氧化钠或氢氧化钙中的至少一种。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述碳酸 盐为碳酸钠或碳酸钾中的至少一种。
优选的,上述所述的利用改性活性材料捕获及富集空气中二氧化碳的方法中,所述碳酸氢盐为碳酸氢钠或碳酸氢钾中的至少一种。
本发明还将上述利用活性材料或改性活性材料捕获及富集空气中的二氧化碳应用于捕捉昆虫中,活性材料或改性活性材料捕获及富集空气中的二氧化碳后,将活性材料或改性活性材料中吸附的二氧化碳解吸出来,即可用于捕捉昆虫。
上述所述利用活性材料或改性活性材料捕获及富集空气中的二氧化碳应用于捕捉昆虫中,所述昆虫为依赖二氧化碳寻找目标的昆虫,例如蚊虫。
上述所述的将利用活性材料或改性活性材料捕获及富集空气中的二氧化碳应用于捕捉昆虫中时,当活性材料为离子交换树脂时,解吸的条件为高相对湿度高于40%,时间5~120min;当材料为活性氧化铝、活性炭、改性活性氧化铝或改性活性炭时,解吸的条件为100~500℃加热0.5~2h。
上述所述活性材料或改性活性材料在捕捉昆虫中的应用,当捕捉蚊虫时,采用的装置为蚊虫诱杀装置,其包括:
外壳体;
内筒体,设置在所述外壳体中,包括顶端的进风口;
第一风力单元,设置在所述外壳体中并位于所述内筒体的下方,并用于在所述内筒体的进风口产生进入所述内筒体的气流;
蚊虫收集单元,设置在所述外壳体下方并位于所述第一风力单元的下方,与内筒体连通并用于收集从内筒体的进风口进入的蚊虫;
二氧化碳富集单元,设置在所述外壳体中并与所述内筒体相邻地设置,内部设置有加热单元或加湿单元,通过位于所述二氧化碳富集单元下方且设置在外壳体上的通气孔与大气连通,顶部为二氧化碳逸出口,其中,所述二氧化碳富集单元中装载有活性材料或改性的活性材料;
第二风力单元,设置在所述二氧化碳富集单元的底部并用于在所述外壳体的通气孔产生进入所述二氧化碳富集单元的气流。
其中,上述所述活性材料或改性活性材料在捕捉昆虫中的应用,所述装置还包括蚊虫引诱光源(CDC灯、黑光灯、CCFL灯或紫外灯),所述蚊虫引诱光源设置在所述内筒体的进风口处。
其中,上述所述活性材料或改性活性材料在捕捉昆虫中的应用,所述蚊虫收集单元可拆 卸地插装在所述外壳体的下方并且包括第一收集器和第二收集器,所述第一收集器为入口大且出口小的倒圆台结构,所述第二收集器为长方体或正方体结构,所述第一收集器套装在所述第二收集器中,其中,所述第一收集器还包括环绕倒圆台结构的滤网,所述第二收集器还包括位于外侧部的出风孔。
本发明中,所述质量体积比的含义为:固体以质量计,溶液以体积计,在相同数量级单位下的比值,例如上述所述的活性炭与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10,可以为活性炭以g为单位,碳酸盐溶液或碳酸氢盐溶液以mL为单位。
本发明的有益效果是:
本发明利用活性材料及改性活性材料捕获及富集空气中的二氧化碳,将二氧化碳解吸后用于捕捉昆虫,降低了空气中的二氧化碳含量,并且充分利用了二氧化碳;经本发明改性方法改性之后的活性材料从空气中捕获及富集二氧化碳的能力有较大提升,且经过长期的吸附-解吸循环使用后,仍保持较稳定的对二氧化碳的吸附和解吸能力;本发明所使用的二氧化碳为空气中已有的物质,不会造成二氧化碳产生和温室效应,具有良好的应用前景;利用空气中的二氧化碳进行昆虫捕捉,不仅环保而且能够充分利用看似无用的资源,产生的大量藻体具有很好的利用价值,同时采用仿生方式也对人体无害,具有良好的应用前景。
附图说明
图1示出了根据本发明一个实施例的蚊虫诱杀装置的分解结构示意图。
图2示出了图1中蚊虫诱杀装置的侧视结构示意图。
图3示出了图1中蚊虫诱杀装置的俯视结构示意图。
图4示出了根据本发明另一个实施例的蚊虫诱杀装置的分解结构示意图。
图5示出了图4中蚊虫诱杀装置的侧视结构示意图。
图6示出了图4中蚊虫诱杀装置的俯视结构示意图。
附图标记说明:
1-外壳体、2-内筒体、3-二氧化碳富集单元、4-第二风力单元、5-第一收集器、6-第二收集器、7-加热单元、8-通气孔、9-电源开关、10-第一风力单元、11-灯座、12-灯泡、13-灯罩、14-出风孔、15-光敏二极管、16-电源接口、17-滤网、18-上盖、19-加湿单元。
具体实施方式
本发明提供了两种捕获及富集空气中二氧化碳的方法;具体的,其中一种方法为利用活性材料在常温常压捕获及富集空气中二氧化碳;所述活性材料为离子交换树脂、活性氧化铝或活性炭。
离子交换树脂是带有官能团、具有网状结构、不溶性的高分子化合物,广泛应用于水处理、食品工业、制药行业、环境保护等行业;活性氧化铝(Activated Alumina)是一种多孔性、高分散度的固体材料,有很大的表面积,广泛用作催化剂、催化剂载体;活性炭(Activated Carbon)是一种经特殊处理的炭,具有无数细小孔隙,表面积巨大,具有很强的物理吸附和化学吸附能力。
本发明中离子交换树脂(氢氧型)、活性氧化铝和活性炭均能吸附并解吸二氧化碳;所述离子交换树脂为氢氧型强碱型阴离子交换树脂或氢氧型弱碱型阴离子交换树脂;所述活性氧化铝为γ型、ρ型、η型、χ型或χ-ρ型中的至少一种;所述活性炭为木质活性炭、果壳活性炭、椰壳活性炭或煤质活性炭中的至少一种。
活性材料阴离子交换树脂(氢氧型)在低相对湿度(不高于80%)下吸附二氧化碳,在高相对湿度(高于40%)下解吸二氧化碳,即要求具体一个实验中,吸附二氧化碳的相对湿度要比解吸的相对湿度要低;活性氧化铝或活性炭在常温常压下吸附空气中的二氧化碳后,于100~500℃加热0.5~5h,可基本将吸附的二氧化碳解吸。为了提高产品工作效率同时尽可能富集二氧化碳,活性材料捕获及富集空气中二氧化碳的时间不少于30min。
具体的,另一种能够更有效捕获及富集空气中二氧化碳的方法为利用改性活性材料在常温常压捕获及富集空气中二氧化碳;所述改性活性材料为改性活性氧化铝或改性活性炭,即将上述所述的活性氧化铝和活性炭进行改性。
为了提高产品工作效率同时尽可能富集二氧化碳,改性活性材料捕获及富集空气中二氧化碳的时间不少于30min;改性活性氧化铝或改性活性炭在常温常压下吸附空气中的二氧化碳后,于100~500℃加热0.5~5h,可基本将吸附的二氧化碳解吸。
本发明中改性活性氧化铝可通过三种方法对活性氧化铝改性获得,改性活性氧化铝为改性活性氧化铝A、改性活性氧化铝B或改性活性氧化铝C中的至少一种。
其中,所述改性活性氧化铝A为使用金属氢氧化物(如氢氧化锂、氢氧化钾、氢氧化钠或氢氧化钙)溶液处理活性氧化铝,形成的具有新结构的活性氧化铝;金属氢氧化物与活性氧化铝发生化学反应,金属氢氧化物腐蚀活性氧化铝内部孔道,使活性氧化铝的孔容、比表面积等发生变化,从而使活性氧化铝形成新的结构;其可由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~3.0M的金属氢氧化物溶液加入反应容器中循环0.5~24h,经过滤、洗涤、干燥,得改性活性氧化铝A;其中,活性氧化铝与金属氢氧化物溶液的质量体积比为1:0.5~10。
其中,所述改性活性氧化铝B是为使用碳酸盐(如碳酸钠或碳酸钾)溶液或碳酸氢盐(如 碳酸氢钠或碳酸氢钾)溶液处理活性氧化铝后,碳酸盐或碳酸氢盐进入到活性氧化铝内部孔道中,与活性氧化铝物理结合,形成的含有碳酸盐或碳酸氢盐的活性氧化铝复合物;其可由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性氧化铝B;其中,活性氧化铝与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
其中,所述改性活性氧化铝C为先使用金属氢氧化物溶液处理活性氧化铝后,再经碳酸盐溶液或碳酸氢盐溶液处理,形成的含有碳酸盐或碳酸氢盐的活性氧化铝复合物;其可由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~5.0M的金属氢氧化物溶液加入反应容器中循环0.5~24h,经过滤、洗涤、干燥,将所得固体装入到反应容器中,再将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性氧化铝C;其中,活性氧化铝与金属氢氧化物溶液的质量体积比为1:0.5~10;活性氧化铝与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
本发明中改性活性炭为使用碳酸盐溶液或碳酸氢盐溶液处理活性炭,碳酸盐或碳酸氢盐进入到活性炭内部孔道中,与活性炭物理结合,形成的含有碳酸盐或碳酸氢盐的活性炭复合物;其可由以下方法制备得到:将活性炭装入到反应容器中,然后将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性炭;其中,活性炭与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
本发明制备改性活性氧化铝或改性活性炭时,后处理中都需要进行洗涤和干燥,后处理中,洗涤一般采用1-6倍体积的去离子水清洗1~5次,然后在50~300℃干燥1~24h,然后1~2h内升温至400~500℃真空干燥处理24~36h,防止高温下氧化反应发生。
本发明还将上述利用活性材料或改性活性材料捕获及富集空气中的二氧化碳应用于捕捉昆虫中,活性材料或改性活性材料捕获及富集空气中的二氧化碳后,将活性材料或改性活性材料中吸附的二氧化碳解吸出来,即可用于捕捉昆虫。
本发明方法可高效捕捉依赖二氧化碳寻找目标的昆虫,例如蚊子在寻找目标时,主要依赖的是二氧化碳、热量以及一些挥发性的化学物质,而蚊子的二氧化碳感受器能让它们对很少量的二氧化碳气体作出即时反应,仅二氧化碳就能够吸引蚊子,而不需要其它气味的辅助。
本发明中经金属氢氧化物溶液改性的活性氧化铝、经碳酸盐溶液或碳酸氢盐溶液改性的活性氧化铝、先经金属氢氧化物溶液改性再经碳酸盐溶液或碳酸氢盐溶液改性的活性氧化铝、经碳酸盐溶液或碳酸氢盐溶液改性的活性炭具有更强的二氧化碳吸附能力,并且经过长期的吸附-解吸循环使用后仍然能够保持较稳定的二氧化碳吸附和解吸能力。因此,本发明中改性 活性材料更适用于在捕捉昆虫中进行应用。
具体地,将活性材料或改性活性材料应用于捕捉蚊虫时,将活性材料或改性活性材料置于蚊虫诱杀装置中辅助或主导地引诱蚊虫,继而利用蚊虫诱杀装置杀死蚊虫。
本发明优选地将能够吸附并解吸二氧化碳的改性活性材料装载在蚊虫诱杀装置中,根据蚊虫能够依靠二氧化碳寻找吸血源的特点,将空气中的二氧化碳富集并释放,造成蚊虫诱杀装置的进风口处的局部高浓度二氧化碳,吸引蚊虫靠近并将蚊虫引诱至进风口的轴向方向上,再利用轴向方向产生的气流将蚊虫快速吸入至蚊虫诱杀装置内风干至死,完成诱捕杀灭蚊虫的工作。本发明采用的二氧化碳来源于大气,取用方便,不增加空气中的二氧化碳,不造成温室效应。本发明采用的蚊虫诱杀装置可以为现有技术中已有的装置,优选为下述结构的蚊虫诱杀装置。
由于活性氧化铝和活性炭从空气中吸附二氧化碳的能力分别不如改性的活性氧化铝和改性的活性炭从空气中吸附二氧化碳的能力,因此如果在本发明的蚊虫诱杀装置中装载的是活性氧化铝或活性炭,则最好同时在装置中设置蚊虫引诱光源,以提高引诱效果;如果在本发明的蚊虫诱杀装置中装载的是离子交换树脂、改性的活性氧化铝或改性的活性炭,则可以设置蚊虫引诱光源,也可以不设置蚊虫引诱光源。
下面将对本发明采用的蚊虫诱杀装置的结构和原理进行详细地说明。
图1示出了根据本发明一个实施例的蚊虫诱杀装置的分解结构示意图,图2示出了图1中蚊虫诱杀装置的侧视结构示意图,图3示出了图1中蚊虫诱杀装置的俯视结构示意图。
如图1至图3所示,根据本发明的示例性实施例,所述蚊虫诱杀装置包括外壳体1、内筒体2、第一风力单元10、蚊虫收集单元、二氧化碳富集单元3和第二风力单元4。
具体地,内筒体2设置在外壳体1中,内筒体2包括顶端的进风口,气流和蚊虫均可以通过该进风口进入内筒体2中。
第一风力单元10设置在外壳体1中并位于内筒体2下方,并用于在内筒体2的进风口产生进入内筒体2的气流。其中,第一风力单元10可以使空气大量地通过进风口进入内筒体2中,继而产生向内筒体2内部的气流。第一风力单元10可以是风扇或抽风机等组件。
蚊虫收集单元设置在外壳体1下方并位于第一风力单元10的下方,该蚊虫收集单元与内筒体2连通并用于收集从内筒体2的进风口进入的蚊虫。根据本发明的一个实施例,该蚊虫收集单元包括第一收集器5和第二收集器6,第一收集器5为入口大且出口小的倒圆台结构,第二收集器6为长方体或正方体结构,第一收集器5套装在第二收集器6中,其中,第一收集器5还包括环绕倒圆台结构的滤网17,第二收集器6还包括位于外侧部的出风孔14。但本 发明不限于上述结构的蚊虫收集单元,只要能够实现对进入内筒体2中的蚊虫的收集作用即可。其中,蚊虫随着第一风力单元10产生的气流被吸入到蚊虫收集单元,即通过第一收集器5并进入第二收集器6中,蚊虫被留在第二收集器6中风干至死,空气则从出风孔14排出。如图1所示,优选地,蚊虫收集单元可拆卸地插装在外壳体1的下方,由此可以方便清理和维护蚊虫收集单元。
二氧化碳富集单元3设置在外壳体1中并与内筒体2相邻地设置,二氧化碳富集单元3包括内腔体且内部设置有加热单元7或加湿单元19,其通过位于二氧化碳富集单元3下方且设置在外壳体1上的通气孔8与大气连通,其顶部包括上盖18,供二氧化碳逸出。其中,二氧化碳富集单元3中装载有上述活性材料或改性的活性材料。
也即,二氧化碳富集单元3通过装载在其中的活性材料或改性的活性材料来富集二氧化碳,当装载的活性材料或改性的活性材料为活性氧化铝、活性炭、改性的活性氧化铝、改性的活性炭时,利用加热单元7加热活性材料或改性的活性材料来释放二氧化碳;当装载的活性材料为离子交换树脂时,利用加湿单元19增加活性材料的湿度,使活性材料释放二氧化碳,由此能够在本发明装置形成进风口处的局部高浓度二氧化碳,从而吸引蚊虫靠近并将蚊虫引诱至进风口的轴向方向上,继而通过气流吸入并实现诱杀。优选地,加热单元7为加热片、电阻丝等加热组件,加湿单元19为超声波加湿器、电热加湿器等加湿组件。
第二风力单元4设置在二氧化碳富集单元3的底部并用于在外壳体1的通气孔8产生进入二氧化碳富集单元3的气流。第二风力单元4可以是风扇或抽风机等组件。
当第二风力单元4开启后,空气从下方的通气孔8进入二氧化碳富集单元3中,装载在二氧化碳富集单元3中的活性材料或改性的活性材料则吸附通过的空气中的二氧化碳,待吸附了一定量的二氧化碳之后,可以关闭第二风力单元4并开启加热单元7或加湿单元19,进行被吸附二氧化碳的解吸,二氧化碳随后被释放到装置尤其是内筒体2的进风口处,随后富集并引诱蚊虫。
图4示出了根据本发明另一个实施例的蚊虫诱杀装置的分解结构示意图,图5示出了图4中蚊虫诱杀装置的侧视结构示意图,图6示出了图4中蚊虫诱杀装置的俯视结构示意图。如图4至图6所示,根据本发明的另一个思路,本发明的装置还可以包括蚊虫引诱光源,蚊虫引诱光源设置在内筒体2的进风口处,通过将二氧化碳与光源结合诱蚊,能够进一步提高捕蚊效率。优选地,第一风力单元10产生的气流方向和蚊虫引诱光源向外发出的光方向均集中在内筒体2的轴向方向上。一方面富集的二氧化碳和蚊虫引诱光源将蚊虫引诱至内筒体的进风口的轴向方向上,另一方面第一风力单元10在轴向方向产生的气流将引诱至进风口轴向 方向上的蚊虫快速吸入至蚊虫收集单元内风干至死,很大程度地提高了诱捕蚊虫的效果并实现了高效捕杀蚊虫的目的。
其中,蚊虫引诱光源包括灯座11、灯泡12和灯罩13,灯泡可以为CDC灯、黑光灯、紫外灯或CCFL灯等。
本发明的装置还包括电源控制单元,第一风力单元10、第二风力单元4、加热单元7或加湿单元19和蚊虫引诱单元分别与电源控制单元电连接以实现对装置的有效控制。其中,电源控制单元至少包括光敏二极管15、电源接口16和电源开关9。
下面通过实施例对本发明作进一步详细说明,但并不因此将本发明保护范围限制在所述的实施例范围之中。
本发明实施例和对比例中所采用的二氧化碳检测装置为深圳市元特科技有限公司生产的型号为SKY2000-CO2-M的便携式二氧化碳检测仪。
本发明实施例1~13同时平行进行3次,结果取3次的平均值,并计算标准差。
实施例中,解吸盒A为带加湿单元的二氧化碳富集单元,解吸盒B为带加热单元的二氧化碳富集单元。
实施例1~12中表1~11“二氧化碳浓度”列中“X±S”,“X”表示平行试验的平均值,“S”为3次平行实验的标准差。
实施例1~10中表1~10“二氧化碳浓度”列二氧化碳浓度数据的上标中,“*”表示改性活性材料与改性前活性材料相比,p<0.05,差异显著;“**”表示改性活性材料与改性前活性材料相比,p<0.01,差异极显著;“##”表示活性材料或改性活性材料与空解吸盒A或空解吸盒B相比,p<0.01,差异极显著。
实施例13中表12中,“**”表示光诱+活性材料或改性活性材料,与不装载活性材料而只使用光诱相比,p<0.01,差异极显著;“##”表示光诱+改性活性材料与光诱+改性前活性材料相比,p<0.01,差异极显著。
实施例14中表13中,“**”表示改性活性材料与改性前活性材料相比,p<0.01,差异极显著;“##”表示改性活性材料与未设置活性材料或改性活性材料相比,p<0.01,差异极显著。
实施例1:常温常压下离子交换树脂吸附并解吸空气中的二氧化碳
(1)、分别将150g强碱型阴离子交换树脂(氢氧型)和弱碱型阴离子交换树脂(氢氧型)装载于两个解吸盒A中;
(2)、在相对湿度30%的室温条件下,向解吸盒A中通入空气30min;
(3)、将解吸盒A放入容积1.5L的密闭容器中,向容器中通入水蒸气,使解吸盒A内的相对湿度升至70%,维持30min,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(4)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表1。
表1 离子交换树脂吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000001
实施例2:常温常压下活性氧化铝吸附并解吸空气中的二氧化碳
(1)、分别将150g的γ型、ρ型、η型、χ型和χ-ρ型装载于五个解吸盒B中;
(2)在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(3)将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的活性氧化铝至500℃,维持3h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(4)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表2。
表2 活性氧化铝吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000002
Figure PCTCN2018098331-appb-000003
实施例3:碳酸钾改性活性氧化铝,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将碳酸钾用去离子水溶解,得到浓度为0.5M的碳酸钾溶液;
(2)、分别将200g的γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝装入到五个反应柱中,加入800mL碳酸钾溶液,使溶液在反应柱中循环12h;
(3)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理16h,然后2h内升温至500℃真空干燥处理36h,得到碳酸钾改性活性氧化铝;其中,γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝经改性后,质量分别为:236g、232g、223g、221g、208g和211g;
(4)、分别将上述不同型号的碳酸钾改性活性氧化铝150g装载于五个解吸盒B中;
(5)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(6)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性氧化铝至500℃,维持3h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(7)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表3。
表3 碳酸钾改性活性氧化铝吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000004
Figure PCTCN2018098331-appb-000005
实施例4:碳酸氢钾改性活性氧化铝,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将碳酸氢钾用去离子水溶解,得到浓度为0.5M的碳酸钾溶液;
(2)、分别将200g的γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝装入到五个反应柱中,加入800mL碳酸氢钾溶液,使溶液在反应柱中循环12h;
(3)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理16h,然后2h内升温至500℃真空干燥处理36h,得到碳酸氢钾改性活性氧化铝;其中,γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝经改性后,质量分别为:231g、245g、239g、218g和215g;
(4)、将上述不同型号的碳酸氢钾改性活性氧化铝150g装载于五个解吸盒B中;
(5)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(6)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性氧化铝至500℃,维持3h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(7)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表4。
表4 碳酸氢钾改性活性氧化铝吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000006
实施例5:氢氧化钠改性活性氧化铝,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将氢氧化钠用去离子水溶解,得到浓度为0.8M的氢氧化钠溶液;
(2)、分别将100g的γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝装入到五个反应柱中,加入100mL氢氧化钠溶液,使溶液在反应柱中循环6h;
(3)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理12h,然后2h内升温至400℃真空干燥处理24h,得到氢氧化钠改性活性氧化铝;其中,γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝经改性后,质量分别为:92g、89g、97g、92g和91g;
(4)、将150g氢氧化钠改性活性氧化铝装载于解吸盒B中;
(5)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(6)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性氧化铝至500℃,维持3h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(7)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表5。
表5 氢氧化钠改性活性氧化铝吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000007
Figure PCTCN2018098331-appb-000008
实施例6:先经氢氧化钠改性,再经碳酸钾改性活性氧化铝,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将氢氧化钠用去离子水溶解,得到浓度为2M的氢氧化钠溶液;
(2)、分别将500g的γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝装入到五个反应柱中,加入2500mL氢氧化钠溶液,使溶液在反应柱中循环3h;
(3)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理24h,然后1h内升温至500℃真空干燥处理24h,得到氢氧化钠改性活性氧化铝;
(4)、将碳酸钾用去离子水溶解,得到浓度为1M的碳酸钾溶液;
(5)、分别将步骤(3)得到的不同型号的氢氧化钠改性活性氧化铝装入到五个反应柱中,加入2500mL碳酸钾溶液,使溶液在反应柱中循环24h;
(6)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理16h,然后1h内升温至500℃真空干燥处理24h,得到先经氢氧化钠改性、再经碳酸钾改性活性氧化铝;其中,γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝经改性后,质量分别为:510g、525g、513g、501g和491g;
(7)、分别将步骤(6)得到的不同型号的改性活性氧化铝150g装载于五个解吸盒B中;
(8)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(9)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性氧化铝至500℃,维持3h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(10)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表6。
表6 先经氢氧化钠改性、再经碳酸钾改性活性氧化铝吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000009
Figure PCTCN2018098331-appb-000010
实施例7:先经氢氧化钠改性,再经碳酸氢钾改性活性氧化铝,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将氢氧化钠用去离子水溶解,得到浓度为2M的氢氧化钠溶液;
(2)、分别将500g的γ型、ρ型、η型或、χ型和χ-ρ型活性氧化铝装入到五个反应柱中,加入2500mL氢氧化钠溶液,使溶液在反应柱中循环3h;
(3)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理24h,然后1h内升温至500℃真空干燥处理24h,得到氢氧化钠改性活性氧化铝;
(4)、将碳酸氢钾用去离子水溶解,得到浓度为0.8M的碳酸氢钾溶液;
(5)、分别将步骤(3)得到的不同型号的氢氧化钠改性活性氧化铝装入到五个反应柱中,加入3000mL碳酸氢钾溶液,使溶液在反应柱中循环12h;
(6)、弃去液体,收集活性氧化铝,用5倍体积的去离子水清洗3次,之后于90℃处理 16h,然后1h内升温至500℃真空干燥处理24h,得到先经氢氧化钠改性、再经碳酸氢钾改性活性氧化铝;其中,γ型、ρ型、η型、χ型和χ-ρ型活性氧化铝经改性后,质量分别为:514g、522g、507g、492g和488g;
(7)、分别将步骤(6)得到的不同型号的改性活性氧化铝150g装载于五个解吸盒B中;
(8)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(9)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性氧化铝至500℃,维持3h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(10)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表7。
表7 先将氢氧化钠改性、再经碳酸氢钾改性活性氧化铝吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000011
Figure PCTCN2018098331-appb-000012
实施例8:常温常压下活性炭吸附并解吸空气中的二氧化碳
(1)、分别将150g木质活性炭、果壳活性炭、椰壳活性炭和煤质活性炭装载于四个解吸盒B中;
(2)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(3)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的活性炭至250℃,维持2h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(4)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表8。
表8 活性炭吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000013
实施例9:碳酸钾改性活性炭,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将碳酸钾用去离子水溶解,得到浓度为0.6M的碳酸钾溶液;
(2)、分别将2000g木质活性炭、果壳活性炭、椰壳活性炭和煤质活性炭装入到四个反应柱中,加入5000mL碳酸钾溶液,使溶液在反应柱中循环36h;
(3)、弃去液体,收集活性炭,用5倍体积的去离子水清洗3次,之后于90℃处理16h,然后1h内升温至450℃真空干燥处理36h,得到碳酸钾改性活性炭;其中,木质活性炭、果壳活性炭、椰壳活性炭和煤质活性炭经改性后,质量分别为:2274g、2531g、2527g和2257g;
(4)、分别将步骤(3)得到的不同类型的碳酸钾改性活性炭150g装载于四个解吸盒B中;
(5)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(6)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性炭至250℃,维持2h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(7)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表9。
表9 碳酸钾改性活性炭吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000014
Figure PCTCN2018098331-appb-000015
实施例10:碳酸氢钾改性活性炭,并且在常温常压下吸附并解吸空气中的二氧化碳
(1)、将碳酸氢钾用去离子水溶解,得到浓度为1M的碳酸氢钾溶液;
(2)、分别将2000g木质活性炭、果壳活性炭、椰壳活性炭和煤质活性炭装入到四个反应柱中,加入4000mL碳酸氢钾溶液,使溶液在反应柱中循环36h;
(3)、弃去液体,收集活性炭,用5倍体积的去离子水清洗3次,之后于90℃处理16h,然后1h内升温至450℃真空干燥处理36h,得到碳酸氢钾改性活性炭;其中,木质活性炭、果壳活性炭、椰壳活性炭和煤质活性炭经改性后,质量分别为:2155g、2137g、2323g和2052g;
(4)、分别将步骤(3)得到的不同类型的碳酸氢钾改性活性炭150g装载于四个解吸盒B中;
(5)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(6)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B中的改性活性炭至250℃,维持2h,使用便携式二氧化碳检测仪记录密闭容器内二氧化碳浓度;
(7)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表10。
表10 碳酸氢钾改性活性炭吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000016
Figure PCTCN2018098331-appb-000017
实施例11:常温常压下解吸盒A中不装载任何活性材料,测试空气中的二氧化碳浓度
(1)、在相对湿度30%的室温条件下,向解吸盒A中通入空气30min;
(2)、将解吸盒A放入容积1.5L的密闭容器中,向容器中通入水蒸气,使解吸盒A内的相对湿度升至70%,维持30min,使用便携式二氧化碳检测仪记录此期间二氧化碳的浓度;
(3)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表11。
实施例12:常温常压下解吸盒B中不装载任何活性材料或改性的活性材料,测试空气中的二氧化碳浓度
(1)、在相对湿度70%的室温条件下,向解吸盒B中通入空气30min;
(2)、将解吸盒B放入容积1.5L的密闭容器中,加热解吸盒B至500℃,维持2h,使用便携式二氧化碳检测仪记录此期间二氧化碳的浓度;
(3)、重复上述吸附-解吸操作,记录第100次和第500次时二氧化碳浓度,结果见表11。
表11 空白试验吸附并解吸空气中的二氧化碳结果数据
Figure PCTCN2018098331-appb-000018
实施例13:活性材料及改性活性材料的应用效果测试
本实施例采用的蚊虫诱杀装置为图4至图6所示的结构,其中设置了蚊虫引诱光源且灯泡为CDC灯。
按照中国标准《GB/T 27785-2011卫生杀虫器械实验室效果测定及评价电子灭蚊蝇器》进行了测试,分别在蚊虫诱杀装置中不装载活性材料、装载150g离子交换树脂、装载150g未改性的活性氧化铝、装载150g改性的活性氧化铝(分别采用氢氧化钠、碳酸钾、先经氢氧化钠处理再经碳酸钾处理进行改性、碳酸氢钾、先经氢氧化钠处理再经碳酸氢钾处理进行改性)、装载150g未改性的活性炭和装载150g改性的活性炭(分别采用碳酸钾、碳酸氢钾处理进行改性)进行捕蚊试验,对比实验结果如表12所示,可见改性活性材料设置大大提高了蚊虫诱杀装置的诱蚊效果,并且改性活性材料在本实施例蚊虫诱杀装置中的诱蚊效果优于未改性的活性材料的诱蚊效果,使用活性材料前后数据具有统计学意义。
表12 实施例13蚊虫诱杀装置的诱蚊效果测试的结果
Figure PCTCN2018098331-appb-000019
Figure PCTCN2018098331-appb-000020
Figure PCTCN2018098331-appb-000021
Figure PCTCN2018098331-appb-000022
实施例14:活性材料与改性活性材料的应用效果测试
采用的蚊虫诱杀装置为图1至图3所示的结构,其中未设置蚊虫引诱光源。
发明人按照中国标准《GB/T 27785-2011卫生杀虫器械实验室效果测定及评价电子灭蚊蝇器》进行了测试,在本实施例的蚊虫诱杀装置中分别不装载活性材料、装载150g未改性的活性氧化铝、装载150g改性的活性氧化铝(分别采用氢氧化钠、碳酸钾、先经氢氧化钠处理再经碳酸钾处理进行改性、碳酸氢钾、先经氢氧化钠处理再经碳酸氢钾处理进行改性)、装载150g未改性的活性炭、装载150g改性的活性炭(分别采用碳酸钾、碳酸氢钾处理进行改性)、装载150g离子交换树脂的捕蚊对比实验结果如表13所示,可见改性活性材料的设置提高了蚊虫诱杀装置的诱蚊效果,并且改性活性材料在本实施例蚊虫诱杀装置中的诱蚊效果优于未改性的活性材料的诱蚊效果,改性前后数据具有统计学意义。
表13 实施例14中蚊虫诱杀装置的诱蚊效果测试结果
Figure PCTCN2018098331-appb-000023
Figure PCTCN2018098331-appb-000024
Figure PCTCN2018098331-appb-000025
综上所述,本发明利用活性材料及改性活性材料捕获及富集空气中的二氧化碳,将二氧化碳解吸后用于捕捉昆虫,降低了空气中的二氧化碳含量,并且充分利用了二氧化碳。经本 发明改性方法改性之后的活性材料从空气中捕获及富集二氧化碳的能力有较大提升,且经过长期的吸附-解吸循环使用后,仍保持较稳定的对二氧化碳的吸附和解吸能力,并进一步提升了捕捉昆虫的能力,包括提升了捕捉蚊子的能力。本发明所使用的二氧化碳为空气中已有的物质,不会造成二氧化碳产生和温室效应,具有良好的应用前景。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 捕获及富集空气中二氧化碳的方法,其特征在于:利用活性材料或改性活性材料在常温常压下捕获及富集空气中二氧化碳;所述活性材料为离子交换树脂、活性氧化铝或活性炭;所述改性活性材料为改性活性氧化铝或改性活性炭。
  2. 根据权利要求1所述的捕获及富集空气中二氧化碳的方法,其特征在于:当活性材料为离子交换树脂时,捕获及富集空气中二氧化碳的条件还包括相对湿度不高于80%。
  3. 根据权利要求1所述的利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法,其特征在于:至少满足下列一项:
    所述离子交换树脂为氢氧型强碱型阴离子交换树脂或氢氧型弱碱型阴离子交换树脂;
    所述活性氧化铝为γ型、ρ型、η型、χ型或χ-ρ型中的至少一种;
    所述活性炭为木质活性炭、果壳活性炭、椰壳活性炭或煤质活性炭中的至少一种。
  4. 根据权利要求1所述的利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法,其特征在于:至少满足下列一项:
    所述离子交换树脂的粒径为0.1~5.0mm;
    所述活性氧化铝的粒径为1~10mm;
    所述活性炭的粒径为1~10mm。
  5. 根据权利要求1所述的捕获及富集空气中二氧化碳的方法,其特征在于:至少满足下列一项:
    所述改性活性氧化铝为改性活性氧化铝A、改性活性氧化铝B或改性活性氧化铝C中的至少一种;其中,改性活性氧化铝A为使用金属氢氧化物溶液处理活性氧化铝,形成的具有新结构的活性氧化铝;所述改性活性氧化铝B是为使用碳酸盐溶液或碳酸氢盐溶液处理活性氧化铝后,形成的含有碳酸盐或碳酸氢盐的活性氧化铝复合物;所述改性活性氧化铝C为先使用金属氢氧化物溶液处理活性氧化铝后,再经碳酸盐溶液或碳酸氢盐溶液处理,形成的含有碳酸盐或碳酸氢盐的活性氧化铝复合物;
    所述改性活性炭为使用碳酸盐溶液或碳酸氢盐溶液处理活性炭,形成的含有 碳酸盐或碳酸氢盐的活性炭复合物。
  6. 根据权利要求5所述的捕获及富集空气中二氧化碳的方法,其特征在于:至少满足下列一项:
    所述改性活性氧化铝A由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~3.0M的金属氢氧化物溶液加入反应容器中循环0.5~24h,经过滤、洗涤、干燥,得改性活性氧化铝A;其中,活性氧化铝与金属氢氧化物溶液的质量体积比为1:0.5~10;
    所述改性活性氧化铝B由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性氧化铝B;其中,活性氧化铝与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10;
    所述改性活性氧化铝C由以下方法制备得到:将活性氧化铝装入到反应容器中,然后将浓度为0.1~5.0M的金属氢氧化物溶液加入反应容器中循环0.5~24h,经过滤、洗涤、干燥,将所得固体装入到反应容器中,再将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性氧化铝C;其中,活性氧化铝与金属氢氧化物溶液的质量体积比为1:0.5~10;活性氧化铝与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10;
    所述改性活性炭由以下方法制备得到:将活性炭装入到反应容器中,然后将浓度为0.1~5.0M的碳酸盐溶液或碳酸氢盐溶液加入反应容器中循环0.5~48h,经过滤、洗涤、干燥,得改性活性炭;其中,活性炭与碳酸盐溶液或碳酸氢盐溶液的质量体积比为1:0.5~10。
  7. 活性材料或改性活性材料在捕捉昆虫中的应用,其特征在于:将活性材料或改性活性材料中吸附的二氧化碳解吸后,用于捕捉昆虫;所述活性材料为离子交换树脂、活性氧化铝或活性炭;所述改性活性材料为改性活性氧化铝或改性活性炭。
  8. 根据权利要求7所述的活性材料或改性活性材料在捕捉昆虫中的应用,其特征在于:当材料为离子交换树脂时,解吸条件为相对湿度高于40%,且解吸二氧化碳的相对湿度比吸附二氧化碳的相对湿度高;当材料为活性氧化铝、活性炭、 改性活性氧化铝或改性活性炭时,解吸的条件为100~500℃加热0.5~5h。
  9. 根据权利要求7所述活性材料或改性活性材料在捕捉昆虫中的应用,其特征在于,当捕捉蚊虫时,所采用的装置为蚊虫诱杀装置,其包括:
    外壳体;
    内筒体,设置在所述外壳体中,包括顶端的进风口;
    第一风力单元,设置在所述外壳体中并位于所述内筒体的下方,并用于在所述内筒体的进风口产生进入所述内筒体的气流;
    蚊虫收集单元,设置在所述外壳体下方并位于所述第一风力单元的下方,与内筒体连通并用于收集从内筒体的进风口进入的蚊虫;
    二氧化碳富集单元,设置在所述外壳体中并与所述内筒体相邻地设置,内部设置有加热单元或加湿单元,通过位于所述二氧化碳富集单元下方且设置在外壳体上的通气孔与大气连通,顶部为二氧化碳逸出口,其中,所述二氧化碳富集单元中装载有活性材料或改性的活性材料;
    第二风力单元,设置在所述二氧化碳富集单元的底部并用于在所述外壳体的通气孔产生进入所述二氧化碳富集单元的气流。
  10. 根据权利要求9所述活性材料或改性活性材料在捕捉昆虫中的应用,其特征在于,所述装置还包括蚊虫引诱光源(CDC灯、黑光灯、CCFL灯或紫外灯),所述蚊虫引诱光源设置在所述内筒体的进风口处。
PCT/CN2018/098331 2018-05-21 2018-08-02 利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用 WO2019223111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810489242.XA CN108970327A (zh) 2018-05-21 2018-05-21 利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用
CN201810489242.X 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019223111A1 true WO2019223111A1 (zh) 2019-11-28

Family

ID=64542056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098331 WO2019223111A1 (zh) 2018-05-21 2018-08-02 利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用

Country Status (2)

Country Link
CN (1) CN108970327A (zh)
WO (1) WO2019223111A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865924A (en) * 1972-03-03 1975-02-11 Inst Gas Technology Process for regenerative sorption of CO{HD 2
CN1153077A (zh) * 1995-10-04 1997-07-02 气体产品与化学公司 经碱处理的氧化铝在压力回转吸附中的应用
CN103157436A (zh) * 2013-04-02 2013-06-19 清华大学 高效吸附co2的松子壳基活性炭的制备方法
CN106111058A (zh) * 2016-06-14 2016-11-16 时笑阳 一种离子水合物型吸附剂及其制备方法和应用
CN106804555A (zh) * 2017-01-20 2017-06-09 唐成康 金属离子改性沸石分子筛在捕蚊中的应用及其改性方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849327B2 (ja) * 2006-10-02 2016-01-27 カーボン シンク インコーポレイテッド 空気から二酸化炭素を抽出するための方法および装置
KR101312914B1 (ko) * 2008-04-06 2013-09-30 라비 자인 이산화 탄소 회수방법
GB2503948A (en) * 2012-07-14 2014-01-15 Paul Keith Guerrier Insect trap
CN103193228B (zh) * 2013-04-02 2016-04-20 清华大学 高效吸附co2的瓜子皮基活性炭的制备方法
CN106818675A (zh) * 2017-01-20 2017-06-13 唐成康 沸石分子筛或改性沸石分子筛在捕蚊中的应用及改性方法
CN206674859U (zh) * 2017-01-20 2017-11-28 唐成康 一种仿生电子蚊虫诱杀装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865924A (en) * 1972-03-03 1975-02-11 Inst Gas Technology Process for regenerative sorption of CO{HD 2
CN1153077A (zh) * 1995-10-04 1997-07-02 气体产品与化学公司 经碱处理的氧化铝在压力回转吸附中的应用
CN103157436A (zh) * 2013-04-02 2013-06-19 清华大学 高效吸附co2的松子壳基活性炭的制备方法
CN106111058A (zh) * 2016-06-14 2016-11-16 时笑阳 一种离子水合物型吸附剂及其制备方法和应用
CN106804555A (zh) * 2017-01-20 2017-06-09 唐成康 金属离子改性沸石分子筛在捕蚊中的应用及其改性方法

Also Published As

Publication number Publication date
CN108970327A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN209484741U (zh) 一种基于mof-801材料的除湿干燥装置
CN203040489U (zh) 灭蚊灯
WO2019223113A1 (zh) 利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及其应用
CN104132403A (zh) 一种复合式高效去除颗粒污染物的空气净化器
WO2019223111A1 (zh) 利用活性材料或改性活性材料捕获及富集空气中二氧化碳的方法及在捕捉昆虫中的应用
CN201270731Y (zh) 光催化灭蚊蝇器
CN208720393U (zh) 等离子复合型空气除湿净化消毒设备
CN200997846Y (zh) 风扇式捕蚊器
CN209093058U (zh) 水性漆喷漆过程中的voc废气治理装置
CN107485971B (zh) 一种残留熏蒸剂硫酰氟的回收装置及其回收工艺
CN205807667U (zh) 一种具有螺旋净化路径的空气净化装置
CN106804555A (zh) 金属离子改性沸石分子筛在捕蚊中的应用及其改性方法
CN104606970A (zh) 一种吸附-过滤双功能电催化去除甲醛的空气净化器
CN111316963B (zh) 基于湿法再生co2捕集材料的蚊虫诱捕器及蚊虫诱捕方法
CN208253783U (zh) 一种新型的空气净化器
CN211273967U (zh) 一种用于有机废气VOCs处理的过滤组件
CN206674859U (zh) 一种仿生电子蚊虫诱杀装置
CN210624766U (zh) 一种新型智能甲醛检测预警设备
CN208911732U (zh) 一种锂离子电池隔膜涂覆设备的进风口净化装置
CN105276754B (zh) 空气净化系统
CN208269289U (zh) 一种除甲醛粉尘空气净化器
CN206867943U (zh) 一种方便调节的废气处理吸附装置
CN220338646U (zh) 恒湿净化除酸一体机
CN106818675A (zh) 沸石分子筛或改性沸石分子筛在捕蚊中的应用及改性方法
CN110822582A (zh) 一种室内co2空气净化的装置与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919675

Country of ref document: EP

Kind code of ref document: A1