WO2019222879A1 - 一种光谱分析系统 - Google Patents

一种光谱分析系统 Download PDF

Info

Publication number
WO2019222879A1
WO2019222879A1 PCT/CN2018/087660 CN2018087660W WO2019222879A1 WO 2019222879 A1 WO2019222879 A1 WO 2019222879A1 CN 2018087660 W CN2018087660 W CN 2018087660W WO 2019222879 A1 WO2019222879 A1 WO 2019222879A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
grating
analysis system
unit
spectral
Prior art date
Application number
PCT/CN2018/087660
Other languages
English (en)
French (fr)
Inventor
牟涛涛
骆磊
汪兵
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to CN201880001069.2A priority Critical patent/CN108713135B/zh
Priority to PCT/CN2018/087660 priority patent/WO2019222879A1/zh
Publication of WO2019222879A1 publication Critical patent/WO2019222879A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the present application relates to the field of optical detection technology, and in particular, to a spectrum analysis system.
  • Spectrometer is an important instrument for optical detection. It is a universal device for measuring the composition and structure of substances by measuring and analyzing the spectrum. It has the advantages of fast measurement speed, high accuracy, and non-destructive measurement.
  • the resolution of a spectrometer is a very important indicator in spectral measurement. It indicates the ability to separate spectral lines with extremely close wavelengths and reflects the degree of spectral ultrafine structure measurement. Therefore, resolution is one of the most critical performance indicators of a spectrometer.
  • the integration of multiple spectrometers increases the cost of the system; 3.
  • the calibration standards of the equipment are inconsistent due to the splicing of multiple spectrometers, and the deviation of the light radiation calibration will cause faults at the spectral splicing 4.
  • Multi-channel spectroscopic detection caused a large loss of optical signals.
  • a technical problem to be solved in some embodiments of the present application is to provide a spectrum analysis system, which is used to solve the problems of low spectral resolution during optical detection and loss of optical signals during spectral analysis.
  • An embodiment of the present application provides a spectrum analysis system, including: a spectrum detection device and a spectrum analysis device; the spectrum detection device includes a spectrum scanning unit, a first grating, and a focusing unit which are sequentially arranged; and the spectrum analysis device includes a space which is sequentially arranged Optical splitter, collimation unit, second grating, and imager; the spectral scanning unit is used to emit laser light to the detected object, receives the original spectrum of the detected object excited by the laser and projects it to the first grating; the first grating is used to The original spectrum is split and projected to the focusing unit; the focusing unit is used to focus the spectrum projected by the first grating and projected to the collimation unit via a spatial light splitter; the collimation unit is used to collimate the projected spectrum and project it to The second grating; the second grating is used for aligning the processed spectrum of the straightening unit to perform spectral splitting, and then projects the image to the imager to form a spectral band
  • the first spectrum is separated by the first grating in the spectrum detection device, which increases the spectral distance of the original spectrum and passes the first
  • the spectroscopic separation of the two gratings further increases the spectroscopic distance, changes the original spectrum into an area array spectrum, improves the resolution of the spectral analysis system, and does not require the splicing of multiple spectrometers to improve the spectral resolution, making the spectral analysis system small in size and convenient.
  • the calibration standard of the equipment is the same, and the entire spectrum processing is completed in one spectral analysis system, so there is no loss of optical signals, and in the spectral analysis system, only the The two gratings split the spectrum twice to achieve the effect of improving the spectral resolution, which makes the spectral analysis system simple in structure and low in cost.
  • FIG. 1 is a structural diagram of a spectrum analysis system in a first embodiment of the present application
  • FIG. 2 is a structural diagram of another spectrum analysis system in the first embodiment of the present application.
  • FIG. 3 is a structural diagram of another spectral analysis system in the first embodiment of the present application.
  • FIG. 4 is a structural diagram of a spectrum analysis system in a second embodiment of the present application.
  • the first embodiment of the present application relates to a spectrum analysis system, the structure of which is shown in FIG. 1 and includes: a spectrum detection device 10 and a spectrum analysis device 20; the spectrum detection device 10 includes a spectrum scanning unit 11 and a first grating arranged in this order. 12 and focusing unit 13, the spectral analysis device includes a spatial light splitter 21, a collimating unit 22, a second grating 23, and an imager 24 which are arranged in this order.
  • the spatial light splitter 21 is used to divide the area array light in space into linear array light, which limits the light in space.
  • the spatial light splitter includes an aperture or Space encoder.
  • the aperture of the diaphragm is used to limit the light beam, so that the area array light in the space becomes linear array light.
  • the diaphragm includes a slit, a small hole, etc. Therefore, a slit can be used as a spatial light splitter.
  • a spatial encoder or other optical segmentation device can also be used as the spatial optical segmenter, which is not limited here.
  • the spectral scanning unit 11 is configured to emit laser light to the detected object, receives the original spectrum of the detected object excited by the laser, and projects the original spectrum to the first grating 12; the first grating 12 is configured to split the original spectrum and project the focused spectrum to the focusing unit 13. ; The focusing unit 13 is used for focusing the spectrum projected by the first grating and then projected to the collimation unit 22 through the spatial light splitter 21; the collimation unit 22 is used for collimating the projected spectrum and projected to the second grating 23 The second grating 23 is used to align the processed spectrum of the straightening unit to perform spectral splitting, and then project the image to the imager 24 to form a spectral band under the action of the imager 24.
  • the spectral scanning unit 11 is configured to emit laser light and project it to the object to be detected.
  • the energy level of the molecules in the object is changed by the laser to generate the original spectrum.
  • a filter unit 14 may be provided in the spectrum detection device. As shown in FIG. 2, the filter unit 14 is disposed between the spectrum scanning unit 11 and the first grating 12;
  • the light unit 14 is configured to filter the laser signal in the original spectrum projected by the spectrum scanning unit 11 and project the laser signal to the first grating.
  • the filter unit 14 in FIG. 2 is an interference filter.
  • the original spectrum is incident at an angle perpendicular to the interference filter.
  • the laser signal in the original spectrum cannot pass through the filter, and other wavelengths of light can pass through the filter.
  • Light film For another example, by setting a filter group, the original spectrum emitted by the detected object can pass unhindered, and a light signal with a wavelength greater than the laser wavelength can pass, but the laser signal cannot pass through the filter group, thereby making the original spectrum
  • the laser signal is filtered out.
  • the above-mentioned interference filters and filter groups are all exemplary descriptions. Those skilled in the art can understand that the filter unit is provided for filtering out a laser signal, and the types of the filters and the types of the filters are not limited here. Setting method.
  • the spectrum scanning unit 11 filters the original spectrum through the filter unit 14 and projects the original spectrum to the first grating 12. Due to the spectroscopic effect of the first grating 12, the original spectrum is split into a linear array spectrum, and the focusing unit 13 Focus processing is performed on the linear array spectrum, and the focused linear array spectrum is projected to the spatial light splitter 21.
  • the spatial light splitter 21 as a connecting device between the spectral detection device and the spectral analysis device, can restrict the stray light after the light is entered.
  • a spectral analysis device is provided with a collimation unit 22 behind the spatial light splitter 21 to collimate the light that has passed through the spatial light splitter, and align the processed spectrum to pass through the second grating 23
  • Re-spectralization increases the spectral distance, changes the original linear array spectrum to area array spectrum, and then forms a spectral band under the action of the imager, thereby improving the spectral resolution.
  • the spectrum processed by the collimation unit 22 is propagated in the glass or optical plastic matrix and reaches the second grating 23 to prevent other signals in the environment from affecting the light transmission.
  • the first grating 12 is preferably a stepped grating or a lens grating, as shown in FIG.
  • the grating is a middle-step grating
  • a structure of the spectral analysis system is shown.
  • the selection of the medium-step grating is mainly to consider that to a certain extent, the medium-step grating is a coarse grating, the grating constant is large, and the spectral resolution after diffraction is high.
  • the first grating 12 may also be a common projection grating, a mid-step reflection grating, or a low-rule grating.
  • the description of the first grating here is an exemplary description, and is not limited to the examples described above, and an appropriate grating may be selected according to the actual situation.
  • the first grating does not generally choose a blazed grating, mainly because the blazed grating is designed to diffract a certain order of a specific wavelength band through the design of the blazed angle.
  • the original spectrum emitted by the detected object There may be more than one spectrum.
  • the first grating may be a certain type of grating or a grating group, which is not specifically limited here.
  • the collimation unit 22 when the spectrum passed through the spatial light splitter 21 is projected onto the collimation unit 22, the collimation unit 22 performs a collimation process on the collimation unit.
  • the collimation process is to change the light in the spectrum into parallel rays, and the collimation unit 22 It can be a convex lens or another lens combination.
  • the structure and specific configuration of the collimation unit are not limited here.
  • the second grating 23 is disposed behind the collimation unit 22 and is used to increase the distance of the light splitting so that the linear array spectrum becomes a surface array spectrum.
  • the second grating 23 may be a grating or a prism.
  • the second grating 23 The setting increases the beam splitting distance.
  • the second grating may also be other elements besides the grating or the prism, and this embodiment does not limit the specific implementation form of the second grating.
  • the double spectrum splits the original spectrum into a linear array spectrum and then into an area array spectrum, which increases the spectral distance.
  • the imager forms the spectrum after the two spectrum splits into a spectral band.
  • the imager 24 includes an imaging lens 241 and an area array. Detector 242; the imaging lens 241 performs imaging processing on the spectrum projected by the second grating 23, and projects the spectrum onto the area array detector 242 to form a spectral band on the surface of the area array detector 242. It is worth mentioning that this is only to explain the imaging lens and area array detector in the imager. The other irrelevant components are not explained, and it does not mean that there are no other components.
  • the area array detector 242 is a surface array charge-coupled device (CCD) detector or area array complementary metal oxide semiconductor (CMOS, Complementary Metal-Oxide-Semiconductor) detector.
  • CCD surface array charge-coupled device
  • CMOS area array complementary metal oxide semiconductor
  • the above-mentioned two specific detectors are two types of detectors commonly used in area array detectors, which are not limited to the above-mentioned two types of detectors, and are merely examples for illustration without specific restrictions.
  • the first spectrum is separated by the first grating in the spectrum detection device, which increases the spectral distance of the original spectrum and passes the first
  • the spectroscopic separation of the two gratings further increases the spectroscopic distance, changes the original spectrum into an area array spectrum, improves the resolution of the spectral analysis system, and does not require the splicing of multiple spectrometers to improve the spectral resolution, making the spectral analysis system small in size and convenient.
  • the calibration standard of the equipment is the same, and the entire spectrum processing is completed in one spectral analysis system, so there is no loss of optical signals, and in the spectral analysis system, only the The two gratings split the spectrum twice to achieve the effect of improving the spectral resolution, which makes the spectral analysis system simple in structure and low in cost.
  • the second embodiment of the present application relates to a spectrum analysis system.
  • the second embodiment is substantially the same as the first embodiment.
  • the main difference is that the specific structure of the spectral scanning unit is specifically described in the second embodiment.
  • the spectral scanning unit 11 is configured to emit laser light to the detected object and receive the original spectrum emitted by the detected object.
  • the spectral scanning unit 11 includes a laser 111, an objective lens 112, and a dichroic film 113, and the structure is shown in FIG.
  • the laser 111 is configured to emit a laser signal and project the laser signal onto a dichroic film 113; the dichroic film 113 is configured to reflect the projected laser signal to the objective lens 112; the objective lens 112 is configured to project the projected laser signal To the detected object, and obtain the original spectrum emitted by the detected object, and project the original spectrum to the dichroic sheet 113; the dichroic sheet 113 projects the original spectrum to the first grating 12.
  • the dichroic film 113 is also called a "dichroic mirror".
  • One feature of the dichroic film is that it transmits almost all light of a certain wavelength and almost completely of other wavelengths of light. reflection.
  • the dichroic film 113 selected in this embodiment is totally reflective to the laser light.
  • a specific implementation is that the laser signal is projected to the dichroic film.
  • the incident angle with the dichroic film is 45 degrees; when the laser signal is reflected by the dichroic film to the objective lens, the exit angle with the dichroic film is 45 degrees.
  • the dichroic film 113 needs to be set according to the positional relationship between the laser 111 and the objective lens 112 during the setting to ensure that the laser signal can be reflected to the objective lens 112 and can receive the original spectrum projected by the objective lens.
  • the spectrum detection device 10 in the spectrum analysis system analyzes the acquired substance spectrum, so the spectrum analysis system can be used to provide analysis for the spectrum obtained by various spectral detection means.
  • the spectrum detection device can For Raman probes, Laser-Induced Breakdown (LIBS) Spectroscopy) or inductively coupled plasma spectrometer (ICP, Inductive Coupled Plasma Emission Spectrometer).
  • LIBS Laser-Induced Breakdown
  • ICP Inductive Coupled Plasma Emission Spectrometer
  • the spectrum analysis device can be the integration of different spectrum detection probes and spectrum analysis devices, so that the spectrum detection system can obtain high-resolution spectra in a variety of detections, which broadens the scope of the system and has low cost.
  • the spectral analysis device can integrate a spectral analysis system with a detection probe that acquires a substance spectrum, and is not limited to the above-mentioned detection probes. In practice, what type of detection probe is connected to the spectral device according to the detection needs, this There are no restrictions here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种光谱分析系统,包括:光谱检测装置(10)和光谱分析装置(20);光谱检测装置(10)包括光谱扫描单元(11)、第一光栅(12)和聚焦单元(13),光谱分析装置(20)包括空间光分割器(21)、准直单元(22)、第二光栅(23)和成像器(24);光谱扫描单元(11)向被检测物发射激光,接收被检测物被激光激发的原始光谱并投射到第一光栅(12);第一光栅(12)对原始光谱分光后投射到聚焦单元(13);聚焦单元(13)对第一光栅(12)投射的光谱聚焦后,经由空间光分割器(21)投射至准直单元(22);准直单元(22)对投射的光谱进行准直处理后投射到第二光栅(23);第二光栅(23)对准直单元(22)处理后的光谱进行分光后,投射至成像器(24),在成像器(24)的作用下形成光谱带。该系统用以解决光学检测过程中光谱分辨率不高和光谱分析过程中光信号损失的问题。

Description

一种光谱分析系统 技术领域
本申请涉及光学检测技术领域,尤其涉及一种光谱分析系统。
背景技术
光谱仪是光学检测的重要仪器,是通过对光谱的测量分析来完成对物质的成分及结构等测量的通用设备,具有测量速度快、精度高、无损测量等优点。
光谱仪的分辨率是光谱测量中至关重要的指标,它表示将波长极为接近的谱线分开的能力,反映光谱超精细结构测量的程度,因此,分辨率是光谱仪最关键的性能指标之一。
技术问题
发明人在研究现有技术的过程中发现,当前的大范围高分辨率光谱检测设备基本都是通过多个光谱仪拼接实现的,这样的方式会导致如下的问题:1、集成后的系统体积较大,设备重量也大,不便于携带;2、多个光谱仪集成使系统的成本增加;3、由于多个光谱仪拼接导致设备的定标标准不一致,光线辐射定标偏差会造成光谱拼接处的断层;4、多通道分光探测造成了光信号的大量损失。
因此,需要寻求一种有效提高光谱仪分辨率的方式。
技术解决方案
本申请部分实施例所要解决的技术问题在于提供一种光谱分析系统,用以解决光学检测过程中光谱分辨率不高和光谱分析过程中光信号损失的问题。
本申请的一个实施例提供了一种光谱分析系统,包括:光谱检测装置和光谱分析装置;光谱检测装置包括依次设置的光谱扫描单元、第一光栅和聚焦单元,光谱分析装置包括依次设置的空间光分割器、准直单元、第二光栅和成像器;光谱扫描单元用于向被检测物发射激光,接收被检测物被激光激发的原始光谱并投射到第一光栅;第一光栅用于对原始光谱分光后投射到聚焦单元;聚焦单元用于对第一光栅投射的光谱聚焦后,经由空间光分割器投射至准直单元;准直单元用于对投射的光谱进行准直处理后投射到第二光栅;第二光栅用于对准直单元处理后的光谱进行分光后,投射至成像器,在成像器的作用下形成光谱带。
有益效果
相对于现有技术而言,在收集到被检测物发出的原始光谱之后,通过光谱检测装置中的第一光栅对原始光谱进行第一次分光,增大了原始光谱的分光距离,并通过第二光栅的分光进一步增加了分光距离,使原始光谱变为面阵光谱,提高了光谱分析系统的分辨率,不需要通过多个光谱仪的拼接提高光谱分辨率,使该光谱分析系统体积小,便于携带,进一步的,由于不需要拼接该光谱分析系统中没有断层,设备的定标标准一致,整个光谱处理在一个光谱分析系统中完成,从而没有光信号损失,而且,在光谱分析系统中仅通过两个光栅对光谱进行两次分光而达到提高光谱分辨率的效果,使该光谱分析系统结构简单,成本低。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请第一实施例中一种光谱分析系统的结构图;
图2是本申请第一实施例中另一光谱分析系统的结构图
图3是本申请第一实施例中另一光谱分析系统的结构图;
图4是本申请第二实施例中光谱分析系统的结构图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。然而,本领域的普通技术人员可以理解,在本申请的各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的第一实施例涉及一种光谱分析系统,其结构如图1所示,包括:光谱检测装置10和光谱分析装置20;光谱检测装置10包括依次设置的光谱扫描单元11、第一光栅12和聚焦单元13,光谱分析装置包括依次设置的空间光分割器21、准直单元22、第二光栅23和成像器24。
需要说明的是,图示中箭头的方向表示光线传播的路径,以下图示中均是如此,不再赘述。
值得一提的是,空间光分割器21是用于将空间中的面阵光分割为线阵的光,对空间中的光起限制作用,具体地说,该空间光分割器包括光阑或空间编码器。进一步的,光阑的孔径用于限制光束,使得空间中的面阵光变为线阵光,光阑包括狭缝、小孔等,因而,可以选择使用狭缝作为空间光分割器,实际中也可以使用空间编码器或其他光分割器件作为空间光分割器,此处不做限制。
具体的,光谱扫描单元11用于向被检测物发射激光,接收被检测物被激光激发的原始光谱并投射到第一光栅12;第一光栅12用于对原始光谱分光后投射到聚焦单元13;聚焦单元13用于对第一光栅投射的光谱聚焦后,经由空间光分割器21投射至准直单元22;准直单元22用于对投射的光谱进行准直处理后投射到第二光栅23;第二光栅23用于对准直单元处理后的光谱进行分光后,投射至成像器24,在成像器24的作用下形成光谱带。
具体的,光谱扫描单元11用于发射激光并投射到被检测物,在激光的作用下被检测物中分子的能级发成变化,产生原始光谱,值得注意的是,若激光信号在投射到被检测物后发生反射,会伴随原始光谱进入第一光栅,从而影响后续的对原始光谱的处理。为了避免反射光进入第一光栅所造成的影响,可以在光谱检测装置中设置滤光单元14,如图2所示,滤光单元14设置于光谱扫描单元11和第一光栅12之间;滤光单元14用于对光谱扫描单元11投射的原始光谱中的激光信号进行滤光处理后,投射到第一光栅。
例如,图2中的滤光单元14是一种干涉滤光片,原始光谱以垂直于干涉滤光片的角度入射,原始光谱中激光信号不能通过滤光片,而其他波长的光可以通过滤光片。又如,可通过设置滤光片组,使被检测物发出的原始光谱能够无阻碍的通过,以及波长大于激光波长的光信号可通过,而激光信号不能通过滤光片组,进而使得原始光谱中的激光信号被滤除。上述的干涉滤光片和滤光片组均是示例性的说明,本领域的技术人员能够明白,滤光单元是为了滤除激光信号而设置,此处不限制设置的滤光片的种类以及设置方式。
具体的,本实施例中光谱扫描单元11将原始光谱经由滤光单元14滤光之后投射到第一光栅12,由于第一光栅12的分光作用,使原始光谱分光为线阵光谱,聚焦单元13对该线阵光谱进行聚焦处理,经由聚焦后的线阵光谱投射到空间光分割器21,空间光分割器21作为光谱检测装置和光谱分析装置之间的连接器件能够限制分光后的杂散光进入光谱分析装置,为进一步提高光谱分辨率,在空间光分割器21后设置准直单元22对经过空间光分割器的光进行准直处理,对准直处理后的光谱使其经过第二光栅23进行再次分光,增大了分光距离,使原本的线阵光谱变为面阵光谱,进而在成像器的作用下形成光谱带,从而提高光谱分辨率。
值得一提的是,经过准直单元22准直处理的光谱是在玻璃或光学塑料基体内传播并到达第二光栅23,避免环境中的其他信号影响光线传播。
需要说明的是,在第一光栅12对光谱进行分光时,为了得到一个高色散、高分辨率的光谱,第一光栅12优选中阶梯光栅或透镜光栅,如图3所示,是当第一光栅为中阶梯光栅时,光谱分析系统的一种结构示意。选择中阶梯光栅主要是考虑到,一定程度上中阶梯光栅属于粗光栅,光栅常数较大,衍射后的光谱分辨率较高。当然,第一光栅12还可以是普通的投射光栅、中阶梯反射光栅或低刻线光栅。此处对第一光栅的说明是一种示例性说明,不局限于上述的示例,可根据实际选择合适光栅。
但实际中第一光栅一般不会选择闪耀光栅,主要是由于闪耀光栅通过对闪耀角的设计,主要适用于对某一特定波段的某一级光谱进行衍射,实际中被检测物发出的原始光谱可能并不只有某一级光谱。
值得注意的是,第一光栅可以是某一种光栅,也可以是光栅组,此处不做具体限制。
具体的,经过空间光分割器21后的光谱投射到准直单元22时,准直单元22对其进行准直处理,准直处理就是将光谱中的光线变为平行的光线,准直单元22可以是凸透镜也可以是其他镜头组合,对于准直单元的结构和具体构成,此处不做限制。
需要说明的是,第二光栅23设置在准直单元22之后,用于增大分光的距离,使线阵光谱变为面阵的光谱,第二光栅23可以为光栅或棱镜,第二光栅23的设置增大了分光距离。当然,第二光栅还可以是除光栅或棱镜外的其它元件,本实施例不限制第二光栅的具体实现形式。
具体的,两次分光使原始光谱变为线阵光谱再变为面阵光谱,增大了分光距离,成像器将两次分光后的光谱形成光谱带,成像器24包括成像镜头241和面阵探测器242;成像镜头241对第二光栅23投射的光谱进行成像处理后,投射至面阵探测器242,在面阵探测器242表面形成光谱带。值得一提的是,此处仅是说明成像器中的成像镜头和面阵探测器,对于其他不相关元件只是没有进行说明,并不表示不存在其他元件。
一个具体实现中,面阵探测器242为面阵电荷耦合(CCD,Charge-coupled Device)探测器或面阵互补性氧化金属半导体(CMOS,Complementary Metal-Oxide-Semiconductor)探测器。需要说明的是,上述的两种具体探测器是面阵探测器中常用的两种探测器型号,此处并非局限于上述的两种探测器,仅是举例说明,不做具体限制。
相对于现有技术而言,在收集到被检测物发出的原始光谱之后,通过光谱检测装置中的第一光栅对原始光谱进行第一次分光,增大了原始光谱的分光距离,并通过第二光栅的分光进一步增加了分光距离,使原始光谱变为面阵光谱,提高了光谱分析系统的分辨率,不需要通过多个光谱仪的拼接提高光谱分辨率,使该光谱分析系统体积小,便于携带,进一步的,由于不需要拼接该光谱分析系统中没有断层,设备的定标标准一致,整个光谱处理在一个光谱分析系统中完成,从而没有光信号损失,而且,在光谱分析系统中仅通过两个光栅对光谱进行两次分光而达到提高光谱分辨率的效果,使该光谱分析系统结构简单,成本低。
本申请的第二实施例涉及一种光谱分析系统,第二实施例与第一实施例大致相同,主要区别之处在于,在第二实施例中具体说明了光谱扫描单元的具体结构。
光谱扫描单元11用于向被检测物发射激光和接收被检测物发出的原始光谱,光谱扫描单元11包括:激光器111、物镜112和二向色片113,结构如图4所示。
具体的,激光器111用于发出激光信号,并将激光信号投射到二向色片113;二向色片113用于将投射的激光信号反射到物镜112;物镜112用于将投射的激光信号投射到被检测物,并获取被检测物发出的原始光谱,将原始光谱投射到二向色片113;二向色片113将原始光谱投射到第一光栅12。
值得一提的是,二向色片113又被称为“二向色镜”,二向色片的一个特点是:对一定波长的光几乎完全透过,而对另一些波长的光几乎完全反射。
本实施例中选择的二向色片113对激光是全反射的,为了将激光信号通过二向色片113的反射投射到待检测物上,一个具体实现为:激光信号投射到二向色片113时,与二向色片的入射夹角为45度;激光信号被二向色片反射到物镜时,与二向色片的出射角为45度。需要说明的是,二向色片113在设置时需要根据激光器111与物镜112的位置关系设置,保证能将激光信号反射到物镜112,且能接收物镜投射的原始光谱。
值得一提的是,该光谱分析系统中的光谱检测装置10对获取的物质光谱进行分析,因而该光谱分析系统可用于为多种光谱检测手段获取的光谱提供分析,如,该光谱检测装置可以为拉曼探头、激光诱导击穿光谱(LIBS,Laser-Induced Breakdown Spectroscopy)或电感耦合等离子光谱发生仪(ICP,Inductive Coupled Plasma Emission Spectrometer)。也就是说,光谱分析装置可以是不同的光谱检测探头与光谱分析装置的集成,使得该光谱检测系统在多种检测中均能够获取高分辨的光谱,拓宽了系统的使用范围,而且成本低。
需要说明的是,光谱分析装置能够与获取物质光谱的检测探头集成光谱分析系统,并不局限于上述的几种检测探头,实际中根据检测需要将光谱装置与何种类型的检测探头连接,此处不做限制。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (11)

  1. 一种光谱分析系统,其中,包括:光谱检测装置和光谱分析装置;所述光谱检测装置包括依次设置的光谱扫描单元、第一光栅和聚焦单元,所述光谱分析装置包括依次设置的空间光分割器、准直单元、第二光栅和成像器;
    所述光谱扫描单元用于向被检测物发射激光,接收所述被检测物被所述激光激发的原始光谱并投射到所述第一光栅;
    所述第一光栅用于对所述原始光谱分光后投射到所述聚焦单元;
    所述聚焦单元用于对所述第一光栅投射的光谱聚焦后,经由所述空间光分割器投射至所述准直单元;
    所述准直单元用于对投射的光谱进行准直处理后投射到所述第二光栅;
    所述第二光栅用于对所述准直单元处理后的光谱进行分光后,投射至所述成像器,在所述成像器的作用下形成光谱带。
  2. 根据权利要求1所述的光谱分析系统,其中,所述空间光分割器包括光阑或空间编码器。
  3. 根据权利要求2所述的光谱分析系统,其中,所述光阑包括狭缝。
  4. 根据权利要求1至3任一项所述的光谱分析系统,其中,所述图像传感器包括成像镜头和面阵探测器;
    所述成像镜头用于对所述第二光栅投射的光谱进行成像处理后,投射至所述面阵探测器,在所述面阵探测器表面形成光谱带。
  5. 根据权利要求4所述的光谱分析系统,其中,所述面阵探测器为面阵电荷耦合CCD探测器或面阵互补性氧化金属半导体CMOS探测器。
  6. 根据权利要求4或5所述的光谱分析系统,其中,所述光谱检测装置还包括滤光单元,所述滤光单元设置于所述光谱扫描单元和所述第一光栅之间;
    所述滤光单元用于对所述光谱扫描单元投射的所述原始光谱中的所述激光信号进行滤光处理后,投射到所述第一光栅。
  7. 根据权利要求1至6中任一项所述的光谱分析系统,其中,所述光谱检测装置为拉曼探头、激光诱导击穿光谱LIBS或电感耦合等离子光谱发生仪ICP。
  8. 根据权利要求1至6中任一项所述的光谱分析系统,其中,所述第一光栅为中阶梯光栅或透射光栅。
  9. 根据权利要求1至6中任一项所述的光谱分析系统,其中,所述第二光栅为光栅或棱镜。
  10. 根据权利要求6至9中任一项所述的光谱分析系统,其中,所述光谱扫描单元包括:激光器、物镜和二向色片;
    所述激光器用于发出激光信号,并将所述激光信号投射到所述二向色片;所述二向色片用于将投射的所述激光信号反射到所述物镜;所述物镜用于将所述投射的所述激光信号投射到被检测物,并获取被检测物发出的原始光谱,将所述原始光谱投射到所述二向色片;所述二向色片将所述原始光谱投射到所述第一光栅。
  11. 根据权利要求10所述的光谱分析系统,其中,所述激光信号投射到所述二向色片时,与所述二向色片的入射夹角为45度;所述激光信号被所述二向色片反射到所述物镜时,与所述二向色片的出射角为45度。
PCT/CN2018/087660 2018-05-21 2018-05-21 一种光谱分析系统 WO2019222879A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001069.2A CN108713135B (zh) 2018-05-21 2018-05-21 一种光谱分析系统
PCT/CN2018/087660 WO2019222879A1 (zh) 2018-05-21 2018-05-21 一种光谱分析系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/087660 WO2019222879A1 (zh) 2018-05-21 2018-05-21 一种光谱分析系统

Publications (1)

Publication Number Publication Date
WO2019222879A1 true WO2019222879A1 (zh) 2019-11-28

Family

ID=63873607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087660 WO2019222879A1 (zh) 2018-05-21 2018-05-21 一种光谱分析系统

Country Status (2)

Country Link
CN (1) CN108713135B (zh)
WO (1) WO2019222879A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248534A (ja) * 1998-03-03 1999-09-17 Dainippon Screen Mfg Co Ltd 分光反射光量計測装置
CN105928922A (zh) * 2016-04-13 2016-09-07 武汉大学 一种N2分子振转Raman谱的测量系统
CN107328475A (zh) * 2017-07-28 2017-11-07 中国科学院西安光学精密机械研究所 宽带滤光光谱成像仪以及自适应直接光谱分类方法
CN107884387A (zh) * 2017-11-28 2018-04-06 北京云端光科技术有限公司 光谱仪及光谱检测系统
CN108007570A (zh) * 2017-11-28 2018-05-08 北京云端光科技术有限公司 光谱仪及光谱检测系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147840A (ja) * 1988-11-29 1990-06-06 Res Dev Corp Of Japan 多波長螢光・燐光分析方法および装置
US6833920B2 (en) * 2000-07-11 2004-12-21 Maven Technologies Llc Apparatus and method for imaging
CN2697644Y (zh) * 2003-08-09 2005-05-04 吉林大学 电感耦合等离子体全谱仪
CN100498418C (zh) * 2007-09-30 2009-06-10 浙江大学 一种全彩色显示系统
CN102564591B (zh) * 2011-12-29 2014-04-16 聚光科技(杭州)股份有限公司 一种光谱分析仪和光谱分析方法
KR101850573B1 (ko) * 2014-01-17 2018-04-19 (주)다울아토닉스 미세 회전형 이미지 분광장치
CN207336366U (zh) * 2017-10-26 2018-05-08 吉林大学 一种基于数字微镜的icp-aes色散检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248534A (ja) * 1998-03-03 1999-09-17 Dainippon Screen Mfg Co Ltd 分光反射光量計測装置
CN105928922A (zh) * 2016-04-13 2016-09-07 武汉大学 一种N2分子振转Raman谱的测量系统
CN107328475A (zh) * 2017-07-28 2017-11-07 中国科学院西安光学精密机械研究所 宽带滤光光谱成像仪以及自适应直接光谱分类方法
CN107884387A (zh) * 2017-11-28 2018-04-06 北京云端光科技术有限公司 光谱仪及光谱检测系统
CN108007570A (zh) * 2017-11-28 2018-05-08 北京云端光科技术有限公司 光谱仪及光谱检测系统

Also Published As

Publication number Publication date
CN108713135B (zh) 2021-07-30
CN108713135A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
US10393579B2 (en) Miniature spectrometer and a spectroscopic method
TWI245114B (en) Apparatus for measuring imaging spectrograph
US7414717B2 (en) System and method for detection and identification of optical spectra
CN103471717B (zh) 基于多狭缝阵列的超分辨光谱仪
US7292337B2 (en) Optical processor using detecting assembly and method using same
US20210072158A1 (en) An apparatus for carrying out raman spectroscopy
KR101078135B1 (ko) 광원 스펙트럼 분석용 분광기의 전 영역 교정 장치 및 그 장치에서 정보 획득 방법
US9194799B2 (en) Imaging based refractometers
CN104501955A (zh) 一种可实现光谱超分辨率还原的光栅光谱仪
CN106706589B (zh) 一种用于细胞分析仪的荧光检测系统
JP2022541364A (ja) スペクトル共焦点測定装置及び測定方法
JP2012117867A (ja) 光学装置及び電子機器
US20100014076A1 (en) Spectrometric apparatus for measuring shifted spectral distributions
US20130242115A1 (en) Imaging based refractometer for hyperspectral refractive index detection
CN210603594U (zh) 一种光谱仪
JP5917572B2 (ja) 分光測定装置及び画像部分抽出装置
KR102015811B1 (ko) 분광 타원계를 이용한 표면 검사장치
JP7486178B2 (ja) 分光分析装置
US20190154505A1 (en) Spectrometric measuring device
WO2019222879A1 (zh) 一种光谱分析系统
CN207423365U (zh) 光谱仪及光谱检测系统
JP2017150981A (ja) 分光装置
TWI404922B (zh) Spectral spectral measurement system
KR102442981B1 (ko) 순간 라만 이미징 장치
Plaipichit et al. Spectroscopy system using digital camera as two dimensional detectors for undergraduate student laboratory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18920099

Country of ref document: EP

Kind code of ref document: A1