WO2019221552A1 - Wheel bearing assembly - Google Patents

Wheel bearing assembly Download PDF

Info

Publication number
WO2019221552A1
WO2019221552A1 PCT/KR2019/005936 KR2019005936W WO2019221552A1 WO 2019221552 A1 WO2019221552 A1 WO 2019221552A1 KR 2019005936 W KR2019005936 W KR 2019005936W WO 2019221552 A1 WO2019221552 A1 WO 2019221552A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
bearing assembly
wheel
wheel bearing
wheel hub
Prior art date
Application number
PCT/KR2019/005936
Other languages
French (fr)
Korean (ko)
Inventor
송영수
박중양
Original Assignee
주식회사 일진글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180153861A external-priority patent/KR102490078B1/en
Application filed by 주식회사 일진글로벌 filed Critical 주식회사 일진글로벌
Publication of WO2019221552A1 publication Critical patent/WO2019221552A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls

Definitions

  • the present disclosure relates to a wheel bearing assembly.
  • the wheel bearing assembly is a device mounted between the rotating element and the non-rotating element to facilitate the rotation of the rotating element.
  • the wheel bearing assembly of the vehicle rotatably connects the wheel to the vehicle body, thereby providing the function of the vehicle to move.
  • Such a wheel bearing assembly may be classified into a drive wheel wheel bearing that transmits power generated in an engine and a driven wheel wheel bearing that does not transmit a driving force.
  • the drive wheel wheel bearing assembly includes a rotating element and a non-rotating element.
  • the rotating element is caused to rotate together with the drive shaft by the torque generated by the engine and passed through the transmission.
  • the non-rotating element is fixed to the vehicle body, and a transmission device is interposed between the rotating element and the non-rotating element.
  • the driven wheel wheel bearing assembly includes a configuration similar to the drive wheel wheel bearing assembly, but no rotating element is connected to the drive shaft.
  • One embodiment of the present disclosure provides a wheel bearing assembly that includes an orbital forming portion and an inner ring that can reduce the axial length of the wheel bearing assembly.
  • a wheel bearing assembly comprising: a wheel hub having a hollow penetrating in an axial direction; An inner ring coupled on an outer circumferential surface of the wheel hub; An outer ring spaced apart from the wheel hub and the inner ring; A rolling device including a first rolling element interposed between the outer ring and the wheel hub and a second rolling element interposed between the outer ring and the inner ring; A constant velocity joint including a coupling portion inserted into the hollow of the wheel hub and a joint portion extending from the coupling portion; And a center bolt inserted into the hollow of the wheel hub at the axially outer end of the wheel hub and configured to couple the constant velocity joint to the wheel hub, the wheel hub having one side contacting the axially inner end face of the inner ring and the other side being And an orbital forming portion in contact with the axially outer end face of the joint portion, wherein the inner ring may include an inner ring protrusion projecting toward the joint portion and spaced apart from the joint portion.
  • the first preload is applied by the orbital forming part when the orbital forming part is formed
  • the second preload may be applied by the axial fastening force of the center bolt when the center bolt is fastened to the constant velocity joint.
  • the first preload may have a size of 5 ⁇ m to 20 ⁇ m
  • the second preload may have a size of 5 ⁇ m to 20 ⁇ m
  • the sum of the magnitudes of the first preload and the second preload may be 20 ⁇ m to 50 ⁇ m.
  • the wheel hub comprises a hollow cylindrical portion and a hub flange extending radially from the cylindrical portion, wherein the first axial distance between the inner flange face of the hub flange and the axial inner tip of the inner ring protrusion is And a second axial distance between the inner flange face and the axially inner end face of the inner ring.
  • the wheel hub comprises a hollow cylindrical portion and a hub flange extending radially from the cylindrical portion, the first axial distance between the inner flange surface of the hub flange and the axially inner tip of the inner ring protrusion.
  • the value subtracted from the third axial distance between the inner flange face of the hub flange and the axial outer cross section of the joint portion can be configured to have a positive value.
  • the axial thickness of the orbital forming portion may be 2.5mm to 3.0mm.
  • it may further include a sealing member disposed in the space between the inner ring protrusion and the joint portion configured to block the inflow of foreign matter.
  • it may further comprise a washer disposed between the center bolt and the wheel hub.
  • the orbital forming portion is formed by bending the forming extension extending in the axial direction of the wheel hub radially outward, and the forming extension is configured to be in close contact with the corner surface between the inner circumferential surface of the inner ring and the axially inner end surface of the inner ring It may include a forming surface.
  • the forming surface the inclined surface inclined radially inward from the outer peripheral surface of the wheel hub; And a concave surface extending from the inclined surface to be concave radially inward.
  • the angle formed between the inclined surface and the axial direction may be 1 ° to 5 °.
  • the radius of curvature of the concave surface may be 20mm to 30mm.
  • the axial width of the concave surface may be greater than the axial width of the inner ring protrusion.
  • the inner ring protrusion may be located in an area formed by the axial width of the concave surface.
  • the axial distance between the axially inner end of the inner ring protrusion and the axially outer end face of the joint portion may be 0.5 mm to 1.0 mm.
  • the inner ring protrusion may include an inclined surface formed to be inclined from the axially inner end of the inner ring protrusion toward the axially inner end surface of the inner ring.
  • the angle formed between the inclined surface and the axial direction may have a size of 0 ° to 45 °.
  • the radial thickness of the inner ring protrusion may be 0.2 to 0.5 times the radial thickness of the inner ring.
  • the outer diameter of the radially front end of the orbital forming portion may be 0.75 to 0.9 times the outer diameter of the outer peripheral surface of the inner ring.
  • a space in which an orbital forming portion may be disposed in the radially inner side of the inner ring protrusion may be formed by forming an inner ring protrusion that is not in contact with the constant velocity joint on the inner ring. Accordingly, the axial length of the wheel bearing assembly can be reduced.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
  • FIG 3 is a cross-sectional view illustrating a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view illustrating a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view showing a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view illustrating a configuration in which a sealing member is disposed between an inner ring and a constant velocity joint of the wheel bearing assembly illustrated in FIG. 1.
  • FIG. 7 is a cross-sectional view illustrating a shape and inner ring of a wheel hub according to an embodiment of the present disclosure.
  • FIG. 8 is an enlarged cross-sectional view of a portion M shown in FIG. 7.
  • Embodiments of the present disclosure are illustrated for the purpose of describing the technical spirit of the present disclosure.
  • the scope of the present disclosure is not limited to the embodiments set forth below or the detailed description of these embodiments.
  • a component when referred to as being "connected" to another component, the component may be directly connected to the other component, or may be connected via a new other component. It must be understood.
  • axial direction R may be defined to mean a direction parallel to the rotational axis of the wheel bearing assembly
  • radial direction is defined to mean a direction away from the axis of rotation
  • Cyrcumferential direction may be defined to mean a direction surrounding the axial direction (R) around the axial direction (R). In the following, the direction of rotational axis of the wheel bearing assembly may simply be referred to as "axial direction R".
  • the arrow "OA” refers to the axial outboard where the wheel is disposed relative to the wheel hub as the direction along the axial direction R of the wheel bearing assembly, and the arrow “IA” is the opposite direction of the "OA".
  • the arrow "OR” points to the outer radial direction away from the rotation axis in the radial direction with respect to the axis of rotation of the wheel bearing assembly, and the arrow “IR” points to the inner radial direction opposite to OR.
  • pre-load may mean a size in which a part of the components constituting the wheel bearing assembly are compressed and elastically deformed by a predetermined force applied in the axial direction during the assembly process.
  • the preload can have a length unit and can be measured, for example, in size in ⁇ m.
  • the wheel bearing assembly 1 is a cross-sectional view showing the overall configuration of a wheel bearing assembly 1 according to an embodiment of the present disclosure.
  • the wheel bearing assembly 1 may be disposed between the suspension of the vehicle (not shown) and the wheel (not shown) to rotate the wheel relative to the suspension.
  • the wheel bearing assembly 1 may have a shape that is symmetrical about the axial direction R.
  • the wheel bearing assembly 1 may consist of a drive wheel wheel bearing assembly.
  • the wheel bearing assembly 1 may include a wheel hub 10, an inner ring 20, an outer ring 40, a rolling device 70, and a sealing device 80.
  • the suspension can be arranged at the axially inner side IA of the wheel bearing assembly 1 and the wheel can be arranged at the axially outer side OA of the wheel bearing assembly 1.
  • the vehicle body may be located at one side of the wheel bearing assembly 1
  • the wheel may be located at the other side of the wheel bearing assembly 1.
  • the wheel hub 10 may include a cylindrical portion 120 extending in the axial direction R and a hub flange 110 extending radially outward from the cylindrical portion 120.
  • a hollow portion 120a penetrated in the axial direction R may be formed at the central portion of the cylindrical portion 120.
  • Wheel bolts (not shown) may be coupled to the bolt holes 111 penetrated in the axial direction R to the hub flange 110.
  • An orbital forming part 100 bent in the radially outer side OR may be formed at an end portion of the cylindrical portion 120 in the axially inner side IA.
  • the first preload is applied to the wheel bearing assembly 1 in the axial direction by the orbital forming part 100.
  • the first preload may have a size of 5 ⁇ m to 20 ⁇ m.
  • the inner ring 20 may be press-fitted on the outer circumferential surface of the cylindrical portion 120 and coupled to the cylindrical portion 120. Thus, the inner ring 20 can rotate with the wheel hub 10.
  • the inner ring 20 may be made of a metal material having a stronger strength than the wheel hub 10.
  • the inner ring 20 may be press-fitted into the inner ring seating portion 120b formed at the inner side IA of the wheel hub 10.
  • the outer ring 40 may be spaced apart from each of the wheel hub 10 and the inner ring 20.
  • the outer ring 40 may be coupled to one side of the suspension device (not shown). That is, the outer ring 40 may be provided as a non-rotating element, and may be configured such that the position does not move after being coupled to one side of the suspension device.
  • the outer ring 40 may, for example, be coupled to a knuckle arm (not shown) of the suspension device and fixed in position.
  • the outer ring 40 includes a first cylindrical portion 41 extending in the axial direction R, an outer ring flange 43 and a first cylindrical portion 41 extending radially outward from the first cylindrical portion 41. It may include a second cylindrical portion 42 extending from the axial direction inward (IA).
  • the outer ring flange 43 may be formed with a knuckle hole 43a for engagement with a knuckle arm (not shown).
  • the sealing device 80 may be interposed between the inner circumferential surface of the second cylindrical portion 42 and the outer circumferential surface of the inner ring 20.
  • the rolling device 70 includes a first rolling element 71 interposed between the outer ring 40 and the wheel hub 10 and a second rolling element interposed between the outer ring 40 and the inner ring 20. 72 may be included.
  • the rolling device 70 may include, for example, a retainer 73 for receiving the first and second rolling elements 71 and 72. As shown in FIG. 1, one portion of the first rolling element 71 may be rolled in contact with the outer ring 40 at the radially outer side OR, and the other portion of the first rolling element 71 may be rolled. It can be rolled in contact with the wheel hub 10 in the direction inward IR.
  • one portion of the second rolling element 72 may be rolled in contact with the outer ring 40 at the radially outer side OR, and the other portion of the second rolling element 72 may be at the radially inner side IR. It can be rolled in contact with the inner ring 20. Accordingly, the wheel hub 10 and the inner ring 20 can be stably rotated with respect to the outer ring 40.
  • the wheel bearing assembly 1 may comprise a constant velocity joint 30 which is engaged at the axially inner side IA of the wheel hub 10.
  • the constant velocity joint 30 may include a coupling part 31 inserted into the hollow 120a of the cylindrical part 120 and a joint part 34 extending from the coupling part 31 and in contact with the orbital forming part 100.
  • the joint part 34 may constitute, for example, an outer race of the constant velocity joint, and a hollow 32 for coupling an inner race to the inner part of the joint part 34 may be formed.
  • a groove 35 for coupling a rubber boot (not shown) may be formed at the axially inward (IA) position of the outer circumferential surface of the joint part 34.
  • the wheel bearing assembly 1 may include a center bolt 50 for coupling the constant velocity joint 30 to the wheel hub 10.
  • the center bolt 50 may include a head part 51 and a threaded bolt part 52.
  • the coupling portion 31 of the constant velocity joint 30 may be formed with a hollow 31a for inserting the tip of the bolt portion 52 of the center bolt.
  • the thread of the bolt portion 52 of the center bolt can be engaged with the thread of the inner circumferential surface 31b of the constant velocity joint engaging portion 31.
  • the second preload may have a size of 5 ⁇ m to 20 ⁇ m.
  • the sum of the magnitudes of the second preload by the axial fastening force of the center bolt 50 coupled with the first preload and the constant velocity joint 30 by the orbital forming unit 100 is 20 ⁇ m. To 50 ⁇ m. This sum of the first preload and the second preload can be the final preload applied to the wheel bearing assembly.
  • the wheel bearing assembly 1 may comprise a washer 60.
  • the radius of the washer 60 may be larger than the radius of the head portion 51 of the center bolt 50.
  • the radius of the axial outer (OA) inlet of the hollow 120a of the cylindrical portion 120 of the wheel hub 10 is greater than the radius of the head portion 51 of the center bolt 50 and smaller than the radius of the washer 60.
  • the axial outer side (OA) front end surface 120c of the cylindrical part 120 and the axial inner side (IA) front end surface 64 of the washer 60 can contact.
  • the axially outer side (OA) front end surface 62 of the washer 60 may contact the axially inner side (IA) front end surface 53 of the head portion 51.
  • the washer 60 may support the head portion 51 so as not to be inserted into the hollow 120a of the cylindrical portion 120.
  • the washer 60 distributes the load applied to the wheel hub 10 when the center bolt 50 and the constant velocity joint 30 are coupled, deformation of the wheel hub 10 may be prevented.
  • the sealing device 80 may include a first sealing device portion 80a coupled to the outer ring 40 and a second sealing device portion 80b coupled to the inner ring 20.
  • the first sealing device portion 80a may include a first frame 81 pressed into the inner circumferential surface 42a of the second cylindrical portion 42 and a first sealing portion 82 coupled to the first frame 81.
  • the second sealing device portion 80b is coupled to the second frame 83 pressed into the outer circumferential surface 22 of the inner ring 20 and the axial end inner side IA of the second frame 83. It may include.
  • the first sealing portion 82 may include a plurality of lips 82a in contact or non-contact with the axially outer side (OA) front end surface of the second frame 83.
  • a sealing portion 85 extending from the encoder 84 to the axial outer side OA may be formed at the radial tip of the encoder 84.
  • the encoder 84 has a ring shape, and different magnetic poles may be alternately arranged along the circumferential direction.
  • the north pole and the south pole are alternately arranged, and a plurality of pole pairs consisting of the north pole and the south pole may be arranged in a plurality of pairs.
  • a wheel sensor located outside of the wheel bearing assembly 1 generates a pulse-shaped signal according to this period, and the ECU of the vehicle is based on the signal, and the rotation angle, rotation speed, or It can be configured to generate information about the direction of rotation.
  • the inner ring protrusion 200 may extend in the axially inner side IA to be in contact with the joint portion 34 of the constant velocity joint 30.
  • the inner ring protrusion 200 may include a front end surface 206 connected to the outer circumferential surface 22 of the inner ring 20 and having a curved shape.
  • the inner ring protrusion 200 may include an inclined surface 205 formed to be inclined from the front end surface 206 toward the axially inward (IA) end face 21 of the inner ring 20.
  • the axially outer side (OA) end face 102 of the orbital forming part 100 of the wheel hub 10 may contact the axially inner side (IA) end face 21 of the inner ring 20.
  • the axially inward (IA) end face 101 of the orbital forming part 100 may contact the axially outward (OA) end face 301 of the joint part 34.
  • the angle ⁇ formed between the inclined surface 205 of the inner ring protrusion 200 and the axial direction R may be, for example, 0 ° to 45 °.
  • the orbital forming part 100 is disposed below the inclined surface 205 so as not to contact the inner ring protrusion 200. Therefore, since the material required for the portion below the inclined surface 205 in the inner ring 20 can be saved, the weight of the inner ring 20 can be reduced.
  • the axial distance G 1 between the front end face 206 of the inner ring protrusion 200 and the axially outer (OA) end face 301 of the joint part 34 is between 0.5 mm and 1.0 mm.
  • the distance G 1 may mean a gap between the inner ring protrusion 200 and the joint part 34, and may have a corresponding size of Equation 1 below.
  • Equation 1 0.5 ⁇ G 1 ⁇ 1.0 (Unit: mm)
  • the radial thickness T 2 of the inner ring protrusion 200 may be 0.2 to 0.5 times the radial thickness T 1 of the inner ring 20.
  • Equation 2 0.2 ⁇ T 1 ⁇ T 2 ⁇ 0.5 ⁇ T 1
  • the thickness T 2 of the inner ring protrusion 200 occupies less than half of the thickness T 1 of the inner ring 20. Can be. Accordingly, the radial distance between the inner ring protrusion 200 and the orbital forming portion 100 can be maintained at an appropriate level that satisfies the required rigidity of the inner ring 20. In addition, a sufficient contact area between the orbital forming part 100 and the joint part 34 can be ensured.
  • the outer diameter D J of the radially distal end 103 of the orbital forming unit 100 may be 0.75 to 0.9 times the outer diameter D I of the outer circumferential surface 22 of the inner ring 20.
  • Equation 3 0.75 ⁇ D I ⁇ D J ⁇ 0.9 ⁇ D I
  • the range of the radial thickness of the inner ring protrusion 200 may be determined, and the radial front end position of the orbital forming part 100 may be determined by Equation 3.
  • the tip 103 of the orbital forming part 100 and the inclined surface 205 do not come into contact with each other. Therefore, the axially outer side (OA) end face 102 of the orbital forming part 100 may be in close contact with the axially inner side (IA) end face 21 of the inner ring 20.
  • the front end surface 206 of the inner ring protrusion 200 may be configured as a curved surface convex toward the axial inner side (IA).
  • the radius R A from the center M 1 of the curved surface may be smaller than the radial thickness T 2 of the inner ring protrusion 200 shown in FIG. 2 . Since the front end surface 206 is formed as a curved surface, the sealing device 80 may be interposed between the inner ring 20 and the outer ring 40 without being caught by the edge of the inner ring 20.
  • the first axial distance between the inner flange surface 112 of the hub flange 110 of the wheel hub 10 and the axial inner (IA) tip surface 206 of the inner ring protrusion 200 ( D 1 ) may be configured to be greater than the second axial distance D 2 between the inner flange face 112 and the axially inner IA end face 21 of the inner ring 20. That is, the relationship of Equation 4 below may be established between the first axial distance D 1 and the second axial distance D 2 .
  • Equation 4 Since the inner ring protrusion 200 protrudes from the axially inner side (IA) end face 21 of the inner ring 20, a relationship as shown in Equation 4 may be derived.
  • the hub flange has a first axial distance D 1 between the inner flange surface 112 of the hub flange 110 and the axial inner (IA) tip surface 206 of the inner ring protrusion 200.
  • the value subtracted from the third axial distance D 3 between the inner flange face 112 of the 110 and the axial outer OA cross section 301 of the joint portion 34 is configured to have a positive value.
  • Equation 5 D 3 -D 1 > 0
  • the front end surface 206 of the inner ring protrusion 200 is not in contact with the axially outer (OA) end surface 301 of the joint portion 34. Therefore, deformation of the inner ring 20 due to the contact of the constant velocity joint 30 can be prevented.
  • the axial thickness T 3 of the orbital forming part 100 may be 2.5 mm to 3.0 mm. That is, the axial thickness T 3 may have a size corresponding to Equation 6 below.
  • Equation 6 2.5 ⁇ T 3 ⁇ 3.0 (unit: mm)
  • the orbital forming unit 100 needs to be manufactured to a size within a corresponding range of Equation 6.
  • the wheel bearing assembly 1 may further include a sealing member 300 disposed in the space between the inner ring protrusion 200 and the joint portion 34 to block the inflow of foreign matter.
  • the sealing member 300 may have a ring shape having a circular cross section.
  • the sealing member 300 may be installed between the inner ring protrusion 200 and the tip 103 of the orbital forming part 100 after the orbital forming part 100 is formed on the wheel hub 10. Then, while the constant velocity joint 30 is coupled to the wheel hub 10, one side of the sealing member 300 and the joint part 34 come into contact with each other.
  • the sealing member 300 comes into contact with the axially outer side (OA) end face 301 of the joint part 34 at the first contact point C 1 , and the tip 103 and the second contact point of the orbital forming part 100. (C 2 ), the inclined surface 205 of the inner ring protrusion 200 may be in contact with the third contact point C 3 . That is, the sealing member 300 may be sealed in contact with the joint part 34, the orbital forming part 100, and the inner ring protrusion 200 at the first to third contact points C 1 , C 2 , and C 3 , respectively. Can be.
  • the sealing member 300 is disposed between the inner ring protrusion 200, the orbital forming part 100, and the joint part 34, foreign matter introduced between the inner ring 20 and the constant velocity joint 30. Can be completely blocked. Accordingly, corrosion of the inner ring 20, the wheel hub 10, and the constant velocity joint 30 may be prevented.
  • FIG. 7 is a cross-sectional view illustrating the pre-formed shape and the inner ring 20 of the wheel hub 10 according to the exemplary embodiment of the present disclosure.
  • the corner surface 25 may be formed between the axially inner side (IA) end face 21 of the inner ring 20 and the inner circumferential surface 23.
  • the corner surface 25 may be configured as a curved surface.
  • the corner surface 25 may be formed of an inclined surface and a curved surface starting from the inner circumferential surface 23.
  • a raceway surface 24 configured to roll the rolling element 72 shown in FIG. 1 may be formed in the inner ring 20.
  • the raceway surface 24 may be connected to the outer circumferential surface 22.
  • the orbital forming part 100 illustrated in FIG. 2 may be formed by bending the forming extension part 100A extending in the axial direction R of the wheel hub 10 to the radially outer side OR. In this process, the forming extension 100A may be in close contact with the inner ring 20 so that a gap does not occur between the forming extension 100A and the inner ring 20.
  • the forming extension portion 100A may include a forming surface 104A having a shape that generally enters the radially inner side IR.
  • the forming surface 104A may be completely in contact with the corner surface 25 after the forming extension 100A is pressed by the press.
  • the forming surface 104A extends from the inclined surface 105A and the inclined surface 105A inclined radially inward (IR) from the outer circumferential surface 121 of the cylindrical portion 120 of the wheel hub 10 and is radially inward (IA). It may include a concave surface 106A formed to be concave.
  • Inclined surface (105A) may be formed between the outer peripheral surface 121, the end of the first point (P 1) and the concave surface (106A), a second point at the start (P 2).
  • the concave surface 106A may be formed to start at the second point P 2 and end at the third point P 3 that enters the radially inner side IR and then rises again to the radially outer side OR. From the third point P 3 , the forming outer peripheral surface 101A is formed.
  • the outer circumferential surface 121, the inclined surface 105A, the concave surface 106A, and the forming outer circumferential surface 101A may have a shape that continues in succession without an inflection point.
  • the third point P 3 of the forming extension 100A is a corner surface.
  • a fourth point P 4 which is a boundary between the 25 and the axially inner side IA cross section 21.
  • the forming surface 104A may be brought into close contact with the corner surface 25.
  • the axial width X 1 of the concave surface 106A may be greater than the axial width X 2 of the inner ring protrusion 200. That is, the concave axial width (X 2) of a surface (106A) axial width (X 1) of the inner ring and the protrusion 200 may have a relationship of the following formula 7.
  • Equation 7 X 1 > X 2
  • the inner ring protrusion 200 may be located within an area defined by the axial width X 1 of the concave surface 106A. That is, both the tip of the inner ring protrusion 200 and the axially inner side (IA) end face 21 of the inner ring 20 may be located in an area formed by the axial width X 1 of the concave surface 106A.
  • FIG. 8 is an enlarged cross-sectional view of a portion M shown in FIG. 7.
  • the shape of the forming surface 104A may be somewhat exaggerated than the actual shape.
  • the angle ⁇ between the inclined surface 105A and the axial direction R may be 1 ° to 5 °. That is, the angle ⁇ may have a size corresponding to Equation 8 below.
  • Equation 8 1 ° ⁇ 5 °
  • the forming extension 100A exerts excessive pressure on the inner ring 20, and deformation may occur in the inner ring 20.
  • the angle ⁇ is larger than 5 °, after the orbital forming part 100 is formed, there may be a gap between the forming surface 104A and the corner surface 25, and the performance of the wheel bearing may be degraded. have. Therefore, when the angle ⁇ is formed at 1 ° to 5 °, such a problem does not occur, and the forming surface 104A can be completely in contact with the corner surface 25.
  • the radius of curvature R C of the concave surface 106A may be between 20 mm and 30 mm.
  • the radius of curvature R C may refer to a straight line distance between the origin O C and the concave surface 106A.
  • Concave surface 106A may consist of a single arc. That is, the radius of curvature of the concave surface 106A may have a size corresponding to Equation 9 below.
  • Equation 9 20 ⁇ R C ⁇ 30 (Unit: mm)
  • the thickness of the portion of the forming extension portion 100A in which the concave surface 106A is formed becomes considerably thin, so that the durability of the orbital forming portion 100 is weakened or the forming surface is weakened. Between 104A and the corner surface 25 may not be completely in contact.
  • the curvature of the concave surface 106A is larger than 30 mm, the thickness of the portion of the forming extension portion 100A in which the concave surface 106A is formed becomes considerably thick, so that orbital forming may be difficult.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

The present disclosure provides a wheel bearing assembly. The wheel bearing assembly may comprise: a wheel hub having a cavity formed to penetrate same in the axial direction; an inner wheel coupled to the outer peripheral surface of the wheel hub; an outer wheel arranged to be spaced apart from the wheel hub and the inner wheel; a rolling device comprising a first power-transfer body interposed between the outer wheel and the wheel hub, and a second power-transfer body interposed between the outer wheel and the inner wheel; a constant-velocity joint comprising a coupling portion inserted into the cavity of the wheel hub, and a joint portion extending from the coupling portion; and a center bolt inserted into the cavity of the wheel hub from the axially outer end of the wheel hub and configured to couple the constant-velocity joint to the wheel hub. The wheel hub may comprise an orbital forming portion, one surface of which contacts the axially inner end surface of the inner wheel, and the other surface of which contacts the axially outer end surface of the joint portion. The inner wheel may comprise an inner-wheel protruding portion protruding toward the joint portion while being spaced apart from the joint portion.

Description

휠 베어링 조립체Wheel bearing assembly
본 개시는 휠 베어링 조립체에 관한 것이다.The present disclosure relates to a wheel bearing assembly.
휠 베어링 조립체는 회전하는 요소와 회전하지 않는 요소 사이에 장착되어 회전하는 요소의 회전을 원활하게 하는 장치이다. 차량의 휠 베어링 조립체는 차체에 휠을 회전 가능하도록 연결시킴으로써, 차량이 움직일 수 있는 기능을 제공한다. 이러한 휠 베어링 조립체는 엔진에서 발생하는 동력을 전달하는 구동륜 휠 베어링과 구동력을 전달하지 않는 종동륜 휠베어링으로 구별될 수 있다.The wheel bearing assembly is a device mounted between the rotating element and the non-rotating element to facilitate the rotation of the rotating element. The wheel bearing assembly of the vehicle rotatably connects the wheel to the vehicle body, thereby providing the function of the vehicle to move. Such a wheel bearing assembly may be classified into a drive wheel wheel bearing that transmits power generated in an engine and a driven wheel wheel bearing that does not transmit a driving force.
구동륜 휠 베어링 조립체는 회전 요소와 비회전 요소를 포함한다. 회전 요소는 엔진에서 발생하여 변속기를 통과한 토크에 의하여, 구동축과 함께 회전하도록 되어 있다. 이에 반하여, 비회전 요소는 차체에 고정되어 있으며, 회전 요소와 비회전 요소의 사이에는 전동 장치가 개재되어 있다. 종동륜 휠 베어링 조립체는 구동륜 휠 베어링 조립체와 유사한 구성을 포함하나, 회전 요소가 구동축에 연결되어 있지 않다.The drive wheel wheel bearing assembly includes a rotating element and a non-rotating element. The rotating element is caused to rotate together with the drive shaft by the torque generated by the engine and passed through the transmission. In contrast, the non-rotating element is fixed to the vehicle body, and a transmission device is interposed between the rotating element and the non-rotating element. The driven wheel wheel bearing assembly includes a configuration similar to the drive wheel wheel bearing assembly, but no rotating element is connected to the drive shaft.
휠 베어링 조립체의 축 방향 길이를 줄이기 위한 다양한 연구가 진행되어 왔다. 예를 들어, 휠 허브의 축 방향 길이를 축소하거나, 외륜의 축 방향 길이를 축소하는 시도가 진행 중에 있다. 다른 방식으로, 휠 허브에 조립되는 너클 또는 등속 조인트의 길이를 축소하는 시도도 진행 중에 있다. 다만, 이러한 시도는 휠 베어링 조립체의 내구성을 저하시키는 문제점을 발생시킬 수 있다.Various studies have been conducted to reduce the axial length of the wheel bearing assembly. Attempts have been made, for example, to reduce the axial length of the wheel hub or to reduce the axial length of the outer ring. Alternatively, attempts are being made to reduce the length of knuckles or constant velocity joints assembled to wheel hubs. However, such an attempt may cause a problem of deteriorating the durability of the wheel bearing assembly.
본 개시의 일 실시예는, 휠 베어링 조립체의 축방향 길이를 감소시킬 수 있는 오비탈 포밍(orbital forming)부 및 내륜을 포함하는 휠 베어링 조립체를 제공한다.One embodiment of the present disclosure provides a wheel bearing assembly that includes an orbital forming portion and an inner ring that can reduce the axial length of the wheel bearing assembly.
본 개시의 일 실시예에 따른 휠 베어링 조립체에 있어서, 축 방향으로 관통된 중공이 형성된 휠 허브; 휠 허브의 외주면 상에 결합되는 내륜; 휠 허브 및 내륜으로부터 이격되어 배치되는 외륜; 외륜과 휠 허브 사이에 개재되는 제1 전동체 및 외륜 및 내륜 사이에 개재되는 제2 전동체를 포함하는 구름 장치; 휠 허브의 중공으로 삽입되는 결합부 및 결합부로부터 연장된 조인트부를 포함하는 등속 조인트; 및 휠 허브의 축 방향 외측 단부에서 휠 허브의 중공으로 삽입되어 등속 조인트를 휠 허브에 결합시키도록 구성된 센터 볼트를 포함하고, 휠 허브는 일 면이 내륜의 축 방향 내측 단면과 접촉하고 타 면이 조인트부의 축 방향 외측 단면과 접촉하는 오비탈 포밍부를 포함하고, 내륜은 조인트부를 향하여 돌출되고 조인트부로부터 이격된 내륜 돌출부를 포함할 수 있다.A wheel bearing assembly according to one embodiment of the present disclosure, comprising: a wheel hub having a hollow penetrating in an axial direction; An inner ring coupled on an outer circumferential surface of the wheel hub; An outer ring spaced apart from the wheel hub and the inner ring; A rolling device including a first rolling element interposed between the outer ring and the wheel hub and a second rolling element interposed between the outer ring and the inner ring; A constant velocity joint including a coupling portion inserted into the hollow of the wheel hub and a joint portion extending from the coupling portion; And a center bolt inserted into the hollow of the wheel hub at the axially outer end of the wheel hub and configured to couple the constant velocity joint to the wheel hub, the wheel hub having one side contacting the axially inner end face of the inner ring and the other side being And an orbital forming portion in contact with the axially outer end face of the joint portion, wherein the inner ring may include an inner ring protrusion projecting toward the joint portion and spaced apart from the joint portion.
일 실시예에 따르면, 오비탈 포밍부가 형성될 때 오비탈 포밍부에 의하여 제1 예압이 가해지고, 등속 조인트에 센터 볼트가 체결될 때 센터 볼트의 축방향 체결력에 의하여 제2 예압이 가해질 수 있다.According to one embodiment, the first preload is applied by the orbital forming part when the orbital forming part is formed, and the second preload may be applied by the axial fastening force of the center bolt when the center bolt is fastened to the constant velocity joint.
일 실시예에 따르면, 제1 예압은 5㎛ 내지 20㎛의 크기를 갖고, 제2 예압은 5㎛ 내지 20㎛의 크기를 가질 수 있다.According to an embodiment, the first preload may have a size of 5 μm to 20 μm, and the second preload may have a size of 5 μm to 20 μm.
일 실시예에 따르면, 제1 예압 및 제2 예압의 크기의 합은 20㎛ 내지 50㎛일 수 있다.According to one embodiment, the sum of the magnitudes of the first preload and the second preload may be 20 μm to 50 μm.
일 실시예에 따르면, 휠 허브는 중공이 형성된 원통부 및 원통부로부터 경 방향으로 연장된 허브 플랜지를 포함하고, 허브 플랜지의 내측 플랜지면과 내륜 돌출부의 축 방향 내측 선단 사이의 제1 축 방향 거리는, 내측 플랜지면과 내륜의 축 방향 내측 단면 사이의 제2 축 방향 거리보다 크도록 구성될 수 있다.According to one embodiment, the wheel hub comprises a hollow cylindrical portion and a hub flange extending radially from the cylindrical portion, wherein the first axial distance between the inner flange face of the hub flange and the axial inner tip of the inner ring protrusion is And a second axial distance between the inner flange face and the axially inner end face of the inner ring.
일 실시예에 따르면, 휠 허브는 중공이 형성된 원통부 및 원통부로부터 경 방향으로 연장된 허브 플랜지를 포함하고, 허브 플랜지의 내측 플랜지면과 내륜 돌출부의 축 방향 내측 선단 사이의 제1 축 방향 거리를 허브 플랜지의 내측 플랜지면과 조인트부의 축 방향 외측 단면 사이의 제3 축 방향 거리로부터 차감한 값은 양의 값을 갖도록 구성될 수 있다.According to one embodiment, the wheel hub comprises a hollow cylindrical portion and a hub flange extending radially from the cylindrical portion, the first axial distance between the inner flange surface of the hub flange and the axially inner tip of the inner ring protrusion. The value subtracted from the third axial distance between the inner flange face of the hub flange and the axial outer cross section of the joint portion can be configured to have a positive value.
일 실시예에 따르면, 오비탈 포밍부의 축 방향 두께는 2.5mm 내지 3.0mm일 수 있다.According to one embodiment, the axial thickness of the orbital forming portion may be 2.5mm to 3.0mm.
일 실시예에 따르면, 내륜 돌출부와 조인트부 사이의 공간에 배치되어 이물질의 유입을 차단하도록 구성된 밀봉 부재를 더 포함할 수 있다.According to one embodiment, it may further include a sealing member disposed in the space between the inner ring protrusion and the joint portion configured to block the inflow of foreign matter.
일 실시예에 따르면, 센터 볼트와 휠 허브 사이에 배치되는 와셔를 더 포함할 수 있다.According to one embodiment, it may further comprise a washer disposed between the center bolt and the wheel hub.
일 실시예에 따르면, 오비탈 포밍부는 휠 허브의 축 방향으로 연장된 포밍 연장부가 경 방향 외측으로 구부러져서 형성되고, 포밍 연장부는 내륜의 내주면과 내륜의 축 방향 내측 단면 사이의 코너면에 밀착하도록 구성된 포밍면을 포함할 수 있다.According to one embodiment, the orbital forming portion is formed by bending the forming extension extending in the axial direction of the wheel hub radially outward, and the forming extension is configured to be in close contact with the corner surface between the inner circumferential surface of the inner ring and the axially inner end surface of the inner ring It may include a forming surface.
일 실시예에 따르면, 포밍면은, 휠 허브의 외주면으로부터 경 방향 내측으로 기울어진 경사면; 및 경사면으로부터 연장되어 경 방향 내측으로 오목하게 형성된 오목면을 포함할 수 있다.According to one embodiment, the forming surface, the inclined surface inclined radially inward from the outer peripheral surface of the wheel hub; And a concave surface extending from the inclined surface to be concave radially inward.
일 실시예에 따르면, 경사면과 축 방향이 이루는 각도는 1°내지 5°일 수 있다.According to an embodiment, the angle formed between the inclined surface and the axial direction may be 1 ° to 5 °.
일 실시예에 따르면, 오목면의 곡률 반경은 20mm 내지 30mm일 수 있다.According to one embodiment, the radius of curvature of the concave surface may be 20mm to 30mm.
일 실시예에 따르면, 오목면의 축 방향 폭은 내륜 돌출부의 축 방향 폭보다 클 수 있다.According to one embodiment, the axial width of the concave surface may be greater than the axial width of the inner ring protrusion.
일 실시예에 따르면, 내륜 돌출부는 오목면의 축 방향 폭이 형성하는 영역 내에 위치될 수 있다.According to one embodiment, the inner ring protrusion may be located in an area formed by the axial width of the concave surface.
일 실시예에 따르면, 내륜 돌출부의 축 방향 내측 선단과 조인트부의 축 방향 외측 단면 사이의 축 방향 거리는 0.5mm 내지 1.0mm일 수 있다.According to one embodiment, the axial distance between the axially inner end of the inner ring protrusion and the axially outer end face of the joint portion may be 0.5 mm to 1.0 mm.
일 실시예에 따르면, 내륜 돌출부는 내륜 돌출부의 축 방향 내측 선단으로부터 내륜의 축 방향 내측 단면을 향하여 경사지도록 형성된 경사면을 포함할 수 있다.According to an embodiment, the inner ring protrusion may include an inclined surface formed to be inclined from the axially inner end of the inner ring protrusion toward the axially inner end surface of the inner ring.
일 실시예에 따르면, 경사면과 축 방향이 이루는 각도는 0° 내지 45°의 크기를 가질 수 있다.According to one embodiment, the angle formed between the inclined surface and the axial direction may have a size of 0 ° to 45 °.
일 실시예에 따르면, 내륜 돌출부의 경 방향 두께는 내륜의 경 방향 두께의 0.2배 내지 0.5배일 수 있다.According to one embodiment, the radial thickness of the inner ring protrusion may be 0.2 to 0.5 times the radial thickness of the inner ring.
일 실시예에 따르면, 오비탈 포밍부의 경 방향 선단의 외경은 내륜의 외주면의 외경 대비 0.75배 내지 0.9배일 수 있다.According to one embodiment, the outer diameter of the radially front end of the orbital forming portion may be 0.75 to 0.9 times the outer diameter of the outer peripheral surface of the inner ring.
본 개시의 실시예들에 따르면, 내륜에 등속 조인트와 비접촉인 내륜 돌출부를 형성하여, 내륜 돌출부의 경 방향 내측에 오비탈 포밍부가 배치될 수 있는 공간이 제공될 수 있다. 이에 따라, 휠 베어링 조립체의 축 방향 길이를 감소시킬 수 있다.According to embodiments of the present disclosure, a space in which an orbital forming portion may be disposed in the radially inner side of the inner ring protrusion may be formed by forming an inner ring protrusion that is not in contact with the constant velocity joint on the inner ring. Accordingly, the axial length of the wheel bearing assembly can be reduced.
도 1은 본 개시의 일 실시예에 따른 휠 베어링 조립체의 전체 구성을 도시한 단면도이다.1 is a cross-sectional view showing the overall configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 휠 베어링 조립체의 일부 구성을 나타내는 단면도이다.2 is a cross-sectional view showing a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 휠 베어링 조립체의 일부 구성을 나타내는 단면도이다.3 is a cross-sectional view illustrating a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 휠 베어링 조립체의 일부 구성을 나타내는 단면도이다.4 is a cross-sectional view illustrating a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 휠 베어링 조립체의 일부 구성을 나타내는 단면도이다.5 is a cross-sectional view showing a partial configuration of a wheel bearing assembly according to an embodiment of the present disclosure.
도 6은 도 1에 도시된 휠 베어링 조립체의 내륜과 등속 조인트 사이에 밀봉 부재가 배치된 구성을 도시한 단면도이다.6 is a cross-sectional view illustrating a configuration in which a sealing member is disposed between an inner ring and a constant velocity joint of the wheel bearing assembly illustrated in FIG. 1.
도 7은 본 개시의 일 실시예에 따른 휠 허브의 포밍 전 형상 및 내륜을 도시한 단면도이다.7 is a cross-sectional view illustrating a shape and inner ring of a wheel hub according to an embodiment of the present disclosure.
도 8은 도 7에 도시된 M 부분을 확대한 단면도이다.FIG. 8 is an enlarged cross-sectional view of a portion M shown in FIG. 7.
<부호의 설명><Description of the code>
1: 휠 베어링 조립체 1: wheel bearing assembly
10: 휠 허브10: wheel hub
20: 내륜20: inner ring
30: 등속 조인트30: constant velocity joint
40: 외륜40: paddle
50: 센터 볼트50: center bolt
60: 와셔60: washer
70: 구름 장치70: cloud device
80: 실링 장치80: sealing device
100: 오비탈 포밍부100: orbital forming unit
200: 내륜 돌출부200: inner ring protrusion
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.Embodiments of the present disclosure are illustrated for the purpose of describing the technical spirit of the present disclosure. The scope of the present disclosure is not limited to the embodiments set forth below or the detailed description of these embodiments.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은 달리 정의되지 않는 한 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.All technical terms and scientific terms used in the present disclosure have the meanings that are generally understood by those skilled in the art to which the present disclosure belongs unless otherwise defined. All terms used in the present disclosure are selected for the purpose of more clearly describing the present disclosure, and are not selected to limit the scope of the rights according to the present disclosure.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.As used in this disclosure, expressions such as "comprising", "including", "having", and the like, are intended to include open terms, including the possibility of including other embodiments unless otherwise stated in the phrase or sentence in which the expression is included. -ended terms).
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.Expressions such as “first”, “second”, and the like used in the present disclosure are used to distinguish a plurality of components from each other, and do not limit the order or importance of the components.
본 개시에서, 어떤 구성요소가 다른 구성요소에 "연결되어" 언급된 경우, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 연결될 수 있는 것으로 이해되어야 한다.In the present disclosure, when a component is referred to as being "connected" to another component, the component may be directly connected to the other component, or may be connected via a new other component. It must be understood.
이하, 첨부한 도면들을 참조하여 본 개시의 실시예들을 설명한다. 첨부된 도면에서 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. In the accompanying drawings, the same or corresponding components are given the same reference numerals. In addition, in the following description of the embodiments it may be omitted to duplicate the same or corresponding components. However, even if the description of the component is omitted, it is not intended that such component is not included in any embodiment.
본 개시에서, "축 방향(R)"은 휠 베어링 조립체의 회전 축(rotational axis)과 평행한 방향을 의미하는 것으로 정의될 수 있고, "경 방향"은 회전 축으로부터 멀어지는 방향을 의미하는 것으로 정의될 수 있고, "원주 방향"은 축 방향(R)을 중심으로 축 방향(R)을 감싸는 방향을 의미하는 것으로 정의될 수 있다. 이하에서, 휠 베어링 조립체의 회전축 방향은 간단히 "축 방향(R)"이라고 지칭될 수 있다.In the present disclosure, "axial direction R" may be defined to mean a direction parallel to the rotational axis of the wheel bearing assembly, and "radial direction" is defined to mean a direction away from the axis of rotation. "Circumferential direction" may be defined to mean a direction surrounding the axial direction (R) around the axial direction (R). In the following, the direction of rotational axis of the wheel bearing assembly may simply be referred to as "axial direction R".
본 개시에서, 화살표 "OA"는 휠 베어링 조립체의 축 방향(R)을 따르는 방향으로서 휠 허브에 대해 차륜이 배치되는 축 방향 외측(outboard)을 가리키고, 화살표 "IA"는 "OA"의 반대 방향으로서 휠 허브에 대해 너클이 배치되는 축 방향 내측(inboard)을 가리킨다. 또한, 화살표 "OR"은 휠 베어링 조립체의 회전축에 대한 방사상 방향(radial direction) 중 회전축으로부터 멀어지는 외측 반경 방향을 가리키고, 화살표 "IR"는 OR의 반대 방향인 내측 반경 방향을 가리킨다.In the present disclosure, the arrow "OA" refers to the axial outboard where the wheel is disposed relative to the wheel hub as the direction along the axial direction R of the wheel bearing assembly, and the arrow "IA" is the opposite direction of the "OA". As axial inboard where the knuckle is disposed relative to the wheel hub. In addition, the arrow "OR" points to the outer radial direction away from the rotation axis in the radial direction with respect to the axis of rotation of the wheel bearing assembly, and the arrow "IR" points to the inner radial direction opposite to OR.
본 개시에서, "예압(pre-load)"은 휠 베어링 조립체를 구성하는 부품의 일부가 조립 과정에서 축방향으로 가해지는 소정의 힘에 의해 압축되어 탄성 변형되는 크기를 의미할 수 있다. 예압은 길이 단위를 가질 수 있고, 예를 들어 ㎛ 단위의 크기로 측정될 수 있다.In the present disclosure, “pre-load” may mean a size in which a part of the components constituting the wheel bearing assembly are compressed and elastically deformed by a predetermined force applied in the axial direction during the assembly process. The preload can have a length unit and can be measured, for example, in size in μm.
도 1은 본 개시의 일 실시예에 따른 휠 베어링 조립체(1)의 전체 구성을 도시한 단면도이다. 휠 베어링 조립체(1)는 차량의 현가 장치(도시되지 않음)와 휠(도시되지 않음) 사이에 배치되어 현가 장치에 대하여 휠을 회전시킬 수 있다. 일 실시예에서, 휠 베어링 조립체(1)는 축 방향(R)을 중심으로 대칭하는 형상을 가질 수 있다. 예를 들어, 휠 베어링 조립체(1)는 구동륜 휠 베어링 조립체로 구성될 수 있다. 1 is a cross-sectional view showing the overall configuration of a wheel bearing assembly 1 according to an embodiment of the present disclosure. The wheel bearing assembly 1 may be disposed between the suspension of the vehicle (not shown) and the wheel (not shown) to rotate the wheel relative to the suspension. In one embodiment, the wheel bearing assembly 1 may have a shape that is symmetrical about the axial direction R. FIG. For example, the wheel bearing assembly 1 may consist of a drive wheel wheel bearing assembly.
휠 베어링 조립체(1)는 휠 허브(10), 내륜(20), 외륜(40), 구름 장치(70), 실링 장치(80)를 포함할 수 있다. 현가 장치는 휠 베어링 조립체(1)의 축 방향 내측(IA)에 배치될 수 있고, 차륜은 휠 베어링 조립체(1)의 축 방향 외측(OA)에 배치될 수 있다. 도 1을 기준으로, 휠 베어링 조립체(1)의 일 측에는 차체가 위치할 수 있고, 휠 베어링 조립체(1)의 타 측에는 휠이 위치할 수 있다.The wheel bearing assembly 1 may include a wheel hub 10, an inner ring 20, an outer ring 40, a rolling device 70, and a sealing device 80. The suspension can be arranged at the axially inner side IA of the wheel bearing assembly 1 and the wheel can be arranged at the axially outer side OA of the wheel bearing assembly 1. 1, the vehicle body may be located at one side of the wheel bearing assembly 1, and the wheel may be located at the other side of the wheel bearing assembly 1.
휠 허브(10)는 축 방향(R)으로 연장하는 원통부(120)와 원통부(120)로부터 경 방향 외측(OR)로 연장하는 허브 플랜지(110)를 포함할 수 있다. 원통부(120)의 중앙 부분에는 축 방향(R)으로 관통된 중공(120a)이 형성될 수 있다. 허브 플랜지(110)에는 축 방향(R)으로 관통된 볼트 홀(111)에 휠 볼트(미도시)가 결합될 수 있다. 원통부(120)의 축 방향 내측(IA) 단부에는 경 방향 외측(OR)으로 구부러진 오비탈 포밍부(100)가 형성될 수 있다. 이러한, 오비탈 포밍부(100)에 의해 휠 베어링 조립체(1)에 축방향으로 제1 예압이 가해진다. 제1 예압은 5㎛ 내지 20㎛의 크기를 가질 수 있다.The wheel hub 10 may include a cylindrical portion 120 extending in the axial direction R and a hub flange 110 extending radially outward from the cylindrical portion 120. A hollow portion 120a penetrated in the axial direction R may be formed at the central portion of the cylindrical portion 120. Wheel bolts (not shown) may be coupled to the bolt holes 111 penetrated in the axial direction R to the hub flange 110. An orbital forming part 100 bent in the radially outer side OR may be formed at an end portion of the cylindrical portion 120 in the axially inner side IA. The first preload is applied to the wheel bearing assembly 1 in the axial direction by the orbital forming part 100. The first preload may have a size of 5 μm to 20 μm.
내륜(20)은 원통부(120)의 외주면 상에 압입되어, 원통부(120)에 결합될 수 있다. 따라서, 내륜(20)은 휠 허브(10)와 함께 회전할 수 있다. 또한, 내륜(20)은 휠 허브(10)보다 강한 강도를 갖는 금속 재료로 구성될 수 있다. 예를 들어, 휠 허브(10)의 축 방향 내측(IA)에 형성된 내륜 안착부(120b)에 내륜(20)이 압입될 수 있다.The inner ring 20 may be press-fitted on the outer circumferential surface of the cylindrical portion 120 and coupled to the cylindrical portion 120. Thus, the inner ring 20 can rotate with the wheel hub 10. In addition, the inner ring 20 may be made of a metal material having a stronger strength than the wheel hub 10. For example, the inner ring 20 may be press-fitted into the inner ring seating portion 120b formed at the inner side IA of the wheel hub 10.
외륜(40)은 휠 허브(10) 및 내륜(20) 각각으로부터 이격되어 배치될 수 있다. 또한, 외륜(40)은 현가 장치(미도시)의 일 측에 결합될 수 있다. 즉, 외륜(40)은 비회전 요소로 제공될 수 있고, 현가 장치의 일 측에 결합된 후에는 위치가 이동되지 않도록 구성될 수 있다. 외륜(40)은, 예를 들어 현가 장치의 너클 암(도시되지 않음)에 결합되어 위치가 고정될 수 있다.The outer ring 40 may be spaced apart from each of the wheel hub 10 and the inner ring 20. In addition, the outer ring 40 may be coupled to one side of the suspension device (not shown). That is, the outer ring 40 may be provided as a non-rotating element, and may be configured such that the position does not move after being coupled to one side of the suspension device. The outer ring 40 may, for example, be coupled to a knuckle arm (not shown) of the suspension device and fixed in position.
외륜(40)은 축 방향(R)으로 연장하는 제1 원통부(41), 제1 원통부(41)로부터 경 방향 외측(OR)으로 연장하는 외륜 플랜지(43) 및 제1 원통부(41)로부터 축 방향 내측(IA)으로 연장하는 제2 원통부(42)를 포함할 수 있다. 외륜 플랜지(43)에는 너클 암(도시되지 않음)과의 결합을 위한 너클 홀(43a)이 형성될 수 있다. 제2 원통부(42)의 내주면과 내륜(20)의 외주면 사이에는 실링 장치(80)가 개재될 수 있다.The outer ring 40 includes a first cylindrical portion 41 extending in the axial direction R, an outer ring flange 43 and a first cylindrical portion 41 extending radially outward from the first cylindrical portion 41. It may include a second cylindrical portion 42 extending from the axial direction inward (IA). The outer ring flange 43 may be formed with a knuckle hole 43a for engagement with a knuckle arm (not shown). The sealing device 80 may be interposed between the inner circumferential surface of the second cylindrical portion 42 and the outer circumferential surface of the inner ring 20.
일 실시예에서, 구름 장치(70)는 외륜(40)과 휠 허브(10) 사이에 개재되는 제1 전동체(71) 및 외륜(40)과 내륜(20) 사이에 개재되는 제2 전동체(72)를 포함할 수 있다. 구름 장치(70)는 예를 들어, 제1 및 제2 전동체(71, 72)를 수용하는 리테이너(retainer)(73)를 포함할 수 있다. 도 1에 도시된 바와 같이, 제1 전동체(71)의 일 부분은 경 방향 외측(OR)에서 외륜(40)과 접촉하여 구를 수 있고, 제1 전동체(71)의 타 부분은 경 방향 내측(IR)에서 휠 허브(10)와 접촉하여 구를 수 있다. 또한, 제2 전동체(72)의 일 부분은 경 방향 외측(OR)에서 외륜(40)과 접촉하여 구를 수 있고, 제2 전동체(72)의 타 부분은 경 방향 내측(IR)에서 내륜(20)과 접촉하여 구를 수 있다. 따라서, 휠 허브(10) 및 내륜(20)은 외륜(40)에 대하여 안정적으로 회전될 수 있다.In one embodiment, the rolling device 70 includes a first rolling element 71 interposed between the outer ring 40 and the wheel hub 10 and a second rolling element interposed between the outer ring 40 and the inner ring 20. 72 may be included. The rolling device 70 may include, for example, a retainer 73 for receiving the first and second rolling elements 71 and 72. As shown in FIG. 1, one portion of the first rolling element 71 may be rolled in contact with the outer ring 40 at the radially outer side OR, and the other portion of the first rolling element 71 may be rolled. It can be rolled in contact with the wheel hub 10 in the direction inward IR. In addition, one portion of the second rolling element 72 may be rolled in contact with the outer ring 40 at the radially outer side OR, and the other portion of the second rolling element 72 may be at the radially inner side IR. It can be rolled in contact with the inner ring 20. Accordingly, the wheel hub 10 and the inner ring 20 can be stably rotated with respect to the outer ring 40.
휠 베어링 조립체(1)는 휠 허브(10)의 축 방향 내측(IA)에서 결합되는 등속 조인트(30)를 포함할 수 있다. 등속 조인트(30)는 원통부(120)의 중공(120a)에 삽입되는 결합부(31) 및 결합부(31)로부터 연장되고 오비탈 포밍부(100)와 접촉하는 조인트부(34)를 포함할 수 있다. 조인트부(34)는 예를 들어, 등속 조인트의 아우터 레이스(outer race)를 구성할 수 있고, 조인트부(34)의 내부에는 이너 레이스(inner race)가 결합되기 위한 중공(32)이 형성될 수 있다. 조인트부(34)의 외주면의 축 방향 내측(IA) 위치에는 고무 부트(미도시)가 결합되기 위한 홈(35)이 형성될 수 있다.The wheel bearing assembly 1 may comprise a constant velocity joint 30 which is engaged at the axially inner side IA of the wheel hub 10. The constant velocity joint 30 may include a coupling part 31 inserted into the hollow 120a of the cylindrical part 120 and a joint part 34 extending from the coupling part 31 and in contact with the orbital forming part 100. Can be. The joint part 34 may constitute, for example, an outer race of the constant velocity joint, and a hollow 32 for coupling an inner race to the inner part of the joint part 34 may be formed. Can be. A groove 35 for coupling a rubber boot (not shown) may be formed at the axially inward (IA) position of the outer circumferential surface of the joint part 34.
휠 베어링 조립체(1)는 등속 조인트(30)를 휠 허브(10)에 결합시키기 위한 센터 볼트(50)를 포함할 수 있다. 센터 볼트(50)는 헤드부(51) 및 나사산이 형성된 볼트부(52)를 포함할 수 있다. 등속 조인트(30)의 결합부(31)에는 센터 볼트의 볼트부(52)의 선단이 삽입되기 위한 중공(31a)이 형성될 수 있다. 센터 볼트의 볼트부(52)의 나사산은 등속 조인트 결합부(31)의 내주면(31b)의 나사산과 맞물릴 수 있다. 이와 같이 등속 조인트(30)에 센터 볼트(50)가 체결될 때 센터 볼트(50)의 축방향 체결력에 의해 휠 베어링 조립체(1)에 제2 예압이 가해진다. 또한, 제2 예압은 5㎛ 내지 20㎛의 크기를 가질 수 있다.The wheel bearing assembly 1 may include a center bolt 50 for coupling the constant velocity joint 30 to the wheel hub 10. The center bolt 50 may include a head part 51 and a threaded bolt part 52. The coupling portion 31 of the constant velocity joint 30 may be formed with a hollow 31a for inserting the tip of the bolt portion 52 of the center bolt. The thread of the bolt portion 52 of the center bolt can be engaged with the thread of the inner circumferential surface 31b of the constant velocity joint engaging portion 31. As such, when the center bolt 50 is fastened to the constant velocity joint 30, the second preload is applied to the wheel bearing assembly 1 by the axial fastening force of the center bolt 50. In addition, the second preload may have a size of 5 μm to 20 μm.
상술한 실시예에 따르면, 오비탈 포밍부(100)에 의한 상기 제1 예압과 등속 조인트(30)와 결합하는 센터 볼트(50)의 축방향 체결력에 의한 상기 제2 예압의 크기의 합은 20㎛ 내지 50㎛일 수 있다. 이러한 제1 예압과 제2 예압의 합이 휠 베어링 조립체에 적용되는 최종 예압이 될 수 있다.According to the embodiment described above, the sum of the magnitudes of the second preload by the axial fastening force of the center bolt 50 coupled with the first preload and the constant velocity joint 30 by the orbital forming unit 100 is 20 μm. To 50 μm. This sum of the first preload and the second preload can be the final preload applied to the wheel bearing assembly.
휠 베어링 조립체(1)는 와셔(60)를 포함할 수 있다. 와셔(60)의 반경은 센터 볼트(50)의 헤드부(51)의 반경보다 클 수 있다. 휠 허브(10)의 원통부(120)의 중공(120a)의 축 방향 외측(OA) 입구의 반경은 센터 볼트(50)의 헤드부(51)의 반경보다 크고 와셔(60)의 반경보다 작을 수 있다. 따라서, 원통부(120)의 축 방향 외측(OA) 선단면(120c)과 와셔(60)의 축 방향 내측(IA) 선단면(64)이 접촉할 수 있다. 또한, 와셔(60)의 축 방향 외측(OA) 선단면(62)은 헤드부(51)의 축 방향 내측(IA) 선단면(53)과 접촉할 수 있다. 이에 따라, 와셔(60)는 헤드부(51)가 원통부(120)의 중공(120a)으로 삽입되지 않도록 지지할 수 있다. 또한, 와셔(60)는 센터 볼트(50)와 등속 조인트(30)의 결합 시 휠 허브(10)에 가해지는 하중을 분산시키므로, 휠 허브(10)의 변형이 방지될 수 있다.The wheel bearing assembly 1 may comprise a washer 60. The radius of the washer 60 may be larger than the radius of the head portion 51 of the center bolt 50. The radius of the axial outer (OA) inlet of the hollow 120a of the cylindrical portion 120 of the wheel hub 10 is greater than the radius of the head portion 51 of the center bolt 50 and smaller than the radius of the washer 60. Can be. Therefore, the axial outer side (OA) front end surface 120c of the cylindrical part 120 and the axial inner side (IA) front end surface 64 of the washer 60 can contact. In addition, the axially outer side (OA) front end surface 62 of the washer 60 may contact the axially inner side (IA) front end surface 53 of the head portion 51. Accordingly, the washer 60 may support the head portion 51 so as not to be inserted into the hollow 120a of the cylindrical portion 120. In addition, since the washer 60 distributes the load applied to the wheel hub 10 when the center bolt 50 and the constant velocity joint 30 are coupled, deformation of the wheel hub 10 may be prevented.
도 2는 본 개시의 일 실시예에 따른 휠 베어링 조립체(1)의 일부 구성을 나타내는 단면도이다. 실링 장치(80)는 외륜(40)에 결합되는 제1 실링 장치부(80a) 및 내륜(20)에 결합되는 제2 실링 장치부(80b)를 포함할 수 있다. 제1 실링 장치부(80a)는 제2 원통부(42)의 내주면(42a)에 압입되는 제1 프레임(81) 및 제1 프레임(81)에 결합되는 제1 실링부(82)를 포함할 수 있다. 제2 실링 장치부(80b)는 내륜(20)의 외주면(22)에 압입되는 제2 프레임(83) 및 제2 프레임(83)의 축 방향 내측(IA) 선단면에 결합되는 엔코더(84)를 포함할 수 있다. 제1 실링부(82)는 제2 프레임(83)의 축 방향 외측(OA) 선단면과 접촉 또는 비접촉하는 복수의 립(lip)(82a)을 포함할 수 있다. 또한, 엔코더(84)의 반경 방향 선단에는 엔코더(84)로부터 축 방향 외측(OA)으로 연장된 밀봉부(85)가 형성될 수 있다.2 is a cross-sectional view showing a partial configuration of a wheel bearing assembly 1 according to an embodiment of the present disclosure. The sealing device 80 may include a first sealing device portion 80a coupled to the outer ring 40 and a second sealing device portion 80b coupled to the inner ring 20. The first sealing device portion 80a may include a first frame 81 pressed into the inner circumferential surface 42a of the second cylindrical portion 42 and a first sealing portion 82 coupled to the first frame 81. Can be. The second sealing device portion 80b is coupled to the second frame 83 pressed into the outer circumferential surface 22 of the inner ring 20 and the axial end inner side IA of the second frame 83. It may include. The first sealing portion 82 may include a plurality of lips 82a in contact or non-contact with the axially outer side (OA) front end surface of the second frame 83. In addition, a sealing portion 85 extending from the encoder 84 to the axial outer side OA may be formed at the radial tip of the encoder 84.
엔코더(84)는 링 형상을 가지고, 원주방향을 따라 서로 다른 자극이 번갈아 배치될 수 있다. 예를 들어, 엔코더(84)에는 N극과 S극이 번갈아 배치되고, N극과 S극으로 이루어지는 자극 쌍이 복수 쌍으로 배치될 수 있다. 엔코더(84)가 내륜(20)과 함께 1회전하면, 엔코더(84)로부터 생성되는 자기장이 주기를 가지고 변한다. 휠 베어링 조립체(1)의 외부에 위치한 휠 센서(미도시)는 이러한 주기에 따른 펄스 형태의 신호를 생성하고, 차량의 ECU는 이 신호에 기초하여 내륜(20)의 회전각도, 회전속도, 또는 회전방향에 관한 정보를 생성하도록 구성될 수 있다.The encoder 84 has a ring shape, and different magnetic poles may be alternately arranged along the circumferential direction. For example, in the encoder 84, the north pole and the south pole are alternately arranged, and a plurality of pole pairs consisting of the north pole and the south pole may be arranged in a plurality of pairs. When the encoder 84 rotates once with the inner ring 20, the magnetic field generated from the encoder 84 changes with a period. A wheel sensor (not shown) located outside of the wheel bearing assembly 1 generates a pulse-shaped signal according to this period, and the ECU of the vehicle is based on the signal, and the rotation angle, rotation speed, or It can be configured to generate information about the direction of rotation.
내륜 돌출부(200)는 등속 조인트(30)의 조인트부(34)와 비접촉하도록 축 방향 내측(IA)으로 연장할 수 있다. 내륜 돌출부(200)는 내륜(20)의 외주면(22)과 이어지고 곡면 형상을 갖는 선단면(206)을 포함할 수 있다. 또한, 내륜 돌출부(200)는 선단면(206)으로부터 내륜(20)의 축 방향 내측(IA) 단면(21)을 향하여 경사지도록 형성된 경사면(205)을 포함할 수 있다.The inner ring protrusion 200 may extend in the axially inner side IA to be in contact with the joint portion 34 of the constant velocity joint 30. The inner ring protrusion 200 may include a front end surface 206 connected to the outer circumferential surface 22 of the inner ring 20 and having a curved shape. In addition, the inner ring protrusion 200 may include an inclined surface 205 formed to be inclined from the front end surface 206 toward the axially inward (IA) end face 21 of the inner ring 20.
휠 허브(10)의 오비탈 포밍부(100)의 축 방향 외측(OA) 단면(102)은 내륜(20)의 축 방향 내측(IA) 단면(21)과 접촉할 수 있다. 또한, 오비탈 포밍부(100)의 축 방향 내측(IA) 단면(101)은 조인트부(34)의 축 방향 외측(OA) 단면(301)과 접촉할 수 있다.The axially outer side (OA) end face 102 of the orbital forming part 100 of the wheel hub 10 may contact the axially inner side (IA) end face 21 of the inner ring 20. In addition, the axially inward (IA) end face 101 of the orbital forming part 100 may contact the axially outward (OA) end face 301 of the joint part 34.
일 실시예에 따르면, 내륜 돌출부(200)의 경사면(205)과 축 방향(R)이 이루는 각도(α)는, 예를 들어 0° 내지 45°일 수 있다. 오비탈 포밍부(100)가 내륜 돌출부(200)와 접촉하지 않도록 경사면(205)의 아래 부분에 배치된다. 그러므로, 내륜(20)에서 경사면(205) 아래 부분에 필요한 재료를 절감할 수 있으므로, 내륜(20)의 중량을 감소시킬 수 있다.According to an embodiment, the angle α formed between the inclined surface 205 of the inner ring protrusion 200 and the axial direction R may be, for example, 0 ° to 45 °. The orbital forming part 100 is disposed below the inclined surface 205 so as not to contact the inner ring protrusion 200. Therefore, since the material required for the portion below the inclined surface 205 in the inner ring 20 can be saved, the weight of the inner ring 20 can be reduced.
일 실시예에 따르면, 내륜 돌출부(200)의 선단면(206)과 조인트부(34)의 축 방향 외측(OA) 단면(301) 사이의 축 방향 거리(G1)는 0.5mm 내지 1.0mm일 수 있다. 즉, 거리(G1)는 내륜 돌출부(200)와 조인트부(34) 사이의 틈새를 의미할 수 있고, 아래의 수식 1의 해당하는 크기를 가질 수 있다.According to one embodiment, the axial distance G 1 between the front end face 206 of the inner ring protrusion 200 and the axially outer (OA) end face 301 of the joint part 34 is between 0.5 mm and 1.0 mm. Can be. That is, the distance G 1 may mean a gap between the inner ring protrusion 200 and the joint part 34, and may have a corresponding size of Equation 1 below.
수식1: 0.5≤G1≤1.0 (단위: mm)Equation 1: 0.5≤G 1 ≤1.0 (Unit: mm)
거리(G1)가 수식 1을 만족하는 크기를 갖는 경우, 내륜 돌출부(200)와 조인트부(34) 사이로 유입되는 이물질을 차단할 수 있고, 휠 베어링 조립체(1)의 작동 과정에서 외력에 의하여 내륜 돌출부(200)와 조인트부(34)의 접촉이 발생하는 것을 방지할 수 있다.When the distance G 1 has a size satisfying Equation 1, foreign matter flowing between the inner ring protrusion 200 and the joint part 34 may be blocked, and the inner ring is driven by an external force during the operation of the wheel bearing assembly 1. Contact between the protrusion 200 and the joint 34 may be prevented from occurring.
일 실시예에 따르면, 내륜 돌출부(200)의 경 방향 두께(T2)는 내륜(20)의 경 방향 두께(T1)의 0.2배 내지 0.5배일 수 있다.According to one embodiment, the radial thickness T 2 of the inner ring protrusion 200 may be 0.2 to 0.5 times the radial thickness T 1 of the inner ring 20.
수식2: 0.2ХT1≤T2≤0.5ХT1 Equation 2: 0.2ХT 1 ≤T 2 ≤0.5ХT 1
두께(T2)와 두께(T1)의 관계를 수식 2와 같이 설정하는 경우, 내륜 돌출부(200)의 두께(T2)는 내륜(20)의 두께(T1)의 절반 이하를 차지하게 될 수 있다. 이에 따라, 내륜 돌출부(200)와 오비탈 포밍부(100) 사이의 경 방향 거리가 내륜(20)의 요구되는 강성을 만족시키는 적절한 수준으로 유지될 수 있다. 또한, 오비탈 포밍부(100)와 조인트부(34) 사이의 충분한 접촉 면적을 확보할 수 있다.When the relationship between the thickness T 2 and the thickness T 1 is set as in Equation 2, the thickness T 2 of the inner ring protrusion 200 occupies less than half of the thickness T 1 of the inner ring 20. Can be. Accordingly, the radial distance between the inner ring protrusion 200 and the orbital forming portion 100 can be maintained at an appropriate level that satisfies the required rigidity of the inner ring 20. In addition, a sufficient contact area between the orbital forming part 100 and the joint part 34 can be ensured.
도 3은 본 개시의 일 실시예에 따른 휠 베어링 조립체(1)의 일부 구성을 나타내는 단면도이다. 일 실시예에 따르면, 오비탈 포밍부(100)의 경 방향 선단(103)의 외경(DJ)은 내륜(20)의 외주면(22)의 외경(DI) 대비 0.75배 내지 0.9배일 수 있다.3 is a cross-sectional view showing a partial configuration of a wheel bearing assembly 1 according to an embodiment of the present disclosure. According to an embodiment, the outer diameter D J of the radially distal end 103 of the orbital forming unit 100 may be 0.75 to 0.9 times the outer diameter D I of the outer circumferential surface 22 of the inner ring 20.
수식 3: 0.75ХDI≤DJ≤0.9ХDI Equation 3: 0.75ХD I ≤D J ≤0.9ХD I
앞서 설명한 수식 2에 의하여, 내륜 돌출부(200)의 경 방향 두께의 범위가 정해질 수 있고, 수식 3에 의하여 오비탈 포밍부(100)의 경 방향 선단 위치가 정해질 수 있다. 수식 2 및 3에 따르면, 오비탈 포밍부(100)의 선단(103)과 경사면(205)이 접촉하지 않게 된다. 따라서, 오비탈 포밍부(100)의 축 방향 외측(OA) 단면(102)은 내륜(20)의 축 방향 내측(IA) 단면(21)에 밀착될 수 있다.According to Equation 2 described above, the range of the radial thickness of the inner ring protrusion 200 may be determined, and the radial front end position of the orbital forming part 100 may be determined by Equation 3. According to Equations 2 and 3, the tip 103 of the orbital forming part 100 and the inclined surface 205 do not come into contact with each other. Therefore, the axially outer side (OA) end face 102 of the orbital forming part 100 may be in close contact with the axially inner side (IA) end face 21 of the inner ring 20.
일 실시예에 따르면, 내륜 돌출부(200)의 선단면(206)은 축 방향 내측(IA)으로 볼록한 곡면으로 구성될 수 있다. 곡면의 중심(M1)으로부터의 반경(RA)은 도 2에 도시된 내륜 돌출부(200)의 경 방향 두께(T2) 보다 작을 수 있다. 선단면(206)이 곡면으로 형성되므로, 실링 장치(80)가 내륜(20)의 모서리에 걸리지 않고 내륜(20)과 외륜(40) 사이에 개재될 수 있다.According to one embodiment, the front end surface 206 of the inner ring protrusion 200 may be configured as a curved surface convex toward the axial inner side (IA). The radius R A from the center M 1 of the curved surface may be smaller than the radial thickness T 2 of the inner ring protrusion 200 shown in FIG. 2 . Since the front end surface 206 is formed as a curved surface, the sealing device 80 may be interposed between the inner ring 20 and the outer ring 40 without being caught by the edge of the inner ring 20.
도 4는 본 개시의 일 실시예에 따른 휠 베어링 조립체(1)의 일부 구성을 나타내는 단면도이다. 일 실시예에 따르면, 휠 허브(10)의 허브 플랜지(110)의 내측 플랜지면(112)과 내륜 돌출부(200)의 축 방향 내측(IA) 선단면(206) 사이의 제1 축 방향 거리(D1)는, 내측 플랜지면(112)과 내륜(20)의 축 방향 내측(IA) 단면(21) 사이의 제2 축 방향 거리(D2)보다 크도록 구성될 수 있다. 즉, 제1 축 방향 거리(D1)와 제2 축 방향 거리(D2) 사이에는 아래 수식 4의 관계가 성립할 수 있다.4 is a cross-sectional view showing a partial configuration of a wheel bearing assembly 1 according to an embodiment of the present disclosure. According to one embodiment, the first axial distance between the inner flange surface 112 of the hub flange 110 of the wheel hub 10 and the axial inner (IA) tip surface 206 of the inner ring protrusion 200 ( D 1 ) may be configured to be greater than the second axial distance D 2 between the inner flange face 112 and the axially inner IA end face 21 of the inner ring 20. That is, the relationship of Equation 4 below may be established between the first axial distance D 1 and the second axial distance D 2 .
수식 4: D1>D2 Equation 4: D 1 > D 2
내륜 돌출부(200)는 내륜(20)의 축 방향 내측(IA) 단면(21)으로부터 돌출 형성되므로, 수식 4와 같은 관계가 도출될 수 있다.Since the inner ring protrusion 200 protrudes from the axially inner side (IA) end face 21 of the inner ring 20, a relationship as shown in Equation 4 may be derived.
일 실시예에 따르면, 허브 플랜지(110)의 내측 플랜지면(112)과 내륜 돌출부(200)의 축 방향 내측(IA) 선단면(206) 사이의 제1 축 방향 거리(D1)를 허브 플랜지(110)의 내측 플랜지면(112)과 조인트부(34)의 축 방향 외측(OA) 단면(301) 사이의 제3 축 방향 거리(D3)로부터 차감한 값은 양의 값을 갖도록 구성될 수 있다. 즉, 제3 축 방향 거리(D3)와 제1 축 방향 거리(D1) 사이에는 아래 수식 5의 관계가 성립할 수 있다.According to one embodiment, the hub flange has a first axial distance D 1 between the inner flange surface 112 of the hub flange 110 and the axial inner (IA) tip surface 206 of the inner ring protrusion 200. The value subtracted from the third axial distance D 3 between the inner flange face 112 of the 110 and the axial outer OA cross section 301 of the joint portion 34 is configured to have a positive value. Can be. That is, the relationship of Equation 5 below may be established between the third axial distance D 3 and the first axial distance D 1 .
수식 5: D3-D1>0Equation 5: D 3 -D 1 > 0
수식 5에 따르면, 내륜 돌출부(200)의 선단면(206)은 조인트부(34)의 축 방향 외측(OA) 단면(301)과 접촉하지 않게 된다. 따라서, 등속 조인트(30)의 접촉으로 인한 내륜(20)의 변형이 방지될 수 있다.According to Equation 5, the front end surface 206 of the inner ring protrusion 200 is not in contact with the axially outer (OA) end surface 301 of the joint portion 34. Therefore, deformation of the inner ring 20 due to the contact of the constant velocity joint 30 can be prevented.
도 5는 본 개시의 일 실시예에 따른 휠 베어링 조립체(1)의 일부 구성을 나타내는 단면도이다. 일 실시예에 따르면, 오비탈 포밍부(100)의 축 방향 두께(T3)는 2.5mm 내지 3.0mm일 수 있다. 즉, 축 방향 두께(T3)는 아래 수식 6에 해당하는 크기를 가질 수 있다.5 is a cross-sectional view showing a partial configuration of a wheel bearing assembly 1 according to an embodiment of the present disclosure. According to one embodiment, the axial thickness T 3 of the orbital forming part 100 may be 2.5 mm to 3.0 mm. That is, the axial thickness T 3 may have a size corresponding to Equation 6 below.
수식 6: 2.5≤T3≤3.0 (단위: mm)Equation 6: 2.5≤T 3 ≤3.0 (unit: mm)
두께(T3)가 2.5mm 보다 작은 경우, 오비탈 포밍부(100)가 너무 얇게 형성되기 때문에, 외부 모멘트 하중 인가시 오비탈 포밍부(100)에 소성 변형이 발생할 수 있다. 또한, 두께(T3)가 3.0mm보다 큰 경우, 오비탈 포밍부(100)가 너무 두껍게 형성되기 때문에, 오비탈 포밍 가공시 큰 하중을 필요로 하여 가공이 어려운 문제가 있을 수 있다. 따라서, 오비탈 포밍부(100)는 수식 6의 해당하는 범위 내의 크기로 제조될 필요가 있다.When the thickness T 3 is smaller than 2.5 mm, since the orbital forming part 100 is formed too thin, plastic deformation may occur in the orbital forming part 100 when an external moment load is applied. In addition, when the thickness T 3 is greater than 3.0 mm, since the orbital forming part 100 is formed too thick, there may be a problem that processing is difficult due to a large load during orbital forming. Therefore, the orbital forming unit 100 needs to be manufactured to a size within a corresponding range of Equation 6.
도 6은 도 1에 도시된 휠 베어링 조립체(1)의 내륜과 등속 조인트 사이에 밀봉 부재(300)가 배치된 구성을 도시한 단면도이다. 일 실시예에 따르면, 휠 베어링 조립체(1)는 내륜 돌출부(200)와 조인트부(34) 사이의 공간에 배치되어 이물질의 유입을 차단하도록 구성된 밀봉 부재(300)를 더 포함할 수 있다. 밀봉 부재(300)는 원형 단면을 갖는 링 형상을 가질 수 있다. 밀봉 부재(300)는 휠 허브(10)에 오비탈 포밍부(100)를 형성한 후, 내륜 돌출부(200)와 오비탈 포밍부(100)의 선단(103) 사이에 설치될 수 있다. 이후, 등속 조인트(30)가 휠 허브(10)에 결합되면서, 밀봉 부재(300)의 일 측과 조인트부(34)가 접촉하게 된다.6 is a cross-sectional view showing a configuration in which the sealing member 300 is disposed between the inner ring and the constant velocity joint of the wheel bearing assembly 1 shown in FIG. According to one embodiment, the wheel bearing assembly 1 may further include a sealing member 300 disposed in the space between the inner ring protrusion 200 and the joint portion 34 to block the inflow of foreign matter. The sealing member 300 may have a ring shape having a circular cross section. The sealing member 300 may be installed between the inner ring protrusion 200 and the tip 103 of the orbital forming part 100 after the orbital forming part 100 is formed on the wheel hub 10. Then, while the constant velocity joint 30 is coupled to the wheel hub 10, one side of the sealing member 300 and the joint part 34 come into contact with each other.
밀봉 부재(300)는, 조인트부(34)의 축 방향 외측(OA) 단면(301)과 제1 접촉점(C1)에서 접촉하고, 오비탈 포밍부(100)의 선단(103)과 제2 접촉점(C2)에서 접촉하고, 내륜 돌출부(200)의 경사면(205)과 제3 접촉점(C3)에서 접촉할 수 있다. 즉, 밀봉 부재(300)는 제1 내지 제3 점촉점(C1, C2, C3)에서 각각 조인트부(34), 오비탈 포밍부(100) 및 내륜 돌출부(200)와 접촉하여 밀봉할 수 있다.The sealing member 300 comes into contact with the axially outer side (OA) end face 301 of the joint part 34 at the first contact point C 1 , and the tip 103 and the second contact point of the orbital forming part 100. (C 2 ), the inclined surface 205 of the inner ring protrusion 200 may be in contact with the third contact point C 3 . That is, the sealing member 300 may be sealed in contact with the joint part 34, the orbital forming part 100, and the inner ring protrusion 200 at the first to third contact points C 1 , C 2 , and C 3 , respectively. Can be.
상술한 실시예에 따르면, 밀봉 부재(300)가 내륜 돌출부(200), 오비탈 포밍부(100) 및 조인트부(34) 사이에 배치되므로, 내륜(20)과 등속 조인트(30) 사이로 유입되는 이물질을 완전히 차단할 수 있다. 이에 따라, 내륜(20), 휠 허브(10) 및 등속 조인트(30)의 부식이 방지될 수 있다.According to the above-described embodiment, since the sealing member 300 is disposed between the inner ring protrusion 200, the orbital forming part 100, and the joint part 34, foreign matter introduced between the inner ring 20 and the constant velocity joint 30. Can be completely blocked. Accordingly, corrosion of the inner ring 20, the wheel hub 10, and the constant velocity joint 30 may be prevented.
도 7은 본 개시의 일 실시예에 따른 휠 허브(10)의 포밍 전 형상 및 내륜(20)을 도시한 단면도이다.FIG. 7 is a cross-sectional view illustrating the pre-formed shape and the inner ring 20 of the wheel hub 10 according to the exemplary embodiment of the present disclosure.
내륜(20)의 축 방향 내측(IA) 단면(21)과 내주면(23) 사이에는 코너면(25)이 형성될 수 있다. 일 예로, 코너면(25)은 곡면으로 구성될 수 있다. 다른 예로, 코너면(25)은 내주면(23)으로부터 시작되는 경사면과 곡면으로 구성될 수 있다. 또한, 내륜(20)에는 도 1에 도시된 전동체(72)가 구르도록 구성된 궤도면(24)이 형성될 수 있다. 궤도면(24)은 외주면(22)과 이어질 수 있다.The corner surface 25 may be formed between the axially inner side (IA) end face 21 of the inner ring 20 and the inner circumferential surface 23. For example, the corner surface 25 may be configured as a curved surface. As another example, the corner surface 25 may be formed of an inclined surface and a curved surface starting from the inner circumferential surface 23. In addition, a raceway surface 24 configured to roll the rolling element 72 shown in FIG. 1 may be formed in the inner ring 20. The raceway surface 24 may be connected to the outer circumferential surface 22.
도 7을 참고하면, 포밍 연장부(100A)가 도시되어 있다. 도 2에 도시된 오비탈 포밍부(100)는 휠 허브(10)의 축 방향(R)으로 연장된 포밍 연장부(100A)가 경 방향 외측(OR)으로 구부러져서 형성될 수 있다. 이 과정에서, 포밍 연장부(100A)와 내륜(20) 사이에 틈이 발생하지 않도록, 포밍 연장부(100A)가 내륜(20)에 완전히 밀착될 수 있다.Referring to FIG. 7, the forming extension 100A is shown. The orbital forming part 100 illustrated in FIG. 2 may be formed by bending the forming extension part 100A extending in the axial direction R of the wheel hub 10 to the radially outer side OR. In this process, the forming extension 100A may be in close contact with the inner ring 20 so that a gap does not occur between the forming extension 100A and the inner ring 20.
포밍 연장부(100A)는 전체적으로 경 방향 내측(IR)으로 들어간 형상을 갖는 포밍면(104A)을 포함할 수 있다. 포밍면(104A)은 포밍 연장부(100A)가 프레스에 의하여 가압된 후에 코너면(25)에 완전히 밀착될 수 있다. 포밍면(104A)은 휠 허브(10)의 원통부(120)의 외주면(121)으로부터 경 방향 내측(IR)으로 기울어진 경사면(105A) 및 경사면(105A)으로부터 연장되어 경 방향 내측(IA)으로 오목하게 형성된 오목면(106A)을 포함할 수 있다.The forming extension portion 100A may include a forming surface 104A having a shape that generally enters the radially inner side IR. The forming surface 104A may be completely in contact with the corner surface 25 after the forming extension 100A is pressed by the press. The forming surface 104A extends from the inclined surface 105A and the inclined surface 105A inclined radially inward (IR) from the outer circumferential surface 121 of the cylindrical portion 120 of the wheel hub 10 and is radially inward (IA). It may include a concave surface 106A formed to be concave.
경사면(105A)은 외주면(121)이 끝나는 제1 지점(P1)과 오목면(106A)이 시작되는 제2 지점(P2) 사이에 형성될 수 있다. 오목면(106A)은 제2 지점(P2)으로부터 시작하여 경 방향 내측(IR)으로 들어갔다가 다시 경 방향 외측(OR)으로 올라간 제3 지점(P3)에서 끝나도록 형성될 수 있다. 제3 지점(P3)부터는, 포밍 외주면(101A)이 형성되어 있다.Inclined surface (105A) may be formed between the outer peripheral surface 121, the end of the first point (P 1) and the concave surface (106A), a second point at the start (P 2). The concave surface 106A may be formed to start at the second point P 2 and end at the third point P 3 that enters the radially inner side IR and then rises again to the radially outer side OR. From the third point P 3 , the forming outer peripheral surface 101A is formed.
상술한 실시예들에 따르면, 외주면(121), 경사면(105A), 오목면(106A) 및 포밍 외주면(101A)은 순차적으로, 변곡점 없이 연속적으로 이어지는 형상을 가질 수 있다. 도 7에 도시된 화살표를 참조하면, 포밍 연장부(100A)가 프레스에 의하여 가압되어 오비탈 포밍부(100)로 형성된 후에는, 포밍 연장부(100A)의 제3 지점(P3)은 코너면(25)과 축 방향 내측(IA) 단면(21)의 경계인 제4 지점(P4)으로 이동될 수 있다. 이에 따라, 포밍면(104A)이 코너면(25)에 완전히 밀착하게 될 수 있다.According to the embodiments described above, the outer circumferential surface 121, the inclined surface 105A, the concave surface 106A, and the forming outer circumferential surface 101A may have a shape that continues in succession without an inflection point. Referring to the arrow shown in FIG. 7, after the forming extension 100A is pressed by the press to form the orbital forming unit 100, the third point P 3 of the forming extension 100A is a corner surface. And a fourth point P 4 , which is a boundary between the 25 and the axially inner side IA cross section 21. As a result, the forming surface 104A may be brought into close contact with the corner surface 25.
일 실시예에서, 오목면(106A)의 축 방향 폭(X1)은 내륜 돌출부(200)의 축 방향 폭(X2)보다 클 수 있다. 즉, 오목면(106A)의 축 방향 폭(X1)과 내륜 돌출부(200)의 축 방향 폭(X2)은 아래 수식 7의 관계를 가질 수 있다.In one embodiment, the axial width X 1 of the concave surface 106A may be greater than the axial width X 2 of the inner ring protrusion 200. That is, the concave axial width (X 2) of a surface (106A) axial width (X 1) of the inner ring and the protrusion 200 may have a relationship of the following formula 7.
수식 7: X1>X2 Equation 7: X 1 > X 2
일 실시예에서, 내륜 돌출부(200)는 오목면(106A)의 축 방향 폭(X1)이 형성하는 영역 내에 위치될 수 있다. 즉, 내륜 돌출부(200)의 선단과 내륜(20)의 축 방향 내측(IA) 단면(21)은 모두 오목면(106A)의 축 방향 폭(X1)이 형성하는 영역 내에 위치될 수 있다.In one embodiment, the inner ring protrusion 200 may be located within an area defined by the axial width X 1 of the concave surface 106A. That is, both the tip of the inner ring protrusion 200 and the axially inner side (IA) end face 21 of the inner ring 20 may be located in an area formed by the axial width X 1 of the concave surface 106A.
상술한 실시예에 따르면, 포밍 연장부(100A)가 프레스에 의하여 가압되어 오비탈 포밍부(100)로 형성된 후에는, 포밍면(104A)과 코너면(25) 사이에 틈이 발생하지 않고, 완전히 밀착될 수 있다.According to the above-described embodiment, after the forming extension portion 100A is pressed by the press to form the orbital forming portion 100, there is no gap between the forming surface 104A and the corner surface 25, and completely It may be in close contact.
도 8은 도 7에 도시된 M 부분을 확대한 단면도이다. 설명의 편의를 위하여 포밍면(104A)의 형상은 실제 형상보다 다소 과장되게 표현된 것일 수 있다.FIG. 8 is an enlarged cross-sectional view of a portion M shown in FIG. 7. For convenience of description, the shape of the forming surface 104A may be somewhat exaggerated than the actual shape.
일 실시예에서, 경사면(105A)과 축 방향(R)이 이루는 각도(β)는 1°내지 5°일 수 있다. 즉, 각도(β)는 아래 수식 8에 해당하는 크기를 가질 수 있다.In an embodiment, the angle β between the inclined surface 105A and the axial direction R may be 1 ° to 5 °. That is, the angle β may have a size corresponding to Equation 8 below.
수식 8: 1°≤β≤5°Equation 8: 1 ° ≤β≤5 °
만일, 각도(β)가 1°보다 작은 경우, 포밍 연장부(100A)가 내륜(20)에 과도한 압력을 가하게 되어, 내륜(20)에 변형이 발생할 수 있다. 또한, 각도(β)가 5°보다 큰 경우, 오비탈 포밍부(100)가 형성된 후에, 포밍면(104A)과 코너면(25) 사이에 틈이 존재할 수 있고, 휠 베어링의 성능이 저하될 수 있다. 따라서, 각도(β)를 1°내지 5°로 형성하는 경우, 이러한 문제가 발생하지 않고, 포밍면(104A)이 코너면(25)에 완전히 밀착될 수 있다.If the angle β is smaller than 1 °, the forming extension 100A exerts excessive pressure on the inner ring 20, and deformation may occur in the inner ring 20. In addition, when the angle β is larger than 5 °, after the orbital forming part 100 is formed, there may be a gap between the forming surface 104A and the corner surface 25, and the performance of the wheel bearing may be degraded. have. Therefore, when the angle β is formed at 1 ° to 5 °, such a problem does not occur, and the forming surface 104A can be completely in contact with the corner surface 25.
일 실시예에서, 오목면(106A)의 곡률 반경(RC)은 20mm 내지 30mm일 수 있다. 곡률 반경(RC)은 원점(OC)에서부터 오목면(106A) 사이의 직선 거리를 의미할 수 있다. 오목면(106A)은 단일의 원호로 구성될 수 있다. 즉, 오목면(106A)의 곡률 반경은 아래 수식 9에 해당하는 크기를 가질 수 있다.In one embodiment, the radius of curvature R C of the concave surface 106A may be between 20 mm and 30 mm. The radius of curvature R C may refer to a straight line distance between the origin O C and the concave surface 106A. Concave surface 106A may consist of a single arc. That is, the radius of curvature of the concave surface 106A may have a size corresponding to Equation 9 below.
수식 9: 20≤RC≤30 (단위: mm)Equation 9: 20≤R C ≤30 (Unit: mm)
오목면(106A)의 곡률 반경이 20mm보다 작은 경우에는, 오목면(106A)이 형성된 포밍 연장부(100A) 부분의 두께가 상당히 얇아지게 되어, 오비탈 포밍부(100)의 내구성이 약화되거나 포밍면(104A)과 코너면(25) 사이가 완전히 밀착되지 않을 수 있다. 또한, 오목면(106A)의 곡률이 30mm보다 큰 경우에는, 오목면(106A)이 형성된 포밍 연장부(100A) 부분의 두께가 상당히 두꺼워지게 되어서, 오비탈 포밍 가공이 어려울 수 있다.When the radius of curvature of the concave surface 106A is smaller than 20 mm, the thickness of the portion of the forming extension portion 100A in which the concave surface 106A is formed becomes considerably thin, so that the durability of the orbital forming portion 100 is weakened or the forming surface is weakened. Between 104A and the corner surface 25 may not be completely in contact. In addition, when the curvature of the concave surface 106A is larger than 30 mm, the thickness of the portion of the forming extension portion 100A in which the concave surface 106A is formed becomes considerably thick, so that orbital forming may be difficult.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.While the technical spirit of the present disclosure has been described with reference to some embodiments and the examples shown in the accompanying drawings, the technical spirit and scope of the present disclosure may be understood by those skilled in the art. It will be appreciated that various substitutions, modifications, and alterations can be made in the scope. Also, such substitutions, modifications and variations are intended to be included within the scope of the appended claims.

Claims (20)

  1. 축 방향으로 관통된 중공이 형성된 휠 허브;A wheel hub in which the hollow penetrates in the axial direction;
    상기 휠 허브의 외주면 상에 결합되는 내륜;An inner ring coupled to an outer circumferential surface of the wheel hub;
    상기 휠 허브 및 상기 내륜으로부터 이격되어 배치되는 외륜;An outer ring spaced apart from the wheel hub and the inner ring;
    상기 외륜과 상기 휠 허브 사이에 개재되는 제1 전동체 및 상기 외륜 및 상기 내륜 사이에 개재되는 제2 전동체를 포함하는 구름 장치;A rolling device including a first rolling element interposed between the outer ring and the wheel hub and a second rolling element interposed between the outer ring and the inner ring;
    상기 휠 허브의 중공으로 삽입되는 결합부 및 상기 결합부로부터 연장된 조인트부를 포함하는 등속 조인트; 및A constant velocity joint including a coupling part inserted into the hollow of the wheel hub and a joint part extending from the coupling part; And
    상기 휠 허브의 축 방향 외측 단부에서 상기 휠 허브의 중공으로 삽입되어 상기 등속 조인트를 상기 휠 허브에 결합시키도록 구성된 센터 볼트를 포함하고,A center bolt inserted into the hollow of the wheel hub at an axially outer end of the wheel hub and configured to couple the constant velocity joint to the wheel hub,
    상기 휠 허브는 일 면이 상기 내륜의 축 방향 내측 단면과 접촉하고 타 면이 상기 조인트부의 축 방향 외측 단면과 접촉하는 오비탈 포밍(orbital forming)부를 포함하고,The wheel hub includes an orbital forming portion having one surface in contact with an axially inner end surface of the inner ring and the other surface with an axially outer end surface of the joint portion.
    상기 내륜은 상기 조인트부를 향하여 돌출되고 상기 조인트부로부터 이격된 내륜 돌출부를 포함하는,The inner ring includes an inner ring protrusion projecting toward the joint part and spaced apart from the joint part.
    휠 베어링 조립체.Wheel bearing assembly.
  2. 제1항에 있어서,The method of claim 1,
    상기 오비탈 포밍부가 형성될 때 상기 오비탈 포밍부에 의하여 제1 예압이 가해지고,When the orbital forming portion is formed, a first preload is applied by the orbital forming portion,
    상기 등속 조인트에 상기 센터 볼트가 체결될 때 상기 센터 볼트의 축방향 체결력에 의하여 가압되어 제2 예압이 가해지는,When the center bolt is fastened to the constant velocity joint by the axial fastening force of the center bolt is applied a second preload,
    휠 베어링 조립체.Wheel bearing assembly.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 예압은 5㎛ 내지 20㎛의 크기를 갖고,The first preload has a size of 5 ㎛ to 20 ㎛,
    상기 제2 예압은 5㎛ 내지 20㎛의 크기를 갖는,The second preload has a size of 5 μm to 20 μm,
    휠 베어링 조립체.Wheel bearing assembly.
  4. 제2항에 있어서,The method of claim 2,
    상기 제1 예압 및 상기 제2 예압의 크기의 합은 20㎛ 내지 50㎛인,The sum of the magnitudes of the first preload and the second preload is 20 μm to 50 μm,
    휠 베어링 조립체.Wheel bearing assembly.
  5. 제1항에 있어서,The method of claim 1,
    상기 휠 허브는 상기 중공이 형성된 원통부 및 상기 원통부로부터 경 방향으로 연장된 허브 플랜지를 포함하고,The wheel hub includes a cylindrical portion in which the hollow is formed and a hub flange extending in a radial direction from the cylindrical portion,
    상기 허브 플랜지의 내측 플랜지면과 상기 내륜 돌출부의 축 방향 내측 선단 사이의 제1 축 방향 거리는, 상기 내측 플랜지면과 상기 내륜의 축 방향 내측 단면 사이의 제2 축 방향 거리보다 크도록 구성되는,Wherein the first axial distance between the inner flange face of the hub flange and the axially inner tip of the inner ring protrusion is greater than the second axial distance between the inner flange face and the axially inner end face of the inner ring,
    휠 베어링 조립체.Wheel bearing assembly.
  6. 제1항에 있어서,The method of claim 1,
    상기 휠 허브는 상기 중공이 형성된 원통부 및 상기 원통부로부터 경 방향으로 연장된 허브 플랜지를 포함하고,The wheel hub includes a cylindrical portion in which the hollow is formed and a hub flange extending in a radial direction from the cylindrical portion,
    상기 허브 플랜지의 내측 플랜지면과 상기 내륜 돌출부의 축 방향 내측 선단 사이의 제1 축 방향 거리를 상기 허브 플랜지의 내측 플랜지면과 상기 조인트부의 축 방향 외측 단면 사이의 제3 축 방향 거리로부터 차감한 값은 양의 값을 갖도록 구성되는,A value obtained by subtracting a first axial distance between the inner flange face of the hub flange and the axial inner leading end of the inner ring protrusion from the third axial distance between the inner flange face of the hub flange and the axial outer end face of the joint portion. Is configured to have a positive value,
    휠 베어링 조립체.Wheel bearing assembly.
  7. 제1항에 있어서,The method of claim 1,
    상기 오비탈 포밍부의 축 방향 두께는 2.5mm 내지 3.0mm인,The axial thickness of the orbital forming portion is 2.5mm to 3.0mm,
    휠 베어링 조립체.Wheel bearing assembly.
  8. 제1항에 있어서,The method of claim 1,
    상기 내륜 돌출부와 상기 조인트부 사이의 공간에 배치되어 이물질의 유입을 차단하도록 구성된 밀봉 부재를 더 포함하는,Further comprising a sealing member disposed in the space between the inner ring protrusion and the joint portion configured to block the inflow of foreign matter,
    휠 베어링 조립체.Wheel bearing assembly.
  9. 제1항에 있어서,The method of claim 1,
    상기 센터 볼트와 상기 휠 허브 사이에 배치되는 와셔를 더 포함하는,And a washer disposed between the center bolt and the wheel hub,
    휠 베어링 조립체.Wheel bearing assembly.
  10. 제1항에 있어서,The method of claim 1,
    상기 오비탈 포밍부는 상기 휠 허브의 축 방향으로 연장된 포밍 연장부가 경 방향 외측으로 구부러져서 형성되고,The orbital forming portion is formed by bending the forming extension extending in the axial direction of the wheel hub radially outward,
    상기 포밍 연장부는 상기 내륜의 내주면과 상기 내륜의 축 방향 내측 단면 사이의 코너면에 밀착하도록 구성된 포밍면을 포함하는,Wherein the forming extension includes a forming surface configured to closely contact a corner surface between an inner circumferential surface of the inner ring and an axially inner end surface of the inner ring;
    휠 베어링 조립체.Wheel bearing assembly.
  11. 제10항에 있어서,The method of claim 10,
    상기 포밍면은,The forming surface,
    상기 휠 허브의 외주면으로부터 경 방향 내측으로 기울어진 경사면; 및An inclined surface inclined radially inward from an outer circumferential surface of the wheel hub; And
    상기 경사면으로부터 연장되어 경 방향 내측으로 오목하게 형성된 오목면을 포함하는,A concave surface extending from the inclined surface to be concave radially inwardly,
    휠 베어링 조립체.Wheel bearing assembly.
  12. 제11항에 있어서,The method of claim 11,
    상기 경사면과 상기 축 방향이 이루는 각도는 1° 내지 5°인,The angle between the inclined surface and the axial direction is 1 ° to 5 °,
    휠 베어링 조립체.Wheel bearing assembly.
  13. 제11항에 있어서,The method of claim 11,
    상기 오목면의 곡률 반경은 20mm 내지 30mm인,The radius of curvature of the concave surface is 20mm to 30mm,
    휠 베어링 조립체.Wheel bearing assembly.
  14. 제11항에 있어서,The method of claim 11,
    상기 오목면의 축 방향 폭은 상기 내륜 돌출부의 축 방향 폭보다 큰,The axial width of the concave surface is greater than the axial width of the inner ring protrusion,
    휠 베어링 조립체.Wheel bearing assembly.
  15. 제14항에 있어서,The method of claim 14,
    상기 내륜 돌출부는 상기 오목면의 축 방향 폭이 형성하는 영역 내에 위치되는,The inner ring protrusion is located in an area defined by an axial width of the concave surface,
    휠 베어링 조립체.Wheel bearing assembly.
  16. 제1항에 있어서,The method of claim 1,
    상기 내륜 돌출부의 축 방향 내측 선단과 상기 조인트부의 축 방향 외측 단면 사이의 축 방향 거리는 0.5mm 내지 1.0mm인,The axial distance between the axially inner leading end of the inner ring protrusion and the axially outer end face of the joint portion is 0.5mm to 1.0mm,
    휠 베어링 조립체.Wheel bearing assembly.
  17. 제1항에 있어서,The method of claim 1,
    상기 내륜 돌출부는 상기 내륜 돌출부의 축 방향 내측 선단으로부터 상기 내륜의 축 방향 내측 단면을 향하여 경사지도록 형성된 경사면을 포함하는,The inner ring protrusion includes an inclined surface formed to be inclined from the axially inner end of the inner ring protrusion toward the axially inner end face of the inner ring.
    휠 베어링 조립체.Wheel bearing assembly.
  18. 제17항에 있어서,The method of claim 17,
    상기 경사면과 상기 축 방향이 이루는 각도는 0° 내지 45°인,The angle between the inclined surface and the axial direction is 0 ° to 45 °,
    휠 베어링 조립체.Wheel bearing assembly.
  19. 제1항에 있어서,The method of claim 1,
    상기 내륜 돌출부의 경 방향 두께는 상기 내륜의 경 방향 두께의 0.2 배 내지 0.5배인,The radial thickness of the inner ring protrusion is 0.2 to 0.5 times the radial thickness of the inner ring,
    휠 베어링 조립체.Wheel bearing assembly.
  20. 제1항에 있어서,The method of claim 1,
    상기 오비탈 포밍부의 경 방향 선단의 외경은 상기 내륜의 외주면의 외경 대비 0.75배 내지 0.9배인,The outer diameter of the radially front end of the orbital forming portion is 0.75 to 0.9 times the outer diameter of the outer peripheral surface of the inner ring,
    휠 베어링 조립체.Wheel bearing assembly.
PCT/KR2019/005936 2018-05-18 2019-05-17 Wheel bearing assembly WO2019221552A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180057257 2018-05-18
KR10-2018-0057257 2018-05-18
KR1020180153861A KR102490078B1 (en) 2018-05-18 2018-12-03 Wheel bearing assembly
KR10-2018-0153861 2018-12-03

Publications (1)

Publication Number Publication Date
WO2019221552A1 true WO2019221552A1 (en) 2019-11-21

Family

ID=68540511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005936 WO2019221552A1 (en) 2018-05-18 2019-05-17 Wheel bearing assembly

Country Status (1)

Country Link
WO (1) WO2019221552A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085372A (en) * 2005-09-20 2007-04-05 Ntn Corp Bearing device for drive wheel
JP5323339B2 (en) * 2007-10-17 2013-10-23 Ntn株式会社 Wheel bearing device
KR20160106423A (en) * 2015-03-02 2016-09-12 주식회사 베어링아트 A driving wheel bearing device
JP2017133532A (en) * 2016-01-25 2017-08-03 株式会社ジェイテクト Bearing device
KR20180019876A (en) * 2016-08-17 2018-02-27 주식회사 일진글로벌 A driving wheel bearing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085372A (en) * 2005-09-20 2007-04-05 Ntn Corp Bearing device for drive wheel
JP5323339B2 (en) * 2007-10-17 2013-10-23 Ntn株式会社 Wheel bearing device
KR20160106423A (en) * 2015-03-02 2016-09-12 주식회사 베어링아트 A driving wheel bearing device
JP2017133532A (en) * 2016-01-25 2017-08-03 株式会社ジェイテクト Bearing device
KR20180019876A (en) * 2016-08-17 2018-02-27 주식회사 일진글로벌 A driving wheel bearing device

Similar Documents

Publication Publication Date Title
US8066337B2 (en) Wheel supporting system
WO2012121425A1 (en) Wheel bearing assembly
JP3862453B2 (en) Wheel bearing device
WO2019194548A1 (en) Wheel bearing for vehicle
WO2020246833A1 (en) Wheel bearing assembly
WO2021010733A1 (en) Hub-integrated-type constant-velocity joint device
JP4297658B2 (en) Wheel bearing device
WO2018021655A1 (en) Wheel bearing sealing device and manufacturing method therefor
WO2007111316A1 (en) Bearing device for wheel
WO2019221552A1 (en) Wheel bearing assembly
WO2019194553A1 (en) Wheel hub and wheel bearing assembly including same
WO2020122692A1 (en) Wheel bearing assembly
JP4158341B2 (en) Bearing device
KR101431095B1 (en) A driving wheel bearing device
WO2023244057A1 (en) Wheel bearing assembly
KR102490078B1 (en) Wheel bearing assembly
EP2169407A1 (en) Sensor device, and rolling bearing device with sensor
WO2020166778A1 (en) Vehicle wheel bearing having enhanced sealing function
KR20220136808A (en) Wheel bearing assembly
JP2002337505A (en) Rotary supporting device for drive wheel
WO2020209404A1 (en) Wheel bearing
WO2024147717A1 (en) Vehicle wheel bearing
WO2021167148A1 (en) Wheel bearing assembly
WO2023249332A1 (en) Wheel bearing for vehicle
WO2023244054A1 (en) Wheel bearing assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803578

Country of ref document: EP

Kind code of ref document: A1