WO2019221278A1 - Substrate particle, conductive particle, conductive material, and connection structure - Google Patents

Substrate particle, conductive particle, conductive material, and connection structure Download PDF

Info

Publication number
WO2019221278A1
WO2019221278A1 PCT/JP2019/019702 JP2019019702W WO2019221278A1 WO 2019221278 A1 WO2019221278 A1 WO 2019221278A1 JP 2019019702 W JP2019019702 W JP 2019019702W WO 2019221278 A1 WO2019221278 A1 WO 2019221278A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
conductive
less
particle
base
Prior art date
Application number
PCT/JP2019/019702
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 森田
厚喜 久保
脇屋 武司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019548487A priority Critical patent/JP7348839B2/en
Priority to KR1020207031259A priority patent/KR20210010447A/en
Priority to CN201980031897.5A priority patent/CN112105986A/en
Publication of WO2019221278A1 publication Critical patent/WO2019221278A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to substrate particles having good compression characteristics.
  • the present invention also relates to a conductive particle, a conductive material, and a connection structure using the base particle.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure. ing.
  • connection target members such as a flexible printed circuit (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip.
  • conductive particles conductive particles having base particles and a conductive layer disposed on the surface of the base particles may be used.
  • the specific surface area is 2.0 m 2 / g
  • the amount of the eluted component with respect to toluene is 1% to 5%
  • the coefficient of variation in particle diameter (CV value) Is disclosed in the form of irregular monodisperse particles having an average particle size of 0.8 ⁇ m to 50 ⁇ m.
  • CV value coefficient of variation in particle diameter
  • the content of the polymer component derived from the monomer having two or more groups is 18% by mass to 89% by mass.
  • specific surface area of the profiled monodisperse particles is described to be 2.0m 2 /g ⁇ 2.6m 2 / g.
  • Patent Document 2 discloses porous resin particles composed of a monomer mixture polymer.
  • the porous resin particles have an ethylenically unsaturated group only in a (meth) acrylic acid residue in 100% by weight of the monomer mixture, and at least one of an ether group and an ester group and a hydroxyl group are left as an alcohol residue.
  • the content of the mono (meth) acrylic acid ester monomer contained in the group is 3% by weight to 40% by weight.
  • the content of another monofunctional vinyl monomer having one ethylenically unsaturated group is 10% by weight to 69% by weight in 100% by weight of the monomer mixture.
  • the content of the polyfunctional vinyl monomer having two or more ethylenically unsaturated groups in 100% by weight of the monomer mixture is 30% to 70% by weight.
  • the specific surface area of the porous resin particles have been described to be 4.9m 2 /g ⁇ 184.0m 2 / g.
  • the compression elastic modulus of the porous resin particles is not described at all. Patent Document 2 below does not describe any use of the porous resin particles as spacers or to obtain conductive particles.
  • the liquid crystal display element is configured by arranging liquid crystal between two glass substrates.
  • a spacer is used as a gap control material in order to keep the distance (gap) between two glass substrates uniform and constant.
  • base material particles are generally used as the spacer.
  • Patent Document 3 discloses a spacer for a liquid crystal display element having a concavo-convex shape over the entire surface.
  • the BET specific surface area of the said spacer for liquid crystal display elements is 1.24 m ⁇ 2 > / g or 1.33 m ⁇ 2 > / g.
  • JP 2010-168464 A WO2013 / 114653A1 JP 2004-145128 A
  • thermocompression bonding when thermocompression bonding is performed at a high pressure and a high temperature during mounting of the flexible substrate, the mounting of the flexible substrate may be distorted and display unevenness may occur. Therefore, it is desirable to perform thermocompression bonding at a relatively low pressure when mounting a flexible substrate in the FOG method. In addition to the FOG method, it may be required to relatively reduce the pressure and temperature during thermocompression bonding.
  • connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles are not sufficiently in contact with the electrode (adhered body), or the adhesion between the base particles and the conductive layer disposed on the surface of the base particles is low. Exfoliation. Furthermore, when a connection part that electrically connects the electrodes is formed using conventional conductive particles, if an impact due to dropping or the like is applied to the connection part, the conductive material disposed on the surface of the substrate particle The connection resistance may increase due to peeling of the layer or the like.
  • the particle diameter of the conductive particles may vary, and the conductive particles may not uniformly contact the electrode (adhered body), and the connection resistance may increase.
  • the liquid crystal display element member or the like may be damaged.
  • the particle diameter of the spacer may vary, and the spacer may not uniformly contact the liquid crystal display element member (adhered body), and a sufficient gap control effect may not be obtained.
  • an object of the present invention is to provide base particles that can be brought into uniform contact with an adherend.
  • the object of the present invention is to provide adhesion and impact resistance with a conductive layer when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface. It is to provide base particles that can effectively improve the connection property, can effectively reduce the connection resistance, and can effectively improve the connection reliability.
  • the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
  • the conventional base particles have the following second problem.
  • connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles do not sufficiently contact the electrode (adhered body), and it is difficult to form indentations that are concave portions formed by the conductive particles being pushed in, or the surface of the conductive layer and the electrode. It is mentioned that it cannot fully penetrate an oxide film. Further, in the conventional conductive particles, the adhesion between the base material particles and the conductive layer disposed on the surface of the base material particles is low, the conductive layer may be peeled off, and the connection resistance may be increased. is there.
  • liquid crystal display element member or the like when conventional base particles are used as a spacer used in a liquid crystal display element or the like, the liquid crystal display element member or the like (adhered body) may be damaged.
  • a conventional spacer may not provide a sufficient gap control effect.
  • the object of the present invention is to effectively prevent the adherend from being scratched, and to electrically connect the electrodes using conductive particles having a conductive layer formed on the surface.
  • a base material particle that can effectively increase the adhesion to the conductive layer, can effectively lower the connection resistance, and can effectively increase the connection reliability when connected. It is to be.
  • the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
  • the conventional base particles have the following third problem.
  • connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles do not sufficiently contact the electrode (adhered body), and it is difficult to form indentations that are concave portions formed by the conductive particles being pushed in, or the surface of the conductive layer and the electrode. It is mentioned that it cannot fully penetrate an oxide film. In addition, a flaw different from the indentation may be formed on the electrode (adhered body), resulting in high connection resistance.
  • liquid crystal display element member or the like when conventional base particles are used as a spacer used in a liquid crystal display element or the like, the liquid crystal display element member or the like (adhered body) may be damaged.
  • a conventional spacer may not provide a sufficient gap control effect.
  • the object of the present invention is to effectively suppress the damage to the adherend, and electrically connect the electrodes using conductive particles having a conductive layer formed on the surface. It is an object of the present invention to provide a base particle that can effectively reduce connection resistance and can effectively improve connection reliability when connected. Moreover, the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
  • the conventional base particles have the following fourth problem.
  • connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles are not sufficiently in contact with the electrode (adhered body), or the adhesion between the base particles and the conductive layer disposed on the surface of the base particles is low. Exfoliation. Furthermore, when a connection part that electrically connects the electrodes is formed using conventional conductive particles, if an impact due to dropping or the like is applied to the connection part, the conductive material disposed on the surface of the substrate particle The connection resistance may increase due to peeling of the layer or the like.
  • the conductive particles do not sufficiently contact the electrode (adhered body) due to the hardness (material) of the electrode (adhered body) as well as the pressure at the time of connection. May be higher.
  • scratches may be formed on the surface of the electrode (adhered body), and the connection resistance may increase.
  • the liquid crystal display element member or the like may be damaged.
  • the liquid crystal display element member or the like is not sufficiently contacted, and a sufficient gap control effect may not be obtained.
  • the object of the present invention is to effectively prevent the adherend from being scratched, and to electrically connect the electrodes using conductive particles having a conductive layer formed on the surface.
  • a base particle that can effectively increase the adhesion to the conductive layer, can effectively increase the impact resistance, and can effectively reduce the connection resistance when connected. It is to be.
  • the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
  • base particles (at least four kinds of base particles) that can solve the first problem, the second problem, the third problem, and the fourth problem, respectively. I will provide a.
  • the base particles are used for obtaining conductive particles having the conductive layer by being used as a spacer or by forming a conductive layer on the surface, and BET A substrate particle having a specific surface area of 5 m 2 / g or more and a CV value of the particle diameter of 10% or less is provided.
  • the compression elastic modulus of when compressed 10% is 1N / mm 2 or more 3500 N / mm 2 or less.
  • the compression elastic modulus when compressed by 30% is 1 N / mm 2 or more and 3000 N / mm 2 or less.
  • the compression recovery rate is 5% or more and 60% or less.
  • the BET specific surface area is 300 m 2 / g or more and less than 600 m 2 / g, and the compression elastic modulus when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  • a substrate particle is provided.
  • the compression elastic modulus upon compression of 30% is 100 N / mm 2 or more 2500N / mm 2 or less.
  • the compression recovery rate is 5% or more and 60% or less.
  • the CV value of the particle diameter is 10% or less.
  • the said base particle is used as a spacer, or the electroconductive layer which forms the conductive layer on the surface is obtained, and the electroconductive particle which has the said electroconductive layer is obtained. Used for.
  • the BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g, and the compression elastic modulus when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  • a substrate particle is provided.
  • the compression elastic modulus of when compressed 10% it is 100 N / mm 2 or more 3500 N / mm 2 or less.
  • the compression recovery rate is 5% or more and 60% or less.
  • the CV value of the particle diameter is 10% or less.
  • the said base particle is used as a spacer, or the electroconductive layer which forms the conductive layer on the surface is obtained, and the electroconductive particle which has the said electroconductive layer is obtained. Used for.
  • the BET specific surface area is 600 m 2 / g or more
  • the compression modulus when compressed by 10% is 1200 N / mm 2 or less
  • the compression modulus when compressed by 30% is 1200 N / mm ⁇ 2 > or less
  • grains whose compression recovery rate is 5% or more are provided.
  • the CV value of the particle diameter is 10% or less.
  • the said base particle is used as a spacer, or the electroconductive layer which forms the conductive layer on the surface is obtained, and the electroconductive particle which has the said electroconductive layer is obtained. Used for.
  • density is 1 g / cm 3 or more 1.4 g / cm 3 or less.
  • the total pore volume is 0.01 cm 3 / g or more and 3 cm 3 / g or less.
  • the average pore diameter is 10 nm or less.
  • the average particle size is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • a conductive particle comprising the above-described base particle and a conductive layer disposed on the surface of the base particle.
  • the conductive particle further includes an insulating material disposed on the outer surface of the conductive layer.
  • the conductive layer has a protrusion on the outer surface.
  • the conductive particles include conductive particles and a binder resin, and the conductive particles include the base material particles described above and a conductive layer disposed on the surface of the base material particles.
  • a conductive material is provided.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the A connection portion connecting the second connection target member, and the connection portion is formed of conductive particles or formed of a conductive material including the conductive particles and a binder resin.
  • the conductive particles include the base material particles described above and a conductive layer disposed on the surface of the base material particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
  • a connection structure is provided which is connected in a connected manner.
  • the substrate particles according to the present invention are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the BET specific surface area is 5 m 2 / g or more.
  • the CV value of the particle diameter is 10% or less. Since the base particle according to the present invention has the above-described configuration, it can be brought into uniform contact with the adherend, and the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface. Can be effectively improved in adhesion and impact resistance with the conductive layer, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
  • the base particles according to the present invention BET specific surface area is less than 300 meters 2 / g or more 600m 2 / g.
  • the compression elastic modulus when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less. Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When the gaps are electrically connected, the adhesion with the conductive layer can be effectively increased, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
  • the base particles according to the present invention BET specific surface area is less than 5 m 2 / g or more 300m 2 / g.
  • the compression elastic modulus when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less. Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When they are electrically connected, the connection resistance can be effectively reduced and the connection reliability can be effectively increased.
  • the BET specific surface area is 600 m 2 / g or more.
  • the compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less.
  • the compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less.
  • the compression recovery rate is 5% or more. Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When the gaps are electrically connected, the adhesion with the conductive layer can be effectively increased, the impact resistance can be effectively increased, and the connection resistance can be effectively reduced. .
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of a liquid crystal display element using the substrate particles according to the present invention as a spacer for a liquid crystal display element.
  • Base particle 1 The substrate particles according to the present invention are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the BET specific surface area is 5 m 2 / g or more.
  • the CV value of the particle diameter is 10% or less.
  • the base particle according to the present invention has the above-described configuration, it can be brought into uniform contact with the adherend, and the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface. Can be effectively improved in adhesion and impact resistance with the conductive layer, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
  • the base particle according to the present invention has an appropriate BET specific surface area, when the conductive layer is formed on the surface of the base particle, the conductive layer enters the fine voids on the surface of the base particle, The adhesion between the particles and the conductive layer can be effectively increased, and peeling of the conductive layer can be effectively prevented. Furthermore, when forming a connection part for electrically connecting the electrodes using conductive particles having a conductive layer formed on the surface of the base material particle according to the present invention, the connection part is subjected to an impact due to dropping or the like. Even if added, peeling of the conductive layer is effectively prevented, and the connection resistance between the electrodes can be effectively lowered. In the electroconductive particle using the base particle which concerns on this invention, impact resistance can be improved effectively.
  • the CV value of the particle diameter is relatively small, variation in the particle diameter of the conductive particles can be effectively suppressed, and the conductive particles are uniformly contacted with the electrode. Can do.
  • the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively increased. For example, even when a connection structure in which electrodes are electrically connected by conductive particles is left for a long time under high temperature and high humidity conditions, the connection resistance is less likely to be further increased, and poor conduction is less likely to occur. .
  • the substrate particles according to the present invention are used as a spacer for a liquid crystal display element, it is possible to effectively suppress damage to the liquid crystal display element member or the like.
  • the CV value of the particle diameter is relatively small, and the dispersion of the particle diameter of the spacer can be effectively suppressed, and the spacer is uniformly contacted with the liquid crystal display element member or the like. be able to. For this reason, a sufficient gap control effect can be obtained. As a result, the display quality of the liquid crystal display element can be further improved.
  • the base particles according to the present invention are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the base particle according to the present invention may be used as a spacer.
  • the base particles according to the present invention may be used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the substrate particles according to the present invention are preferably spacer substrate particles.
  • the base particles according to the present invention are preferably base particles for conductive particles.
  • the BET specific surface area is 5 m 2 / g or more.
  • the BET specific surface area of the substrate particles is preferably 8 m 2 / g or more, more preferably 12 m 2 / g or more, preferably 1200 m 2 / g or less, more preferably 1000 m 2 / g or less, and still more preferably 700 m. 2 / g or less.
  • the BET specific surface area is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion and resistance to the conductive layer are improved. The impact property can be increased more effectively, the connection resistance can be further reduced more effectively, and the connection reliability can be further improved more effectively.
  • the BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method.
  • Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
  • the density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there.
  • the density is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further effectively reduced. And the connection reliability can be further effectively improved.
  • the density of the substrate particles can be measured using a density bottle method density measuring device.
  • Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation.
  • the measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
  • Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less.
  • the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion with the conductive layer and The impact resistance can be increased more effectively, the connection resistance can be lowered more effectively, and the connection reliability can be further improved more effectively.
  • the total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less.
  • the lower limit of the average pore diameter of the substrate particles is not particularly limited.
  • the average pore diameter of the substrate particles may be 1 nm or more.
  • the average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps.
  • a step of polymerizing the polymerizable monomer to obtain base particles As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example.
  • the organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like.
  • the amount of the organic solvent added is preferably 1 part by weight to 215 parts by weight and more preferably 5 parts by weight to 210 parts by weight with respect to 100 parts by weight of the polymerizable monomer component.
  • the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles.
  • the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
  • Compression modulus when the base particle is compressed 10% (10% K value) is preferably 1N / mm 2 or more, more preferably 100 N / mm 2 or more, preferably 3500 N / mm 2 or less, more Preferably it is 3000 N / mm 2 or less.
  • 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. In addition, the connection reliability can be further effectively improved.
  • the compression elastic modulus (30% K value) when the substrate particles are compressed by 30% is preferably 1 N / mm 2 or more, more preferably 100 N / mm 2 or more, and preferably 3000 N / mm 2 or less. Preferably it is 2800 N / mm 2 or less.
  • 30% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. In addition, the connection reliability can be further effectively improved.
  • the compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
  • one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 ⁇ m, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. .
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression modulus (10% K value and 30% K value) can be determined by the following equation.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
  • the above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively.
  • the compression elastic modulus By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
  • the compression recovery rate of the substrate particles is preferably 5% or more, more preferably 7% or more, preferably 60% or less, more preferably 50% or less.
  • the compression recovery rate is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effectively achieved. In addition, the connection reliability can be increased more effectively.
  • the compression recovery rate of the substrate particles can be measured as follows.
  • ⁇ Spread base particles on the sample stage With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [L2 / L1] ⁇ 100
  • L1 Compressive displacement from the origin load value to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the base particles are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the conductive layer is formed on the surface of the substrate particle.
  • the substrate particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer.
  • the above spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
  • the base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element.
  • the base material particles preferably function as a spacer. Since the base material particles have good compressive deformation characteristics, the base material particles are used as spacers to be arranged between the substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect the electrodes. Or the like, the spacers or conductive particles are efficiently disposed between the substrates or the electrodes. Furthermore, since the substrate particles can be uniformly contacted with a liquid crystal display element member or the like, in the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, Defects and display defects are less likely to occur.
  • the CV value (coefficient of variation) of the particle diameter of the base particles is 10% or less.
  • the CV value is preferably 7% or less, more preferably 5% or less.
  • the base particles can be more uniformly brought into contact with the adherend, and the base particles can be used more suitably depending on the use of the conductive particles and spacers.
  • the CV value can be adjusted by classification of the base particles.
  • the CV value is represented by the following formula.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
  • Base particle 2 The base particles according to the present invention, BET specific surface area is less than 300 meters 2 / g or more 600m 2 / g. In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  • the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used.
  • the adhesion with the conductive layer can be effectively increased, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased.
  • the base particles according to the present invention have a relatively high compression modulus (10% K value) when compressed by 10%, and a relatively high hardness in the initial stage of compression. For this reason, when the electrodes are electrically connected using conductive particles in which a conductive layer is formed on the surface of the base particles, the surface of the conductive layer or the electrodes depends on the hardness of the base particles that appear in the initial stage of compression. This oxide film can be sufficiently penetrated.
  • the substrate particles according to the present invention have an appropriate BET specific surface area, and the hardness of the substrate particles tends to be relatively lowered at a stage where compression is performed to some extent (mid-compression stage). For this reason, it can prevent that a damage
  • the base particle according to the present invention has an appropriate BET specific surface area, when the conductive layer is formed on the surface of the base particle, the conductive layer enters the fine voids on the surface of the base particle, The adhesion between the base particles and the conductive layer can be effectively increased, and the peeling of the conductive layer can be effectively prevented. As a result, the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively increased. For example, even when a connection structure in which electrodes are electrically connected by conductive particles is left for a long time under high temperature and high humidity conditions, the connection resistance is less likely to be further increased, and poor conduction is less likely to occur. .
  • the substrate particle according to the present invention when used as a spacer for a liquid crystal display element, it is possible to effectively suppress scratches on the liquid crystal display element member and the like, and to obtain a sufficient gap control effect. it can. As a result, the display quality of the liquid crystal display element can be further improved.
  • the BET specific surface area is 300 m 2 / g or more and less than 600 m 2 / g.
  • the BET specific surface area of the substrate particles is preferably 320 m 2 / g or more, more preferably 340 m 2 / g or more, preferably 580 m 2 / g or less, more preferably 560 m 2 / g or less.
  • the BET specific surface area is not less than the above lower limit and not more than the above upper limit
  • the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface
  • the adhesion to the conductive layer is improved.
  • the connection resistance can be further reduced effectively, and the connection reliability can be further improved more effectively.
  • the BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method.
  • Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
  • the density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there.
  • the adherend can be more effectively suppressed from being damaged.
  • the connection resistance is more effectively achieved.
  • the connection reliability can be increased more effectively.
  • the density of the substrate particles can be measured using a density bottle method density measuring device.
  • Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation.
  • the measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
  • Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less.
  • the adherend can be more effectively suppressed from being damaged.
  • the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the total pore volume is in close contact with the conductive layer.
  • the connection resistance can be further effectively reduced, and the connection reliability can be further effectively improved.
  • the total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less.
  • the lower limit of the average pore diameter of the substrate particles is not particularly limited.
  • the average pore diameter of the substrate particles may be 1 nm or more.
  • the average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps.
  • a step of polymerizing the polymerizable monomer to obtain base particles As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example.
  • the organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like.
  • the addition amount of the organic solvent is preferably 55 parts by weight to 100 parts by weight, and more preferably 60 parts by weight to 95 parts by weight with respect to 100 parts by weight of the polymerizable monomer component.
  • the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles.
  • the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
  • the compression elastic modulus (10% K value) when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  • 10% K value of the base particles is preferably 120 N / mm 2 or more, more preferably 140 N / mm 2 or more, preferably 2800N / mm 2 or less, and more preferably not more than 2600N / mm 2.
  • the 10% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
  • the compression modulus of the base material particles when the compressed 30% (30% K value) is preferably 100 N / mm 2 or more, more preferably 120 N / mm 2 or more, preferably 2500N / mm 2 or less, more Preferably it is 2300 N / mm 2 or less.
  • the 30% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • the 30% K value is not less than the above lower limit and not more than the above upper limit
  • the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
  • the compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
  • one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 ⁇ m, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. .
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression modulus (10% K value and 30% K value) can be determined by the following equation.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
  • the above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively.
  • the compression elastic modulus By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
  • the compression recovery rate of the substrate particles is preferably 5% or more, more preferably 7% or more, preferably 60% or less, more preferably 50% or less.
  • the compression recovery rate of the substrate particles is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the damage to the adherend. Further, when the compression recovery rate is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. And the connection reliability can be further effectively improved.
  • the compression recovery rate of the substrate particles can be measured as follows.
  • ⁇ Spread base particles on the sample stage With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [L2 / L1] ⁇ 100
  • L1 Compressive displacement from the origin load value to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the use of the above-mentioned substrate particles is not particularly limited.
  • the said base particle can be used suitably for various uses.
  • the base particle is used as a spacer, or a conductive layer is formed on the surface and used to obtain conductive particles having the conductive layer.
  • the conductive layer is formed on the surface of the substrate particle.
  • the substrate particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer.
  • the above spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
  • the base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element.
  • the base material particles preferably function as a spacer. Since the base material particles have good compressive deformation characteristics, the base material particles are used as spacers to be arranged between the substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect the electrodes. Or the like, the spacers or conductive particles are efficiently disposed between the substrates or the electrodes. Furthermore, since the substrate particles can suppress damage to the liquid crystal display element member, etc., in the connection structure using the liquid crystal display element using the liquid crystal display element spacer and the conductive particles, Defects and display defects are less likely to occur.
  • the above-mentioned substrate particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the base material particles can be used as a substitute for rubber or a spring.
  • the coefficient of variation (CV value) of the particle size of the substrate particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less.
  • the substrate particles can be used more suitably depending on the use of the conductive particles and spacers.
  • the CV value can be adjusted by classification of the base particles.
  • the CV value is represented by the following formula.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
  • Base particle 3 In the base particle according to the present invention, the BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g. In the base particle according to the present invention, the compression elastic modulus (30% K value) when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  • the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When they are electrically connected, the connection resistance can be effectively reduced and the connection reliability can be effectively increased.
  • the base particles according to the present invention have an appropriate BET specific surface area. Furthermore, in the base particle according to the present invention, the hardness is not easily lowered even at a stage where it is compressed to some extent (mid-compression stage), and the hardness of the base particle is relatively maintained. For this reason, when the electrodes are electrically connected using conductive particles in which a conductive layer is formed on the surface of the base particles, the surface of the conductive layer or the electrodes depends on the hardness of the base particles that appear in the initial stage of compression. This oxide film can be sufficiently penetrated. Furthermore, the indentation which is a recessed part formed by the conductive particle being pushed in can be formed by the hardness of the base particle maintained even in the middle stage of compression.
  • connection resistance between electrodes can be made low effectively, and the connection reliability between electrodes can be raised effectively.
  • the connection resistance is less likely to be further increased, and poor conduction is less likely to occur.
  • the said indentation is not contained in the damage
  • the substrate particle according to the present invention when used as a spacer for a liquid crystal display element, it is possible to effectively suppress scratches on the liquid crystal display element member and the like, and to obtain a sufficient gap control effect. it can. As a result, the display quality of the liquid crystal display element can be further improved.
  • the BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g.
  • the BET specific surface area of the substrate particles is preferably 8 m 2 / g or more, more preferably 12 m 2 / g or more, preferably 290 m 2 / g or less, more preferably 280 m 2 / g or less.
  • connection resistance is more effective. And the connection reliability can be further effectively improved.
  • the BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method.
  • Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
  • the density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there.
  • the adherend can be more effectively suppressed from being damaged.
  • the connection resistance is more effectively achieved.
  • the connection reliability can be increased more effectively.
  • the density of the substrate particles can be measured using a density bottle method density measuring device.
  • Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation.
  • the measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
  • Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less.
  • the adherend can be more effectively suppressed from being damaged.
  • the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
  • the total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less.
  • the lower limit of the average pore diameter of the substrate particles is not particularly limited.
  • the average pore diameter of the substrate particles may be 1 nm or more.
  • the average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps.
  • a step of polymerizing the polymerizable monomer to obtain base particles As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example.
  • the organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like.
  • the amount of the organic solvent added is preferably 1 part by weight to 50 parts by weight and more preferably 5 parts by weight to 45 parts by weight with respect to 100 parts by weight of the polymerizable monomer component.
  • the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles.
  • the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
  • the compression elastic modulus (30% K value) when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  • 30% K value of the base particles is preferably 150 N / mm 2 or more, more preferably 200 N / mm 2 or more, preferably 2800N / mm 2 or less, and more preferably not more than 2500N / mm 2.
  • the 30% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
  • Compression modulus when the base particle is compressed 10% (10% K value) is preferably 100 N / mm 2 or more, more preferably 150 N / mm 2 or more, preferably 3500 N / mm 2 or less, more Preferably it is 3000 N / mm 2 or less.
  • the 10% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • the 10% K value is not less than the above lower limit and not more than the above upper limit
  • the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
  • the compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
  • one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 ⁇ m, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. .
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression modulus (10% K value and 30% K value) can be determined by the following equation.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
  • the above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively.
  • the compression elastic modulus By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
  • the compression recovery rate of the substrate particles is preferably 5% or more, more preferably 7% or more, preferably 60% or less, more preferably 50% or less.
  • the compression recovery rate of the substrate particles is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the damage to the adherend. Further, when the compression recovery rate is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. And the connection reliability can be further effectively improved.
  • the compression recovery rate of the substrate particles can be measured as follows.
  • ⁇ Spread base particles on the sample stage With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [L2 / L1] ⁇ 100
  • L1 Compressive displacement from the origin load value to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the use of the above-mentioned substrate particles is not particularly limited.
  • the said base particle can be used suitably for various uses.
  • the base particle is used as a spacer, or a conductive layer is formed on the surface and used to obtain conductive particles having the conductive layer.
  • the conductive layer is formed on the surface of the substrate particle.
  • the base particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer.
  • the spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
  • the base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element.
  • the base material particles preferably function as a spacer. Since the base material particles have good compressive deformation characteristics, the base material particles are used as spacers to be arranged between the substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect the electrodes. Or the like, the spacers or conductive particles are efficiently disposed between the substrates or the electrodes. Furthermore, since the substrate particles can suppress damage to the liquid crystal display element member, etc., in the connection structure using the liquid crystal display element using the liquid crystal display element spacer and the conductive particles, Defects and display defects are less likely to occur.
  • the above-mentioned substrate particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the base material particles can be used as a substitute for rubber or a spring.
  • the coefficient of variation (CV value) of the particle size of the substrate particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less.
  • the substrate particles can be used more suitably depending on the use of the conductive particles and spacers.
  • the CV value can be adjusted by classification of the base particles.
  • the CV value is represented by the following formula.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
  • Base particle 4 In the base particle according to the present invention, the BET specific surface area is 600 m 2 / g or more. In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less. In the base particle according to the present invention, the compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less. In the base particle according to the present invention, the compression recovery rate is 5% or more.
  • the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used.
  • the adhesion with the conductive layer can be effectively increased, the impact resistance can be effectively increased, and the connection resistance can be effectively reduced.
  • the base particle according to the present invention has a relatively large BET specific surface area and easily deforms at a relatively low pressure and temperature. For this reason, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface of the substrate particles, the conductive particles can be used even if the pressure and temperature during thermocompression bonding are relatively low. Can be sufficiently brought into contact with the electrode, and the formation of scratches on the electrode can be prevented. Moreover, since the value of the BET specific surface area is relatively large in the base particle according to the present invention, when forming the conductive layer on the surface of the base particle, the conductive layer is formed in the fine voids on the surface of the base particle.
  • connection part for electrically connecting the electrodes using conductive particles having a conductive layer formed on the surface of the base material particle according to the present invention the connection part is subjected to an impact due to dropping or the like. Even if added, peeling of the conductive layer is effectively prevented, and the connection resistance between the electrodes can be effectively lowered. In the electroconductive particle using the base particle which concerns on this invention, impact resistance can be improved effectively. Moreover, in the base material particle which concerns on this invention, a compression recovery rate is comparatively large, and it has favorable restoring property.
  • the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively increased.
  • the substrate particles according to the present invention are used as a spacer for a liquid crystal display element, it is possible to effectively suppress damage to the liquid crystal display element member or the like. Further, it can be sufficiently brought into contact with a liquid crystal display element member and the like, and a sufficient gap control effect can be obtained. As a result, the display quality of the liquid crystal display element can be further improved.
  • the BET specific surface area is 600 m 2 / g or more.
  • the BET specific surface area of the substrate particles is preferably 605 m 2 / g or more, more preferably 610 m 2 / g or more, preferably 1200 m 2 / g or less, more preferably 1000 m 2 / g or less.
  • the adherend can be more effectively suppressed from being damaged.
  • the adhesion to the conductive layer is improved. Can be increased more effectively, impact resistance can be further improved more effectively, and connection resistance can be further reduced more effectively.
  • the BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method.
  • Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
  • the density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there.
  • the adherend can be more effectively suppressed from being damaged.
  • the connection resistance is more effectively achieved.
  • the connection reliability can be increased more effectively.
  • the density of the substrate particles can be measured using a density bottle method density measuring device.
  • Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation.
  • the measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
  • Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less.
  • the adherend can be more effectively suppressed from being damaged.
  • the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the total pore volume is in close contact with the conductive layer. Therefore, the impact resistance can be further effectively improved, and the connection resistance can be further effectively reduced.
  • the total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less.
  • the lower limit of the average pore diameter of the substrate particles is not particularly limited.
  • the average pore diameter of the substrate particles may be 1 nm or more.
  • the average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method.
  • Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
  • the base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps.
  • a step of polymerizing the polymerizable monomer to obtain base particles As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example.
  • the organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like.
  • the amount of the organic solvent added is preferably 105 to 215 parts by weight and more preferably 110 to 210 parts by weight with respect to 100 parts by weight of the polymerizable monomer component.
  • the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles.
  • the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
  • the compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less.
  • 10% K value of the base particles is preferably from 5N / mm 2 or more, more preferably 10 N / mm 2 or more, preferably 1100 N / mm 2 or less, and more preferably not more than 1000 N / mm 2.
  • the 10% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
  • the compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less.
  • the 30% K value of the substrate particles is preferably 5 N / mm 2 or more, more preferably 10 N / mm 2 or more, preferably 1100 N / mm 2 or less, more preferably 1000 N / mm 2 or less.
  • the 30% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • the 30% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
  • the compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
  • one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 ⁇ m, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. .
  • the load value (N) and compression displacement (mm) at this time are measured.
  • the compression modulus (10% K value and 30% K value) can be determined by the following equation.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
  • the above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively.
  • the compression elastic modulus By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
  • the compression recovery rate is 5% or more.
  • the compression recovery rate of the substrate particles is preferably 10% or more, more preferably 15% or more, preferably 60% or less, more preferably 50% or less.
  • the compression recovery rate of the substrate particles is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged.
  • the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
  • the compression recovery rate of the substrate particles can be measured as follows.
  • ⁇ Spread base particles on the sample stage With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [L2 / L1] ⁇ 100
  • L1 Compressive displacement from the origin load value to the reverse load value when applying a load
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the use of the above-mentioned substrate particles is not particularly limited.
  • the said base particle can be used suitably for various uses.
  • the base particle is used as a spacer, or a conductive layer is formed on the surface and used to obtain conductive particles having the conductive layer.
  • the conductive layer is formed on the surface of the substrate particle.
  • the substrate particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer.
  • the substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer.
  • the spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
  • the base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element.
  • the base material particles preferably function as a spacer. Since the base particles have good compressive deformation characteristics and good compressive fracture characteristics, the base particles are used as spacers by placing them between substrates or forming a conductive layer on the surface to be used as conductive particles. When the electrodes are electrically connected to each other, the spacers or conductive particles are efficiently arranged between the substrates or between the electrodes. Furthermore, since the substrate particles can suppress damage to the liquid crystal display element member, etc., in the connection structure using the liquid crystal display element using the liquid crystal display element spacer and the conductive particles, Defects and display defects are less likely to occur.
  • the above-mentioned substrate particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the base material particles can be used as a substitute for rubber or a spring.
  • the coefficient of variation (CV value) of the particle size of the substrate particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less.
  • the substrate particles can be used more suitably depending on the use of the conductive particles and spacers.
  • the CV value can be adjusted by classification of the base particles.
  • the CV value is represented by the following formula.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
  • the base particles (base particles) described above may be used.
  • Examples of the method for producing substrate particles comprising the following steps are the same as in the case where the preferred ranges of the BET specific surface area, the total pore volume, and the average pore diameter of 1 to the substrate particles 4) are satisfied.
  • a step of preparing a polymerizable monomer solution by mixing a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer.
  • a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example.
  • the organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium.
  • organic solvent examples include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like.
  • the amount of the organic solvent added is preferably 1 part by weight to 215 parts by weight and more preferably 5 parts by weight to 210 parts by weight with respect to 100 parts by weight of the polymerizable monomer component.
  • the above 10% K value and the above 30% K can be controlled to a more suitable range even more effectively.
  • base material particles 1 to 4 base material particles 1 to 4.
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”
  • (meth) acryl means one or both of “acryl” and “methacryl”. means.
  • the material of the base particle is not particularly limited.
  • the material of the substrate particles may be an organic material or an inorganic material.
  • organic material examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, phenol formaldehyde resin, and melamine Formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Polyether ether ketone, polyether sulfo , Divinylbenzene polymer, and divinylbenzene copolymer, and the like.
  • polyolefin resins such as polyethylene, polypropylene
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the compression characteristics of the base particle can be easily controlled within a suitable range, the material of the base particle is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable that
  • the base particle is obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group
  • the polymerizable monomer having an ethylenically unsaturated group may be crosslinked with a non-crosslinkable monomer. Sex monomers.
  • non-crosslinkable monomers examples include vinyl compounds such as styrene monomers such as styrene, ⁇ -methylstyrene, and chlorostyrene; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meta) as (meth) acrylic compounds ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl Alkyl (meth)
  • cross-linkable monomer examples include vinyl monomers such as divinylbenzene, 1,4-divinyloxybutane, and divinylsulfone as a vinyl compound; tetramethylolmethanetetra (meth) acrylate as a (meth) acryl compound.
  • the base particle can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group.
  • the polymerization method is not particularly limited, and includes known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization.
  • Another polymerization method includes suspension polymerization in the presence of a radical polymerization initiator.
  • examples of the inorganic material include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda lime glass, and alumina silicate glass.
  • the substrate particles may be formed only from the organic material, may be formed only from the inorganic material, or may be formed from both the organic material and the inorganic material. It is preferable that the base particle is formed only of an organic material. In this case, the compression characteristics of the base particles can be easily controlled within a suitable range, and can be used more suitably depending on the use of the conductive particles and spacers.
  • the substrate particles may be organic / inorganic hybrid particles.
  • the base particles may be core-shell particles.
  • examples of the inorganic material that is the material of the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal. Although it does not specifically limit as a base particle formed with the said silica, After forming the crosslinked polymer particle by hydrolyzing the silicon compound which has two or more hydrolysable alkoxysilyl groups, it calcinates as needed.
  • the base material particle obtained by performing is mentioned.
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the substrate particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • organic core material the above-described organic materials can be used.
  • the inorganic materials mentioned as the material for the base material particles described above can be used.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the average particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the substrate particles can be more suitably used depending on the use of the conductive particles and spacers.
  • the average particle diameter of the substrate particles is preferably 1 ⁇ m or more and 80 ⁇ m or less.
  • the average particle diameter of the substrate particles is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the particle diameter of the base particle means a diameter when the base particle is a true sphere, and when the base particle is a shape other than a true sphere, it is assumed to be a true sphere corresponding to its volume. This means the diameter when The average particle diameter of the base particles is preferably a number average particle diameter.
  • the average particle diameter of the substrate particles can be measured by an arbitrary particle size distribution measuring device. For example, it can be measured using a particle size distribution measuring device using principles such as laser light scattering, change in electric resistance value, image analysis after imaging.
  • a particle size distribution measuring apparatus (“Multizer 4” manufactured by Beckman Coulter, Inc.) is used to measure the particle size of about 100,000 base particles, and the average The method of measuring a particle diameter is mentioned.
  • the aspect ratio of the substrate particles is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less.
  • the aspect ratio indicates a major axis / minor axis.
  • the above aspect ratio is obtained by observing 10 arbitrary base particles with an electron microscope or an optical microscope, and setting the maximum diameter and the minimum diameter as the major axis and the minor axis, respectively, and calculating the average value of the major axis / minor axis of each substrate particle. It is preferable to obtain by doing so.
  • the conductive particles include the above-described base particles (base particles 1 to 4) and a conductive layer disposed on the surface of the base particles.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particle 1 has a base particle 11 and a conductive layer 2 disposed on the surface of the base particle 11.
  • the conductive layer 2 covers the surface of the base particle 11.
  • the conductive particle 1 is a coated particle in which the surface of the base particle 11 is coated with the conductive layer 2.
  • the base particle 11 is preferably any one of the base particles 1 to 4 described above.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • the conductive layer 22 has the base particle 11 and the conductive layer 22 arranged on the surface of the base particle 11.
  • the conductive particle 21 shown in FIG. In the conductive particle 21 shown in FIG. 2, only the conductive layer 22 is different from the conductive particle 1 shown in FIG.
  • the conductive layer 22 includes a first conductive layer 22A that is an inner layer and a second conductive layer 22B that is an outer layer.
  • the first conductive layer 22 ⁇ / b> A is disposed on the surface of the base particle 11.
  • a second conductive layer 22B is disposed on the surface of the first conductive layer 22A.
  • FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
  • the 3 includes the base particle 11, the conductive layer 32, a plurality of core substances 33, and a plurality of insulating substances 34.
  • the conductive layer 32 is disposed on the surface of the base particle 11.
  • the conductive particles 31 have a plurality of protrusions 31a on the conductive surface.
  • the conductive layer 32 has a plurality of protrusions 32a on the outer surface.
  • the conductive particles may have protrusions on the conductive surface of the conductive particles, or may have protrusions on the outer surface of the conductive layer.
  • a plurality of core substances 33 are arranged on the surface of the base particle 11.
  • the plurality of core materials 33 are embedded in the conductive layer 32.
  • the core substance 33 is disposed inside the protrusions 31a and 32a.
  • the conductive layer 32 covers a plurality of core materials 33.
  • the outer surface of the conductive layer 32 is raised by the plurality of core materials 33, and protrusions 31a and 32a are formed.
  • the conductive particles 31 have an insulating substance 34 disposed on the outer surface of the conductive layer 32. At least a part of the outer surface of the conductive layer 32 is covered with an insulating material 34.
  • the insulating substance 34 is made of an insulating material and is an insulating particle.
  • the said electroconductive particle may have the insulating substance arrange
  • the metal for forming the conductive layer is not particularly limited.
  • the above metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, tungsten, molybdenum And alloys thereof.
  • Examples of the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of further improving the connection reliability between the electrodes, the metal is preferably an alloy containing tin, nickel, palladium, copper or gold, and is preferably nickel or palladium.
  • the conductive layer may be formed of a single layer.
  • the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable.
  • the outermost layer is a preferable conductive layer, the connection reliability between the electrodes can be further enhanced.
  • the outermost layer is a gold layer, the corrosion resistance can be further enhanced.
  • the method for forming the conductive layer on the surface of the substrate particles is not particularly limited.
  • Examples of the method for forming the conductive layer include a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of substrate particles with metal powder or a paste containing metal powder and a binder. Is mentioned. From the viewpoint of more easily forming the conductive layer, a method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the average particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less, still more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less. Particularly preferably, it is 20 ⁇ m or less.
  • the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, and Aggregated conductive particles are less likely to be formed when the conductive layer is formed.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
  • the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle diameter of the conductive particle means a diameter when the conductive particle is a true sphere, and when the conductive particle is a shape other than a true sphere, it is assumed to be a true sphere corresponding to its volume. Means the diameter.
  • the average particle size of the conductive particles is preferably a number average particle size.
  • the average particle diameter of the conductive particles is determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement. In observation with an electron microscope or an optical microscope, the particle diameter of each conductive particle is determined as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 conductive particles is almost equal to the average particle diameter at a sphere equivalent diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each conductive particle is obtained as a particle diameter in a sphere equivalent diameter.
  • the average particle size of the conductive particles is preferably calculated by laser diffraction particle size distribution measurement.
  • the thickness of the conductive layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive layer is the thickness of the entire conductive layer when the conductive layer is a multilayer. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. To do.
  • the thickness of the outermost conductive layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably Is 0.1 ⁇ m or less.
  • the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, the corrosion resistance is sufficiently high, and the connection reliability between the electrodes is improved. It can be further increased.
  • the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
  • the thickness of the conductive layer can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM). About the thickness of the said conductive layer, it is preferable to calculate the average value of five thicknesses of arbitrary conductive layers as the thickness of the conductive layer of one conductive particle, and the average value of the thickness of the whole conductive layer is one piece. It is more preferable to calculate the thickness of the conductive layer of the conductive particles. The thickness of the conductive layer is preferably determined by calculating an average value of the thickness of the conductive layer of each conductive particle for any 10 conductive particles.
  • TEM transmission electron microscope
  • the conductive particles preferably have protrusions on the outer surface of the conductive layer.
  • the conductive particles preferably have protrusions on the conductive surface. It is preferable that there are a plurality of protrusions.
  • An oxide film is often formed on the surface of the conductive layer and the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made still lower.
  • the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the conductive particles and the electrodes are separated by protrusions of the conductive particles.
  • the insulating material or binder resin in between can be more effectively eliminated. For this reason, the connection reliability between electrodes can be improved further.
  • a method of forming protrusions on the surface of the conductive particles As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the base particles, and electroless plating on the surface of the base particles And a method of forming a conductive layer by electroless plating after forming a conductive layer by, for example.
  • the core material may not be used to form the protrusion.
  • a method of adding a core substance in the middle of forming a conductive layer by electroless plating on the surface of substrate particles As a method of forming protrusions without using a core material by electroless plating, metal nuclei are generated by electroless plating, the metal nuclei are attached to the surface of the substrate particles or the conductive layer, and the conductive layer is further formed by electroless plating. How to form.
  • the conductive particles preferably further include an insulating material disposed on the outer surface of the conductive layer.
  • an insulating material disposed on the outer surface of the conductive layer.
  • an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes.
  • the insulating substance between the conductive layer of an electroconductive particle and an electrode can be easily excluded by pressurizing electroconductive particle with two electrodes in the case of the connection between electrodes.
  • the insulating substance is preferably an insulating resin layer or insulating particles, and more preferably insulating particles.
  • the insulating particles are preferably insulating resin particles.
  • the outer surface of the conductive layer and the surface of the insulating particles may each be coated with a compound having a reactive functional group.
  • the outer surface of the conductive layer and the surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
  • the conductive material includes the conductive particles described above and a binder resin.
  • the conductive particles are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably includes a thermoplastic component (thermoplastic compound) or a curable component, and more preferably includes a curable component.
  • the curable component include a photocurable component and a thermosetting component. It is preferable that the said photocurable component contains a photocurable compound and a photoinitiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, and kneaded and dispersed with a planetary mixer or the like. A method of diluting the binder resin with water or an organic solvent, adding the conductive particles, and kneading and dispersing with a planetary mixer or the like.
  • the viscosity ( ⁇ 25) at 25 ° C. of the conductive material is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less.
  • the viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component.
  • the viscosity ( ⁇ 25) can be measured under conditions of 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased. .
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, still more preferably 40% by weight or less, further preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively reduced, and the connection reliability between the electrodes can be further effectively improved. Can be increased.
  • connection structure can be obtained by connecting the connection target member using the conductive particles described above or the conductive material including the conductive particles described above and a binder resin.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the second connection target. And a connection portion connecting the connection target members.
  • the connection part is preferably formed of conductive particles or a conductive material containing the conductive particles and a binder resin. It is preferable that the said electroconductive particle is equipped with the base material particle
  • connection part itself is conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles.
  • the conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
  • FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • connection structure 41 shown in FIG. 4 is a connection that connects the first connection target member 42, the second connection target member 43, and the first connection target member 42 and the second connection target member 43.
  • the connection part 44 is formed of a conductive material containing the conductive particles 1 and a binder resin.
  • the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, other conductive particles of the conductive particles 21 and 31 may be used.
  • the first connection target member 42 has a plurality of first electrodes 42a on the surface (upper surface).
  • the second connection target member 43 has a plurality of second electrodes 43a on the surface (lower surface).
  • the first electrode 42 a and the second electrode 43 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 42 and 43 are electrically connected by the conductive particles 1.
  • the manufacturing method of the connection structure is not particularly limited.
  • a method of manufacturing a connection structure a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc.
  • the pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, more preferably 70 MPa or less.
  • the temperature during the heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the first connection target member and the second connection target member are not particularly limited.
  • electronic components such as a semiconductor chip, a semiconductor package, a LED chip, a LED package, a capacitor
  • the first connection target member and the second connection target member are preferably electronic components.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
  • connection target member is preferably a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film.
  • the connection target member is preferably a flexible substrate, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film.
  • the flexible substrate is a flexible printed substrate or the like, the flexible substrate generally has electrodes on the surface.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • the base material particles can be preferably used as a spacer for a liquid crystal display element.
  • the first connection target member may be a first liquid crystal display element member.
  • the second connection target member may be a second liquid crystal display element member.
  • the connection portion includes the first liquid crystal display element member and the second liquid crystal display element member in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. It may be a seal portion that seals the outer periphery.
  • the base material particles can also be used as a peripheral sealing agent for liquid crystal display elements.
  • the liquid crystal display element includes a first liquid crystal display element member and a second liquid crystal display element member.
  • the liquid crystal display element has the first liquid crystal display element member and the second liquid crystal display element member in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. And a liquid crystal disposed between the first liquid crystal display element member and the second liquid crystal display element member inside the seal part, and a liquid crystal disposed between the first liquid crystal display element member and the second liquid crystal display element member Prepare.
  • a liquid crystal dropping method is applied, and the seal portion is formed by thermosetting a sealing agent for a liquid crystal dropping method.
  • FIG. 5 is a cross-sectional view showing an example of a liquid crystal display element using the substrate particles according to the present invention as a spacer for a liquid crystal display element.
  • a liquid crystal display element 81 shown in FIG. 5 has a pair of transparent glass substrates 82.
  • the transparent glass substrate 82 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 .
  • a transparent electrode 83 is formed on the insulating film in the transparent glass substrate 82. Examples of the material of the transparent electrode 83 include ITO.
  • the transparent electrode 83 can be formed by patterning, for example, by photolithography.
  • An alignment film 84 is formed on the transparent electrode 83 on the surface of the transparent glass substrate 82. Examples of the material of the alignment film 84 include polyimide.
  • a liquid crystal 85 is sealed between the pair of transparent glass substrates 82.
  • a plurality of base material particles 11 are arranged between the pair of transparent glass substrates 82.
  • the base particle 11 is used as a spacer for a liquid crystal display element.
  • the space between the pair of transparent glass substrates 82 is regulated by the plurality of base material particles 11.
  • a sealing agent 86 is disposed between the edges of the pair of transparent glass substrates 82. Outflow of the liquid crystal 85 to the outside is prevented by the sealing agent 86.
  • the sealing agent 86 includes base material particles 11 ⁇ / b> A that differ from the base material particles 11 only in particle size.
  • the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less.
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
  • connection resistance is 1.5 ⁇ or less ⁇ : The average value of connection resistance exceeds 1.5 ⁇ and 2.0 ⁇ or less ⁇ : The average value of connection resistance exceeds 2.0 ⁇ and 5.0 ⁇ or less : Average value of connection resistance exceeds 5.0 ⁇ and 10 ⁇ or less ⁇ : Average value of connection resistance exceeds 10 ⁇
  • connection reliability after high-temperature and high-humidity conditions 100 connection structures obtained in the above (evaluation 8) evaluation of connection reliability were left at 85 ° C. and 85% RH for 100 hours. For 100 connection structures after being left, it was evaluated whether or not poor conduction between the upper and lower electrodes occurred. Connection reliability after high temperature and high humidity conditions was determined according to the following criteria.
  • The number of defective connection among the 100 connection structures is 1 or less.
  • The number of defective connection among the 100 connection structures is 2 to 5.
  • Among 100 connection structures, the number of defective conductions is 6 to 10.
  • Of 100 connection structures, the number of defective conductions is 11 or more.
  • Test Example (1) In Test Example (1), substrate particles 1 and the like were produced.
  • Example (1) -1 Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 ⁇ m were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
  • the emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 ⁇ m) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
  • the monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis ⁇ 2- [N— (2 -Carboxyethyl) amidino] propane ⁇ 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • a transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 ⁇ m / 10 ⁇ m was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 ⁇ m / 10 ⁇ m was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • Examples (1) -2 to (1) -32 and Comparative Examples (1) -1 to (1) -7) The same procedure as in Example (1) -1 except that the types of monomer components, the types of solvents, and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 1 to 4 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
  • Test Example (2) In Test Example (2), substrate particles 2 and the like were produced.
  • Example (2) -1 Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 ⁇ m were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
  • the emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 ⁇ m) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
  • the monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis ⁇ 2- [N— (2 -Carboxyethyl) amidino] propane ⁇ 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • a transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 ⁇ m / 10 ⁇ m was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 ⁇ m / 10 ⁇ m was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • Example 2 -2 to (2) -17 and Comparative Examples (2) -1 to (2) -7) The same as Example (2) -1, except that the types of monomer components, the types of solvents, and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 5 to 7 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
  • Tables 5 to 7 show details and results of the base particles and conductive particles in Test Example (2).
  • Test Example (3) In Test Example (3), base material particles 3 and the like were produced.
  • Example (3) -1 Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 ⁇ m were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
  • the emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 ⁇ m) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
  • the monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis ⁇ 2- [N— (2 -Carboxyethyl) amidino] propane ⁇ 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • a transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 ⁇ m / 10 ⁇ m was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 ⁇ m / 10 ⁇ m was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • Example (3) -2 to (3) -17 and Comparative Examples (3) -1 to (3) -6) The same as Example (3) -1, except that the types of monomer components, the types of solvents and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 8 to 10 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
  • Tables 8 to 10 show details and results of the base particles and conductive particles in Test Example (3).
  • Test Example (4) In Test Example (4), base material particles 4 and the like were produced.
  • Example (4) -1) Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 ⁇ m were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
  • the emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 ⁇ m) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
  • the monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis ⁇ 2- [N— (2 -Carboxyethyl) amidino] propane ⁇ 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • a transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 ⁇ m / 10 ⁇ m was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 ⁇ m / 10 ⁇ m was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • Example (4) -2 to (4) -17 and Comparative Examples (4) -1 to (4) -7) The same as Example (4) -1, except that the types of monomer components, the types of solvents, and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 11 to 13 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
  • Tables 11 to 13 show details and results of the base particles and conductive particles in Test Example (4).
  • test examples (1), (2), (3) and (4) The following evaluation was performed on the base particles of the above-described Test Examples (1) to (4).
  • Example of use as spacer for liquid crystal display element Production of STN type liquid crystal display element In a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the liquid crystal display element spacers (base material particles) of Examples 1 to 32 in a dispersion medium having a solid content concentration of 2% in 100% by weight of the obtained spacer dispersion liquid. % was added and stirred to obtain a spacer dispersion liquid for a liquid crystal display element.
  • An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering.
  • a polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by a spin coating method and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the alignment film was rubbed, wet alignment was performed on the alignment film side of one substrate so that the number of spacers for liquid crystal display elements was 100 per 1 mm 2 .
  • this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
  • Examples (1) -1 to (1) -32, (2) -1 to (2) -17, (3) -1 to (3) -17 and (4)- The distance between the substrates was well regulated by the liquid crystal display element spacers 1 to (4) -17. Moreover, the liquid crystal display element showed favorable display quality.
  • Examples of the peripheral sealant for the liquid crystal display element include Examples (1) -1 to (1) -32, (2) -1 to (2) -17, (3) -1 to (3) -17, and ( Even when the substrate particles of 4) -1 to (4) -17 were used as spacers for liquid crystal display elements, the display quality of the obtained liquid crystal display elements was good.

Abstract

Provided is a substrate particle which can uniformly contact an adherend, and which, when used as a conductive particle with a conductive layer formed on the surface thereof to electrically connect electrodes, can effectively increase adhesion and impact resistance between the electrodes and the conductive layer, effectively lower connection resistance, and effectively increase connection reliability. This substrate particle is used as a spacer, or is used to obtain a conductive particle having a conductive layer formed on the surface thereof. The substrate particle has a BET specific surface area of 5 m2/g or greater, and a particle diameter CV value of 10% or less.

Description

基材粒子、導電性粒子、導電材料及び接続構造体Base particle, conductive particle, conductive material, and connection structure
 本発明は、良好な圧縮特性を有する基材粒子に関する。また、本発明は、上記基材粒子を用いた導電性粒子、導電材料及び接続構造体に関する。 The present invention relates to substrate particles having good compression characteristics. The present invention also relates to a conductive particle, a conductive material, and a connection structure using the base particle.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.
 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電層とを有する導電性粒子が用いられることがある。 The anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure. ing. Moreover, as the conductive particles, conductive particles having base particles and a conductive layer disposed on the surface of the base particles may be used.
 上記基材粒子の一例として、下記の特許文献1では、比表面積が2.0m/gであり、トルエンに対する溶出成分量が1%~5%であり、粒子径の変動係数(CV値)が15%以下であり、平均粒子径が0.8μm~50μmである異形単分散粒子が開示されている。上記異形単分散粒子では、アクリル系単量体に由来する重合体成分とエチレン性不飽和基を2つ以上有する単量体に由来する重合体成分との合計100質量%中、エチレン性不飽和基を2つ以上有する単量体に由来する重合体成分の含有量が、18質量%~89質量%である。下記の特許文献1の実施例では、上記異形単分散粒子の比表面積が2.0m/g~2.6m/gであることが記載されている。 As an example of the above-mentioned substrate particles, in Patent Document 1 below, the specific surface area is 2.0 m 2 / g, the amount of the eluted component with respect to toluene is 1% to 5%, and the coefficient of variation in particle diameter (CV value) Is disclosed in the form of irregular monodisperse particles having an average particle size of 0.8 μm to 50 μm. In the deformed monodisperse particles, ethylenically unsaturated in a total of 100% by mass of a polymer component derived from an acrylic monomer and a polymer component derived from a monomer having two or more ethylenically unsaturated groups. The content of the polymer component derived from the monomer having two or more groups is 18% by mass to 89% by mass. In Examples in Patent Document 1 below, specific surface area of the profiled monodisperse particles is described to be 2.0m 2 /g~2.6m 2 / g.
 下記の特許文献2には、単量体混合物の重合体から構成される多孔質樹脂粒子が開示されている。上記多孔質樹脂粒子では、上記単量体混合物100重量%中、(メタ)アクリル酸残基中にのみエチレン性不飽和基を有し、エーテル基及びエステル基の少なくとも一方と水酸基とをアルコール残基中に含むモノ(メタ)アクリル酸エステル系単量体の含有量は、3重量%~40重量%である。上記多孔質樹脂粒子では、上記単量体混合物100重量%中、エチレン性不飽和基を1個有する他の単官能ビニル系単量体の含有量は、10重量%~69重量%である。上記多孔質樹脂粒子では、上記単量体混合物100重量%中、エチレン性不飽和基を2個以上有する多官能ビニル系単量体の含有量は、30重量%~70重量%である。下記の特許文献2の実施例では、多孔質樹脂粒子の比表面積が4.9m/g~184.0m/gであることが記載されている。下記の特許文献2では、多孔質樹脂粒子の圧縮弾性率については一切記載されていない。下記の特許文献2では、多孔質樹脂粒子を、スペーサとして用いること、又は、導電性粒子を得るために用いることについては一切記載されていない。 Patent Document 2 below discloses porous resin particles composed of a monomer mixture polymer. The porous resin particles have an ethylenically unsaturated group only in a (meth) acrylic acid residue in 100% by weight of the monomer mixture, and at least one of an ether group and an ester group and a hydroxyl group are left as an alcohol residue. The content of the mono (meth) acrylic acid ester monomer contained in the group is 3% by weight to 40% by weight. In the porous resin particles, the content of another monofunctional vinyl monomer having one ethylenically unsaturated group is 10% by weight to 69% by weight in 100% by weight of the monomer mixture. In the porous resin particles, the content of the polyfunctional vinyl monomer having two or more ethylenically unsaturated groups in 100% by weight of the monomer mixture is 30% to 70% by weight. In Examples in Patent Document 2 below, the specific surface area of the porous resin particles have been described to be 4.9m 2 /g~184.0m 2 / g. In the following Patent Document 2, the compression elastic modulus of the porous resin particles is not described at all. Patent Document 2 below does not describe any use of the porous resin particles as spacers or to obtain conductive particles.
 また、液晶表示素子は、2枚のガラス基板間に液晶が配置されて構成されている。該液晶表示素子では、2枚のガラス基板の間隔(ギャップ)を均一かつ一定に保つために、ギャップ制御材としてスペーサが用いられている。該スペーサとして、基材粒子が一般に用いられている。 Further, the liquid crystal display element is configured by arranging liquid crystal between two glass substrates. In the liquid crystal display element, a spacer is used as a gap control material in order to keep the distance (gap) between two glass substrates uniform and constant. As the spacer, base material particles are generally used.
 上記スペーサの一例として、下記の特許文献3には、表面の全域に渡って凹凸形状を有する液晶表示素子用スペーサが開示されている。下記の特許文献3の実施例では、上記液晶表示素子用スペーサのBET比表面積が1.24m/g又は1.33m/gであることが記載されている。 As an example of the spacer, Patent Document 3 below discloses a spacer for a liquid crystal display element having a concavo-convex shape over the entire surface. In the Example of the following patent document 3, it is described that the BET specific surface area of the said spacer for liquid crystal display elements is 1.24 m < 2 > / g or 1.33 m < 2 > / g.
特開2010-168464号公報JP 2010-168464 A WO2013/114653A1WO2013 / 114653A1 特開2004-145128号公報JP 2004-145128 A
 近年、導電性粒子を含む導電材料や接続材料を用いて電極間を電気的に接続する際に、比較的低い圧力であっても、電極間を電気的に確実に接続し、接続抵抗を低くすることが望まれている。例えば、液晶表示装置の製造方法において、FOG工法におけるフレキシブル基板の実装時には、ガラス基板上に異方性導電材料を配置し、フレキシブル基板を積層し、熱圧着が行われている。近年、液晶パネルの狭額縁化やガラス基板の薄型化が進行している。この場合に、フレキシブル基板の実装時に、高い圧力及び高い温度で熱圧着を行うと、フレキシブル基板の実装に歪みが生じ、表示むらが発生することがある。従って、FOG工法におけるフレキシブル基板の実装時には、比較的低い圧力で熱圧着を行うことが望ましい。また、FOG工法以外でも、熱圧着時の圧力や温度を比較的低くすることが求められることがある。 In recent years, when electrically connecting electrodes using a conductive material containing conductive particles or a connection material, even when the pressure is relatively low, the electrodes are electrically connected reliably and the connection resistance is reduced. It is hoped to do. For example, in a method for manufacturing a liquid crystal display device, when a flexible substrate is mounted in the FOG method, an anisotropic conductive material is disposed on a glass substrate, the flexible substrate is laminated, and thermocompression bonding is performed. In recent years, narrowing of the frame of a liquid crystal panel and thinning of a glass substrate have progressed. In this case, when thermocompression bonding is performed at a high pressure and a high temperature during mounting of the flexible substrate, the mounting of the flexible substrate may be distorted and display unevenness may occur. Therefore, it is desirable to perform thermocompression bonding at a relatively low pressure when mounting a flexible substrate in the FOG method. In addition to the FOG method, it may be required to relatively reduce the pressure and temperature during thermocompression bonding.
 従来の基材粒子では、以下の第1の課題がある。 Conventional base particles have the following first problem.
 従来の基材粒子を導電性粒子として用いる場合には、比較的低い圧力で電極間を電気的に接続すると、接続抵抗が高くなることがある。この原因としては、導電性粒子が電極(被着体)に十分に接触しないことや、基材粒子と該基材粒子の表面上に配置された導電層との密着性が低く、導電層が剥離することが挙げられる。さらに、従来の導電性粒子を用いて電極間を電気的に接続する接続部を形成した場合に、該接続部に落下等による衝撃が加えられると、基材粒子の表面上に配置された導電層の剥離等によって、接続抵抗が高くなることがある。 When conventional base particles are used as conductive particles, the connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles are not sufficiently in contact with the electrode (adhered body), or the adhesion between the base particles and the conductive layer disposed on the surface of the base particles is low. Exfoliation. Furthermore, when a connection part that electrically connects the electrodes is formed using conventional conductive particles, if an impact due to dropping or the like is applied to the connection part, the conductive material disposed on the surface of the substrate particle The connection resistance may increase due to peeling of the layer or the like.
 また、従来の導電性粒子では、導電性粒子の粒子径がばらつくことがあり、導電性粒子が電極(被着体)に均一に接触せず、接続抵抗が高くなることがある。 Further, in the conventional conductive particles, the particle diameter of the conductive particles may vary, and the conductive particles may not uniformly contact the electrode (adhered body), and the connection resistance may increase.
 また、従来の基材粒子を液晶表示素子等に用いられるスペーサとして用いる場合には、液晶表示素子用部材等(被着体)を傷付けることがある。従来のスペーサでは、スペーサの粒子径がばらつくことがあり、スペーサが液晶表示素子用部材等(被着体)に均一に接触せず、十分なギャップ制御効果が得られないことがある。 Further, when conventional base particles are used as a spacer used in a liquid crystal display element or the like, the liquid crystal display element member or the like (adhered body) may be damaged. In the conventional spacer, the particle diameter of the spacer may vary, and the spacer may not uniformly contact the liquid crystal display element member (adhered body), and a sufficient gap control effect may not be obtained.
 上記の第1の課題に関して、本発明の目的は、被着体に均一に接触させることができる基材粒子を提供することである。また、上記の第1の課題に関して、本発明の目的は、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性及び耐衝撃性を効果的に高めることができ、接続抵抗を効果的に低くすることができ、さらに、接続信頼性を効果的に高めることができる基材粒子を提供することである。また、本発明の目的は、上記基材粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。 Regarding the above first problem, an object of the present invention is to provide base particles that can be brought into uniform contact with an adherend. In addition, regarding the first problem described above, the object of the present invention is to provide adhesion and impact resistance with a conductive layer when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface. It is to provide base particles that can effectively improve the connection property, can effectively reduce the connection resistance, and can effectively improve the connection reliability. Moreover, the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
 また、従来の基材粒子では、以下の第2の課題がある。 Further, the conventional base particles have the following second problem.
 従来の基材粒子を導電性粒子として用いる場合には、比較的低い圧力で電極間を電気的に接続すると、接続抵抗が高くなることがある。この原因としては、導電性粒子が電極(被着体)に十分に接触せず、導電性粒子が押し込まれて形成される凹部である圧痕が形成され難いことや、導電層及び電極の表面の酸化膜を十分に貫通できないことが挙げられる。また、従来の導電性粒子では、基材粒子と、該基材粒子の表面上に配置された導電層との密着性が低く、導電層が剥離することがあり、接続抵抗が高くなることがある。 When conventional base particles are used as conductive particles, the connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles do not sufficiently contact the electrode (adhered body), and it is difficult to form indentations that are concave portions formed by the conductive particles being pushed in, or the surface of the conductive layer and the electrode. It is mentioned that it cannot fully penetrate an oxide film. Further, in the conventional conductive particles, the adhesion between the base material particles and the conductive layer disposed on the surface of the base material particles is low, the conductive layer may be peeled off, and the connection resistance may be increased. is there.
 また、従来の導電性粒子では、上記圧痕とは異なる傷が電極(被着体)に形成され、接続抵抗が高くなることがある。 Further, in the conventional conductive particles, scratches different from the indentation are formed on the electrode (adhered body), and the connection resistance may be increased.
 また、従来の基材粒子を液晶表示素子等に用いられるスペーサとして用いる場合には、液晶表示素子用部材等(被着体)を傷付けることがある。従来のスペーサでは、十分なギャップ制御効果が得られないことがある。 Further, when conventional base particles are used as a spacer used in a liquid crystal display element or the like, the liquid crystal display element member or the like (adhered body) may be damaged. A conventional spacer may not provide a sufficient gap control effect.
 上記の第2の課題に関して、本発明の目的は、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性を効果的に高めることができ、接続抵抗を効果的に低くすることができ、さらに、接続信頼性を効果的に高めることができる基材粒子を提供することである。また、本発明の目的は、上記基材粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。 With respect to the second problem, the object of the present invention is to effectively prevent the adherend from being scratched, and to electrically connect the electrodes using conductive particles having a conductive layer formed on the surface. Provided is a base material particle that can effectively increase the adhesion to the conductive layer, can effectively lower the connection resistance, and can effectively increase the connection reliability when connected. It is to be. Moreover, the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
 また、従来の基材粒子では、以下の第3の課題がある。 Further, the conventional base particles have the following third problem.
 従来の基材粒子を導電性粒子として用いる場合には、比較的低い圧力で電極間を電気的に接続すると、接続抵抗が高くなることがある。この原因としては、導電性粒子が電極(被着体)に十分に接触せず、導電性粒子が押し込まれて形成される凹部である圧痕が形成され難いことや、導電層及び電極の表面の酸化膜を十分に貫通できないことが挙げられる。また、上記圧痕とは異なる傷が電極(被着体)に形成され、接続抵抗が高くなることがある。 When conventional base particles are used as conductive particles, the connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles do not sufficiently contact the electrode (adhered body), and it is difficult to form indentations that are concave portions formed by the conductive particles being pushed in, or the surface of the conductive layer and the electrode. It is mentioned that it cannot fully penetrate an oxide film. In addition, a flaw different from the indentation may be formed on the electrode (adhered body), resulting in high connection resistance.
 また、従来の基材粒子を液晶表示素子等に用いられるスペーサとして用いる場合には、液晶表示素子用部材等(被着体)を傷付けることがある。従来のスペーサでは、十分なギャップ制御効果が得られないことがある。 Further, when conventional base particles are used as a spacer used in a liquid crystal display element or the like, the liquid crystal display element member or the like (adhered body) may be damaged. A conventional spacer may not provide a sufficient gap control effect.
 上記の第3の課題に関して、本発明の目的は、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗を効果的に低くすることができ、かつ、接続信頼性を効果的に高めることができる基材粒子を提供することである。また、本発明の目的は、上記基材粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。 With regard to the third problem, the object of the present invention is to effectively suppress the damage to the adherend, and electrically connect the electrodes using conductive particles having a conductive layer formed on the surface. It is an object of the present invention to provide a base particle that can effectively reduce connection resistance and can effectively improve connection reliability when connected. Moreover, the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
 また、従来の基材粒子では、以下の第4の課題がある。 In addition, the conventional base particles have the following fourth problem.
 従来の基材粒子を導電性粒子として用いる場合には、比較的低い圧力で電極間を電気的に接続すると、接続抵抗が高くなることがある。この原因としては、導電性粒子が電極(被着体)に十分に接触しないことや、基材粒子と該基材粒子の表面上に配置された導電層との密着性が低く、導電層が剥離することが挙げられる。さらに、従来の導電性粒子を用いて電極間を電気的に接続する接続部を形成した場合に、該接続部に落下等による衝撃が加えられると、基材粒子の表面上に配置された導電層の剥離等によって、接続抵抗が高くなることがある。 When conventional base particles are used as conductive particles, the connection resistance may be increased if the electrodes are electrically connected at a relatively low pressure. This is because the conductive particles are not sufficiently in contact with the electrode (adhered body), or the adhesion between the base particles and the conductive layer disposed on the surface of the base particles is low. Exfoliation. Furthermore, when a connection part that electrically connects the electrodes is formed using conventional conductive particles, if an impact due to dropping or the like is applied to the connection part, the conductive material disposed on the surface of the substrate particle The connection resistance may increase due to peeling of the layer or the like.
 また、従来の導電性粒子では、接続時の圧力だけでなく、電極(被着体)の硬さ(材質)によって、導電性粒子が電極(被着体)に十分に接触せず、接続抵抗が高くなることがある。また、電極(被着体)表面に傷が形成され、接続抵抗が高くなることがある。 In addition, with conventional conductive particles, the conductive particles do not sufficiently contact the electrode (adhered body) due to the hardness (material) of the electrode (adhered body) as well as the pressure at the time of connection. May be higher. In addition, scratches may be formed on the surface of the electrode (adhered body), and the connection resistance may increase.
 また、従来の基材粒子を液晶表示素子等に用いられるスペーサとして用いる場合には、液晶表示素子用部材等(被着体)を傷付けることがある。従来のスペーサでは、液晶表示素子用部材等(被着体)に十分に接触せず、十分なギャップ制御効果が得られないことがある。 Further, when conventional base particles are used as a spacer used in a liquid crystal display element or the like, the liquid crystal display element member or the like (adhered body) may be damaged. In the conventional spacer, the liquid crystal display element member or the like (adhered body) is not sufficiently contacted, and a sufficient gap control effect may not be obtained.
 上記の第4の課題に関して、本発明の目的は、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性を効果的に高めることができ、耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる基材粒子を提供することである。また、本発明の目的は、上記基材粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。 With respect to the fourth problem, the object of the present invention is to effectively prevent the adherend from being scratched, and to electrically connect the electrodes using conductive particles having a conductive layer formed on the surface. Provided is a base particle that can effectively increase the adhesion to the conductive layer, can effectively increase the impact resistance, and can effectively reduce the connection resistance when connected. It is to be. Moreover, the objective of this invention is providing the electroconductive particle using the said base material particle, an electroconductive material, and a connection structure.
 本願明細書は、上記の第1の課題、上記の第2の課題、上記の第3の課題及び上記の第4の課題をそれぞれ解決することできる基材粒子(少なくとも4種類の基材粒子)を提供する。 In the present specification, base particles (at least four kinds of base particles) that can solve the first problem, the second problem, the third problem, and the fourth problem, respectively. I will provide a.
 本発明の広い局面によれば、スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる基材粒子であり、BET比表面積が、5m/g以上であり、粒子径のCV値が、10%以下である、基材粒子が提供される。 According to a wide aspect of the present invention, the base particles are used for obtaining conductive particles having the conductive layer by being used as a spacer or by forming a conductive layer on the surface, and BET A substrate particle having a specific surface area of 5 m 2 / g or more and a CV value of the particle diameter of 10% or less is provided.
 本発明に係る基材粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が、1N/mm以上3500N/mm以下である。 In a specific aspect of the base particles according to the present invention, the compression elastic modulus of when compressed 10% is 1N / mm 2 or more 3500 N / mm 2 or less.
 本発明に係る基材粒子のある特定の局面では、30%圧縮したときの圧縮弾性率が、1N/mm以上3000N/mm以下である。 In a specific aspect of the base particle according to the present invention, the compression elastic modulus when compressed by 30% is 1 N / mm 2 or more and 3000 N / mm 2 or less.
 本発明に係る基材粒子のある特定の局面では、圧縮回復率が、5%以上60%以下である。 In a specific aspect of the base particle according to the present invention, the compression recovery rate is 5% or more and 60% or less.
 本発明の広い局面によれば、BET比表面積が、300m/g以上600m/g未満であり、10%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である、基材粒子が提供される。 According to a wide aspect of the present invention, the BET specific surface area is 300 m 2 / g or more and less than 600 m 2 / g, and the compression elastic modulus when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less. A substrate particle is provided.
 本発明に係る基材粒子のある特定の局面では、30%圧縮したときの圧縮弾性率が、100N/mm以上2500N/mm以下である。 In a specific aspect of the base particles according to the present invention, the compression elastic modulus upon compression of 30%, is 100 N / mm 2 or more 2500N / mm 2 or less.
 本発明に係る基材粒子のある特定の局面では、圧縮回復率が、5%以上60%以下である。 In a specific aspect of the base particle according to the present invention, the compression recovery rate is 5% or more and 60% or less.
 本発明に係る基材粒子のある特定の局面では、粒子径のCV値が、10%以下である。 In a specific aspect of the base particle according to the present invention, the CV value of the particle diameter is 10% or less.
 本発明に係る基材粒子のある特定の局面では、前記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる。 On the specific situation with the base particle which concerns on this invention, the said base particle is used as a spacer, or the electroconductive layer which forms the conductive layer on the surface is obtained, and the electroconductive particle which has the said electroconductive layer is obtained. Used for.
 本発明の広い局面によれば、BET比表面積が、5m/g以上300m/g未満であり、30%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である、基材粒子が提供される。 According to a wide aspect of the present invention, the BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g, and the compression elastic modulus when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less. A substrate particle is provided.
 本発明に係る基材粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が、100N/mm以上3500N/mm以下である。 In a specific aspect of the base particles according to the present invention, the compression elastic modulus of when compressed 10%, it is 100 N / mm 2 or more 3500 N / mm 2 or less.
 本発明に係る基材粒子のある特定の局面では、圧縮回復率が、5%以上60%以下である。 In a specific aspect of the base particle according to the present invention, the compression recovery rate is 5% or more and 60% or less.
 本発明に係る基材粒子のある特定の局面では、粒子径のCV値が、10%以下である。 In a specific aspect of the base particle according to the present invention, the CV value of the particle diameter is 10% or less.
 本発明に係る基材粒子のある特定の局面では、前記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる。 On the specific situation with the base particle which concerns on this invention, the said base particle is used as a spacer, or the electroconductive layer which forms the conductive layer on the surface is obtained, and the electroconductive particle which has the said electroconductive layer is obtained. Used for.
 本発明の広い局面によれば、BET比表面積が、600m/g以上であり、10%圧縮したときの圧縮弾性率が、1200N/mm以下であり、30%圧縮したときの圧縮弾性率が、1200N/mm以下であり、圧縮回復率が、5%以上である、基材粒子が提供される。 According to a wide aspect of the present invention, the BET specific surface area is 600 m 2 / g or more, the compression modulus when compressed by 10% is 1200 N / mm 2 or less, and the compression modulus when compressed by 30%. However, it is 1200 N / mm < 2 > or less, and the base material particle | grains whose compression recovery rate is 5% or more are provided.
 本発明に係る基材粒子のある特定の局面では、粒子径のCV値が、10%以下である。 In a specific aspect of the base particle according to the present invention, the CV value of the particle diameter is 10% or less.
 本発明に係る基材粒子のある特定の局面では、前記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる。 On the specific situation with the base particle which concerns on this invention, the said base particle is used as a spacer, or the electroconductive layer which forms the conductive layer on the surface is obtained, and the electroconductive particle which has the said electroconductive layer is obtained. Used for.
 本発明に係る基材粒子のある特定の局面では、密度が、1g/cm以上1.4g/cm以下である。 In a specific aspect of the base particles according to the present invention, density is 1 g / cm 3 or more 1.4 g / cm 3 or less.
 本発明に係る基材粒子のある特定の局面では、全細孔容積が、0.01cm/g以上3cm/g以下である。 In a specific aspect of the base particle according to the present invention, the total pore volume is 0.01 cm 3 / g or more and 3 cm 3 / g or less.
 本発明に係る基材粒子のある特定の局面では、平均細孔径が、10nm以下である。 In a specific aspect of the base particle according to the present invention, the average pore diameter is 10 nm or less.
 本発明に係る基材粒子のある特定の局面では、平均粒子径が、0.1μm以上100μm以下である。 In a specific aspect of the base particle according to the present invention, the average particle size is 0.1 μm or more and 100 μm or less.
 本発明の広い局面によれば、上述した基材粒子と、前記基材粒子の表面上に配置された導電層とを備える、導電性粒子が提供される。 According to a broad aspect of the present invention, there is provided a conductive particle comprising the above-described base particle and a conductive layer disposed on the surface of the base particle.
 本発明に係る導電性粒子のある特定の局面では、前記導電層の外表面上に配置された絶縁性物質をさらに備える。 In a specific aspect of the conductive particle according to the present invention, the conductive particle further includes an insulating material disposed on the outer surface of the conductive layer.
 本発明に係る導電性粒子のある特定の局面では、前記導電層の外表面に突起を有する。 In a specific aspect of the conductive particle according to the present invention, the conductive layer has a protrusion on the outer surface.
 本発明の広い局面によれば、導電性粒子と、バインダー樹脂とを含み、前記導電性粒子が、上述した基材粒子と、前記基材粒子の表面上に配置された導電層とを備える、導電材料が提供される。 According to a wide aspect of the present invention, the conductive particles include conductive particles and a binder resin, and the conductive particles include the base material particles described above and a conductive layer disposed on the surface of the base material particles. A conductive material is provided.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した基材粒子と、前記基材粒子の表面上に配置された導電層とを備え、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connection portion connecting the second connection target member, and the connection portion is formed of conductive particles or formed of a conductive material including the conductive particles and a binder resin. The conductive particles include the base material particles described above and a conductive layer disposed on the surface of the base material particles, and the first electrode and the second electrode are electrically connected by the conductive particles. A connection structure is provided which is connected in a connected manner.
 本発明に係る基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。本発明に係る基材粒子では、BET比表面積が、5m/g以上である。本発明に係る基材粒子では、粒子径のCV値が、10%以下である。本発明に係る基材粒子では、上記の構成が備えられているので、被着体に均一に接触させることができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性及び耐衝撃性を効果的に高めることができ、接続抵抗を効果的に低くすることができ、さらに、接続信頼性を効果的に高めることができる。 The substrate particles according to the present invention are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. In the base particle according to the present invention, the BET specific surface area is 5 m 2 / g or more. In the base particle according to the present invention, the CV value of the particle diameter is 10% or less. Since the base particle according to the present invention has the above-described configuration, it can be brought into uniform contact with the adherend, and the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface. Can be effectively improved in adhesion and impact resistance with the conductive layer, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
 本発明に係る基材粒子では、BET比表面積が、300m/g以上600m/g未満である。本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である。本発明に係る基材粒子では、上記の構成が備えられているので、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性を効果的に高めることができ、接続抵抗を効果的に低くすることができ、さらに、接続信頼性を効果的に高めることができる。 The base particles according to the present invention, BET specific surface area is less than 300 meters 2 / g or more 600m 2 / g. In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less. Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When the gaps are electrically connected, the adhesion with the conductive layer can be effectively increased, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
 本発明に係る基材粒子では、BET比表面積が、5m/g以上300m/g未満である。本発明に係る基材粒子では、30%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である。本発明に係る基材粒子では、上記の構成が備えられているので、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗を効果的に低くすることができ、かつ、接続信頼性を効果的に高めることができる。 The base particles according to the present invention, BET specific surface area is less than 5 m 2 / g or more 300m 2 / g. In the base particle according to the present invention, the compression elastic modulus when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less. Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When they are electrically connected, the connection resistance can be effectively reduced and the connection reliability can be effectively increased.
 本発明に係る基材粒子では、BET比表面積が、600m/g以上である。本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率が、1200N/mm以下である。本発明に係る基材粒子では、30%圧縮したときの圧縮弾性率が、1200N/mm以下である。本発明に係る基材粒子では、圧縮回復率が、5%以上である。本発明に係る基材粒子では、上記の構成が備えられているので、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性を効果的に高めることができ、耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる。 In the base particle according to the present invention, the BET specific surface area is 600 m 2 / g or more. In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less. In the base particle according to the present invention, the compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less. In the base particle according to the present invention, the compression recovery rate is 5% or more. Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When the gaps are electrically connected, the adhesion with the conductive layer can be effectively increased, the impact resistance can be effectively increased, and the connection resistance can be effectively reduced. .
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention. 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention. 図5は、本発明に係る基材粒子を液晶表示素子用スペーサとして用いた液晶表示素子の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a liquid crystal display element using the substrate particles according to the present invention as a spacer for a liquid crystal display element.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (基材粒子)
 本発明では、以下の基材粒子1~基材粒子4を開示する。
(Base particle)
In the present invention, the following substrate particles 1 to 4 are disclosed.
 基材粒子1:
 本発明に係る基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。本発明に係る基材粒子では、BET比表面積が、5m/g以上である。本発明に係る基材粒子では、粒子径のCV値が、10%以下である。
Base particle 1:
The substrate particles according to the present invention are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. In the base particle according to the present invention, the BET specific surface area is 5 m 2 / g or more. In the base particle according to the present invention, the CV value of the particle diameter is 10% or less.
 本発明に係る基材粒子では、上記の構成が備えられているので、被着体に均一に接触させることができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性及び耐衝撃性を効果的に高めることができ、接続抵抗を効果的に低くすることができ、さらに、接続信頼性を効果的に高めることができる。 Since the base particle according to the present invention has the above-described configuration, it can be brought into uniform contact with the adherend, and the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface. Can be effectively improved in adhesion and impact resistance with the conductive layer, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
 本発明に係る基材粒子では、適度なBET比表面積を有するため、基材粒子の表面上に導電層を形成する際に、基材粒子の表面の微細な空隙に導電層が入り込み、基材粒子と導電層との密着性を効果的に高めることができ、導電層の剥離を効果的に防止することができる。さらに、本発明に係る基材粒子の表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続する接続部を形成する場合には、該接続部に落下等による衝撃が加えられても、導電層の剥離が効果的に防止され、電極間の接続抵抗を効果的に低くすることができる。本発明に係る基材粒子を用いた導電性粒子では、耐衝撃性を効果的に高めることができる。また、本発明に係る基材粒子では、粒子径のCV値が比較的小さく、導電性粒子の粒子径のばらつきを効果的に抑制することができ、導電性粒子を電極に均一に接触させることができる。結果として、電極間の接続抵抗を効果的に低くすることができ、かつ電極間の接続信頼性を効果的に高めることができる。例えば、導電性粒子により電極間が電気的に接続された接続構造体を高温及び高湿条件下で長時間放置しても、接続抵抗がより一層高くなり難く、導通不良がより一層生じ難くなる。 Since the base particle according to the present invention has an appropriate BET specific surface area, when the conductive layer is formed on the surface of the base particle, the conductive layer enters the fine voids on the surface of the base particle, The adhesion between the particles and the conductive layer can be effectively increased, and peeling of the conductive layer can be effectively prevented. Furthermore, when forming a connection part for electrically connecting the electrodes using conductive particles having a conductive layer formed on the surface of the base material particle according to the present invention, the connection part is subjected to an impact due to dropping or the like. Even if added, peeling of the conductive layer is effectively prevented, and the connection resistance between the electrodes can be effectively lowered. In the electroconductive particle using the base particle which concerns on this invention, impact resistance can be improved effectively. Moreover, in the base particle according to the present invention, the CV value of the particle diameter is relatively small, variation in the particle diameter of the conductive particles can be effectively suppressed, and the conductive particles are uniformly contacted with the electrode. Can do. As a result, the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively increased. For example, even when a connection structure in which electrodes are electrically connected by conductive particles is left for a long time under high temperature and high humidity conditions, the connection resistance is less likely to be further increased, and poor conduction is less likely to occur. .
 また、本発明に係る基材粒子を液晶表示素子用スペーサとして用いた場合には、液晶表示素子用部材等の傷付きを効果的に抑制することができる。また、本発明に係る基材粒子では、粒子径のCV値が比較的小さく、スペーサの粒子径のばらつきを効果的に抑制することができ、スペーサを液晶表示素子用部材等に均一に接触させることができる。このため、十分なギャップ制御効果を得ることができる。結果として、液晶表示素子の表示品質をより一層良好にすることができる。 In addition, when the substrate particles according to the present invention are used as a spacer for a liquid crystal display element, it is possible to effectively suppress damage to the liquid crystal display element member or the like. Moreover, in the base particle according to the present invention, the CV value of the particle diameter is relatively small, and the dispersion of the particle diameter of the spacer can be effectively suppressed, and the spacer is uniformly contacted with the liquid crystal display element member or the like. be able to. For this reason, a sufficient gap control effect can be obtained. As a result, the display quality of the liquid crystal display element can be further improved.
 本発明に係る基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。本発明に係る基材粒子は、スペーサとして用いられてもよい。本発明に係る基材粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられてもよい。本発明に係る基材粒子は、スペーサ用基材粒子であることが好ましい。本発明に係る基材粒子は、導電性粒子用基材粒子であることが好ましい。 The base particles according to the present invention are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The base particle according to the present invention may be used as a spacer. The base particles according to the present invention may be used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The substrate particles according to the present invention are preferably spacer substrate particles. The base particles according to the present invention are preferably base particles for conductive particles.
 本発明に係る基材粒子では、BET比表面積は、5m/g以上である。上記基材粒子のBET比表面積は、好ましくは8m/g以上、より好ましくは12m/g以上であり、好ましくは1200m/g以下、より好ましくは1000m/g以下、さらに好ましくは700m/g以下である。上記BET比表面積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性及び耐衝撃性をより一層効果的に高めることができ、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the BET specific surface area is 5 m 2 / g or more. The BET specific surface area of the substrate particles is preferably 8 m 2 / g or more, more preferably 12 m 2 / g or more, preferably 1200 m 2 / g or less, more preferably 1000 m 2 / g or less, and still more preferably 700 m. 2 / g or less. When the BET specific surface area is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion and resistance to the conductive layer are improved. The impact property can be increased more effectively, the connection resistance can be further reduced more effectively, and the connection reliability can be further improved more effectively.
 上記BET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。上記BET比表面積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。また、測定時の条件は、サンプル量:0.5g、アウトガスの種類:窒素、アウトガスの温度:28℃、アウトガス時間:3時間、及びバス温度:273K(0℃)であることが好ましい。 The BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method. Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd. The measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
 上記基材粒子の密度は、好ましくは1g/cm以上、より好ましくは1.1g/cm以上であり、好ましくは1.4g/cm以下、より好ましくは1.3g/cm以下である。上記密度が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there. When the density is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further effectively reduced. And the connection reliability can be further effectively improved.
 上記基材粒子の密度は、比重瓶法密度測定装置を用いて測定することができる。上記比重瓶法密度測定装置としては、島津製作所社製「Accupyc 1330」等が挙げられる。また、測定時の条件は、サンプル量:1g、及び測定温度:28℃であることが好ましい。 The density of the substrate particles can be measured using a density bottle method density measuring device. Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation. The measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
 上記基材粒子の全細孔容積は、好ましくは0.01cm/g以上、より好ましくは0.05cm/g以上であり、好ましくは3cm/g以下、より好ましくは1.5cm/g以下である。上記全細孔容積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性及び耐衝撃性をより一層効果的に高めることができ、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less. When the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion with the conductive layer and The impact resistance can be increased more effectively, the connection resistance can be lowered more effectively, and the connection reliability can be further improved more effectively.
 上記全細孔容積は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記全細孔容積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記基材粒子の平均細孔径は、好ましくは10nm以下、より好ましくは5nm以下である。上記基材粒子の平均細孔径の下限は特に限定されない。上記基材粒子の平均細孔径は、1nm以上であってもよい。上記平均細孔径が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性及び耐衝撃性をより一層効果的に高めることができ、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 The average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less. The lower limit of the average pore diameter of the substrate particles is not particularly limited. The average pore diameter of the substrate particles may be 1 nm or more. When the average pore diameter is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion and resistance to the conductive layer are improved. The impact property can be increased more effectively, the connection resistance can be further reduced more effectively, and the connection reliability can be further improved more effectively.
 上記平均細孔径は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記平均細孔径の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記BET比表面積、上記全細孔容積、及び上記平均細孔径の好ましい範囲を満足する基材粒子は、例えば、下記の工程を備える基材粒子の製造方法により得ることができる。重合性モノマーと、上記重合性モノマーとは反応しない有機溶剤とを混合し、重合性モノマー溶液を調整する工程。上記重合性モノマー溶液と、アニオン性分散安定剤とを極性溶媒に添加して乳化させて乳化液を得る工程。上記乳化液を数回に分けて添加し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得る工程。上記重合性モノマーを重合させて基材粒子を得る工程。上記重合性モノマーとしては、例えば、単官能性モノマー、及び多官能性モノマー等が挙げられる。上記重合性モノマーとは反応しない有機溶剤は、重合系の媒体である水等の極性溶媒と相溶しないものであれば、特に限定されない。上記有機溶剤としては、例えば、シクロヘキサン、トルエン、キシレン、酢酸エチル、酢酸ブチル、酢酸アリル、酢酸プロピル、クロロホルム、メチルシクロヘキサン、メチルエチルケトン等が挙げられる。上記有機溶剤の添加量は、上記重合性モノマー成分100重量部に対して、1重量部~215重量部であることが好ましく、5重量部~210重量部であることがより好ましい。上記有機溶剤の添加量が、上記の好ましい範囲であると、BET比表面積をより一層好適な範囲に制御することができ、粒子内部で緻密な細孔が得られやすくなる。特に重合性モノマーのSP値が8.0~10.0であり、かつ、有機溶剤のSP値が8.0~11.0である組み合わせの場合に、上記BET比表面積、上記全細孔容積、及び上記平均細孔径をさらにより一層効果的に好適な範囲に制御することができる。 The base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps. A step of preparing a polymerizable monomer solution by mixing a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer. A step of adding the polymerizable monomer solution and the anionic dispersion stabilizer to a polar solvent and emulsifying them to obtain an emulsion. The step of adding the emulsion in several portions and allowing the seed particles to absorb the monomer to obtain a suspension containing seed particles in which the monomer is swollen. A step of polymerizing the polymerizable monomer to obtain base particles. As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example. The organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like. The amount of the organic solvent added is preferably 1 part by weight to 215 parts by weight and more preferably 5 parts by weight to 210 parts by weight with respect to 100 parts by weight of the polymerizable monomer component. When the addition amount of the organic solvent is within the above preferable range, the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles. In particular, in the case of a combination in which the SP value of the polymerizable monomer is 8.0 to 10.0 and the SP value of the organic solvent is 8.0 to 11.0, the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
 上記基材粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは1N/mm以上、より好ましくは100N/mm以上であり、好ましくは3500N/mm以下、より好ましくは3000N/mm以下である。上記10%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 Compression modulus when the base particle is compressed 10% (10% K value) is preferably 1N / mm 2 or more, more preferably 100 N / mm 2 or more, preferably 3500 N / mm 2 or less, more Preferably it is 3000 N / mm 2 or less. When the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. In addition, the connection reliability can be further effectively improved.
 上記基材粒子を30%圧縮したときの圧縮弾性率(30%K値)は、好ましくは1N/mm以上、より好ましくは100N/mm以上であり、好ましくは3000N/mm以下、より好ましくは2800N/mm以下である。上記30%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 The compression elastic modulus (30% K value) when the substrate particles are compressed by 30% is preferably 1 N / mm 2 or more, more preferably 100 N / mm 2 or more, and preferably 3000 N / mm 2 or less. Preferably it is 2800 N / mm 2 or less. When the 30% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. In addition, the connection reliability can be further effectively improved.
 上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。 The compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で基材粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値及び30%K値)を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、任意に選択された50個の基材粒子の上記圧縮弾性率(10%K値及び30%K値)を算術平均することにより、算出することが好ましい。 Using a micro-compression tester, one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 μm, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. . The load value (N) and compression displacement (mm) at this time are measured. From the measured values obtained, the compression modulus (10% K value and 30% K value) can be determined by the following equation. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used. The compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
 10%K値又は30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:基材粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:基材粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:基材粒子の半径(mm)
10% K value or 30% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the base particle is 10% or 30% compressively deformed
S: Compression displacement (mm) when the substrate particles are 10% or 30% compressively deformed
R: radius of base particle (mm)
 上記圧縮弾性率は、基材粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、基材粒子の硬さを定量的かつ一義的に表すことができる。 The above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively. By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
 上記基材粒子の圧縮回復率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは60%以下、より好ましくは50%以下である。上記圧縮回復率が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The compression recovery rate of the substrate particles is preferably 5% or more, more preferably 7% or more, preferably 60% or less, more preferably 50% or less. When the compression recovery rate is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effectively achieved. In addition, the connection reliability can be increased more effectively.
 上記基材粒子の圧縮回復率は、以下のようにして測定できる。 The compression recovery rate of the substrate particles can be measured as follows.
 試料台上に基材粒子を散布する。散布された基材粒子1個について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、基材粒子の中心方向に、基材粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 ¡Spread base particles on the sample stage. With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [L2 / L1] × 100
L1: Compressive displacement from the origin load value to the reverse load value when applying a load L2: Unloading displacement from the reverse load value to the origin load value when releasing the load
 上記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。上記導電性粒子において、上記導電層は、上記基材粒子の表面上に形成される。上記基材粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記基材粒子は、スペーサとして用いられることが好ましい。上記スペーサの使用方法としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、及び応力緩和用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップのギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。 The base particles are used as spacers, or are used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. In the conductive particle, the conductive layer is formed on the surface of the substrate particle. The substrate particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer. The above spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used. The stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
 上記基材粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記基材粒子は、スペーサとして機能することが好ましい。上記基材粒子は、良好な圧縮変形特性を有するので、上記基材粒子をスペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記基材粒子では、液晶表示素子用部材等に均一に接触させることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体において、接続不良及び表示不良が生じ難くなる。 The base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element. In the peripheral sealing agent for a liquid crystal display element, the base material particles preferably function as a spacer. Since the base material particles have good compressive deformation characteristics, the base material particles are used as spacers to be arranged between the substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect the electrodes. Or the like, the spacers or conductive particles are efficiently disposed between the substrates or the electrodes. Furthermore, since the substrate particles can be uniformly contacted with a liquid crystal display element member or the like, in the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles, Defects and display defects are less likely to occur.
 本発明に係る基材粒子では、上記基材粒子の粒子径のCV値(変動係数)は、10%以下である。上記CV値は、好ましくは7%以下、より好ましくは5%以下である。上記CV値が、上記上限以下であると、基材粒子を被着体により一層均一に接触させることができ、基材粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。また、上記CV値は基材粒子の分級によって調整することができる。 In the base particles according to the present invention, the CV value (coefficient of variation) of the particle diameter of the base particles is 10% or less. The CV value is preferably 7% or less, more preferably 5% or less. When the CV value is less than or equal to the above upper limit, the base particles can be more uniformly brought into contact with the adherend, and the base particles can be used more suitably depending on the use of the conductive particles and spacers. The CV value can be adjusted by classification of the base particles.
 上記CV値は、下記式で表される。 The CV value is represented by the following formula.
 CV値(%)=(ρ/Dn)×100
 ρ:基材粒子の粒子径の標準偏差
 Dn:基材粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
 基材粒子2:
 本発明に係る基材粒子では、BET比表面積が、300m/g以上600m/g未満である。本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である。
Base particle 2:
The base particles according to the present invention, BET specific surface area is less than 300 meters 2 / g or more 600m 2 / g. In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
 本発明に係る基材粒子では、上記の構成が備えられているので、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性を効果的に高めることができ、接続抵抗を効果的に低くすることができ、さらに、接続信頼性を効果的に高めることができる。 Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When the gaps are electrically connected, the adhesion with the conductive layer can be effectively increased, the connection resistance can be effectively reduced, and the connection reliability can be effectively increased. .
 本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率(10%K値)が比較的高く、圧縮初期の硬さが比較的高い。このため、基材粒子の表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続する場合に、圧縮初期に発現する基材粒子の硬さにより導電層又は電極の表面の酸化膜を十分に貫通させることができる。また、本発明に係る基材粒子では、適度なBET比表面積を有し、ある程度圧縮された段階(圧縮中期)では、基材粒子の硬さが比較的低下し易い。このため、電極に傷が形成されることを防止することができる。さらに、本発明に係る基材粒子では、適度なBET比表面積を有するため、基材粒子の表面上に導電層を形成する際に、基材粒子の表面の微細な空隙に導電層が入り込み、基材粒子と導電層との密着性を効果的に高めることができ、導電層の剥離を効果的に防止することができる。結果として、電極間の接続抵抗を効果的に低くすることができ、かつ電極間の接続信頼性を効果的に高めることができる。例えば、導電性粒子により電極間が電気的に接続された接続構造体を高温及び高湿条件下で長時間放置しても、接続抵抗がより一層高くなり難く、導通不良がより一層生じ難くなる。 The base particles according to the present invention have a relatively high compression modulus (10% K value) when compressed by 10%, and a relatively high hardness in the initial stage of compression. For this reason, when the electrodes are electrically connected using conductive particles in which a conductive layer is formed on the surface of the base particles, the surface of the conductive layer or the electrodes depends on the hardness of the base particles that appear in the initial stage of compression. This oxide film can be sufficiently penetrated. In addition, the substrate particles according to the present invention have an appropriate BET specific surface area, and the hardness of the substrate particles tends to be relatively lowered at a stage where compression is performed to some extent (mid-compression stage). For this reason, it can prevent that a damage | wound is formed in an electrode. Furthermore, since the base particle according to the present invention has an appropriate BET specific surface area, when the conductive layer is formed on the surface of the base particle, the conductive layer enters the fine voids on the surface of the base particle, The adhesion between the base particles and the conductive layer can be effectively increased, and the peeling of the conductive layer can be effectively prevented. As a result, the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively increased. For example, even when a connection structure in which electrodes are electrically connected by conductive particles is left for a long time under high temperature and high humidity conditions, the connection resistance is less likely to be further increased, and poor conduction is less likely to occur. .
 また、本発明に係る基材粒子を液晶表示素子用スペーサとして用いた場合には、液晶表示素子用部材等の傷付きを効果的に抑制することができ、十分なギャップ制御効果を得ることができる。結果として、液晶表示素子の表示品質をより一層良好にすることができる。 In addition, when the substrate particle according to the present invention is used as a spacer for a liquid crystal display element, it is possible to effectively suppress scratches on the liquid crystal display element member and the like, and to obtain a sufficient gap control effect. it can. As a result, the display quality of the liquid crystal display element can be further improved.
 本発明に係る基材粒子では、BET比表面積は、300m/g以上600m/g未満である。上記基材粒子のBET比表面積は、好ましくは320m/g以上、より好ましく340m/g以上であり、好ましくは580m/g以下、より好ましくは560m/g以下である。上記BET比表面積が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記BET比表面積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性をより一層効果的に高めることができ、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the BET specific surface area is 300 m 2 / g or more and less than 600 m 2 / g. The BET specific surface area of the substrate particles is preferably 320 m 2 / g or more, more preferably 340 m 2 / g or more, preferably 580 m 2 / g or less, more preferably 560 m 2 / g or less. When the BET specific surface area is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the BET specific surface area is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion to the conductive layer is improved. The connection resistance can be further reduced effectively, and the connection reliability can be further improved more effectively.
 上記BET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。上記BET比表面積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。また、測定時の条件は、サンプル量:0.5g、アウトガスの種類:窒素、アウトガスの温度:28℃、アウトガス時間:3時間、及びバス温度:273K(0℃)であることが好ましい。 The BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method. Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd. The measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
 上記基材粒子の密度は、好ましくは1g/cm以上、より好ましくは1.1g/cm以上であり、好ましくは1.4g/cm以下、より好ましくは1.3g/cm以下である。上記密度が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記密度が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there. When the density is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. In addition, when the density is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effectively achieved. In addition, the connection reliability can be increased more effectively.
 上記基材粒子の密度は、比重瓶法密度測定装置を用いて測定することができる。上記比重瓶法密度測定装置としては、島津製作所社製「Accupyc 1330」等が挙げられる。また、測定時の条件は、サンプル量:1g、及び測定温度:28℃であることが好ましい。 The density of the substrate particles can be measured using a density bottle method density measuring device. Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation. The measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
 上記基材粒子の全細孔容積は、好ましくは0.01cm/g以上、より好ましくは0.05cm/g以上であり、好ましくは3cm/g以下、より好ましくは1.5cm/g以下である。上記全細孔容積が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記全細孔容積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性をより一層効果的に高めることができ、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less. When the total pore volume is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. In addition, when the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the total pore volume is in close contact with the conductive layer. The connection resistance can be further effectively reduced, and the connection reliability can be further effectively improved.
 上記全細孔容積は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記全細孔容積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記基材粒子の平均細孔径は、好ましくは10nm以下、より好ましくは5nm以下である。上記基材粒子の平均細孔径の下限は特に限定されない。上記基材粒子の平均細孔径は、1nm以上であってもよい。上記平均細孔径が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記平均細孔径が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性をより一層効果的に高めることができ、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 The average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less. The lower limit of the average pore diameter of the substrate particles is not particularly limited. The average pore diameter of the substrate particles may be 1 nm or more. When the average pore diameter is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress damage to the adherend. Further, when the average pore diameter is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion with the conductive layer is improved. The connection resistance can be further reduced effectively, and the connection reliability can be further improved more effectively.
 上記平均細孔径は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記平均細孔径の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記BET比表面積、上記全細孔容積、及び上記平均細孔径の好ましい範囲を満足する基材粒子は、例えば、下記の工程を備える基材粒子の製造方法により得ることができる。重合性モノマーと、上記重合性モノマーとは反応しない有機溶剤とを混合し、重合性モノマー溶液を調整する工程。上記重合性モノマー溶液と、アニオン性分散安定剤とを極性溶媒に添加して乳化させて乳化液を得る工程。上記乳化液を数回に分けて添加し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得る工程。上記重合性モノマーを重合させて基材粒子を得る工程。上記重合性モノマーとしては、例えば、単官能性モノマー、及び多官能性モノマー等が挙げられる。上記重合性モノマーとは反応しない有機溶剤は、重合系の媒体である水等の極性溶媒と相溶しないものであれば、特に限定されない。上記有機溶剤としては、例えば、シクロヘキサン、トルエン、キシレン、酢酸エチル、酢酸ブチル、酢酸アリル、酢酸プロピル、クロロホルム、メチルシクロヘキサン、メチルエチルケトン等が挙げられる。上記有機溶剤の添加量は、上記重合性モノマー成分100重量部に対して、55重量部~100重量部であることが好ましく、60重量部~95重量部であることがより好ましい。上記有機溶剤の添加量が、上記の好ましい範囲であると、BET比表面積をより一層好適な範囲に制御することができ、粒子内部で緻密な細孔が得られやすくなる。特に重合性モノマーのSP値が8.0~10.0であり、かつ、有機溶剤のSP値が8.0~11.0である組み合わせの場合に、上記BET比表面積、上記全細孔容積、及び上記平均細孔径をさらにより一層効果的に好適な範囲に制御することができる。 The base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps. A step of preparing a polymerizable monomer solution by mixing a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer. A step of adding the polymerizable monomer solution and the anionic dispersion stabilizer to a polar solvent and emulsifying them to obtain an emulsion. The step of adding the emulsion in several portions and allowing the seed particles to absorb the monomer to obtain a suspension containing seed particles in which the monomer is swollen. A step of polymerizing the polymerizable monomer to obtain base particles. As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example. The organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like. The addition amount of the organic solvent is preferably 55 parts by weight to 100 parts by weight, and more preferably 60 parts by weight to 95 parts by weight with respect to 100 parts by weight of the polymerizable monomer component. When the addition amount of the organic solvent is within the above preferable range, the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles. In particular, in the case of a combination in which the SP value of the polymerizable monomer is 8.0 to 10.0 and the SP value of the organic solvent is 8.0 to 11.0, the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
 本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率(10%K値)は、100N/mm以上3000N/mm以下である。上記基材粒子の10%K値は、好ましくは120N/mm以上、より好ましくは140N/mm以上であり、好ましくは2800N/mm以下、より好ましくは2600N/mm以下である。上記10%K値が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記10%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the compression elastic modulus (10% K value) when compressed by 10% is 100 N / mm 2 or more and 3000 N / mm 2 or less. 10% K value of the base particles is preferably 120 N / mm 2 or more, more preferably 140 N / mm 2 or more, preferably 2800N / mm 2 or less, and more preferably not more than 2600N / mm 2. When the 10% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
 上記基材粒子を30%圧縮したときの圧縮弾性率(30%K値)は、好ましくは100N/mm以上、より好ましくは120N/mm以上であり、好ましくは2500N/mm以下、より好ましくは2300N/mm以下である。上記30%K値が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記30%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 The compression modulus of the base material particles when the compressed 30% (30% K value) is preferably 100 N / mm 2 or more, more preferably 120 N / mm 2 or more, preferably 2500N / mm 2 or less, more Preferably it is 2300 N / mm 2 or less. When the 30% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 30% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
 上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。 The compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で基材粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値及び30%K値)を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、任意に選択された50個の基材粒子の上記圧縮弾性率(10%K値及び30%K値)を算術平均することにより、算出することが好ましい。 Using a micro-compression tester, one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 μm, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. . The load value (N) and compression displacement (mm) at this time are measured. From the measured values obtained, the compression modulus (10% K value and 30% K value) can be determined by the following equation. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used. The compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
 10%K値又は30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:基材粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:基材粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:基材粒子の半径(mm)
10% K value or 30% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the base particle is 10% or 30% compressively deformed
S: Compression displacement (mm) when the substrate particles are 10% or 30% compressively deformed
R: radius of base particle (mm)
 上記圧縮弾性率は、基材粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、基材粒子の硬さを定量的かつ一義的に表すことができる。 The above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively. By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
 上記基材粒子の圧縮回復率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは60%以下、より好ましくは50%以下である。上記基材粒子の圧縮回復率が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記圧縮回復率が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The compression recovery rate of the substrate particles is preferably 5% or more, more preferably 7% or more, preferably 60% or less, more preferably 50% or less. When the compression recovery rate of the substrate particles is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the damage to the adherend. Further, when the compression recovery rate is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. And the connection reliability can be further effectively improved.
 上記基材粒子の圧縮回復率は、以下のようにして測定できる。 The compression recovery rate of the substrate particles can be measured as follows.
 試料台上に基材粒子を散布する。散布された基材粒子1個について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、基材粒子の中心方向に、基材粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 ¡Spread base particles on the sample stage. With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [L2 / L1] × 100
L1: Compressive displacement from the origin load value to the reverse load value when applying a load L2: Unloading displacement from the reverse load value to the origin load value when releasing the load
 上記基材粒子の用途は特に限定されない。上記基材粒子は、様々な用途に好適に用いることができる。上記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。上記導電性粒子において、上記導電層は、上記基材粒子の表面上に形成される。上記基材粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記基材粒子は、スペーサとして用いられることが好ましい。上記スペーサの使用方法としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、及び応力緩和用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップのギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。 The use of the above-mentioned substrate particles is not particularly limited. The said base particle can be used suitably for various uses. The base particle is used as a spacer, or a conductive layer is formed on the surface and used to obtain conductive particles having the conductive layer. In the conductive particle, the conductive layer is formed on the surface of the substrate particle. The substrate particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer. The above spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used. The stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
 上記基材粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記基材粒子は、スペーサとして機能することが好ましい。上記基材粒子は、良好な圧縮変形特性を有するので、上記基材粒子をスペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記基材粒子では、液晶表示素子用部材等の傷付きを抑えることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体において、接続不良及び表示不良が生じ難くなる。 The base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element. In the peripheral sealing agent for a liquid crystal display element, the base material particles preferably function as a spacer. Since the base material particles have good compressive deformation characteristics, the base material particles are used as spacers to be arranged between the substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect the electrodes. Or the like, the spacers or conductive particles are efficiently disposed between the substrates or the electrodes. Furthermore, since the substrate particles can suppress damage to the liquid crystal display element member, etc., in the connection structure using the liquid crystal display element using the liquid crystal display element spacer and the conductive particles, Defects and display defects are less likely to occur.
 さらに、上記基材粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記基材粒子を用いることができる。 Furthermore, the above-mentioned substrate particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber. For example, the base material particles can be used as a substitute for rubber or a spring.
 本発明に係る基材粒子では、上記基材粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下である。上記CV値が、上記上限以下であると、基材粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。また、上記CV値は基材粒子の分級によって調整することができる。 In the substrate particles according to the present invention, the coefficient of variation (CV value) of the particle size of the substrate particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less. When the CV value is not more than the above upper limit, the substrate particles can be used more suitably depending on the use of the conductive particles and spacers. The CV value can be adjusted by classification of the base particles.
 上記CV値は、下記式で表される。 The CV value is represented by the following formula.
 CV値(%)=(ρ/Dn)×100
 ρ:基材粒子の粒子径の標準偏差
 Dn:基材粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
 基材粒子3:
 本発明に係る基材粒子では、BET比表面積は、5m/g以上300m/g未満である。本発明に係る基材粒子では、30%圧縮したときの圧縮弾性率(30%K値)は、100N/mm以上3000N/mm以下である。
Base particle 3:
In the base particle according to the present invention, the BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g. In the base particle according to the present invention, the compression elastic modulus (30% K value) when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
 本発明に係る基材粒子では、上記の構成が備えられているので、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗を効果的に低くすることができ、かつ、接続信頼性を効果的に高めることができる。 Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When they are electrically connected, the connection resistance can be effectively reduced and the connection reliability can be effectively increased.
 本発明に係る基材粒子では、適度なBET比表面積を有する。さらに、本発明に係る基材粒子では、ある程度圧縮された段階(圧縮中期)でも硬さが低下し難く、基材粒子の硬さは比較的維持される。このため、基材粒子の表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続する場合に、圧縮初期に発現する基材粒子の硬さにより導電層又は電極の表面の酸化膜を十分に貫通させることができる。さらに、圧縮中期でも維持される基材粒子の硬さにより、導電性粒子が押し込まれて形成される凹部である圧痕を形成することができる。このため、電極間の接続抵抗を効果的に低くすることができ、かつ電極間の接続信頼性を効果的に高めることができる。例えば、導電性粒子により電極間が電気的に接続された接続構造体を高温及び高湿条件下で長時間放置しても、接続抵抗がより一層高くなり難く、導通不良がより一層生じ難くなる。なお、上記圧痕は、電極に意図せずに形成される傷には含まれない。 The base particles according to the present invention have an appropriate BET specific surface area. Furthermore, in the base particle according to the present invention, the hardness is not easily lowered even at a stage where it is compressed to some extent (mid-compression stage), and the hardness of the base particle is relatively maintained. For this reason, when the electrodes are electrically connected using conductive particles in which a conductive layer is formed on the surface of the base particles, the surface of the conductive layer or the electrodes depends on the hardness of the base particles that appear in the initial stage of compression. This oxide film can be sufficiently penetrated. Furthermore, the indentation which is a recessed part formed by the conductive particle being pushed in can be formed by the hardness of the base particle maintained even in the middle stage of compression. For this reason, the connection resistance between electrodes can be made low effectively, and the connection reliability between electrodes can be raised effectively. For example, even when a connection structure in which electrodes are electrically connected by conductive particles is left for a long time under high temperature and high humidity conditions, the connection resistance is less likely to be further increased, and poor conduction is less likely to occur. . In addition, the said indentation is not contained in the damage | wound formed in an electrode unintentionally.
 また、本発明に係る基材粒子を液晶表示素子用スペーサとして用いた場合には、液晶表示素子用部材等の傷付きを効果的に抑制することができ、十分なギャップ制御効果を得ることができる。結果として、液晶表示素子の表示品質をより一層良好にすることができる。 In addition, when the substrate particle according to the present invention is used as a spacer for a liquid crystal display element, it is possible to effectively suppress scratches on the liquid crystal display element member and the like, and to obtain a sufficient gap control effect. it can. As a result, the display quality of the liquid crystal display element can be further improved.
 本発明に係る基材粒子では、BET比表面積は、5m/g以上300m/g未満である。上記基材粒子のBET比表面積は、好ましくは8m/g以上、より好ましくは12m/g以上であり、好ましくは290m/g以下、より好ましくは280m/g以下である。上記BET比表面積が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記BET比表面積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g. The BET specific surface area of the substrate particles is preferably 8 m 2 / g or more, more preferably 12 m 2 / g or more, preferably 290 m 2 / g or less, more preferably 280 m 2 / g or less. When the BET specific surface area is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the BET specific surface area is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. And the connection reliability can be further effectively improved.
 上記BET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。上記BET比表面積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。また、測定時の条件は、サンプル量:0.5g、アウトガスの種類:窒素、アウトガスの温度:28℃、アウトガス時間:3時間、及びバス温度:273K(0℃)であることが好ましい。 The BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method. Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd. The measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
 上記基材粒子の密度は、好ましくは1g/cm以上、より好ましくは1.1g/cm以上であり、好ましくは1.4g/cm以下、より好ましくは1.3g/cm以下である。上記密度が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記密度が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there. When the density is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. In addition, when the density is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effectively achieved. In addition, the connection reliability can be increased more effectively.
 上記基材粒子の密度は、比重瓶法密度測定装置を用いて測定することができる。上記比重瓶法密度測定装置としては、島津製作所社製「Accupyc 1330」等が挙げられる。また、測定時の条件は、サンプル量:1g、及び測定温度:28℃であることが好ましい。 The density of the substrate particles can be measured using a density bottle method density measuring device. Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation. The measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
 上記基材粒子の全細孔容積は、好ましくは0.01cm/g以上、より好ましくは0.05cm/g以上であり、好ましくは3cm/g以下、より好ましくは1.5cm/g以下である。上記全細孔容積が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記全細孔容積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less. When the total pore volume is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
 上記全細孔容積は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記全細孔容積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記基材粒子の平均細孔径は、好ましくは10nm以下、より好ましくは5nm以下である。上記基材粒子の平均細孔径の下限は特に限定されない。上記基材粒子の平均細孔径は、1nm以上であってもよい。上記平均細孔径が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記平均細孔径が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less. The lower limit of the average pore diameter of the substrate particles is not particularly limited. The average pore diameter of the substrate particles may be 1 nm or more. When the average pore diameter is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress damage to the adherend. Further, when the average pore diameter is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. And the connection reliability can be further effectively improved.
 上記平均細孔径は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記平均細孔径の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記BET比表面積、上記全細孔容積、及び上記平均細孔径の好ましい範囲を満足する基材粒子は、例えば、下記の工程を備える基材粒子の製造方法により得ることができる。重合性モノマーと、上記重合性モノマーとは反応しない有機溶剤とを混合し、重合性モノマー溶液を調整する工程。上記重合性モノマー溶液と、アニオン性分散安定剤とを極性溶媒に添加して乳化させて乳化液を得る工程。上記乳化液を数回に分けて添加し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得る工程。上記重合性モノマーを重合させて基材粒子を得る工程。上記重合性モノマーとしては、例えば、単官能性モノマー、及び多官能性モノマー等が挙げられる。上記重合性モノマーとは反応しない有機溶剤は、重合系の媒体である水等の極性溶媒と相溶しないものであれば、特に限定されない。上記有機溶剤としては、例えば、シクロヘキサン、トルエン、キシレン、酢酸エチル、酢酸ブチル、酢酸アリル、酢酸プロピル、クロロホルム、メチルシクロヘキサン、メチルエチルケトン等が挙げられる。上記有機溶剤の添加量は、上記重合性モノマー成分100重量部に対して、1重量部~50重量部であることが好ましく、5重量部~45重量部であることがより好ましい。上記有機溶剤の添加量が、上記の好ましい範囲であると、BET比表面積をより一層好適な範囲に制御することができ、粒子内部で緻密な細孔が得られやすくなる。特に重合性モノマーのSP値が8.0~10.0であり、かつ、有機溶剤のSP値が8.0~11.0である組み合わせの場合に、上記BET比表面積、上記全細孔容積、及び上記平均細孔径をさらにより一層効果的に好適な範囲に制御することができる。 The base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps. A step of preparing a polymerizable monomer solution by mixing a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer. A step of adding the polymerizable monomer solution and the anionic dispersion stabilizer to a polar solvent and emulsifying them to obtain an emulsion. The step of adding the emulsion in several portions and allowing the seed particles to absorb the monomer to obtain a suspension containing seed particles in which the monomer is swollen. A step of polymerizing the polymerizable monomer to obtain base particles. As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example. The organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like. The amount of the organic solvent added is preferably 1 part by weight to 50 parts by weight and more preferably 5 parts by weight to 45 parts by weight with respect to 100 parts by weight of the polymerizable monomer component. When the addition amount of the organic solvent is within the above preferable range, the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles. In particular, in the case of a combination in which the SP value of the polymerizable monomer is 8.0 to 10.0 and the SP value of the organic solvent is 8.0 to 11.0, the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
 本発明に係る基材粒子では、30%圧縮したときの圧縮弾性率(30%K値)は、100N/mm以上3000N/mm以下である。上記基材粒子の30%K値は、好ましくは150N/mm以上、より好ましくは200N/mm以上であり、好ましくは2800N/mm以下、より好ましくは2500N/mm以下である。上記30%K値が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記30%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the compression elastic modulus (30% K value) when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less. 30% K value of the base particles is preferably 150 N / mm 2 or more, more preferably 200 N / mm 2 or more, preferably 2800N / mm 2 or less, and more preferably not more than 2500N / mm 2. When the 30% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 30% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
 上記基材粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは100N/mm以上、より好ましくは150N/mm以上であり、好ましくは3500N/mm以下、より好ましくは3000N/mm以下である。上記10%K値が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記10%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 Compression modulus when the base particle is compressed 10% (10% K value) is preferably 100 N / mm 2 or more, more preferably 150 N / mm 2 or more, preferably 3500 N / mm 2 or less, more Preferably it is 3000 N / mm 2 or less. When the 10% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
 上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。 The compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で基材粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値及び30%K値)を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、任意に選択された50個の基材粒子の上記圧縮弾性率(10%K値及び30%K値)を算術平均することにより、算出することが好ましい。 Using a micro-compression tester, one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 μm, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. . The load value (N) and compression displacement (mm) at this time are measured. From the measured values obtained, the compression modulus (10% K value and 30% K value) can be determined by the following equation. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used. The compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
 10%K値又は30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:基材粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:基材粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:基材粒子の半径(mm)
10% K value or 30% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the base particle is 10% or 30% compressively deformed
S: Compression displacement (mm) when the substrate particles are 10% or 30% compressively deformed
R: radius of base particle (mm)
 上記圧縮弾性率は、基材粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、基材粒子の硬さを定量的かつ一義的に表すことができる。 The above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively. By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
 上記基材粒子の圧縮回復率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは60%以下、より好ましくは50%以下である。上記基材粒子の圧縮回復率が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記圧縮回復率が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The compression recovery rate of the substrate particles is preferably 5% or more, more preferably 7% or more, preferably 60% or less, more preferably 50% or less. When the compression recovery rate of the substrate particles is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the damage to the adherend. Further, when the compression recovery rate is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effective. And the connection reliability can be further effectively improved.
 上記基材粒子の圧縮回復率は、以下のようにして測定できる。 The compression recovery rate of the substrate particles can be measured as follows.
 試料台上に基材粒子を散布する。散布された基材粒子1個について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、基材粒子の中心方向に、基材粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 ¡Spread base particles on the sample stage. With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [L2 / L1] × 100
L1: Compressive displacement from the origin load value to the reverse load value when applying a load L2: Unloading displacement from the reverse load value to the origin load value when releasing the load
 上記基材粒子の用途は特に限定されない。上記基材粒子は、様々な用途に好適に用いることができる。上記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。上記導電性粒子において、上記導電層は、上記基材粒子の表面上に形成される。上記基材粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記基材粒子は、スペーサとして用いられることが好ましい。上記スペーサの使用方法としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、及び応力緩和用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップのギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。 The use of the above-mentioned substrate particles is not particularly limited. The said base particle can be used suitably for various uses. The base particle is used as a spacer, or a conductive layer is formed on the surface and used to obtain conductive particles having the conductive layer. In the conductive particle, the conductive layer is formed on the surface of the substrate particle. The base particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer. The spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used. The stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
 上記基材粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記基材粒子は、スペーサとして機能することが好ましい。上記基材粒子は、良好な圧縮変形特性を有するので、上記基材粒子をスペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記基材粒子では、液晶表示素子用部材等の傷付きを抑えることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体において、接続不良及び表示不良が生じ難くなる。 The base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element. In the peripheral sealing agent for a liquid crystal display element, the base material particles preferably function as a spacer. Since the base material particles have good compressive deformation characteristics, the base material particles are used as spacers to be arranged between the substrates, or a conductive layer is formed on the surface and used as conductive particles to electrically connect the electrodes. Or the like, the spacers or conductive particles are efficiently disposed between the substrates or the electrodes. Furthermore, since the substrate particles can suppress damage to the liquid crystal display element member, etc., in the connection structure using the liquid crystal display element using the liquid crystal display element spacer and the conductive particles, Defects and display defects are less likely to occur.
 さらに、上記基材粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記基材粒子を用いることができる。 Furthermore, the above-mentioned substrate particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber. For example, the base material particles can be used as a substitute for rubber or a spring.
 本発明に係る基材粒子では、上記基材粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下である。上記CV値が、上記上限以下であると、基材粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。また、上記CV値は基材粒子の分級によって調整することができる。 In the substrate particles according to the present invention, the coefficient of variation (CV value) of the particle size of the substrate particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less. When the CV value is not more than the above upper limit, the substrate particles can be used more suitably depending on the use of the conductive particles and spacers. The CV value can be adjusted by classification of the base particles.
 上記CV値は、下記式で表される。 The CV value is represented by the following formula.
 CV値(%)=(ρ/Dn)×100
 ρ:基材粒子の粒子径の標準偏差
 Dn:基材粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
 基材粒子4:
 本発明に係る基材粒子では、BET比表面積が、600m/g以上である。本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率が、1200N/mm以下である。本発明に係る基材粒子では、30%圧縮したときの圧縮弾性率が、1200N/mm以下である。本発明に係る基材粒子では、圧縮回復率が、5%以上である。
Base particle 4:
In the base particle according to the present invention, the BET specific surface area is 600 m 2 / g or more. In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less. In the base particle according to the present invention, the compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less. In the base particle according to the present invention, the compression recovery rate is 5% or more.
 本発明に係る基材粒子では、上記の構成が備えられているので、被着体の傷付きを効果的に抑制することができ、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性を効果的に高めることができ、耐衝撃性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる。 Since the base particle according to the present invention has the above-described configuration, the adherend can be effectively prevented from being scratched, and an electrode using the conductive particle having a conductive layer formed on the surface is used. When the gaps are electrically connected, the adhesion with the conductive layer can be effectively increased, the impact resistance can be effectively increased, and the connection resistance can be effectively reduced. .
 本発明に係る基材粒子では、BET比表面積の値が比較的大きく、比較的低い圧力及び温度で容易に変形する。このため、基材粒子の表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続する場合に、熱圧着時の圧力や温度を比較的低くしても、導電性粒子を電極に十分に接触させることができ、さらに、電極に傷が形成されることを防止することができる。また、本発明に係る基材粒子では、BET比表面積の値が比較的大きいため、基材粒子の表面上に導電層を形成する際に、基材粒子の表面の微細な空隙に導電層が入り込み、基材粒子と導電層との密着性を効果的に高めることができ、導電層の剥離を効果的に防止することができる。さらに、本発明に係る基材粒子の表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続する接続部を形成する場合には、該接続部に落下等による衝撃が加えられても、導電層の剥離が効果的に防止され、電極間の接続抵抗を効果的に低くすることができる。本発明に係る基材粒子を用いた導電性粒子では、耐衝撃性を効果的に高めることができる。また、本発明に係る基材粒子では、圧縮回復率が比較的大きく、良好な復元性を有する。このため、BET比表面積の値が比較的大きいにもかかわらず、基材粒子は座屈することがなく、また、破壊され難く、導電性粒子を電極に十分に接触させることができる。結果として、電極間の接続抵抗を効果的に低くすることができ、かつ電極間の接続信頼性を効果的に高めることができる。 The base particle according to the present invention has a relatively large BET specific surface area and easily deforms at a relatively low pressure and temperature. For this reason, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface of the substrate particles, the conductive particles can be used even if the pressure and temperature during thermocompression bonding are relatively low. Can be sufficiently brought into contact with the electrode, and the formation of scratches on the electrode can be prevented. Moreover, since the value of the BET specific surface area is relatively large in the base particle according to the present invention, when forming the conductive layer on the surface of the base particle, the conductive layer is formed in the fine voids on the surface of the base particle. It is possible to effectively increase the adhesion between the base material particles and the conductive layer, and to effectively prevent the conductive layer from peeling off. Furthermore, when forming a connection part for electrically connecting the electrodes using conductive particles having a conductive layer formed on the surface of the base material particle according to the present invention, the connection part is subjected to an impact due to dropping or the like. Even if added, peeling of the conductive layer is effectively prevented, and the connection resistance between the electrodes can be effectively lowered. In the electroconductive particle using the base particle which concerns on this invention, impact resistance can be improved effectively. Moreover, in the base material particle which concerns on this invention, a compression recovery rate is comparatively large, and it has favorable restoring property. For this reason, although the value of the BET specific surface area is relatively large, the base particles are not buckled and are not easily destroyed, and the conductive particles can be sufficiently brought into contact with the electrode. As a result, the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively increased.
 また、本発明に係る基材粒子を液晶表示素子用スペーサとして用いた場合には、液晶表示素子用部材等の傷付きを効果的に抑制することができる。さらに、液晶表示素子用部材等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。結果として、液晶表示素子の表示品質をより一層良好にすることができる。 In addition, when the substrate particles according to the present invention are used as a spacer for a liquid crystal display element, it is possible to effectively suppress damage to the liquid crystal display element member or the like. Further, it can be sufficiently brought into contact with a liquid crystal display element member and the like, and a sufficient gap control effect can be obtained. As a result, the display quality of the liquid crystal display element can be further improved.
 本発明に係る基材粒子では、BET比表面積が、600m/g以上である。上記基材粒子のBET比表面積は、好ましくは605m/g以上、より好ましくは610m/g以上であり、好ましくは1200m/g以下、より好ましくは1000m/g以下である。上記BET比表面積が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記BET比表面積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性をより一層効果的に高めることができ、耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。 In the base particle according to the present invention, the BET specific surface area is 600 m 2 / g or more. The BET specific surface area of the substrate particles is preferably 605 m 2 / g or more, more preferably 610 m 2 / g or more, preferably 1200 m 2 / g or less, more preferably 1000 m 2 / g or less. When the BET specific surface area is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the BET specific surface area is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion to the conductive layer is improved. Can be increased more effectively, impact resistance can be further improved more effectively, and connection resistance can be further reduced more effectively.
 上記BET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。上記BET比表面積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。また、測定時の条件は、サンプル量:0.5g、アウトガスの種類:窒素、アウトガスの温度:28℃、アウトガス時間:3時間、及びバス温度:273K(0℃)であることが好ましい。 The BET specific surface area can be measured from a nitrogen adsorption isotherm according to the BET method. Examples of the BET specific surface area measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd. The measurement conditions are preferably: sample amount: 0.5 g, outgas type: nitrogen, outgas temperature: 28 ° C., outgas time: 3 hours, and bath temperature: 273 K (0 ° C.).
 上記基材粒子の密度は、好ましくは1g/cm以上、より好ましくは1.1g/cm以上であり、好ましくは1.4g/cm以下、より好ましくは1.3g/cm以下である。上記密度が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記密度が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 The density of the substrate particles is preferably 1 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, preferably 1.4 g / cm 3 or less, more preferably 1.3 g / cm 3 or less. is there. When the density is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. In addition, when the density is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is more effectively achieved. In addition, the connection reliability can be increased more effectively.
 上記基材粒子の密度は、比重瓶法密度測定装置を用いて測定することができる。上記比重瓶法密度測定装置としては、島津製作所社製「Accupyc 1330」等が挙げられる。また、測定時の条件は、サンプル量:1g、及び測定温度:28℃であることが好ましい。 The density of the substrate particles can be measured using a density bottle method density measuring device. Examples of the density bottle method density measuring apparatus include “Acpyc 1330” manufactured by Shimadzu Corporation. The measurement conditions are preferably a sample amount: 1 g and a measurement temperature: 28 ° C.
 上記基材粒子の全細孔容積は、好ましくは0.01cm/g以上、より好ましくは0.05cm/g以上であり、好ましくは3cm/g以下、より好ましくは1.5cm/g以下である。上記全細孔容積が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記全細孔容積が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性をより一層効果的に高めることができ、耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。 Total pore volume of the substrate particles preferably 0.01 cm 3 / g or more, more preferably 0.05 cm 3 / g or more, preferably 3 cm 3 / g or less, more preferably 1.5 cm 3 / g or less. When the total pore volume is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. In addition, when the total pore volume is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the total pore volume is in close contact with the conductive layer. Therefore, the impact resistance can be further effectively improved, and the connection resistance can be further effectively reduced.
 上記全細孔容積は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記全細孔容積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The total pore volume can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the total pore volume measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記基材粒子の平均細孔径は、好ましくは10nm以下、より好ましくは5nm以下である。上記基材粒子の平均細孔径の下限は特に限定されない。上記基材粒子の平均細孔径は、1nm以上であってもよい。上記平均細孔径が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記平均細孔径が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電層との密着性をより一層効果的に高めることができ、耐衝撃性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。 The average pore diameter of the substrate particles is preferably 10 nm or less, more preferably 5 nm or less. The lower limit of the average pore diameter of the substrate particles is not particularly limited. The average pore diameter of the substrate particles may be 1 nm or more. When the average pore diameter is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress damage to the adherend. Further, when the average pore diameter is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the adhesion with the conductive layer is improved. Can be increased more effectively, impact resistance can be further improved more effectively, and connection resistance can be further reduced more effectively.
 上記平均細孔径は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記平均細孔径の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The average pore diameter can be measured from a nitrogen adsorption isotherm according to the BJH method. Examples of the average pore diameter measuring device include “NOVA4200e” manufactured by Cantachrome Instruments Co., Ltd.
 上記BET比表面積、上記全細孔容積、及び上記平均細孔径の好ましい範囲を満足する基材粒子は、例えば、下記の工程を備える基材粒子の製造方法により得ることができる。重合性モノマーと、上記重合性モノマーとは反応しない有機溶剤とを混合し、重合性モノマー溶液を調整する工程。上記重合性モノマー溶液と、アニオン性分散安定剤とを極性溶媒に添加して乳化させて乳化液を得る工程。上記乳化液を数回に分けて添加し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得る工程。上記重合性モノマーを重合させて基材粒子を得る工程。上記重合性モノマーとしては、例えば、単官能性モノマー、及び多官能性モノマー等が挙げられる。上記重合性モノマーとは反応しない有機溶剤は、重合系の媒体である水等の極性溶媒と相溶しないものであれば、特に限定されない。上記有機溶剤としては、例えば、シクロヘキサン、トルエン、キシレン、酢酸エチル、酢酸ブチル、酢酸アリル、酢酸プロピル、クロロホルム、メチルシクロヘキサン、メチルエチルケトン等が挙げられる。上記有機溶剤の添加量は、上記重合性モノマー成分100重量部に対して、105重量部~215重量部であることが好ましく、110重量部~210重量部であることがより好ましい。上記有機溶剤の添加量が、上記の好ましい範囲であると、BET比表面積をより一層好適な範囲に制御することができ、粒子内部で緻密な細孔が得られやすくなる。特に重合性モノマーのSP値が8.0~10.0であり、かつ、有機溶剤のSP値が8.0~11.0である組み合わせの場合に、上記BET比表面積、上記全細孔容積、及び上記平均細孔径をさらにより一層効果的に好適な範囲に制御することができる。 The base material particles satisfying the preferable ranges of the BET specific surface area, the total pore volume, and the average pore diameter can be obtained, for example, by a base particle manufacturing method including the following steps. A step of preparing a polymerizable monomer solution by mixing a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer. A step of adding the polymerizable monomer solution and the anionic dispersion stabilizer to a polar solvent and emulsifying them to obtain an emulsion. The step of adding the emulsion in several portions and allowing the seed particles to absorb the monomer to obtain a suspension containing seed particles in which the monomer is swollen. A step of polymerizing the polymerizable monomer to obtain base particles. As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example. The organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like. The amount of the organic solvent added is preferably 105 to 215 parts by weight and more preferably 110 to 210 parts by weight with respect to 100 parts by weight of the polymerizable monomer component. When the addition amount of the organic solvent is within the above preferable range, the BET specific surface area can be controlled to a more preferable range, and it becomes easy to obtain dense pores inside the particles. In particular, in the case of a combination in which the SP value of the polymerizable monomer is 8.0 to 10.0 and the SP value of the organic solvent is 8.0 to 11.0, the BET specific surface area, the total pore volume , And the average pore diameter can be more effectively controlled within a suitable range.
 本発明に係る基材粒子では、10%圧縮したときの圧縮弾性率が、1200N/mm以下である。上記基材粒子の10%K値は、好ましくは5N/mm以上、より好ましくは10N/mm以上であり、好ましくは1100N/mm以下、より好ましくは1000N/mm以下である。上記10%K値が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記10%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less. 10% K value of the base particles is preferably from 5N / mm 2 or more, more preferably 10 N / mm 2 or more, preferably 1100 N / mm 2 or less, and more preferably not more than 1000 N / mm 2. When the 10% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
 本発明に係る基材粒子では、30%圧縮したときの圧縮弾性率が、1200N/mm以下である。上記基材粒子の30%K値は、好ましくは5N/mm以上、より好ましくは10N/mm以上であり、好ましくは1100N/mm以下、より好ましくは1000N/mm以下である。上記30%K値が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記30%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、さらに、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less. The 30% K value of the substrate particles is preferably 5 N / mm 2 or more, more preferably 10 N / mm 2 or more, preferably 1100 N / mm 2 or less, more preferably 1000 N / mm 2 or less. When the 30% K value is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 30% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively reduced, and connection reliability can be further improved more effectively.
 上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。 The compression elastic modulus (10% K value and 30% K value) of the substrate particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で基材粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値及び30%K値)を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記基材粒子における上記圧縮弾性率(10%K値及び30%K値)は、任意に選択された50個の基材粒子の上記圧縮弾性率(10%K値及び30%K値)を算術平均することにより、算出することが好ましい。 Using a micro-compression tester, one base particle is compressed under the conditions of a cylindrical indenter (diameter 50 μm, made of diamond) at a smooth indenter end face at 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. . The load value (N) and compression displacement (mm) at this time are measured. From the measured values obtained, the compression modulus (10% K value and 30% K value) can be determined by the following equation. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used. The compression elastic modulus (10% K value and 30% K value) in the base particle is the compression elastic modulus (10% K value and 30% K value) of 50 arbitrarily selected base particles. It is preferable to calculate by arithmetic averaging.
 10%K値又は30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:基材粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:基材粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:基材粒子の半径(mm)
10% K value or 30% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when the base particle is 10% or 30% compressively deformed
S: Compression displacement (mm) when the substrate particles are 10% or 30% compressively deformed
R: radius of base particle (mm)
 上記圧縮弾性率は、基材粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、基材粒子の硬さを定量的かつ一義的に表すことができる。 The above-mentioned compression modulus expresses the hardness of the base particle universally and quantitatively. By using the compression elastic modulus, the hardness of the base particle can be expressed quantitatively and uniquely.
 本発明に係る基材粒子では、圧縮回復率が、5%以上である。上記基材粒子の圧縮回復率は、好ましくは10%以上、より好ましくは15%以上であり、好ましくは60%以下、より好ましくは50%以下である。上記基材粒子の圧縮回復率が、上記下限以上及び上記上限以下であると、被着体の傷付きをより一層効果的に抑制することができる。また、上記10%K値が、上記下限以上及び上記上限以下であると、表面上に導電層を形成した導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗をより一層効果的に低くすることができ、かつ、接続信頼性をより一層効果的に高めることができる。 In the base particle according to the present invention, the compression recovery rate is 5% or more. The compression recovery rate of the substrate particles is preferably 10% or more, more preferably 15% or more, preferably 60% or less, more preferably 50% or less. When the compression recovery rate of the substrate particles is not less than the above lower limit and not more than the above upper limit, the adherend can be more effectively suppressed from being damaged. Further, when the 10% K value is not less than the above lower limit and not more than the above upper limit, when the electrodes are electrically connected using conductive particles having a conductive layer formed on the surface, the connection resistance is further increased. It can be effectively lowered and the connection reliability can be further effectively improved.
 上記基材粒子の圧縮回復率は、以下のようにして測定できる。 The compression recovery rate of the substrate particles can be measured as follows.
 試料台上に基材粒子を散布する。散布された基材粒子1個について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、基材粒子の中心方向に、基材粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 ¡Spread base particles on the sample stage. With respect to one dispersed base material particle, using a micro-compression tester, the base particle is 30% in the center direction of the base material particle at 25 ° C. at a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond). Apply a load (reverse load value) until compressive deformation. Thereafter, unloading is performed up to the origin load value (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
Compression recovery rate (%) = [L2 / L1] × 100
L1: Compressive displacement from the origin load value to the reverse load value when applying a load L2: Unloading displacement from the reverse load value to the origin load value when releasing the load
 上記基材粒子の用途は特に限定されない。上記基材粒子は、様々な用途に好適に用いることができる。上記基材粒子は、スペーサとして用いられるか、又は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられる。上記導電性粒子において、上記導電層は、上記基材粒子の表面上に形成される。上記基材粒子は、表面上に導電層が形成され、上記導電層を有する導電性粒子を得るために用いられることが好ましい。上記基材粒子は、スペーサとして用いられることが好ましい。上記スペーサの使用方法としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、及び応力緩和用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップのギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。 The use of the above-mentioned substrate particles is not particularly limited. The said base particle can be used suitably for various uses. The base particle is used as a spacer, or a conductive layer is formed on the surface and used to obtain conductive particles having the conductive layer. In the conductive particle, the conductive layer is formed on the surface of the substrate particle. The substrate particles are preferably used for obtaining conductive particles having a conductive layer formed on the surface and having the conductive layer. The substrate particles are preferably used as a spacer. Examples of the method of using the spacer include a liquid crystal display element spacer, a gap control spacer, and a stress relaxation spacer. The spacer for gap control is used for gap control of laminated chips to ensure standoff height and flatness, and gap control of optical components to ensure smoothness of the glass surface and thickness of the adhesive layer. Can be used. The stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, and stress relaxation of a connection portion connecting two connection target members.
 上記基材粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記基材粒子は、スペーサとして機能することが好ましい。上記基材粒子は、良好な圧縮変形特性及び良好な圧縮破壊特性を有するので、上記基材粒子をスペーサとして用いて基板間に配置したり、表面に導電層を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記基材粒子では、液晶表示素子用部材等の傷付きを抑えることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体において、接続不良及び表示不良が生じ難くなる。 The base particle is preferably used as a spacer for a liquid crystal display element, and is preferably used as a peripheral sealing agent for a liquid crystal display element. In the peripheral sealing agent for a liquid crystal display element, the base material particles preferably function as a spacer. Since the base particles have good compressive deformation characteristics and good compressive fracture characteristics, the base particles are used as spacers by placing them between substrates or forming a conductive layer on the surface to be used as conductive particles. When the electrodes are electrically connected to each other, the spacers or conductive particles are efficiently arranged between the substrates or between the electrodes. Furthermore, since the substrate particles can suppress damage to the liquid crystal display element member, etc., in the connection structure using the liquid crystal display element using the liquid crystal display element spacer and the conductive particles, Defects and display defects are less likely to occur.
 さらに、上記基材粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記基材粒子を用いることができる。 Furthermore, the above-mentioned substrate particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber. For example, the base material particles can be used as a substitute for rubber or a spring.
 本発明に係る基材粒子では、上記基材粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下である。上記CV値が、上記上限以下であると、基材粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。また、上記CV値は基材粒子の分級によって調整することができる。 In the substrate particles according to the present invention, the coefficient of variation (CV value) of the particle size of the substrate particles is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less. When the CV value is not more than the above upper limit, the substrate particles can be used more suitably depending on the use of the conductive particles and spacers. The CV value can be adjusted by classification of the base particles.
 上記CV値は、下記式で表される。 The CV value is represented by the following formula.
 CV値(%)=(ρ/Dn)×100
 ρ:基材粒子の粒子径の標準偏差
 Dn:基材粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
 上述した基材粒子(基材粒子1~基材粒子4)の10%K値、30%K値、圧縮回復率の好ましい範囲を満足する製造方法としては、上述した基材粒子(基材粒子1~基材粒子4)のBET比表面積、全細孔容積、及び平均細孔径の好ましい範囲を満足する場合と同様の、下記の工程を備える基材粒子の製造方法が挙げられる。重合性モノマーと、上記重合性モノマーとは反応しない有機溶剤とを混合し、重合性モノマー溶液を調整する工程。上記重合性モノマー溶液と、アニオン性分散安定剤とを極性溶媒に添加して乳化させて乳化液を得る工程。上記乳化液を数回に分けて添加し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得る工程。上記重合性モノマーを重合させて基材粒子を得る工程。上記重合性モノマーとしては、例えば、単官能性モノマー、及び多官能性モノマー等が挙げられる。上記重合性モノマーとは反応しない有機溶剤は、重合系の媒体である水等の極性溶媒と相溶しないものであれば、特に限定されない。上記有機溶剤としては、例えば、シクロヘキサン、トルエン、キシレン、酢酸エチル、酢酸ブチル、酢酸アリル、酢酸プロピル、クロロホルム、メチルシクロヘキサン、メチルエチルケトン等が挙げられる。上記有機溶剤の添加量は、上記重合性モノマー成分100重量部に対して、1重量部~215重量部であることが好ましく、5重量部~210重量部であることがより好ましい。特に重合性モノマーのSP値が8.0~10.0であり、かつ、有機溶剤のSP値が8.0~11.0である組み合わせの場合に、上記10%K値、上記30%K値、及び上記圧縮回復率をさらにより一層効果的に好適な範囲に制御することができる。 As a production method that satisfies the 10% K value, 30% K value, and compression recovery rate of the above-described base particles (base particles 1 to 4), the base particles (base particles) described above may be used. Examples of the method for producing substrate particles comprising the following steps are the same as in the case where the preferred ranges of the BET specific surface area, the total pore volume, and the average pore diameter of 1 to the substrate particles 4) are satisfied. A step of preparing a polymerizable monomer solution by mixing a polymerizable monomer and an organic solvent that does not react with the polymerizable monomer. A step of adding the polymerizable monomer solution and the anionic dispersion stabilizer to a polar solvent and emulsifying them to obtain an emulsion. The step of adding the emulsion in several portions and allowing the seed particles to absorb the monomer to obtain a suspension containing seed particles in which the monomer is swollen. A step of polymerizing the polymerizable monomer to obtain base particles. As said polymerizable monomer, a monofunctional monomer, a polyfunctional monomer, etc. are mentioned, for example. The organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water as a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, methyl ethyl ketone, and the like. The amount of the organic solvent added is preferably 1 part by weight to 215 parts by weight and more preferably 5 parts by weight to 210 parts by weight with respect to 100 parts by weight of the polymerizable monomer component. In particular, in the case of a combination in which the SP value of the polymerizable monomer is 8.0 to 10.0 and the SP value of the organic solvent is 8.0 to 11.0, the above 10% K value and the above 30% K The value and the compression recovery rate can be controlled to a more suitable range even more effectively.
 以下、上述した基材粒子(基材粒子1~基材粒子4)の他の詳細を説明する。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。 Hereinafter, other details of the base material particles (base material particles 1 to 4) will be described. In the present specification, “(meth) acrylate” means one or both of “acrylate” and “methacrylate”, and “(meth) acryl” means one or both of “acryl” and “methacryl”. means.
 (上述した基材粒子(基材粒子1~基材粒子4)の他の詳細)
 上記基材粒子の材料は特に限定されない。上記基材粒子の材料は、有機材料であってもよく、無機材料であってもよい。
(Other details of the above-mentioned base particles (base particles 1 to 4))
The material of the base particle is not particularly limited. The material of the substrate particles may be an organic material or an inorganic material.
 上記有機材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン共重合体等が挙げられる。上記ジビニルベンゼン共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記基材粒子の圧縮特性を好適な範囲に容易に制御できるので、上記基材粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Examples of the organic material include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, phenol formaldehyde resin, and melamine Formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Polyether ether ketone, polyether sulfo , Divinylbenzene polymer, and divinylbenzene copolymer, and the like. Examples of the divinylbenzene copolymer include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the compression characteristics of the base particle can be easily controlled within a suitable range, the material of the base particle is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable that
 上記基材粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the base particle is obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group may be crosslinked with a non-crosslinkable monomer. Sex monomers.
 上記非架橋性の単量体としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。 Examples of the non-crosslinkable monomers include vinyl compounds such as styrene monomers such as styrene, α-methylstyrene, and chlorostyrene; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meta) as (meth) acrylic compounds ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl Alkyl (meth) acrylate compounds such as (meth) acrylate; oxygen atom-containing (meth) acrylate compounds such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate Nitrile-containing monomers such as (meth) acrylonitrile; halogen-containing (meth) acrylate compounds such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; α-olefin compounds such as diisobutylene, isobutylene and linearene Olefin compounds such as ethylene and propylene; conjugated diene compounds include isoprene and butadiene.
 上記架橋性の単量体としては、ビニル化合物として、ジビニルベンゼン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル単量体;(メタ)アクリル化合物として、テトラメチロールメタンテトラ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル;シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。 Examples of the cross-linkable monomer include vinyl monomers such as divinylbenzene, 1,4-divinyloxybutane, and divinylsulfone as a vinyl compound; tetramethylolmethanetetra (meth) acrylate as a (meth) acryl compound. , Polytetramethylene glycol diacrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, poly Polyfunctional (meth) acrylate compounds such as tetramethylene glycol di (meth) acrylate and 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, triallyl trimellitate, diallyl phthalate, diallyl as allyl compounds Acrylamide, diallyl ether; As silane compounds, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, cyclohexyltrimethoxy Silane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyl Silanes such as methoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, trimethoxysilylstyrene, γ- (meth) acryloxypropyltrimethoxysilane, 1,3-divinyltetramethyldisiloxane, methylphenyldimethoxysilane, diphenyldimethoxysilane Alkoxide compounds: vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsilane, dimethoxyethylvinylsilane, diethoxymethylvinylsilane, diethoxyethylvinylsilane, ethylmethyldivinylsilane, methylvinyldimethoxysilane, ethylvinyldimethoxysilane, methylvinyl Diethoxysilane, ethylvinyldiethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylme Polymerizable double bond-containing silane alkoxides such as rudimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane ; Cyclic siloxanes such as decamethylcyclopentasiloxane; Modified (reactive) silicone oils such as one-end modified silicone oil, both-end silicone oil, side chain type silicone oil; (meth) acrylic acid, maleic acid, maleic anhydride, etc. And carboxyl group-containing monomers.
 上記基材粒子は、上記エチレン性不飽和基を有する重合性単量体を重合させることによって得ることができる。上記の重合方法としては特に限定されず、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法が挙げられる。また、他の重合方法としては、ラジカル重合開始剤の存在下での懸濁重合が挙げられる。 The base particle can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group. The polymerization method is not particularly limited, and includes known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization. Another polymerization method includes suspension polymerization in the presence of a radical polymerization initiator.
 上記無機材料としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア、カーボンブラック、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス及びアルミナシリケートガラス等が挙げられる。 Examples of the inorganic material include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda lime glass, and alumina silicate glass.
 上記基材粒子は、上記有機材料のみにより形成されていてもよく、上記無機材料のみにより形成されていてもよく、上記有機材料と上記無機材料との双方により形成されていてもよい。上記基材粒子は、有機材料のみにより形成されていることが好ましい。この場合には、上記基材粒子の圧縮特性を好適な範囲に容易に制御することができ、導電性粒子及びスペーサの用途により一層好適に使用可能になる。 The substrate particles may be formed only from the organic material, may be formed only from the inorganic material, or may be formed from both the organic material and the inorganic material. It is preferable that the base particle is formed only of an organic material. In this case, the compression characteristics of the base particles can be easily controlled within a suitable range, and can be used more suitably depending on the use of the conductive particles and spacers.
 上記基材粒子は、有機無機ハイブリッド粒子であってもよい。上記基材粒子は、コアシェル粒子であってもよい。上記基材粒子が有機無機ハイブリッド粒子である場合に、上記基材粒子の材料である無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された基材粒子としては特に限定されないが、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる基材粒子が挙げられる。上記有機無機ハイブリッド粒子としては、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 The substrate particles may be organic / inorganic hybrid particles. The base particles may be core-shell particles. In the case where the substrate particles are organic-inorganic hybrid particles, examples of the inorganic material that is the material of the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. The inorganic substance is preferably not a metal. Although it does not specifically limit as a base particle formed with the said silica, After forming the crosslinked polymer particle by hydrolyzing the silicon compound which has two or more hydrolysable alkoxysilyl groups, it calcinates as needed. The base material particle obtained by performing is mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. The substrate particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
 上記有機コアの材料としては、上述した有機材料等が挙げられる。 As the organic core material, the above-described organic materials can be used.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 As the material of the inorganic shell, the inorganic materials mentioned as the material for the base material particles described above can be used. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of a silane alkoxide.
 上記基材粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。上記基材粒子の平均粒子径が、上記下限以上及び上記上限以下であると、基材粒子を導電性粒子及びスペーサの用途により一層好適に使用可能になる。スペーサとして用いる観点からは、上記基材粒子の平均粒子径は、1μm以上80μm以下であることが好ましい。導電性粒子として用いる観点からは、上記基材粒子の平均粒子径は、1μm以上20μm以下であることが好ましい。 The average particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 80 μm or less. When the average particle diameter of the substrate particles is not less than the above lower limit and not more than the above upper limit, the substrate particles can be more suitably used depending on the use of the conductive particles and spacers. From the viewpoint of use as a spacer, the average particle diameter of the substrate particles is preferably 1 μm or more and 80 μm or less. From the viewpoint of use as conductive particles, the average particle diameter of the substrate particles is preferably 1 μm or more and 20 μm or less.
 上記基材粒子の粒子径は、上記基材粒子が真球状である場合には直径を意味し、上記基材粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。基材粒子の平均粒子径は、数平均粒子径であることが好ましい。基材粒子の平均粒子径は、任意の粒度分布測定装置により測定することができる。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析等の原理を用いた粒度分布測定装置等を用いて測定することができる。さらに具体的には、基材粒子の平均粒子径の測定方法として、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の基材粒子の粒子径を測定し、平均粒子径を測定する方法が挙げられる。 The particle diameter of the base particle means a diameter when the base particle is a true sphere, and when the base particle is a shape other than a true sphere, it is assumed to be a true sphere corresponding to its volume. This means the diameter when The average particle diameter of the base particles is preferably a number average particle diameter. The average particle diameter of the substrate particles can be measured by an arbitrary particle size distribution measuring device. For example, it can be measured using a particle size distribution measuring device using principles such as laser light scattering, change in electric resistance value, image analysis after imaging. More specifically, as a method for measuring the average particle size of the base particles, a particle size distribution measuring apparatus (“Multizer 4” manufactured by Beckman Coulter, Inc.) is used to measure the particle size of about 100,000 base particles, and the average The method of measuring a particle diameter is mentioned.
 上記基材粒子のアスペクト比は、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。上記アスペクト比は、長径/短径を示す。上記アスペクト比は、任意の基材粒子10個を電子顕微鏡又は光学顕微鏡にて観察し、最大径と最小径をそれぞれ長径、短径とし、各基材粒子の長径/短径の平均値を算出することにより求めることが好ましい。 The aspect ratio of the substrate particles is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less. The aspect ratio indicates a major axis / minor axis. The above aspect ratio is obtained by observing 10 arbitrary base particles with an electron microscope or an optical microscope, and setting the maximum diameter and the minimum diameter as the major axis and the minor axis, respectively, and calculating the average value of the major axis / minor axis of each substrate particle. It is preferable to obtain by doing so.
 (導電性粒子)
 上記導電性粒子は、上述した基材粒子(基材粒子1~基材粒子4)と、上記基材粒子の表面上に配置された導電層とを備える。
(Conductive particles)
The conductive particles include the above-described base particles (base particles 1 to 4) and a conductive layer disposed on the surface of the base particles.
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、基材粒子11と、基材粒子11の表面上に配置された導電層2とを有する。導電層2は、基材粒子11の表面を被覆している。導電性粒子1は、基材粒子11の表面が導電層2により被覆された被覆粒子である。基材粒子11は、上述した基材粒子1~基材粒子4のいずれかの基材粒子であることが好ましい。 1 has a base particle 11 and a conductive layer 2 disposed on the surface of the base particle 11. The conductive particle 1 shown in FIG. The conductive layer 2 covers the surface of the base particle 11. The conductive particle 1 is a coated particle in which the surface of the base particle 11 is coated with the conductive layer 2. The base particle 11 is preferably any one of the base particles 1 to 4 described above.
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子21は、基材粒子11と、基材粒子11の表面上に配置された導電層22とを有する。図2に示す導電性粒子21では、導電層22のみが、図1に示す導電性粒子1と異なる。導電層22は、内層である第1の導電層22Aと外層である第2の導電層22Bとを有する。基材粒子11の表面上に、第1の導電層22Aが配置されている。第1の導電層22Aの表面上に、第2の導電層22Bが配置されている。 2 has the base particle 11 and the conductive layer 22 arranged on the surface of the base particle 11. The conductive particle 21 shown in FIG. In the conductive particle 21 shown in FIG. 2, only the conductive layer 22 is different from the conductive particle 1 shown in FIG. The conductive layer 22 includes a first conductive layer 22A that is an inner layer and a second conductive layer 22B that is an outer layer. The first conductive layer 22 </ b> A is disposed on the surface of the base particle 11. A second conductive layer 22B is disposed on the surface of the first conductive layer 22A.
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 FIG. 3 is a cross-sectional view showing conductive particles according to the third embodiment of the present invention.
 図3に示す導電性粒子31は、基材粒子11と、導電層32と、複数の芯物質33と、複数の絶縁性物質34とを有する。 3 includes the base particle 11, the conductive layer 32, a plurality of core substances 33, and a plurality of insulating substances 34.
 導電層32は、基材粒子11の表面上に配置されている。導電性粒子31は導電性の表面に、複数の突起31aを有する。導電層32は外表面に、複数の突起32aを有する。このように、上記導電性粒子は、導電性粒子の導電性の表面に突起を有していてもよく、導電層の外表面に突起を有していてもよい。複数の芯物質33が、基材粒子11の表面上に配置されている。複数の芯物質33は導電層32内に埋め込まれている。芯物質33は、突起31a,32aの内側に配置されている。導電層32は、複数の芯物質33を被覆している。複数の芯物質33により導電層32の外表面が隆起されており、突起31a,32aが形成されている。 The conductive layer 32 is disposed on the surface of the base particle 11. The conductive particles 31 have a plurality of protrusions 31a on the conductive surface. The conductive layer 32 has a plurality of protrusions 32a on the outer surface. Thus, the conductive particles may have protrusions on the conductive surface of the conductive particles, or may have protrusions on the outer surface of the conductive layer. A plurality of core substances 33 are arranged on the surface of the base particle 11. The plurality of core materials 33 are embedded in the conductive layer 32. The core substance 33 is disposed inside the protrusions 31a and 32a. The conductive layer 32 covers a plurality of core materials 33. The outer surface of the conductive layer 32 is raised by the plurality of core materials 33, and protrusions 31a and 32a are formed.
 導電性粒子31は、導電層32の外表面上に配置された絶縁性物質34を有する。導電層32の外表面の少なくとも一部の領域が、絶縁性物質34により被覆されている。絶縁性物質34は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、上記導電性粒子は、導電層の外表面上に配置された絶縁性物質を有していてもよい。 The conductive particles 31 have an insulating substance 34 disposed on the outer surface of the conductive layer 32. At least a part of the outer surface of the conductive layer 32 is covered with an insulating material 34. The insulating substance 34 is made of an insulating material and is an insulating particle. Thus, the said electroconductive particle may have the insulating substance arrange | positioned on the outer surface of a conductive layer.
 上記導電層を形成するための金属は特に限定されない。上記金属としては、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。電極間の接続信頼性をより一層高める観点からは、上記金属は、錫を含む合金、ニッケル、パラジウム、銅又は金であることが好ましく、ニッケル又はパラジウムであることが好ましい。 The metal for forming the conductive layer is not particularly limited. The above metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, tungsten, molybdenum And alloys thereof. Examples of the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of further improving the connection reliability between the electrodes, the metal is preferably an alloy containing tin, nickel, palladium, copper or gold, and is preferably nickel or palladium.
 導電性粒子1,31のように、上記導電層は、1つの層により形成されていてもよい。導電性粒子21のように、導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続信頼性をより一層高めることができる。また、最外層が金層である場合には、耐腐食性をより一層高めることができる。 Like the conductive particles 1 and 31, the conductive layer may be formed of a single layer. Like the conductive particles 21, the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers. When the conductive layer is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable. When the outermost layer is a preferable conductive layer, the connection reliability between the electrodes can be further enhanced. Moreover, when the outermost layer is a gold layer, the corrosion resistance can be further enhanced.
 上記基材粒子の表面上に導電層を形成する方法は特に限定されない。上記導電層を形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。導電層をより一層容易に形成する観点からは、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method for forming the conductive layer on the surface of the substrate particles is not particularly limited. Examples of the method for forming the conductive layer include a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of substrate particles with metal powder or a paste containing metal powder and a binder. Is mentioned. From the viewpoint of more easily forming the conductive layer, a method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
 上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは500μm以下、より好ましくは450μm以下、より一層好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは20μm以下である。導電性粒子の平均粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。また、導電性粒子の平均粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に使用可能である。 The average particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 500 μm or less, more preferably 450 μm or less, still more preferably 100 μm or less, and even more preferably 50 μm or less. Particularly preferably, it is 20 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, and Aggregated conductive particles are less likely to be formed when the conductive layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles. Further, when the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the conductive particle means a diameter when the conductive particle is a true sphere, and when the conductive particle is a shape other than a true sphere, it is assumed to be a true sphere corresponding to its volume. Means the diameter.
 上記導電性粒子の平均粒子径は、数平均粒子径であることが好ましい。上記導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The average particle size of the conductive particles is preferably a number average particle size. The average particle diameter of the conductive particles is determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement. In observation with an electron microscope or an optical microscope, the particle diameter of each conductive particle is determined as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 conductive particles is almost equal to the average particle diameter at a sphere equivalent diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each conductive particle is obtained as a particle diameter in a sphere equivalent diameter. The average particle size of the conductive particles is preferably calculated by laser diffraction particle size distribution measurement.
 上記導電層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電層の厚みは、導電層が多層である場合には導電層全体の厚みである。導電層の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。 The thickness of the conductive layer is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and even more preferably 0.3 μm or less. The thickness of the conductive layer is the thickness of the entire conductive layer when the conductive layer is a multilayer. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. To do.
 上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが、上記下限以上及び上記上限以下であると、最外層の導電層による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続信頼性をより一層高めることができる。また、上記最外層が金層である場合に、金層の厚みが薄いほど、コストが低くなる。 When the conductive layer is formed of a plurality of layers, the thickness of the outermost conductive layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably Is 0.1 μm or less. When the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer becomes uniform, the corrosion resistance is sufficiently high, and the connection reliability between the electrodes is improved. It can be further increased. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
 上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。上記導電層の厚みについては、任意の導電層の厚み5箇所の平均値を1個の導電性粒子の導電層の厚みとして算出することが好ましく、導電層全体の厚みの平均値を1個の導電性粒子の導電層の厚みとして算出することがより好ましい。上記導電層の厚みは、任意の導電性粒子10個について、各導電性粒子の導電層の厚みの平均値を算出することにより求めることが好ましい。 The thickness of the conductive layer can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM). About the thickness of the said conductive layer, it is preferable to calculate the average value of five thicknesses of arbitrary conductive layers as the thickness of the conductive layer of one conductive particle, and the average value of the thickness of the whole conductive layer is one piece. It is more preferable to calculate the thickness of the conductive layer of the conductive particles. The thickness of the conductive layer is preferably determined by calculating an average value of the thickness of the conductive layer of each conductive particle for any 10 conductive particles.
 上記導電性粒子は、導電層の外表面に突起を有することが好ましい。上記導電性粒子は、導電性の表面に突起を有することが好ましい。上記突起は複数であることが好ましい。導電層の表面並びに導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜が効果的に排除される。このため、電極と導電性粒子の導電層とをより一層確実に接触させることができ、電極間の接続抵抗をより一層低くすることができる。さらに、導電性粒子が表面に絶縁性物質を備える場合に、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂をより一層効果的に排除できる。このため、電極間の接続信頼性をより一層高めることができる。 The conductive particles preferably have protrusions on the outer surface of the conductive layer. The conductive particles preferably have protrusions on the conductive surface. It is preferable that there are a plurality of protrusions. An oxide film is often formed on the surface of the conductive layer and the surface of the electrode connected by the conductive particles. When conductive particles having protrusions are used, the oxide film is effectively eliminated by the protrusions by placing the conductive particles between the electrodes and pressing them. For this reason, an electrode and the conductive layer of electroconductive particle can be contacted still more reliably, and the connection resistance between electrodes can be made still lower. Furthermore, when the conductive particles are provided with an insulating material on the surface, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the conductive particles and the electrodes are separated by protrusions of the conductive particles. The insulating material or binder resin in between can be more effectively eliminated. For this reason, the connection reliability between electrodes can be improved further.
 上記導電性粒子の表面に突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、及び基材粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、さらに無電解めっきにより導電層を形成する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いなくてもよい。 As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the base particles, and electroless plating on the surface of the base particles And a method of forming a conductive layer by electroless plating after forming a conductive layer by, for example. In addition, the core material may not be used to form the protrusion.
 上記突起を形成する方法としては、以下の方法等も挙げられる。基材粒子の表面に無電解めっきにより導電層を形成する途中段階で芯物質を添加する方法。無電解めっきにより芯物質を用いずに突起を形成する方法として、無電解めっきにより金属核を発生させ、基材粒子又は導電層の表面に金属核を付着させ、さらに無電解めっきにより導電層を形成する方法。 As a method for forming the protrusion, the following method may be mentioned. A method of adding a core substance in the middle of forming a conductive layer by electroless plating on the surface of substrate particles. As a method of forming protrusions without using a core material by electroless plating, metal nuclei are generated by electroless plating, the metal nuclei are attached to the surface of the substrate particles or the conductive layer, and the conductive layer is further formed by electroless plating. How to form.
 上記導電性粒子は、上記導電層の外表面上に配置された絶縁性物質をさらに備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止することができる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁性物質を容易に排除できる。導電性粒子が上記導電層の表面に突起を有する場合には、導電性粒子の導電層と電極との間の絶縁性物質をより一層容易に排除できる。上記絶縁性物質は、絶縁性樹脂層又は絶縁性粒子であることが好ましく、絶縁性粒子であることがより好ましい。上記絶縁性粒子は、絶縁性樹脂粒子であることが好ましい。 The conductive particles preferably further include an insulating material disposed on the outer surface of the conductive layer. In this case, when the conductive particles are used for connection between the electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when a plurality of conductive particles are in contact with each other, an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes. . In addition, the insulating substance between the conductive layer of an electroconductive particle and an electrode can be easily excluded by pressurizing electroconductive particle with two electrodes in the case of the connection between electrodes. When the conductive particles have protrusions on the surface of the conductive layer, the insulating substance between the conductive layer of the conductive particles and the electrode can be more easily eliminated. The insulating substance is preferably an insulating resin layer or insulating particles, and more preferably insulating particles. The insulating particles are preferably insulating resin particles.
 上記導電層の外表面、及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。導電層の外表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。導電層の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していても構わない。 The outer surface of the conductive layer and the surface of the insulating particles may each be coated with a compound having a reactive functional group. The outer surface of the conductive layer and the surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group into the outer surface of the conductive layer, the carboxyl group may be chemically bonded to a functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
 (導電材料)
 上記導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
(Conductive material)
The conductive material includes the conductive particles described above and a binder resin. The conductive particles are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably includes a thermoplastic component (thermoplastic compound) or a curable component, and more preferably includes a curable component. Examples of the curable component include a photocurable component and a thermosetting component. It is preferable that the said photocurable component contains a photocurable compound and a photoinitiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 The method for dispersing the conductive particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, and kneaded and dispersed with a planetary mixer or the like. A method of diluting the binder resin with water or an organic solvent, adding the conductive particles, and kneading and dispersing with a planetary mixer or the like.
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の接続信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 The viscosity (η25) at 25 ° C. of the conductive material is preferably 30 Pa · s or more, more preferably 50 Pa · s or more, preferably 400 Pa · s or less, more preferably 300 Pa · s or less. When the viscosity of the conductive material at 25 ° C. is not less than the above lower limit and not more than the above upper limit, the connection reliability between the electrodes can be further effectively improved. The said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component.
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured under conditions of 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。 The conductive material can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased. .
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、より一層好ましくは40重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下である。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。 The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, still more preferably 40% by weight or less, further preferably 20% by weight or less, and particularly preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively reduced, and the connection reliability between the electrodes can be further effectively improved. Can be increased.
 (接続構造体)
 上述した導電性粒子、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
A connection structure can be obtained by connecting the connection target member using the conductive particles described above or the conductive material including the conductive particles described above and a binder resin.
 上記接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部とを備える。上記接続構造体では、上記接続部が、導電性粒子により形成されているか、又は上記導電性粒子とバインダー樹脂とを含む導電材料により形成されていることが好ましい。上記導電性粒子は、上述した基材粒子と、上記基材粒子の表面上に配置された導電層とを備えることが好ましい。上記接続構造体では、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されていることが好ましい。 The connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the second connection target. And a connection portion connecting the connection target members. In the connection structure, the connection part is preferably formed of conductive particles or a conductive material containing the conductive particles and a binder resin. It is preferable that the said electroconductive particle is equipped with the base material particle | grains mentioned above and the electroconductive layer arrange | positioned on the surface of the said base material particle. In the connection structure, it is preferable that the first electrode and the second electrode are electrically connected by the conductive particles.
 上記導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。即ち、上記第1の接続対象部材と上記第2の接続対象部材とが上記導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。 When the conductive particles are used alone, the connection part itself is conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles. The conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。 FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
 図4に示す接続構造体41は、第1の接続対象部材42と、第2の接続対象部材43と、第1の接続対象部材42と第2の接続対象部材43とを接続している接続部44とを備える。接続部44は、導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図4では、図示の便宜上、導電性粒子1は略図的に示されている。導電性粒子1にかえて、導電性粒子21,31の他の導電性粒子を用いてもよい。 The connection structure 41 shown in FIG. 4 is a connection that connects the first connection target member 42, the second connection target member 43, and the first connection target member 42 and the second connection target member 43. Part 44. The connection part 44 is formed of a conductive material containing the conductive particles 1 and a binder resin. In FIG. 4, the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, other conductive particles of the conductive particles 21 and 31 may be used.
 第1の接続対象部材42は表面(上面)に、複数の第1の電極42aを有する。第2の接続対象部材43は表面(下面)に、複数の第2の電極43aを有する。第1の電極42aと第2の電極43aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材42,43が導電性粒子1により電気的に接続されている。 The first connection target member 42 has a plurality of first electrodes 42a on the surface (upper surface). The second connection target member 43 has a plurality of second electrodes 43a on the surface (lower surface). The first electrode 42 a and the second electrode 43 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 42 and 43 are electrically connected by the conductive particles 1.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧時の圧力は、好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記加熱時の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。 The manufacturing method of the connection structure is not particularly limited. As an example of a method of manufacturing a connection structure, a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc. The pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, more preferably 70 MPa or less. The temperature during the heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。 The first connection target member and the second connection target member are not particularly limited. Specifically as said 1st connection object member and 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, a LED chip, a LED package, a capacitor | condenser, and a diode, a resin film, a printed circuit board, flexible Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards. The first connection target member and the second connection target member are preferably electronic components.
 上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。 The conductive material is preferably a conductive material for connecting electronic components. The conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
 上記導電性粒子、及び上記導電材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブル基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブル基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブル基板がフレキシブルプリント基板等である場合に、フレキシブル基板は一般に電極を表面に有する。 The conductive particles and the conductive material are also suitably used for touch panels. Therefore, the connection target member is preferably a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film. The connection target member is preferably a flexible substrate, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film. When the flexible substrate is a flexible printed substrate or the like, the flexible substrate generally has electrodes on the surface.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 また、上記基材粒子は、液晶表示素子用スペーサとして好適に用いることができる。上記第1の接続対象部材は、第1の液晶表示素子用部材であってもよい。上記第2の接続対象部材は、第2の液晶表示素子用部材であってもよい。上記接続部は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部であってもよい。 The base material particles can be preferably used as a spacer for a liquid crystal display element. The first connection target member may be a first liquid crystal display element member. The second connection target member may be a second liquid crystal display element member. The connection portion includes the first liquid crystal display element member and the second liquid crystal display element member in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. It may be a seal portion that seals the outer periphery.
 上記基材粒子は、液晶表示素子用周辺シール剤に用いることもできる。液晶表示素子は、第1の液晶表示素子用部材と、第2の液晶表示素子用部材とを備える。液晶表示素子は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部と、上記シール部の内側で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との間に配置されている液晶とをさらに備える。この液晶表示素子では、液晶滴下工法が適用され、かつ上記シール部が、液晶滴下工法用シール剤を熱硬化させることにより形成されている。 The base material particles can also be used as a peripheral sealing agent for liquid crystal display elements. The liquid crystal display element includes a first liquid crystal display element member and a second liquid crystal display element member. The liquid crystal display element has the first liquid crystal display element member and the second liquid crystal display element member in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. And a liquid crystal disposed between the first liquid crystal display element member and the second liquid crystal display element member inside the seal part, and a liquid crystal disposed between the first liquid crystal display element member and the second liquid crystal display element member Prepare. In this liquid crystal display element, a liquid crystal dropping method is applied, and the seal portion is formed by thermosetting a sealing agent for a liquid crystal dropping method.
 図5は、本発明に係る基材粒子を液晶表示素子用スペーサとして用いた液晶表示素子の一例を示す断面図である。 FIG. 5 is a cross-sectional view showing an example of a liquid crystal display element using the substrate particles according to the present invention as a spacer for a liquid crystal display element.
 図5に示す液晶表示素子81は、一対の透明ガラス基板82を有する。透明ガラス基板82は、対向する面に絶縁膜(図示せず)を有する。絶縁膜の材料としては、例えば、SiO等が挙げられる。透明ガラス基板82における絶縁膜上に透明電極83が形成されている。透明電極83の材料としては、ITO等が挙げられる。透明電極83は、例えば、フォトリソグラフィーによりパターニングして形成可能である。透明ガラス基板82の表面上の透明電極83上に、配向膜84が形成されている。配向膜84の材料としては、ポリイミド等が挙げられている。 A liquid crystal display element 81 shown in FIG. 5 has a pair of transparent glass substrates 82. The transparent glass substrate 82 has an insulating film (not shown) on the opposing surface. Examples of the material for the insulating film include SiO 2 . A transparent electrode 83 is formed on the insulating film in the transparent glass substrate 82. Examples of the material of the transparent electrode 83 include ITO. The transparent electrode 83 can be formed by patterning, for example, by photolithography. An alignment film 84 is formed on the transparent electrode 83 on the surface of the transparent glass substrate 82. Examples of the material of the alignment film 84 include polyimide.
 一対の透明ガラス基板82間には、液晶85が封入されている。一対の透明ガラス基板82間には、複数の基材粒子11が配置されている。基材粒子11は、液晶表示素子用スペーサとして用いられている。複数の基材粒子11により、一対の透明ガラス基板82の間隔が規制されている。一対の透明ガラス基板82の縁部間には、シール剤86が配置されている。シール剤86によって、液晶85の外部への流出が防がれている。シール剤86には、基材粒子11と粒径のみが異なる基材粒子11Aが含まれている。 A liquid crystal 85 is sealed between the pair of transparent glass substrates 82. A plurality of base material particles 11 are arranged between the pair of transparent glass substrates 82. The base particle 11 is used as a spacer for a liquid crystal display element. The space between the pair of transparent glass substrates 82 is regulated by the plurality of base material particles 11. A sealing agent 86 is disposed between the edges of the pair of transparent glass substrates 82. Outflow of the liquid crystal 85 to the outside is prevented by the sealing agent 86. The sealing agent 86 includes base material particles 11 </ b> A that differ from the base material particles 11 only in particle size.
 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上であり、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。 In the liquid crystal display element, the arrangement density of spacers for liquid crystal display elements per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less. When the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform. When the arrangement density is 1000 / mm 2 or less, the contrast of the liquid crystal display element is further improved.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (試験例(1),(2),(3)及び(4)の評価)
 後述する試験例(1)~(4)の基材粒子、導電性粒子及び接続構造体について、以下の評価を実施した。なお、試験例(1),(2),(3)及び(4)間において、接続構造体の作製条件が異なるため、試験例(1),(2),(3)及び(4)間の接続構造体の評価結果は、互いに直接対比することはできない。
 (評価1)基材粒子のBET比表面積
 得られた基材粒子について、カンタクローム・インスツルメンツ社製「NOVA4200e」を用いて、窒素の吸着等温線を測定した。測定結果から、BET法に準拠して、基材粒子の比表面積を算出した。
(Evaluation of Test Examples (1), (2), (3) and (4))
The following evaluation was performed on the base particles, conductive particles, and connection structures of Test Examples (1) to (4) described later. In addition, since the production conditions of the connection structure are different between the test examples (1), (2), (3), and (4), the test examples (1), (2), (3), and (4) The evaluation results of these connection structures cannot be directly compared with each other.
(Evaluation 1) BET specific surface area of substrate particles The obtained substrate particles were measured for nitrogen adsorption isotherms using "NOVA4200e" manufactured by Cantachrome Instruments. From the measurement results, the specific surface area of the base particles was calculated based on the BET method.
 (評価2)基材粒子の全細孔容積
 得られた基材粒子について、カンタクローム・インスツルメンツ社製「NOVA4200e」を用いて、窒素の吸着等温線を測定した。測定結果から、BJH法に準拠して、基材粒子の全細孔容積を算出した。
(Evaluation 2) Total pore volume of base material particles About the obtained base material particles, nitrogen adsorption isotherm was measured using "NOVA4200e" manufactured by Cantachrome Instruments. From the measurement results, the total pore volume of the substrate particles was calculated based on the BJH method.
 (評価3)基材粒子の平均細孔径
 得られた基材粒子について、カンタクローム・インスツルメンツ社製「NOVA4200e」を用いて、窒素の吸着等温線を測定した。測定結果から、BJH法に準拠して、基材粒子の平均細孔径を算出した。
(Evaluation 3) Average pore diameter of substrate particles About the obtained substrate particles, nitrogen adsorption isotherm was measured using "NOVA4200e" manufactured by Cantachrome Instruments. From the measurement results, the average pore diameter of the substrate particles was calculated based on the BJH method.
 (評価4)基材粒子の圧縮弾性率
 得られた基材粒子について、上記圧縮弾性率(10%K値及び30%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。測定結果から、10%K値及び30%K値を算出した。
(Evaluation 4) Compression Elastic Modulus of Base Particles For the obtained base particles, the compression elastic modulus (10% K value and 30% K value) was determined by the above-described method using a micro compression tester (Fischer “ Measurement was performed using a Fischer scope H-100 "). From the measurement results, a 10% K value and a 30% K value were calculated.
 (評価5)基材粒子の圧縮回復率
 得られた基材粒子の上記圧縮回復率を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
(Evaluation 5) Compression recovery rate of base material particles The compression recovery rate of the obtained base material particles was measured by the method described above using a micro compression tester (Fischer Scope H-100 manufactured by Fischer). .
 (評価6)基材粒子の平均粒子径及び基材粒子の粒子径のCV値
 得られた基材粒子について、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の基材粒子の粒子径を測定し、平均粒子径を算出した。また、基材粒子の粒子径の測定結果から、基材粒子の粒子径のCV値を下記式から算出した。
(Evaluation 6) Average particle size of substrate particles and CV value of particle size of substrate particles About the obtained substrate particles, using a particle size distribution measuring device ("Multizer 4" manufactured by Beckman Coulter, Inc.), about 100,000 The particle diameter of the substrate particles was measured, and the average particle diameter was calculated. Moreover, the CV value of the particle diameter of the base particle was calculated from the following formula from the measurement result of the particle diameter of the base particle.
 CV値(%)=(ρ/Dn)×100
 ρ:基材粒子の粒子径の標準偏差
 Dn:基材粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of base material particle Dn: Average value of particle diameter of base material particle
 (評価7)基材粒子と導電層との密着性
 得られた導電性粒子を、自動乳鉢装置(日陶科学社製「AMM-140D」)を用いて、乳棒回転数120rpmおよび乳鉢回転数7rpm、処理時間30分で解砕処理した。この解砕後の導電性粒子を、走査型電子顕微鏡(日立ハイテクノロジー社製「Regulus8220」)を用いて、撮影場所を変えながら3000倍の粒子画像を5枚撮影した。得られた5枚の画像中の導電性粒子100個について、基材粒子の表面上に配置された導電層が剥離しているか否かを確認した。基材粒子と導電層との密着性を以下の基準で判定した。
(Evaluation 7) Adhesiveness between base material particles and conductive layer The obtained conductive particles were subjected to pestle rotation speed 120 rpm and mortar rotation speed 7 rpm using an automatic mortar apparatus (“AMM-140D” manufactured by Nissho Science Co., Ltd.). The crushing process was performed in a processing time of 30 minutes. Using the scanning electron microscope ("Regulus 8220" manufactured by Hitachi High-Technology Corporation), five 3,000-fold particle images were taken of the crushed conductive particles while changing the shooting location. About 100 electroconductive particles in the obtained 5 images, it was confirmed whether the electroconductive layer arrange | positioned on the surface of a base particle has peeled. The adhesion between the substrate particles and the conductive layer was determined according to the following criteria.
 [基材粒子と導電層との密着性の判定基準]
 ○○○:導電層の剥離した導電性粒子が0個
 ○○:導電層の剥離した導電性粒子が0個を超え15個以下
 ○:導電層の剥離した導電性粒子が15個を超え30個以下
 △:導電層の剥離した導電性粒子が30個を超え50個以下
 ×:導電層の剥離した導電性粒子が50個を超える
[Judgment criteria for adhesion between substrate particles and conductive layer]
◯◯: 0 conductive particles peeled off the conductive layer ○○: More than 0 conductive particles peeled off the conductive layer and 15 or less ○: More than 15 conductive particles peeled off the conductive layer 30 Less than or equal to Δ: More than 30 conductive particles peeled off from the conductive layer and less than 50 ×: More than 50 conductive particles peeled off from the conductive layer
 (評価8)接続信頼性(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続信頼性を下記の基準で判定した。
(Evaluation 8) Connection reliability (between upper and lower electrodes)
The connection resistances between the upper and lower electrodes of the 20 connection structures obtained were each measured by the 4-terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. Connection reliability was determined according to the following criteria.
 [接続信頼性の判定基準]
 ○○○:接続抵抗の平均値が1.5Ω以下
 ○○:接続抵抗の平均値が1.5Ωを超え2.0Ω以下
 ○:接続抵抗の平均値が2.0Ωを超え5.0Ω以下
 △:接続抵抗の平均値が5.0Ωを超え10Ω以下
 ×:接続抵抗の平均値が10Ωを超える
[Judgment criteria for connection reliability]
○○○: The average value of connection resistance is 1.5Ω or less ○○: The average value of connection resistance exceeds 1.5Ω and 2.0Ω or less ○: The average value of connection resistance exceeds 2.0Ω and 5.0Ω or less : Average value of connection resistance exceeds 5.0Ω and 10Ω or less ×: Average value of connection resistance exceeds 10Ω
 (評価9)耐衝撃性
 上記(評価8)接続信頼性の評価で得られた接続構造体を高さ70cmの位置から落下させて、上記(評価8)の評価と同様にして、接続抵抗を確認することで耐衝撃性の評価を行った。上記(評価8)の評価で得られた接続抵抗の平均値からの抵抗値の上昇率により耐衝撃性を下記の基準で判定した。
(Evaluation 9) Impact resistance The connection structure obtained by the evaluation of the above (Evaluation 8) connection reliability is dropped from a position with a height of 70 cm, and the connection resistance is reduced in the same manner as in the evaluation of (Evaluation 8). The impact resistance was evaluated by checking. The impact resistance was determined according to the following criteria based on the rate of increase in resistance value from the average value of connection resistance obtained in the above (Evaluation 8).
 [耐衝撃性の判定基準]
 ○:接続抵抗の平均値からの抵抗値の上昇率が30%以下
 △:接続抵抗の平均値からの抵抗値の上昇率が30%を超え50%以下
 ×:接続抵抗の平均値からの抵抗値の上昇率が50%を超える
[Evaluation criteria for impact resistance]
○: The increase rate of the resistance value from the average value of the connection resistance is 30% or less △: The increase rate of the resistance value from the average value of the connection resistance exceeds 30% and is 50% or less ×: Resistance from the average value of the connection resistance Value increase rate exceeds 50%
 (評価10)高温及び高湿条件後の接続信頼性
 上記(評価8)接続信頼性の評価で得られた接続構造体100個を、85℃、85%RHにて100時間放置した。放置後の100個の接続構造体について、上下の電極間の導通不良が生じているか否かを評価した。高温及び高湿条件後の接続信頼性を以下の基準で判定した。
(Evaluation 10) Connection reliability after high-temperature and high-humidity conditions 100 connection structures obtained in the above (evaluation 8) evaluation of connection reliability were left at 85 ° C. and 85% RH for 100 hours. For 100 connection structures after being left, it was evaluated whether or not poor conduction between the upper and lower electrodes occurred. Connection reliability after high temperature and high humidity conditions was determined according to the following criteria.
 [高温及び高湿条件後の接続信頼性の判定基準]
 ○○:接続構造体100個のうち、導通不良が生じている個数が1個以下である
 ○:接続構造体100個のうち、導通不良が生じている個数が2~5個である
 △:接続構造体100個のうち、導通不良が生じている個数が6~10個である
 ×:接続構造体100個のうち、導通不良が生じている個数が11個以上である
[Criteria for connection reliability after high temperature and high humidity conditions]
○○: The number of defective connection among the 100 connection structures is 1 or less. ○: The number of defective connection among the 100 connection structures is 2 to 5. Δ: Among 100 connection structures, the number of defective conductions is 6 to 10. ×: Of 100 connection structures, the number of defective conductions is 11 or more.
 (試験例(1))
 試験例(1)では、基材粒子1等を作製した。
(Test example (1))
In Test Example (1), substrate particles 1 and the like were produced.
 (実施例(1)-1)
 (1)基材粒子の作製
 種粒子として平均粒子径0.69μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
(Example (1) -1)
(1) Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 μm were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
 次に、ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)30重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2′-azobis (methyl isobutyrate) (“V-601” manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide (NOF Corporation) 2 parts by weight of “Nyper BW” manufactured by Nikon Corporation. Furthermore, 9 parts by weight of lauryl sulfate triethanolamine, 30 parts by weight of toluene (solvent) and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。 The emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、粒子径3.24μmの基材粒子を得た。 Thereafter, 490 parts by weight of a 5% by weight aqueous polyvinyl alcohol solution was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to obtain base particles having a particle size of 3.24 μm.
 (2)導電性粒子の作製
 得られた基材粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
(2) Preparation of conductive particles After washing and drying the obtained base particles, 10 parts by weight of base particles were added to 100 parts by weight of an alkaline solution containing 5% by weight of palladium catalyst solution, and an ultrasonic disperser was used. After being dispersed by using, the substrate particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles. The substrate particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain a suspension containing base particles to which the core substance was adhered.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル-ボロン導電層(厚み0.15μm)が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 μm) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
 (3)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
(3) Preparation of insulating particles The following monomer composition was placed in a 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe. Distilled water was added so that the solid content would be 10% by weight, and the mixture was stirred at 200 rpm and polymerized at 60 ° C. for 24 hours in a nitrogen atmosphere. The monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis {2- [N— (2 -Carboxyethyl) amidino] propane} 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
 (4)絶縁性粒子付き導電性粒子の作製
 上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(4) Production of conductive particles with insulating particles The insulating particles obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. 10 g of the obtained conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtration with a 3 μm mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.
 (5)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(5) Production of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30 A conductive material (anisotropic conductive paste) was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
 (6)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、78MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
(6) Production of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 μm / 10 μm was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 μm / 10 μm was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 78 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 100 degreeC and the connection structure was obtained.
 (実施例(1)-2~(1)-32及び比較例(1)-1~(1)-7)
 基材粒子の作製の際に用いたモノマー成分の種類、溶媒の種類及びそれらの配合量を、下記の表1~4に示すように変更したこと以外は実施例(1)-1と同様にして、基材粒子、導電性粒子、異方性導電フィルム及び接続構造体を得た。
(Examples (1) -2 to (1) -32 and Comparative Examples (1) -1 to (1) -7)
The same procedure as in Example (1) -1 except that the types of monomer components, the types of solvents, and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 1 to 4 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
 試験例(1)における基材粒子及び導電性粒子の詳細及び結果を表1~4に示す。 Details and results of the base particles and conductive particles in Test Example (1) are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (試験例(2))
 試験例(2)では、基材粒子2等を作製した。
(Test example (2))
In Test Example (2), substrate particles 2 and the like were produced.
 (実施例(2)-1)
 (1)基材粒子の作製
 種粒子として平均粒子径0.69μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
(Example (2) -1)
(1) Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 μm were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
 次に、ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)70重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2′-azobis (methyl isobutyrate) (“V-601” manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide (NOF Corporation) 2 parts by weight of “Nyper BW” manufactured by Nikon Corporation. Furthermore, 9 parts by weight of triethanolamine lauryl sulfate, 70 parts by weight of toluene (solvent) and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。 The emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、粒子径3.69μmの基材粒子を得た。 Thereafter, 490 parts by weight of a 5% by weight aqueous polyvinyl alcohol solution was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to obtain base particles having a particle size of 3.69 μm.
 (2)導電性粒子の作製
 得られた基材粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
(2) Preparation of conductive particles After washing and drying the obtained base particles, 10 parts by weight of base particles were added to 100 parts by weight of an alkaline solution containing 5% by weight of palladium catalyst solution, and an ultrasonic disperser was used. After being dispersed by using, the substrate particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles. The substrate particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain a suspension containing base particles to which the core substance was adhered.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル-ボロン導電層(厚み0.15μm)が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 μm) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
 (3)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
(3) Preparation of insulating particles The following monomer composition was placed in a 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe. Distilled water was added so that the solid content would be 10% by weight, and the mixture was stirred at 200 rpm and polymerized at 60 ° C. for 24 hours in a nitrogen atmosphere. The monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis {2- [N— (2 -Carboxyethyl) amidino] propane} 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
 (4)絶縁性粒子付き導電性粒子の作製
 上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(4) Production of conductive particles with insulating particles The insulating particles obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. 10 g of the obtained conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtration with a 3 μm mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.
 (5)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(5) Production of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30 A conductive material (anisotropic conductive paste) was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
 (6)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、70MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
(6) Production of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 μm / 10 μm was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 μm / 10 μm was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 70 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 100 degreeC and the connection structure was obtained.
 (実施例(2)-2~(2)-17及び比較例(2)-1~(2)-7)
 基材粒子の作製の際に用いたモノマー成分の種類、溶媒の種類及びそれらの配合量を、下記の表5~7に示すように変更したこと以外は実施例(2)-1と同様にして、基材粒子、導電性粒子、異方性導電フィルム及び接続構造体を得た。
(Examples (2) -2 to (2) -17 and Comparative Examples (2) -1 to (2) -7)
The same as Example (2) -1, except that the types of monomer components, the types of solvents, and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 5 to 7 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
 試験例(2)における基材粒子及び導電性粒子の詳細及び結果を表5~7に示す。 Tables 5 to 7 show details and results of the base particles and conductive particles in Test Example (2).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (試験例(3))
 試験例(3)では、基材粒子3等を作製した。
(Test example (3))
In Test Example (3), base material particles 3 and the like were produced.
 (実施例(3)-1)
 (1)基材粒子の作製
 種粒子として平均粒子径0.69μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
(Example (3) -1)
(1) Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 μm were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
 次に、ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)30重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2′-azobis (methyl isobutyrate) (“V-601” manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide (NOF Corporation) 2 parts by weight of “Nyper BW” manufactured by Nikon Corporation. Furthermore, 9 parts by weight of lauryl sulfate triethanolamine, 30 parts by weight of toluene (solvent) and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。 The emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、粒子径3.24μmの基材粒子を得た。 Thereafter, 490 parts by weight of a 5% by weight aqueous polyvinyl alcohol solution was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to obtain base particles having a particle size of 3.24 μm.
 (2)導電性粒子の作製
 得られた基材粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
(2) Preparation of conductive particles After washing and drying the obtained base particles, 10 parts by weight of base particles were added to 100 parts by weight of an alkaline solution containing 5% by weight of palladium catalyst solution, and an ultrasonic disperser was used. After being dispersed by using, the substrate particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles. The substrate particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain a suspension containing base particles to which the core material was adhered.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル-ボロン導電層(厚み0.15μm)が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 μm) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
 (3)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
(3) Preparation of insulating particles The following monomer composition was placed in a 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe. Distilled water was added so that the solid content would be 10% by weight, and the mixture was stirred at 200 rpm and polymerized at 60 ° C. for 24 hours in a nitrogen atmosphere. The monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis {2- [N— (2 -Carboxyethyl) amidino] propane} 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
 (4)絶縁性粒子付き導電性粒子の作製
 上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(4) Production of conductive particles with insulating particles The insulating particles obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. 10 g of the obtained conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtration with a 3 μm mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.
 (5)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(5) Production of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30 A conductive material (anisotropic conductive paste) was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
 (6)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、85MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
(6) Production of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 μm / 10 μm was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 μm / 10 μm was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 85 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 100 degreeC and the connection structure was obtained.
 (実施例(3)-2~(3)-17及び比較例(3)-1~(3)-6)
 基材粒子の作製の際に用いたモノマー成分の種類、溶媒の種類及びそれらの配合量を、下記の表8~10に示すように変更したこと以外は実施例(3)-1と同様にして、基材粒子、導電性粒子、異方性導電フィルム及び接続構造体を得た。
(Examples (3) -2 to (3) -17 and Comparative Examples (3) -1 to (3) -6)
The same as Example (3) -1, except that the types of monomer components, the types of solvents and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 8 to 10 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
 試験例(3)における基材粒子及び導電性粒子の詳細及び結果を表8~10に示す。 Tables 8 to 10 show details and results of the base particles and conductive particles in Test Example (3).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (試験例(4))
 試験例(4)では、基材粒子4等を作製した。
(Test example (4))
In Test Example (4), base material particles 4 and the like were produced.
 (実施例(4)-1)
 (1)基材粒子の作製
 種粒子として平均粒子径0.69μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
Example (4) -1)
(1) Production of substrate particles Polystyrene particles having an average particle diameter of 0.69 μm were prepared as seed particles. 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion exchange water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution were mixed to prepare a mixed solution. After the above mixed solution was dispersed by ultrasonic waves, it was put into a separable flask and stirred uniformly.
 次に、ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)180重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2′-azobis (methyl isobutyrate) (“V-601” manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide (NOF Corporation) 2 parts by weight of “Nyper BW” manufactured by Nikon Corporation. Furthermore, 9 parts by weight of triethanolamine lauryl sulfate, 180 parts by weight of toluene (solvent) and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。 The emulsified liquid was added to the mixed liquid in the separable flask in several times, stirred for 12 hours, the monomer was absorbed into the seed particles, and a suspension containing seed particles in which the monomer was swollen was obtained. .
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、粒子径3.83μmの基材粒子を得た。 Thereafter, 490 parts by weight of a 5% by weight aqueous polyvinyl alcohol solution was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to obtain base particles having a particle size of 3.83 μm.
 (2)導電性粒子の作製
 得られた基材粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
(2) Preparation of conductive particles After washing and drying the obtained base particles, 10 parts by weight of base particles were added to 100 parts by weight of an alkaline solution containing 5% by weight of palladium catalyst solution, and an ultrasonic disperser was used. After using and dispersing, the substrate particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles. The substrate particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain a suspension containing base particles to which the core material was adhered.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル-ボロン導電層(厚み0.15μm)が形成され、導電部を表面に有する導電性粒子を得た。 While stirring the obtained suspension at 60 ° C., the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 μm) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
 (3)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
(3) Preparation of insulating particles The following monomer composition was placed in a 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a cooling tube, and a temperature probe. Distilled water was added so that the solid content would be 10% by weight, and the mixture was stirred at 200 rpm and polymerized at 60 ° C. for 24 hours in a nitrogen atmosphere. The monomer composition includes methyl methacrylate 360 mmol, glycidyl methacrylate 45 mmol, parastyryl diethylphosphine 20 mmol, ethylene glycol dimethacrylate 13 mmol, polyvinylpyrrolidone 0.5 mmol, and 2,2′-azobis {2- [N— (2 -Carboxyethyl) amidino] propane} 1 mmol. After completion of the reaction, the mixture was freeze-dried to obtain insulating particles (particle diameter 360 nm) having phosphorus atoms derived from parastyryldiethylphosphine on the surface.
 (4)絶縁性粒子付き導電性粒子の作製
 上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(4) Production of conductive particles with insulating particles The insulating particles obtained above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. 10 g of the obtained conductive particles were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtration with a 3 μm mesh filter, the product was further washed with methanol and dried to obtain conductive particles with insulating particles.
 (5)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(5) Production of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac type epoxy resin 30 A conductive material (anisotropic conductive paste) was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
 (6)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、55MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
(6) Production of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 μm / 10 μm was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 μm / 10 μm was formed on the lower surface. On the transparent glass substrate, the obtained anisotropic conductive paste was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 55 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 100 degreeC and the connection structure was obtained.
 (実施例(4)-2~(4)-17及び比較例(4)-1~(4)-7)
 基材粒子の作製の際に用いたモノマー成分の種類、溶媒の種類及びそれらの配合量を、下記の表11~13に示すように変更したこと以外は実施例(4)-1と同様にして、基材粒子、導電性粒子、異方性導電フィルム及び接続構造体を得た。
(Examples (4) -2 to (4) -17 and Comparative Examples (4) -1 to (4) -7)
The same as Example (4) -1, except that the types of monomer components, the types of solvents, and the blending amounts thereof used in the production of the base particles were changed as shown in Tables 11 to 13 below. Thus, substrate particles, conductive particles, anisotropic conductive film, and connection structure were obtained.
 試験例(4)における基材粒子及び導電性粒子の詳細及び結果を表11~13に示す。 Tables 11 to 13 show details and results of the base particles and conductive particles in Test Example (4).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (試験例(1),(2),(3)及び(4)の他の評価)
 上述した試験例(1)~(4)の基材粒子について、以下の評価を実施した。
(Other evaluations of test examples (1), (2), (3) and (4))
The following evaluation was performed on the base particles of the above-described Test Examples (1) to (4).
 (評価11)液晶表示素子用スペーサとしての使用例
 STN型液晶表示素子の作製:
 イソプロピルアルコール70重量部と水30重量部とを含む分散媒に、得られるスペーサ分散液100重量%中で実施例1~32の液晶表示素子用スペーサ(基材粒子)を固形分濃度が2重量%となるように添加し、撹拌し、液晶表示素子用スペーサ分散液を得た。
(Evaluation 11) Example of use as spacer for liquid crystal display element Production of STN type liquid crystal display element:
In a dispersion medium containing 70 parts by weight of isopropyl alcohol and 30 parts by weight of water, the liquid crystal display element spacers (base material particles) of Examples 1 to 32 in a dispersion medium having a solid content concentration of 2% in 100% by weight of the obtained spacer dispersion liquid. % Was added and stirred to obtain a spacer dispersion liquid for a liquid crystal display element.
 一対の透明ガラス板(縦50mm、横50mm、厚さ0.4mm)の一面に、CVD法によりSiO膜を蒸着した後、SiO膜の表面全体にスパッタリングによりITO膜を形成した。得られたITO膜付きガラス基板に、スピンコート法によりポリイミド配向膜組成物(日産化学社製、SE3510)を塗工し、280℃で90分間焼成することによりポリイミド配向膜を形成した。配向膜にラビング処理を施した後、一方の基板の配向膜側に、液晶表示素子用スペーサを1mm当たり100個となるように湿式散布した。他方の基板の周辺にシール剤を形成した後、この基板とスペーサを散布した基板とをラビング方向が90°になるように対向配置させ、両者を貼り合わせた。その後、160℃で90分間処理してシール剤を硬化させて、空セル(液晶の入ってない画面)を得た。得られた空セルに、カイラル剤入りのSTN型液晶(DIC社製)を注入し、次に注入口を封止剤で塞いだ後、120℃で30分間熱処理してSTN型液晶表示素子を得た。 An SiO 2 film was deposited on one surface of a pair of transparent glass plates (length 50 mm, width 50 mm, thickness 0.4 mm) by a CVD method, and then an ITO film was formed on the entire surface of the SiO 2 film by sputtering. A polyimide alignment film composition (SE3510, manufactured by Nissan Chemical Industries, Ltd.) was applied to the obtained glass substrate with an ITO film by a spin coating method and baked at 280 ° C. for 90 minutes to form a polyimide alignment film. After the alignment film was rubbed, wet alignment was performed on the alignment film side of one substrate so that the number of spacers for liquid crystal display elements was 100 per 1 mm 2 . After forming a sealant around the other substrate, this substrate and the substrate on which the spacers were spread were placed opposite to each other so that the rubbing direction was 90 °, and both were bonded together. Then, it processed at 160 degreeC for 90 minute (s), the sealing agent was hardened, and the empty cell (screen which does not contain a liquid crystal) was obtained. An STN type liquid crystal containing a chiral agent (made by DIC) was injected into the obtained empty cell, and then the injection port was closed with a sealant, followed by heat treatment at 120 ° C. for 30 minutes to produce an STN type liquid crystal display element. Obtained.
 得られた液晶表示素子では、実施例(1)-1~(1)-32、(2)-1~(2)-17、(3)-1~(3)-17及び(4)-1~(4)-17の液晶表示素子用スペーサにより基板間の間隔が良好に規制されていた。また、液晶表示素子は、良好な表示品質を示した。なお、液晶表示素子の周辺シール剤に、実施例(1)-1~(1)-32、(2)-1~(2)-17、(3)-1~(3)-17及び(4)-1~(4)-17の基材粒子を液晶表示素子用スペーサとして用いた場合でも、得られた液晶表示素子の表示品質は良好であった。 In the obtained liquid crystal display element, Examples (1) -1 to (1) -32, (2) -1 to (2) -17, (3) -1 to (3) -17 and (4)- The distance between the substrates was well regulated by the liquid crystal display element spacers 1 to (4) -17. Moreover, the liquid crystal display element showed favorable display quality. Examples of the peripheral sealant for the liquid crystal display element include Examples (1) -1 to (1) -32, (2) -1 to (2) -17, (3) -1 to (3) -17, and ( Even when the substrate particles of 4) -1 to (4) -17 were used as spacers for liquid crystal display elements, the display quality of the obtained liquid crystal display elements was good.
 1…導電性粒子
 2…導電層
 11…基材粒子
 11A…基材粒子
 21…導電性粒子
 22…導電層
 22A…第1の導電層
 22B…第2の導電層
 31…導電性粒子
 31a…突起
 32…導電層
 32a…突起
 33…芯物質
 34…絶縁性物質
 41…接続構造体
 42…第1の接続対象部材
 42a…第1の電極
 43…第2の接続対象部材
 43a…第2の電極
 44…接続部
 81…液晶表示素子
 82…透明ガラス基板
 83…透明電極
 84…配向膜
 85…液晶
 86…シール剤
DESCRIPTION OF SYMBOLS 1 ... Conductive particle 2 ... Conductive layer 11 ... Base material particle 11A ... Base material particle 21 ... Conductive particle 22 ... Conductive layer 22A ... 1st conductive layer 22B ... 2nd conductive layer 31 ... Conductive particle 31a ... Protrusion 32 ... Conductive layer 32a ... Projection 33 ... Core material 34 ... Insulating material 41 ... Connection structure 42 ... First connection object member 42a ... First electrode 43 ... Second connection object member 43a ... Second electrode 44 ... Connection part 81 ... Liquid crystal display element 82 ... Transparent glass substrate 83 ... Transparent electrode 84 ... Alignment film 85 ... Liquid crystal 86 ... Sealing agent

Claims (26)

  1.  スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる基材粒子であり、
     BET比表面積が、5m/g以上であり、
     粒子径のCV値が、10%以下である、基材粒子。
    It is used as a spacer or base material particles used for obtaining conductive particles having the conductive layer by forming a conductive layer on the surface,
    The BET specific surface area is 5 m 2 / g or more,
    Base material particles having a CV value of particle diameter of 10% or less.
  2.  10%圧縮したときの圧縮弾性率が、1N/mm以上3500N/mm以下である、請求項1に記載の基材粒子。 Compressive modulus upon compression 10% is 1N / mm 2 or more 3500 N / mm 2 or less, the substrate particles of claim 1.
  3.  30%圧縮したときの圧縮弾性率が、1N/mm以上3000N/mm以下である、請求項1又は2に記載の基材粒子。 The base particle according to claim 1 or 2, wherein the compression elastic modulus when compressed by 30% is 1 N / mm 2 or more and 3000 N / mm 2 or less.
  4.  圧縮回復率が、5%以上60%以下である、請求項1~3のいずれか1項に記載の基材粒子。 The base particle according to any one of claims 1 to 3, wherein the compression recovery rate is 5% or more and 60% or less.
  5.  BET比表面積が、300m/g以上600m/g未満であり、
     10%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である、基材粒子。
    The BET specific surface area is 300 m 2 / g or more and less than 600 m 2 / g,
    Base material particles having a compressive elastic modulus of 10 N / mm 2 or more and 3000 N / mm 2 or less when compressed by 10%.
  6.  30%圧縮したときの圧縮弾性率が、100N/mm以上2500N/mm以下である、請求項5に記載の基材粒子。 Compression modulus upon compression of 30%, is 100 N / mm 2 or more 2500N / mm 2 or less, the substrate particles of claim 5.
  7.  圧縮回復率が、5%以上60%以下である、請求項5又は6に記載の基材粒子。 The base material particle according to claim 5 or 6, wherein the compression recovery rate is 5% or more and 60% or less.
  8.  粒子径のCV値が、10%以下である、請求項5~7のいずれか1項に記載の基材粒子。 The base particle according to any one of claims 5 to 7, wherein the CV value of the particle diameter is 10% or less.
  9.  スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる、請求項5~8のいずれか1項に記載の基材粒子。 The base material according to any one of claims 5 to 8, which is used as a spacer or used for obtaining conductive particles having the conductive layer by forming a conductive layer on the surface. particle.
  10.  BET比表面積が、5m/g以上300m/g未満であり、
     30%圧縮したときの圧縮弾性率が、100N/mm以上3000N/mm以下である、基材粒子。
    The BET specific surface area is 5 m 2 / g or more and less than 300 m 2 / g,
    Base material particle | grains whose compression elastic modulus when compressed by 30% is 100 N / mm 2 or more and 3000 N / mm 2 or less.
  11.  10%圧縮したときの圧縮弾性率が、100N/mm以上3500N/mm以下である、請求項10に記載の基材粒子。 Compressive modulus upon compression 10%, is 100 N / mm 2 or more 3500 N / mm 2 or less, the substrate particles of claim 10.
  12.  圧縮回復率が、5%以上60%以下である、請求項10又は11に記載の基材粒子。 The base material particles according to claim 10 or 11, wherein the compression recovery rate is 5% or more and 60% or less.
  13.  粒子径のCV値が、10%以下である、請求項10~12のいずれか1項に記載の基材粒子。 The substrate particles according to any one of claims 10 to 12, wherein the CV value of the particle diameter is 10% or less.
  14.  スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる、請求項10~13のいずれか1項に記載の基材粒子。 The substrate according to any one of claims 10 to 13, which is used as a spacer or used to obtain conductive particles having the conductive layer by forming a conductive layer on the surface. particle.
  15.  BET比表面積が、600m/g以上であり、
     10%圧縮したときの圧縮弾性率が、1200N/mm以下であり、
     30%圧縮したときの圧縮弾性率が、1200N/mm以下であり、
     圧縮回復率が、5%以上である、基材粒子。
    The BET specific surface area is 600 m 2 / g or more,
    The compression elastic modulus when compressed by 10% is 1200 N / mm 2 or less,
    The compression elastic modulus when compressed by 30% is 1200 N / mm 2 or less,
    Base material particles having a compression recovery rate of 5% or more.
  16.  粒子径のCV値が、10%以下である、請求項15に記載の基材粒子。 The base particle according to claim 15, wherein the CV value of the particle diameter is 10% or less.
  17.  スペーサとして用いられるか、又は、表面上に導電層が形成されることで、前記導電層を有する導電性粒子を得るために用いられる、請求項15又は16に記載の基材粒子。 The substrate particles according to claim 15 or 16, which are used as spacers or used to obtain conductive particles having the conductive layer by forming a conductive layer on the surface.
  18.  密度が、1g/cm以上1.4g/cm以下である、請求項1~17のいずれか1項に記載の基材粒子。 The base particle according to any one of claims 1 to 17, wherein the density is 1 g / cm 3 or more and 1.4 g / cm 3 or less.
  19.  全細孔容積が、0.01cm/g以上3cm/g以下である、請求項1~18のいずれか1項に記載の基材粒子。 The base particle according to any one of claims 1 to 18, wherein the total pore volume is 0.01 cm 3 / g or more and 3 cm 3 / g or less.
  20.  平均細孔径が、10nm以下である、請求項1~19のいずれか1項に記載の基材粒子。 The substrate particles according to any one of claims 1 to 19, wherein the average pore diameter is 10 nm or less.
  21.  平均粒子径が、0.1μm以上100μm以下である、請求項1~20のいずれか1項に記載の基材粒子。 The substrate particles according to any one of claims 1 to 20, wherein the average particle diameter is 0.1 μm or more and 100 μm or less.
  22.  請求項1~21のいずれか1項に記載の基材粒子と、
     前記基材粒子の表面上に配置された導電層とを備える、導電性粒子。
    Base material particles according to any one of claims 1 to 21;
    Electroconductive particle provided with the conductive layer arrange | positioned on the surface of the said base material particle.
  23.  前記導電層の外表面上に配置された絶縁性物質をさらに備える、請求項22に記載の導電性粒子。 The conductive particle according to claim 22, further comprising an insulating material disposed on the outer surface of the conductive layer.
  24.  前記導電層の外表面に突起を有する、請求項22又は23に記載の導電性粒子。 24. The conductive particles according to claim 22 or 23, wherein the conductive particles have protrusions on the outer surface.
  25.  導電性粒子と、バインダー樹脂とを含み、
     前記導電性粒子が、請求項1~21のいずれか1項に記載の基材粒子と、前記基材粒子の表面上に配置された導電層とを備える、導電材料。
    Containing conductive particles and a binder resin,
    A conductive material comprising the conductive particles according to any one of claims 1 to 21 and a conductive layer disposed on a surface of the base particles.
  26.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~21のいずれか1項に記載の基材粒子と、前記基材粒子の表面上に配置された導電層とを備え、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    A connection portion connecting the first connection target member and the second connection target member;
    The connecting portion is formed of conductive particles or formed of a conductive material containing the conductive particles and a binder resin;
    The conductive particles comprise base particles according to any one of claims 1 to 21 and a conductive layer disposed on the surface of the base particles,
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2019/019702 2018-05-18 2019-05-17 Substrate particle, conductive particle, conductive material, and connection structure WO2019221278A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019548487A JP7348839B2 (en) 2018-05-18 2019-05-17 Base material particles, conductive particles, conductive materials and connected structures
KR1020207031259A KR20210010447A (en) 2018-05-18 2019-05-17 Substrate particle, conductive particle, conductive material and connection structure
CN201980031897.5A CN112105986A (en) 2018-05-18 2019-05-17 Base material particle, conductive material, and connection structure

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-096214 2018-05-18
JP2018096214 2018-05-18
JP2018-096215 2018-05-18
JP2018-096216 2018-05-18
JP2018-096217 2018-05-18
JP2018096215 2018-05-18
JP2018096216 2018-05-18
JP2018096217 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221278A1 true WO2019221278A1 (en) 2019-11-21

Family

ID=68539898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019702 WO2019221278A1 (en) 2018-05-18 2019-05-17 Substrate particle, conductive particle, conductive material, and connection structure

Country Status (5)

Country Link
JP (1) JP7348839B2 (en)
KR (1) KR20210010447A (en)
CN (1) CN112105986A (en)
TW (1) TW202003719A (en)
WO (1) WO2019221278A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258515A (en) * 1985-09-06 1987-03-14 富士高分子工業株式会社 Anisotropic conductor
JPH0950036A (en) * 1995-08-10 1997-02-18 Sekisui Chem Co Ltd Spacer for liquid crystal display and liquid crystal display device
JP2001266651A (en) * 2000-01-13 2001-09-28 Maruo Calcium Co Ltd Core/shell-like conductive organic-inorganic composite and its manufacturing method, and composition containing the complex
JP2003222876A (en) * 2002-01-31 2003-08-08 Canon Inc Liquid crystal display element, liquid crystal display device and method for analyzing impurity in liquid crystal
US20100285189A1 (en) * 2007-06-15 2010-11-11 Joachim Schoelkopf Filtering and/or Flocculating Aids for the Purification of Liquid Foods
JP2014205759A (en) * 2013-04-12 2014-10-30 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive material, and connection structure
WO2015060232A1 (en) * 2013-10-25 2015-04-30 三井金属鉱業株式会社 Conductive particles and method for producing same
JP2017183200A (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 Conductive particle, anisotropic conductive material and connection structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183478B2 (en) 2002-10-25 2008-11-19 積水化学工業株式会社 Spacers for liquid crystal display elements
JP2005235509A (en) * 2004-02-18 2005-09-02 Jsr Corp Anisotropic conductive sheet, inspection device and inspection method for circuit device
JP4962706B2 (en) * 2006-09-29 2012-06-27 日本化学工業株式会社 Conductive particles and method for producing the same
JP5383218B2 (en) 2009-01-22 2014-01-08 積水化成品工業株式会社 Modified monodisperse particles, method for producing the same, and light diffusion film including the same
CN102382227B (en) * 2011-08-12 2014-03-19 天津博纳艾杰尔科技有限公司 Swelling copolymerization preparation method of N-vinyl pyrrolidone and divinylbenzene monodisperse microsphere
EP2810959B1 (en) 2012-01-31 2019-06-12 Sekisui Plastics Co., Ltd. Porous resin particle, method for producing same, dispersion liquid, and application thereof
KR101534841B1 (en) * 2012-11-07 2015-07-07 제일모직주식회사 Bump-type conductive microspheres and an anisotropic conductive film comprising the same
CN106660797B (en) * 2014-07-03 2019-07-12 东丽株式会社 The manufacturing method of Porous carbon material and Porous carbon material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258515A (en) * 1985-09-06 1987-03-14 富士高分子工業株式会社 Anisotropic conductor
JPH0950036A (en) * 1995-08-10 1997-02-18 Sekisui Chem Co Ltd Spacer for liquid crystal display and liquid crystal display device
JP2001266651A (en) * 2000-01-13 2001-09-28 Maruo Calcium Co Ltd Core/shell-like conductive organic-inorganic composite and its manufacturing method, and composition containing the complex
JP2003222876A (en) * 2002-01-31 2003-08-08 Canon Inc Liquid crystal display element, liquid crystal display device and method for analyzing impurity in liquid crystal
US20100285189A1 (en) * 2007-06-15 2010-11-11 Joachim Schoelkopf Filtering and/or Flocculating Aids for the Purification of Liquid Foods
JP2014205759A (en) * 2013-04-12 2014-10-30 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive material, and connection structure
WO2015060232A1 (en) * 2013-10-25 2015-04-30 三井金属鉱業株式会社 Conductive particles and method for producing same
JP2017183200A (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 Conductive particle, anisotropic conductive material and connection structure

Also Published As

Publication number Publication date
KR20210010447A (en) 2021-01-27
TW202003719A (en) 2020-01-16
JPWO2019221278A1 (en) 2021-04-22
CN112105986A (en) 2020-12-18
JP7348839B2 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
KR102172942B1 (en) Base material particle, conductive particle, conductive material, and connection structure
JP2019173015A (en) Base particle, conductive particle, conductive material, and connection structure
JP5620608B1 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP6333626B2 (en) Projection particle, conductive particle, conductive material, and connection structure
JP6641164B2 (en) Base particles, conductive particles, conductive material and connection structure
JP2021036525A (en) Base particle, conductive particle, conductive material, and connection structure
JP2020037705A (en) Base material particle, conductive particle, conductive material and connection structure
JP6306970B2 (en) Base particle, conductive particle, conductive material, and connection structure
US11884782B2 (en) Resin particles, conductive particles, conductive material and connection structure
TW202044283A (en) Conductive particles, conductive material, and connection structure
JP2021057188A (en) Conductive particle, conductive material, connection structure and method for producing connection structure
WO2019221278A1 (en) Substrate particle, conductive particle, conductive material, and connection structure
JP5996806B2 (en) Conductive particles, conductive materials, and connection structures
JP2017063033A (en) Conductive particle, conductive film, connection structure and method for manufacturing connection structure
JP6460673B2 (en) Base particle, conductive particle, conductive material, and connection structure
WO2017051872A1 (en) Connection structure production method, conductive particles, conductive film, and connection structure
JP6345536B2 (en) Base particle, conductive particle, conductive material, and connection structure
JP2020200458A (en) Particle, conductive particle, conductive material and connection structure
JP6426913B2 (en) Protruding particles, conductive particles, conductive materials and connection structures
JP6084886B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP6696721B2 (en) Base particle, conductive particle, conductive material, and connection structure
JP6212380B2 (en) Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
JP2014160647A (en) Base particle, conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548487

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802529

Country of ref document: EP

Kind code of ref document: A1