WO2019220831A1 - 油脂の新規分解微生物 - Google Patents

油脂の新規分解微生物 Download PDF

Info

Publication number
WO2019220831A1
WO2019220831A1 PCT/JP2019/016023 JP2019016023W WO2019220831A1 WO 2019220831 A1 WO2019220831 A1 WO 2019220831A1 JP 2019016023 W JP2019016023 W JP 2019016023W WO 2019220831 A1 WO2019220831 A1 WO 2019220831A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
acid
microorganism
fat
oils
Prior art date
Application number
PCT/JP2019/016023
Other languages
English (en)
French (fr)
Inventor
弘貴 尾崎
祐太 若尾
Original Assignee
シーシーアイホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーアイホールディングス株式会社 filed Critical シーシーアイホールディングス株式会社
Priority to CN201980032090.3A priority Critical patent/CN112262210B/zh
Priority to CA3100311A priority patent/CA3100311A1/en
Priority to US17/053,092 priority patent/US11897799B2/en
Priority to JP2020519519A priority patent/JP7230013B2/ja
Priority to EP19802489.5A priority patent/EP3795675A4/en
Publication of WO2019220831A1 publication Critical patent/WO2019220831A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/347Use of yeasts or fungi
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/343Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of grease, fat, oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the present invention relates to a novel degrading microorganism for fats and oils.
  • Waste water (waste water) from kitchens and food factories usually contains garbage and cooking oil. Solids such as raw garbage can be easily removed from the waste water by providing a basket or the like at the drain outlet, but it is not easy to remove liquid substances such as cooking oil. Therefore, in facilities such as kitchens and food factories that discharge wastewater mixed with a large amount of fat and oil, a detoxification facility (for example, a grease trap) is provided to collect the fat and oil and separate and dispose of the fat that has floated on the upper layer. It has been.
  • a detoxification facility for example, a grease trap
  • the oil accumulated in the grease trap solidifies and remains as scum (lumps of oil) on the water surface of the grease trap, or it accumulates and adheres to the inner wall surface of the grease trap or inside the pipe, thereby closing the pipe. There is. At this time, the accumulated fats and oils may be oxidized and spoiled to cause odors and pests. Moreover, if the accumulated fats and oils are allowed to stand, the grease trap's ability to remove fats and oils decreases, and the fats and oils flow out into sewage and rivers. Therefore, when fats and oils are accumulated in the grease trap, it is necessary to request a specialized supplier to remove the fats and oils by vacuum treatment or high-pressure washing treatment, which increases costs.
  • Patent Document 1 discloses Bacillus subtilis BN1001 (Bacillus subtilis BN1001) as a microorganism that can be used in applications such as reducing the amount of n-hexane extract in oil-containing wastewater or decomposing scum accumulated in a drainage tank such as a kitchen. Is described.
  • the microorganisms used in the grease trap are required to have characteristics capable of purifying wastewater even in a water quality environment having a wide range of pH (for example, pH 2.0 or more and less than 11.0).
  • pH for example, pH 2.0 or more and less than 11.0.
  • conventionally known microorganisms have not had such characteristics sufficiently.
  • an object thereof is to provide a microorganism excellent in the effect of reducing fats and oils in an abatement facility.
  • an object is to provide a microorganism that can purify wastewater even in a water quality environment of a wide range of pH (for example, pH 2.0 or more and less than 11.0).
  • the present inventors have conducted intensive research to solve the above problems. As a result, the present inventors have found that the above problems can be solved by microorganisms belonging to Astero tremella humicola and exhibiting predetermined mycological properties, and the present invention has been completed.
  • FIG. 1 schematically shows the mechanism of wastewater treatment by a grease trap.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • One embodiment of the present invention is a microorganism that belongs to Astero tremella humicola and exhibits the following mycological properties.
  • the microorganism according to the present invention is excellent in the effect of reducing fats and oils in an abatement facility.
  • the microorganism according to the present invention can purify wastewater even in a water quality environment of a wide range of pH (for example, pH 2.0 or more and less than 11.0).
  • the microorganism of this embodiment reduces 1% (w / v) of fat and oil by 50% by weight or more in 24 hours under the condition of pH 2 or more and less than 11.
  • the microorganism of this embodiment is Astero tremella humicola strain 2-141-1 (Accession number NITE BP-02641).
  • the microorganism according to the present invention was isolated from soil in Tajimi City, Gifu Prefecture by the following screening method.
  • Screening method An appropriate amount of a sample collected from the waste liquid of Gifu Prefecture or grease trap, sewage, river water, hot spring water, etc. is added to 5 mL of the primary screening liquid medium prepared by the following method, and cultured at 30 ° C for one week. To do. 100 ⁇ L of the culture solution after the culture is further inoculated into 5 mL of the liquid medium for primary screening and cultured again at 30 ° C. for one week.
  • each component other than fats and oils is dissolved in pure water so as to have the composition shown in Table 2 below, and the fats and oils are added to a final concentration of 0.5 w / v%, followed by high-temperature and high-pressure sterilization.
  • fats and oils are prepared by mixing rapeseed oil and soybean oil at a ratio of 1: 1 (w / w).
  • a final concentration of 0.5 w / v% and agar are added to a final concentration of 2.0 w / v%, and after high-temperature and high-pressure sterilization, they are appropriately dispensed and solidified.
  • Each isolated strain obtained in the secondary screening is inoculated with a platinum loop one by one into a LB medium prepared by the following method, followed by shaking culture (140 rpm) at 30 ° C. for 24 hours.
  • 100 ⁇ L of the obtained culture solution is inoculated into the test solution prepared by the above method, followed by shaking culture (140 rpm) at 30 ° C. for 24 hours.
  • the liquid medium for tertiary screening is prepared by dissolving each component in pure water, adjusting to pH 6.0 with hydrochloric acid, and sterilizing at high temperature and high pressure so as to have the composition shown in Table 4 below.
  • LB medium is prepared by dissolving each component purely and sterilizing at high temperature and high pressure so as to have the composition shown in Table 5 below.
  • a normal hexane extract is prepared according to JIS K0102: 2016 revision (industrial wastewater test method).
  • the normal hexane extract was used as the residual amount of oil and fat, and the fat and oil reduction rate was calculated from the following formula (1) using 0.05 g of oil and fat added during the preparation of the test solution and the residual amount of fat and oil (the amount of normal hexane extract (g)). Ask for. As a result, it is possible to isolate a strain having a high fat reduction rate.
  • the base sequence of the 26S rDNA-D1 / D2 region was determined for the isolated strain having a high fat reduction rate.
  • the determined nucleotide sequence of the 26S rDNA-D1 / D2 region of the isolated microorganism is shown in SEQ ID NO: 1 below.
  • YM agar plate medium (1.0% (w / v) glucose, 0.5% (w / v) peptone, 0.3% (w / v) malt extract, 0.3% (w / V) Yeast extract, 1.5% (w / v) agar) (pH unadjusted) was used.
  • Colony Observation Colonies showed the following properties in aerobic culture for 1 week at 27 ° C. on a YM agar plate medium.
  • Physiological property test The method of physiological property test is described in Kurtzman, C .; P. Fell, J .; W. and Boekhout, T .; (2011) The Yeasts, a taxonomic study, 5th Edition. Elsevier, Amsterdam, Netherlands. The culture was performed at 25 ° C. except for the temperature tolerance test. The results are shown in Tables 7-1 and 7-2. Moreover, in addition to the isolated strain obtained above, the well-known A.I. The physiological properties of humicola are also shown.
  • the isolated strain was different from the yeast belonging to the known Astero tremella humicola, such as assimilation of soluble starch and nitrate, and growth in 50% glucose. . Therefore, the isolated strain is judged to be a novel microorganism, and this strain is also referred to as “Astero tremella humicola” strain 2-141-1 (hereinafter simply referred to as “2-141-1 strain”). ).
  • the strain 2-141-1 belongs to Astero tremella humicola, and is 1% (w / v) under the condition of pH 2.0 to less than 11.0, preferably pH 2.0 to 10.5. Is reduced by 50% by weight or more in 24 hours.
  • the strain 2-141-1 can be applied with 1% (w / v) of fats and oils in 24 hours under the conditions of 30 ° C., pH 2.0 to 11.0, preferably pH 2.0 to 10.5. Reduce by 50% by weight or more.
  • the lower limit of the pH is more preferably 2.5 or more.
  • the upper limit of the pH is more preferably 10.0 or less, and even more preferably 9.0 or less.
  • the pH is adjusted by adjusting any acid such as inorganic acid such as hydrochloric acid, nitric acid, carbonic acid and sulfuric acid, organic acid such as citric acid and lactic acid, and salts thereof; and / or any acid such as sodium hydroxide, potassium hydroxide and ammonia.
  • any acid such as inorganic acid such as hydrochloric acid, nitric acid, carbonic acid and sulfuric acid, organic acid such as citric acid and lactic acid, and salts thereof; and / or any acid such as sodium hydroxide, potassium hydroxide and ammonia.
  • alkali hydrochloric acid (acid side) or sodium hydroxide (alkali side) is preferable.
  • the test solution is inoculated with a microorganism cultured on a flat plate medium (for example, an agar medium for secondary screening), and cultured with shaking (140 rpm) at an arbitrary temperature range for 24 hours.
  • the amount of bacteria to be inoculated is about one platinum ear.
  • Microorganisms inoculated into the test solution may be precultured in LB medium or the like. By pre-culturing, the amount of bacteria to be inoculated can be easily adjusted.
  • inoculate 1 mL of the test solution to 1.5 ⁇ 10 6 CFU / mL.
  • the culture temperature may be set in accordance with a temperature range in which the microbial cells are highly capable of decomposing and assimilating fats and oils.
  • a normal hexane extract is prepared according to JIS K0102: 2016 revision (industrial wastewater test method).
  • the oil and fat added at the time of preparing the test liquid (0.05 g) and the residual amount of fat and oil (the amount of normal hexane extract (g)) were calculated according to the above formula (1). Find the rate of decrease.
  • the microorganism according to the present invention has a fat reduction rate determined by the above method in all test solutions prepared using a fat degradation evaluation medium having a pH set in the above range (for example, pH 2.0 to 10.5). May be 50% by weight or more. In a preferred embodiment of the present invention, the fat reduction rate when cultured at 30 ° C.
  • the fat / oil reduction rate is 50% by weight or more, more preferably 90% by weight or more. Since the fat / oil reduction rate is preferably as high as possible, the upper limit is not particularly set. For example, the oil / oil reduction rate measured by the above method is 90% or less. If the culture is continued for a long time, the amount of oil reduction increases. However, since microorganisms are sequentially excreted from the abatement facility, the microorganisms are usually replenished to the abatement facility about every 1 to 3 days. Therefore, a microorganism showing a fat / oil reduction rate of 50% by weight or more in a short time (for example, within 24 hours) is excellent in practical use.
  • the water quality environment of the wastewater from the abatement facilities can easily vary depending on the type of garbage that is discharged. Therefore, it is preferable that the microorganisms used in the abatement facility can purify the wastewater in a wide range of pH environments.
  • the strain 2-141-1 is excellent in that it can decompose oils and fats even in a wide range of pH environments (for example, pH 2.0 to 10.5).
  • oil and fat refers to edible or industrial fats and oils and fatty acids containing a large amount of glycerides such as triglycerides, diglycerides and monoglycerides.
  • examples of the oil include olive oil, canola oil, coconut oil, sesame oil, rice oil, rice bran oil, safflower oil, soybean oil, corn oil, rapeseed oil, palm oil, palm kernel oil, sunflower oil, cottonseed oil, and palm oil.
  • Edible oils such as peanut oil, beef tallow, lard, chicken oil, fish oil, whale oil, butter, margarine, fat spread, shortening; and industrial oils such as linseed oil, jatropha oil, tall oil, hamana oil, castor oil, jojoba oil , But is preferably edible oil / fat that is frequently discharged in restaurants and the like where a grease trap is often installed.
  • the fatty acid is not particularly limited, for example, butyric acid, hexanoic acid, heptanoic acid, octanoic acid, decanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, Saturated fatty acids such as stearic acid, arachidic acid, behenic acid, lignoceric acid; decenoic acid, myristoleic acid, pentadecenoic acid, palmitoleic acid, heptadecenoic acid, oleic acid, icosenic acid, docosenoic acid, tetracosenoic acid, hexadecadienoic acid, hexa Decatrienoic acid, hexadecatetraenoic acid, linoleic acid, ⁇ -linolenic acid, ⁇ -
  • the method for culturing microorganisms belonging to Asteroremera / Humicola according to the present invention may be any method as long as the microorganisms can grow and proliferate.
  • the medium used for culturing the microorganism may be either a solid or liquid medium, and any medium containing a carbon source, an appropriate amount of nitrogen source, an inorganic salt, and other nutrients that can be assimilated by the microorganism used.
  • Either a synthetic medium or a natural medium may be used.
  • the culture medium contains a carbon source, a nitrogen source and an inorganic substance.
  • the carbon source that can be used in the cultivation of the oil-degrading microorganism is not particularly limited as long as the carbon source can be assimilated by the strain used. Specifically, in consideration of microbial utilization, glucose, fructose, cellobiose, raffinose, xylose, maltose, galactose, sorbose, glucosamine, ribose, arabinose, rhamnose, sucrose, trehalose, ⁇ -methyl-D-glucoside , Salicin, melibiose, lactose, melezitose, inulin, erythritol, ribitol, xylitol, glucitol, mannitol, galactitol, inositol, N-acetyl-D-glucosamine, starch, starch hydrolyzate, molasses, sugars such as molasses, wheat , Natural products such as rice
  • the carbon source is appropriately selected in view of assimilation by the microorganism to be cultured.
  • the 2-141-1 strain among the above carbon sources, glucose, galactose, sorbose, glucosamine, arabinose, rhamnose, sucrose, maltose, trehalose, ⁇ -methyl-D-glucoside, cellobiose, salicin, melibiose , Lactose, melezitose, starch hydrolysate, glycerol, erythritol, ribitol, xylitol, glucitol, mannitol, galactitol, inositol, gluconic acid, glucuronic acid, lactic acid, succinic acid, citric acid, gluconic acid, ethanol, etc. preferable.
  • the said carbon source can be used 1 type or 2 types or more selected.
  • Nitrogen sources that can be used in the cultivation of oil-degrading microorganisms include meat extract, fish extract, peptone, polypeptone, tryptone, yeast extract, malt extract, soybean hydrolysate, soybean powder, casein, milk casein, casamino acid, glycine, glutamic acid
  • Organic nitrogen sources such as various amino acids such as aspartic acid, corn steep liquor, other animal, plant and microorganism hydrolysates
  • ammonium salts such as ammonia, ammonium nitrate, ammonium sulfate and ammonium chloride, nitrates such as sodium nitrate, nitrous acid
  • nitrites such as sodium and inorganic nitrogen sources such as urea.
  • the nitrogen source is appropriately selected in view of assimilation by the microorganism to be cultured.
  • the 2-141-1 strain it is preferable to use fish extract, tryptone, yeast extract, ammonium chloride, etc. among the nitrogen sources. Further, one or more of the nitrogen sources can be selected and used.
  • inorganic substances that can be used in the cultivation of oil-degrading microorganisms include magnesium, manganese, calcium, sodium, potassium, copper, iron, and zinc, such as phosphates, hydrochlorides, sulfates, acetates, carbonates, and chlorides. And halides.
  • the said inorganic substance is suitably selected in consideration of the assimilation property by the microorganisms to culture.
  • one or more of the above inorganic materials can be selected and used.
  • fats and oils In order to efficiently decompose and assimilate fats and oils in the microorganism according to the present invention or to maintain the ability of microorganisms to decompose and assimilate fats and oils, it is preferable to add fats and oils to the medium.
  • the fats and oils include the aforementioned edible fats and oils, industrial fats and oils, and fatty acids.
  • the addition amount of fats and oils is not particularly limited, and can be appropriately selected in consideration of fats and oils decomposition and assimilation ability by microorganisms to be cultured.
  • the microorganism can maintain a high ability to decompose and assimilate fats and oils.
  • fats and oils may be added alone or in the form of a mixture of two or more.
  • the culture of the microorganism according to the present invention can be performed by a usual method.
  • the microorganism is cultured under aerobic conditions or anaerobic conditions. In the former case, the culture of microorganisms is performed by shaking or aeration stirring.
  • the microorganisms may be cultured continuously or in batches.
  • the culture conditions are appropriately selected depending on the composition of the medium and the culture method, and are not particularly limited as long as the microorganisms according to the present invention can grow, and can be appropriately selected according to the type of microorganism to be cultured.
  • the culture temperature is preferably 15 to 40 ° C, more preferably 25 to 35 ° C.
  • the pH of the medium suitable for culture is not particularly limited, but is preferably 2 to 10.5, more preferably 2.5 to 9.0.
  • the culture time is not particularly limited, and varies depending on the type of microorganism to be cultured, the amount of medium, culture conditions, and the like. Usually, the culture time is preferably 16 to 48 hours, more preferably 20 to 30 hours.
  • One embodiment of the present invention relates to a wastewater treatment method including a step of bringing a microorganism according to the present invention into contact with wastewater containing fats and oils.
  • the microorganism according to the present invention is excellent in the effect of reducing fats and oils, and has a characteristic that it can purify wastewater even in a water quality environment having a wide pH range (for example, pH 2 or more and less than 11.0). Therefore, fats and oils can be effectively reduced by bringing the microorganisms according to the present invention into contact with wastewater containing fats and oils.
  • a preferred embodiment of the present invention is a wastewater treatment method, wherein the wastewater containing fats and oils comprises Asterotremela humicola strain 2-141-1. Note that the above description regarding the microorganism can be modified as needed and applied to the present embodiment.
  • FIG. 1 schematically shows the mechanism of waste water treatment (waste water treatment) by the grease trap 10.
  • the microorganism according to the present invention may be added in advance to the wastewater before being discharged to the grease trap 10, but is typically added to the wastewater in the wastewater treatment tank 1.
  • the wastewater treatment method according to the present invention is not particularly limited as long as the microorganism according to the present invention can be brought into contact with the oil-containing wastewater.
  • the grease trap 10 is not particularly limited in its installation form such as an embedded type or a movable type.
  • the grease trap 10 In the case of the buried type, for example, in a kitchen or a food processing plant, the grease trap 10 is buried so that the wastewater that has flowed into the drainage channel is poured into the residue receiver 3.
  • the grease trap 10 In the case of the movable type, for example, the grease trap 10 is installed so that the residue receiver 3 is positioned below the drainage groove of the sink.
  • drainage flows in the direction of the arrow.
  • the drainage to the grease trap 10 may be a batch type or a continuous type.
  • the fat and oil-containing wastewater flows into the wastewater treatment tank 1 through the residue receiver 3.
  • all or part of the residue such as garbage is collected in the residue receiver 3, but most of the oil and fat flows into the waste water treatment tank 1 through the residue receiver 3.
  • the oil 6 that has flowed into the waste water treatment tank 1 floats toward the water surface 5 by the partition plate 2b and collects in a space partitioned by the partition plates 2a and 2c. Therefore, when the microorganisms according to the present invention are not added to the waste water, the oil 6 gradually aggregates in the space partitioned by the partition plates 2a and 2c to form a scum.
  • the wastewater containing oil and fat and the microorganism according to the present invention are It will come into contact. Since the microorganisms according to the present invention have high fat and oil decomposing activity and have assimilability, aggregation of the oil and fat 6 can be suppressed and scum can be effectively prevented from being formed.
  • strain 2-141-1 has a high oil-degrading activity even in a wide pH range (for example, pH 2.0 or more and less than 11.0). This prevents the oil and fat from flowing out to the external environment through the trap tube 4 without depending on the pH of the waste water, which is advantageous from the viewpoint of environmental conservation.
  • the microorganism according to the present invention has various forms such as a state suspended in a culture solution, a state recovered from the culture solution as a solid, a dried state, and a state immobilized on a carrier. Can be brought into contact with drainage.
  • the microorganisms suspended in the culture solution, recovered as a solid content from the culture solution, or dried are added to, for example, waste water and brought into contact with the waste water.
  • Microorganisms in a state of being immobilized on the carrier may be added to the wastewater.
  • the carrier on which the microorganisms are immobilized is placed in a grease trap, and the wastewater is allowed to flow through the microorganism-immobilized carrier. Can also be brought into contact with each other.
  • the culture solution of the oil-degrading microorganisms cultured by the above-described method can be obtained by solid-liquid separation by centrifugation, filtration, etc., and collecting the solid content. If this solid content is dried (for example, freeze-dried), a dried oil-degrading microorganism can be obtained.
  • the carrier for immobilizing the oil-degrading microorganism is not particularly limited as long as it can immobilize the microorganism, and generally immobilizes the microorganism.
  • the carrier used for this is used in the same manner or appropriately modified. For example, a method of comprehensively fixing to a gel-like substance such as alginic acid, polyvinyl alcohol, gellan gum, agarose, cellulose, dextran, or a method of adsorbing and fixing to the surface of glass, activated carbon, polystyrene, polyethylene, polypropylene, wood, silica gel, etc. it can.
  • the method for immobilizing the oil-degrading microorganisms on the carrier is not particularly limited, and a general method for immobilizing microorganisms is used in the same manner or appropriately modified.
  • a general method for immobilizing microorganisms is used in the same manner or appropriately modified.
  • an immobilization method by pouring a microorganism culture solution into a carrier an immobilization method by pouring the carrier under a reduced pressure using an aspirator, and a microorganism culture solution into the carrier, and a medium in which the microorganism culture solution is sterilized
  • a method of pouring into a mixture of a carrier and a carrier, culturing with shaking, and naturally drying the carrier taken out of the mixture For example, a method of pouring into a mixture of a carrier and a carrier, culturing with shaking, and naturally drying the carrier taken out of the mixture.
  • the amount of bacteria added can be arbitrarily set.
  • the amount of bacteria added to the wastewater is not particularly limited, but is, for example, 1 ⁇ 10 4 to 1 ⁇ 10 12 CFU, preferably 1 ⁇ 10 5 to 1 ⁇ 10, per 1 g of fats and oils contained in the wastewater. 11 CFU.
  • the amount may be, for example, 1 ⁇ 10 6 to 1 ⁇ 10 12 CFU / L, more preferably 1 ⁇ 10 7 to 1 ⁇ 10 11 CFU / L with respect to the wastewater in the grease trap. .
  • the total amount is meant.
  • the oil-decomposing microorganisms When the wastewater is discharged to the outside environment, the oil-decomposing microorganisms that are not immobilized on the carrier are discharged together with the wastewater to the outside of the grease trap. Therefore, in the present invention, the oil-decomposing microorganisms are periodically added to the grease trap (drainage). It is preferable to do this.
  • the addition interval is not particularly limited, but for example, it is preferable to add at once / three hours, once / 24 hours, or once every two to three days.
  • the method of adding is not particularly limited, and when the wastewater flows continuously into the grease trap, it may be added to the wastewater or may be added directly to the wastewater in the grease trap. If microorganisms are added from a drain outlet such as a kitchen sink, the microorganisms can be introduced into the grease trap together with the wastewater discharged by washing.
  • other components may be added to the wastewater from the viewpoint of more efficiently reducing fats and oils.
  • other components include microorganisms, lipases, pH adjusters, fat and oil adsorbents, surfactants and the like described in JP-A-2017-136033.
  • the grease trap may be configured to continuously introduce fat and oil-containing wastewater and continuously discharge the treated wastewater, or after introducing fat and oil-containing wastewater and treating it together, the treated wastewater. May be discharged in a batch.
  • the temperature at which the oil-degrading microorganisms and the oil are brought into contact with each other can be arbitrarily set. Moreover, it can also set arbitrarily as pH at the time of contacting an oil-fat decomposition microorganism and fats, ie, pH of the waste_water
  • the temperature is, for example, 10 to 50 ° C., preferably 15 to 35 ° C., and more preferably 20 to 30 ° C.
  • the pH is, for example, 2.0 or more and less than 11.0, preferably 2.0 to 10.5, and more preferably 2.5 to 9.0.
  • the waste water may be aerated by aeration or the like as necessary.
  • the waste water treatment agent containing the microorganisms which concern on the said invention is provided.
  • the microorganism according to the present invention is excellent in the effect of reducing fats and oils, and has a characteristic capable of purifying wastewater even in a water quality environment having a wide pH range (for example, pH 2.0 or more and less than 11.0). Therefore, fats and oils can be effectively reduced by using the wastewater treatment agent containing microorganisms according to the present invention for wastewater treatment facilities (abatement facilities) such as grease traps.
  • wastewater treatment facilities abatement facilities
  • the description regarding the above-described microorganisms and the wastewater treatment method may be modified as necessary and applied to the present embodiment.
  • the wastewater treatment agent may be in a dry form or in a liquid form, but a dry form such as powder, granules, pellets, and tablets is preferable from the viewpoint of storage stability.
  • the microorganism according to the present invention used for such a wastewater treatment agent in a dry form includes a bacterial powder obtained by drying a culture solution by spray drying, freeze drying, or the like, or a bacterium in a state of being immobilized on a carrier as described above It may be a body, and may be formed into a powder, granule, pellet, or tablet. Alternatively, the bacterial cells and the culture solution may be encapsulated with hydroxypropylmethylcellulose, gelatin, or the like.
  • the wastewater treatment agent may also contain excipients such as hydroxypropylcellulose, dextrin, lactose, starch and the like.
  • the microorganisms according to the present invention contained in the wastewater treatment agent may be dead or live, but are preferably live from the viewpoint of the persistence of the oil-degrading activity.
  • the amount of the microorganism according to the present invention contained in the wastewater treatment agent is, for example, 10 to 100% by weight in the solid content of the wastewater treatment agent.
  • the amount of the microorganism according to the present invention contained in the wastewater treatment agent is, for example, an amount of 1 ⁇ 10 2 to 1 ⁇ 10 10 CFU / g with respect to the whole wastewater treatment agent.
  • the wastewater treatment agent is a group consisting of other microorganisms capable of symbiosis with the microorganisms according to the present invention, an oil-degrading enzyme, an oil-and-fat adsorbent, and a surfactant as long as the objective effect of the present invention is achieved.
  • An additive such as one or more selected from may be included.
  • oil-degrading enzymes, oil-and-fat adsorbents, and surfactants for example, those described in JP-A-2017-136033 can be used.
  • Example 1 Isolation of microorganisms A sample collected from soil in Tajimi City, Gifu Prefecture was inoculated into a liquid medium for primary screening by the above method and cultured at 30 ° C for one week. 100 ⁇ L of the culture solution after the culture was further inoculated into 5 mL of the liquid medium for primary screening, and again cultured at 30 ° C. for one week.
  • a normal hexane extract was prepared according to JIS K0102: 2016 revision (industrial wastewater test method).
  • the normal hexane extract was used as the residual amount of oil and fat, and the fat and oil reduction rate was calculated from the following formula (1) using 0.05 g of oil and fat added during the preparation of the test solution and the residual amount of fat and oil (the amount of normal hexane extract (g)). Asked. As a result, a strain having a high rate of fat reduction was isolated.
  • the isolated strain was named Astero tremella humicola strain 2-141-1, and deposited with the Patent Microorganism Depositary, National Institute of Technology and Evaluation (Accession Number NITE BP-02641).
  • Example 2 Evaluation of oil / fat reduction rate Sterilized test solution by adding 0.05 g of oil / fat to 5 mL of liquid medium for tertiary screening whose pH was adjusted in the range of 1.5 to 11.0 using hydrochloric acid or sodium hydroxide.
  • the isolated strain cultured on the agar medium for secondary screening was inoculated into one platinum loop with the platinum loop and the test solution prepared above, and cultured with shaking (140 rpm) at 30 ° C. for 24 hours.
  • the strain 2-141-1 reduced 1% (w / v) of fats and oils by 50% by weight or more in 24 hours under the conditions of 30 ° C. and pH 2.0 to less than 11.0. I understand. That is, it can be seen that the 2-141-1 strain is excellent in fat and oil decomposing ability even in a water environment of a wide pH range.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】油脂の低減効果に優れた微生物を提供する。 【解決手段】アステロトレメラ・ヒュミコラ(Asterotremella humicola)2-141-1株(受託番号NITE BP-02641)またはこれと同一の菌学的性質を有する微生物。

Description

油脂の新規分解微生物
 本発明は、油脂の新規分解微生物に関する。
 厨房や食品工場からの排水(廃水)には、通常、生ゴミや調理用油が含まれている。生ゴミ等の固形物は、排水口にカゴ等を設けることによって容易に排水から除去することが可能であるが、調理油のように液状のものを除去することは容易ではない。したがって、多量の油脂が混入した排水を排出する厨房や食品工場などの施設において、油脂を集積し上層部に浮上した油脂を分離して廃棄するため、除害施設(例えば、グリーストラップ)が設けられている。
 しかしながら、グリーストラップ内で集積した油脂が固形化し、グリーストラップの水面にスカム(油の塊)として残留したり、グリーストラップの内壁面や配管内部に集積・付着して配管を閉塞したりすることがある。このとき、集積した油脂は、酸化・腐敗して、悪臭・害虫の発生原因となることがある。また、集積した油脂を放置すると、グリーストラップの油脂除去能力が低下し、下水や河川に油脂を流出させてしまう。そのため、グリーストラップ内で油脂が集積した場合、専門の業者に依頼してバキューム処理や高圧洗浄処理などで油脂の除去を行う必要があるためコストがかかってしまう。
 そこで、グリーストラップにおいて、効率よく油脂を低減する方法、特に、油脂の分解・資化を行う微生物を用いる方法が検討されている。例えば、特許文献1には、含油排水中のnヘキサン抽出物質を減じたり、厨房等の排水槽にたまるスカムを分解したりする用途で用いられ得る微生物として、バチルス・サブチリスBN1001(Bacillus subtilis BN1001)が記載されている。
特開平3-236771号公報
 しかしながら、従来の微生物では、除害施設の排水に含まれる油脂を十分に低減することが困難な場合があった。特に、グリーストラップ内の排水のpH等の水質は、排出される食品残渣等によって大きく変化し得る。このため、グリーストラップ内で使用される微生物には、広範なpH(例えば、pH2.0以上11.0未満)の水質環境においても排水を浄化し得る特性が求められる。しかしながら、従来公知の微生物では、そのような特性が十分なものではなかった。
 したがって、本発明は、上記事情を鑑みてなされたものであり、除害施設における油脂の低減効果に優れた微生物を提供することを課題とする。特に、広範なpH(例えば、pH2.0以上11.0未満)の水質環境においても排水を浄化し得る微生物を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく鋭意研究を行った。その結果、アステロトレメラ・ヒュミコラ(Asterotremella humicola)に属し、所定の菌学的性質を示す微生物によって上記課題が解決されることを見出し、本発明の完成に至った。
図1は、グリーストラップによる排水処理の仕組みを模式的に表す。
 以下、本発明の一形態に係る実施の形態を説明する。本発明は、以下の実施の形態のみには限定されない。
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 <微生物>
 本発明の一形態は、アステロトレメラ・ヒュミコラ(Asterotremella humicola)に属し、以下の菌学的性質を示す微生物である。本発明に係る微生物は、除害施設における油脂の低減効果に優れる。特に、本発明に係る微生物は、広範なpH(例えば、pH2.0以上11.0未満)の水質環境においても排水を浄化し得る。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 好ましい実施形態では、本形態の微生物は、pH2以上11未満の条件で、1%(w/v)の油脂を24時間で50重量%以上低減する。
 特に好ましい実施形態では、本形態の微生物は、アステロトレメラ・ヒュミコラ(Asterotremella humicola)2-141-1株(受託番号NITE BP-02641)である。
 [スクリーニング]
 本発明に係る微生物は、以下のスクリーニング方法により、岐阜県多治見市の土壌から単離した。
 1.スクリーニング方法
 岐阜県の土壌またはグリーストラップの廃液、下水、河川水、温泉水などから採取したサンプルを、以下の方法で作製された一次スクリーニング用液体培地5mLに適量添加し、30℃で一週間培養する。培養後の培養液100μLをさらに一次スクリーニング用液体培地5mLに接種し、再度30℃で一週間培養する。
 一次スクリーニング用液体培地は、以下の表2の組成となるように油脂以外の各成分を純水に溶解し、油脂を終濃度0.5w/v%となるように添加し、高温高圧滅菌して調製する。なお、油脂は、菜種油と大豆油とを1:1(w/w)の割合で混合して調製する。
Figure JPOXMLDOC01-appb-T000005
 10倍希釈した一次スクリーニング後の培養液100μLを、以下の方法で作製された二次スクリーニング用寒天培地に塗布し、30℃で48時間培養する。培養後、油脂の分解によるハロの形成が確認できた菌株を単離する。
 二次スクリーニング用寒天培地は、以下の表3の組成となるように、油脂および寒天以外の各成分を純水に溶解し、油脂(菜種油:大豆油=1:1(w/w))を終濃度0.5w/v%および寒天を終濃度2.0w/v%となるように添加し、高温高圧滅菌した後、適宜分注して固化させて調製する。
Figure JPOXMLDOC01-appb-T000006
 次に、油脂0.05g(菜種油:大豆油=1:1(w/w))を、以下の方法で作製された三次スクリーニング用液体培地5mLに加えて、滅菌した試験液を調製する(油脂1%(w/v))。上記二次スクリーニングで得た各単離菌株を白金耳で一白金耳ずつ、以下の方法で作製されたLB培地に接種し、30℃で24時間振盪培養(140rpm)する。得られた培養液100μLを、上記方法で調製した試験液に接種し、30℃で24時間振盪培養(140rpm)する。
 三次スクリーニング用液体培地は、以下の表4の組成となるように、各成分を純水に溶解し、塩酸にてpH6.0に調整し、高温高圧滅菌して調製する。
Figure JPOXMLDOC01-appb-T000007
 LB培地は、以下の表5の組成となるように、各成分を純粋に溶解し、高温高圧滅菌して調製する。
Figure JPOXMLDOC01-appb-T000008
 培養後、JIS K0102:2016改正(工業排水試験方法)に準じてノルマルヘキサン抽出物を調製する。ノルマルヘキサン抽出物を油脂の残存量とし、試験液の調製時に添加した油脂0.05gと油脂の残存量(ノルマルヘキサン抽出物の量(g))とから、下記数式(1)により油脂減少率を求める。その結果、油脂減少率の高い菌株を単離することができる。
Figure JPOXMLDOC01-appb-M000009
 油脂減少率が高かった単離した菌株について、26S rDNA-D1/D2領域の塩基配列を決定した。決定された単離微生物の26S rDNA-D1/D2領域の塩基配列を下記配列番号:1に示す。
Figure JPOXMLDOC01-appb-C000010
 微生物同定用DNAデータベースDB-FU10.0(株式会社テクノスルガラボ)および国際塩基配列データベース(DDBJ/ENA(EMBL)/GenBank)に対するBLAST検索の結果、単離微生物の26S rDNA-D1/D2領域の塩基配列は、アステロトレメラ(Asterotremella)属の26S rDNA-D1/D2領域の塩基配列に対して高い相同性(相同率:99.3~100%)を示した。単離微生物は、特にアステロトレメラ・ヒュミコラ(Asterotremella humicola)(現行名:Vanrija humicola)CBS571株(アクセッション番号AF189836)に対して相同率100%の高い相同性を示した。以上より、単離微生物は、アステロトレメラ・ヒュミコラ(Asterotremella humicola)に帰属すると推定された。
 2.化学的性質
 上記スクリーニングによって得られた菌株の菌学的性質を以下に示す。形態観察には、以下を用いた。
Figure JPOXMLDOC01-appb-T000011
 また、培地として、YM寒天平板培地(1.0%(w/v)グルコース、0.5%(w/v)ペプトン、0.3%(w/v)麦芽エキス、0.3%(w/v)酵母エキス、1.5%(w/v)寒天)(pH無調整)を用いた。
 2-1.コロニー観察
 YM寒天平板培地上で27℃下、好気培養1週間において、コロニーは以下の性状を示した。
Figure JPOXMLDOC01-appb-T000012
 2-2.形態観察
 YM寒天平板培地上で27℃下において培養開始1週間目に、栄養細胞は、楕円形~棍棒型であり、増殖は、出芽によることが確認された。
 YM寒天平板培地上で27℃下において、培養2ヶ月を経過した平板で有性生殖器官の形成は認められなかった。
 2-3.生理性状試験
 生理性状試験の方法は、Kurtzman,C.P., Fell,J.W. and Boekhout,T. (2011) The Yeasts, a taxonomic study, 5th Edition. Elsevier, Amsterdam, Netherlands.に準拠し、培養は、温度耐性試験を除いて25℃で行った。結果を表7-1および7-2に示す。また、上記で得られた単離菌株に加えて、帰属が推定される公知のA.humicolaの生理性状を併記する。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 3.諸性質
 単離された菌株は、可溶性デンプンおよびナイトレートの資化性、50%グルコースにおける生育性など従来公知のアステロトレメラ・ヒュミコラ(Asterotremella humicola)に属する酵母とは性質の異なるものであった。したがって、単離された菌株は、新規な微生物であると判断し、本菌株をアステロトレメラ・ヒュミコラ(Asterotremella humicola)2-141-1株(以下、単に「2-141-1株」とも称する)と命名した。また、この2-141-1株は、2018年2月21日付で、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NPMD)(日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室)に国際寄託されており、その受託番号は、NITE BP-02641である。
 2-141-1株は、アステロトレメラ・ヒュミコラ(Asterotremella humicola)に属し、pH2.0以上11.0未満、好ましくはpH2.0以上10.5以下の条件で、1%(w/v)の油脂を24時間で50重量%以上低減する。また、前記2-141-1株は、30℃、pH2.0以上11.0未満、好ましくはpH2.0以上10.5以下の条件で、1%(w/v)の油脂を24時間で50重量%以上低減する。前記pHの下限は、より好ましくは2.5以上である。また、前記pHの上限は、より好ましくは10.0以下、さらに好ましくは9.0以下である。
 [油脂低減効果の評価]
 本明細書において、油脂の減少は、以下の方法により評価される。すなわち、菜種油:大豆油=1:1(w/w)である油脂0.05gを、pH以外は上記の三次スクリーニング用液体培地と同じである無菌処理済の油脂分解評価用培地(5mL)に加えて試験液を調製する(油脂1%(w/v))。このとき使用する油脂分解評価用培地としては、pHを1.5~11.0の範囲で調整したものを用いる(例えば、pH1.5、2、2.5、3、4、5、6、7、8、9、10、10.5および11の油脂分解評価用培地)。pHの調整は塩酸、硝酸、炭酸、硫酸などの無機酸やクエン酸、乳酸などの有機酸等の任意の酸やこれらの塩;および/または水酸化ナトリウム、水酸化カリウム、アンモニア等の任意のアルカリ;によって行えばよいが、好ましくは塩酸(酸性側)または水酸化ナトリウム(アルカリ側)である。
 この試験液に対し、平板培地(例えば、二次スクリーニング用寒天培地)上で培養した微生物を接種し、任意の温度帯で24時間振盪(140rpm)培養する。接種する菌の量は、白金耳で一白金耳程度である。試験液に接種する微生物は、LB培地などで前培養したものを用いても良い。前培養することにより、接種する菌量を容易に調節できる。前培養した微生物を用いる場合は、試験液1mLに対し、1.5×10CFU/mLとなるように接種する。培養温度は菌体の油脂分解・資化能が高い温度帯に合わせて設定すればよいが、例えば15~35℃、好ましくは20~30℃である。
 培養後、JIS K0102:2016改正(工業排水試験方法)に準じてノルマルヘキサン抽出物を調製する。ノルマルヘキサン抽出物を油脂の残存量とし、試験液の調製時に添加した油脂(0.05g)と油脂の残存量(ノルマルヘキサン抽出物の量(g))とから、上記数式(1)により油脂減少率を求める。本発明に係る微生物は、pHを上記範囲(例えば、pH2.0~10.5)で設定した油脂分解評価用培地を使用して調製された試験液全てにおいて、上記方法で求められる油脂減少率が50重量%以上であればよい。本発明の好ましい実施形態では、30℃で培養した場合における油脂減少率が、50重量%以上であり、より好ましくは、90重量%以上である。油脂減少率は高いほど好ましいので、上限は特に設定されないが、例えば、上記方法にて測定される油脂減少率が90%以下である。長時間培養すれば油脂減少量は多くなる。しかしながら、微生物は除害施設から順次排泄されるため、通常、約1~3日ごとに除害施設へ微生物が補給される。従って、短時間(例えば24時間以内)で50重量%以上の油脂減少率を示す微生物は、実用面で優れる。
 除害施設の排水の水質環境は、排出される生ゴミの種類等によって容易に変動し得る。従って、除害施設で使用される微生物には、広範なpHの環境において排水を浄化し得ることが好ましい。2-141-1株は広範なpHの環境(例えば、pH2.0~10.5)においても油脂を分解し得るという点において優れている。
 本明細書において「油脂」とは、トリグリセリド、ジグリセリドおよびモノグリセリドのようなグリセリド類を多く含む食用または工業用油脂、ならびに脂肪酸を指す。前記油脂としては、例えば、オリーブ油、キャノーラ油、ココナッツ油、ごま油、米油、米ぬか油、サフラワー油、大豆油、トウモロコシ油、菜種油、パーム油、パーム核油、ひまわり油、綿実油、やし油、落花生油、牛脂、ラード、鶏油、魚油、鯨油、バター、マーガリン、ファットスプレッド、ショートニング等の食用油脂;およびアマニ油、ジャトロファ油、トール油、ハマナ油、ひまし油、ホホバ油等の工業用油脂;が含まれるが、好ましくはグリーストラップが設置されることが多いレストラン等で頻繁に排出される食用油脂である。脂肪酸としては、特に限定されるものではないが、例えば、酪酸、ヘキサン酸、ヘプタン酸、オクタン酸、デカン酸、ラウリン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、ペンタデカン酸、パルミチン酸、ヘプタデカン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸;デセン酸、ミリストレイン酸、ペンタデセン酸、パルミトレイン酸、ヘプタデセン酸、オレイン酸、イコセン酸、ドコセン酸、テトラコセン酸、ヘキサデカジエン酸、ヘキサデカトリエン酸、ヘキサデカテトラエン酸、リノール酸、α-リノレン酸、γ-リノレン酸、オクタデカテトラエン酸、イコサジエン酸、イコサトリエン酸、イコサテトラエン酸、アラキドン酸、イコサペンタエン酸、ヘンイコサペンタエン酸、ドコサジエン酸、ドコサテトラエン酸、ドコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸等の不飽和脂肪酸;が挙げられる。脂肪酸は、食用または工業用油脂が分解されて生じたものであってもよい。
 [微生物の培養]
 本発明に係るアステロトレメラ・ヒュミコラに属する微生物(以下、単に「油脂分解微生物」とも称する)の培養方法は、当該微生物が生育・増殖できるものであれば、いずれのものであってよい。例えば、微生物の培養に使用する培地は、固体または液体培地のいずれでもよく、また、使用する微生物が資化しうる炭素源、適量の窒素源、無機塩及びその他の栄養素を含有する培地であれば、合成培地または天然培地のいずれでもよい。通常、培地は、炭素源、窒素源および無機物を含む。
 油脂分解微生物の培養において使用できる炭素源としては、使用する菌株が資化できる炭素源であれば特に制限されない。具体的には、微生物の資化性を考慮して、グルコース、フラクトース、セロビオース、ラフィノース、キシロース、マルトース、ガラクトース、ソルボース、グルコサミン、リボース、アラビノース、ラムノース、スクロース、トレハロース、α-メチル-D-グルコシド、サリシン、メリビオース、ラクトース、メレジトース、イヌリン、エリスリトール、リビトール、キシリトール、グルシトール、マンニトール、ガラクチトール、イノシトール、N-アセチル-D-グルコサミン、デンプン、デンプン加水分解物、糖蜜、廃糖蜜等の糖類、麦、米等の天然物、グリセロール、メタノール、エタノール等のアルコール類、酢酸、乳酸、コハク酸、グルコン酸、グルクロン酸、ピルビン酸、クエン酸等の有機酸類、ヘキサデカン等の炭化水素などが挙げられる。上記炭素源は、培養する微生物による資化性を考慮して適宜選択される。例えば、2-141-1株を用いる場合は、上記炭素源のうち、グルコース、ガラクトース、ソルボース、グルコサミン、アラビノース、ラムノース、スクロース、マルトース、トレハロース、α-メチル-D-グルコシド、セロビオース、サリシン、メリビオース、ラクトース、メレジトース、デンプン加水分解物、グリセロール、エリスリトール、リビトール、キシリトール、グルシトール、マンニトール、ガラクチトール、イノシトール、グルコン酸、グルクロン酸、乳酸、コハク酸、クエン酸、グルコン酸、エタノール等を用いることが好ましい。また、上記炭素源を1種または2種以上選択して使用することができる。
 油脂分解微生物の培養において使用できる窒素源としては、肉エキス、魚肉エキス、ペプトン、ポリペプトン、トリプトン、酵母エキス、麦芽エキス、大豆加水分解物、大豆粉末、カゼイン、ミルクカゼイン、カザミノ酸、グリシン、グルタミン酸、アスパラギン酸等の各種アミノ酸、コーンスティープリカー、その他の動物、植物、微生物の加水分解物等の有機窒素源;アンモニア、硝酸アンモニウム、硫酸アンモニウム、塩化アンモニウムなどのアンモニウム塩、硝酸ナトリウムなどの硝酸塩、亜硝酸ナトリウムなどの亜硝酸塩、尿素等の無機窒素源などが挙げられる。上記窒素源は、培養する微生物による資化性を考慮して適宜選択される。例えば、2-141-1株を用いる場合は、上記窒素源のうち、魚肉エキス、トリプトン、酵母エキス、塩化アンモニウム等を用いることが好ましい。
また、上記窒素源を1種または2種以上選択して使用することができる。
 油脂分解微生物の培養において使用できる無機物としては、マグネシウム、マンガン、カルシウム、ナトリウム、カリウム、銅、鉄及び亜鉛などの、リン酸塩、塩酸塩、硫酸塩、酢酸塩、炭酸塩、塩化物等のハロゲン化物などが挙げられる。上記無機物は、培養する微生物による資化性を考慮して適宜選択される。また、上記無機物を1種または2種以上選択して使用することができる。また、培地中に、必要に応じて、界面活性剤等を添加してもよい。
 本発明に係る微生物に効率よく油脂を分解・資化させるあるいは微生物の油脂分解・資化能を維持するためには、培地中に油脂を添加することが好ましい。油脂としては、上述の食用油脂、工業用油脂、ならびに脂肪酸が例示できる。油脂の添加量は、特に制限されず、培養する微生物による油脂分解・資化能などを考慮して適宜選択されうる。具体的には、油脂(菜種油:大豆油=1:1(w/w))を、培地1L中に1~30g、より好ましくは5~15gの濃度で添加することが好ましい。このような添加量であれば、微生物は、高い油脂分解・資化能を維持できる。なお、油脂は、単独で添加してもまたは2種以上の混合物の形態で添加してもよい。
 本発明に係る微生物の培養は、通常の方法によって行える。例えば、微生物の種類によって、好気的条件下または嫌気的条件下で、微生物を培養する。前者の場合には、微生物の培養は、振盪あるいは通気攪拌などによって行われる。また、微生物を連続的にまたはバッチで培養してもよい。培養条件は、培地の組成や培養法によって適宜選択され、本発明に係る微生物が増殖できる条件であれば特に制限されず、培養する微生物の種類に応じて適宜選択されうる。通常は、培養温度が、好ましくは15~40℃、より好ましくは25~35℃である。また、培養に適当な培地のpHは、特に制限されないが、好ましくは2~10.5、より好ましくは2.5~9.0である。さらに、培養時間は、特に制限されず、培養する微生物の種類、培地の量、培養条件などによって異なる。通常は、培養時間は、好ましくは16~48時間、より好ましくは20~30時間である。
 <排水処理方法>
 本発明の一実施形態は、油脂を含む排水に、上記本発明に係る微生物を接触させる工程を含む、排水処理方法に関する。本発明に係る微生物は油脂の低減効果に優れ、特に、広範なpH(例えば、pH2以上11.0未満)の水質環境においても排水を浄化し得る特性を有する。従って、油脂を含む排水に、上記本発明に係る微生物を接触させることにより、油脂を効果的に低減することができる。本発明の好ましい実施形態は、油脂を含む排水に、アステロトレメラ・ヒュミコラ(Asterotremella humicola)2-141-1株を含む、排水処理方法である。なお、上記の微生物に関する説明は、必要に応じて改変されて本実施形態に適用され得る。
 以下、図1を参酌しながら、本側面に係る排水処理方法についてより詳細に説明する。なお、本発明の排水処理方法が、図1に限定されるものではない。
 図1は、グリーストラップ10による排水処理(廃水処理)の仕組みを模式的に表している。排水処理方法において、本発明に係る微生物は、グリーストラップ10に排出する前の排水にあらかじめ添加されていても良いが、典型的には、排水処理槽1中の排水へ添加される。但し、本発明に係る排水処理方法は、本発明に係る微生物と油脂含有排水とを接触させることができる限り特に限定されない。
 グリーストラップ10は、埋設式、可動式など、設置形態は特に制限されない。埋設式の場合、例えば厨房や食品加工場において、排水路に流出した排水が残渣受け3に注ぎ込まれるように、グリーストラップ10を埋設する。可動式の場合、例えば、シンクの排水溝の下部に残渣受け3が位置するようにグリーストラップ10を設置する。
 図1において、排水は、矢印の方向へ流れる。なお、グリーストラップ10への排水の投入は、回分式であっても連続式であっても良い。油脂含有排水は、残渣受け3を通じて排水処理槽1へと流れ込む。このとき、生ゴミ等の残渣の全部または一部は残渣受け3で捕集されるが、大部分の油脂は残渣受け3を通過して排水処理槽1へと流入する。排水処理槽1へ流入した油脂6は仕切り版2bによって水面5へ向かって浮上し、仕切り板2aと2cとで仕切られた空間に集まる。従って、本発明に係る微生物を排水に加えない場合、仕切り板2aと2cとで仕切られた空間で油脂6が次第に凝集し、スカムを形成することとなる。
 本発明に係る微生物をグリーストラップ10に適用した場合、排水処理槽1にて(主として、仕切り板2aと2cとで仕切られた空間にて)、油脂を含む排水と本発明に係る微生物とが接触することとなる。本発明に係る微生物は油脂の分解活性が高く、資化性を有するため、油脂6の凝集を抑制し、スカムが形成されることを有効に防止し得る。特に、2-141-1株は、広範なpH領域(例えば、pH2.0以上11.0未満)においても高い油脂分解活性を備える。これにより、排水のpHに依存せず、油脂がトラップ管4を通じて外部環境へ流出することを防止し、環境保全の観点からも利点がある。
 排水処理方法において、本発明に係る微生物は、培養液中に懸濁された状態、培養液から固形分として回収された状態、乾燥された状態、担体に固定化された状態など、様々な形態で排水に接触させられ得る。培養液中に懸濁され、培養液から固形分として回収され、または乾燥された状態の微生物は、例えば、排水中へ添加され、排水と接触させられる。担体に固定化された状態の微生物は、排水中へ添加されてもよいが、微生物を固定化した担体をグリーストラップ内に設置し、微生物固定化担体に排水を通液させることにより微生物と排水とを接触させることもできる。担体に固定化した微生物をグリーストラップ内に設置することにより、排水と共に微生物が流出して菌数が低下することを防止し得る。
 培養液から固形分として回収した本発明に係る微生物を使用する場合、回収方法は当業者に公知のいずれの手段も採用できる。例えば、上述の方法により培養した油脂分解微生物の培養液を、遠心分離やろ過などにより固液分離し、固形分を回収して得ることができる。この固形分を乾燥(例えば、凍結乾燥)すれば、乾燥された状態の油脂分解微生物を得ることができる。
 担体に固定化された状態の油脂分解微生物を用いる場合、油脂分解微生物を固定化する担体としては、微生物を固定化することができるものであれば特に制限されず、一般的に微生物を固定化するのに使用される担体が同様にしてあるいは適宜修飾されて使用される。例えば、アルギン酸、ポリビニルアルコール、ゲランガム、アガロース、セルロース、デキストラン等のゲル状物質に包括固定する方法や、ガラス、活性炭、ポリスチレン、ポリエチレン、ポリプロピレン、木材、シリカゲル等の表面に吸着固定する方法などが使用できる。
 また、油脂分解微生物を担体に固定化する方法もまた特に制限されず、一般的な微生物の固定化方法が同様にしてあるいは適宜修飾されて使用される。例えば、微生物の培養液を担体に流し込むことによる固定化法、アスピレーターを用いて担体を減圧下におき、微生物の培養液を担体に流し込むことによる固定化法、および微生物の培養液を滅菌した培地と担体との混合物に流し込み、振とう培養し、上記混合物から取り出した担体を自然乾燥する方法などが挙げられる。
 本発明にかかる方法において、排水に油脂分解微生物を添加して接触させる場合、添加する菌量は任意に設定できる。排水に添加する菌量は、特に制限されるものではないが、排水に含まれる油脂1gに対して例えば1×10~1×1012CFUであり、好ましくは1×10~1×1011CFUである。あるいは、排水に含まれる油脂1gに対して、例えば0.1mg~5g(乾燥菌体重量)であり、好ましくは1mg~1.5g(乾燥菌体重量)であり、より好ましくは10mg~150mg(乾燥菌体重量)である。または、グリーストラップ内の排水に対して、例えば1×10~1×1012CFU/L、より好ましくは1×10~1×1011CFU/Lとなるような量であってもよい。あるいは、グリーストラップ内の排水に対して、例えば10mg~15g(乾燥菌体重量)/Lであり、好ましくは0.1g~1.5g(乾燥菌体重量)/Lである。なお、微生物を2種以上組み合わせて用いる場合は、その合計量を意味する。なお、排水に添加する微生物は、前培養したものを用いても良い。前培養することにより、接種する菌量を容易に調節できる。
 排水を外部環境へ排出する際、担体に固定化しない油脂分解微生物は排水と共にグリーストラップ外へと排出されるので、本発明においては、グリーストラップ(排水)に、定期的に油脂分解微生物を添加するのが好ましい。添加する間隔は特に制限されないが、例えば、1回/3時間、1回/24時間、または2~3日に1回の間隔で添加するのが好ましい。添加する方法は特に制限されず、排水が連続的にグリーストラップに流入する場合には、排水に混在させて添加してもよいし、グリーストラップ内の排水に直接、添加してもよい。厨房のシンクなどの排水口から微生物を添加すれば、洗浄により排出される排水とともに、微生物をグリーストラップ内に導入することができる。
 排水処理方法において、本発明に係る微生物に加えて、油脂をより効率的に減少させる観点から、他の成分を排水に添加してもよい。他の成分としては、例えば、特開2017-136033号公報に記載の微生物、リパーゼ、pH調整剤、油脂吸着剤、界面活性剤などが挙げられる。
 グリーストラップは、油脂含有排水を連続的に導入し、処理後の排水を連続的に排出する形態であってもよいし、油脂含有排水を導入し、一括して処理した後に、処理後の排水を一括して排出する形態であってもよい。
 また、本発明に係る排水処理方法において、油脂分解微生物と油脂とを接触させる際の温度、すなわちグリーストラップ内の排水の温度としては、任意に設定することができる。また、油脂分解微生物と油脂とを接触させる際のpH、すなわちグリーストラップ内の排水のpHとしても、任意に設定することができる。一般的には、温度は、例えば10~50℃であり、15~35℃が好ましく、20~30℃がより好ましい。pHは例えば2.0以上11.0未満であり、好ましくは2.0~10.5であり、より好ましくは2.5~9.0である。さらに、必要に応じて曝気等により排水にエアレーションを行っても良い。
 <排水処理剤>
 本発明の一実施形態では、上記本発明に係る微生物を含む、排水処理剤が提供される。本発明に係る微生物は油脂の低減効果に優れ、特に、広範なpH(例えば、pH2.0以上11.0未満)の水質環境においても排水を浄化し得る特性を有する。従って、本発明に係る微生物を含む排水処理剤をグリーストラップ等の排水処理設備(除害施設)に用いることにより、油脂を効果的に低減することができる。なお、上記の微生物および排水処理方法に関する説明は、必要に応じて改変されて本実施形態に適用され得る。
 排水処理剤は乾燥形態または液状のいずれであっても良いが、粉末、顆粒、ペレット、タブレット等の乾燥形態が保存性の観点から好ましい。かような乾燥形態の排水処理剤に用いられる本発明に係る微生物としては、培養液を噴霧乾燥や凍結乾燥等により乾燥した菌体末、または上記のように担体に固定化された状態の菌体でも良く、さらに、粉末、顆粒、ペレット、またはタブレット状に成形してもよい。または、ヒドロキシプロピルメチルセルロースやゼラチン等により、菌体や培養液をカプセル化してもよい。排水処理剤はまた、ヒドロキシプロピルセルロース、デキストリン、乳糖、デンプン等の賦形剤を含んでもよい。
 排水処理剤に含まれる本発明に係る微生物は、死菌であっても生菌であっても良いが、油脂分解活性の持続性の観点から生菌であることが好ましい。
 排水処理剤に含まれる本発明に係る微生物の量は、例えば、排水処理剤の固形分中、例えば10~100重量%である。または、排水処理剤に含まれる本発明に係る微生物の量は、例えば、排水処理剤全体に対して、1×10~1×1010CFU/gとなる量である。また、排水処理剤は、本発明の目的効果が達成される限りにおいて、上記の本発明に係る微生物と共生可能な他の微生物、油脂分解性酵素、油脂吸着剤、および界面活性剤からなる群から選択される1種以上等の添加剤を含んでも良い。共生可能な他の微生物、油脂分解性酵素、油脂吸着剤、および界面活性剤としては、例えば特開2017-136033号公報に記載のものを使用できる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 実施例1:微生物の単離
 岐阜県多治見市の土壌から採取したサンプルを上記方法にて一次スクリーニング用液体培地に接種し、30℃で一週間培養した。培養後の培養液100μLをさらに一次スクリーニング用液体培地5mLに接種し、再度30℃で一週間培養した。
 10倍希釈した一次スクリーニング後の培養液100μLを、上記方法で作製された二次スクリーニング用寒天培地に塗布し、30℃で一週間培養した。培養後、油脂の分解によるハロの形成が確認できた菌株を単離した。
 次に、油脂0.05g(菜種油:大豆油=1:1(w/w))を、上記の方法で作製された三次スクリーニング用液体培地5mLに加えて、滅菌した試験液を調製した(油脂1%(w/v))。上記二次スクリーニングで得た各単離菌株を白金耳で一白金耳ずつ、上記の方法で作製されたLB培地に接種し、30℃で24時間振盪培養(140rpm)した。得られた培養液100μLを、上記方法で調製した試験液に接種し、30℃で24時間振盪培養(140rpm)した。
 培養後、JIS K0102:2016改正(工業排水試験方法)に準じてノルマルヘキサン抽出物を調製した。ノルマルヘキサン抽出物を油脂の残存量とし、試験液の調製時に添加した油脂0.05gと油脂の残存量(ノルマルヘキサン抽出物の量(g))とから、下記数式(1)により油脂減少率を求めた。その結果、油脂減少率の高い菌株を単離した。
Figure JPOXMLDOC01-appb-M000015
 単離した菌株をアステロトレメラ・ヒュミコラ(Asterotremella humicola)2-141-1株と命名し、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託した(受託番号NITE BP-02641)。
 実施例2:油脂減少率の評価
 塩酸または水酸化ナトリウムを用いてpHを1.5~11.0の範囲で調整した三次スクリーニング用液体培地5mLに油脂0.05gを加えて、滅菌した試験液を調製した。二次スクリーニング用寒天培地上で培養した単離菌株を白金耳で一白金耳、上記で調製した試験液に接種し、30℃で24時間振盪培養(140rpm)した。
 また、上記で調製した試験液に、比較対象として「Grease Guard(登録商標) D Lipase」(ノボザイムズ社)0.75mgまたは「ビーエヌクリーン(粉末)」(株式会社明治フードマテリア;バチルス・サブチリスBN1001(Bacillus subtilis BN1001)を含む)7.5mgを添加し、30℃で24時間振盪した。
 培養後、JIS K0102:2016改正(工業排水試験方法)に準じてノルマルヘキサン抽出物を調製した。ノルマルヘキサン抽出物を油脂の残存量とし、試験液の調製時に添加した油脂0.05gと油脂の残存量(ノルマルヘキサン抽出物の量(g))から、上記数式(1)により油脂減少率を求めた。その結果を下記表8に示す。表8において、油脂減少率の値は、平均値(n=3)として表される。
Figure JPOXMLDOC01-appb-T000016
 表8に示すとおり、2-141-1株は、30℃、pH2.0以上11.0未満の条件で、1%(w/v)の油脂を24時間で50重量%以上低減したことが分かる。すなわち、2-141-1株は、広範なpHの水質環境においても、油脂分解力に優れることが分かる。
 本出願は、2018年5月17日に出願された日本国特許出願第2018-095351号に基づいており、その開示内容は、参照により全体として引用されている。
  1  排水処理槽、
  2a、2b、2c  仕切り板、
  3  残渣受け、
  4  トラップ管、
  5  水面、
  6  油脂、
  10  グリーストラップ。

Claims (5)

  1.  アステロトレメラ・ヒュミコラ(Asterotremella humicola)に属し、以下の菌学的性質を示す、微生物。
    Figure JPOXMLDOC01-appb-T000001
    Figure JPOXMLDOC01-appb-T000002
  2.  pH2以上11未満の条件で、1%(w/v)の油脂を24時間で50重量%以上低減する、請求項1に記載の微生物。
  3.  アステロトレメラ・ヒュミコラ(Asterotremella humicola)2-141-1株(受託番号NITE BP-02641)である、請求項1または2に記載の微生物。
  4.  油脂を含む排水に請求項1~3のいずれか1項に記載の微生物を接触させる工程を含む、排水処理方法。
  5.  請求項1~3のいずれか1項に記載の微生物を含む、排水処理剤。
PCT/JP2019/016023 2018-05-17 2019-04-12 油脂の新規分解微生物 WO2019220831A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980032090.3A CN112262210B (zh) 2018-05-17 2019-04-12 油脂的分解微生物
CA3100311A CA3100311A1 (en) 2018-05-17 2019-04-12 Novel microorganism for degrading oils and fats
US17/053,092 US11897799B2 (en) 2018-05-17 2019-04-12 Microorganism for degrading oils and fats
JP2020519519A JP7230013B2 (ja) 2018-05-17 2019-04-12 油脂の新規分解微生物
EP19802489.5A EP3795675A4 (en) 2018-05-17 2019-04-12 NEW MICROORGANISM FOR THE DEGRADATION OF FATS AND OILS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095351 2018-05-17
JP2018095351 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019220831A1 true WO2019220831A1 (ja) 2019-11-21

Family

ID=68540137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016023 WO2019220831A1 (ja) 2018-05-17 2019-04-12 油脂の新規分解微生物

Country Status (7)

Country Link
US (1) US11897799B2 (ja)
EP (1) EP3795675A4 (ja)
JP (1) JP7230013B2 (ja)
CN (1) CN112262210B (ja)
CA (1) CA3100311A1 (ja)
TW (1) TWI754146B (ja)
WO (1) WO2019220831A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507516B (zh) * 2022-04-18 2022-07-05 胜利油田新海兴达实业集团有限责任公司 一种生物酶复合解堵剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501120A (ja) * 1986-10-17 1989-04-20 ノボ ノルディスク アクティーゼルスカブ 位置非特異性リパーゼ
JPH03236771A (ja) 1990-02-13 1991-10-22 Meiji Seika Kaisha Ltd 有用微生物及びその利用方法
JP2015192943A (ja) * 2014-03-31 2015-11-05 シーシーアイ株式会社 排水の処理方法、および排水処理用キット
JP2017136033A (ja) 2016-02-04 2017-08-10 シーシーアイ株式会社 油分分解微生物
JP2017177031A (ja) * 2016-03-31 2017-10-05 シーシーアイ株式会社 排水の処理方法、および排水処理用キット
JP2018095351A (ja) 2016-12-09 2018-06-21 ダイヤモンドエンジニアリング株式会社 粉体供給装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273898A (en) 1986-10-17 1993-12-28 Noro Nordisk A/S Thermally stable and positionally non-specific lipase isolated from Candida
DE3886412T2 (de) 1987-09-28 1994-05-11 Novonordisk As Verfahren zur immobilisierung von lipasen.
JP5685783B2 (ja) * 2012-01-19 2015-03-18 国立大学法人名古屋大学 新規ヤロウィア属微生物、並びにそれを用いた油分解剤及び油分解除去方法
JP6099054B2 (ja) * 2014-03-31 2017-03-22 シーシーアイ株式会社 油脂および脂肪酸の新規分解微生物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501120A (ja) * 1986-10-17 1989-04-20 ノボ ノルディスク アクティーゼルスカブ 位置非特異性リパーゼ
JPH03236771A (ja) 1990-02-13 1991-10-22 Meiji Seika Kaisha Ltd 有用微生物及びその利用方法
JP2015192943A (ja) * 2014-03-31 2015-11-05 シーシーアイ株式会社 排水の処理方法、および排水処理用キット
JP2017136033A (ja) 2016-02-04 2017-08-10 シーシーアイ株式会社 油分分解微生物
JP2017177031A (ja) * 2016-03-31 2017-10-05 シーシーアイ株式会社 排水の処理方法、および排水処理用キット
JP2018095351A (ja) 2016-12-09 2018-06-21 ダイヤモンドエンジニアリング株式会社 粉体供給装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KURTZMAN, C.P.FELL, J.W.BOEKHOUT, T.: "The Yeasts, a taxonomic study", 2011, ELSEVIER
PRILLINGER ET AL.: "Asterotremella humicola (DASZEWSKA)", JCM CATALOGUE, 5 April 2018 (2018-04-05), pages 1, XP055753287, Retrieved from the Internet <URL:http://warp.da.ndl.go.jp/info:ndljp/pid/11066450/www.jcm.riken.jp/cgi-bin/jcm/jcm_number?JCM=1457> [retrieved on 20190604] *
SALDANHA-DA-GAMA, A. ET AL.: "Characterization of yeasts associated with Portuguese pork-based products", INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, vol. 37, 1997, pages 201 - 207, XP055654317 *
See also references of EP3795675A4

Also Published As

Publication number Publication date
CN112262210A (zh) 2021-01-22
US11897799B2 (en) 2024-02-13
EP3795675A1 (en) 2021-03-24
JP7230013B2 (ja) 2023-02-28
TW202003786A (zh) 2020-01-16
CN112262210B (zh) 2024-01-12
US20210221721A1 (en) 2021-07-22
EP3795675A4 (en) 2022-03-09
TWI754146B (zh) 2022-02-01
JPWO2019220831A1 (ja) 2021-06-17
CA3100311A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6099054B2 (ja) 油脂および脂肪酸の新規分解微生物
JP6674817B2 (ja) 排水の処理方法、および排水処理用キット
US10052399B2 (en) Composition, support, wastewater treatment system, wastewater treating method, deodorization method, and batch wastewater treating method
KR102026750B1 (ko) 신규 야로위아속 미생물, 및 이것을 사용한 오일 분해제 및 오일 분해 제거 방법
JP4566207B2 (ja) 油脂分解性微生物及びそれを用いた油脂含有廃水の処理方法
JP2017136033A (ja) 油分分解微生物
JP2017176067A (ja) 生菌製剤の製造方法、ならびに生菌製剤およびこれを用いた排水処理方法
WO2019220831A1 (ja) 油脂の新規分解微生物
JP2017136032A (ja) 油分分解微生物
JP6343838B2 (ja) 排水の処理方法、および排水処理用キット
JP3728721B2 (ja) 新規微生物及び排水の処理方法
JP2013116067A (ja) 油脂分解酵母およびそれを用いた処理方法
JP7450265B2 (ja) 脂肪酸含有油脂を分解する新規微生物
JP7109305B2 (ja) 油脂の新規分解微生物
JP7041010B2 (ja) 油脂の新規分解微生物
JP2018170988A (ja) 生菌製剤の製造方法、ならびに生菌製剤およびこれを用いた排水処理方法
JP7264699B2 (ja) 油分解剤および油の分解方法
JP7260369B2 (ja) 油脂の新規分解微生物
JP7274470B2 (ja) 油分解微生物
US7172895B2 (en) Microorganism and drainage method
JP2008142042A (ja) 混合微生物,製剤および油脂含有物質の処理方法
JP2020000104A (ja) 油分解微生物
JP2022124353A (ja) 微生物、油分分解剤及び油分分解方法
AU785249B2 (en) New microorganism and drainage method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3100311

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019802489

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019802489

Country of ref document: EP

Effective date: 20201217