WO2019220491A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019220491A1
WO2019220491A1 PCT/JP2018/018516 JP2018018516W WO2019220491A1 WO 2019220491 A1 WO2019220491 A1 WO 2019220491A1 JP 2018018516 W JP2018018516 W JP 2018018516W WO 2019220491 A1 WO2019220491 A1 WO 2019220491A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive unit
fan
air conditioner
wind direction
Prior art date
Application number
PCT/JP2018/018516
Other languages
French (fr)
Japanese (ja)
Inventor
紘太 鈴木
智大 加藤
カヨウ サイ
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/018516 priority Critical patent/WO2019220491A1/en
Priority to CN201880002173.3A priority patent/CN110785610B/en
Priority to JP2018541371A priority patent/JP6397604B1/en
Priority to ES201890081A priority patent/ES2731198A1/en
Priority to FR1872278A priority patent/FR3081045B1/en
Priority to TW107146769A priority patent/TWI674380B/en
Publication of WO2019220491A1 publication Critical patent/WO2019220491A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 describes a device including a “fan cleaning device for removing dust from a fan”.
  • Patent Document 1 describes a configuration for cleaning an indoor fan as described above, but does not describe a configuration in consideration of durability of a motor and a gear of a fan cleaning device.
  • an object of the present invention is to provide a highly reliable air conditioner considering the durability of the fan cleaning unit.
  • an air conditioner includes a heat exchanger, a fan, a fan cleaning unit that cleans the fan, and a vertical direction of air that is blown as the fan is driven.
  • An upper and lower wind direction plate that adjusts the wind direction; and a first drive unit that rotates the upper and lower wind direction plate, and the fan cleaning unit is installed on the shaft portion that is parallel to the axial direction of the fan, and the shaft portion.
  • a second drive unit that rotates the shaft and the brush, and the torque margin of the second drive unit is greater than the torque margin of the first drive unit. It is characterized by.
  • Drawing 1 is a lineblock diagram of refrigerant circuit Q of air harmony machine 100 concerning an embodiment.
  • the solid line arrow of FIG. 1 has shown the flow of the refrigerant
  • the broken line arrow of FIG. 1 has shown the flow of the refrigerant
  • the air conditioner 100 is a device that performs air conditioning such as heating operation and cooling operation. As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, and an expansion valve 14.
  • the air conditioner 100 includes an indoor heat exchanger 15 (heat exchanger), an indoor fan 16 (fan), and a four-way valve 17 in addition to the above-described configuration.
  • the compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant, and has a compressor motor 11a as a drive source.
  • the outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13.
  • the outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12.
  • the outdoor fan 13 has an outdoor fan motor 13a that is a drive source, and is disposed in the vicinity of the outdoor heat exchanger 12.
  • the expansion valve 14 is a valve that decompresses the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 12 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is guided to an “evaporator” (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 15).
  • the indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the indoor air sent from the indoor fan 16 (air in the air-conditioning target space). It is a vessel.
  • the indoor heat exchanger 15 includes a large number of fins f (see FIG. 2) arranged at predetermined intervals between other adjacent fins f, and a plurality of heat transfer tubes g (see FIG. 2) penetrating these fins f. 2).
  • the indoor fan 16 is a fan that sends room air into the indoor heat exchanger 15, and includes an indoor fan motor 16c (see FIG. 7) that is a drive source.
  • the indoor fan 16 is, for example, a cylindrical cross flow fan, and is disposed in the vicinity of the indoor heat exchanger 15.
  • the four-way valve 17 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling operation (see the broken line arrow in FIG. 1), the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator) are replaced with the four-way valve 17. In the refrigerant circuit Q that is sequentially connected via the refrigerant, the refrigerant circulates in the refrigeration cycle.
  • the compressor 11, the indoor heat exchanger 15 (condenser), the expansion valve 14, and the outdoor heat exchanger 12 (evaporator) are replaced by the four-way valve 17.
  • the refrigerant circuit Q that is sequentially connected via the refrigerant, the refrigerant circulates in the refrigeration cycle.
  • one of the “condenser” and the “evaporator” is the outdoor heat.
  • the exchanger 12 and the other is the indoor heat exchanger 15.
  • the compressor 11, the outdoor heat exchanger 12, the outdoor fan 13, the expansion valve 14, and the four-way valve 17 are installed in the outdoor unit Uo.
  • the indoor heat exchanger 15 and the indoor fan 16 are installed in the indoor unit Ui.
  • FIG. 2 is a longitudinal sectional view of the indoor unit Ui.
  • the fan cleaning unit 24 is shown retracted from the indoor fan 16.
  • the indoor unit Ui includes a dew tray 18, a housing base 19, filters 20a and 20b, and a front panel 21. Further, the indoor unit Ui includes a left / right airflow direction plate 22, an up / down airflow direction plate 23, and a fan cleaning unit 24.
  • the dew receiving tray 18 receives the condensed water of the indoor heat exchanger 15 and is disposed below the indoor heat exchanger 15.
  • the indoor fan 16 includes a plurality of fan blades 16a and a partition plate 16b (see also FIG. 3) on which the fan blades 16a are installed, in addition to the indoor fan motor 16c (see FIG. 7) as a drive source. Have.
  • the housing base 19 is a housing in which devices such as the indoor heat exchanger 15 and the indoor fan 16 are installed.
  • the filters 20a and 20b collect dust from the air toward the indoor heat exchanger 15.
  • One filter 20 a is disposed on the front side of the indoor heat exchanger 15, and the other filter 20 b is disposed on the upper side of the indoor heat exchanger 15.
  • the front panel 21 is a panel installed so as to cover the filter 20a on the front side, and is rotatable to the front side with the lower end as an axis.
  • the front panel 21 may be configured not to rotate.
  • the left / right airflow direction plate 22 is a plate-like member that adjusts the airflow direction in the left / right direction of the air blown out as the indoor fan 16 is driven.
  • the left and right wind direction plates 22 are arranged in the blowing air path h3, and are rotated in the left and right directions by a left and right wind direction plate motor 25 (see FIG. 7).
  • the up-and-down air direction plate 23 is a plate-like member that adjusts the up-and-down air direction of the air blown out as the indoor fan 16 is driven.
  • the vertical wind direction plate 23 is disposed at the air outlet h4 and is rotated in the vertical direction by the vertical wind direction plate motor 26 (see FIG. 7).
  • the air sucked through the air suction ports h1 and h2 exchanges heat with the refrigerant flowing through the heat transfer tube g of the indoor heat exchanger 15, and the heat-exchanged air is guided to the blowout air path h3.
  • the air flowing through the blowout air path h3 is guided in a predetermined direction by the left and right airflow direction plates 22 and the vertical airflow direction plate 23, and further blown out into the room through the air outlet h4.
  • the fan cleaning unit 24 described below cleans the indoor fan 16.
  • the fan cleaning unit 24 shown in FIG. 2 cleans the indoor fan 16 and is disposed between the indoor heat exchanger 15 and the indoor fan 16.
  • FIG. 3 is a perspective view in which a part of the indoor unit Ui is cut away.
  • the fan cleaning section 24 includes a fan cleaning motor 24c (second motor, see FIG. 4) in addition to the shaft section 24a and the brush 24b shown in FIG.
  • the shaft portion 24a is a rod-like member parallel to the axial direction of the indoor fan 16, and both ends thereof are pivotally supported.
  • the brush 24b scrapes off dust adhering to the fan blade 16a and is installed on the shaft portion 24a.
  • the fan cleaning motor 24c (see FIG. 4) is a drive source that rotates (moves) the shaft portion 24a and the brush 24b.
  • a fan cleaning motor 24c for example, a stepping motor is used.
  • the stepping motor has a feature that it can be accurately positioned at a predetermined rotation angle.
  • the shaft portion 24a When cleaning the indoor fan 16, after the indoor fan 16 rotates in the reverse direction, the shaft portion 24a is rotated so that the brush 24b contacts the indoor fan 16 (see FIG. 8). When the cleaning of the indoor fan 16 is completed, the shaft portion 24a is rotated again, and the brush 24b is separated from the indoor fan 16 (see FIG. 2). In cleaning the indoor fan 16, the indoor fan 16 may be rotated in the reverse direction after the shaft portion 24a is rotated.
  • FIG. 4 is an explanatory diagram of the fan cleaning unit 24 included in the air conditioner.
  • the fan cleaning section 24 includes gears 24d, 24e and 24f (second gear), fixing sections 24g and 24h, and abutting sections 24i and 24j in addition to the shaft section 24a, brush 24b, and fan cleaning motor 24c. (Second positioning component).
  • the gears 24d, 24e, and 24f transmit the torque of the fan cleaning motor 24c to the shaft portion 24a at a predetermined gear ratio (reduction ratio).
  • the gear 24d is connected to a rotor (not shown) of the fan cleaning motor 24c.
  • the gear 24f is installed on one end side (left side in FIG. 4) of the shaft portion 24a.
  • the gear 24e meshes with the gear 24d and the gear 24f described above.
  • the “second drive unit” that rotates the shaft part 24a and the brush 24b is a fan cleaning motor 24c and a gear that transmits the torque of the fan cleaning motor 24c to the shaft part 24a. 24d, 24e, and 24f.
  • the pair of fixing parts 24g and 24h support the gears 24d, 24e and 24f, and fix the fan cleaning motor 24c and the abutting part 24i.
  • the abutting portion 24i is a component used for positioning the fan cleaning motor 24c, and is fixed to a predetermined portion of the fixing portion 24g.
  • the other abutting portion 24j is also a component used for positioning of the fan cleaning motor 24c, and is installed on one end side (left side of FIG. 4) of the shaft portion 24a.
  • the fan cleaning motor 24c is driven, and the abutting portion 24j rotates integrally with the shaft portion 24a so as to abut against the other abutting portion 24i. .
  • the fan cleaning motor 24c (for example, a stepping motor) is driven based on the open loop control, and therefore the rotation angle is not grasped on the control unit 30 (see FIG. 7) side. Therefore, for example, when the air-conditioning operation is started, the control unit 30 outputs a driving pulse sufficient to abut the abutting portions 24i and 24j to the fan cleaning motor 24c. After the abutting is performed, a predetermined drive pulse is output from the control unit 30 to the fan cleaning motor 24c so that the brush 24b is positioned at a predetermined rotation angle. Further, the brush 24b is held at a predetermined rotation angle thereafter by the coercive force accompanying the energization of the fan cleaning motor 24c.
  • a driving pulse sufficient to abut the abutting portions 24i and 24j to the fan cleaning motor 24c.
  • a predetermined drive pulse is output from the control unit 30 to the fan cleaning motor 24c so that the brush 24b is positioned at a predetermined rotation angle. Further,
  • timing at which the abutting portions 24i and 24j are abutted is not limited to when the air conditioning operation is started.
  • the abutment described above may be performed at the start or end of cleaning of the indoor fan 16.
  • FIG. 5 is an explanatory view including an up / down air direction plate 23, an up / down air direction plate motor 26, and gears 28a and 28b provided in the air conditioner.
  • a vertical wind direction plate motor 26 (first motor) shown in FIG. 5 is a motor that rotates the vertical wind direction plate 23.
  • a stepping motor is used as the vertical wind direction plate motor 26.
  • the gears 28a and 28b transmit the torque of the vertical wind direction plate motor 26 to the rotation shaft 23a of the vertical wind direction plate 23 at a predetermined gear ratio (reduction ratio).
  • One gear 28a is connected to a rotor (not shown) of the up / down airflow direction plate motor 26.
  • the other gear 28b is installed on one end side (left side of the paper in FIG. 5) of the rotation shaft 23a. Furthermore, the gears 28a and 28b mesh with each other.
  • the “first drive unit” that rotates the vertical wind direction plate 23 transmits the vertical wind direction plate motor 26 and the torque of the vertical wind direction plate motor 26 to the vertical wind direction plate 23.
  • gears 28a and 28b The pair of fixing portions 29a and 29b shown in FIG. 5 support the gears 28a and 28b and fix the motor 26 for the vertical air direction plate.
  • FIG. 6 is an explanatory diagram of the vicinity of the air outlet h4 of the indoor unit Ui.
  • the illustration is simplified, and only the front vertical wind direction plate 23 is illustrated among the front and rear vertical wind direction plates 23 and 23 (see FIG. 2).
  • FIG. 6 also shows the rotating shaft 23a and the abutting portions 51a and 51b (first positioning components) that are not shown in FIG.
  • the indoor unit Ui includes abutting portions 51a and 51b shown in FIG. 6 in addition to the above-described components.
  • the abutting portion 51a is a component used for positioning the up / down airflow direction plate motor 26 (see FIG. 5), and is fixed to a predetermined position of the indoor unit Ui.
  • the other abutment portion 51b is a portion used for positioning of the up / down air direction plate motor 26 (see FIG. 5).
  • the end portion of the up / down air direction plate 23 (abut against the abutment portion 51a) End of the one to be done).
  • the abutting portion 51b may be provided as a separate component from the up-down wind direction plate 23.
  • the up / down air direction plate motor 26 (see FIG. 5) is driven, and the abutting portion 51b at the end of the up / down air direction plate 23 rotates about the rotation shaft 23a.
  • the abutting part 51b is abutted against the other abutting part 51a.
  • the vertical wind direction plate 23 is appropriately and accurately rotated by the vertical wind direction plate motor 26 (for example, a stepping motor).
  • FIG. 7 is a functional block diagram of the air conditioner 100.
  • the indoor unit Ui illustrated in FIG. 7 includes a remote control transmission / reception unit 27 and an indoor control circuit 31 in addition to the above-described configuration.
  • the remote controller transmission / reception unit 27 exchanges predetermined information with the remote controller 40.
  • the indoor control circuit 31 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
  • the storage unit 31a stores data received via the remote control transmission / reception unit 27, detection values of various sensors (not shown), and the like.
  • the indoor control unit 31b controls the indoor fan motor 16c, the fan cleaning motor 24c, the left / right airflow direction plate motor 25, the up / down airflow direction plate motor 26, and the like based on the data stored in the storage unit 31a.
  • the outdoor unit Uo includes an outdoor control circuit 32 in addition to the configuration described above.
  • the outdoor control circuit 32 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line.
  • the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
  • the storage unit 32a stores data received from the indoor control circuit 31 in addition to a predetermined program.
  • the outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 13a, the expansion valve 14, and the like based on the data stored in the storage unit 32a.
  • the indoor control circuit 31 and the outdoor control circuit 32 are collectively referred to as a “control unit 30”.
  • FIG. 8 is an explanatory diagram showing a state in which the indoor fan 16 is being cleaned.
  • the abutting portions 24i, 24j and the like are not shown.
  • the control unit 30 rotates the indoor fan 16 in the opposite direction to that during normal air-conditioning operation.
  • the control part 30 rotates the brush 24b centering on the axial part 24a, and makes the brush 24b contact the indoor fan 16.
  • the brush 24b bends as the fan blade 16a moves, and the brush 24b is pressed so as to stroke the back surface of the fan blade 16a. And the dust j adhering to the fan blade 16a is scraped off by the brush 24b.
  • the dust j scraped off from the indoor fan 16 is guided to the dew receiving tray 18 through a gap between the indoor heat exchanger 15 and the indoor fan 16, as shown in FIG. Thereby, the indoor fan 16 can be made into a clean state. Further, it is possible to prevent the dust j from being blown into the room during the next air conditioning operation.
  • the control unit 30 When the cleaning of the indoor fan 16 is completed, the control unit 30 (see FIG. 7) outputs a predetermined drive pulse to the fan cleaning motor 24c (see FIG. 4), so that the fan cleaning unit 24 is retracted from the indoor fan 16. .
  • the tip of the brush 24b faces the indoor heat exchanger 15 (see FIG. 2).
  • the brush 24b does not contact the fan blade 16a, so that noise can be suppressed and damage to the fan blade 16a can be prevented.
  • FIGS. 4 and 5 the relationship between the up-and-down wind direction plate 23 and the fan cleaning unit 24 will be described (see FIGS. 4 and 5 as appropriate).
  • the up-and-down wind direction plate 23 is a thin plate-like resin member having a smooth surface, and water droplets and dust hardly adhere to the surface. Therefore, the torque required for the rotation of the up-and-down wind direction plate 23 is often hardly changed from when the air conditioner 100 (see FIG. 1) is installed.
  • the fan cleaning unit 24 includes a shaft portion 24a and a brush 24b as shown in FIG. Therefore, depending on the temperature and humidity inside the indoor unit Ui (see FIG. 2), moisture or dust may accumulate in the gaps of the hair of the brush 24b, or moisture may adhere to the shaft portion 24a due to condensation. . Furthermore, since the shaft portion 24a is made of metal, the axial length of the shaft portion 24a changes due to thermal expansion or contraction in accordance with a temperature change inside the indoor unit Ui. For example, when the temperature is high, the shaft portion 24a is thermally expanded, and its length becomes slightly longer. Accordingly, since the gear 24f is pushed in the axial direction, the resistance when the gear 24f is rotated becomes larger than that at the low temperature.
  • the up-and-down wind direction plate 23 and the fan cleaning unit 24 are common in that they extend in parallel to the axial direction of the indoor fan 16 (see FIG. 2) and that air flows therethrough.
  • the upper and lower airflow direction plates 23 and the fan cleaning unit 24 are more likely to change the torque required for the rotation of the fan cleaning unit 24 than the upper and lower airflow direction plates 23 due to differences in structure and constituent materials.
  • the torque margin of the “second drive unit” (fan cleaning motor 24c and gears 24d, 24e, 24f: see FIG. 4) is “first drive unit” (vertical wind direction plate).
  • the motor 26 and the gears 28a and 28b (see FIG. 5) are set to be larger than the torque margin.
  • the torque margin of the “first drive unit” that rotates the vertical wind direction plate 23 is the maximum torque of the “first drive unit” in the initial state where the air conditioner 100 is installed. This is a value indicating the degree of torque margin actually generated. Specifically, the torque margin of the “first drive unit” is the maximum torque that can be output by the “first drive unit” in the initial state where the air conditioner 100 is installed. It is a value divided by the actual torque of the “first drive unit”.
  • the torque margin of the “second drive unit” that rotates the shaft portion 24a and the brush 24b can be output by the “second drive unit” in the initial state where the air conditioner 100 is installed. This is a value obtained by dividing the maximum torque by the actual torque of the “second drive unit” in the initial state where the air conditioner 100 is installed.
  • the torque margin of the “second drive unit” is larger than the torque margin of the “first drive unit”. Accordingly, the water or dust adheres to the brush 24b, the shaft portion 24a thermally expands as the temperature changes, or the brush 24b deforms, so that the torque required to rotate the shaft portion 24a and the brush 24b is increased. Even if it changes greatly, the shaft portion 24a and the brush 24b are appropriately rotated by the “second driving portion”. Accordingly, the indoor fan 16 can be appropriately cleaned by the fan cleaning unit 24 regardless of dust adhesion or the like.
  • the margin of torque of the “second drive unit” when the brush 24 b is rotated with the brush 24 b in contact with the indoor heat exchanger 15 is within the rotation range of the horizontal direction or the vertical wind direction plate 23. It is preferable that the torque margin of the “first drive unit” when the up / down wind direction plate 23 is rotated upward at an angle closest to the horizontal direction is larger. As a result, a sufficient torque margin can be ensured even when the fan cleaning motor 24c is particularly susceptible to load.
  • the margin of the torque of the “second driving unit” is abutted against the abutting portions 51a and 51b of the vertical wind direction plate 23.
  • the torque margin of the “first drive unit” at that time may be larger. As a result, a sufficient torque margin can be ensured even when the fan cleaning motor 24c is particularly susceptible to load.
  • the plurality of “first drive units” further than the one having the largest torque margin.
  • the torque margin of the “second drive unit” is preferably large.
  • a predetermined one has the largest torque margin. To do. This means that the torque margin of the “second drive unit” (fan cleaning motor 24c, etc.) is larger than the predetermined one.
  • the up / down airflow direction plate motor 26 and the fan cleaning motor 24c are the same type of motor.
  • a stepping motor of the same type as the up-and-down wind direction plate motor 26 that has been used so far can be used as the fan cleaning motor 24c. Therefore, the manufacturing cost of the air conditioner 100 can be reduced.
  • the second speed transmission ratio ⁇ 2 related to the gears 24d, 24e, and 24f of the fan cleaning unit 24 is preferably larger than the first speed transmission ratio ⁇ 1 related to the gears 28a and 28b of the up-and-down wind direction plate 23 ( ⁇ 2> ⁇ 1).
  • the “first speed transmission ratio ⁇ 1” refers to the number of teeth of the gear 28b connected to the rotating shaft 23a of the vertical wind direction plate 23 (see FIG. 5), and the rotor (not shown) of the vertical wind direction plate motor 26. 2) divided by the number of teeth of another gear 28a to be connected.
  • the “second speed transmission ratio ⁇ 2” is the number of teeth of the gear 24f connected to the shaft portion 24a of the fan cleaning unit 24 (see FIG. 4), and the rotor (not shown) of the fan cleaning motor 24c. Is a value divided by the number of teeth of another gear 24d connected to the gear.
  • the size is larger than the vertical wind direction plate 23 due to the magnitude relationship ( ⁇ 2> ⁇ 1) of the respective speed transmission ratios.
  • the fan cleaning unit 24 can be rotated by torque. Therefore, even if moisture or dust adheres to the brush 24b or the shaft portion 24a thermally expands due to a temperature change, the fan cleaning unit 24 can be appropriately rotated.
  • the up / down airflow direction plate motor 26 and the fan cleaning motor 24c are the same type of motor, and the second speed transmission ratio of the “second drive unit” is that of the “first drive unit”. It is preferable that the first speed transmission ratio is different. As a result, while using the same type of motor as the up / down airflow direction plate motor 26 and the fan cleaning motor 24c, the torque margin of the “second drive unit” can be appropriately adjusted at the design stage.
  • the number of gears 24d, 24e, and 24f (three in the present embodiment) of the fan cleaning unit 24 is larger than the number of gears 28a and 28b per one of the vertical wind direction plates 23 (two in the present embodiment). A large amount is preferable.
  • the gear ratio (ratio of the number of teeth) of each pair of gears that mesh with each other may be small. Further, the magnitude of the torque of the “first drive unit” and the “second drive unit” can be appropriately adjusted according to the number of gears and the number of teeth.
  • FIG. 9 is an explanatory diagram showing a state in which the abutting portions 24i and 24j of the fan cleaning unit 24 are abutted against each other.
  • the dashed-two dotted line of FIG. 9 has shown the state which the brush 24b is contacting the fan blade 16a.
  • the fixed-side abutting portion 24i used for positioning the fan cleaning motor 24c described above is more positioned than the fixed-side abutting portion 51a (see FIG. 6) used for positioning the vertical wind direction plate motor 26. It is preferable that the wall thickness is large in the direction in which it abuts itself (see the white arrow M in FIG. 6 and the white arrow N in FIG. 9).
  • the moving-side abutting portion 24j used for positioning the fan cleaning motor 24c is positioned more than the moving-side abutting portion 51b (see FIG. 6) used for positioning the vertical wind direction plate motor 26.
  • the thickness in the direction in which it is abutted is thick.
  • the fan cleaning unit 24 is configured to be able to rotate with a larger torque than the up-and-down wind direction plate 23. Therefore, for example, the force acting from one of the abutting parts 24i, 24j of the fan cleaning part 24 to the other is more than the force acting from one of the abutting parts 51a, 51b to the other when the vertical wind direction plate 23 is rotated. Are often larger.
  • the thickness of the abutting portions 24i and 24j may be 3 mm, and the thickness of the abutting portions 51a and 51b may be 2 mm.
  • the strength of the abutting portions 24i and 24j becomes higher than the strength of the abutting portions 51a and 51b, so that the damage of the abutting portions 24i and 24j can be particularly suppressed.
  • the thickness of the abutting portions 24i, 24j, 51a, 51b is not limited to the above-described value.
  • the abutting portions 24i and 24j used for positioning the fan cleaning motor 24c are made of a material having higher strength than the abutting portions 51a and 51b (see FIG. 6) used for positioning the vertical wind direction plate motor 26. It is preferable to be configured.
  • the material constituting the abutting portions 24i, 24j may be ABS resin (copolymer synthetic resin of acrylonitrile, butadiene, and styrene).
  • the material constituting the abutting portions 51a and 51b may be PS resin (polystyrene).
  • the abutting portions 24i and 24j are stronger than the abutting portions 51a and 51b, so that they are less likely to be damaged.
  • the ABS resin and PS resin described above are merely examples, and the present invention is not limited thereto.
  • the torque margin of the “second drive unit” including the fan cleaning motor 24 c is larger than the torque margin of the “first drive unit” including the up / down airflow direction plate motor 26.
  • the second speed transmission ratio ⁇ 2 of the gears 24d, 24e, 24f (see FIG. 4) used for the rotation of the shaft portion 24a and the brush 24b is the gears 28a, 28b (FIG. 5), the first speed transmission ratio ⁇ 1.
  • the fan cleaning unit 24 can be rotated with a large torque.
  • the air conditioner 100 has been described in the above embodiments, but the present invention is not limited to these descriptions, and various modifications can be made.
  • the abutting portions 24i and 24j (see FIG. 9) of the fan cleaning unit 24 are thicker than the abutting portions 51a and 51b (see FIG. 6) used for the rotation of the vertical air direction plate 23.
  • a certain structure was demonstrated, it is not restricted to this. An example thereof will be described with reference to FIG.
  • FIG. 10 is an explanatory diagram illustrating a state in which the abutting portions 24Ai and 24j of the fan cleaning unit 24A are abutted against each other in the air conditioner according to the modification.
  • the abutting portion 24Ai on the fixed side of the fan cleaning portion 24A includes a reinforcing rib A1.
  • the abutting portion 51a (see FIG. 6) used for positioning of the up / down wind direction plate motor 26 does not have a rib on the opposite side of the surface against which the abutting portion 51a is abutted during positioning.
  • the abutting portion 24Ai used for positioning of the motor 24c preferably has a rib A1 on the opposite side of the surface against which it abuts during positioning.
  • the fan cleaning motor 24 c may have a “test mode” that is driven at a higher rotational speed than during normal cleaning of the indoor fan 16.
  • the torque for rotating the shaft portion 24a and the brush 24b is smaller than that during normal cleaning, so that the shaft portion 24a and the brush 24b are appropriately used at the inspection stage before shipping the air conditioner 100.
  • the “test mode” described above it is possible to shorten the time required for the rotation of the shaft portion 24a and the brush 24b when testing whether the fan cleaning unit 24 functions normally. Therefore, the time required for the inspection before shipping of the air conditioner 100 can be shortened, and as a result, the production efficiency of the air conditioner 100 can be increased.
  • the fan cleaning unit 24 may be configured to move in parallel.
  • the fan cleaning part 24 demonstrated the structure provided with the brush 24b in embodiment, it is not restricted to this. That is, as long as the indoor fan 16 can be cleaned, a sponge or the like may be used instead of the brush 24b.
  • the fan cleaning part 24 is arrange
  • the fan cleaning unit 24 may be disposed on the downstream side of the indoor fan 16.
  • the motor 26 for an up-and-down wind direction board was provided near the end of the rotating shaft 23a (refer FIG. 5) of the up-and-down wind direction board 23, it is not restricted to this.
  • a vertical wind direction plate motor 26 may be provided in the vicinity of both ends of the rotation shaft 23a of the vertical wind direction plate 23, respectively.
  • the torque margin of the “second drive unit” is calculated based on the sum of torques provided near both ends of the shaft portion 24a.
  • the one up-and-down wind direction board 23 is driven by several "1st drive part", and the margin of the torque of a "2nd drive part" is several “first” which drives the up-and-down wind direction board 23 of 1 sheet. It is preferable that it is larger than the sum of the margins of each torque of the “drive unit”. As a result, a sufficient torque margin of the “second drive unit” can be ensured, and the shaft portion 24a and the brush 24b can be appropriately rotated.
  • gears 28a and 28b are provided for turning the up-and-down wind direction plate 23, while three gears 24d, 24e and 24f (see FIG. 5) are used for turning the shaft portion 24a and the brush 24b.
  • the present invention is not limited to this. That is, the number of gears can be changed as appropriate.
  • the number of rotating gears of the up / down wind direction plate 23 may be larger than the number of rotating gears of the shaft portion 24a and the brush 24b.
  • the indoor fan 16 may be rotated forward.
  • the case where the second speed transmission ratio ⁇ 2 of the “second drive unit” is larger than the first speed transmission ratio ⁇ 1 of the “first drive unit” ( ⁇ 2> ⁇ 1) is described. Not exclusively.
  • the second speed transmission ratio ⁇ 2 may be equal to or less than the first speed transmission ratio ⁇ 1 ( ⁇ 2 ⁇ ⁇ 1).
  • the configuration in which the indoor unit Ui (see FIG. 1) and the outdoor unit Uo (see the same figure) are provided one by one has been described, but the present invention is not limited to this. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
  • the configuration of the embodiment can be applied to various types of air conditioners in addition to room air conditioners.

Abstract

Provided is an air conditioner having high reliability in consideration of the durability of a fan cleaning part. This air conditioner (100) is provided with an indoor heat exchanger (15), an indoor fan (16), a fan cleaning part (24), a vertical wind vane plate (23), and a first drive unit that drives the vertical wind vane plate (23). The fan cleaning part (24) has a shaft part (24a) that is parallel to the axial direction of the indoor fan (16), a brush (24b) that is installed on the shaft part (24a), and a second drive unit that causes the shaft part (24a) and the brush (24b) to rotate. The margin of the torque of the second drive unit is greater than the margin of the torque of the first drive unit.

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 空気調和機の室内ファンを清掃する技術として、例えば、特許文献1には、「ファンの塵埃を除去するためのファン清掃装置」を備えるものが記載されている。 As a technique for cleaning an indoor fan of an air conditioner, for example, Patent Document 1 describes a device including a “fan cleaning device for removing dust from a fan”.
特許第4046755号公報Japanese Patent No. 4046755
 特許文献1には、前記したように、室内ファンを清掃するための構成については記載されているが、ファン清掃装置のモータやギヤの耐久性を考慮した構成については記載されていない。 Patent Document 1 describes a configuration for cleaning an indoor fan as described above, but does not describe a configuration in consideration of durability of a motor and a gear of a fan cleaning device.
 そこで、本発明は、ファン清掃部の耐久性を考慮した信頼性の高い空気調和機を提供することを課題とする。 Therefore, an object of the present invention is to provide a highly reliable air conditioner considering the durability of the fan cleaning unit.
 前記課題を解決するために、本発明に係る空気調和機は、熱交換器と、ファンと、前記ファンを清掃するファン清掃部と、前記ファンの駆動に伴って吹き出される空気の上下方向の風向きを調整する上下風向板と、前記上下風向板を回動させる第1駆動部と、を備え、前記ファン清掃部は、前記ファンの軸方向に平行な軸部と、前記軸部に設置されるブラシと、前記軸部及び前記ブラシを回動させる第2駆動部と、を有し、前記第2駆動部のトルクの余裕度は、前記第1駆動部のトルクの余裕度よりも大きいことを特徴とする。 In order to solve the above-described problems, an air conditioner according to the present invention includes a heat exchanger, a fan, a fan cleaning unit that cleans the fan, and a vertical direction of air that is blown as the fan is driven. An upper and lower wind direction plate that adjusts the wind direction; and a first drive unit that rotates the upper and lower wind direction plate, and the fan cleaning unit is installed on the shaft portion that is parallel to the axial direction of the fan, and the shaft portion. And a second drive unit that rotates the shaft and the brush, and the torque margin of the second drive unit is greater than the torque margin of the first drive unit. It is characterized by.
 本発明によれば、ファン清掃部の耐久性を考慮した信頼性の高い空気調和機を提供できる。 According to the present invention, it is possible to provide a highly reliable air conditioner considering the durability of the fan cleaning unit.
本発明の実施形態に係る空気調和機の冷媒回路の構成図である。It is a block diagram of the refrigerant circuit of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機が備える室内機の縦断面図である。It is a longitudinal cross-sectional view of the indoor unit with which the air conditioner which concerns on embodiment of this invention is provided. 本発明の実施形態に係る空気調和機が備える室内機の一部を切り欠いた斜視図である。It is the perspective view which notched some indoor units with which the air conditioner concerning the embodiment of the present invention is provided. 本発明の実施形態に係る空気調和機が備えるファン清掃部の説明図である。It is explanatory drawing of the fan cleaning part with which the air conditioner which concerns on embodiment of this invention is provided. 本発明の実施形態に係る空気調和機が備える上下風向板、上下風向板用モータ、及びギヤを含む説明図である。It is explanatory drawing containing the up-and-down air direction board with which the air conditioner which concerns on embodiment of this invention is equipped, the motor for an up-and-down air direction board, and a gear. 本発明の実施形態に係る空気調和機が備える室内機の空気吹出口の付近の説明図である。It is explanatory drawing of the vicinity of the air blower outlet of the indoor unit with which the air conditioner which concerns on embodiment of this invention is provided. 本発明の実施形態に係る空気調和機の機能ブロック図である。It is a functional block diagram of the air conditioner concerning the embodiment of the present invention. 本発明の実施形態に係る空気調和機の室内ファンの清掃中の状態を示す説明図である。It is explanatory drawing which shows the state during the cleaning of the indoor fan of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機において、ファン清掃部の突当て部が互いに突き当てられた状態を示す説明図である。In the air conditioner concerning the embodiment of the present invention, it is an explanatory view showing the state where the abutting parts of the fan cleaning part were abutted against each other. 本発明の変形例に係る空気調和機において、ファン清掃部の突当て部が互いに突き当てられた状態を示す説明図である。In the air conditioner which concerns on the modification of this invention, it is explanatory drawing which shows the state by which the abutting part of the fan cleaning part was mutually abutted.
≪実施形態≫
<空気調和機の構成>
 図1は、実施形態に係る空気調和機100の冷媒回路Qの構成図である。
 なお、図1の実線矢印は、暖房運転時の冷媒の流れを示している。
 また、図1の破線矢印は、冷房運転時の冷媒の流れを示している。
 空気調和機100は、暖房運転や冷房運転等の空調を行う機器である。図1に示すように、空気調和機100は、圧縮機11と、室外熱交換器12と、室外ファン13と、膨張弁14と、を備えている。また、空気調和機100は、前記した構成の他に、室内熱交換器15(熱交換器)と、室内ファン16(ファン)と、四方弁17と、を備えている。
<Embodiment>
<Configuration of air conditioner>
Drawing 1 is a lineblock diagram of refrigerant circuit Q of air harmony machine 100 concerning an embodiment.
In addition, the solid line arrow of FIG. 1 has shown the flow of the refrigerant | coolant at the time of heating operation.
Moreover, the broken line arrow of FIG. 1 has shown the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation.
The air conditioner 100 is a device that performs air conditioning such as heating operation and cooling operation. As shown in FIG. 1, the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, and an expansion valve 14. The air conditioner 100 includes an indoor heat exchanger 15 (heat exchanger), an indoor fan 16 (fan), and a four-way valve 17 in addition to the above-described configuration.
 圧縮機11は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器であり、駆動源である圧縮機モータ11aを有している。
 室外熱交換器12は、その伝熱管(図示せず)を通流する冷媒と、室外ファン13から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
The compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant, and has a compressor motor 11a as a drive source.
The outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13.
 室外ファン13は、室外熱交換器12に外気を送り込むファンである。室外ファン13は、駆動源である室外ファンモータ13aを有し、室外熱交換器12の付近に配置されている。
 膨張弁14は、「凝縮器」(室外熱交換器12及び室内熱交換器15の一方)で凝縮した冷媒を減圧する弁である。なお、膨張弁14で減圧された冷媒は、「蒸発器」(室外熱交換器12及び室内熱交換器15の他方)に導かれる。
The outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12. The outdoor fan 13 has an outdoor fan motor 13a that is a drive source, and is disposed in the vicinity of the outdoor heat exchanger 12.
The expansion valve 14 is a valve that decompresses the refrigerant condensed in the “condenser” (one of the outdoor heat exchanger 12 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is guided to an “evaporator” (the other of the outdoor heat exchanger 12 and the indoor heat exchanger 15).
 室内熱交換器15は、その伝熱管g(図2参照)を通流する冷媒と、室内ファン16から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。室内熱交換器15は、隣り合う他のフィンfとの間に所定間隔を空けて配置される多数のフィンf(図2参照)と、これらのフィンfを貫通する複数の伝熱管g(図2参照)と、を有している。 The indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer tube g (see FIG. 2) and the indoor air sent from the indoor fan 16 (air in the air-conditioning target space). It is a vessel. The indoor heat exchanger 15 includes a large number of fins f (see FIG. 2) arranged at predetermined intervals between other adjacent fins f, and a plurality of heat transfer tubes g (see FIG. 2) penetrating these fins f. 2).
 室内ファン16は、室内熱交換器15に室内空気を送り込むファンであり、駆動源である室内ファンモータ16c(図7参照)を有している。この室内ファン16は、例えば、円筒状のクロスフローファンであり、室内熱交換器15の付近に配置されている。 The indoor fan 16 is a fan that sends room air into the indoor heat exchanger 15, and includes an indoor fan motor 16c (see FIG. 7) that is a drive source. The indoor fan 16 is, for example, a cylindrical cross flow fan, and is disposed in the vicinity of the indoor heat exchanger 15.
 四方弁17は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図1の破線矢印を参照)には、圧縮機11、室外熱交換器12(凝縮器)、膨張弁14、及び室内熱交換器15(蒸発器)が、四方弁17を介して順次に接続されてなる冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。 The four-way valve 17 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner 100. For example, during the cooling operation (see the broken line arrow in FIG. 1), the compressor 11, the outdoor heat exchanger 12 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator) are replaced with the four-way valve 17. In the refrigerant circuit Q that is sequentially connected via the refrigerant, the refrigerant circulates in the refrigeration cycle.
 一方、暖房運転時(図1の実線矢印を参照)には、圧縮機11、室内熱交換器15(凝縮器)、膨張弁14、及び室外熱交換器12(蒸発器)が、四方弁17を介して順次に接続されてなる冷媒回路Qにおいて、冷凍サイクルで冷媒が循環する。 On the other hand, during the heating operation (see the solid line arrow in FIG. 1), the compressor 11, the indoor heat exchanger 15 (condenser), the expansion valve 14, and the outdoor heat exchanger 12 (evaporator) are replaced by the four-way valve 17. In the refrigerant circuit Q that is sequentially connected via the refrigerant, the refrigerant circulates in the refrigeration cycle.
 すなわち、圧縮機11、「凝縮器」、膨張弁14、及び「蒸発器」を順次に介して冷媒が循環する冷媒回路Qにおいて、前記した「凝縮器」及び「蒸発器」の一方は室外熱交換器12であり、他方は室内熱交換器15である。 That is, in the refrigerant circuit Q in which the refrigerant circulates sequentially through the compressor 11, the “condenser”, the expansion valve 14, and the “evaporator”, one of the “condenser” and the “evaporator” is the outdoor heat. The exchanger 12 and the other is the indoor heat exchanger 15.
 なお、図1に示す例では、圧縮機11、室外熱交換器12、室外ファン13、膨張弁14、及び四方弁17が、室外機Uoに設置されている。一方、室内熱交換器15及び室内ファン16は、室内機Uiに設置されている。 In addition, in the example shown in FIG. 1, the compressor 11, the outdoor heat exchanger 12, the outdoor fan 13, the expansion valve 14, and the four-way valve 17 are installed in the outdoor unit Uo. On the other hand, the indoor heat exchanger 15 and the indoor fan 16 are installed in the indoor unit Ui.
 図2は、室内機Uiの縦断面図である。
 なお、図2では、ファン清掃部24が室内ファン16から退避した状態を図示している。室内機Uiは、前記した室内熱交換器15や室内ファン16の他に、露受皿18と、筐体ベース19と、フィルタ20a,20bと、前面パネル21と、を備えている。さらに、室内機Uiは、左右風向板22と、上下風向板23と、ファン清掃部24と、を備えている。
FIG. 2 is a longitudinal sectional view of the indoor unit Ui.
In FIG. 2, the fan cleaning unit 24 is shown retracted from the indoor fan 16. In addition to the indoor heat exchanger 15 and the indoor fan 16, the indoor unit Ui includes a dew tray 18, a housing base 19, filters 20a and 20b, and a front panel 21. Further, the indoor unit Ui includes a left / right airflow direction plate 22, an up / down airflow direction plate 23, and a fan cleaning unit 24.
 露受皿18は、室内熱交換器15の凝縮水を受けるものであり、室内熱交換器15の下側に配置されている。
 室内ファン16は、駆動源である室内ファンモータ16c(図7参照)の他に、複数のファンブレード16aと、これらのファンブレード16aが設置される仕切板16b(図3も参照)と、を有している。
The dew receiving tray 18 receives the condensed water of the indoor heat exchanger 15 and is disposed below the indoor heat exchanger 15.
The indoor fan 16 includes a plurality of fan blades 16a and a partition plate 16b (see also FIG. 3) on which the fan blades 16a are installed, in addition to the indoor fan motor 16c (see FIG. 7) as a drive source. Have.
 筐体ベース19は、室内熱交換器15や室内ファン16等の機器が設置される筐体である。
 フィルタ20a,20bは、室内熱交換器15に向かう空気から塵埃を捕集するものである。一方のフィルタ20aは室内熱交換器15の前側に配置され、他方のフィルタ20bは室内熱交換器15の上側に配置されている。
The housing base 19 is a housing in which devices such as the indoor heat exchanger 15 and the indoor fan 16 are installed.
The filters 20a and 20b collect dust from the air toward the indoor heat exchanger 15. One filter 20 a is disposed on the front side of the indoor heat exchanger 15, and the other filter 20 b is disposed on the upper side of the indoor heat exchanger 15.
 前面パネル21は、前側のフィルタ20aを覆うように設置されるパネルであり、下端を軸として前側に回動可能になっている。なお、前面パネル21が回動しない構成であってもよい。 The front panel 21 is a panel installed so as to cover the filter 20a on the front side, and is rotatable to the front side with the lower end as an axis. The front panel 21 may be configured not to rotate.
 左右風向板22は、室内ファン16の駆動に伴って吹き出される空気の左右方向の風向きを調整する板状部材である。左右風向板22は、吹出風路h3に配置され、左右風向板用モータ25(図7参照)によって左右方向に回動するようになっている。 The left / right airflow direction plate 22 is a plate-like member that adjusts the airflow direction in the left / right direction of the air blown out as the indoor fan 16 is driven. The left and right wind direction plates 22 are arranged in the blowing air path h3, and are rotated in the left and right directions by a left and right wind direction plate motor 25 (see FIG. 7).
 上下風向板23は、室内ファン16の駆動に伴って吹き出される空気の上下方向の風向きを調整する板状部材である。上下風向板23は、空気吹出口h4に配置され、上下風向板用モータ26(図7参照)によって上下方向に回動するようになっている。 The up-and-down air direction plate 23 is a plate-like member that adjusts the up-and-down air direction of the air blown out as the indoor fan 16 is driven. The vertical wind direction plate 23 is disposed at the air outlet h4 and is rotated in the vertical direction by the vertical wind direction plate motor 26 (see FIG. 7).
 空気吸込口h1,h2を介して吸い込まれた空気は、室内熱交換器15の伝熱管gを通流する冷媒と熱交換し、熱交換した空気が吹出風路h3に導かれる。この吹出風路h3を通流する空気は、左右風向板22及び上下風向板23によって所定方向に導かれ、さらに、空気吹出口h4を介して室内に吹き出される。 The air sucked through the air suction ports h1 and h2 exchanges heat with the refrigerant flowing through the heat transfer tube g of the indoor heat exchanger 15, and the heat-exchanged air is guided to the blowout air path h3. The air flowing through the blowout air path h3 is guided in a predetermined direction by the left and right airflow direction plates 22 and the vertical airflow direction plate 23, and further blown out into the room through the air outlet h4.
 なお、空気吸込口h1,h2に向かう塵埃の多くは、フィルタ20a,20bで捕集される。しかしながら、細かい塵埃がフィルタ20a,20bを通り抜けて、室内ファン16に付着することがあるため、室内ファン16を定期的に清掃することが望ましい。そこで、本実施形態では、次に説明するファン清掃部24が、室内ファン16の清掃を行うようにしている。 Note that most of the dust traveling toward the air suction ports h1 and h2 is collected by the filters 20a and 20b. However, since fine dust may pass through the filters 20a and 20b and adhere to the indoor fan 16, it is desirable to clean the indoor fan 16 periodically. Therefore, in the present embodiment, the fan cleaning unit 24 described below cleans the indoor fan 16.
 図2に示すファン清掃部24は、室内ファン16を清掃するものであり、室内熱交換器15と室内ファン16との間に配置されている。 The fan cleaning unit 24 shown in FIG. 2 cleans the indoor fan 16 and is disposed between the indoor heat exchanger 15 and the indoor fan 16.
 図3は、室内機Uiの一部を切り欠いた斜視図である。
 ファン清掃部24は、図3に示す軸部24aやブラシ24bの他に、ファン清掃用モータ24c(第2モータ、図4参照)を備えている。
FIG. 3 is a perspective view in which a part of the indoor unit Ui is cut away.
The fan cleaning section 24 includes a fan cleaning motor 24c (second motor, see FIG. 4) in addition to the shaft section 24a and the brush 24b shown in FIG.
 軸部24aは、室内ファン16の軸方向に平行な棒状の部材であり、その両端が軸支されている。
 ブラシ24bは、ファンブレード16aに付着した塵埃を掻き落とすものであり、軸部24aに設置されている。
 ファン清掃用モータ24c(図4参照)は、軸部24a及びブラシ24bを回動(移動)させる駆動源である。このようなファン清掃用モータ24cとして、例えば、ステッピングモータが用いられる。ステッピングモータは、所定の回転角で正確に位置決めできるという特長を有している。
The shaft portion 24a is a rod-like member parallel to the axial direction of the indoor fan 16, and both ends thereof are pivotally supported.
The brush 24b scrapes off dust adhering to the fan blade 16a and is installed on the shaft portion 24a.
The fan cleaning motor 24c (see FIG. 4) is a drive source that rotates (moves) the shaft portion 24a and the brush 24b. As such a fan cleaning motor 24c, for example, a stepping motor is used. The stepping motor has a feature that it can be accurately positioned at a predetermined rotation angle.
 室内ファン16の清掃時には、室内ファン16が逆回転した後、室内ファン16にブラシ24bが接触するように軸部24aが回動される(図8参照)。そして、室内ファン16の清掃が終了すると、軸部24aが再び回動され、ブラシ24bが室内ファン16から離間した状態になる(図2参照)。なお、室内ファン16の清掃に際して、軸部24aの回動後に室内ファン16を逆回転させるようにしてもよい。 When cleaning the indoor fan 16, after the indoor fan 16 rotates in the reverse direction, the shaft portion 24a is rotated so that the brush 24b contacts the indoor fan 16 (see FIG. 8). When the cleaning of the indoor fan 16 is completed, the shaft portion 24a is rotated again, and the brush 24b is separated from the indoor fan 16 (see FIG. 2). In cleaning the indoor fan 16, the indoor fan 16 may be rotated in the reverse direction after the shaft portion 24a is rotated.
 図4は、空気調和機が備えるファン清掃部24の説明図である。
 ファン清掃部24は、前記した軸部24aやブラシ24b、ファン清掃用モータ24cの他に、ギヤ24d,24e,24f(第2ギヤ)と、固定部24g,24hと、突当て部24i,24j(第2位置決め部品)と、を有している。
FIG. 4 is an explanatory diagram of the fan cleaning unit 24 included in the air conditioner.
The fan cleaning section 24 includes gears 24d, 24e and 24f (second gear), fixing sections 24g and 24h, and abutting sections 24i and 24j in addition to the shaft section 24a, brush 24b, and fan cleaning motor 24c. (Second positioning component).
 ギヤ24d,24e,24fは、ファン清掃用モータ24cのトルクを所定のギヤ比(減速比)で軸部24aに伝達するものである。ギヤ24dは、ファン清掃用モータ24cの回転子(図示せず)に連結されている。ギヤ24fは、軸部24aの一端側(図4の紙面左側)に設置されている。ギヤ24eは、前記したギヤ24d,ギヤ24fに噛合している。 The gears 24d, 24e, and 24f transmit the torque of the fan cleaning motor 24c to the shaft portion 24a at a predetermined gear ratio (reduction ratio). The gear 24d is connected to a rotor (not shown) of the fan cleaning motor 24c. The gear 24f is installed on one end side (left side in FIG. 4) of the shaft portion 24a. The gear 24e meshes with the gear 24d and the gear 24f described above.
 なお、軸部24a及びブラシ24bを回動させる「第2駆動部」は、図4に示す例では、ファン清掃用モータ24cと、このファン清掃用モータ24cのトルクを軸部24aに伝達するギヤ24d,24e,24fと、を含んで構成される。 In the example shown in FIG. 4, the “second drive unit” that rotates the shaft part 24a and the brush 24b is a fan cleaning motor 24c and a gear that transmits the torque of the fan cleaning motor 24c to the shaft part 24a. 24d, 24e, and 24f.
 一対の固定部24g,24hは、ギヤ24d,24e,24fを軸支したり、ファン清掃用モータ24cや突当て部24iを固定したりするものである。
 突当て部24iは、ファン清掃用モータ24cの位置決めに用いられる部品であり、固定部24gの所定箇所に固定されている。
 他方の突当て部24jも、ファン清掃用モータ24cの位置決めに用いられる部品であり、軸部24aの一端側(図4の紙面左側)に設置されている。
The pair of fixing parts 24g and 24h support the gears 24d, 24e and 24f, and fix the fan cleaning motor 24c and the abutting part 24i.
The abutting portion 24i is a component used for positioning the fan cleaning motor 24c, and is fixed to a predetermined portion of the fixing portion 24g.
The other abutting portion 24j is also a component used for positioning of the fan cleaning motor 24c, and is installed on one end side (left side of FIG. 4) of the shaft portion 24a.
 そして、例えば、空調運転の開始時に、ファン清掃用モータ24cが駆動され、突当て部24jが軸部24aと一体で回動して、他方の突当て部24iに突き当てられるようになっている。 For example, at the start of the air conditioning operation, the fan cleaning motor 24c is driven, and the abutting portion 24j rotates integrally with the shaft portion 24a so as to abut against the other abutting portion 24i. .
 なお、ファン清掃用モータ24c(例えば、ステッピングモータ)は、開ループ制御に基づいて駆動されるため、その回転角が制御部30(図7参照)側では把握されない。したがって、例えば、空調運転を開始する際、制御部30が、突当て部24i,24jを突き当てるのに十分な駆動パルスをファン清掃用モータ24cに出力するようにしている。前記した突当てが行われた後、ブラシ24bが所定の回動角で位置決めされるように、制御部30からファン清掃用モータ24cに所定の駆動パルスが出力される。さらに、ファン清掃用モータ24cへの通電に伴う保磁力によって、その後もブラシ24bが所定の回動角で保持される。 Note that the fan cleaning motor 24c (for example, a stepping motor) is driven based on the open loop control, and therefore the rotation angle is not grasped on the control unit 30 (see FIG. 7) side. Therefore, for example, when the air-conditioning operation is started, the control unit 30 outputs a driving pulse sufficient to abut the abutting portions 24i and 24j to the fan cleaning motor 24c. After the abutting is performed, a predetermined drive pulse is output from the control unit 30 to the fan cleaning motor 24c so that the brush 24b is positioned at a predetermined rotation angle. Further, the brush 24b is held at a predetermined rotation angle thereafter by the coercive force accompanying the energization of the fan cleaning motor 24c.
 なお、突当て部24i,24jの突当てが行われるタイミングは、空調運転の開始時に限定されない。例えば、室内ファン16の清掃の開始時や終了時に、前記した突当てが行われるようにしてもよい。 In addition, the timing at which the abutting portions 24i and 24j are abutted is not limited to when the air conditioning operation is started. For example, the abutment described above may be performed at the start or end of cleaning of the indoor fan 16.
 図5は、空気調和機が備える上下風向板23、上下風向板用モータ26、及びギヤ28a,28bを含む説明図である。
 図5に示す上下風向板用モータ26(第1モータ)は、上下風向板23を回動させるモータである。このような上下風向板用モータ26として、例えば、ステッピングモータが用いられる。
FIG. 5 is an explanatory view including an up / down air direction plate 23, an up / down air direction plate motor 26, and gears 28a and 28b provided in the air conditioner.
A vertical wind direction plate motor 26 (first motor) shown in FIG. 5 is a motor that rotates the vertical wind direction plate 23. For example, a stepping motor is used as the vertical wind direction plate motor 26.
 ギヤ28a,28b(第1ギヤ)は、上下風向板用モータ26のトルクを上下風向板23の回動軸23aに所定のギヤ比(減速比)で伝達するものである。一方のギヤ28aは、上下風向板用モータ26の回転子(図示せず)に連結されている。他方のギヤ28bは、回動軸23aの一端側(図5の紙面左側)に設置されている。さらに、ギヤ28a,28bは、互いに噛合している。 The gears 28a and 28b (first gears) transmit the torque of the vertical wind direction plate motor 26 to the rotation shaft 23a of the vertical wind direction plate 23 at a predetermined gear ratio (reduction ratio). One gear 28a is connected to a rotor (not shown) of the up / down airflow direction plate motor 26. The other gear 28b is installed on one end side (left side of the paper in FIG. 5) of the rotation shaft 23a. Furthermore, the gears 28a and 28b mesh with each other.
 なお、上下風向板23を回動させる「第1駆動部」は、図5に示す例では、上下風向板用モータ26と、この上下風向板用モータ26のトルクを上下風向板23に伝達するギヤ28a,28bと、を含んで構成される。
 図5に示す一対の固定部29a,29bは、ギヤ28a,28bを軸支したり、上下風向板用モータ26を固定したりするものである。
In the example shown in FIG. 5, the “first drive unit” that rotates the vertical wind direction plate 23 transmits the vertical wind direction plate motor 26 and the torque of the vertical wind direction plate motor 26 to the vertical wind direction plate 23. And gears 28a and 28b.
The pair of fixing portions 29a and 29b shown in FIG. 5 support the gears 28a and 28b and fix the motor 26 for the vertical air direction plate.
 図6は、室内機Uiの空気吹出口h4の付近の説明図である。
 なお、図6では図示を簡略化し、前側・後側の上下風向板23,23(図2参照)のうち、前側の上下風向板23のみを図示している。また、図6には、図2で図示を省略していた回動軸23aや突当て部51a,51b(第1位置決め部品)も図示している。
FIG. 6 is an explanatory diagram of the vicinity of the air outlet h4 of the indoor unit Ui.
In FIG. 6, the illustration is simplified, and only the front vertical wind direction plate 23 is illustrated among the front and rear vertical wind direction plates 23 and 23 (see FIG. 2). Further, FIG. 6 also shows the rotating shaft 23a and the abutting portions 51a and 51b (first positioning components) that are not shown in FIG.
 室内機Uiは、前記した各構成の他に、図6に示す突当て部51a,51bを備えている。
 突当て部51aは、上下風向板用モータ26(図5参照)の位置決めに用いられる部品であり、室内機Uiの所定位置に固定されている。
 他方の突当て部51bは、上下風向板用モータ26(図5参照)の位置決めに用いられる部位であり、図6に示す例では、上下風向板23の端部(突当て部51aに突き当てられる方の端部)である。なお、突当て部51bが、上下風向板23とは別部品で設けられていてもよい。
The indoor unit Ui includes abutting portions 51a and 51b shown in FIG. 6 in addition to the above-described components.
The abutting portion 51a is a component used for positioning the up / down airflow direction plate motor 26 (see FIG. 5), and is fixed to a predetermined position of the indoor unit Ui.
The other abutment portion 51b is a portion used for positioning of the up / down air direction plate motor 26 (see FIG. 5). In the example shown in FIG. 6, the end portion of the up / down air direction plate 23 (abut against the abutment portion 51a) End of the one to be done). The abutting portion 51b may be provided as a separate component from the up-down wind direction plate 23.
 そして、例えば、空調運転の開始時に、上下風向板用モータ26(図5参照)が駆動され、上下風向板23の端にある突当て部51bが回動軸23aを中心に回動し、この突当て部51bが他方の突当て部51aに突き当てられるようになっている。これによって、上下風向板用モータ26(例えば、ステッピングモータ)によって、上下風向板23が適切かつ正確に回動される。 For example, at the start of the air conditioning operation, the up / down air direction plate motor 26 (see FIG. 5) is driven, and the abutting portion 51b at the end of the up / down air direction plate 23 rotates about the rotation shaft 23a. The abutting part 51b is abutted against the other abutting part 51a. Thus, the vertical wind direction plate 23 is appropriately and accurately rotated by the vertical wind direction plate motor 26 (for example, a stepping motor).
 図7は、空気調和機100の機能ブロック図である。
 図7に示す室内機Uiは、前記した構成の他に、リモコン送受信部27と、室内制御回路31と、を備えている。
 リモコン送受信部27は、リモコン40との間で所定の情報をやり取りする。
FIG. 7 is a functional block diagram of the air conditioner 100.
The indoor unit Ui illustrated in FIG. 7 includes a remote control transmission / reception unit 27 and an indoor control circuit 31 in addition to the above-described configuration.
The remote controller transmission / reception unit 27 exchanges predetermined information with the remote controller 40.
 室内制御回路31は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。 Although not shown, the indoor control circuit 31 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
 図7に示すように、室内制御回路31は、記憶部31aと、室内制御部31bと、を備えている。
 記憶部31aには、所定のプログラムの他、リモコン送受信部27を介して受信したデータや、各種センサ(図示せず)の検出値等が記憶される。
As shown in FIG. 7, the indoor control circuit 31 includes a storage unit 31a and an indoor control unit 31b.
In addition to a predetermined program, the storage unit 31a stores data received via the remote control transmission / reception unit 27, detection values of various sensors (not shown), and the like.
 室内制御部31bは、記憶部31aに記憶されたデータに基づいて、室内ファンモータ16c、ファン清掃用モータ24c、左右風向板用モータ25、上下風向板用モータ26等を制御する。 The indoor control unit 31b controls the indoor fan motor 16c, the fan cleaning motor 24c, the left / right airflow direction plate motor 25, the up / down airflow direction plate motor 26, and the like based on the data stored in the storage unit 31a.
 室外機Uoは、前記した構成の他に、室外制御回路32を備えている。室外制御回路32は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、通信線を介して室内制御回路31に接続されている。図7に示すように、室外制御回路32は、記憶部32aと、室外制御部32bと、を備えている。 The outdoor unit Uo includes an outdoor control circuit 32 in addition to the configuration described above. Although not illustrated, the outdoor control circuit 32 includes electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the indoor control circuit 31 via a communication line. As shown in FIG. 7, the outdoor control circuit 32 includes a storage unit 32a and an outdoor control unit 32b.
 記憶部32aには、所定のプログラムの他、室内制御回路31から受信したデータ等が記憶される。室外制御部32bは、記憶部32aに記憶されたデータに基づいて、圧縮機モータ11a、室外ファンモータ13a、膨張弁14等を制御する。なお、室内制御回路31及び室外制御回路32を一括して「制御部30」という。 The storage unit 32a stores data received from the indoor control circuit 31 in addition to a predetermined program. The outdoor control unit 32b controls the compressor motor 11a, the outdoor fan motor 13a, the expansion valve 14, and the like based on the data stored in the storage unit 32a. The indoor control circuit 31 and the outdoor control circuit 32 are collectively referred to as a “control unit 30”.
 図8は、室内ファン16の清掃中の状態を示す説明図である。
 なお、図8では、突当て部24i,24j等(図4参照)の図示を省略している。
 室内ファン16の清掃を行うに際して、制御部30(図7参照)は、通常の空調運転時とは逆向きに室内ファン16を回転させる。そして、制御部30は、軸部24aを中心にブラシ24bを回動させ、ブラシ24bを室内ファン16に接触させる。
FIG. 8 is an explanatory diagram showing a state in which the indoor fan 16 is being cleaned.
In FIG. 8, the abutting portions 24i, 24j and the like (see FIG. 4) are not shown.
When cleaning the indoor fan 16, the control unit 30 (see FIG. 7) rotates the indoor fan 16 in the opposite direction to that during normal air-conditioning operation. And the control part 30 rotates the brush 24b centering on the axial part 24a, and makes the brush 24b contact the indoor fan 16. FIG.
 このように室内ファン16が逆回転すると、ファンブレード16aの移動に伴ってブラシ24bがたわみ、ファンブレード16aの背面をなでるようにブラシ24bが押し付けられる。そして、ファンブレード16aに付着していた塵埃jがブラシ24bによって掻き落とされる。 Thus, when the indoor fan 16 rotates in the reverse direction, the brush 24b bends as the fan blade 16a moves, and the brush 24b is pressed so as to stroke the back surface of the fan blade 16a. And the dust j adhering to the fan blade 16a is scraped off by the brush 24b.
 室内ファン16から掻き落とされた塵埃jは、図8に示すように、室内熱交換器15と室内ファン16との間の隙間を介して、露受皿18に導かれる。これによって、室内ファン16を清潔な状態にすることができる。また、次回の空調運転中に塵埃jが室内に吹き出されることを防止できる。 The dust j scraped off from the indoor fan 16 is guided to the dew receiving tray 18 through a gap between the indoor heat exchanger 15 and the indoor fan 16, as shown in FIG. Thereby, the indoor fan 16 can be made into a clean state. Further, it is possible to prevent the dust j from being blown into the room during the next air conditioning operation.
 室内ファン16の清掃が終了すると、制御部30(図7参照)がファン清掃用モータ24c(図4参照)に所定の駆動パルスを出力することで、ファン清掃部24が室内ファン16から退避する。ファン清掃部24の退避状態では、例えば、ブラシ24bの先端が室内熱交換器15に臨んだ状態になる(図2参照)。これによって、その後の空調運転中、室内ファン16が高速回転しても、ファンブレード16aにブラシ24bが接触しないため、騒音を抑制でき、また、ファンブレード16aの破損を防止できる。
 次に、上下風向板23とファン清掃部24との関係について説明する(適宜、図4、図5を参照)。
When the cleaning of the indoor fan 16 is completed, the control unit 30 (see FIG. 7) outputs a predetermined drive pulse to the fan cleaning motor 24c (see FIG. 4), so that the fan cleaning unit 24 is retracted from the indoor fan 16. . In the retracted state of the fan cleaning unit 24, for example, the tip of the brush 24b faces the indoor heat exchanger 15 (see FIG. 2). As a result, even if the indoor fan 16 rotates at a high speed during the subsequent air conditioning operation, the brush 24b does not contact the fan blade 16a, so that noise can be suppressed and damage to the fan blade 16a can be prevented.
Next, the relationship between the up-and-down wind direction plate 23 and the fan cleaning unit 24 will be described (see FIGS. 4 and 5 as appropriate).
 上下風向板23は、表面が滑らかな薄板状の樹脂製部材であり、表面に水滴や埃が付着することはほとんどない。したがって、上下風向板23の回動に要するトルクは、空気調和機100(図1参照)の据付時からほとんど変化しないことが多い。 The up-and-down wind direction plate 23 is a thin plate-like resin member having a smooth surface, and water droplets and dust hardly adhere to the surface. Therefore, the torque required for the rotation of the up-and-down wind direction plate 23 is often hardly changed from when the air conditioner 100 (see FIG. 1) is installed.
 一方、ファン清掃部24は、図4に示すように、軸部24aやブラシ24bを備えている。したがって、室内機Ui(図2参照)の内部の温湿度によっては、ブラシ24bの毛の隙間に水分や塵埃が溜まったり、結露に伴って軸部24aに水分が付着したりする可能性がある。さらに、軸部24aは金属製であるため、室内機Uiの内部の温度変化に伴って熱膨張又は熱収縮しその軸方向の長さが変化する。例えば、高温時には軸部24aが熱膨張し、その長さが若干長くなる。これに伴ってギヤ24fが軸方向に押されるため、ギヤ24fを回転させる際の抵抗が低温時よりも大きくなる。 On the other hand, the fan cleaning unit 24 includes a shaft portion 24a and a brush 24b as shown in FIG. Therefore, depending on the temperature and humidity inside the indoor unit Ui (see FIG. 2), moisture or dust may accumulate in the gaps of the hair of the brush 24b, or moisture may adhere to the shaft portion 24a due to condensation. . Furthermore, since the shaft portion 24a is made of metal, the axial length of the shaft portion 24a changes due to thermal expansion or contraction in accordance with a temperature change inside the indoor unit Ui. For example, when the temperature is high, the shaft portion 24a is thermally expanded, and its length becomes slightly longer. Accordingly, since the gear 24f is pushed in the axial direction, the resistance when the gear 24f is rotated becomes larger than that at the low temperature.
 上下風向板23とファン清掃部24とは、室内ファン16(図2参照)の軸方向に対して平行に延びている点や、その付近を空気が通流するという点では共通している。しかしながら、上下風向板23及びファン清掃部24は、その構造や構成材料の違いに起因して、上下風向板23よりもファン清掃部24のほうが、回動に要するトルクが変化しやすい。 The up-and-down wind direction plate 23 and the fan cleaning unit 24 are common in that they extend in parallel to the axial direction of the indoor fan 16 (see FIG. 2) and that air flows therethrough. However, the upper and lower airflow direction plates 23 and the fan cleaning unit 24 are more likely to change the torque required for the rotation of the fan cleaning unit 24 than the upper and lower airflow direction plates 23 due to differences in structure and constituent materials.
 そこで、本実施形態では、前記した「第2駆動部」(ファン清掃用モータ24c及びギヤ24d,24e,24f:図4参照)のトルクの余裕度が、「第1駆動部」(上下風向板用モータ26及びギヤ28a,28b:図5参照)のトルクの余裕度よりも大きくなるようにしている。 Therefore, in the present embodiment, the torque margin of the “second drive unit” (fan cleaning motor 24c and gears 24d, 24e, 24f: see FIG. 4) is “first drive unit” (vertical wind direction plate). The motor 26 and the gears 28a and 28b (see FIG. 5) are set to be larger than the torque margin.
 なお、上下風向板23を回動させる「第1駆動部」のトルクの余裕度とは、空気調和機100が設置された初期状態において、「第1駆動部」の最大限のトルクに対して、実際に生ずるトルクの余裕の度合いを示す値である。具体的に説明すると、「第1駆動部」のトルクの余裕度とは、「第1駆動部」が出すことが可能な最大限のトルクを、空気調和機100が設置された初期状態における「第1駆動部」の実際のトルクで除算した値である。 The torque margin of the “first drive unit” that rotates the vertical wind direction plate 23 is the maximum torque of the “first drive unit” in the initial state where the air conditioner 100 is installed. This is a value indicating the degree of torque margin actually generated. Specifically, the torque margin of the “first drive unit” is the maximum torque that can be output by the “first drive unit” in the initial state where the air conditioner 100 is installed. It is a value divided by the actual torque of the “first drive unit”.
 同様に、軸部24a及びブラシ24bを回動させる「第2駆動部」のトルクの余裕度とは、空気調和機100が設置された初期状態において、「第2駆動部」が出すことが可能な最大限のトルクを、空気調和機100が設置された初期状態における「第2駆動部」の実際のトルクで除算した値である。 Similarly, the torque margin of the “second drive unit” that rotates the shaft portion 24a and the brush 24b can be output by the “second drive unit” in the initial state where the air conditioner 100 is installed. This is a value obtained by dividing the maximum torque by the actual torque of the “second drive unit” in the initial state where the air conditioner 100 is installed.
 本実施形態では、前記したように、「第2駆動部」のトルクの余裕度が、「第1駆動部」のトルクの余裕度よりも大きい。したがって、水分や塵埃がブラシ24bに付着したり、温度変化に伴って軸部24aが熱膨張したり、ブラシ24bが変形したりすることで、軸部24aやブラシ24bの回動に要するトルクが大きく変化しても、「第2駆動部」によって、軸部24a及びブラシ24bが適切に回動される。これによって、塵埃の付着等に関わらず、ファン清掃部24によって、室内ファン16の清掃を適切に行うことができる。 In the present embodiment, as described above, the torque margin of the “second drive unit” is larger than the torque margin of the “first drive unit”. Accordingly, the water or dust adheres to the brush 24b, the shaft portion 24a thermally expands as the temperature changes, or the brush 24b deforms, so that the torque required to rotate the shaft portion 24a and the brush 24b is increased. Even if it changes greatly, the shaft portion 24a and the brush 24b are appropriately rotated by the “second driving portion”. Accordingly, the indoor fan 16 can be appropriately cleaned by the fan cleaning unit 24 regardless of dust adhesion or the like.
 また、ブラシ24b及び上下風向板23とも水平方向に近いほど、重力の影響により、回動に必要なトルクが大きくなる。したがって、水平方向又はブラシ24bの回動範囲のうち最も水平方向に近い角度においてブラシ24bを上方向に回動させるときの「第2駆動部」のトルクの余裕度が、水平方向又は上下風向板23の回動範囲のうち最も水平方向に近い角度において上下風向板23を上方向に回動させるときの「第1駆動部」のトルクの余裕度よりも大きいことが好ましい。これによって、特にファン清掃用モータ24cに負荷がかかりやすい状況であっても、トルクの余裕度を十分に確保できる。 Also, the closer the brush 24b and the up / down wind direction plate 23 are to the horizontal direction, the greater the torque required for rotation due to the influence of gravity. Therefore, the margin of torque of the “second drive unit” when the brush 24b is rotated upward at the angle closest to the horizontal direction in the horizontal direction or the rotation range of the brush 24b is the horizontal direction or the vertical wind direction plate. It is preferable that the torque margin of the “first drive unit” when the up-and-down wind direction plate 23 is rotated upward at an angle closest to the horizontal direction in the rotation range of 23 is larger. As a result, a sufficient torque margin can be ensured even when the fan cleaning motor 24c is particularly susceptible to load.
 また、ブラシ24bが室内熱交換器15に接触している状態(ブラシ24bの毛がフィンfの間の隙間に入り込んでいる状態)においても、軸部24aやブラシ24bの回動に要するトルクが大きくなる。したがって、ブラシ24bを室内熱交換器15に接触させた状態でブラシ24bを回動させるときの「第2駆動部」のトルクの余裕度が、水平方向又は上下風向板23の回動範囲のうち最も水平方向に近い角度において上下風向板23を上方向に回動させるときの「第1駆動部」のトルクの余裕度よりも大きいことが好ましい。これによって、特にファン清掃用モータ24cに負荷がかかりやすい状況であっても、トルクの余裕度を十分に確保できる。 Even in a state where the brush 24b is in contact with the indoor heat exchanger 15 (a state where the bristles of the brush 24b enter the gaps between the fins f), the torque required for the rotation of the shaft portion 24a and the brush 24b is increased. growing. Therefore, the margin of torque of the “second drive unit” when the brush 24 b is rotated with the brush 24 b in contact with the indoor heat exchanger 15 is within the rotation range of the horizontal direction or the vertical wind direction plate 23. It is preferable that the torque margin of the “first drive unit” when the up / down wind direction plate 23 is rotated upward at an angle closest to the horizontal direction is larger. As a result, a sufficient torque margin can be ensured even when the fan cleaning motor 24c is particularly susceptible to load.
 なお、ファン清掃部24の突当て部24i,24jが互いに突き当てられたときの「第2駆動部」のトルクの余裕度が、上下風向板23の突当て部51a,51bが互いに突き当てられたときの「第1駆動部」のトルクの余裕度よりも大きくなるようにしてもよい。これによって、特にファン清掃用モータ24cに負荷がかかりやすい状況であっても、トルクの余裕度を十分に確保できる。 In addition, when the abutting portions 24i and 24j of the fan cleaning unit 24 are abutted against each other, the margin of the torque of the “second driving unit” is abutted against the abutting portions 51a and 51b of the vertical wind direction plate 23. The torque margin of the “first drive unit” at that time may be larger. As a result, a sufficient torque margin can be ensured even when the fan cleaning motor 24c is particularly susceptible to load.
 また、複数枚の上下風向板23に対応して、複数の「第1駆動部」が設けられる構成において、複数の「第1駆動部」のうち、トルクの余裕度が最も大きいものよりもさらに、「第2駆動部」のトルクの余裕度が大きいことが好ましい。例えば、6枚の上下風向板23に一対一で対応する6つの「第1駆動部」(上下風向板用モータ26等)のうち、所定の一つは、そのトルクの余裕度が最も大きいとする。この所定の一つよりも「第2駆動部」(ファン清掃用モータ24c等)のトルクの余裕度がさらに大きいということである。 Further, in a configuration in which a plurality of “first drive units” are provided corresponding to the plurality of up-and-down wind direction plates 23, the plurality of “first drive units” further than the one having the largest torque margin. The torque margin of the “second drive unit” is preferably large. For example, among the six “first driving units” (upper and lower wind direction plate motors 26 and the like) corresponding to the six upper and lower wind direction plates 23 on a one-to-one basis, a predetermined one has the largest torque margin. To do. This means that the torque margin of the “second drive unit” (fan cleaning motor 24c, etc.) is larger than the predetermined one.
 これによって、「第2駆動部」のトルクの余裕度を十分に確保できる。すなわち、軸部24a及びブラシ24bの回動に要するトルクが、ブラシ24bへの水分や塵埃の付着や軸部24aの熱膨張等に伴って変化しても、トルクの余裕度が比較的大きい「第2駆動部」は、前記した変化に柔軟に対応できる。したがって、温度変化や塵埃の付着に関わらず、軸部24a及びブラシ24bを適切に回動させることができる。 This makes it possible to secure a sufficient torque margin for the “second drive unit”. That is, even if the torque required for the rotation of the shaft portion 24a and the brush 24b varies with the attachment of moisture or dust to the brush 24b, thermal expansion of the shaft portion 24a, etc., the torque margin is relatively large. The “second drive unit” can flexibly cope with the above-described changes. Therefore, the shaft portion 24a and the brush 24b can be appropriately rotated regardless of temperature changes and dust adhesion.
 また、上下風向板用モータ26と、ファン清掃用モータ24cと、は同種類のモータであることが好ましい。これによって、例えば、それまで用いられていた比較的安価な上下風向板用モータ26と同種類のステッピングモータを、ファン清掃用モータ24cとしても用いることができる。したがって、空気調和機100の製造コストを削減できる。 Also, it is preferable that the up / down airflow direction plate motor 26 and the fan cleaning motor 24c are the same type of motor. As a result, for example, a stepping motor of the same type as the up-and-down wind direction plate motor 26 that has been used so far can be used as the fan cleaning motor 24c. Therefore, the manufacturing cost of the air conditioner 100 can be reduced.
 また、ファン清掃部24のギヤ24d,24e,24fに関する第2速度伝達比α2は、上下風向板23のギヤ28a,28bに関する第1速度伝達比α1よりも大きいことが好ましい(α2>α1)。
 前記した「第1速度伝達比α1」とは、上下風向板23(図5参照)の回動軸23aに連結されるギヤ28bの歯数を、上下風向板用モータ26の回転子(図示せず)に連結される別のギヤ28aの歯数で除算した値である。
The second speed transmission ratio α2 related to the gears 24d, 24e, and 24f of the fan cleaning unit 24 is preferably larger than the first speed transmission ratio α1 related to the gears 28a and 28b of the up-and-down wind direction plate 23 (α2> α1).
The “first speed transmission ratio α1” refers to the number of teeth of the gear 28b connected to the rotating shaft 23a of the vertical wind direction plate 23 (see FIG. 5), and the rotor (not shown) of the vertical wind direction plate motor 26. 2) divided by the number of teeth of another gear 28a to be connected.
 また、「第2速度伝達比α2」とは、ファン清掃部24(図4参照)の軸部24aに連結されるギヤ24fの歯数を、ファン清掃用モータ24cの回転子(図示せず)に連結される別のギヤ24dの歯数で除算した値である。
 例えば、上下風向板用モータ26とファン清掃用モータ24cとが同種類のステッピングモータである場合には、前記した各速度伝達比の大小関係(α2>α1)によって、上下風向板23よりも大きなトルクでファン清掃部24の方を回動させることができる。したがって、ブラシ24bに水分や塵埃が付着したり、温度変化に伴って軸部24aが熱膨張したりしても、ファン清掃部24を適切に回動させることができる。
The “second speed transmission ratio α2” is the number of teeth of the gear 24f connected to the shaft portion 24a of the fan cleaning unit 24 (see FIG. 4), and the rotor (not shown) of the fan cleaning motor 24c. Is a value divided by the number of teeth of another gear 24d connected to the gear.
For example, when the vertical wind direction plate motor 26 and the fan cleaning motor 24c are the same type of stepping motor, the size is larger than the vertical wind direction plate 23 due to the magnitude relationship (α2> α1) of the respective speed transmission ratios. The fan cleaning unit 24 can be rotated by torque. Therefore, even if moisture or dust adheres to the brush 24b or the shaft portion 24a thermally expands due to a temperature change, the fan cleaning unit 24 can be appropriately rotated.
 また、上下風向板用モータ26と、ファン清掃用モータ24cと、は同種類のモータであり、且つ、前記した「第2駆動部」の第2速度伝達比は、「第1駆動部」の第1速度伝達比と異なることが好ましい。これによって、上下風向板用モータ26及びファン清掃用モータ24cとして同種類のモータを使いつつ、「第2駆動部」のトルクの余裕度を設計段階で適宜に調整できる。 Further, the up / down airflow direction plate motor 26 and the fan cleaning motor 24c are the same type of motor, and the second speed transmission ratio of the “second drive unit” is that of the “first drive unit”. It is preferable that the first speed transmission ratio is different. As a result, while using the same type of motor as the up / down airflow direction plate motor 26 and the fan cleaning motor 24c, the torque margin of the “second drive unit” can be appropriately adjusted at the design stage.
 また、ファン清掃部24のギヤ24d,24e,24fの個数(本実施形態では3つ)は、上下風向板23の一枚あたりのギヤ28a,28bの個数(本実施形態では2つ)よりも多いことが好ましい。これによって、前記した各速度伝達比の大小関係(α2>α1)が成り立つ構成において、互いに噛合する各対のギヤのギヤ比(歯数の比率)が小さくて済む。また、各ギヤの個数及び歯数によって、「第1駆動部」や「第2駆動部」のトルクの大きさを適宜に調整できる。 Further, the number of gears 24d, 24e, and 24f (three in the present embodiment) of the fan cleaning unit 24 is larger than the number of gears 28a and 28b per one of the vertical wind direction plates 23 (two in the present embodiment). A large amount is preferable. Thus, in the configuration in which the above-described relationship between the speed transmission ratios (α2> α1) is satisfied, the gear ratio (ratio of the number of teeth) of each pair of gears that mesh with each other may be small. Further, the magnitude of the torque of the “first drive unit” and the “second drive unit” can be appropriately adjusted according to the number of gears and the number of teeth.
 図9は、ファン清掃部24の突当て部24i,24jが互いに突き当てられた状態を示す説明図である。
 なお、図9の二点鎖線は、ブラシ24bがファンブレード16aに接触している状態を示している。
 前記したファン清掃用モータ24cの位置決めに用いられる固定側の突当て部24iは、上下風向板用モータ26の位置決めに用いられる固定側の突当て部51a(図6参照)よりも、位置決めの際に自身が突き当てられる方向(図6の白抜き矢印M、図9の白抜き矢印Nを参照)での肉厚が厚いことが好ましい。
FIG. 9 is an explanatory diagram showing a state in which the abutting portions 24i and 24j of the fan cleaning unit 24 are abutted against each other.
In addition, the dashed-two dotted line of FIG. 9 has shown the state which the brush 24b is contacting the fan blade 16a.
The fixed-side abutting portion 24i used for positioning the fan cleaning motor 24c described above is more positioned than the fixed-side abutting portion 51a (see FIG. 6) used for positioning the vertical wind direction plate motor 26. It is preferable that the wall thickness is large in the direction in which it abuts itself (see the white arrow M in FIG. 6 and the white arrow N in FIG. 9).
 同様に、ファン清掃用モータ24cの位置決めに用いられる移動側の突当て部24jは、上下風向板用モータ26の位置決めに用いられる移動側の突当て部51b(図6参照)よりも、位置決めの際に自身が突き当てられる方向(図6の白抜き矢印M、図9の白抜き矢印Nを参照)での肉厚が厚いことが好ましい。 Similarly, the moving-side abutting portion 24j used for positioning the fan cleaning motor 24c is positioned more than the moving-side abutting portion 51b (see FIG. 6) used for positioning the vertical wind direction plate motor 26. In this case, it is preferable that the thickness in the direction in which it is abutted (see the white arrow M in FIG. 6 and the white arrow N in FIG. 9) is thick.
 前記したように、ファン清掃部24の方が、上下風向板23よりも大きなトルクで回動することが可能なように構成されている。したがって、例えば、ファン清掃部24の突当て部24i,24jの一方から他方に作用する力は、上下風向板23を回動させる際、突当て部51a,51bの一方から他方に作用する力よりも大きくなることが多い。 As described above, the fan cleaning unit 24 is configured to be able to rotate with a larger torque than the up-and-down wind direction plate 23. Therefore, for example, the force acting from one of the abutting parts 24i, 24j of the fan cleaning part 24 to the other is more than the force acting from one of the abutting parts 51a, 51b to the other when the vertical wind direction plate 23 is rotated. Are often larger.
 例えば、突当て部24i,24jの肉厚を3mmとし、突当て部51a,51bの肉厚を2mmとしてもよい。これによって、突当て部24i,24jの強度が、突当て部51a,51bの強度よりも高くなるため、特に突当て部24i,24jの破損を抑制できる。なお、突当て部24i,24j,51a,51bの肉厚は、前記した値に限定されるものではない。 For example, the thickness of the abutting portions 24i and 24j may be 3 mm, and the thickness of the abutting portions 51a and 51b may be 2 mm. As a result, the strength of the abutting portions 24i and 24j becomes higher than the strength of the abutting portions 51a and 51b, so that the damage of the abutting portions 24i and 24j can be particularly suppressed. The thickness of the abutting portions 24i, 24j, 51a, 51b is not limited to the above-described value.
 また、ファン清掃用モータ24cの位置決めに用いられる突当て部24i,24jは、上下風向板用モータ26の位置決めに用いられる突当て部51a,51b(図6参照)よりも、強度が高い材料で構成されていることが好ましい。例えば、突当て部24i,24jを構成する材料が、ABS樹脂(アクリロニトリル、ブタジエン、及びスチレンの共重合合成樹脂)であってもよい。一方、突当て部51a,51bを構成する材料が、PS樹脂(ポリスチレン)であってもよい。これによって、突当て部51a,51bよりも突当て部24i,24jの方が高強度になるため、破損しにくくなる。なお、前記したABS樹脂やPS樹脂は一例であり、これに限定されるものではない。 Further, the abutting portions 24i and 24j used for positioning the fan cleaning motor 24c are made of a material having higher strength than the abutting portions 51a and 51b (see FIG. 6) used for positioning the vertical wind direction plate motor 26. It is preferable to be configured. For example, the material constituting the abutting portions 24i, 24j may be ABS resin (copolymer synthetic resin of acrylonitrile, butadiene, and styrene). On the other hand, the material constituting the abutting portions 51a and 51b may be PS resin (polystyrene). As a result, the abutting portions 24i and 24j are stronger than the abutting portions 51a and 51b, so that they are less likely to be damaged. The ABS resin and PS resin described above are merely examples, and the present invention is not limited thereto.
<効果>
 本実施形態によれば、ファン清掃用モータ24cを含む「第2駆動部」のトルクの余裕度が、上下風向板用モータ26を含む「第1駆動部」のトルクの余裕度よりも大きい。これによって、軸部24a及びブラシ24bの回動に要するトルクの変化が比較的大きくても、これらを適切に回動させることができる。したがって、ファン清掃部24の耐久性を考慮した信頼性の高い空気調和機100を提供できる。
<Effect>
According to the present embodiment, the torque margin of the “second drive unit” including the fan cleaning motor 24 c is larger than the torque margin of the “first drive unit” including the up / down airflow direction plate motor 26. Thereby, even if the change of the torque required for rotation of the shaft portion 24a and the brush 24b is relatively large, these can be appropriately rotated. Therefore, the air conditioner 100 with high reliability in consideration of the durability of the fan cleaning unit 24 can be provided.
 また、軸部24a及びブラシ24bの回動に用いられるギヤ24d,24e,24f(図4参照)の第2速度伝達比α2が、上下風向板23の回動に用いられるギヤ28a,28b(図5参照)の第1速度伝達比α1よりも大きい。これによって、例えば、ファン清掃用モータ24c及び上下風向板用モータ26に同種類のモータを使用した場合でも、ファン清掃部24の方を大きなトルクで回動させることが可能になる。 Further, the second speed transmission ratio α2 of the gears 24d, 24e, 24f (see FIG. 4) used for the rotation of the shaft portion 24a and the brush 24b is the gears 28a, 28b (FIG. 5), the first speed transmission ratio α1. Thus, for example, even when the same type of motor is used for the fan cleaning motor 24c and the up / down airflow direction plate motor 26, the fan cleaning unit 24 can be rotated with a large torque.
≪変形例≫
 以上、本発明に係る空気調和機100について実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、実施形態では、ファン清掃部24の突当て部24i,24j(図9参照)が、上下風向板23の回動に用いられる突当て部51a,51b(図6参照)よりも肉厚である構成について説明したが、これに限らない。その一例について、図10を用いて説明する。
≪Modification≫
The air conditioner 100 according to the present invention has been described in the above embodiments, but the present invention is not limited to these descriptions, and various modifications can be made.
For example, in the embodiment, the abutting portions 24i and 24j (see FIG. 9) of the fan cleaning unit 24 are thicker than the abutting portions 51a and 51b (see FIG. 6) used for the rotation of the vertical air direction plate 23. Although a certain structure was demonstrated, it is not restricted to this. An example thereof will be described with reference to FIG.
 図10は、変形例に係る空気調和機において、ファン清掃部24Aの突当て部24Ai,24jが互いに突き当てられた状態を示す説明図である。
 図10に示す例では、ファン清掃部24Aの固定側の突当て部24Aiが、補強用のリブA1を備えている。このような構成において、上下風向板用モータ26の位置決めに用いられる突当て部51a(図6参照)は、位置決めの際に自身が突き当てられる面の反対側にリブを有しない一方、ファン清掃用モータ24cの位置決めに用いられる突当て部24Aiは、位置決めの際に自身が突き当てられる面の反対側にリブA1を有することが好ましい。
 これによって、ファン清掃部24Aの方が上下風向板23よりも大きなトルクで回動しても、ファン清掃部24Aの突当て部24Aiが破損しにくくなるため、その長寿命化を図ることができる。
FIG. 10 is an explanatory diagram illustrating a state in which the abutting portions 24Ai and 24j of the fan cleaning unit 24A are abutted against each other in the air conditioner according to the modification.
In the example shown in FIG. 10, the abutting portion 24Ai on the fixed side of the fan cleaning portion 24A includes a reinforcing rib A1. In such a configuration, the abutting portion 51a (see FIG. 6) used for positioning of the up / down wind direction plate motor 26 does not have a rib on the opposite side of the surface against which the abutting portion 51a is abutted during positioning. The abutting portion 24Ai used for positioning of the motor 24c preferably has a rib A1 on the opposite side of the surface against which it abuts during positioning.
As a result, even if the fan cleaning unit 24A is rotated with a larger torque than the up-and-down wind direction plate 23, the abutting part 24Ai of the fan cleaning unit 24A is less likely to be damaged, so that the life of the fan cleaning unit 24A can be extended. .
 また、実施形態では、空気調和機100の据付後になされる動作(室内ファン16の清掃等)について説明したが、これに限らない。例えば、ファン清掃用モータ24cが、室内ファン16の通常の清掃時よりも大きな回転速度で駆動される「テストモード」を有するようにしてもよい。これによって、「テストモード」では通常の清掃時よりも軸部24a及びブラシ24bを回動させるトルクが小さくなるため、空気調和機100の出荷前の検査段階で、軸部24a及びブラシ24bが適切に回動しないといった不良品が見つかりやすくなる。
 また、前記した「テストモード」を設けることで、ファン清掃部24が正常に機能するか否かをテストする際、軸部24a及びブラシ24bの回動に要する時間を短縮できる。したがって、空気調和機100の出荷前の検査に要する時間を短縮し、ひいては、空気調和機100の生産効率を高めることができる。
Moreover, although embodiment demonstrated the operation | movement (cleaning etc. of the indoor fan 16) performed after installation of the air conditioner 100, it is not restricted to this. For example, the fan cleaning motor 24 c may have a “test mode” that is driven at a higher rotational speed than during normal cleaning of the indoor fan 16. As a result, in the “test mode”, the torque for rotating the shaft portion 24a and the brush 24b is smaller than that during normal cleaning, so that the shaft portion 24a and the brush 24b are appropriately used at the inspection stage before shipping the air conditioner 100. This makes it easier to find defective products that do not rotate.
Also, by providing the “test mode” described above, it is possible to shorten the time required for the rotation of the shaft portion 24a and the brush 24b when testing whether the fan cleaning unit 24 functions normally. Therefore, the time required for the inspection before shipping of the air conditioner 100 can be shortened, and as a result, the production efficiency of the air conditioner 100 can be increased.
 また、実施形態では、ファン清掃部24の軸部24aを中心にブラシ24bが回動する構成について説明したが、これに限らない。例えば、ファン清掃部24が平行移動する構成であってもよい。
 また、実施形態では、ファン清掃部24がブラシ24bを備える構成について説明したが、これに限らない。すなわち、室内ファン16を清掃可能な部材であれば、ブラシ24bに代えてスポンジ等を用いてもよい。
Moreover, although embodiment demonstrated the structure which the brush 24b rotates centering around the axial part 24a of the fan cleaning part 24, it is not restricted to this. For example, the fan cleaning unit 24 may be configured to move in parallel.
Moreover, although the fan cleaning part 24 demonstrated the structure provided with the brush 24b in embodiment, it is not restricted to this. That is, as long as the indoor fan 16 can be cleaned, a sponge or the like may be used instead of the brush 24b.
 また、実施形態では、空気の通流方向において、室内ファン16の上流側にファン清掃部24が配置される例について説明したが、これに限らない。例えば、室内ファン16の下流側にファン清掃部24が配置されてもよい。
 また、実施形態では、上下風向板用モータ26とファン清掃用モータ24cとして、同種類のモータが用いられる場合について説明したが、これらが別種類のモータであってもよい。
Moreover, although embodiment demonstrated the example in which the fan cleaning part 24 is arrange | positioned in the upstream of the indoor fan 16 in the flow direction of air, it is not restricted to this. For example, the fan cleaning unit 24 may be disposed on the downstream side of the indoor fan 16.
In the embodiment, the case where the same type of motor is used as the up / down airflow direction plate motor 26 and the fan cleaning motor 24c has been described, but these may be different types of motors.
 また、実施形態では、上下風向板23の回動軸23a(図5参照)の一端付近に上下風向板用モータ26が設けられる構成について説明したが、これに限らない。例えば、上下風向板23の回動軸23aの両端付近に、それぞれ、上下風向板用モータ26が設けられてもよい。なお、ファン清掃部24についても同様のことがいえる。このような構成において、「第2駆動部」のトルクの余裕度は、軸部24aの両端付近に設けられた各トルクの和に基づいて算出される。
 なお、1枚の上下風向板23を複数の「第1駆動部」で駆動し、「第2駆動部」のトルクの余裕度は、1枚の上下風向板23を駆動する複数の「第1駆動部」の各トルクの余裕度の合計よりも大きいことが好ましい。これによって、「第2駆動部」のトルクの余裕度を十分に確保し、軸部24aやブラシ24bを適切に回動させることができる。
Moreover, although embodiment demonstrated the structure by which the motor 26 for an up-and-down wind direction board was provided near the end of the rotating shaft 23a (refer FIG. 5) of the up-and-down wind direction board 23, it is not restricted to this. For example, a vertical wind direction plate motor 26 may be provided in the vicinity of both ends of the rotation shaft 23a of the vertical wind direction plate 23, respectively. The same applies to the fan cleaning unit 24. In such a configuration, the torque margin of the “second drive unit” is calculated based on the sum of torques provided near both ends of the shaft portion 24a.
In addition, the one up-and-down wind direction board 23 is driven by several "1st drive part", and the margin of the torque of a "2nd drive part" is several "first" which drives the up-and-down wind direction board 23 of 1 sheet. It is preferable that it is larger than the sum of the margins of each torque of the “drive unit”. As a result, a sufficient torque margin of the “second drive unit” can be ensured, and the shaft portion 24a and the brush 24b can be appropriately rotated.
 また、実施形態では、上下風向板23の回動用に2つのギヤ28a,28b(図5参照)が設けられる一方、軸部24a及びブラシ24bの回動用に3つのギヤ24d,24e,24f(図4参照)が設けられる構成について説明したが、これに限らない。すなわち、ギヤの個数は、適宜に変更可能である。例えば、上下風向板23の回動用のギヤの個数が、軸部24a及びブラシ24bの回動用のギヤの個数よりも多くてもよい。 In the embodiment, two gears 28a and 28b (see FIG. 5) are provided for turning the up-and-down wind direction plate 23, while three gears 24d, 24e and 24f (see FIG. 5) are used for turning the shaft portion 24a and the brush 24b. However, the present invention is not limited to this. That is, the number of gears can be changed as appropriate. For example, the number of rotating gears of the up / down wind direction plate 23 may be larger than the number of rotating gears of the shaft portion 24a and the brush 24b.
 また、実施形態では、室内ファン16の清掃において、室内ファン16を逆回転させる例について説明したが、これに限らない。すなわち、室内ファン16の清掃において、室内ファン16を正回転させてもよい。
 また、実施形態では、「第2駆動部」の第2速度伝達比α2が、「第1駆動部」の第1速度伝達比α1よりも大きい場合について説明したが(α2>α1)、これに限らない。例えば、第2速度伝達比α2が、第1速度伝達比α1以下であってもよい(α2≦α1)。
Moreover, although embodiment demonstrated the example which reversely rotates the indoor fan 16 in the cleaning of the indoor fan 16, it is not restricted to this. That is, in cleaning the indoor fan 16, the indoor fan 16 may be rotated forward.
In the embodiment, the case where the second speed transmission ratio α2 of the “second drive unit” is larger than the first speed transmission ratio α1 of the “first drive unit” (α2> α1) is described. Not exclusively. For example, the second speed transmission ratio α2 may be equal to or less than the first speed transmission ratio α1 (α2 ≦ α1).
 また、実施形態では、室内機Ui(図1参照)及び室外機Uo(同図参照)が一台ずつ設けられる構成について説明したが、これに限らない。すなわち、並列接続された複数台の室内機を設けてもよいし、また、並列接続された複数台の室外機を設けてもよい。
 また、実施形態の構成は、ルームエアコンの他、様々な種類の空気調和機にも適用可能である。
In the embodiment, the configuration in which the indoor unit Ui (see FIG. 1) and the outdoor unit Uo (see the same figure) are provided one by one has been described, but the present invention is not limited to this. That is, a plurality of indoor units connected in parallel may be provided, or a plurality of outdoor units connected in parallel may be provided.
The configuration of the embodiment can be applied to various types of air conditioners in addition to room air conditioners.
 また、実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
The embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
In addition, the above-described mechanisms and configurations are those that are considered necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.
 100 空気調和機
 11  圧縮機
 12  室外熱交換器
 13  室外ファン
 14  膨張弁
 15  室内熱交換器(熱交換器)
 16  室内ファン(ファン)
 17  四方弁
 22  左右風向板
 23  上下風向板
 23a 回動軸
 24,24A  ファン清掃部
 24a 軸部
 24b ブラシ
 24c ファン清掃用モータ(第2駆動部、第2モータ)
 24d,24e,24f ギヤ(第2駆動部、第2ギヤ)
 24g,24h 固定部
 24i,24Ai,24j 突当て部(第2位置決め部品)
 25  左右風向板用モータ
 26  上下風向板用モータ(第1駆動部、第1モータ)
 28a,28b ギヤ(第1駆動部、第1ギヤ)
 30  制御部
 51a,51b 突当て部(第1位置決め部品)
 A1  リブ
 Q   冷媒回路
DESCRIPTION OF SYMBOLS 100 Air conditioner 11 Compressor 12 Outdoor heat exchanger 13 Outdoor fan 14 Expansion valve 15 Indoor heat exchanger (heat exchanger)
16 Indoor fans (fans)
17 Four-way valve 22 Left and right wind direction plate 23 Upper and lower wind direction plate 23a Rotating shaft 24, 24A Fan cleaning unit 24a Shaft unit 24b Brush 24c Fan cleaning motor (second drive unit, second motor)
24d, 24e, 24f Gear (second drive unit, second gear)
24g, 24h Fixed portion 24i, 24Ai, 24j Abutting portion (second positioning component)
25 Motor for left and right wind direction plate 26 Motor for vertical wind direction plate (first drive unit, first motor)
28a, 28b gear (first drive unit, first gear)
30 Control part 51a, 51b Abutting part (1st positioning component)
A1 Rib Q Refrigerant circuit

Claims (11)

  1.  熱交換器と、
     ファンと、
     前記ファンを清掃するファン清掃部と、
     前記ファンの駆動に伴って吹き出される空気の上下方向の風向きを調整する上下風向板と、
     前記上下風向板を回動させる第1駆動部と、を備え、
     前記ファン清掃部は、前記ファンの軸方向に平行な軸部と、前記軸部に設置されるブラシと、前記軸部及び前記ブラシを回動させる第2駆動部と、を有し、
     前記第2駆動部のトルクの余裕度は、前記第1駆動部のトルクの余裕度よりも大きい空気調和機。
    A heat exchanger,
    With fans,
    A fan cleaning section for cleaning the fan;
    An up-and-down air direction plate that adjusts the up-and-down air direction of the air blown out as the fan is driven;
    A first drive unit that rotates the up-and-down wind direction plate,
    The fan cleaning part includes a shaft part parallel to the axial direction of the fan, a brush installed on the shaft part, and a second drive part for rotating the shaft part and the brush,
    The air conditioner in which the torque margin of the second drive unit is larger than the torque margin of the first drive unit.
  2.  水平方向又は前記ブラシの回動範囲のうち最も水平方向に近い角度において前記ブラシを上方向に回動させるときの前記第2駆動部のトルクの余裕度は、水平方向又は前記上下風向板の回動範囲のうち最も水平方向に近い角度において前記上下風向板を上方向に回動させるときの前記第1駆動部のトルクの余裕度よりも大きいこと
     を特徴とする請求項1に記載の空気調和機。
    The margin of torque of the second drive unit when the brush is rotated upward at an angle closest to the horizontal direction in the horizontal direction or the rotation range of the brush is the horizontal direction or the rotation of the vertical wind direction plate. 2. The air conditioner according to claim 1, wherein the air conditioner is larger than a margin of torque of the first drive unit when the vertical wind direction plate is rotated upward at an angle closest to the horizontal direction in a moving range. Machine.
  3.  前記ブラシを前記熱交換器に接触させた状態で前記ブラシを回動させるときの前記第2駆動部のトルクの余裕度は、水平方向又は前記上下風向板の回動範囲のうち最も水平方向に近い角度において前記上下風向板を上方向に回動させるときの前記第1駆動部のトルクの余裕度よりも大きいこと
     を特徴とする請求項1に記載の空気調和機。
    The margin of torque of the second drive unit when the brush is rotated while the brush is in contact with the heat exchanger is the horizontal direction or the most horizontal direction in the rotation range of the upper and lower wind direction plates. 2. The air conditioner according to claim 1, wherein the air conditioner is larger than a torque margin of the first drive unit when the up-and-down wind direction plate is rotated upward at a close angle.
  4.  複数枚の前記上下風向板に対応して、複数の前記第1駆動部が設けられ、
     複数の前記第1駆動部のうち、トルクの余裕度が最も大きいものよりもさらに、前記第2駆動部のトルクの余裕度が大きいこと
     を特徴とする請求項1に記載の空気調和機。
    A plurality of the first drive units are provided corresponding to the plurality of the up and down wind direction plates,
    2. The air conditioner according to claim 1, wherein among the plurality of first drive units, the torque margin of the second drive unit is further greater than one having the largest torque margin.
  5.  1枚の前記上下風向板を複数の前記第1駆動部で駆動し、
     前記第2駆動部のトルクの余裕度は、1枚の前記上下風向板を駆動する複数の前記第1駆動部の各トルクの余裕度の合計よりも大きいこと
     を特徴とする請求項1に記載の空気調和機。
    Driving one sheet of the vertical wind direction plate by the plurality of first driving units;
    2. The torque margin of the second drive unit is greater than the sum of the torque margins of the plurality of first drive units that drive the single vertical wind direction plate. Air conditioner.
  6.  前記第1駆動部は、第1モータと、前記第1モータのトルクを前記上下風向板に伝達する複数の第1ギヤと、を有し、
     前記第2駆動部は、第2モータと、前記第2モータのトルクを前記軸部に伝達する複数の第2ギヤと、を有し、
     速度伝達比に関して、前記第2駆動部の第2速度伝達比は、前記第1駆動部の第1速度伝達比よりも大きく、
     前記第1速度伝達比は、前記上下風向板の回動軸に連結される前記第1ギヤの歯数を、前記第1モータの回転子に連結される別の前記第1ギヤの歯数で除算した値であり、
     前記第2速度伝達比は、前記ファン清掃部の前記軸部に連結される前記第2ギヤの歯数を、前記第2モータの回転子に連結される別の前記第2ギヤの歯数で除算した値であること
     を特徴とする請求項1に記載の空気調和機。
    The first drive unit includes a first motor and a plurality of first gears that transmit torque of the first motor to the up-and-down wind direction plate,
    The second drive unit includes a second motor and a plurality of second gears that transmit torque of the second motor to the shaft unit,
    Regarding the speed transmission ratio, the second speed transmission ratio of the second driving unit is larger than the first speed transmission ratio of the first driving unit,
    The first speed transmission ratio is the number of teeth of the first gear connected to the rotating shaft of the up-and-down wind direction plate by the number of teeth of another first gear connected to the rotor of the first motor. Divided by the value
    The second speed transmission ratio is the number of teeth of the second gear connected to the shaft part of the fan cleaning part, and the number of teeth of another second gear connected to the rotor of the second motor. The air conditioner according to claim 1, wherein the air conditioner is a divided value.
  7.  前記第2ギヤの個数は、前記上下風向板の一枚あたりの前記第1ギヤの個数よりも多いこと
     を特徴とする請求項6に記載の空気調和機。
    The air conditioner according to claim 6, wherein the number of the second gears is greater than the number of the first gears per sheet of the vertical wind direction plate.
  8.  前記第1駆動部は、第1モータと、前記第1モータのトルクを前記上下風向板に伝達する複数の第1ギヤと、を有し、
     前記第2駆動部は、第2モータと、前記第2モータのトルクを前記軸部に伝達する複数の第2ギヤと、を有し、
     前記第1モータ及び前記第2モータは、それぞれ、ステッピングモータであり、
     前記第1モータの位置決めに用いられる第1位置決め部品と、
     前記第2モータの位置決めに用いられる第2位置決め部品と、を備え、
     前記第2位置決め部品は前記第1位置決め部品よりも位置決めの際に自身が突き当てられる方向での肉厚が厚い、又は、前記第2位置決め部品は前記第1位置決め部品よりも強度が高い材料で構成されていること
     を特徴とする請求項1に記載の空気調和機。
    The first drive unit includes a first motor and a plurality of first gears that transmit torque of the first motor to the up-and-down wind direction plate,
    The second drive unit includes a second motor and a plurality of second gears that transmit torque of the second motor to the shaft unit,
    Each of the first motor and the second motor is a stepping motor,
    A first positioning component used for positioning the first motor;
    A second positioning component used for positioning the second motor,
    The second positioning component is thicker than the first positioning component in the direction in which the second positioning component abuts itself, or the second positioning component is made of a material having higher strength than the first positioning component. It is comprised, The air conditioner of Claim 1 characterized by the above-mentioned.
  9.  前記第1駆動部は、第1モータと、前記第1モータのトルクを前記上下風向板に伝達する複数の第1ギヤと、を有し、
     前記第2駆動部は、第2モータと、前記第2モータのトルクを前記軸部に伝達する複数の第2ギヤと、を有し、
     前記第1モータ及び前記第2モータは、それぞれ、ステッピングモータであり、
     前記第1モータの位置決めに用いられる第1位置決め部品と、
     前記第2モータの位置決めに用いられる第2位置決め部品と、を備え、
     前記第1位置決め部品は、位置決めの際に自身が突き当てられる面の反対側にリブを有さず、
     前記第2位置決め部品は、位置決めの際に自身が突き当てられる面の反対側にリブを有すること
     を特徴とする請求項1に記載の空気調和機。
    The first drive unit includes a first motor and a plurality of first gears that transmit torque of the first motor to the up-and-down wind direction plate,
    The second drive unit includes a second motor and a plurality of second gears that transmit torque of the second motor to the shaft unit,
    Each of the first motor and the second motor is a stepping motor,
    A first positioning component used for positioning the first motor;
    A second positioning component used for positioning the second motor,
    The first positioning component does not have a rib on the side opposite to the surface against which the first positioning component is abutted.
    The air conditioner according to claim 1, wherein the second positioning component has a rib on a side opposite to a surface against which the second positioning component is abutted during positioning.
  10.  前記第1駆動部は、第1モータと、前記第1モータのトルクを前記上下風向板に伝達する複数の第1ギヤと、を有し、
     前記第2駆動部は、第2モータと、前記第2モータのトルクを前記軸部に伝達する複数の第2ギヤと、を有し、
     前記第1モータと、前記第2モータと、は同種類のモータであり、且つ、前記第2駆動部の第2速度伝達比は、前記第1駆動部の第1速度伝達比と異なり、
     前記第1速度伝達比は、前記上下風向板の回動軸に連結される前記第1ギヤの歯数を、前記第1モータの回転子に連結される別の前記第1ギヤの歯数で除算した値であり、
     前記第2速度伝達比は、前記ファン清掃部の前記軸部に連結される前記第2ギヤの歯数を、前記第2モータの回転子に連結される別の前記第2ギヤの歯数で除算した値であること
     を特徴とする請求項1に記載の空気調和機。
    The first drive unit includes a first motor and a plurality of first gears that transmit torque of the first motor to the up-and-down wind direction plate,
    The second drive unit includes a second motor and a plurality of second gears that transmit torque of the second motor to the shaft unit,
    The first motor and the second motor are the same type of motor, and the second speed transmission ratio of the second drive unit is different from the first speed transmission ratio of the first drive unit,
    The first speed transmission ratio is the number of teeth of the first gear connected to the rotating shaft of the up-and-down wind direction plate by the number of teeth of another first gear connected to the rotor of the first motor. Divided by the value
    The second speed transmission ratio is the number of teeth of the second gear connected to the shaft part of the fan cleaning part, and the number of teeth of another second gear connected to the rotor of the second motor. The air conditioner according to claim 1, wherein the air conditioner is a divided value.
  11.  前記第2モータが、前記ファンの通常の清掃時よりも大きな回転速度で駆動されるテストモードを有すること
     を特徴とする請求項6から請求項10のいずれか一項に記載の空気調和機。
    The air conditioner according to any one of claims 6 to 10, wherein the second motor has a test mode in which the fan is driven at a rotational speed greater than that during normal cleaning of the fan.
PCT/JP2018/018516 2018-05-14 2018-05-14 Air conditioner WO2019220491A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/018516 WO2019220491A1 (en) 2018-05-14 2018-05-14 Air conditioner
CN201880002173.3A CN110785610B (en) 2018-05-14 2018-05-14 Air conditioner
JP2018541371A JP6397604B1 (en) 2018-05-14 2018-05-14 Air conditioner
ES201890081A ES2731198A1 (en) 2018-05-14 2018-05-14 AIR CONDITIONER
FR1872278A FR3081045B1 (en) 2018-05-14 2018-12-04 Air conditioner
TW107146769A TWI674380B (en) 2018-05-14 2018-12-24 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018516 WO2019220491A1 (en) 2018-05-14 2018-05-14 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019220491A1 true WO2019220491A1 (en) 2019-11-21

Family

ID=63668561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018516 WO2019220491A1 (en) 2018-05-14 2018-05-14 Air conditioner

Country Status (6)

Country Link
JP (1) JP6397604B1 (en)
CN (1) CN110785610B (en)
ES (1) ES2731198A1 (en)
FR (1) FR3081045B1 (en)
TW (1) TWI674380B (en)
WO (1) WO2019220491A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11154163B1 (en) 2020-12-31 2021-10-26 Sharkninja Operating Llc Micro puree machine
US11324358B1 (en) 2020-12-31 2022-05-10 Sharkninja Operating Llc Micro puree machine
US11503959B2 (en) 2020-12-31 2022-11-22 Sharkninja Operating Llc Micro puree machine
US11617378B2 (en) 2020-12-31 2023-04-04 Sharkninja Operating Llc Micro puree machine
USD983603S1 (en) 2020-12-31 2023-04-18 Sharkninja Operating Llc Blade for a micro puree machine
USD985331S1 (en) 2020-12-31 2023-05-09 Sharkninja Operating Llc Housing for a micro puree machine
USD985334S1 (en) 2020-12-31 2023-05-09 Sharkninja Operating Llc Nested bowl for a micro puree machine
US11864690B2 (en) 2020-12-31 2024-01-09 Sharkninja Operating Llc Micro puree machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075298A1 (en) * 2018-10-12 2020-04-16 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267249A (en) * 2001-03-09 2002-09-18 Sharp Corp Fluid-delivering device
JP2008002767A (en) * 2006-06-23 2008-01-10 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2008138913A (en) * 2006-11-30 2008-06-19 Toshiba Kyaria Kk Air conditioner

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308121A (en) * 2005-04-26 2006-11-09 Corona Corp Apparatus with cross flow fan
JP4405442B2 (en) * 2005-07-26 2010-01-27 住友重機械工業株式会社 Motor with pinion
JP4951972B2 (en) * 2006-01-10 2012-06-13 パナソニック株式会社 Fan unit for air conditioner
JP2008051430A (en) * 2006-08-25 2008-03-06 Toshiba Kyaria Kk Indoor unit for air conditioner
JP4046755B2 (en) * 2006-10-27 2008-02-13 シャープ株式会社 Air conditioner
WO2008062876A1 (en) * 2006-11-24 2008-05-29 Toshiba Carrier Corporation Air conditioning apparatus indoor unit
JP2008134004A (en) * 2006-11-28 2008-06-12 Toshiba Kyaria Kk Indoor unit of air conditioner
US8231445B2 (en) * 2007-07-20 2012-07-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus and method for providing detonation damage resistance in ductwork
JP2011075170A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Air conditioner
KR101761311B1 (en) * 2010-09-02 2017-07-25 엘지전자 주식회사 A turbo fan for air conditioner
CN103924582B (en) * 2014-03-20 2016-03-30 成都绿迪科技有限公司 Prefabricated keeper
CN103956837B (en) * 2014-05-19 2016-05-11 安徽江淮汽车股份有限公司 The fixing means of water-cooled machine stator core fixed structure
MA40693A (en) * 2014-06-24 2017-05-02 Amirhossein Eshtiaghi ENERGY EXTRACTION APPARATUS AND METHOD
CN204611953U (en) * 2015-03-23 2015-09-02 珠海格力电器股份有限公司 Air-conditioning
CN106247581A (en) * 2016-08-12 2016-12-21 广东美的制冷设备有限公司 Indoor apparatus of air conditioner
CN106931615A (en) * 2017-03-22 2017-07-07 珠海格力电器股份有限公司 Wind-guiding plate movement mechanism and the air-conditioner with it
CN107449126A (en) * 2017-08-18 2017-12-08 珠海格力电器股份有限公司 Air deflection assemblies and air conditioner wall-mounted machine
CN207673792U (en) * 2017-10-13 2018-07-31 常州信息职业技术学院 A kind of high intensity large transmission ratio line gear transmission mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267249A (en) * 2001-03-09 2002-09-18 Sharp Corp Fluid-delivering device
JP2008002767A (en) * 2006-06-23 2008-01-10 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2008138913A (en) * 2006-11-30 2008-06-19 Toshiba Kyaria Kk Air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11154163B1 (en) 2020-12-31 2021-10-26 Sharkninja Operating Llc Micro puree machine
US11324358B1 (en) 2020-12-31 2022-05-10 Sharkninja Operating Llc Micro puree machine
US11503959B2 (en) 2020-12-31 2022-11-22 Sharkninja Operating Llc Micro puree machine
US11540669B2 (en) 2020-12-31 2023-01-03 Sharkninja Operating Llc Micro puree machine
US11617378B2 (en) 2020-12-31 2023-04-04 Sharkninja Operating Llc Micro puree machine
USD983603S1 (en) 2020-12-31 2023-04-18 Sharkninja Operating Llc Blade for a micro puree machine
USD985331S1 (en) 2020-12-31 2023-05-09 Sharkninja Operating Llc Housing for a micro puree machine
US11641978B2 (en) 2020-12-31 2023-05-09 Sharkninja Operating Llc Micro puree machine
USD985334S1 (en) 2020-12-31 2023-05-09 Sharkninja Operating Llc Nested bowl for a micro puree machine
US11672382B2 (en) 2020-12-31 2023-06-13 Sharkninja Operating Llc Micro puree machine
US11832767B2 (en) 2020-12-31 2023-12-05 Sharkninja Operating Llc Micro puree machine
USD1008735S1 (en) 2020-12-31 2023-12-26 Sharkninja Operating Llc Blade for a micro puree machine
US11864690B2 (en) 2020-12-31 2024-01-09 Sharkninja Operating Llc Micro puree machine
US11871765B2 (en) 2020-12-31 2024-01-16 Sharkninja Operating Llc Micro puree machine
US11925298B2 (en) 2020-12-31 2024-03-12 Sharkninja Operating Llc Micro puree machine

Also Published As

Publication number Publication date
TW201947163A (en) 2019-12-16
FR3081045A1 (en) 2019-11-15
FR3081045B1 (en) 2022-07-15
JPWO2019220491A1 (en) 2020-06-11
JP6397604B1 (en) 2018-09-26
ES2731198A1 (en) 2019-11-14
CN110785610A (en) 2020-02-11
TWI674380B (en) 2019-10-11
CN110785610B (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP6397604B1 (en) Air conditioner
TWI655399B (en) air conditioner
JP6541923B1 (en) Air conditioner
JP6354004B1 (en) Air conditioner
CN111684212B (en) Air conditioner
TWI707090B (en) air conditioner
JP6563156B1 (en) Air conditioner
WO2019229934A1 (en) Air conditioner
JP6448496B2 (en) Ventilation equipment
WO2019220493A1 (en) Air conditioner
CN110520675B (en) Air conditioner
WO2020075298A1 (en) Air conditioner
JP2021195914A (en) Air-conditioner
CN110402352B (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541371

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919325

Country of ref document: EP

Kind code of ref document: A1