WO2019219262A1 - Mimo-radarsensor für kraftfahrzeuge - Google Patents

Mimo-radarsensor für kraftfahrzeuge Download PDF

Info

Publication number
WO2019219262A1
WO2019219262A1 PCT/EP2019/055700 EP2019055700W WO2019219262A1 WO 2019219262 A1 WO2019219262 A1 WO 2019219262A1 EP 2019055700 W EP2019055700 W EP 2019055700W WO 2019219262 A1 WO2019219262 A1 WO 2019219262A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrays
antennas
transmitting
board
receiving antennas
Prior art date
Application number
PCT/EP2019/055700
Other languages
English (en)
French (fr)
Inventor
Michael Schoor
Benedikt Loesch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to MX2020012207A priority Critical patent/MX2020012207A/es
Priority to KR1020207035867A priority patent/KR20210009355A/ko
Priority to JP2020564315A priority patent/JP7027579B2/ja
Priority to EP19709900.5A priority patent/EP3794373A1/de
Priority to US17/040,719 priority patent/US11870138B2/en
Priority to CN201980033228.1A priority patent/CN112136060B/zh
Priority to CA3099856A priority patent/CA3099856A1/en
Publication of WO2019219262A1 publication Critical patent/WO2019219262A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a MIMO radar sensor for motor vehicles, having an antenna arrangement on a rectangular board whose edges define a y-direction and a z-direction, the antenna arrangement comprising at least two arrays of transmitting antennas and at least two arrays of receiving antennas, transmitting antennas within each array in the z-direction are offset from each other, while the two arrays of the transmitting antennas are offset from one another in the y-direction, and the receiving antennas within each array in the y-direction are offset from each other, while the two arrays of the receiving antennas in z direction are offset from each other.
  • PRIOR ART Radar sensors are used in driver assistance systems or autonomous vehicle guidance systems for motor vehicles for environmental monitoring, in particular for measuring distances, relative speeds and directional angles of other vehicles and also of stationary objects.
  • the azimuth angle of an object ie the angle between seeing the forward direction of the vehicle and the visual ray to the object in a horizontal plane
  • the elevation angle required ie the angle between the line of sight to the object and the horizontal plane.
  • the elevation angle allows a statement about the relevance of the destination, ie whether the destination is passable or navigable (eg a bridge) or whether it is a real obstacle.
  • Azimuth and elevation angles of the targets can be determined from amplitudes and / or phase differences between a plurality of transmitting and / or receiving antennas of an antenna array.
  • MIMO multiple-input-multiple-output
  • the signals received by the individual receive antennas must be evaluated in separate evaluation channels.
  • the individual antennas In order to improve the angular accuracy and the angular separation capability in the azimuth given a given number of evaluation channels, one often selects distances between the individual antennas which are larger than half the wavelength l / 2 of the radar waves. However, this can lead to ambiguities, which must be resolved either by means of a separate antenna array or by other methods, for example by tracking the targets located over a longer period.
  • the frequency of the transmitted radar signal is modulated in a ramp.
  • the received signal is mixed with a portion of the signal transmitted at the time of reception so as to obtain an intermediate frequency signal whose frequency corresponds to the frequency difference between the transmitted signal and the received signal.
  • This frequency difference is due to the frequency modulation of the signal transit time and due to the Doppler effect of the relative speed depends on the object, so that you get information about the distance and the relative speed of the object in several measuring cycles in which ramps are driven with different pitch.
  • the intermediate frequency signal recorded during a measurement cycle is converted by a Fast Fourier Transform (FFT) into a spectrum in which each located object is characterized by a peak in a specific frequency bin.
  • FFT Fast Fourier Transform
  • DML functions deterministic maximum likelihood functions
  • the antenna arrangement as a whole should have the largest possible aperture or at least the largest possible virtual aperture both in the y-direction and in the z-direction.
  • the antenna arrangement must therefore have relatively large dimensions, so that a correspondingly large board is needed. Since the board must be made of an expensive high frequency suitable material, this leads to increased costs.
  • the object of the invention is to provide an antenna arrangement which allows a high angular resolution in azimuth and elevation and yet can be accommodated on a compact board.
  • This object is achieved in that the two arrays of the transmitting antennas are arranged adjacent to two opposite edges of the board, the two arrays of the receiving antennas adjacent to the two remaining edges of the board are arranged and in a central region of the board between the Arrays of the transmitting and receiving antennas at least one high frequency component is arranged on the board.
  • the outer edges of the antenna arrays form a rectangular frame which, taking into account a certain minimum distance between the antenna patches and the edge of the board, dictates the shape and dimensions of the rectangular board.
  • the space available on the rectangular board can be used optimally for an antenna arrangement with high apertures in azimuth and in elevation.
  • the antenna arrays can be configured depending on the desired angular resolution and uniqueness of the angle estimates.
  • the y-direction is the azimuthal direction.
  • the receive antennas may form two arrays extending along the top and bottom edges of the board, while the transmit antennas may be two Arrays can form, which extend along the lateral edges of the board.
  • the transmission antennas can lie in the gap between the two arrays of the receiving antennas in the z-direction. However, in another embodiment they can also be arranged laterally next to the arrays of the receiving antennas so that they cover the entire direction in the z-direction space available on the board.
  • 1 is a schematic representation of an antenna arrangement of a radar sensor and an object to be located with the aid of this antenna arrangement;
  • FIG. 2 is a diagram analogous to FIG. 1, illustrating different signal propagation paths
  • FIG. 3 shows the antenna arrangement according to FIG. 1 in a front view
  • FIG. 4 shows an antenna arrangement according to another exemplary embodiment.
  • FIG. 1 shows an antenna arrangement 10 and a control and evaluation device 12 of a radar sensor, which serves to measure distances, relative speeds and directional angles of objects.
  • a single object 14 is shown here.
  • the radar sensor is installed, for example, in the front part of a motor vehicle, not shown, and serves in particular In particular, to detect preceding vehicles or other objects in the apron of the vehicle.
  • the radar sensor shown here is designed for a two-dimensional angle estimation in which both the azimuth angle Q and the elevation angle f of the object 14 are estimated.
  • the elevation angle f is defined as the angle between the visual ray S from the center of the radar sensor to the object 14 and an azimuthal (horizontal) plane P, which is spanned by a forward direction x of the vehicle and a sideways direction y.
  • the azimuth angle Q is defined as the angle between the forward direction x and the vertical projection of the line of sight s onto the azimuthal plane P.
  • the radar sensor is thus angle-resolving in the y-direction (measurement of the azimuth angle) and in the z-direction (Measurement of elevation angle).
  • the antenna arrangement 10 has two arrays AR1, AR2 each with eight receiving antennas RX and two arrays AT1, AT2 each with four transmitting antennas TX, which are formed on a rectangular board 16.
  • the edges of the board run in y- and z-direction.
  • the receiving antennas RX of each array are arranged at regular intervals on a straight line that extends in the y direction.
  • the receiving antennas thus form a so-called ULA (Uniform Linear Array).
  • the transmitting antennas TX are formed separately from the receiving antennas (bistatic antenna concept) and are arranged offset in the y direction as well as in the z direction offset from the receiving antennas.
  • FIG. 2 shows in solid lines a signal propagation path which leads from one of the transmit antennas TX to the object 14 and from there back to one of the receive antennas RX, and in broken lines a signal propagation path for another pair of transmit and transmit signals receiving antennas.
  • the radar signal originates from a phase center of the transmitting antenna (a point in the middle of the relevant group antenna) and runs to a corresponding phase center of the receiving antenna.
  • a high-frequency module 18 is arranged, e.g. a MMIC (Monolithic Microwave Integrated Circuit), comprising a transmitting part 20 which generates the transmission signals for the transmitting antennas, and a receiving part 22 which receives the signals from the receiving antennas RX in separate receiving channels and mixes them down into an intermediate frequency band and the thus obtained intermediate frequency signals transmitted to the control and evaluation device 12.
  • the signals are recorded and digitized at a specific sample rate over a measuring cycle. In this way, digitalized received signals are obtained, which are then further evaluated in a processor 24.
  • the processor 24 also controls the RF module 18 and determines, among other things, when which of the transmit antennas TX will transmit.
  • the signal propagation paths Due to the offset of the transmit and receive antennas, the signal propagation paths, of which only two are shown by way of example in FIG. 2, have a different length for each pair of transmit antenna and receive antenna.
  • the different lengths of the signal paths lead to characteristic differences in the amplitudes and phases of the signals received in the four receiving channels. These differences depend on the pairing of the transmitting and receiving antennas and on the azimuth angle Q and elevation angle f of the object 14. This effect is used in the digital evaluation of the data in the processor 24 for estimating the azimuth angle and the elevation angle of the object.
  • Both the transmit antennas TX and the receive antennas RX are each configured as a group antenna and, in the example shown, consist of two vertically (in the z-direction) columns each having eight antenna elements or patches 26.
  • the patches 26 are fed with in-phase transmission signals, which are supplied by the transmitting part 20.
  • the receive antennas RX in this example also consist of patches 26 which have the same arrangement as the patches in the transmit antennas.
  • the signals received by the individual patches 26 are combined into a single signal by signal lines which are not shown, without the phase relationships between the signals being changed by the different patches.
  • the delay lobes of the receiving antennas thus have, in this example, the same shape as the transmitting lobes of the transmitting antennas.
  • the patches 26 of the transmit antennas and the receive antennas are square and have an edge length of 1/4, where 1 is the (middle) wavelength , g.
  • the patch-to-patch spacing within each array antenna is 1/2 in both horizontal and vertical.
  • the eight receiving antennas RX of each array RA1, RA2 are arranged at intervals of 2l, that is, the distance between the phase centers of two adjacent receive antennas in the y-direction is 2l. In the z direction, the antennas of each array are at the same height.
  • the upper edges of the antennas of the array RA1 are all the same distance dz1 from the top edge of the board 16, and accordingly the bottom edges of the antennas of the array RA2 are all the same distance dz2 from the bottom edge of the board.
  • the arrays TA1, TA2 of the transmitting antennae TX lie in the z-direction entirely within the space between the arrays RA1, RA2 of the receiving antennas.
  • the four transmit antennas are offset in the z direction and form two pairs of antennas that are at the same height in the y direction.
  • the left edges of the two outer antennas of the array TA1 thus have the same distance dy1 to the left edge of the board 16.
  • the right edges of the two outer antennas of the array TA2 have the same distance dy2 to the right edge of the board.
  • the displacements of the antennas relative to each other are different, but in each case in the y-direction and in the z-direction are in each case an integer multiple of 1/2.
  • the offsets in the two arrays TA1 and TA2 match, so that the array TA2 is a shifted copy of the array TA1.
  • the antenna spacings in the virtual array are not completely uniform. This gives constructive freedom for the optimization of the virtual array with regard to the respective requirements.
  • larger gaps between the virtual antennas increase the aperture, while, on the other hand, increasing the filling of the gaps reduces the possibility of ambiguity in the determination of the angle.
  • the arrays RA1 and RA2 of the receive antennas extend along the top and bottom edges of the board 16, while the arrays TA1 and TA2 of the transmit antennas extend along the vertical edges of the board.
  • the (real) arrays RA1 and RA2 of the receiving antennas therefore already have a large aperture in the y-direction.
  • the arrays TA1 and TA2 of the transmitting antennas have the greatest distance from one another in the y direction, which is permitted by the width of the board 16, the virtual aperture for the azimuth angle determination is maximized.
  • the board 16 Since the arrays RA1 and RA2 of the receiving antennas in the z-direction have the greatest distance from one another, which the height of the board 16 allows, and the gaps between these two arrays are filled up by the virtual arrays, the board 16 will also be given a given dimension maximizes the aperture for angle determination in elevation. Since the remaining free space inside the board 16 is used for the radio-frequency module 18 and for the lines to the transmitting and receiving antennas, the space available on the board 16 is optimally utilized so that, given the material costs for the board 16 achieves optimum performance.
  • Fig. 4 shows, as another example, a slightly modified antenna arrangement 10 'in which the arrays TA1 and TA2 of the transmit antennas (outlined in dashed lines in the drawing) extend over the entire available height of the board 16 and laterally beside the opposite ends of the arrays RA1 and RA2 of the receiving antennas are arranged. This allows a further enlargement of the aperture in the z-direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

MIMO-Radarsensor für Kraftfahrzeuge, mit einer Antennenanordnung (10) auf einer rechteckigen Platine (16), deren Kanten eine y-Richtung und eine z- Richtung definieren, wobei die Antennenanordnung mindestens zwei Arrays (TA1, TA2) von Sendeantennen (TX) und mindestens zwei Arrays (RA1, RA2) von Empfangsantennen (RX) umfasst, die Sendeantennen (TX) innerhalb jedes Arrays in z-Richtung gegeneinander versetzt sind, während die beiden Arrays (TA1, TA2) der Sendeantennen in y-Richtung gegeneinander versetzt sind, und die Empfangsantennen (RX) innerhalb jedes Arrays in y-Richtung gegeneinander versetzt sind, während die beiden Arrays (RA1, RA2) der Empfangsantennen in z-Richtung gegeneinander versetzt sind, dadurch gekennzeichnet, dass die beiden Arrays (TA1, TA2) der Sendeantennen benachbart zu zwei einander gegenüberliegenden Kanten der Platine (16) angeordnet sind, die beiden Arrays (RA1, RA2) der Empfangsantennen benachbart zu den beiden übrigen Kanten der Platine (16) angeordnet sind und in einem mittleren Bereich der Platine (16) zwischen den Arrays der Sende- und Empfangsantennen mindestens ein Hochfrequenzbaustein (18) auf der Platine angeordnet ist.

Description

Beschreibung
Titel
MIMO-Radarsensor für Kraftfahrzeuge
Die Erfindung betrifft einen MIMO-Radarsensor für Kraftfahrzeuge, mit einer Antennenanordnung auf einer rechteckigen Platine, deren Kanten eine y- Richtung und eine z-Richtung definieren, wobei die Antennenanordnung min- destens zwei Arrays von Sendeantennen und mindestens zwei Arrays von Empfangsantennen umfasst, Sendeantennen innerhalb jedes Arrays in z- Richtung gegeneinander versetzt sind, während die beiden Arrays der Sende- antennen in y-Richtung gegeneinander versetzt sind, und die Empfangsanten- nen innerhalb jedes Arrays in y-Richtung gegeneinander versetzt sind, während die beiden Arrays der Empfangsantennen in z-Richtung gegeneinander versetzt sind.
Stand der Technik Radarsensoren werden in Fahrerassistenzsystemen oder autonomen Fahr- zeugführungssystemen für Kraftfahrzeuge zur Umfeldüberwachung eingesetzt, insbesondere zur Messung von Abständen, Relativgeschwindigkeiten und Rich- tungswinkeln von anderen Fahrzeugen und auch von stationären Objekten. Ne- ben der Erfassung des Azimutwinkels eines Objekts, also des Winkels zwi- sehen der Vorwärtsrichtung des Fahrzeugs und dem Sehstrahl zum Objekt in einer horizontalen Ebene, ist häufig auch die Erfassung des Elevationswinkels erforderlich, also des Winkels zwischen dem Sehstrahl zum Objekt und der ho- rizontalen Ebene. Beispielsweise erlaubt der Elevationswinkel eine Aussage über die Relevanz des Ziels, also darüber, ob das Ziel überfahrbar oder unter- fahrbar ist (z.B. eine Brücke) oder ob es sich um ein echtes Hindernis handelt.
Azimut- und Elevationswinkel der Ziele können aus Amplituden und/oder Pha- senunterschieden zwischen mehreren Sende- und/oder Empfangsantennen eines Antennenarrays ermittelt werden. Wenn mehrere Sendeantennen und mehrere Empfangsantennen genutzt werden, spricht man von einem "Multiple- Input-Multiple-Output (MIMO) System. Dadurch ergibt sich eine (virtuell) ver- größerte Antennenapertur und damit eine verbesserte Winkelgenauigkeit und Winkeltrennfähigkeit.
Für eine Azimutwinkelschätzung müssen die von den einzelnen Empfangsan- tennen empfangenen Signale in gesonderten Auswertungskanälen ausgewertet werden. Um bei gegebener Anzahl der Auswertungskanäle die Winkelgenauig- keit und die Winkeltrennfähigkeit im Azimut zu verbessern, wählt man häufig Abstände zwischen den einzelnen Antennen, die größer sind als die halbe Wel- lenlänge l/2 der Radarwellen. Dadurch kann es allerdings zu Mehrdeutigkeiten kommen, die entweder mit Hilfe eines separaten Antennenarrays oder mit Hilfe anderer Verfahren aufgelöst werden müssen, beispielsweise durch Verfolgung der georteten Ziele über einen längeren Zeitraum.
Bei gebräuchlichen FMCW-Radarsensoren wird die Frequenz des gesendeten Radarsignals rampenförmig moduliert. Das empfangene Signal wird mit einem Anteil des zum Empfangszeitpunkt gesendeten Signals gemischt, so dass man ein Zwischenfrequenzsignal erhält, dessen Frequenz dem Frequenzunterschied zwischen dem gesendeten Signal und dem empfangenen Signal entspricht. Dieser Frequenzunterschied ist aufgrund der Frequenzmodulation von der Sig- nallaufzeit und aufgrund des Doppler-Effekts auch von der Relativgeschwindig- keit des Objekts abhängig, so dass man in mehreren Messzyklen, in denen Rampen mit unterschiedlicher Steigung gefahren werden, Auskunft über den Abstand und die Relativgeschwindigkeit des Objekts erhält. Das während eines Messzyklus aufgezeichnete Zwischenfrequenzsignal wird durch eine schnelle Fourier-Transformation (FFT) in ein Spektrum umgewandelt, in dem sich jedes geortete Objekt durch einen Peak in einem bestimmten Frequenzbin auszeich- net.
Für die Winkelschätzung nutzt man den Umstand aus, dass die Amplituden- und Phasenbeziehungen der von den verschiedenen Empfangsantennen erhal- tenen Signale in charakteristischer Weise vom Winkel des Objekts abhängig sind. Beispielsweise werden sogenannte DML-Funktionen (Deterministic Maxi- mum Likelihood Funktionen) gebildet, die angeben, wie stark die tatsächlich für ein Objekt gemessenen Amplituden- und Phasenbeziehungen mit den theoreti- schen Amplituden- und Phasenbeziehungen für unterschiedliche Winkelhypo- thesen korrelieren. Die Winkelhypothese, bei welcher die Korrelation am größ- ten ist, stellt dann den besten Schätzwert für den Winkel des Objekts dar.
Um eine möglichst große Winkelauflösung zu erreichen, sollte die Antennenan- Ordnung insgesamt sowohl in y-Richtung als auch in z-Richtung eine möglichst große Apertur oder zumindest eine möglichst große virtuelle Apertur haben. Die Antennenanordnung muss deshalb relativ große Abmessungen aufweisen, so dass eine entsprechend große Platine benötigt wird. Da die Platine aus einem teuren hochfrequenztauglichen Material bestehen muss, führt dies zu erhöhten Kosten.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es, eine Antennenanordnung zu schaffen die eine hohe Winkelauflösung im Azimut und in Elevation ermöglicht und sich dennoch auf einer kompakten Platine unterbringen lässt.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die beiden Arrays der Sendeantennen benachbart zu zwei einander gegenüberliegenden Kanten der Platine angeordnet sind, die beiden Arrays der Empfangsantennen benach- bart zu den beiden übrigen Kanten der Platine angeordnet sind und in einem mittleren Bereich der Platine zwischen den Arrays der Sende- und Empfangs- antennen mindestens ein Hochfrequenzbaustein auf der Platine angeordnet ist.
Bei dieser Anordnung bilden die äußeren Ränder der Antennenarrays einen rechteckigen Rahmen, der unter Berücksichtigung eines gewissen Mindestab- stands zwischen den Antennenpatches und dem Rand der Platine die Form und die Abmessungen der rechteckigen Platine vorgibt. Auf diese Weise lässt sich der auf der rechteckigen Platine verfügbare Raum optimal für eine Antennena- nordnung mit hohen Aperturen im Azimut und in Elevation nutzen. Hinsichtlich der Wahl der genauen Abstände zwischen den einzelnen Antennen besteht dabei eine große konstruktive Freiheit, so dass sich die Antennenarrays je nach gewünschter Winkelauflösung und Eindeutigkeit der Winkelschätzungen konfi- gurieren lassen.
Im Bereich der Mitte der Platine verbleibt ein Raum, der nicht für Antennen- arrays benötigt wird. Dieser verfügbare Raum für einen oder mehrere Hochfre- quenzbausteine genutzt, die die Sende- und Empfangsschaltungen des Radar- sensors bilden. Dadurch wird die Raumausnutzung auf der Platine weiter opti miert.
In einer Ausführungsform ist die y-Richtung die azimutale Richtung. Die Emp- fangsantennen können dann z.B. zwei Arrays bilden, die sich längs der oberen und unteren Ränder der Platine erstrecken, während die Sendeantennen zwei Arrays bilden können, die sich längs der seitlichen Ränder der Platine erstre- cken. Die Sendeantennen können dabei in einer Ausführungsform in z-Richtung in den Zwischenraum zwischen den beiden Arrays der Empfangsantennen lie- gen. Sie können jedoch in einer anderen Ausführungsform auch seitlich neben den Arrays der Empfangsantennen angeordnet sein, so dass sie in z-Richtung den gesamten auf der Platine verfügbaren Raum ausnutzen können.
Im folgenden werden Ausführungsbeispiele anhand der Zeichnung näher erläu- tert.
Es zeigen:
Fig. 1 eine schematische Darstellung einer Antennenanordnung eines Radarsensors und eines mit Hilfe dieser Antennen- anordnung zu ortenden Objekts;
Fig. 2 ein Diagramm analog zu Fig. 1 , zur Illustration unter- schiedlicher Signalausbreitungswege;
Fig. 3 die Antennenanordnung gemäß Fig. 1 in einer Frontan- sicht; und
Fig. 4 eine Antennenanordnung gemäß einem anderen Ausfüh- rungsbeispiel. ln Fig. 1 sind eine Antennenanordnung 10 und eine Steuer- und Auswerteein- richtung 12 eines Radarsensors gezeigt, der dazu dient, Abstände, Relativge- schwindigkeiten sowie Richtungswinkel von Objekten zu messen. Als Beispiel ist hier ein einzelnes Objekt 14 gezeigt. Der Radarsensor ist beispielsweise in der Frontpartie eines nicht gezeigten Kraftfahrzeugs eingebaut und dient insbe- sondere dazu, vorausfahrende Fahrzeuge oder andere Objekte im Vorfeld des Fahrzeugs zu erfassen.
Speziell ist der hier gezeigte Radarsensor für eine zweidimensionale Winkel- Schätzung ausgebildet, bei der sowohl der Azimutwinkel Q als aus der Elevati- onswinkel f des Objekts 14 geschätzt wird. Der Elevationswinkel f ist dabei definiert als der Winkel zwischen dem Sehstrahl S von der Mitte des Radar- sensors zum Objekt 14 und einer azimutalen (horizontalen) Ebene P, die durch eine Vorwärtsrichtung x des Fahrzeugs und eine Seitwärtsrichtung y aufge- spannt wird. Der Azimutwinkel Q ist definiert als der Winkel zwischen der Vor- wärtsrichtung x und der vertikalen Projektion des Sehstrahls s auf die azimutale Ebene P. Der Radarsensor ist somit winkelauflösend in der y-Richtung (Mes- sung des Azimutwinkels) und in der z-Richtung (Messung des Elevationswin- kels).
In dem hier gezeigten Beispiel weist die Antennenordnung 10 zwei Arrays AR1 , AR2 mit je acht Empfangsantennen RX und zwei Arrays AT1 , AT2 mit je vier Sendeantennen TX auf, die auf einer rechteckigen Platine 16 gebildet sind. Die Kanten der Platine verlaufen in y- und in z-Richtung.
Die Empfangsantennen RX jedes Array sind in gleichmäßigen Abständen auf einer Geraden angeordnet, die in der y-Richtung verläuft. Die Empfangsanten- nen bilden somit ein sogenanntes ULA (Uniform Linear Array). Die Sendean- tennen TX sind in diesem Beispiel separat von den Empfangsantennen ausge- bildet (bistatisches Antennenkonzept) und sind sowohl in der y-Richtung als auch in der z-Richtung versetzt zu den Empfangsantennen angeordnet.
Das Objekt 14, das in der Praxis deutlich weiter von der Antennenordnung 10 entfernt ist als in der schematischen Darstellung in Fig. 1 , liegt innerhalb der Sende- und Empfangskeulen aller Sende- und Empfangsantennen, so dass ein Radarsignal, das von irgendeiner der Sendeantennen TX emittiert und an dem Objekt 14 reflektiert wird, von jeder der Empfangsantennen RX empfangen werden kann. Als Beispiel zeigt Fig. 2 in durchgezogenen Linien einen Signalausbreitungs- weg, der von einer der Sendeantennen TX zum Objekt 14 und von dort zurück zu einer der Empfangsantennen RX führt, und in gestrichelten Linien einen Sig- nalausbreitungsweg für ein anders Paar von Sende- und Empfangsantennen. Vereinfachend kann dabei angenommen werden, dass das Radarsignal von einem Phasenzentrum der Sendeantenne (ein Punkt in der Mitte der betreffen- den Gruppenantenne) ausgeht und zu einem entsprechenden Phasenzentrum der Empfangsantenne verläuft.
In der Mitte der Platine 16 ist ein Hochfrequenzbaustein 18 angeordnet, z.B. ein MMIC (Monolithic Microwave Integrated Circuit), mit einem Sendeteil 20, der die Sendesignale für die Sendeantennen erzeugt, und einem Empfangsteil 22, der in getrennten Empfangskanälen die Signale von den Empfangsantennen RX aufnimmt und in ein Zwischenfrequenzband heruntermischt und die so erhalte- nen Zwischenfrequenzsignale an die Steuer- und Auswerteeinrichtung 12 übermittelt. Dort werden die Signale mit einer bestimmten Sample-Rate über einen Messzyklus aufzeichnet und digitalisiert. Auf diese Weise erhält man digi- talisierte Empfangssignale, die dann in einen Prozessor 24 weiter ausgewertet werden. Der Prozessor 24 steuert auch den Hochfrequenzbaustein 18 und be- stimmt unter anderem, wann welche der Sendeantennen TX sendet.
Aufgrund des Versatzes der Sende- und der Empfangsantennen haben die Signalausbreitungswege, von denen in Fig. 2 nur zwei beispielhaft gezeigt sind, für jede Paarung von Sendeantenne und Empfangsantenne eine unterschiedli- che Länge. Obgleich aufgrund des großen Abstands zwischen der Antennen- Ordnung 10 und dem Objekt 14 generell angenommen werden kann, dass die Radarwellen als ebene Wellen emittiert und auch als ebene Wellen wieder empfangen werden, führen die unterschiedlichen Längen der Signalwege zu charakteristischen Unterschieden in den Amplituden und Phasen der in den vier Empfangskanälen empfangenen Signale. Diese Unterschiede sind von der Paa- rung der Sende- und Empfangsantennen sowie vom Azimutwinkel Q und Eleva- tionswinkel f des Objekts 14 abhängig. Dieser Effekt wird bei der digitalen Auswertung der Daten im Prozessor 24 zur Schätzung des Azimutwinkels und des Elevationswinkels des Objekts genutzt.
In Fig. 3 ist die Antennenanordnung 10 detaillierter dargestellt. Sowohl die Sen- deantennen TX als auch die Empfangsantennen RX sind jeweils als Grup- penantenne ausgebildet und bestehen im gezeigten Beispiel aus zwei vertikal (in z-Richtung) verlaufenden Spalten mit je acht Antennenelementen oder Pat- ches 26. Bei jeder der Sendeantennen TX werden die Patches 26 mit gleich- phasigen Sendesignalen gespeist, die vom Sendeteil 20 geliefert werden.
Durch die spaltenförmige Anordnung der Patches 26 wird dabei eine Bündelung der emittierten Radarstrahlung insbesondere in Elevation erreicht. Phasenzen- tren 28 der Gruppenantennen sind in Fig. 3 durch schwarze Quadrate markiert. Die Empfangsantennen RX bestehen in diesem Beispiel ebenfalls aus Patches 26, die die gleiche Anordnung haben wie die Patches in den Sendeantennen. Bei jeder einzelnen Empfangsantenne werden die von den einzelnen Patches 26 empfangenen Signale durch nicht gezeigte Signalleitungen zu einem einzi- gen Signal zusammenfasst, ohne dass dabei die Phasenbeziehungen zwischen den Signalen von den verschiedenen Patches verändert werden. Die Ermp- fangskeulen der Empfangsantennen weisen somit in diesem Beispiel die glei che Form auf wie die Sendekeulen der Sendeantennen.
Die Patches 26 der Sendeantennen und der Empfangsantennen sind quadra- tisch und haben eine Kantenlänge von l/4, wobei l die (mittlere) Wellenlänge . g .
der emittierten Radarwellen ist. Der Abstand von Patch zu Patch innerhalb jeder Gruppenantenne beträgt sowohl in der Horizontalen als auch in der Vertikalen l/2. Die acht Empfangsantennen RX jedes Arrays RA1 , RA2 sind in Abständen von 2l angeordnet, d.h., der Abstand zwischen den Phasenzentren zweier be- nachbarter Empfangsantennen in y-Richtung beträgt 2l. In z-Richtung liegen die Antennen jedes Arrays auf gleicher Höhe. Somit haben die oberen Ränder der Antennen des Arrays RA1 alle den gleichen Abstand dz1 zum oberen Rand der Platine 16, und entsprechend haben die unteren Ränder der Antennen des Arrays RA2 alle den gleichen Abstand dz2 zum unteren Rand der Platine.
Die Arrays TA1 , TA2 der Sendeantennen TX liegen in z-Richtung ganz inner- halb des Zwischenraumes zwischen den Arrays RA1 , RA2 der Empfangsanten- nen. Innerhalb jedes Arrays sind die vier Sendeantennen in z-Richtung gegen- einander versetzt, und sie bilden zwei Paare von Antennen, die in y-Richtung auf gleicher Höhe liegen. Die linken Ränder der beiden äußeren Antennen des Arrays TA1 haben somit zum linken Rand der Platine 16 den gleichen Abstand dy1. Ebenso haben die rechten Ränder der beiden äußeren Antennen des Ar rays TA2 den gleichen Abstand dy2 zum rechten Rand der Platine. Die Versät- ze der Antennen gegeneinander sind unterschiedlich, betragen aber sowohl in y-Richtung als auch in z-Richtung jeweils ein ganzzahliges Vielfaches von l/2. Außerdem stimmen die Versätze in den beiden Arrays TA1 und TA2 überein, so dass das Array TA2 eine verschobene Kopie des Arrays TA1 ist.
In einem ersten Messzyklus wird nur mit einer der Sendeantennen TX eines der beiden Arrays gesendet. Wenn dann im nachfolgenden Messzyklus mit einer anderen Antenne TX2 gesendet wird, so ist die dabei entstehende Situation hinsichtlich der Wellenausbreitung äquivalent zu dem Fall, dass mit der ersten Antenne gesendet wird aber alle Empfangsantennen RX um den gleichen Be- trag und in der entgegensetzten Richtung versetzt sind die beiden Sendeanten- nen. Wenn man nun nacheinander alle acht Sendeantenne TX aktiviert, erhält man so ein virtuelles Empfangsarray, das aus acht gegeneinander versetzen Kopien der beiden Arrays RA1 und RA2 besteht. So erreicht man sowohl in y- Richtung als auch in z-Richtung eine beträchtliche Vergrößerung der Apertur, so dass sich prägnantere Phasendifferenzen ergeben und somit eine schärfere Winkeltrennung ermöglicht wird.
Da die Sendeantennen in den Arrays TA1 und TA2 in y-Richtung gegeneinan- der versetzt sind und auch in z-Richtung unterschiedlich weit gegeneinander versetzt sind, sind die Antennenabstände im virtuellen Array nicht völlig gleich- förmig. Dadurch erhält man konstruktive Freiheit für die Optimierung des virtuel len Arrays im Hinblick auf die jeweiligen Anforderungen. Generell wird durch größere Lücken zwischen den virtuellen Antennen eine Vergrößerung der Apertur erreicht, während andererseits durch zunehmendes Auffüllen der Lü- cken die Möglichkeit für das Auftreten von Mehrdeutigkeiten bei der Winkelbe- stimmung reduziert wird.
In der in Fig. 3 gezeigten Antennenanordnung 10 erstrecken sich die Arrays RA1 und RA2 der Empfangsantennen längs der oberen und unteren Kanten der Platine 16, während sich die Arrays TA1 und TA2 der Sendeantennen längs der vertikalen Kanten der Platine erstrecken. Die (realen) Arrays RA1 und RA2 der Empfangsantennen haben deshalb bereits für sich eine große Apertur in y- Richtung. Da außerdem die Arrays TA1 und TA2 der Sendeantennen in y- Richtung den größten Abstand zueinander aufweisen, den die Breite der Platine 16 zulässt, wird die virtuelle Apertur für die Winkelbestimmung im Azimut ma- ximiert. Da die Arrays RA1 und RA2 der Empfangsantennen in z-Richtung den größten Abstand zueinander aufweisen, den die Höhe der Platine 16 zulässt, und die Lücken zwischen diesen beiden Arrays durch die virtuellen Arrays auf- gefüllt werden, wird bei gegebenen Abmessungen der Platine 16 auch die Apertur für die Winkelbestimmung in Elevation maximiert. Da der verbleibende Freiraum im Inneren der Platine 16 für den Hochfrequenz- baustein 18 und für die Leitungen zu den Sende- und Empfangsantennen be- nutzt wird, wird der auf der Platine 16 verfügbare Raum optimal genutzt, so dass man bei gegebenen Materialkosten für die Platine 16 ein Optimum an Leistung erreicht.
Fig. 4 zeigt als weiteres Beispiel eine leicht modifizierte Antennenanordnung 10‘, bei der sich die Arrays TA1 und TA2 der Sendeantennen (in der Zeichnung gestrichelt umrandet) über die gesamte verfügbare Höhe der Platine 16 erstre- cken und seitlich neben den entgegengesetzten Enden der Arrays RA1 und RA2 der Empfangsantennen angeordnet sind. Das erlaubt eine weitere Vergrö- ßerung der Apertur in z-Richtung.

Claims

Ansprüche
1. MIMO-Radarsensor für Kraftfahrzeuge, mit einer Antennenanordnung
(10; 10') auf einer rechteckigen Platine (16), deren Kanten eine y-Richtung und eine z-Richtung definieren, wobei die Antennenanordnung mindestens zwei Arrays (TA1 , TA2) von Sendeantennen (TX) und mindestens zwei Arrays (RA1 , RA2) von Empfangsantennen (RX) umfasst, Sendeantennen (TX) innerhalb jedes Arrays in z-Richtung gegeneinander versetzt sind, während die beiden Arrays (TA1 , TA2) der Sendeantennen in y-Richtung gegeneinander versetzt sind, und die Empfangsantennen (RX) innerhalb jedes Arrays in y-Richtung ge- geneinander versetzt sind, während die beiden Arrays (RA1 , RA2) der Emp- fangsantennen in z-Richtung gegeneinander versetzt sind,
dadurch gekennzeichnet, dass die beiden Arrays (TA1 , TA2) der Sen- deantennen benachbart zu zwei einander gegenüberliegenden Kanten der Pla- tine (16) angeordnet sind, die beiden Arrays (RA1 , RA2) der Empfangsanten- nen benachbart zu den beiden übrigen Kanten der Platine (16) angeordnet sind und in einem mittleren Bereich der Platine (16) zwischen den Arrays der Sende- und Empfangsantennen mindestens ein Hochfrequenzbaustein (18) auf der Pla- tine angeordnet ist.
2. MIMO-Radarsensor nach Anspruch 1 , bei dem die beiden Arrays (TA1 , TA2) der Sendeantennen jeweils mindestens zwei Sendeantennen (TX) um- fassen die in gleichem Abstand (dz1 , dz2) zu der betreffenden Kante der Plati- ne angeordnet sind, und die beiden Arrays (RA1 , RA2) der Empfangsantennen jeweils mindestens zwei Empfangsantennen (RX) umfassen, die in gleichem Abstand (dy1 , dy2) zu der betreffenden Kante der Platine angeordnet sind.
3. Radarsensor nach Anspruch 1 oder 2, bei dem die Arrays (TA1 , TA2) der Sendeantennen in z-Richtung nur den Raum zwischen den beiden Arrays (RA1 , RA2) der Empfangsantennen einnehmen.
4. Radarsensor nach Anspruch 1 oder 2, bei dem die Arrays (TA1 , TA2) der
Sendeantennen in y-Richtung außerhalb des Bereichs der Arrays (RA1 , RA2) der Empfangsantennen angeordnet sind und in z-Richtung mit den Arrays (RA1 , RA2) der Empfangsantennen überlappen.
5. Radarsensor nach einem der vorstehenden Ansprüche, bei dem die Ar rays (RA1 , RA2) der Sendeantennen ULA-Arrays sind.
PCT/EP2019/055700 2018-05-17 2019-03-07 Mimo-radarsensor für kraftfahrzeuge WO2019219262A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2020012207A MX2020012207A (es) 2018-05-17 2019-03-07 Detector de radar mimo para vehiculos automoviles.
KR1020207035867A KR20210009355A (ko) 2018-05-17 2019-03-07 자동차용 mimo 레이더 센서
JP2020564315A JP7027579B2 (ja) 2018-05-17 2019-03-07 自動車用のmimoレーダセンサ
EP19709900.5A EP3794373A1 (de) 2018-05-17 2019-03-07 Mimo-radarsensor für kraftfahrzeuge
US17/040,719 US11870138B2 (en) 2018-05-17 2019-03-07 MIMO radar sensor for motor vehicles
CN201980033228.1A CN112136060B (zh) 2018-05-17 2019-03-07 用于机动车的mimo雷达传感器
CA3099856A CA3099856A1 (en) 2018-05-17 2019-03-07 Mimo radar sensor for motor vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018207686.3A DE102018207686A1 (de) 2018-05-17 2018-05-17 MIMO-Radarsensor für Kraftfahrzeuge
DE102018207686.3 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019219262A1 true WO2019219262A1 (de) 2019-11-21

Family

ID=65724397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/055700 WO2019219262A1 (de) 2018-05-17 2019-03-07 Mimo-radarsensor für kraftfahrzeuge

Country Status (9)

Country Link
US (1) US11870138B2 (de)
EP (1) EP3794373A1 (de)
JP (1) JP7027579B2 (de)
KR (1) KR20210009355A (de)
CN (1) CN112136060B (de)
CA (1) CA3099856A1 (de)
DE (1) DE102018207686A1 (de)
MX (1) MX2020012207A (de)
WO (1) WO2019219262A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220069477A1 (en) * 2019-01-31 2022-03-03 Mitsubishi Electric Corporation Antenna device and radar apparatus
DE102020201022A1 (de) 2020-01-29 2021-07-29 Zf Friedrichshafen Ag Antennenanordnung für einen Radarsensor
DE102020201023A1 (de) 2020-01-29 2021-07-29 Zf Friedrichshafen Ag Radarsensor mit Antennenanordnung
DE102020201025A1 (de) 2020-01-29 2021-07-29 Zf Friedrichshafen Ag Antennenanordnung für einen Radarsensor
DE102020124300A1 (de) 2020-09-17 2022-03-17 Endress+Hauser SE+Co. KG Winkelauflösendes Füllstandsmessgerät
DE102022101752A1 (de) 2022-01-26 2023-07-27 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Radarsystems für ein Fahrzeug, Radarsystem und Fahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090033556A1 (en) * 2005-10-17 2009-02-05 Glen Stickley Synthetic aperture perimeter array radar
CN102866401B (zh) * 2012-08-06 2014-03-12 西北工业大学 一种基于mimo技术的三维成像方法
DE102012223696A1 (de) * 2012-12-19 2014-06-26 Rohde & Schwarz Gmbh & Co. Kg Vorrichtung zur Messung von Mikrowellensignalen und Verfahren zur Konfiguration derselben
US20160131738A1 (en) * 2013-06-05 2016-05-12 Airbus Defence and Space GmbH Multi-Functional Radar Assembly
US20170250457A1 (en) * 2016-02-29 2017-08-31 Panasonic Corporation Antenna substrate
DE102016203160A1 (de) * 2016-02-29 2017-08-31 Robert Bosch Gmbh Radarsystem, umfassend eine Antennenanordnung zum Senden und Empfangen elektromagnetischer Strahlung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR187100A0 (en) 2000-12-04 2001-01-04 Cea Technologies Inc. Slope monitoring system
US8624775B2 (en) * 2009-04-23 2014-01-07 Mitsubishi Electric Corporation Radar apparatus and antenna device
DE102010040696A1 (de) * 2010-09-14 2012-03-15 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge, insbesondere RCA-Sensor
DE102011113018A1 (de) 2011-09-09 2013-03-14 Astyx Gmbh Abbildender Radarsensor mit schmaler Antennenkeule und weitem Winkel-Detektionsbereich
DE102014219113A1 (de) 2014-09-23 2016-03-24 Robert Bosch Gmbh MIMO-Radarvorrichtung zum entkoppelten Bestimmen eines Elevationswinkels und eines Azimutwinkels eines Objekts und Verfahren zum Betreiben einer MIMO-Radarvorrichtung
DE102014118031A1 (de) 2014-12-05 2016-06-09 Astyx Gmbh Radarsensor, Radarsensor-System sowie Verfahren zur Bestimmung der Position eines Objekts mit horizontaler und vertikaler digitaler Strahlformung zur Vermessung von punkt- und flächenförmig reflektierenden Objekten
US20160306034A1 (en) * 2014-12-23 2016-10-20 Infineon Technologies Ag RF System with an RFIC and Antenna System
DE102016207871A1 (de) 2016-05-09 2017-11-09 Robert Bosch Gmbh Azimutbestimmung mittels eines Radarsensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090033556A1 (en) * 2005-10-17 2009-02-05 Glen Stickley Synthetic aperture perimeter array radar
CN102866401B (zh) * 2012-08-06 2014-03-12 西北工业大学 一种基于mimo技术的三维成像方法
DE102012223696A1 (de) * 2012-12-19 2014-06-26 Rohde & Schwarz Gmbh & Co. Kg Vorrichtung zur Messung von Mikrowellensignalen und Verfahren zur Konfiguration derselben
US20160131738A1 (en) * 2013-06-05 2016-05-12 Airbus Defence and Space GmbH Multi-Functional Radar Assembly
US20170250457A1 (en) * 2016-02-29 2017-08-31 Panasonic Corporation Antenna substrate
DE102016203160A1 (de) * 2016-02-29 2017-08-31 Robert Bosch Gmbh Radarsystem, umfassend eine Antennenanordnung zum Senden und Empfangen elektromagnetischer Strahlung

Also Published As

Publication number Publication date
CN112136060B (zh) 2024-05-14
DE102018207686A1 (de) 2019-11-21
CA3099856A1 (en) 2019-11-21
JP7027579B2 (ja) 2022-03-01
JP2021524030A (ja) 2021-09-09
KR20210009355A (ko) 2021-01-26
US11870138B2 (en) 2024-01-09
MX2020012207A (es) 2021-01-29
US20210013596A1 (en) 2021-01-14
EP3794373A1 (de) 2021-03-24
CN112136060A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2019219262A1 (de) Mimo-radarsensor für kraftfahrzeuge
EP3204788B1 (de) Abbildender radarsensor mit horizontaler digitaler strahlformung und vertikaler objektvermessung durch phasenvergleich bei zueinander versetzten sendern
WO2018108359A1 (de) Mimo-radarsensor für kraftfahrzeuge
EP3161514B1 (de) Mimo-radarmessverfahren
DE112008000513B4 (de) Elektronisch abtastendes Radarsystem
EP2659284B1 (de) Radarsensor für kraftfahrzeuge
EP2294450B1 (de) Radarsystem mit überlappenden sende- und empfangsantennen
EP3161513B1 (de) Radarmessverfahren mit unterschiedlichen sichtbereichen
EP3039444B1 (de) Radarsensor für kraftfahrzeuge
EP3752858B1 (de) Winkelauflösender breitbandiger radarsensor für kraftfahrzeuge
EP2769236B1 (de) Winkelauflösender radarsensor
DE102018212147A1 (de) Radarvorrichtung
DE102013216951A1 (de) Radarsensor für Kraftfahrzeuge
WO2020069921A1 (de) Radarsystem für ein fahrzeug
DE102009027003A1 (de) Optimierung der Schaltreihenfolge bei geschalteten Antennenarrays
DE102008011889A1 (de) Digitale Strahlformung mit frequenzmodulierten Signalen
EP2616839B1 (de) Radarsensor für kraftfahrzeuge, insbesondere rca-sensor
DE102011079007A1 (de) Winkelauflösender radarsensor für kraftfahrzeuge
WO2019141413A1 (de) Fmcw-radarsensor
DE102021201073A1 (de) MIMO-Radarsensor
EP2225582B1 (de) Monostatischer mehrstrahl-radarsensor, sowie verfahren
DE102019219649A1 (de) Kooperatives Radarsensorsystem mit winkelauflösenden Radarsensoren
EP3803443A1 (de) Polarimetrisches radar sowie eine geeignete verwendung und verfahren hierfür
DE102004045108A1 (de) Empfangssystem für die Bestimmung eines Ziel-Ablagewinkels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19709900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3099856

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020564315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035867

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019709900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019709900

Country of ref document: EP

Effective date: 20201217