WO2019219068A1 - 一种上行功率控制方法及装置、计算机存储介质 - Google Patents

一种上行功率控制方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2019219068A1
WO2019219068A1 PCT/CN2019/087328 CN2019087328W WO2019219068A1 WO 2019219068 A1 WO2019219068 A1 WO 2019219068A1 CN 2019087328 W CN2019087328 W CN 2019087328W WO 2019219068 A1 WO2019219068 A1 WO 2019219068A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
scaling factor
transmit power
terminal determines
antenna ports
Prior art date
Application number
PCT/CN2019/087328
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980006853.7A priority Critical patent/CN111567101B/zh
Publication of WO2019219068A1 publication Critical patent/WO2019219068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to an uplink power control method and apparatus, and a computer storage medium.
  • a terminal transmits a Physical Uplink Shared CHannel (PUSCH) on only part of the antenna ports configured on the network side
  • PUSCH Physical Uplink Shared CHannel
  • the power can only be the calculated M/N of the transmission power (ie, the power scaling factor is M/N), where M is the number of antenna ports used to transmit the PUSCH, and N is the total number of antenna ports configured on the network side.
  • M the number of antenna ports used to transmit the PUSCH
  • N is the total number of antenna ports configured on the network side.
  • the terminal cannot share the power on one antenna port to the other.
  • NR New Radio
  • the transmit power allowed on the antenna port is equal to the maximum transmit power, and one antenna port transmitting the PUSCH can share the transmit power on the antenna port that does not transmit the PUSCH.
  • the transmit power allowed on the antenna port is lower than the maximum transmit power. If only a part of the antenna port is used to transmit the PUSCH, the power scaling similar to LTE is still required on each antenna port of the PUSCH. At present, there is no clear solution for how the terminal determines the power scaling factor according to different terminal types.
  • an embodiment of the present application provides an uplink power control method and apparatus, and a computer storage medium.
  • the terminal sends the first UE capability information to the network device, where the first UE capability information includes a power scaling factor and/or first indication information, where the first indication information is used to indicate whether power can be shared between the antenna ports;
  • the terminal determines the actual line transmission power according to the first UE capability information.
  • the method further includes:
  • the terminal determines the power scaling factor and/or the first indication information according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode.
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to whether the maximum transmit power on each antenna port and the maximum transmit power allowed by the terminal are the same.
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to a power level of its own UE.
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines the power scaling factor according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the determining, by the terminal, the first indication information according to at least one of an antenna structure, a maximum transmit power of each antenna port, a power level of the UE, and a current uplink transmission mode including:
  • the terminal determines whether the power can be shared between the antenna ports according to whether the plurality of antenna ports are associated with the same radio frequency device.
  • the determining, by the terminal, the first indication information according to at least one of an antenna structure, a maximum transmit power of each antenna port, a power level of the UE, and a current uplink transmission mode including:
  • the terminal determines whether the power can be shared between the antenna ports according to whether the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal.
  • the determining, by the terminal, the first indication information according to at least one of an antenna structure, a maximum transmit power of each antenna port, a power level of the UE, and a current uplink transmission mode including:
  • the terminal determines whether the power can be shared between the antenna ports according to the power level of the UE.
  • the determining, by the terminal, the first indication information according to at least one of an antenna structure, a maximum transmit power of each antenna port, a power level of the UE, and a current uplink transmission mode including:
  • the terminal determines whether the power can be shared between the antenna ports according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the terminal determines, according to the first UE capability information, the actual line sending power, including:
  • the terminal determines an actual line transmission power according to the power scaling factor.
  • the terminal determines, according to the first UE capability information, the actual line sending power, including:
  • the terminal determines an actual line transmission power according to the power scaling factor.
  • the terminal determines the actual line sending power according to the power scaling factor, including:
  • the terminal determines an actual maximum transmit power according to the power scaling factor; and determines a actual line transmit power according to the actual maximum transmit power.
  • the terminal determines the actual line sending power according to the power scaling factor, including:
  • the terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode;
  • the terminal determines an actual line transmission power according to the power scaling factor.
  • the terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the terminal determines a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device, including:
  • the multiple antenna ports do not need to perform power scaling
  • a power scaling factor is determined based on the number of the plurality of antenna ports.
  • the terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to whether the maximum transmit power on each antenna port and the maximum transmit power allowed by the terminal are the same.
  • the terminal determines the power scaling factor according to whether the maximum transmit power on each antenna port and the maximum transmit power allowed by the terminal are the same, including:
  • the terminal determines that the power scaling factor is 1;
  • the terminal determines that the power scaling factor is 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, N Is the number of antenna ports configured for the PUSCH.
  • the terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines a power scaling factor according to a power level of its own UE.
  • the terminal determines a power scaling factor according to a power level of the UE, including:
  • the terminal determines that the power scaling factor is 1;
  • the terminal determines that the power scaling factor is 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is The number of antenna ports configured for PUSCH.
  • the terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, including:
  • the terminal determines the power scaling factor according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the terminal determines the power scaling factor according to whether the current uplink transmission mode is based on the uplink of the codebook or the uplink transmission based on the non-codebook, and includes:
  • the terminal determines that the power scaling factor is M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH. ;
  • the terminal determines that the power scaling factor is 1.
  • the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the terminal determines the actual line sending power according to the power scaling factor, including:
  • the terminal determines an actual maximum transmit power according to the power scaling factor; and determines a actual line transmit power according to the actual maximum transmit power.
  • the terminal determines the actual line sending power according to the power scaling factor, including:
  • a sending unit configured to send first UE capability information to the network device, where the first UE capability information includes a power scaling factor and/or first indication information, where the first indication information is used to indicate whether the antenna ports can be shared between the antenna ports power;
  • the first determining unit is configured to determine, according to the first UE capability information, a actual line transmission power.
  • the device further includes:
  • a second determining unit configured to determine the power scaling factor and/or the first according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode. Instructions.
  • the second determining unit is configured to determine a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the second determining unit is configured to determine a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the second determining unit is configured to determine a power scaling factor according to whether a maximum transmit power on each antenna port and a maximum transmit power allowed by the terminal are the same.
  • the second determining unit is configured to determine a power scaling factor according to a power level of the UE.
  • the second determining unit is configured to determine a power scaling factor according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the second determining unit is configured to determine whether power can be shared between the antenna ports according to whether the multiple antenna ports are associated with the same radio frequency device.
  • the second determining unit is configured to determine whether the power can be shared between the antenna ports according to whether the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal.
  • the second determining unit is configured to determine whether the power can be shared between the antenna ports according to the power level of the UE.
  • the second determining unit is configured to determine whether the power can be shared between the antenna ports according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the first determining unit is configured to determine a power scaling factor according to the first indication information, and determine a actual row sending power according to the power scaling factor.
  • the first determining unit is configured to determine an actual line sending power according to the power scaling factor.
  • the first determining unit is configured to determine, according to the power scaling factor and the transmit power calculated based on the power control parameter, actual line transmit power; or determine an actual according to the power scaling factor. Maximum transmit power; based on the actual maximum transmit power, the actual line transmit power is determined.
  • the first determining unit is configured to determine a total transmit power according to the power scaling factor and the transmit power calculated based on the power control parameter; and according to the total transmit power and the current transport layer Determine the actual row transmit power on each transport layer.
  • a first determining unit configured to determine a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode
  • a second determining unit configured to determine an actual row transmit power according to the power scaling factor.
  • the first determining unit is configured to determine a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the first determining unit is configured to: if the multiple antenna ports are associated with the same radio frequency device, the multiple antenna ports do not need to perform power scaling; if the multiple antenna ports are associated with different The RF device determines a power scaling factor based on the number of the plurality of antenna ports.
  • the first determining unit is configured to determine a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the first determining unit is configured to determine a power scaling factor according to whether a maximum transmit power on each antenna port and a maximum transmit power allowed by the terminal are the same.
  • the first determining unit is configured to determine that the power scaling factor is 1 if the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal; if the maximum on each antenna port is The transmit power is different from the maximum transmit power allowed by the terminal, and then the power scaling factor is determined to be 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH. .
  • the first determining unit is configured to determine a power scaling factor according to a power level of the UE.
  • the first determining unit is configured to: if the power level of the terminal is lower than the first preset value, determine that the power scaling factor is 1; if the power level of the terminal is higher than or equal to the first A predetermined value determines whether the power scaling factor is 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the first determining unit is configured to determine a power scaling factor according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the first determining unit is configured to determine that the power scaling factor is M/N if the current uplink transmission mode is a codebook-based uplink transmission, where M is an antenna actually used for PUSCH transmission.
  • the number of ports, N is the number of antenna ports configured for the PUSCH; if the current uplink transmission mode is based on non-codebook uplink transmission, it is determined that the power scaling factor is 1.
  • the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the second determining unit is configured to determine, according to the power scaling factor and the transmit power calculated based on the power control parameter, actual line transmit power; or determine an actual according to the power scaling factor. Maximum transmit power; based on the actual maximum transmit power, the actual line transmit power is determined.
  • the second determining unit is configured to determine a total transmit power according to the power scaling factor and the transmit power calculated based on the power control parameter; and according to the total transmit power and the current transmission layer Determine the actual row transmit power on each transport layer.
  • the computer storage medium provided by the embodiment of the present application has stored thereon computer executable instructions, and the computer executable instructions are implemented by the processor to implement the uplink power control method.
  • the terminal sends the first UE capability information to the network device, where the first UE capability information includes a power scaling factor and/or first indication information, where the first indication information is used to indicate an antenna port. Whether power can be shared between the terminals; the terminal determines the actual line transmission power according to the first UE capability information. Or determining, by the terminal, a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode; and determining, by the terminal, the actual line according to the power scaling factor. Transmit power.
  • the terminal can determine a reasonable power scaling factor according to its own antenna configuration, and transmit the PUSCH according to a larger transmission power as much as possible while ensuring that the maximum transmission power is not exceeded, thereby ensuring uplink coverage.
  • FIG. 1 is a schematic flowchart 1 of an uplink power control method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart 2 of an uplink power control method according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram 1 of an uplink power control apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram 2 of an uplink power control apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a computer device according to an embodiment of the present application.
  • a terminal may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device.
  • UE User Equipment
  • user terminal, terminal, wireless communication device, user agent or user device UE
  • the terminal can be a station (ST, STAION) in the WLAN, which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP), a Wireless Local Loop (WLL) station, and a personal digital processing ( PDA (Personal Digital Assistant) device, handheld device with wireless communication function, computing device or other processing device connected to the wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, fifth-generation communication (5G, fifth -Generation) A terminal in a network or a terminal in a future evolved Public Land Mobile Network (PLMN) network.
  • ST station
  • STAION Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device that communicates with the terminal may be an access point (AP, Access Point) in the WLAN, a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NB, NodeB) in WCDMA. It may also be an evolved base station (eNB or eNodeB, Evolutional Node B) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network in a future evolved PLMN network. Equipment, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NB NodeB
  • eNB or eNodeB Evolutional Node B
  • LTE Long Term Evolutional Node B
  • a relay station or an access point or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network in a future evolved PLMN network.
  • Equipment etc
  • FIG. 1 is a schematic flowchart 1 of an uplink power control method according to an embodiment of the present disclosure. As shown in FIG. 1 , the uplink power control method includes the following steps:
  • Step 101 The terminal sends the first UE capability information to the network device, where the first UE capability information includes a power scaling factor and/or first indication information, where the first indication information is used to indicate whether the antenna ports can share power. .
  • the terminal determines the power scaling factor and/or the first indication information according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode. .
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, and may be implemented in the following manner. achieve:
  • Manner 1 The terminal determines a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the radio frequency device includes at least one radio frequency device connected to the terminal antenna, and may be, for example, a power amplifier, a digital to analog converter (A/D), an analog to digital converter (D/A), a crystal oscillator, or the like.
  • the multiple antenna ports do not need to perform power scaling; if the multiple antenna ports are associated with different radio frequency devices, based on the multiple antenna ports The number of power determines the power scaling factor.
  • K antenna ports are associated with the same RF device, power can be shared between multiple antenna ports, and power scaling is not required for the K antenna ports, that is, there is no need to determine the power scaling factor based on K.
  • the power scaling factor may be M/K, where M is the number of antenna ports for PUSCH transmission among the K antenna ports.
  • Manner 2 The terminal determines a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the power scaling factor may be Min(1, Pmax, tx/Ptx), where Pmax, tx is the maximum transmit power allowed for each antenna port, and Ptx is the transmit based on the power control parameters calculated according to the power control procedure in the protocol. power.
  • Manner 3 The terminal determines a power scaling factor according to whether the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal.
  • the power scaling factor may be determined to be 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • Manner 4 The terminal determines a power scaling factor according to a power level of its own UE.
  • the terminal may determine that the power scaling factor is 1; if the power level of the UE is a high power UE, it may determine that the power scaling factor is 1/2 or M/N, where M is actual The number of antenna ports used for PUSCH transmission, N is the number of antenna ports configured for PUSCH.
  • Manner 5 The terminal determines a power scaling factor according to whether the current uplink transmission mode is based on a codebook uplink transmission or a non-codebook uplink transmission.
  • the power scaling factor is M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH;
  • the transmission mode is based on non-codebook uplink transmission, and the power scaling factor is 1.
  • Manner 6 The terminal determines that the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH .
  • the terminal determines the first indication information according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, and may pass the following Way to achieve:
  • Manner 1 The terminal determines whether the power can be shared between the antenna ports according to whether the plurality of antenna ports are associated with the same radio frequency device.
  • the radio frequency device includes at least one radio frequency device connected to the terminal antenna, and may be, for example, a power amplifier, a digital to analog converter (A/D), an analog to digital converter (D/A), a crystal oscillator, or the like.
  • the plurality of antenna ports are associated with the same radio frequency device, power can be shared between the plurality of antenna ports; if the plurality of antenna ports are associated with different radio frequency devices, the multiple antenna ports are Power cannot be shared between.
  • Manner 2 The terminal determines whether the power can be shared between the antenna ports according to whether the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal.
  • the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal, it is determined that the power can be shared; if the maximum transmit power on each antenna port is different from the maximum transmit power allowed by the terminal, for example, the former is smaller than The latter cannot share power.
  • Manner 3 The terminal determines whether the power can be shared between the antenna ports according to the power level of the UE.
  • the power level of the UE is a normal UE, the power can be shared; if the power level of the UE is a high power UE, the power cannot be shared.
  • Manner 4 The terminal determines whether the power can be shared between the antenna ports according to whether the current uplink transmission mode is based on the uplink of the codebook or the uplink transmission based on the non-codebook.
  • the current transmission mode is a codebook-based uplink transmission
  • power cannot be shared
  • the current transmission mode is based on non-codebook uplink transmission
  • Step 102 The terminal determines actual line transmission power according to the first UE capability information.
  • the determining, by the terminal, the actual line sending power according to the first UE capability information may be implemented by:
  • Manner 1 The terminal determines a power scaling factor according to the first indication information; the terminal determines an actual row transmission power according to the power scaling factor.
  • Manner 2 The terminal determines the actual line transmission power according to the power scaling factor.
  • the terminal determines the actual line sending power according to the power scaling factor, which can be implemented by:
  • the terminal determines the actual line transmission power according to the power scaling factor and the transmission power calculated based on the power control parameter.
  • the scaling factor is k and the calculated transmission power is P
  • the actual transmission power is k*P, where P is a linear value.
  • the terminal determines an actual maximum transmission power according to the power scaling factor; and determines an actual line transmission power according to the actual maximum transmission power.
  • the actual maximum transmit power is k*Pc_max.
  • the terminal may determine the actual line transmission power based on the actual maximum transmission power and the transmission power calculated based on the power control parameters.
  • the actual line transmit power may be a small value between the actual maximum transmit power and the transmit power calculated based on the power control parameters.
  • the terminal determines the total transmit power according to the power scaling factor and the transmit power calculated based on the power control parameter; determining the actual row on each transport layer according to the total transmit power and the current number of transport layers Transmit power.
  • the power control parameter includes an open loop power control parameter configured on the network side or a closed loop power control factor indicated by the network side.
  • the scaling factor is k
  • the calculated transmission power is P
  • the current transmission layer number is R
  • the actual transmission power of each transmission layer is k*P/R, where P is a linear value.
  • the terminal determines a power scaling coefficient according to an antenna structure or a maximum transmit power on each antenna port or a power level of the UE, so as to determine a transmit power according to the power scaling factor, and ensure that the transmit power does not exceed each Maximum power on the antenna ports while increasing the uplink coverage as much as possible.
  • the uplink power control method includes the following steps:
  • Step 201 The terminal determines a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode.
  • the terminal determines the power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode, which may be implemented by:
  • Manner 1 The terminal determines a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the radio frequency device includes at least one radio frequency device connected to the terminal antenna, and may be, for example, a power amplifier, a digital to analog converter (A/D), an analog to digital converter (D/A), a crystal oscillator, or the like.
  • the multiple antenna ports do not need to perform power scaling; if the multiple antenna ports are associated with different radio frequency devices, based on the multiple antenna ports The number of power determines the power scaling factor.
  • K antenna ports are associated with the same RF device, power can be shared between multiple antenna ports, and power scaling is not required for the K antenna ports, that is, there is no need to determine the power scaling factor based on K.
  • the power scaling factor may be M/K, where M is the number of antenna ports for PUSCH transmission among the K antenna ports.
  • Manner 2 The terminal determines a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the power scaling factor may be Min(1, Pmax, tx/Ptx), where Pmax, tx is the maximum transmit power allowed for each antenna port, and Ptx is the transmit based on the power control parameters calculated according to the power control procedure in the protocol. power.
  • Manner 3 The terminal determines a power scaling factor according to whether the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal.
  • the power scaling factor may be determined to be 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • Manner 4 The terminal determines a power scaling factor according to a power level of its own UE.
  • the terminal determines that the power scaling factor is 1; if the power level of the terminal is higher than or equal to the first preset value, the terminal determines the power scaling factor. It is 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the terminal may determine that the power scaling factor is 1; if the power level of the UE is a high power UE, it may determine that the power scaling factor is 1/2 or M/N, where M is actual The number of antenna ports used for PUSCH transmission, N is the number of antenna ports configured for PUSCH.
  • Manner 5 The terminal determines a power scaling factor according to whether the current uplink transmission mode is based on a codebook uplink transmission or a non-codebook uplink transmission.
  • the power scaling factor is M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH;
  • the transmission mode is based on non-codebook uplink transmission, and the power scaling factor is 1.
  • Manner 6 The terminal determines that the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH .
  • Step 202 The terminal determines the actual line transmission power according to the power scaling factor.
  • the terminal determines the actual line sending power according to the power scaling factor, which can be implemented by:
  • the terminal determines the actual line transmission power according to the power scaling factor and the transmission power calculated based on the power control parameter.
  • the scaling factor is k and the calculated transmission power is P
  • the actual transmission power is k*P, where P is a linear value.
  • the terminal determines an actual maximum transmission power according to the power scaling factor; and determines an actual line transmission power according to the actual maximum transmission power.
  • the actual maximum transmit power is k*Pc_max.
  • the terminal may determine the actual line transmission power based on the actual maximum transmission power and the transmission power calculated based on the power control parameters.
  • the actual line transmit power may be a small value between the actual maximum transmit power and the transmit power calculated based on the power control parameters.
  • the terminal determines the total transmit power according to the power scaling factor and the transmit power calculated based on the power control parameter; determining the actual row on each transport layer according to the total transmit power and the current number of transport layers Transmit power.
  • the power control parameter includes an open loop power control parameter configured on the network side or a closed loop power control factor indicated by the network side.
  • the scaling factor is k
  • the calculated transmission power is P
  • the current transmission layer number is R
  • the actual transmission power of each transmission layer is k*P/R, where P is a linear value.
  • the terminal determines a power scaling coefficient according to an antenna structure or a maximum transmit power on each antenna port or a power level of the UE, so as to determine a transmit power according to the power scaling factor, and ensure that the transmit power does not exceed each Maximum power on the antenna ports while increasing the uplink coverage as much as possible.
  • FIG. 3 is a first schematic structural diagram of an uplink power control apparatus according to an embodiment of the present application. As shown in FIG. 3, the uplink power control apparatus includes:
  • the sending unit 301 is configured to send the first UE capability information to the network device, where the first UE capability information includes a power scaling factor and/or first indication information, where the first indication information is used to indicate whether the antenna ports can Shared power
  • the first determining unit 302 is configured to determine, according to the first UE capability information, a actual line transmission power.
  • the device further includes:
  • the second determining unit 303 is configured to determine the power scaling factor and/or the first part according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode. An indication message.
  • the second determining unit 303 is configured to determine a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the second determining unit 303 is configured to: if the multiple antenna ports are associated with the same radio frequency device, the multiple antenna ports do not need to perform power scaling; if the multiple antenna ports are associated For different radio frequency devices, the power scaling factor is determined based on the number of the plurality of antenna ports.
  • the second determining unit 303 is configured to determine a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the second determining unit 303 is configured to determine a power scaling factor according to whether a maximum transmit power on each antenna port and a maximum transmit power allowed by the terminal are the same.
  • the second determining unit 303 is configured to determine a power scaling factor according to a power level of the UE.
  • the second determining unit 303 is configured to determine a power scaling factor according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission and N is the number of antenna ports configured for PUSCH.
  • the second determining unit 303 is configured to determine whether power can be shared between the antenna ports according to whether the multiple antenna ports are associated with the same radio frequency device.
  • the second determining unit 303 is configured to share power between the multiple antenna ports if the multiple antenna ports are associated with the same radio frequency device; if the multiple antenna ports are associated For different RF devices, power cannot be shared between the multiple antenna ports.
  • the second determining unit 303 is configured to determine whether power can be shared between the antenna ports according to whether the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal.
  • the second determining unit 303 is configured to determine whether power can be shared between the antenna ports according to the power level of the UE.
  • the second determining unit 303 is configured to determine whether power can be shared between the antenna ports according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the first determining unit 302 is configured to determine a power scaling factor according to the first indication information, and determine a real row transmission power according to the power scaling factor.
  • the first determining unit 302 is configured to determine a true line transmit power according to the power scaling factor.
  • the first determining unit 302 is configured to determine, according to the power scaling factor, and the transmit power calculated based on the power control parameter, the actual line transmit power; or, according to the power scaling factor, determine Actual maximum transmit power; determining the actual line transmit power based on the actual maximum transmit power.
  • the first determining unit 302 is configured to determine a total transmit power according to the power scaling factor and the transmit power calculated based on the power control parameter; according to the total transmit power and the current transport layer. The number determines the actual row transmit power on each transport layer.
  • the implementation functions of the units in the uplink power control apparatus shown in FIG. 3 can be understood by referring to the related description of the foregoing uplink power control method.
  • the functions of the units in the uplink power control apparatus shown in FIG. 3 can be realized by a program running on the processor, or can be realized by a specific logic circuit.
  • the uplink power control apparatus includes:
  • the first determining unit 401 is configured to determine a power scaling factor according to at least one of an antenna structure, a maximum transmit power on each antenna port, a power level of the UE, and a current uplink transmission mode.
  • the second determining unit 402 is configured to determine an actual line transmit power according to the power scaling factor.
  • the first determining unit 401 is configured to determine a power scaling factor according to whether multiple antenna ports are associated with the same radio frequency device.
  • the first determining unit 401 is configured to: if the multiple antenna ports are associated with the same radio frequency device, the multiple antenna ports do not need to perform power scaling; if the multiple antenna ports are associated For different radio frequency devices, the power scaling factor is determined based on the number of the plurality of antenna ports.
  • the first determining unit 401 is configured to determine a power scaling factor according to a ratio relationship between a maximum transmit power on each antenna port and a transmit power calculated based on the power control parameter.
  • the first determining unit 401 is configured to determine a power scaling factor according to whether a maximum transmit power on each antenna port and a maximum transmit power allowed by the terminal are the same.
  • the first determining unit 401 is configured to determine that the power scaling factor is 1 if the maximum transmit power on each antenna port is the same as the maximum transmit power allowed by the terminal; if the maximum transmit power on each antenna port is If the maximum transmit power allowed by the terminal is different, it is determined that the power scaling factor is 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission, and N is the number of antenna ports configured for PUSCH.
  • the first determining unit 401 is configured to determine a power scaling factor according to a power level of the UE.
  • the first determining unit 401 is configured to determine that the power scaling factor is 1 if the power level of the terminal is lower than the first preset value; and if the power level of the terminal is higher than or equal to the first preset The value is then determined to be a power scaling factor of 1/2 or M/N, where M is the number of antenna ports actually used for PUSCH transmission and N is the number of antenna ports configured for PUSCH.
  • the first determining unit 401 is configured to determine a power scaling factor according to whether the current uplink transmission mode is a codebook-based uplink transmission or a non-codebook-based uplink transmission.
  • the first determining unit 401 is configured to determine that the power scaling factor is M/N if the current uplink transmission mode is a codebook-based uplink transmission, where M is the number of antenna ports actually used for PUSCH transmission. N is the number of antenna ports configured for the PUSCH; if the current uplink transmission mode is based on non-codebook uplink transmission, it is determined that the power scaling factor is 1.
  • the power scaling factor is 1, or 1/2, or M/N, where M is the number of antenna ports actually used for PUSCH transmission and N is the number of antenna ports configured for PUSCH.
  • the second determining unit 402 is configured to determine, according to the power scaling factor, and the transmit power calculated based on the power control parameter, the actual line transmit power; or, according to the power scaling factor, determine Actual maximum transmit power; determining the actual line transmit power based on the actual maximum transmit power.
  • the second determining unit 402 is configured to determine a total transmit power according to the power scaling factor and the transmit power calculated based on the power control parameter; according to the total transmit power and the current transport layer. The number determines the actual row transmit power on each transport layer.
  • the implementation functions of the units in the uplink power control apparatus shown in FIG. 4 can be understood by referring to the related description of the foregoing uplink power control method.
  • the functions of the units in the uplink power control apparatus shown in FIG. 4 can be realized by a program running on the processor, or can be realized by a specific logic circuit.
  • the uplink power control device may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the present application are not limited to any particular combination of hardware and software.
  • the embodiment of the present application further provides a computer storage medium, where the computer-executable instructions are stored, and the computer-executable instructions are executed by the processor to implement the foregoing uplink power control method in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure, and the computer device may be a terminal.
  • computer device 100 may include one or more (only one shown) processor 1002 (processor 1002 may include, but is not limited to, a Micro Controller Unit (MCU) or a programmable logic device.
  • a processing device such as an FPGA (Field Programmable Gate Array), a memory 1004 for storing data, and a transmission device 1006 for a communication function.
  • FPGA Field Programmable Gate Array
  • FIG. 5 is merely illustrative, and does not limit the structure of the above electronic device.
  • computer device 100 may also include more or fewer components than shown in FIG. 5, or have a different configuration than that shown in FIG.
  • the memory 1004 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the methods in the embodiments of the present application, and the processor 1002 executes various functional applications by running software programs and modules stored in the memory 1004. And data processing, that is, to achieve the above method.
  • Memory 1004 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 1004 can further include memory remotely located relative to processor 1002, which can be connected to computer device 100 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 1006 is for receiving or transmitting data via a network.
  • the network specific examples described above may include a wireless network provided by a communication provider of computer device 100.
  • the transmission device 1006 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 1006 can be a radio frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行功率控制方法及装置、计算机存储介质,所述方法包括:终端向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;所述终端根据所述第一UE能力信息确定实际上行发送功率。

Description

一种上行功率控制方法及装置、计算机存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种上行功率控制方法及装置、计算机存储介质。
背景技术
在长期演进(LTE,Long Term Evolution)系统中,如果终端只在网络侧配置的部分天线端口上传输物理上行共享信道(PUSCH,Physical Uplink Shared CHannel),则发送PUSCH的每个天线端口上的发送功率只能是计算出的发送功率的M/N(即功率缩放系数为M/N),其中M为发送PUSCH所用的天线端口数,N为网络侧配置的总的天线端口数。在这种情况下,终端不能把一个天线端口上的功率共享到另一个天线端口上。
在新无线(NR,New Radio)系统中,如果终端只在网络侧配置的部分天线端口上传输PUSCH,是否需要按照和LTE相同的缩放系数M/N确定发送功率取决于终端的天线。对于部分终端,天线端口上允许的发送功率等于最大发送功率,则一个发送PUSCH的天线端口可以共享不发送PUSCH的天线端口上的发送功率。对于另一些终端,天线端口上允许的发送功率低于最大发送功率,如果此时只用部分的天线端口发送PUSCH,发送PUSCH的每个天线端口上仍然要做和LTE类似的功率缩放。目前,终端如何根据不同的终端类型确定功率缩放系数还没有明确的方案。
发明内容
为解决上述技术问题,本申请实施例提供了一种上行功率控制方法及装置、计算机存储介质。
本申请实施例提供的上行功率控制方法,包括:
终端向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;
所述终端根据所述第一UE能力信息确定实际上行发送功率。
本申请实施例中,所述方法还包括:
所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数和/或所述第一指示信息。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
所述终端根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
所述终端根据自身的UE的功率等级,确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
本申请实施例中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
所述终端根据多个天线端口是否关联相同的射频器件,确定天线端口之间能否共享功率。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定天线端口之间能否共享功率。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
所述终端根据自身的UE的功率等级,确定天线端口之间能否共享功率。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定天线端口之间能否共享功率。
本申请实施例中,所述终端根据所述第一UE能力信息确定实际上行发送功率,包括:
所述终端根据所述第一指示信息确定功率缩放系数;
所述终端根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述终端根据所述第一UE能力信息确定实际上行发送功率,包括:
所述终端根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,
所述终端根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
本申请实施例中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
本申请实施例提供的上行功率控制方法,包括:
终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数;
所述终端根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
本申请实施例中,所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数,包括:
如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;
如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
所述终端根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
本申请实施例中,所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数,包括:
如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则终端确定功率缩放系数为1;
如果每个天线端口上的最大发送功率和终端允许的最大发送功率不同,则终端确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
所述终端根据自身的UE的功率等级,确定功率缩放系数。
本申请实施例中,所述终端根据自身的UE的功率等级,确定功率缩放系数,包括:
如果所述终端的功率等级低于第一预设值,则终端确定功率缩放系数为1;
如果所述终端的功率等级高于或等于第一预设值,则终端确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
本申请实施例中,所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数,包括:
如果当前的上行传输模式是基于码本的上行传输,则终端确定功率缩放系数为 M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;
如果当前的上行传输模式是基于非码本的上行传输,则终端确定功率缩放系数为1。
本申请实施例中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,
所述终端根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
本申请实施例中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
本申请实施例提供的上行功率控制装置,包括:
发送单元,用于向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;
第一确定单元,用于根据所述第一UE能力信息确定实际上行发送功率。
本申请实施例中,所述装置还包括:
第二确定单元,用于根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数和/或所述第一指示信息。
本申请实施例中,所述第二确定单元,用于根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
本申请实施例中,所述第二确定单元,用于根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
本申请实施例中,所述第二确定单元,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
本申请实施例中,所述第二确定单元,用于根据自身的UE的功率等级,确定功率缩放系数。
本申请实施例中,所述第二确定单元,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
本申请实施例中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述第二确定单元,用于根据多个天线端口是否关联相同的射频器件,确定天线端口之间能否共享功率。
本申请实施例中,所述第二确定单元,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定天线端口之间能否共享功率。
本申请实施例中,所述第二确定单元,用于根据自身的UE的功率等级,确定天线端口之间能否共享功率。
本申请实施例中,所述第二确定单元,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定天线端口之间能否共享功率。
本申请实施例中,所述第一确定单元,用于根据所述第一指示信息确定功率缩放系数;根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述第一确定单元,用于根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述第一确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
本申请实施例中,所述第一确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
本申请实施例提供的上行功率控制装置,包括:
第一确定单元,用于根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数;
第二确定单元,用于根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述第一确定单元,用于根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
本申请实施例中,所述第一确定单元,用于如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
本申请实施例中,所述第一确定单元,用于根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
本申请实施例中,所述第一确定单元,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
本申请实施例中,所述第一确定单元,用于如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则确定功率缩放系数为1;如果每个天线端口上的最大发送功率和终端允许的最大发送功率不同,则确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述第一确定单元,用于根据自身的UE的功率等级,确定功率缩放系数。
本申请实施例中,所述第一确定单元,用于如果所述终端的功率等级低于第一预设值,则确定功率缩放系数为1;如果所述终端的功率等级高于或等于第一预设值,则确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述第一确定单元,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
本申请实施例中,所述第一确定单元,用于如果当前的上行传输模式是基于码本的上行传输,则确定功率缩放系数为M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;如果当前的上行传输模式是基于非码本的上行传输,则确定功率缩放系数为1。
本申请实施例中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用 于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述第二确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
本申请实施例中,所述第二确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
本申请实施例提供的计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述的上行功率控制方法。
本申请实施例的技术方案中,终端向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;所述终端根据所述第一UE能力信息确定实际上行发送功率。或者,终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数;所述终端根据所述功率缩放系数确定实际上行发送功率。采用本申请实施例的技术方案,终端可以根据自己的天线配置,确定合理的功率缩放系数,在保证不超过最大发送功率的情况下尽可能按照较大的发送功率发送PUSCH,从而保证上行覆盖。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的上行功率控制方法的流程示意图一;
图2为本申请实施例的上行功率控制方法的流程示意图二;
图3为本申请实施例的上行功率控制装置的结构组成示意图一;
图4为本申请实施例的上行功率控制装置的结构组成示意图二;
图5为本申请实施例的计算机设备的结构组成示意图。
具体实施方式
本申请结合终端描述了各个实施例,其中:终端也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端可以是WLAN中的站点(ST,STAION),可以是蜂窝电话、无绳电话、会话启动协议(SIP,Session Initiation Protocol)电话、无线本地环路(WLL,Wireless Local Loop)站、个人数字处理(PDA,Personal Digital Assistant)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(5G,fifth-Generation)网络中的终端或者未来演进的公共陆地移动网络(PLMN,Public Land Mobile Network)网络中的终端等。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包 括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,与终端通信的网络设备可以是WLAN中的接入点(AP,Access Point),GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NB,NodeB),还可以是LTE中的演进型基站(eNB或eNodeB,Evolutional Node B),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
图1为本申请实施例的上行功率控制方法的流程示意图一,如图1所示,所述上行功率控制方法包括以下步骤:
步骤101:终端向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率。
这里,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数和/或所述第一指示信息。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,可以通过以下方式实现:
方式一:所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
这里,所述射频器件包括与终端天线相连接的至少一个射频器件,例如,可以是功率放大器,数模转换器(A/D)、模数转换器(D/A)和晶振等。
具体地,如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
例如:如果K个天线端口关联相同的射频器件,则多个天线端口之间可以共享功率,不需要针对这K个天线端口进行功率缩放,即不需要基于K确定功率缩放系数。
如果K个天线端口关联不同的射频器件,则多个天线端口之间不能共享功率,需要基于K确定功率缩放系数。此时功率缩放系数可以是M/K,其中M是K个天线端口中用于PUSCH传输的天线端口数。
方式二:所述终端根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
例如:功率缩放系数可以是Min(1,Pmax,tx/Ptx),其中Pmax,tx是每个天线端口允许的最大发送功率,Ptx是根据协议中的功率控制过程基于功率控制参数计算出的发送功率。
方式三:所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
例如:如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则可以确定功率缩放系数为1;如果每个天线端口上的最大发送功率和终端允许的最大发送功率不相同,例如前者小于后者,则可以确定功率缩放系数为1/2或者M/N,其中M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
方式四:所述终端根据自身的UE的功率等级,确定功率缩放系数。
例如:如果UE的功率等级是普通UE,则终端可以确定功率缩放系数为1;如果UE的功率等级是高功率UE,则可以确定功率缩放系数为1/2或者M/N,其中M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
方式五:所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
例如:如果上行传输模式是基于码本的上行传输,则功率缩放系数为M/N,其中M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;如果上行传输模式是基于非码本的上行传输,则功率缩放系数为1。
方式六:所述终端确定所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,可以通过以下方式实现:
方式一:所述终端根据多个天线端口是否关联相同的射频器件,确定天线端口之间能否共享功率。
这里,所述射频器件包括与终端天线相连接的至少一个射频器件,例如,可以是功率放大器,数模转换器(A/D)、模数转换器(D/A)和晶振等。
具体地,如果所述多个天线端口关联相同的射频器件,则所述多个天线端口之间能够共享功率;如果所述多个天线端口关联不同的射频器件,则所述多个天线端口之间不能共享功率。
例如:如果K个天线端口关联相同的射频器件,则多个天线端口之间可以共享功率。
如果K个天线端口关联不同的射频器件,则多个天线端口之间不能共享功率。此时当一个天线端口不用于PUSCH传输时,其发送功率不能用于另一个天线端口的传输。
方式二:所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定天线端口之间能否共享功率。
例如:如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则确定可以共享功率;如果每个天线端口上的最大发送功率和终端允许的最大发送功率不相同,例如前者小于后者,则不能共享功率。
方式三:所述终端根据自身的UE的功率等级,确定天线端口之间能否共享功率。
例如:如果UE的功率等级是普通UE,则可以共享功率;如果UE的功率等级是高功率UE,则不能共享功率。
方式四:所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定天线端口之间能否共享功率。
例如:如果当前的传输模式是基于码本的上行传输,则不能共享功率;如果当前的传输模式是基于非码本的上行传输,则可以共享功率。
步骤102:所述终端根据所述第一UE能力信息确定实际上行发送功率。
本申请实施例中,所述终端根据所述第一UE能力信息确定实际上行发送功率,可以通过以下方式实现:
方式一:所述终端根据所述第一指示信息确定功率缩放系数;所述终端根据所述功率缩放系数确定实际上行发送功率。
方式二:所述终端根据所述功率缩放系数确定实际上行发送功率。
对于上述方式一和方式二,所述终端根据所述功率缩放系数确定实际上行发送功率,可以通过以下方式实现:
1)所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率。
例如:假设所述缩放系数为k,所述计算出的发送功率为P,则实际发送功率为k*P,这里P是线性值。
2)所述终端根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
例如:假设所述功率缩放系数为k,终端支持的最大发送功率为Pc_max,则实际的最大发送功率为k*Pc_max。终端可以基于该实际的最大发送功率,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率。例如,实际上行发送功率可以是该实际的最大发送功率和基于功率控制参数计算出的发送功率之间的较小值。
3)所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
这里,所述功率控制参数包括网络侧配置的开环功率控制参数,或者网络侧指示的闭环功率控制因子。
例如:假设所述缩放系数为k,所述计算出的发送功率为P,当前传输层数为R,则每个传输层的实际发送功率为k*P/R,这里P是线性值。
本申请实施例的技术方案,终端根据天线结构或每个天线端口上的最大发送功率或UE的功率等级确定功率缩放系数,从而根据所述功率缩放系数确定发送功率,保证发送功率不会超过每个天线端口上的最大功率,同时尽可能增加上行覆盖。
图2为本申请实施例的上行功率控制方法的流程示意图二,如图2所示,所述上行功率控制方法包括以下步骤:
步骤201:终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数。
本申请实施例中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,可以通过以下方式实现:
方式一:所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
这里,所述射频器件包括与终端天线相连接的至少一个射频器件,例如,可以是功率放大器,数模转换器(A/D)、模数转换器(D/A)和晶振等。
具体地,如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
例如:如果K个天线端口关联相同的射频器件,则多个天线端口之间可以共享功率,不需要针对这K个天线端口进行功率缩放,即不需要基于K确定功率缩放系数。
如果K个天线端口关联不同的射频器件,则多个天线端口之间不能共享功率,需要基于K确定功率缩放系数。此时功率缩放系数可以是M/K,其中M是K个天线端口中用于PUSCH传输的天线端口数。
方式二:所述终端根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
例如:功率缩放系数可以是Min(1,Pmax,tx/Ptx),其中Pmax,tx是每个天线端口允许的最大发送功率,Ptx是根据协议中的功率控制过程基于功率控制参数计算出的发送功率。
方式三:所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
例如:如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则可以确定功率缩放系数为1;如果每个天线端口上的最大发送功率和终端允许的最大发送功率不相同,例如前者小于后者,则可以确定功率缩放系数为1/2或者M/N,其中,M 是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
方式四:所述终端根据自身的UE的功率等级,确定功率缩放系数。
具体地,如果所述终端的功率等级低于第一预设值,则终端确定功率缩放系数为1;如果所述终端的功率等级高于或等于第一预设值,则终端确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
例如:如果UE的功率等级是普通UE,则终端可以确定功率缩放系数为1;如果UE的功率等级是高功率UE,则可以确定功率缩放系数为1/2或者M/N,其中M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
方式五:所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
例如:如果上行传输模式是基于码本的上行传输,则功率缩放系数为M/N,其中M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;如果上行传输模式是基于非码本的上行传输,则功率缩放系数为1。
方式六:所述终端确定所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
步骤202:所述终端根据所述功率缩放系数确定实际上行发送功率。
本申请实施例中,所述终端根据所述功率缩放系数确定实际上行发送功率,可以通过以下方式实现:
1)所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率。
例如:假设所述缩放系数为k,所述计算出的发送功率为P,则实际发送功率为k*P,这里P是线性值。
2)所述终端根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
例如:假设所述功率缩放系数为k,终端支持的最大发送功率为Pc_max,则实际的最大发送功率为k*Pc_max。终端可以基于该实际的最大发送功率,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率。例如,实际上行发送功率可以是该实际的最大发送功率和基于功率控制参数计算出的发送功率之间的较小值。
3)所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
这里,所述功率控制参数包括网络侧配置的开环功率控制参数,或者网络侧指示的闭环功率控制因子。
例如:假设所述缩放系数为k,所述计算出的发送功率为P,当前传输层数为R,则每个传输层的实际发送功率为k*P/R,这里P是线性值。
本申请实施例的技术方案,终端根据天线结构或每个天线端口上的最大发送功率或UE的功率等级确定功率缩放系数,从而根据所述功率缩放系数确定发送功率,保证发送功率不会超过每个天线端口上的最大功率,同时尽可能增加上行覆盖。
图3为本申请实施例的上行功率控制装置的结构组成示意图一,如图3所示,所述上行功率控制装置包括:
发送单元301,用于向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;
第一确定单元302,用于根据所述第一UE能力信息确定实际上行发送功率。
在一实施方式中,所述装置还包括:
第二确定单元303,用于根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数和/或所述第一指示信息。
在一实施方式中,所述第二确定单元303,用于根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
在一实施方式中,所述第二确定单元303,用于如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
在一实施方式中,所述第二确定单元303,用于根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
在一实施方式中,所述第二确定单元303,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
在一实施方式中,所述第二确定单元303,用于根据自身的UE的功率等级,确定功率缩放系数。
在一实施方式中,所述第二确定单元303,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
在一实施方式中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
在一实施方式中,所述第二确定单元303,用于根据多个天线端口是否关联相同的射频器件,确定天线端口之间能否共享功率。
在一实施方式中,所述第二确定单元303,用于如果所述多个天线端口关联相同的射频器件,则所述多个天线端口之间能够共享功率;如果所述多个天线端口关联不同的射频器件,则所述多个天线端口之间不能共享功率。
在一实施方式中,所述第二确定单元303,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定天线端口之间能否共享功率。
在一实施方式中,所述第二确定单元303,用于根据自身的UE的功率等级,确定天线端口之间能否共享功率。
在一实施方式中,所述第二确定单元303,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定天线端口之间能否共享功率。
在一实施方式中,所述第一确定单元302,用于根据所述第一指示信息确定功率缩放系数;根据所述功率缩放系数确定实际上行发送功率。
在一实施方式中,所述第一确定单元302,用于根据所述功率缩放系数确定实际上行发送功率。
在一实施方式中,所述第一确定单元302,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
在一实施方式中,所述第一确定单元302,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
本领域技术人员应当理解,图3所示的上行功率控制装置中的各单元的实现功能可参照前述上行功率控制方法的相关描述而理解。图3所示的上行功率控制装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图4为本申请实施例的上行功率控制装置的结构组成示意图二,如图4所示,所述上行功率控制装置包括:
第一确定单元401,用于根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数;
第二确定单元402,用于根据所述功率缩放系数确定实际上行发送功率。
在一实施方式中,所述第一确定单元401,用于根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
在一实施方式中,所述第一确定单元401,用于如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
在一实施方式中,所述第一确定单元401,用于根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
在一实施方式中,所述第一确定单元401,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
进一步,所述第一确定单元401,用于如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则确定功率缩放系数为1;如果每个天线端口上的最大发送功率和终端允许的最大发送功率不同,则确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
在一实施方式中,所述第一确定单元401,用于根据自身的UE的功率等级,确定功率缩放系数。
进一步,所述第一确定单元401,用于如果所述终端的功率等级低于第一预设值,则确定功率缩放系数为1;如果所述终端的功率等级高于或等于第一预设值,则确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
在一实施方式中,所述第一确定单元401,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
进一步,所述第一确定单元401,用于如果当前的上行传输模式是基于码本的上行传输,则确定功率缩放系数为M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;如果当前的上行传输模式是基于非码本的上行传输,则确定功率缩放系数为1。
在一实施方式中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
在一实施方式中,所述第二确定单元402,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
在一实施方式中,所述第二确定单元402,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
本领域技术人员应当理解,图4所示的上行功率控制装置中的各单元的实现功能可参照前述上行功率控制方法的相关描述而理解。图4所示的上行功率控制装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本申请实施例上述上行功率控制装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的 形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
相应地,本申请实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本申请实施例的上述上行功率控制方法。
图5为本申请实施例的计算机设备的结构组成示意图,该计算机设备可以是终端。如图5所示,计算机设备100可以包括一个或多个(图中仅示出一个)处理器1002(处理器1002可以包括但不限于微处理器(MCU,Micro Controller Unit)或可编程逻辑器件(FPGA,Field Programmable Gate Array)等的处理装置)、用于存储数据的存储器1004、以及用于通信功能的传输装置1006。本领域普通技术人员可以理解,图5所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,计算机设备100还可包括比图5中所示更多或者更少的组件,或者具有与图5所示不同的配置。
存储器1004可用于存储应用软件的软件程序以及模块,如本申请实施例中的方法对应的程序指令/模块,处理器1002通过运行存储在存储器1004内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器1004可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1004可进一步包括相对于处理器1002远程设置的存储器,这些远程存储器可以通过网络连接至计算机设备100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置1006用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机设备100的通信供应商提供的无线网络。在一个实例中,传输装置1006包括一个网络适配器(NIC,Network Interface Controller),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置1006可以为射频(RF,Radio Frequency)模块,其用于通过无线方式与互联网进行通讯。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (59)

  1. 一种上行功率控制方法,所述方法包括:
    终端向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;
    所述终端根据所述第一UE能力信息确定实际上行发送功率。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数和/或所述第一指示信息。
  3. 根据权利要求2所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
    所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
  4. 根据权利要求2所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
    所述终端根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
  5. 根据权利要求2所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
    所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
  6. 根据权利要求2所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
    所述终端根据自身的UE的功率等级,确定功率缩放系数。
  7. 根据权利要求2所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数,包括:
    所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
  8. 根据权利要求2至7任一项所述的方法,其中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  9. 根据权利要求2至8任一项所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
    所述终端根据多个天线端口是否关联相同的射频器件,确定天线端口之间能否共享功率。
  10. 根据权利要求2至8任一项所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
    所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定天线端口之间能否共享功率。
  11. 根据权利要求2至8任一项所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
    所述终端根据自身的UE的功率等级,确定天线端口之间能否共享功率。
  12. 根据权利要求2至8任一项所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述第一指示信息,包括:
    所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定天线端口之间能否共享功率。
  13. 根据权利要求1至12任一项所述的方法,其中,所述终端根据所述第一UE能力信息确定实际上行发送功率,包括:
    所述终端根据所述第一指示信息确定功率缩放系数;
    所述终端根据所述功率缩放系数确定实际上行发送功率。
  14. 根据权利要求1至12任一项所述的方法,其中,所述终端根据所述第一UE能力信息确定实际上行发送功率,包括:
    所述终端根据所述功率缩放系数确定实际上行发送功率。
  15. 根据权利要求13或14所述的方法,其中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
    所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,
    所述终端根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
  16. 根据权利要求13或14所述的方法,其中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
    所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
  17. 一种上行功率控制方法,所述方法包括:
    终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数;
    所述终端根据所述功率缩放系数确定实际上行发送功率。
  18. 根据权利要求17所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
    所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
  19. 根据权利要求18所述的方法,其中,所述终端根据多个天线端口是否关联相同的射频器件,确定功率缩放系数,包括:
    如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;
    如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
  20. 根据权利要求17所述的方法,其中,所述终端根据天线结构、每个天线端 口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
    所述终端根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
  21. 根据权利要求17所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
    所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
  22. 根据权利要求21所述的方法,其中,所述终端根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数,包括:
    如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则终端确定功率缩放系数为1;
    如果每个天线端口上的最大发送功率和终端允许的最大发送功率不同,则终端确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  23. 根据权利要求17所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
    所述终端根据自身的UE的功率等级,确定功率缩放系数。
  24. 根据权利要求23所述的方法,其中,所述终端根据自身的UE的功率等级,确定功率缩放系数,包括:
    如果所述终端的功率等级低于第一预设值,则终端确定功率缩放系数为1;
    如果所述终端的功率等级高于或等于第一预设值,则终端确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  25. 根据权利要求17所述的方法,其中,所述终端根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数,包括:
    所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
  26. 根据权利要求25所述的方法,其中,所述终端根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数,包括:
    如果当前的上行传输模式是基于码本的上行传输,则终端确定功率缩放系数为M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;
    如果当前的上行传输模式是基于非码本的上行传输,则终端确定功率缩放系数为1。
  27. 根据权利要求17至26任一项所述的方法,其中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  28. 根据权利要求17至27任一项所述的方法,其中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
    所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率, 确定实际上行发送功率;或者,
    所述终端根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
  29. 根据权利要求17至27任一项所述的方法,其中,所述终端根据所述功率缩放系数确定实际上行发送功率,包括:
    所述终端根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
  30. 一种上行功率控制装置,所述装置包括:
    发送单元,用于向网络设备发送第一UE能力信息,所述第一UE能力信息包括功率缩放系数和/或第一指示信息,所述第一指示信息用于指示天线端口之间能否共享功率;
    第一确定单元,用于根据所述第一UE能力信息确定实际上行发送功率。
  31. 根据权利要求30所述的装置,其中,所述装置还包括:
    第二确定单元,用于根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定所述功率缩放系数和/或所述第一指示信息。
  32. 根据权利要求31所述的装置,其中,所述第二确定单元,用于根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
  33. 根据权利要求31所述的装置,其中,所述第二确定单元,用于根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
  34. 根据权利要求31所述的装置,其中,所述第二确定单元,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
  35. 根据权利要求31所述的装置,其中,所述第二确定单元,用于根据自身的UE的功率等级,确定功率缩放系数。
  36. 根据权利要求31所述的装置,其中,所述第二确定单元,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
  37. 根据权利要求31至36任一项所述的装置,其中,所述功率缩放系数为1、或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  38. 根据权利要求31至37任一项所述的装置,其中,所述第二确定单元,用于根据多个天线端口是否关联相同的射频器件,确定天线端口之间能否共享功率。
  39. 根据权利要求31至37任一项所述的装置,其中,所述第二确定单元,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定天线端口之间能否共享功率。
  40. 根据权利要求31至37任一项所述的装置,其中,所述第二确定单元,用于根据自身的UE的功率等级,确定天线端口之间能否共享功率。
  41. 根据权利要求31至37任一项所述的装置,其中,所述第二确定单元,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定天线端口之间能否共享功率。
  42. 根据权利要求30至41任一项所述的装置,其中,所述第一确定单元,用于根据所述第一指示信息确定功率缩放系数;根据所述功率缩放系数确定实际上行发 送功率。
  43. 根据权利要求30至41任一项所述的装置,其中,所述第一确定单元,用于根据所述功率缩放系数确定实际上行发送功率。
  44. 根据权利要求42或43所述的装置,其中,所述第一确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
  45. 根据权利要求42或43所述的装置,其中,所述第一确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
  46. 一种上行功率控制装置,所述装置包括:
    第一确定单元,用于根据天线结构、每个天线端口上的最大发送功率、UE的功率等级和当前的上行传输模式中的至少一项,确定功率缩放系数;
    第二确定单元,用于根据所述功率缩放系数确定实际上行发送功率。
  47. 根据权利要求46所述的装置,其中,所述第一确定单元,用于根据多个天线端口是否关联相同的射频器件,确定功率缩放系数。
  48. 根据权利要求47所述的装置,其中,所述第一确定单元,用于如果所述多个天线端口关联相同的射频器件,则所述多个天线端口不需要进行功率缩放;如果所述多个天线端口关联不同的射频器件,则基于所述多个天线端口的数目确定功率缩放系数。
  49. 根据权利要求46所述的装置,其中,所述第一确定单元,用于根据每个天线端口上的最大发送功率和基于功率控制参数计算出的发送功率的比值关系,确定功率缩放系数。
  50. 根据权利要求46所述的装置,其中,所述第一确定单元,用于根据每个天线端口上的最大发送功率和终端允许的最大发送功率是否相同,确定功率缩放系数。
  51. 根据权利要求50所述的装置,其中,所述第一确定单元,用于如果每个天线端口上的最大发送功率和终端允许的最大发送功率相同,则确定功率缩放系数为1;如果每个天线端口上的最大发送功率和终端允许的最大发送功率不同,则确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  52. 根据权利要求46所述的装置,其中,所述第一确定单元,用于根据自身的UE的功率等级,确定功率缩放系数。
  53. 根据权利要求52所述的装置,其中,所述第一确定单元,用于如果所述终端的功率等级低于第一预设值,则确定功率缩放系数为1;如果所述终端的功率等级高于或等于第一预设值,则确定功率缩放系数为1/2或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  54. 根据权利要求46所述的装置,其中,所述第一确定单元,用于根据当前的上行传输模式是基于码本的上行传输还是基于非码本的上行传输,来确定功率缩放系数。
  55. 根据权利要求54所述的装置,其中,所述第一确定单元,用于如果当前的上行传输模式是基于码本的上行传输,则确定功率缩放系数为M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目;如果当前的上行传输模式是基于非码本的上行传输,则确定功率缩放系数为1。
  56. 根据权利要求46至55任一项所述的装置,其中,所述功率缩放系数为1、 或1/2、或M/N,其中,M是实际用于PUSCH传输的天线端口的数目,N是为PUSCH配置的天线端口的数目。
  57. 根据权利要求46至56任一项所述的装置,其中,所述第二确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定实际上行发送功率;或者,根据所述功率缩放系数,确定实际的最大发送功率;根据所述实际的最大发送功率,确定实际上行发送功率。
  58. 根据权利要求46至56任一项所述的装置,其中,所述第二确定单元,用于根据所述功率缩放系数,以及基于功率控制参数计算出的发送功率,确定总发送功率;根据所述总发送功率和当前的传输层数,确定每个传输层上的实际上行发送功率。
  59. 一种计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现权利要求1至16任一项所述的方法步骤,或者权利要求17至29任一项所述的方法步骤。
PCT/CN2019/087328 2018-05-18 2019-05-17 一种上行功率控制方法及装置、计算机存储介质 WO2019219068A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006853.7A CN111567101B (zh) 2018-05-18 2019-05-17 一种上行功率控制方法及装置、计算机存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810483420.8 2018-05-18
CN201810483420 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019219068A1 true WO2019219068A1 (zh) 2019-11-21

Family

ID=68539497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087328 WO2019219068A1 (zh) 2018-05-18 2019-05-17 一种上行功率控制方法及装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN111567101B (zh)
WO (1) WO2019219068A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763463A (zh) * 2010-04-01 2012-10-31 华为技术有限公司 用于通信系统中上行链路多天线功率控制的系统和方法
CN105519215A (zh) * 2013-09-04 2016-04-20 Lg电子株式会社 在无线通信系统中控制上行链路功率的方法和设备
US20160234788A1 (en) * 2013-11-08 2016-08-11 Kt Corporation Method for controlling uplink transmission power and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763463A (zh) * 2010-04-01 2012-10-31 华为技术有限公司 用于通信系统中上行链路多天线功率控制的系统和方法
CN105519215A (zh) * 2013-09-04 2016-04-20 Lg电子株式会社 在无线通信系统中控制上行链路功率的方法和设备
US20160234788A1 (en) * 2013-11-08 2016-08-11 Kt Corporation Method for controlling uplink transmission power and apparatus thereof

Also Published As

Publication number Publication date
CN111567101B (zh) 2022-04-15
CN111567101A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
CN103765798B (zh) 降低无线电资源控制(rrc)状态转换期间的信令开销的方法和装置
US11805487B2 (en) Wireless communication method and device
CN105934980B (zh) 用于双连接的上行链路传输
WO2018192552A1 (zh) 重复传输的方法及装置
US11877348B2 (en) Receive operation mode indication for power save
JP7182628B2 (ja) 無線通信方法、端末デバイス及びネットワークデバイス
CN105794283A (zh) 具有双连接的功率余量报告
TWI744428B (zh) 非連續接收的方法和裝置
EP3977664A1 (en) Method and device for determining codebook subset, and user equipment
US10609761B2 (en) Adaptive signal strength thresholds for peer-to-peer synchronization and data communication
US20230093234A1 (en) Uplink measurement management method, apparatus, and system
TW201911944A (zh) 資料傳輸的方法和終端設備
US20230413087A1 (en) Flexible Downlink Control Signal Monitoring in Wireless Communications
WO2020088467A1 (zh) 一种终端通信能力发送、接收方法及装置
WO2022151502A1 (zh) 配置srs传输资源的方法、终端设备及网络设备
US11013059B2 (en) Handling RRC connection release
US11438105B2 (en) Information transmission on a control channel
TW201916627A (zh) 無線通訊方法和設備
WO2019219068A1 (zh) 一种上行功率控制方法及装置、计算机存储介质
WO2020015715A1 (zh) 一种数据发送的方法和装置
US20220264411A1 (en) Communication Method and Apparatus
WO2023019399A1 (zh) 关闭小区的方法、终端设备、网络设备及存储介质
WO2019157734A1 (zh) 确定最大发送功率的方法、装置、系统及存储介质
CN113316234B (zh) Srs的发送方法及终端设备
US20240129950A1 (en) Ensuring qualtiy of experience for extended reality devices over wifi radio access networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804312

Country of ref document: EP

Kind code of ref document: A1