WO2019218921A1 - 基于距离加权的路由方法及节点路由功能模块 - Google Patents

基于距离加权的路由方法及节点路由功能模块 Download PDF

Info

Publication number
WO2019218921A1
WO2019218921A1 PCT/CN2019/086124 CN2019086124W WO2019218921A1 WO 2019218921 A1 WO2019218921 A1 WO 2019218921A1 CN 2019086124 W CN2019086124 W CN 2019086124W WO 2019218921 A1 WO2019218921 A1 WO 2019218921A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
distance
module
location information
nodes
Prior art date
Application number
PCT/CN2019/086124
Other languages
English (en)
French (fr)
Inventor
杨天朋
王振鹏
范成龙
Original Assignee
北京蓝涟科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝涟科技有限责任公司 filed Critical 北京蓝涟科技有限责任公司
Publication of WO2019218921A1 publication Critical patent/WO2019218921A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/54Organization of routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present disclosure relates to the technical field of a wireless network multi-node dynamic routing method, and in particular, to a distance weight based routing method and a node routing function module.
  • the earliest wireless networks evolved from Ad-Hoc networks and evolved into complex wireless Mesh networks that can communicate with other networks.
  • the distance-based forwarding routing protocol is realized, the implementation is simple, the number of broadcast messages is small, and the disadvantages are also obvious.
  • the distance calculated by the GPS auxiliary position is the real position, and in the actual communication, the movement is not reachable.
  • node A sends a message to node E.
  • the A node to the E node calculate the path through node C to be the shortest, so C is responsible for forwarding the message.
  • node A and node C are directly separated by a mountain, so node A to node C are directly unreachable.
  • Node A sends a message to node E.
  • the traditional path is forwarded to node C for phase A and then forwarded to node E by node C.
  • the correct forwarding path should be forwarded by node A to node B, then forwarded to node C via node B, and then forwarded to node E via node C to complete forwarding.
  • Outdoors, the distance-based method of GPS-based auxiliary location is flawed.
  • the terrain fluctuations will affect the forwarding of information between nodes. For example, there may be unreachable signal forwarding between nodes and mountains.
  • the purpose of the present disclosure is to provide a distance-weighted routing method and a node routing function module, which are used to solve the fluctuation between the 2D plane distance and the actual distance calculated by the GPS-based auxiliary position in the distance forwarding method in the related art. There is a big error, causing the problem of unreachable forwarding information.
  • the routing method includes: each node in the network periodically broadcasts a beacon message, where the beacon message includes the identification information of the node itself and Node real-time position coordinates; all nodes on the whole network obtain the current GPS location information or their relative GPS location information in the network as the real-time location coordinates of the nodes in the beacon message; each node broadcasts its own GPS location information while receiving other The GPS location information of the node; each node calculates the node distance between itself and all other nodes according to the GPS location information of its own node and the received node, forming a node distance forwarding table for each node; acquiring any two from the map The height information between the nodes is calculated and the weighting factor is calculated; the product of the weighting factor and the node distance is used as the new node weighted distance to form a node weighted distance forwarding table for each node; and the node with the closest weighted distance is selected according to the node weight
  • the path sends or forwards the packet to the next hop node; and receives the packet.
  • the node continues in the same manner, and selects the next hop packet transmission, and so on, until the packet reaches the destination node; wherein the node identification information in the beacon message is the node ID address.
  • the node broadcasts its own GPS location information to achieve full network synchronization, and if the GPS location of the node changes, the entire network needs to update the GPS location information.
  • Dab represents the node weighted distance between node A and node B
  • D[A(x, y), B(x, y)] represents node A and calculated by the GPS position coordinates of node A and node B.
  • the node distance between the nodes B, A(x, y) represents the GPS position coordinates of the node A
  • B(x, y) represents the GPS position coordinates of the node B
  • k represents the weighting factor
  • m represents the adjustment factor.
  • weighting factor is calculated as follows:
  • H A represents the height of node A
  • H B represents the height of node B
  • H 10 represents the height of 10 points between node A and node B.
  • the adjustment factor m is an empirical value obtained from field measurements and terrain, and the m value is between [1, 2].
  • the node distance forwarding table of each node is formed by selecting a shortest node distance, and the node distance forwarding table of each node includes a target node ID address, a shortest path by a path next hop node ID address, and a shortest Total number of hops.
  • the node weighted distance forwarding table of each node is formed by selecting a shortest node weighted distance, and the node weighted distance forwarding table of each node includes a target node ID address and a shortest path by the path next hop node ID.
  • the address and shortest path are the total number of hops.
  • each node maintains a direct neighbor list by calculating the weighted distance of the node, where the direct neighbor is a target node that can be reached within a transmission range of the node, and the nodes exchange the beacon message. Add the identity and location information of the immediate neighbor to its own neighbor list, thereby gaining an awareness of the topology of the network around itself.
  • the invention also discloses a node routing function module, which applies the distance weighting based routing method described in any of the above, the node routing function module comprises: a Radacat CPU, a GPS/Beidou module, a map module, a weighted distance calculation module, and a route.
  • a table module and an RF transceiver module the GPS/Beidou module, the map module, the weighted distance calculation module, the routing table module, and the RF transceiver module are connected to the Radacat CPU; the Radacat CPU passes GPS The /Beidou module obtains the current GPS location information of the node or the relative GPS location information of the node in the network; the current GPS location information of the node obtained by the Radacat CPU or the relative GPS location information and the node ID address of the node in the network are respectively used as nodes in real time.
  • the location coordinates and the identification information of the node itself, and the node real-time position coordinates and the identification information of the node itself form a beacon message; each node in the network periodically broadcasts a beacon message through the RF transceiver module, and each node passes The RF transceiver module broadcasts its own GPS location information while receiving other nodes. GPS location information; each node calculates the node distance between itself and all other nodes according to the GPS location information of its own node and the received node through the weighted distance calculation module, and selects the shortest node distance to form the node distance forwarding table of each node.
  • the weighted distance calculation module obtains the height information between any two nodes from the map obtained by the map module and calculates the weighting factor and uses the product of the weighting factor and the node distance as the new node weighted distance; the routing table module calculates the weighted distance according to the node As a result, the shortest node weighted distance is selected to form a node weighted distance forwarding table of each node; and the RF transceiver module sends or forwards the message to the next hop node according to the node weighted distance forwarding table to select the node with the closest weighted distance.
  • each node maintains a direct neighbor list, where the direct neighbor is a target node that can be reached within a transmission range of the node, and the nodes exchange the beacon message directly.
  • the identity and location information of the neighbors are added to their neighbor list, thereby gaining an awareness of the topology of the network around them.
  • the present disclosure calculates a reasonable wireless communication distance by weighting calculation, and can more accurately display the relative distance between two nodes.
  • the technique is more reasonable and more accurate. It allows the Mesh network to forward more accurate and correct messages.
  • FIG. 1 is a schematic diagram of a multi-node dynamic routing topology of a mesh location assisted Mesh network according to the present disclosure.
  • FIG. 2 is a multi-node dynamic routing topology diagram of a Mesh network based on a distance weighted routing method according to the present disclosure.
  • FIG. 3 is a flowchart of a distance weight based routing method according to the present disclosure.
  • FIG. 4 is a structural block diagram of a node routing function module of the present disclosure.
  • a distance weight based routing method disclosed in this embodiment includes steps 310 to 380.
  • each node in the network periodically broadcasts a beacon message, where the beacon message includes the identity information of the node itself and the real-time location coordinates of the node.
  • step 320 all nodes of the entire network obtain current Global Positioning System (GPS) location information or their own relative GPS location information in the network as the node real-time location coordinates in the beacon message.
  • GPS Global Positioning System
  • each node broadcasts its own GPS location information while receiving GPS location information of other nodes.
  • the node broadcasts its own GPS location information to achieve full network synchronization. If the GPS location of the node changes, the entire network needs to update the GPS location information.
  • each node calculates the node distance between itself and all other nodes according to the GPS location information of the node and the received node, and forms a node distance forwarding table for each node.
  • step 350 the height information between any two nodes is obtained from the map and the weighting factor is calculated.
  • step 360 the product of the weighting factor and the node distance is used as the new node weighted distance to form a node weighted distance forwarding table for each node.
  • step 370 the packet is sent or forwarded to the next hop node according to the routing path whose node weighted distance is closest to the node weighted distance forwarding table.
  • step 380 the node that receives the message continues to select the next hop and sends the message in the same manner, and so on, until the data packet arrives at the target node; wherein the node identification information in the beacon message is a node. ID address.
  • the node A and the node C obtain the mutual position through the GPS position broadcasted by the whole network, and the node distance between the node A and the node C is calculated by the latitude and longitude information, which is assumed to be 600 meters.
  • the flow of the distance weighting based routing method disclosed in this embodiment is that 10 points are taken according to the node distance between the node A and the node C, and the height of 10 points is obtained.
  • the weighting factor is calculated according to the calculation formula of the weighting factor k, wherein the weighting factor k is calculated as follows:
  • H A represents the height of node A
  • H B represents the height of node B
  • H 10 represents the height of 10 points between node A and node B.
  • the node weighted distance is calculated according to the node weighted distance calculation formula, wherein the calculation formula of the node weighted distance is as follows:
  • Dab represents the node weighted distance between node A and node B
  • D[A(x, y), B(x, y)] represents node A and calculated by the GPS position coordinates of node A and node B.
  • Node distance between nodes B, A(x, y) represents the GPS position coordinates of node A
  • B(x, y) represents the GPS position coordinates of node B
  • k represents the weighting factor
  • m represents the adjustment factor
  • m value is between Between [1, 2].
  • the update forms a node weighted distance forwarding table, and the message forwards the data according to the node weighted distance forwarding table.
  • the adjustment factor m is an empirical value obtained according to the field measurement and the terrain, and is measured according to the typical scene measurement of the actual terrain, and is measured according to the signal propagation characteristics of the device.
  • the specific method is: transmitting a signal of 0.5 W at a fixed position of the transmitting end, measuring the received signal strength at a distance of 100 m, 500 m, 1 km, 2 km, and 3 km from the transmitting end, and selecting a reasonable adjustment factor m according to the magnitude of the signal strength.
  • the node distance forwarding table of each node is formed by selecting the shortest node distance, and the node distance forwarding table of each node includes the target node ID address, the shortest path by the path next hop node ID address, and the shortest path by the total hop count .
  • the node weighted distance forwarding table of each node is formed by selecting the shortest node weighted distance, and the node weighted distance forwarding table of each node includes the target node ID address, the shortest path by the path next hop node ID address, and The shortest path is the total number of hops.
  • Each node maintains a direct neighbor list by calculating the weighted distance of the node.
  • the direct neighbor is the target node that the node can reach within the transmission range of one hop.
  • the nodes exchange the beacon message and the identity of the direct neighbor.
  • the identity and location information is added to its own neighbor list, thereby gaining an awareness of the topology of the network around itself.
  • the node distance forwarding table of the node A shown in FIG. 1 is calculated according to the GPS location information of the own node and the receiving node:
  • Target node ID address Shortest path by total hop count A NULL 0 B B 1 C C 1 D C 2 E C 2 F C 3 G C 3
  • the node weighted distance forwarding table of the node A shown in FIG. 2 calculated by the distance weighting based routing method is:
  • Target node ID address Next hop node ID address Shortest path by total hop count A NULL 0 B B 1 C B 2 D C 3 E C 3 F C 4 G C 4
  • the distance weighting based routing method is more effective, more suitable for the terrain fluctuation, and achieves better communication effects.
  • the node routing function module of the distance weighting based routing method disclosed in this embodiment includes: a Radacat Central Processing Unit (CPU) 01, a GPS/Beidou module 02, a map module 03, and a weighted distance calculation.
  • CPU Central Processing Unit
  • the module 04, the routing table module 05 and the RF transceiver module 06, the GPS/Beidou module 02, the map module 03, the weighted distance calculation module 04, the routing table module 05, and the radio frequency (RF) transceiver module 06 are connected to the Radacat CPU 01;
  • the Radacat CPU 01 obtains the current GPS location information of the node or the relative GPS location information of the node in the network through the GPS/Beidou module 02; the current GPS location information of the node that the Radacat CPU 01 will obtain or the relative GPS location information of the node in the network and
  • the node ID address is used as the node real-time location coordinates and the identification information of the node itself, and the node real-time location coordinates and the node's own identification information form a beacon message; each node in the network periodically broadcasts a message through the RF transceiver module 06.
  • each node broadcasts its own GPS location information through the RF transceiver module 06. At the same time, the GPS location information of other nodes is received; each node calculates the node distance between itself and all other nodes according to the GPS location information of the node and the received node by the weighted distance calculation module 04, and selects the shortest node distance to form each node.
  • weighted distance calculation module 04 obtains height information between any two nodes from the map obtained by map module 03 and calculates a weighting factor and uses the product of weighting factors and node distances as a new node weighted distance; routing The table module 05 selects the shortest node weighted distance according to the node weighted distance calculation result to form a node weighted distance forwarding table of each node; and the RF transceiver module 06 sends or forwards the message according to the node weighted distance forwarding table to select the node with the closest weighted distance to the routing path to a next hop node, wherein each node's routing table module 05 maintains a direct neighbor list, where the direct neighbor is a target node that can be reached within a transmission range of the node, and the nodes exchange the beacon message between the nodes. Add the identity and location information of the immediate neighbor to The neighbor list, thereby obtaining a knowledge of the network topology around their own situation.
  • Radacat It is a smart small device.
  • the smart phone is paired with the Radacat device Bluetooth. It implements the Mesh self-organizing network without the carrier network, and automatically realizes the Mesh network wireless relay with other Radacat devices, achieving several times the point-to-point length. Distance communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种基于距离加权的路由方法及节点路由功能模块,节点路由功能模块包括:Radacat CPU、GPS/北斗模块、地图模块、加权距离计算模块、路由表模块和RF收发模块,GPS/北斗模块、地图模块、加权距离计算模块、路由表模块和RF收发模块连接至Radacat CPU。

Description

基于距离加权的路由方法及节点路由功能模块
相关申请的交叉引用
本申请主张在2018年5月14日在中国提交的中国专利申请号No.201810456093.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线网络多节点动态路由方法技术领域,具体涉及一种基于距离加权的路由方法及节点路由功能模块。
背景技术
无线网络存在多个节点,并且节点是动态移动的,因此多个节点如何实现动态路由方法是无线网络的关键技术点。最早无线网络从Ad-Hoc网络发展而来,演变成复杂的无线Mesh网络可以与其它网络协同通信。
无线网络路由方法众多,有基于跳数最少的、基于速度最快的、有基于位置的,其中基于位置的距离路由协议,比较简单,特别是在带宽有限的无线网络。可以不用全网广播负责的心跳,只需要交换全球定位系统(Global Positioning System,GPS)位置即可,因此得到了广泛的应用。
基于GPS辅助,实现基于距离的转发路由协议,实现简单,广播报文少,缺点也是明显的,通过GPS的辅助位置,计算的距离是真实的位置,在实际通信中,不移动可达。例如,如图1所示,节点A发送消息给节点E,基于GPS辅助,A节点到E节点,计算经节点C的路径最短,因此C负责转发消息。如图2所示,节点A和节点C直接隔着一座山,因此节点A至节点C直接不可达。节点A给节点E发送消息,传统路径为阶段A转发给节点C,再经节点C转发给节点E,但是,这样的路径是失败的。正确的转发路径应该是节点A转发给节点B,再经节点B转发给节点C,然后经节点C再转发给节点E,完成转发。在户外,基于GPS的辅助位置的距离转发方法有缺陷,地形高低起伏会影响节点之间信息的转发,例如,节点之间有山、有楼都可能造成信号转发的不可达。
发明内容
本公开的目的在于提供一种基于距离加权的路由方法及节点路由功能模块,用以解决相关技术中距离转发方法中基于GPS的辅助位置计算出的2D平面距离与实际距离之间由于地形高低起伏有很大误差,造成转发信息不可达的问题。
为实现上述目的,本公开提供了一种基于距离加权的路由方法,所述路由方法包括:网络中每个节点都周期性地广播一条信标消息,信标消息中包含节点自身的标识信息和节点实时位置坐标;全网所有节点获得当前GPS位置信息或者自己在网络中的相对GPS位置信息作为信标消息中的节点实时位置坐标;每个节点把自己的GPS位置信息广播出去,同时接收其它节点的GPS位置信息;每个节点根据自己的节点和收到节点的GPS位置信息计算自己与其它所有节点之间的节点距离,形成每个节点的节点距离转发表;从地图上获取任两个节点间的高度信息并计算出加权因子;使用加权因子与节点距离的乘积作为新的节点加权距离,形成每个节点的节点加权距离转发表;根据节点加权距离转发表选择节点加权距离最近的路由路径发送或转发报文至下一跳节点;及收到报文的节点继续以同样的方式,选择下一跳并发送报文,以此类推,直到数据包到达目标节点;其中,所述信标消息中的节点标识信息为节点ID地址。
进一步地,所述节点广播自己的GPS位置信息实现全网同步,如果所述节点的GPS位置变动需要全网更新GPS位置信息。
进一步地,所述节点加权距离的计算公式如下:
Dab=k·m·D[A(x,y),B(x,y)]
其中,Dab表示节点A和节点B之间的节点加权距离,D[A(x,y),B(x,y)]表示由节点A和节点B的GPS位置坐标计算得出的节点A和节点B之间的节点距离,A(x,y)表示节点A的GPS位置坐标,B(x,y)表示节点B的GPS位置坐标,k表示加权因子,m表示调整因子。
进一步地,所述加权因子的计算公式如下:
k=H A+H 1+H 2+…+H 10+H B/12
其中,H A表示节点A的高度,H B表示节点B的高度,H 1、H 2…H 10表示 节点A和节点B两点间取10个点的高度。
进一步地,所述调整因子m是根据实地测量和地形得出的经验值,m值介于[1,2]之间。
进一步地,所述每个节点的节点距离转发表是通过选择最短节点距离形成的,所述每个节点的节点距离转发表中包括目标节点ID地址、最短路由路径下一跳节点ID地址和最短路由总跳数。
进一步地,所述每个节点的节点加权距离转发表是通过选择最短节点加权距离形成的,所述每个节点的节点加权距离转发表中包括目标节点ID地址、最短路由路径下一跳节点ID地址和最短路由总跳数。
进一步地,所述每个节点通过节点加权距离的计算都维护一个直接邻居列表,所述直接邻居为节点在一跳的传输范围之内能够达到的目标节点,节点之间通过交换信标消息,将直接邻居的身份标识和位置信息添加到自己的邻居列表中,由此获得对自身周围网络拓扑情况的认知。
本文还公开了一种节点路由功能模块,应用上述任一所述的基于距离加权的路由方法,所述节点路由功能模块包括:Radacat CPU、GPS/北斗模块、地图模块、加权距离计算模块、路由表模块和RF收发模块,所述GPS/北斗模块、所述地图模块、所述加权距离计算模块、所述路由表模块和所述RF收发模块连接至所述Radacat CPU;所述Radacat CPU通过GPS/北斗模块获得节点当前GPS位置信息或者自己在网络中的相对GPS位置信息;所述Radacat CPU将获得的节点当前GPS位置信息或者自己在网络中的相对GPS位置信息和节点ID地址分别作为节点实时位置坐标和节点自身的标识信息,并将节点实时位置坐标和节点自身的标识信息一起形成信标消息;网络中每个节点都通过RF收发模块周期性地广播一条信标消息,每个节点通过RF收发模块把自己的GPS位置信息广播出去,同时接收其它节点的GPS位置信息;每个节点通过加权距离计算模块根据自己的节点和收到节点的GPS位置信息计算自己与其它所有节点之间的节点距离,选择最短节点距离形成每个节点的节点距离转发表;加权距离计算模块从地图模块获得的地图上获取任两个节点间的高度信息并计算出加权因子并使用加权因子与节点距离的乘积作为新的节点加权距离;路由表模块根据节点加权距离计算结果选择最短节点加 权距离形成每个节点的节点加权距离转发表;及RF收发模块根据节点加权距离转发表选择节点加权距离最近的路由路径发送或转发报文至下一跳节点。
进一步地,所述每个节点的路由表模块都维护一个直接邻居列表,所述直接邻居为节点在一跳的传输范围之内能够达到的目标节点,节点之间通过交换信标消息,将直接邻居的身份标识和位置信息添加到自己的邻居列表中,由此获得对自身周围网络拓扑情况的认知。
本公开具有如下优点:
本公开通过加权计算,计算出合理的无线通信距离,可以更准确的显示出两个节点之间相对的距离,在基于GPS位置辅助的距离转发协议中,使用该技术更加合理,更准确的距离可以让Mesh网络转发更准确的正确转发消息。
附图说明
图1为本公开的一种基于GPS位置辅助的Mesh网络多节点动态路由拓扑图。
图2为本公开的一种基于距离加权的路由方法的Mesh网络多节点动态路由拓扑图。
图3为本公开的一种基于距离加权的路由方法的流程图。
图4为本公开的一种节点路由功能模块的结构框图。
具体实施方式
以下实施例用于说明本公开,但不用来限制本公开的范围。
实施例1
参考图3,本实施例公开的一种基于距离加权的路由方法包括步骤310至步骤380。
步骤310中,网络中每个节点都周期性地广播一条信标消息,信标消息中包含节点自身的标识信息和节点实时位置坐标。
步骤320中,全网所有节点获得当前全球定位系统(Global Positioning System,GPS)位置信息或者自己在网络中的相对GPS位置信息作为信标消 息中的节点实时位置坐标。
步骤330中,每个节点把自己的GPS位置信息广播出去,同时接收其它节点的GPS位置信息。节点广播自己的GPS位置信息实现全网同步,如果所述节点的GPS位置变动需要全网更新GPS位置信息。
步骤340中,每个节点根据自己的节点和收到节点的GPS位置信息计算自己与其它所有节点之间的节点距离,形成每个节点的节点距离转发表。
步骤350中,从地图上获取任两个节点间的高度信息并计算出加权因子。
步骤360中,使用加权因子与节点距离的乘积作为新的节点加权距离,形成每个节点的节点加权距离转发表。
步骤370中,根据节点加权距离转发表选择节点加权距离最近的路由路径发送或转发报文至下一跳节点。
步骤380中,收到报文的节点继续以同样的方式,选择下一跳并发送报文,以此类推,直到数据包到达目标节点;其中,所述信标消息中的节点标识信息为节点ID地址。
进一步地,参考图2,例如,节点A和节点C通过全网广播的GPS位置,得到了相互的位置,通过经纬度信息,计算得到节点A和节点C之间的节点距离,假设是600米。
采用本实施例公开的一种基于距离加权的路由方法的流程是,根据节点A和节点C之间的节点距离,取10个点,并且获取10个点的高度。根据加权因子k的计算公式计算出加权因子,其中,加权因子k的计算公式如下:
k=H A+H 1+H 2+…+H 10+H B/12
其中,H A表示节点A的高度,H B表示节点B的高度,H 1、H 2…H 10表示节点A和节点B两点间取10个点的高度。
然后,根据节点加权距离计算公式计算出节点加权距离,其中,节点加权距离的计算公式如下:
Dab=k·m·D[A(x,y),B(x,y)]
其中,Dab表示节点A和节点B之间的节点加权距离,D[A(x,y),B(x,y)]表示由节点A和节点B的GPS位置坐标计算得出的节点A和节点B之间的节点距离,A(x,y)表示节点A的GPS位置坐标,B(x,y)表 示节点B的GPS位置坐标,k表示加权因子,m表示调整因子,m值介于[1,2]之间。更新形成节点加权距离转发表,报文根据节点加权距离转发表转发数据。
进一步地,调整因子m是根据实地测量和地形得出的经验值,根据实际不同地形的典型场景测量,根据设备的信号传播特征进行测量。具体方法是:发送端固定位置发送0.5W的信号,在距离发送端100m、500m、1km、2km和3km处测量接收信号强度,根据信号强度的大小,选取合理的调整因子m。相关技术中使用的调整因子m的典型值如下:沙漠、草原平坦区域:m=1.0;河流附近、郊区等有植被遮挡的区域:m=1.1;森林、山区等:m=1.2;城市、复杂地形:m=1.3。
进一步地,每个节点的节点距离转发表是通过选择最短节点距离形成的,每个节点的节点距离转发表中包括目标节点ID地址、最短路由路径下一跳节点ID地址和最短路由总跳数。同样地,每个节点的节点加权距离转发表是通过选择最短节点加权距离形成的,所述每个节点的节点加权距离转发表中包括目标节点ID地址、最短路由路径下一跳节点ID地址和最短路由总跳数。每个节点通过节点加权距离的计算都维护一个直接邻居列表,所述直接邻居为节点在一跳的传输范围之内能够达到的目标节点,节点之间通过交换信标消息,将直接邻居的身份标识和位置信息添加到自己的邻居列表中,由此获得对自身周围网络拓扑情况的认知。
参照表1,为根据自己的节点和收到节点的GPS位置信息计算形成的图1中所示的节点A的节点距离转发表:
表1:节点A的节点距离转发表
目标节点ID地址 下一跳节点ID地址 最短路由总跳数
A NULL 0
B B 1
C C 1
D C 2
E C 2
F C 3
G C 3
参照表2,为通过基于距离加权的路由方法计算出的图2中所示的节点A的节点加权距离转发表:
表2:节点A的节点距离转发表
目标节点ID地址 下一跳节点ID地址 最短路由总跳数
A NULL 0
B B 1
C B 2
D C 3
E C 3
F C 4
G C 4
通过以上例子看出,在地形负责的户外移动通信中,基于距离加权的路由方法更有效,更适应地形的起伏,达到较好的通信效果。
参照图4,本实施例公开的一种基于距离加权的路由方法的节点路由功能模块包括:Radacat中央处理器(Central Processing Unit,CPU)01、GPS/北斗模块02、地图模块03、加权距离计算模块04、路由表模块05和RF收发模块06,GPS/北斗模块02、地图模块03、加权距离计算模块04、路由表模块05和射频(Radio Frequency,RF)收发模块06连接至Radacat CPU 01;所述Radacat CPU 01通过GPS/北斗模块02获得节点当前GPS位置信息或者自己在网络中的相对GPS位置信息;Radacat CPU 01将获得的节点当前GPS位置信息或者自己在网络中的相对GPS位置信息和节点ID地址分别作为节点实时位置坐标和节点自身的标识信息,并将节点实时位置坐标和节点自身的标识信息一起形成信标消息;网络中每个节点都通过RF收发模块06周期性地广播一条信标消息,每个节点通过RF收发模块06把自己的GPS位置信息广播出去,同时接收其它节点的GPS位置信息;每个节点通过加权距离计算模块04根据自己的节点和收到节点的GPS位置信息计算自己与其它所有节点之间的节点距离,选择最短节点距离形成每个节点的节点距离转发表;加权距离计算模块04从地图模块03获得的地图上获取任两个节点间的高度信息并计算出加权因子并使用加权因子与节点距离的乘积作为新的节点加权距离;路由表模块05根据节点加权距离计算结果选择最短节点加权距离形成每个节点的节点加权距离转发表;及RF收发模块06根据节点加权距离转发表选择节点加权距离最近的路由路径发送或转发报文至下一跳节点,其中,每个节点的路由表模块05都维护一个直接邻居列表,直接邻居为节点在一跳的传输范围之内能够达到的目标节点,节点之间通过交换信标消息,将直接 邻居的身份标识和位置信息添加到自己的邻居列表中,由此获得对自身周围网络拓扑情况的认知。
Radacat:是一个智能小设备,智能手机与Radacat设备蓝牙配对,在无运营商网络下实现Mesh自组网络,并且借助其他Radacat设备自动实现Mesh网络无线中继,实现几倍于点到点的长距离通信。
虽然,上文中已经用一般性说明及具体实施例对本公开作了详尽的描述,但在本公开基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。

Claims (10)

  1. 一种基于距离加权的路由方法,包括:
    网络中每个节点都周期性地广播一条信标消息,信标消息中包含节点自身的标识信息和节点实时位置坐标;
    全网所有节点获得当前GPS位置信息或者自己在网络中的相对GPS位置信息作为信标消息中的节点实时位置坐标;
    每个节点把自己的GPS位置信息广播出去,同时接收其它节点的GPS位置信息;
    每个节点根据自己的节点和收到节点的GPS位置信息计算自己与其它所有节点之间的节点距离,形成每个节点的节点距离转发表;
    从地图上获取任两个节点间的高度信息并计算出加权因子;
    使用加权因子与节点距离的乘积作为新的节点加权距离,形成每个节点的节点加权距离转发表;
    根据节点加权距离转发表选择节点加权距离最近的路由路径发送或转发报文至下一跳节点;及
    收到报文的节点继续以同样的方式,选择下一跳并发送报文,以此类推,直到数据包到达目标节点;
    其中,所述信标消息中的节点标识信息为节点ID地址。
  2. 根据权利要求1所述的基于距离加权的路由方法,其中,所述节点广播自己的GPS位置信息实现全网同步,如果所述节点的GPS位置变动需要全网更新GPS位置信息。
  3. 根据权利要求1所述的基于距离加权的路由方法,其中,所述节点加权距离的计算公式如下:
    Dab=k·m·D[A(x,y),B(x,y)]
    其中,Dab表示节点A和节点B之间的节点加权距离,D[A(x,y),B(x,y)]表示由节点A和节点B的GPS位置坐标计算得出的节点A和节点B之间的节点距离,A(x,y)表示节点A的GPS位置坐标,B(x,y)表示节点B的GPS位置坐标,k表示加权因子,m表示调整因子。
  4. 根据权利要求3所述的基于距离加权的路由方法,其中,所述加权因子的计算公式如下:
    k=H A+H 1+H 2+…+H 10+H B/12
    其中,H A表示节点A的高度,H B表示节点B的高度,H 1、H 2…H 10表示节点A和节点B两点间取10个点的高度。
  5. 根据权利要求3所述的基于距离加权的路由方法,其中,所述调整因子m是根据实地测量和地形得出的经验值,m值介于[1,2]之间。
  6. 根据权利要求1所述的基于距离加权的路由方法,其中,所述每个节点的节点距离转发表是通过选择最短节点距离形成的,所述每个节点的节点距离转发表中包括目标节点ID地址、最短路由路径下一跳节点ID地址和最短路由总跳数。
  7. 根据权利要求1所述的基于距离加权的路由方法,其中,所述每个节点的节点加权距离转发表是通过选择最短节点加权距离形成的,所述每个节点的节点加权距离转发表中包括目标节点ID地址、最短路由路径下一跳节点ID地址和最短路由总跳数。
  8. 根据权利要求1所述的基于距离加权的路由方法,其中,所述每个节点通过节点加权距离的计算都维护一个直接邻居列表,所述直接邻居为节点在一跳的传输范围之内能够达到的目标节点,节点之间通过交换信标消息,将直接邻居的身份标识和位置信息添加到自己的邻居列表中,由此获得对自身周围网络拓扑情况的认知。
  9. 一种节点路由功能模块,应用权利要求1-8中任一所述的基于距离加权的路由方法,包括:Radacat CPU、GPS/北斗模块、地图模块、加权距离计算模块、路由表模块和RF收发模块,所述GPS/北斗模块、所述地图模块、所述加权距离计算模块、所述路由表模块和所述RF收发模块连接至所述Radacat CPU;所述Radacat CPU通过GPS/北斗模块获得节点当前GPS位置信息或者自己在网络中的相对GPS位置信息;所述Radacat CPU将获得的节点当前GPS位置信息或者自己在网络中的相对GPS位置信息和节点ID地址分别作为节点实时位置坐标和节点自身的标识信息,并将节点实时位置坐标和节点自身的标识信息一起形成信标消息;网络中每个节点都通过RF收发 模块周期性地广播一条信标消息,每个节点通过RF收发模块把自己的GPS位置信息广播出去,同时接收其它节点的GPS位置信息;每个节点通过加权距离计算模块根据自己的节点和收到节点的GPS位置信息计算自己与其它所有节点之间的节点距离,选择最短节点距离形成每个节点的节点距离转发表;加权距离计算模块从地图模块获得的地图上获取任两个节点间的高度信息并计算出加权因子并使用加权因子与节点距离的乘积作为新的节点加权距离;路由表模块根据节点加权距离计算结果选择最短节点加权距离形成每个节点的节点加权距离转发表;及RF收发模块根据节点加权距离转发表选择节点加权距离最近的路由路径发送或转发报文至下一跳节点。
  10. 根据权利要求9所述的节点路由功能模块,其中,每个节点的所述路由表模块都维护一个直接邻居列表,所述直接邻居为节点在一跳的传输范围之内能够达到的目标节点,节点之间通过交换信标消息,将直接邻居的身份标识和位置信息添加到自己的邻居列表中,由此获得对自身周围网络拓扑情况的认知。
PCT/CN2019/086124 2018-05-14 2019-05-09 基于距离加权的路由方法及节点路由功能模块 WO2019218921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810456093.7 2018-05-14
CN201810456093.7A CN108769897B (zh) 2018-05-14 2018-05-14 一种基于距离加权的路由方法及其节点路由功能模块

Publications (1)

Publication Number Publication Date
WO2019218921A1 true WO2019218921A1 (zh) 2019-11-21

Family

ID=64010480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086124 WO2019218921A1 (zh) 2018-05-14 2019-05-09 基于距离加权的路由方法及节点路由功能模块

Country Status (2)

Country Link
CN (1) CN108769897B (zh)
WO (1) WO2019218921A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422809A (zh) * 2021-05-27 2021-09-21 莆田学院 一种物联网的数据传递系统、方法、装置和设备
CN113518320A (zh) * 2020-07-28 2021-10-19 北京理工大学 一种基于加权距离及紧凑路由的数据传输方法
CN113784455A (zh) * 2021-09-18 2021-12-10 深圳市久通物联科技股份有限公司 一种蓝牙矩阵组网方法、系统、终端及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108769897B (zh) * 2018-05-14 2020-05-05 北京蓝涟科技有限责任公司 一种基于距离加权的路由方法及其节点路由功能模块
CN109511091A (zh) * 2018-11-26 2019-03-22 广州鲁邦通物联网科技有限公司 一种基于定位信息的ble mesh网络路由算法
CN114866170B (zh) * 2022-04-02 2023-09-15 湖南北斗微芯产业发展有限公司 一种无线网络自组网方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015755A2 (en) * 2003-01-31 2005-02-17 Bbnt Solutions Llc Systems and methods for three dimensional antenna selection and power control in an ad-hoc wireless network
CN102821437A (zh) * 2012-08-13 2012-12-12 东南大学 一种无线自组网按需距离矢量路由方法
CN107690170A (zh) * 2017-08-20 2018-02-13 中国人民解放军理工大学 基于位置和任务规划的动态路由计算方法
CN108769897A (zh) * 2018-05-14 2018-11-06 北京蓝涟科技有限责任公司 一种基于距离加权的路由算法及其节点路由功能模块

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164394A (zh) * 2011-03-18 2011-08-24 中国电子科技集团公司第五十四研究所 一种基于导航定位信息的移动自组网的路由方法
TWI530126B (zh) * 2014-06-04 2016-04-11 動聯國際股份有限公司 位基型網路系統
US20150382278A1 (en) * 2014-06-25 2015-12-31 Michael F. Fallon Techniques for Generating a Routing Table for a Mesh Network Having Ad Hoc Connections
CN104363650B (zh) * 2014-09-19 2017-11-14 西北大学 一种野外条件下无线传感器网络定位优化方法
EP3051879B1 (en) * 2015-01-30 2024-04-24 Deutsche Telekom AG Method for an enhanced routing of data in a telecommunications network based on location information assigned to network nodes of the telecommunications network, and telecommunications network
US9491764B1 (en) * 2015-06-03 2016-11-08 Vivint, Inc. Mesh network adjustment
CN107872806B (zh) * 2016-09-23 2021-07-09 富士通株式会社 路由节点位置选择方法、装置和终端设备
CN107105388B (zh) * 2017-04-05 2019-07-16 南京邮电大学 一种基于链路传输能力的跨层车载网路由方法
CN106998541A (zh) * 2017-04-07 2017-08-01 西安知北信息技术有限公司 一种无线Mesh应急通信网络部署及优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015755A2 (en) * 2003-01-31 2005-02-17 Bbnt Solutions Llc Systems and methods for three dimensional antenna selection and power control in an ad-hoc wireless network
CN102821437A (zh) * 2012-08-13 2012-12-12 东南大学 一种无线自组网按需距离矢量路由方法
CN107690170A (zh) * 2017-08-20 2018-02-13 中国人民解放军理工大学 基于位置和任务规划的动态路由计算方法
CN108769897A (zh) * 2018-05-14 2018-11-06 北京蓝涟科技有限责任公司 一种基于距离加权的路由算法及其节点路由功能模块

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518320A (zh) * 2020-07-28 2021-10-19 北京理工大学 一种基于加权距离及紧凑路由的数据传输方法
CN113518320B (zh) * 2020-07-28 2024-03-15 北京理工大学 一种基于加权距离及紧凑路由的数据传输方法
CN113422809A (zh) * 2021-05-27 2021-09-21 莆田学院 一种物联网的数据传递系统、方法、装置和设备
CN113422809B (zh) * 2021-05-27 2023-10-24 莆田学院 一种物联网的数据传递系统、方法、装置和设备
CN113784455A (zh) * 2021-09-18 2021-12-10 深圳市久通物联科技股份有限公司 一种蓝牙矩阵组网方法、系统、终端及存储介质

Also Published As

Publication number Publication date
CN108769897B (zh) 2020-05-05
CN108769897A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019218921A1 (zh) 基于距离加权的路由方法及节点路由功能模块
US9565649B2 (en) Distribution and utilization of antenna information for location determination operations
US20110291882A1 (en) Co-operative geolocation
US9866993B2 (en) Distribution and utilization of antenna information for location determination operations
JP5174832B2 (ja) 道路網における移動ノードの密度を推定して信号伝達する方法
CN108351422A (zh) 移动网络中的定位方法、基站和移动终端
US20160255471A1 (en) Distribution and utilization of antenna information for location determination operations
KR20050044508A (ko) 무선 통신 네트워크에서 이동 단말기의 위치를 계산하기위한 시스템 및 방법
CN108351421A (zh) 移动网络中的定位方法、基站和移动终端
US20220039056A1 (en) Methods and apparatus for user equipment based prioritization and reporting of positioning technologies and methods
KR20230087465A (ko) 계층적 ue 포지셔닝
KR100990825B1 (ko) 그룹 기반 위치 측정 방법
CN104902530A (zh) 一种应用于无线Mesh网中的位置辅助路由方法
CN109587626A (zh) 面向凹型区域的无线传感器网络邻居节点距离估计方法
EP4320453A1 (en) Signaling timing error group updates for positioning
Kalpana et al. TAR: TOA–AOA based random transmission directed localization
KR20230069923A (ko) 다중 포지셔닝 주파수 계층 프로세싱을 위한 수신 신호 경로 할당
IL279646B2 (en) Method and system for determining the location of multiple communication link points
Gui et al. An adaptive range–free localisation protocol in wireless sensor networks
Lo et al. EUROPCOM-an ultra-wideband (UWB)-based ad hoc network for emergency applications
Al-Mayouf et al. Efficient routing algorithm for VANETs based on distance factor
KR101480627B1 (ko) 모바일 애드혹 네트워크에서 경로 안정성 기반 지오멀티캐스트 라우팅 방법
KR102669986B1 (ko) 포지셔닝을 위한 신호 타이밍 에러 그룹 업데이트들
Sudarsan et al. Distance aware zone routing protocol for less delay transmission and efficient bandwidth utilization
US20240045045A1 (en) Multi-Hop Positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19804187

Country of ref document: EP

Kind code of ref document: A1