WO2019218663A1 - 一种故障数据采集方法及故障数据处理系统 - Google Patents

一种故障数据采集方法及故障数据处理系统 Download PDF

Info

Publication number
WO2019218663A1
WO2019218663A1 PCT/CN2018/121539 CN2018121539W WO2019218663A1 WO 2019218663 A1 WO2019218663 A1 WO 2019218663A1 CN 2018121539 W CN2018121539 W CN 2018121539W WO 2019218663 A1 WO2019218663 A1 WO 2019218663A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
predetermined time
fault data
fault
time period
Prior art date
Application number
PCT/CN2018/121539
Other languages
English (en)
French (fr)
Inventor
牟桂贤
申伟刚
王金龙
李石江
黄卫基
范佳龙
王晓娟
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019218663A1 publication Critical patent/WO2019218663A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • G05B19/4186Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by protocol, e.g. MAP, TOP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to the field of data processing, and in particular, to a method for collecting data during operation of a device and a fault data processing system.
  • the remote monitoring system based on big data flow household appliances or factory electrical equipment has been gradually built, thus realizing real-time monitoring and data collection of household electrical appliances or factory electrical equipment.
  • the equipment failure data during a period of equipment failure has important guiding significance for the troubleshooting, prevention, and subsequent optimization of the equipment development process.
  • the existing monitoring system collects fault data
  • the existing fault data processing method consumes a large amount of network traffic in the data collecting process, and the cost is high.
  • the object of the present invention is to provide a fault data collection method and a fault data processing system with high accuracy and low data loss.
  • the present invention adopts the following technical solutions:
  • a method for collecting fault data for collecting fault data during operation of the device comprising: collecting fault data of the device in a predetermined time period when the device fails, the device occurs The time of failure is located within the predetermined time period, and the fault data includes complete operational data of a predetermined time in the predetermined time period, and de-running data after de-duplication in the predetermined time period.
  • the predetermined time instant includes two endpoint time points before and after the predetermined time period, and a time interval of the first predetermined time duration in the predetermined time period.
  • the complete operational data includes all operational parameters of the device.
  • the process of the deduplication process comprises:
  • the second predetermined duration is less than the first predetermined duration; and/or,
  • the first predetermined duration is from 3 minutes to 7 minutes, and the second predetermined duration is from 4 seconds to 8 seconds.
  • the predetermined period of time is a period of time from a first predetermined time before the occurrence of the failure to a second predetermined time after the occurrence of the failure.
  • the first predetermined time is longer than a third predetermined time duration from the fault occurrence time, and the fault occurrence time is a fourth predetermined time length from the second predetermined time;
  • the third predetermined duration is from 25 minutes to 35 minutes, and/or the fourth predetermined duration is from 3 minutes to 7 minutes.
  • a fault data processing system is configured to process fault data during operation of the device, the system includes a data transmission terminal, and the data transmission terminal includes a data collection module, configured to collect a reservation when the device fails.
  • the data transmission terminal further includes a communication module, the communication module is configured to establish a communication connection with the server, and the data transmission terminal transmits the collected fault data to the server by using the communication module.
  • the data transmission manner between the communication module and the server includes a long connection; and/or,
  • the communication mode of the communication module includes mobile data communication; and/or,
  • the communication module communicates with the server in accordance with the TCP protocol.
  • the data transmission terminal further includes a monitoring module, configured to perform real-time monitoring on the operating parameters of the device to determine whether the device is faulty.
  • a monitoring module configured to perform real-time monitoring on the operating parameters of the device to determine whether the device is faulty.
  • the data transmission terminal further includes a cache module, configured to cache real-time running parameters of the device, and when the device fails, the data collection module collects the fault data from the cache module. .
  • a cache module configured to cache real-time running parameters of the device, and when the device fails, the data collection module collects the fault data from the cache module.
  • the data transmission terminal is connected to the control device of the device through a field bus, and the field bus follows the Can protocol during data transmission.
  • the data transmission terminal is a DTU.
  • the fault data collection method and the fault data processing system in the present application collect fault data of a device within a predetermined time period when the device fails, and the fault data includes complete data at a predetermined time in a predetermined time period, thereby effectively ensuring data. Accuracy and integrity prevent the loss of important data during the acquisition process.
  • the fault data also includes de-duplication data after de-reprocessing in a predetermined period of time. Since the repeated data is removed, the amount of data uploaded to the server is greatly reduced, the uploading traffic cost is effectively reduced, and resources are saved.
  • FIG. 1 is a schematic diagram showing a connection structure of a fault data processing system according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing a fault data collection method provided by an embodiment of the present invention.
  • the application provides a fault data collection method and a fault data processing system, which are used for collecting fault data during the operation of the device and uploading the collected data to the server for the technician to analyze the cause of the fault and solve the device in time.
  • Faults and collected data have important guiding significance for the development of subsequent devices, helping manufacturers of production equipment to better meet the needs of users and enhance the user experience.
  • the present application provides a fault data processing system for processing fault data during operation of the device 1 .
  • the fault data processing system can be used for household appliances such as televisions, air conditioners, and washing machines.
  • the fault data is collected and uploaded to the manufacturer's server; it can also be used to collect the fault data of the production equipment used in the factory and upload it to the factory and the manufacturer's server to help the factory and the production equipment manufacturer. Keep abreast of the cause and operation of the equipment.
  • the fault data processing system comprises a digital transmission terminal 2, which may for example be a DTU.
  • the data transmission module 2 includes a data collection module 21, and the data collection module 21 is configured to collect fault data of the device 1 in a predetermined time period when the device 1 fails, and the time when the device 1 fails is located at the predetermined time.
  • the fault data includes complete operation data of a predetermined time in the predetermined time period, and de-duplication data after de-reprocessing in the predetermined time period, so as to reduce the amount of uploaded data as much as possible, Will lose important data.
  • the data transmission terminal 2 is connected to the control device 11 of the device 1 via a fieldbus 3, preferably the fieldbus 3 follows the Can protocol during data transmission.
  • the field bus 3 can be connected to a plurality of devices 1, and the data transmission terminal 2 simultaneously monitors a plurality of devices to comprehensively grasp the operation of the device 1.
  • the data transmission terminal 2 is disposed on a device 1, such as an air conditioner installed in a home, and the data transmission terminal 2 is connected to an air conditioner control device to fully control the operation of the air conditioner. When the air conditioner is in operation, the operational data of the air conditioner stored in the control device of the air conditioner is transmitted to the data transmission terminal 2 via the field bus 3.
  • the data transmission terminal 2 further includes a communication module 22, the communication module 22 is configured to establish a communication connection with the server 4, and the data transmission terminal 2 transmits the collected fault data through the communication module 22.
  • the communication connection can be established by wired communication or wireless communication according to the distance between the digital transmission terminal 2 and the server 4 and the use situation of the device 1.
  • the data transmission mode between the communication module 22 and the server 4 includes a long connection
  • the communication mode of the communication module 22 includes mobile data communication
  • the communication module 22 follows the communication process with the server 4. TCP protocol.
  • the mobile data communication method By using the mobile data communication method, it is ensured that the operating parameters of the device 1 are obtained in real time when the device 1 and the digital transmission terminal 2 are continuously powered, and the wireless network caused by the transmission using the wireless network is prevented from being turned off but the device 1 is still running. Unable to get the device 1 operating parameters.
  • the communication module 22 and the server 4 can also communicate through Bluetooth or a local area network, and the data transmission manner is diverse.
  • the data transmission terminal 2 includes a cache module 23 for buffering real-time operating parameters of the device 1.
  • the data collection module 21 is from the cache module 23.
  • the fault data is collected.
  • the cache module 23 can form a ring buffer by using the D Flash through the DTU, and the buffer can buffer data within a certain length of time.
  • the cache module can cache real-time running parameters of the device within 40 minutes, and the real-time running parameters of the device in the next 40 minutes will overwrite the real-time running parameters of the device 1 cached in the cache module 23 within 40 minutes to achieve Continuous real-time monitoring of device 1.
  • the data transmission terminal 2 further includes a monitoring module 24 for performing real-time monitoring on the operating parameters of the device 1 to determine whether the device 1 is faulty.
  • the monitoring module 24 detects that the device 1 is faulty, the data collection module 21 of the data transmission terminal 2 is triggered, and the data collection module 21 starts collecting the fault data of the device 1 in the predetermined time period from the cache module 23, and passes the The communication module 22 transmits to the server 4.
  • the present application further provides a fault data collection method, which uses the fault data processing system shown in FIG. 1 to collect fault data during device operation, and transmits the collected data to Server 4.
  • the collecting method includes: when the device 1 fails, collecting fault data of the device 1 in a predetermined time period, and the moment when the device 1 fails is located within the predetermined time period to ensure that the device 1 can be The data at the time of failure of the device 1 is included in the fault data.
  • the predetermined period of time is a period of time from a first predetermined time before the occurrence of the failure to a second predetermined time after the occurrence of the failure.
  • the first predetermined time is a third predetermined time length from the fault occurrence time
  • the fault occurrence time is a fourth predetermined time length from the second predetermined time.
  • the third predetermined time is 25 minutes.
  • the fourth predetermined duration is from 3 minutes to 7 minutes, and more preferably, the third predetermined duration is 30 minutes, and the fourth predetermined duration is 5 minutes.
  • the fault data includes complete operational data at a predetermined time within the predetermined time period, the complete operational data including all operational parameters of the device.
  • the predetermined time includes two endpoints before and after the predetermined time period, that is, the predetermined time includes a first predetermined time and a second predetermined time, and a time interval of the first predetermined time interval in the predetermined time period.
  • the first predetermined duration is from 3 minutes to 7 minutes, and more preferably, the first predetermined duration is 5 minutes.
  • the operating parameters can be collected to ensure a more complete and accurate acquisition of the operating state and operating parameters of the device in the event of a device failure, better analysis of the cause of the failure of the device, timely troubleshooting, and prevention of a parameter during the acquisition process. Lost, causing the parameter to be uncollected.
  • the fault data further includes the de-duplication data after the de-duplication processing in the predetermined time period.
  • the process of the deduplication process includes: collecting, among all the operating parameters corresponding to the time of the second predetermined duration in the predetermined time period, the running of the operating parameters corresponding to the time of the previous acquisition. parameter.
  • the second predetermined duration is 4 seconds to 8 seconds, and more preferably, the second predetermined duration is 6 seconds, and the second predetermined duration must be less than the first predetermined duration to ensure data integrity
  • it can also reduce the return rate of repeated parameters as much as possible, reduce the amount of data collected and uploaded, reduce the flow consumption, and achieve the purpose of saving traffic and reducing costs.
  • the process of the de-duplication process may also be: comparing all the operating parameters corresponding to the time of the second predetermined time interval in the predetermined time period to all the operating parameters corresponding to the first predetermined time. Changing operating parameters.
  • a method for collecting fault data in which the data is uploaded from the time when the fault occurs to the time direction of the first predetermined time, and all the operating parameters in the time period from the time when the fault occurs to the second predetermined time are uploaded.
  • the above method is easy to cause important data loss and increase the amount of data upload.
  • the fault data collection method in the present application transmits the collected data to the server by using the positive sequence transmission method after collecting the fault data of the device, that is, according to the time direction from the first predetermined time to the second predetermined time. Data uploading is performed to facilitate the server 4 to parse the uploaded data.
  • the positive sequence transmission mode can effectively reduce the return rate of the repeated parameters in the process of performing deduplication processing, and further reduce the amount of uploaded data. Because the method of positive sequence transmission is adopted, the first predetermined time is the starting time of the data collection, and after the complete running data of the device at the second predetermined time is collected, the data collection ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer And Data Communications (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种故障数据采集方法及故障数据处理系统,用于对设备(1)运行过程中的故障数据进行采集,方法包括:当设备(1)发生故障时,采集预定时间段内的设备(1)的故障数据,设备(1)发生故障的时刻位于预定时间段内,故障数据包括预定时间段内的预定时刻的完整运行数据,以及预定时间段内经去重处理后的去重运行数据。当设备(1)发生故障时,采集预定时间段内的设备(1)的故障数据,故障数据包括预定时间段内的预定时刻的完整数据,从而能够有效保证数据的准确性和完整性,防止在采集过程中丢失重要数据。

Description

一种故障数据采集方法及故障数据处理系统
本申请要求于2018年5月16日提交中国专利局、申请号为201810467188.9、发明名称为“一种故障数据采集方法及故障数据处理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数据处理领域,具体涉及一种用于对设备运行过程中的数据进行采集的方法及故障数据处理系统。
背景技术
随着信息技术的不断发展,产品业务的不断升级,基于大数据流量家电设备或工厂电器设备的远程监测系统逐渐搭建完成,从而实现了对家电设备或工厂电器设备的实时监测和数据采集。在使用监测系统进行监测过程中,设备发生故障时的一段时间内的设备故障数据对于设备故障的排查、预防、以及后续优化研发过程都具有重要的指导意义。
然而,由于现有的监测系统在对故障数据进行采集时,存在容易丢失正常数据的问题,导致数据采集和数据解析效率低。并且,现有的故障数据处理方法在数据采集过程中要消耗大量的网络流量,花费较高。
发明内容
有鉴于此,本发明的目的在于提供一种采集到的数据准确性高、不易丢失数据的故障数据采集方法及故障数据处理系统。
为达到上述目的,一方面,本发明采用以下技术方案:
一种故障数据采集方法,用于对设备运行过程中的故障数据进行采集,所述方法包括:当所述设备发生故障时,采集预定时间段内的所述设备的故障数据,所述设备发生故障的时刻位于所述预定时间段内,所述故障数据包括所述预定时间段内的预定时刻的完整运行数据,以及所述预定时间段内经去重处理后的去重运行数据。
优选地,所述预定时刻包括所述预定时间段的前后两个端点时刻, 以及所述预定时间段内每间隔第一预定时长的时刻。
优选地,所述完整运行数据包括所述设备的所有运行参数。
优选地,所述去重处理的过程包括:
采集所述预定时间段内每间隔第二预定时长的时刻所对应的所有运行参数中与前一次进行采集的时刻所对应的所有运行参数相比发生变化的运行参数。
优选地,所述第二预定时长小于所述第一预定时长;和/或,
所述第一预定时长为3分钟至7分钟,所述第二预定时长为4秒至8秒。
优选地,所述预定时间段为从故障发生之前的第一预定时刻至故障发生之后的第二预定时刻之间的时间段。
优选地,所述第一预定时刻距离故障发生时刻第三预定时长,故障发生时刻距离所述第二预定时刻第四预定时长;
所述第三预定时长为25分钟至35分钟,和/或,所述第四预定时长为3分钟至7分钟。
为达到上述目的,另一方面,本发明采用以下技术方案:
一种故障数据处理系统,用于对设备运行过程中的故障数据进行处理,所述系统包括数传终端,所述数传终端包括数据采集模块,用于当所述设备发生故障时,采集预定时间段内的所述设备的故障数据,所述设备发生故障的时刻位于所述预定时间段内,所述故障数据包括所述预定时间段内的预定时刻的完整运行数据,以及所述预定时间段内经去重处理后的去重运行数据。
优选地,所述数传终端还包括通信模块,所述通信模块用于与服务器建立通信连接,所述数传终端通过所述通信模块将采集到的所述故障数据传输给所述服务器。
优选地,所述通信模块与所述服务器之间的数据传输方式包括长连接;和/或,
所述通信模块的通信方式包括移动数据通信;和/或,
所述通信模块与所述服务器进行通信过程遵循TCP协议。
优选地,所述数传终端还包括监控模块,用于对所述设备的运行参 数进行实时监控,以判定所述设备是否发生故障。
优选地,所述数传终端还包括缓存模块,用于对所述设备的实时运行参数进行缓存,当所述设备发生故障时,所述数据采集模块从所述缓存模块中采集所述故障数据。
优选地,所述数传终端通过现场总线与所述设备的控制装置相连,所述现场总线在进行数据传输过程中遵循Can协议。
优选地,所述数传终端为DTU。
本申请中的故障数据采集方法及故障数据处理系统,当设备发生故障时,采集预定时间段内的设备的故障数据,故障数据包括预定时间段内的预定时刻的完整数据,从而能够有效保证数据的准确性和完整性,防止在采集过程中丢失重要数据。故障数据还包括预定时间段内经去重处理后的去重运行数据,由于去掉了重复的数据,极大地减少了上传到服务器的数据量,有效降低了上传流量成本,节约了资源。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1示出本发明具体实施方式提供的故障数据处理系统的连接结构示意图;
图2示出本发明具体实施方式提供的故障数据采集方法的流程图。
图中:
1、设备;11、控制装置;2、数传终端;21、数据采集模块;22、通信模块;23、缓存模块;24、监控模块;3、现场总线;4、服务器。
具体实施方式
以下基于实施例对本发明进行描述,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义; 也就是说,是“包括但不限于”的含义。
本申请提供了一种故障数据采集方法及故障数据处理系统,用于对设备运行过程中的故障数据进行采集并将采集到的数据上传服务器,以供技术人员分析故障发生的原因,及时解决设备故障,采集到的数据对后续设备的开发具有重要的指导意义,帮助生产设备的厂家更好的满足用户的需求,提升用户的使用体验。
如图1所示,本申请提供了一种故障数据处理系统,用于对设备1运行过程中的故障数据进行处理,比如,该故障数据处理系统可以用于对电视、空调、洗衣机等家电设备的故障数据进行采集并上传到厂家的服务器上;还可以用于对工厂中使用的生产设备的故障数据进行采集并上传到工厂和生产设备的厂家的服务器上,以帮助工厂和生产设备的厂家及时了解设备的故障原因和运行情况。
故障数据处理系统包括数传终端2,数传终端2例如可以为DTU。数传终端2包括数据采集模块21,数据采集模块21用于当设备1发生故障时,采集预定时间段内的所述设备1的故障数据,所述设备1发生故障的时刻位于所述预定时间段内。其中,所述故障数据包括所述预定时间段内的预定时刻的完整运行数据,以及所述预定时间段内经去重处理后的去重运行数据,从而在尽可能减少上传数据量的同时,不会丢失重要数据。
所述数传终端2通过现场总线3与所述设备1的控制装置11相连,优选地,所述现场总线3在进行数据传输过程中遵循Can协议。在一个优选的实施例中,现场总线3可以连接多个设备1,数传终端2对多个设备同时进行监控,以全面掌握设备1的运行情况。在另一个可替换的实施例中,数传终端2设置在一个设备1上,比如设置在家用的空调上,数传终端2与空调的控制装置相连,以全面掌控空调的运行情况。空调运行时,空调的控制装置中存储的空调的运行数据通过现场总线3传输给数传终端2。
进一步地,所述数传终端2还包括通信模块22,所述通信模块22用于与服务器4建立通信连接,所述数传终端2通过所述通信模块22将采集到的所述故障数据传输给所述服务器4。通信模块22与服务器4 建立连接时,根据数传终端2与服务器4之间的距离以及设备1的使用场合不同,两者之间可以通过有线通信或无线通信方式建立通信连接。优选地,所述通信模块22与所述服务器4之间的数据传输方式包括长连接,所述通信模块22的通信方式包括移动数据通信,所述通信模块22与所述服务器4进行通信过程遵循TCP协议。使用移动数据通信方式,能够保证在设备1和数传终端2不断电的情况下实时获得设备1的运行参数,避免出现使用无线网络进行传输造成的无线网络被关闭但设备1仍在运行,而无法获得设备1运行参数的情况。以保证设备1运行过程中数传终端2始终能够在设备1运行时实时获得设备1的运行参数。当然,可以理解的是,通信模块22与服务器4之间还可以通过蓝牙或局域网等方式进行通信连接,数据传输方式具有多样性。
进一步地,所述数传终端2包括缓存模块23,用于对所述设备1的实时运行参数进行缓存,当所述设备1发生故障时,所述数据采集模块21从所述缓存模块23中采集所述故障数据。当使用DTU作为数传终端2时,缓存模块23可以通过DTU利用自身Flash形成环形缓冲区,缓冲区能够缓存一定时间长度内的数据。比如,缓存模块能够缓存40分钟内设备的实时运行参数,下一个40分钟内设备的实时运行参数将会覆盖上一个40分钟内缓存在缓存模块23中的设备1的实时运行参数,以实现对设备1的持续的实时监控。
更进一步地,所述数传终端2还包括监控模块24,用于对所述设备1的运行参数进行实时监控,以判定所述设备1是否发生故障。当监控模块24监控到设备1发生故障时,数传终端2的数据采集模块21被触发,数据采集模块21从缓存模块23中开始采集预定时间段内的所述设备1的故障数据,并通过通信模块22传输给服务器4。
如图2所示,本申请还提供了一种故障数据采集方法,使用上述的如图1所示的故障数据处理系统对设备运行过程中的故障数据进行采集,并将采集到的数据传输给服务器4。具体地,采集方法包括:当所述设备1发生故障时,采集预定时间段内的所述设备1的故障数据,所述设备1发生故障的时刻位于所述预定时间段内,以保证能够将设备1发生故障时刻的数据包含在故障数据中。优选地,所述预定时间段为从故障 发生之前的第一预定时刻至故障发生之后的第二预定时刻之间的时间段。如此,设备1发生故障的时刻不是预定时间段的端点,以对故障发生时刻前一段时间和故障发生时刻后一段时间的设备的运行参数进行采集,全面掌握设备1发生故障前后设备1的运行参数,以更好地对设备1的故障进行分析。在一个具体的实施例中,所述第一预定时刻距离故障发生时刻第三预定时长,故障发生时刻距离所述第二预定时刻第四预定时长,优选地,所述第三预定时长为25分钟至35分钟,所述第四预定时长为3分钟至7分钟,更加优选地,所述第三预定时长为30分钟,所述第四预定时长为5分钟。
进一步地,所述故障数据包括所述预定时间段内的预定时刻的完整运行数据,所述完整运行数据包括所述设备的所有运行参数。其中,预定时刻包括所述预定时间段的前后两个端点时刻,即预定时刻包括第一预定时刻和第二预定时刻,以及所述预定时间段内每间隔第一预定时长的时刻。优选地,所述第一预定时长为3分钟至7分钟,更加优选地,所述第一预定时长为5分钟,在设置第一预定时长时,应尽量使故障发生时刻时,设备1的完整运行参数能够被采集,以保证更加完整、更加准确地获得设备发生故障时设备的运行状态和运行参数,更好地对设备的故障原因进行分析,及时排除故障,防止某个参数在采集过程中丢失,造成该参数一直采集不到的情况出现。
更进一步地,故障数据还包括所述预定时间段内经去重处理后的去重运行数据。所述去重处理的过程包括:采集所述预定时间段内每间隔第二预定时长的时刻所对应的所有运行参数中与前一次进行采集的时刻所对应的所有运行参数相比发生变化的运行参数。优选地,所述第二预定时长为4秒至8秒,更加优选地,所述第二预定时长为6秒,所述第二预定时长必须小于所述第一预定时长,以在保证数据完整性和全面性的同时,还能够尽可能的减少重复参数的回传率,降低采集和上传的数据量,降低流量消耗,达到节约流量,降低成本的目的。当然,可以理解的是,去重处理的过程也可以是,采集预定时间段内每间隔第二预定时长的时刻所对应的所有运行参数中与第一预定时刻所对应的所有运行参数相比发生变化的运行参数。
一种故障数据采集方法,在采集过程中采用的是由故障发生时刻向第一预定时刻的时间方向进行数据上传,并将故障发生时刻至第二预定时刻的时间段中的全部运行参数上传,上述方法容易造成重要数据丢失,同时增大了数据上传量。针对上述问题,本申请中的故障数据采集方法在采集完设备的故障数据后,采用正序传输的方式将采集的数据传输给服务器,即按照从第一预定时刻向第二预定时刻的时间方向进行数据上传,以方便服务器4对上传的数据进行解析,同时,正序传输方式在进行去重处理过程中能有效减少重复参数的回传率,进一步减少上传的数据量。由于采用正序传输的方式,第一预定时刻是该次数据采集的开始时刻,当第二预定时刻的设备的完整运行数据采集完后,该次数据采集结束。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种故障数据采集方法,用于对设备运行过程中的故障数据进行采集,其特征在于,所述方法包括:当所述设备发生故障时,采集预定时间段内的所述设备的故障数据,所述设备发生故障的时刻位于所述预定时间段内,所述故障数据包括所述预定时间段内的预定时刻的完整运行数据,以及所述预定时间段内经去重处理后的去重运行数据。
  2. 根据权利要求1所述的故障数据采集方法,其特征在于,所述预定时刻包括所述预定时间段的前后两个端点时刻,以及所述预定时间段内每间隔第一预定时长的时刻。
  3. 根据权利要求2所述的故障数据采集方法,其特征在于,所述完整运行数据包括所述设备的所有运行参数。
  4. 根据权利要求3所述的故障数据采集方法,其特征在于,所述去重处理的过程包括:
    采集所述预定时间段内每间隔第二预定时长的时刻所对应的所有运行参数中与前一次进行采集的时刻所对应的所有运行参数相比发生变化的运行参数。
  5. 根据权利要求4所述的故障数据采集方法,其特征在于,所述第二预定时长小于所述第一预定时长;和/或,
    所述第一预定时长为3分钟至7分钟,所述第二预定时长为4秒至8秒。
  6. 根据权利要求1至5之一所述的故障数据采集方法,其特征在于,
    所述预定时间段为从故障发生之前的第一预定时刻至故障发生之后的第二预定时刻之间的时间段。
  7. 根据权利要求6所述的故障数据采集方法,其特征在于,所述第一预定时刻距离故障发生时刻第三预定时长,故障发生时刻距离所述第二预定时刻第四预定时长;
    所述第三预定时长为25分钟至35分钟,和/或,所述第四预定时长为3分钟至7分钟。
  8. 一种故障数据处理系统,用于对设备运行过程中的故障数据进行 处理,其特征在于,所述系统包括数传终端,所述数传终端包括数据采集模块,用于当所述设备发生故障时,采集预定时间段内的所述设备的故障数据,所述设备发生故障的时刻位于所述预定时间段内,所述故障数据包括所述预定时间段内的预定时刻的完整运行数据,以及所述预定时间段内经去重处理后的去重运行数据。
  9. 根据权利要求8所述的故障数据处理系统,其特征在于,所述数传终端还包括通信模块,所述通信模块用于与服务器建立通信连接,所述数传终端通过所述通信模块将采集到的所述故障数据传输给所述服务器。
  10. 根据权利要求9所述的故障数据处理系统,其特征在于,所述通信模块与所述服务器之间的数据传输方式包括长连接;和/或,
    所述通信模块的通信方式包括移动数据通信;和/或,
    所述通信模块与所述服务器进行通信过程遵循TCP协议。
  11. 根据权利要求8所述的故障数据处理系统,其特征在于,所述数传终端还包括监控模块,用于对所述设备的运行参数进行实时监控,以判定所述设备是否发生故障。
  12. 根据权利要求8所述的故障数据处理系统,其特征在于,所述数传终端还包括缓存模块,用于对所述设备的实时运行参数进行缓存,当所述设备发生故障时,所述数据采集模块从所述缓存模块中采集所述故障数据。
  13. 根据权利要求8所述的故障数据处理系统,其特征在于,所述数传终端通过现场总线与所述设备的控制装置相连,所述现场总线在进行数据传输过程中遵循Can协议。
  14. 根据权利要求8至13之一所述的故障数据处理系统,其特征在于,所述数传终端为DTU。
PCT/CN2018/121539 2018-05-16 2018-12-17 一种故障数据采集方法及故障数据处理系统 WO2019218663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810467188.9A CN108710349A (zh) 2018-05-16 2018-05-16 一种故障数据采集方法及故障数据处理系统
CN201810467188.9 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019218663A1 true WO2019218663A1 (zh) 2019-11-21

Family

ID=63868962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121539 WO2019218663A1 (zh) 2018-05-16 2018-12-17 一种故障数据采集方法及故障数据处理系统

Country Status (2)

Country Link
CN (1) CN108710349A (zh)
WO (1) WO2019218663A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710349A (zh) * 2018-05-16 2018-10-26 珠海格力电器股份有限公司 一种故障数据采集方法及故障数据处理系统
CN108628274B (zh) * 2018-06-29 2020-08-28 河南聚合科技有限公司 一种基于闭环反馈优化的质量控制提升系统平台
CN116708528B (zh) * 2023-08-02 2023-10-03 成都卓拙科技有限公司 节点间tcp长连接的监控方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025833A1 (de) * 2005-09-01 2007-03-08 Siemens Aktiengesellschaft Verfahren und vorrichtung zur überwachung einer technischen einrichtung
US20080079598A1 (en) * 2006-09-29 2008-04-03 Rockwell Automation Technologies, Inc. Dynamic condition monitoring system with integrated web server
CN103293399A (zh) * 2012-02-22 2013-09-11 海尔集团公司 电器设备故障分析方法及系统
CN104866632A (zh) * 2015-04-30 2015-08-26 广东美的制冷设备有限公司 家电设备的故障数据获取方法、装置及终端
CN105245600A (zh) * 2015-10-15 2016-01-13 珠海格力电器股份有限公司 一种空调系统的机组数据上传方法和系统
CN106973098A (zh) * 2017-03-28 2017-07-21 珠海格力电器股份有限公司 空调数据处理方法及装置
CN108710349A (zh) * 2018-05-16 2018-10-26 珠海格力电器股份有限公司 一种故障数据采集方法及故障数据处理系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104442831B (zh) * 2014-11-25 2017-01-18 安徽安凯汽车股份有限公司 一种基于can信息的电动汽车故障智能诊断方法
CN107607803A (zh) * 2016-07-11 2018-01-19 株洲中车时代电气股份有限公司 变流系统故障记录方法、装置及系统
CN107991100A (zh) * 2016-10-27 2018-05-04 福建宁德核电有限公司 一种柴油机运行状态检测方法和系统
CN107655668B (zh) * 2017-09-20 2019-10-29 上海振华重工(集团)股份有限公司 港口机械的故障分析数据的采集方法
CN107819328A (zh) * 2017-09-27 2018-03-20 国家电网公司 一种电网故障数据的存储方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025833A1 (de) * 2005-09-01 2007-03-08 Siemens Aktiengesellschaft Verfahren und vorrichtung zur überwachung einer technischen einrichtung
US20080079598A1 (en) * 2006-09-29 2008-04-03 Rockwell Automation Technologies, Inc. Dynamic condition monitoring system with integrated web server
CN103293399A (zh) * 2012-02-22 2013-09-11 海尔集团公司 电器设备故障分析方法及系统
CN104866632A (zh) * 2015-04-30 2015-08-26 广东美的制冷设备有限公司 家电设备的故障数据获取方法、装置及终端
CN105245600A (zh) * 2015-10-15 2016-01-13 珠海格力电器股份有限公司 一种空调系统的机组数据上传方法和系统
CN106973098A (zh) * 2017-03-28 2017-07-21 珠海格力电器股份有限公司 空调数据处理方法及装置
CN108710349A (zh) * 2018-05-16 2018-10-26 珠海格力电器股份有限公司 一种故障数据采集方法及故障数据处理系统

Also Published As

Publication number Publication date
CN108710349A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2019218663A1 (zh) 一种故障数据采集方法及故障数据处理系统
CN110733038A (zh) 工业机器人远程监控及数据处理系统
RU2571568C2 (ru) Способ и устройство для удаленного определения местоположения неисправности беспроводной сети
CN103746849A (zh) 一种基于移动智能终端的it运维管理系统
WO2016165242A1 (zh) 系统内节点数的调整方法和装置
CN103095703B (zh) 一种实现网络与串口数据交互的方法、设备及系统
CN104954235A (zh) 基于微信平台的交互式输电线路通道智能监控方法
CN101923759A (zh) 一种自助办税终端设备故障短信监控报警方法
CN105007209B (zh) 一种基于rs485的轮询通讯方法
CN103514133A (zh) 一种用于pcie高速链路管理的方法
CN105677534B (zh) 一种基于服务总线的变电站站控层设备状态评估方法
CN113783961A (zh) 远程终端管理方法、装置、计算机设备及存储介质
WO2018119643A1 (zh) 一种设备监测方法、装置及系统
WO2014000383A1 (zh) 工程机械参数监控系统及方法
CN103051488B (zh) 一种用于输电监测终端实时在线状态检测的通信系统
CN207427180U (zh) 一种互联网设备自动重启系统
CN204425672U (zh) 用于ZigBee-HL7移动健康检测物联网的网关装置
CN202750105U (zh) 一种列车故障动态监测系统
CN112255953A (zh) 队列式多主设备rs485总线通讯系统和方法
CN203689662U (zh) 一种具有多功能采控能力的无线集中器
CN103871121A (zh) 基于模拟登陆的信息系统电子巡检方法
CN108966287B (zh) 数据传输方法及系统
CN105978737A (zh) 网线传输ip地址定位的终端“死机”故障排除装置
CN108667918B (zh) 一种设备状态监控方法及装置
CN106130823B (zh) 均匀发送bfd报文的方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918874

Country of ref document: EP

Kind code of ref document: A1