WO2019218326A1 - 测量报告上报方法及装置、基站确定方法及装置和无人机 - Google Patents

测量报告上报方法及装置、基站确定方法及装置和无人机 Download PDF

Info

Publication number
WO2019218326A1
WO2019218326A1 PCT/CN2018/087390 CN2018087390W WO2019218326A1 WO 2019218326 A1 WO2019218326 A1 WO 2019218326A1 CN 2018087390 W CN2018087390 W CN 2018087390W WO 2019218326 A1 WO2019218326 A1 WO 2019218326A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal quality
threshold
under test
measurement
Prior art date
Application number
PCT/CN2018/087390
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/087390 priority Critical patent/WO2019218326A1/zh
Priority to CN201880000675.2A priority patent/CN108702646B/zh
Publication of WO2019218326A1 publication Critical patent/WO2019218326A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a measurement report reporting method and apparatus, a base station determining method and apparatus, a drone, a base station, and a computer readable storage medium.
  • Unmanned Aerial Vehicle referred to as the UAV
  • UAV Unmanned Aerial Vehicle
  • UAVs are actually the collective name of unmanned aerial vehicles. They can be divided into: unmanned fixed-wing aircraft, unmanned vertical take-off and landing aircraft, unmanned airships, unmanned helicopters, unmanned multi-rotor aircraft and unmanned aircraft. Umbrella wing machine, etc.
  • drones are increasingly used in all aspects of life.
  • 3GPP 3rd Generation Partnership Project
  • the present application discloses a measurement report reporting method and apparatus, a base station determining method and apparatus, a drone, a base station, and a computer readable storage medium, so that a cellular network drone in a connected state is in flight
  • the measurement and reporting can be performed without measuring a base station that meets the measurement reporting condition, thereby reducing measurement signaling overhead and saving system resources.
  • a measurement report reporting method for application to a UAV, the method comprising:
  • the determining whether to report the signal quality measurement report to the current serving base station according to the comparison result and whether the measurement timer expires includes:
  • the signal quality measurement report of the first base station under test is reported to the current serving base station.
  • the determining whether to report the signal quality measurement report to the current serving base station according to the comparison result and whether the measurement timer expires includes:
  • the method further includes:
  • the next base station under test is taken as Determining the second base station under test, and moving to perform the operation of measuring the signal quality of the second base station under test until the measurement timer expires;
  • the determining whether to report the signal quality measurement report to the current serving base station according to the comparison result and whether the measurement timer expires includes:
  • the measurement timer expires, if there is no base station under test whose signal quality exceeds the first threshold, then abandoning to the current serving base station Reporting a signal quality measurement report, if there is a base station under test whose signal quality exceeds the first threshold, reporting, to the current serving base station, a signal quality measurement report of the base station under test whose signal quality exceeds the first threshold;
  • the next base station under test is used as the second base station to be tested, and the second base is performed to be performed.
  • the signal quality of the measured base station is measured until the measurement timer expires.
  • the method further includes:
  • the measurement timer expires, reporting, to the current serving base station, a signal quality measurement of the base station under test whose signal quality exceeds the first threshold Report;
  • the next base station under test is used as the second base station to be tested, and the pair is turned to perform the pair The signal quality of the measured base station is measured until the measurement timer expires.
  • the method further includes:
  • the method further includes:
  • the measurement timer is reset after the determining whether to report a signal quality measurement report to the current serving base station.
  • a base station determining method is applied to a base station, where the method includes:
  • a target base station is determined based on the signal quality measurement report.
  • the method further includes:
  • the configuration information is sent to the UAV, where the configuration information is used to configure a first threshold, a second threshold, and a timeout period of the measurement timer on which the UAV reports the signal quality measurement report.
  • a measurement report reporting device for use in a UAV, the device comprising:
  • a measurement module configured to measure a signal quality of the base station under test
  • a comparison module configured to compare a signal quality of the measured base station measured by the measurement module with a first threshold and a second threshold, where the first threshold is less than or equal to the second threshold;
  • the determining the reporting module is configured to determine whether to report the signal quality measurement report to the current serving base station according to whether the comparison result obtained by the comparing module and the measurement timer are timed out.
  • the determining the reporting module includes:
  • the first reporting sub-module is configured to report a signal quality measurement report of the first measured base station to the current serving base station when a signal quality of the first measured base station is greater than or equal to the second threshold.
  • the determining the reporting module includes:
  • a first measurement submodule configured to measure a signal quality of the second base station under test when a signal quality of the first base station under test is greater than or equal to the first threshold and less than the second threshold;
  • a first storage submodule configured to store a signal quality of the second base station under test when a signal quality of the second base station under test measured by the first measurement submodule is greater than or equal to the first threshold ;
  • Adding a sub-module configured to add, to the signal quality of the first measured base station stored by the first storage sub-module and the signal quality of the second measured base station;
  • the second reporting sub-module is configured, when the sum of the signal quality of the first measured base station and the signal quality of the second measured base station obtained by the adding sub-module is greater than or equal to the second threshold And reporting, to the current serving base station, a signal quality measurement report of the first measured base station and a signal quality measurement report of the second measured base station.
  • the determining the reporting module further includes:
  • a first processing submodule configured to: when a sum of a signal quality of the first measured base station and a signal quality of the second measured base station obtained by the adding submodule is smaller than the second threshold, but When the measurement timer has not timed out, the next base station under test is taken as the second base station under test, and the operation of measuring the signal quality of the second base station under test is performed until the measurement timer expires. ;or
  • a second processing submodule configured to: when a sum of a signal quality of the first measured base station and a signal quality of the second measured base station obtained by the adding submodule is smaller than the second threshold, When the measurement timer expires, the signal quality measurement report of the base station under test whose signal quality is greater than the first threshold is reported to the current serving base station.
  • the determining the reporting module includes:
  • a second measurement submodule configured to measure a signal quality of the second base station under test when a signal quality of the first base station under test is less than the first threshold
  • the third reporting sub-module is configured to report the first to the current serving base station when the signal quality of the second measured base station measured by the second measurement sub-module is greater than or equal to the second threshold Signal quality measurement report of the second base station under test;
  • a third processing submodule configured to: when the signal quality of the second measured base station measured by the second measurement submodule is less than the second threshold and the measurement timer times out, if there is no signal quality If the measured base station exceeds the first threshold, the signal quality measurement report is discarded to the current serving base station, and if there is a base station whose signal quality exceeds the first threshold, the signal quality is reported to the current serving base station. a signal quality measurement report of the base station under test exceeding the first threshold;
  • a fourth processing submodule configured to: when the signal quality of the second measured base station measured by the second measurement submodule is less than the second threshold and the measurement timer does not time out, the next The base station is measured as the second base station to be tested, and is turned to perform the operation of measuring the signal quality of the second base station under test until the measurement timer expires.
  • the determining the reporting module further includes:
  • a fifth processing submodule configured to: when the signal quality of the second measured base station measured by the first measurement submodule is less than the first threshold, and the measurement timer times out, to the current service
  • the base station reports a signal quality measurement report of the base station under test whose signal quality exceeds the first threshold;
  • a sixth processing submodule configured to: when the signal quality of the second measured base station measured by the first measurement submodule is less than the first threshold, and the measurement timer does not time out, the next The base station is measured as the second base station to be tested, and is turned to perform the operation of measuring the signal quality of the second base station under test until the measurement timer expires.
  • the apparatus further includes:
  • a receiving module configured to receive configuration information sent by the current serving base station, where the configuration information is used to configure the first threshold, the second threshold, and the manner on which the UAV reports a signal quality measurement report Measuring the timeout period of the timer;
  • a determining module configured to determine, according to the configuration information received by the receiving module, the first threshold, the second threshold, and a timeout duration of the measurement timer.
  • the apparatus further includes:
  • the reset module is configured to reset the measurement timer after the determining reporting module determines whether to report a signal quality measurement report to the current serving base station.
  • a base station determining apparatus which is applied to a base station, where the apparatus includes:
  • a receiving module configured to receive a signal quality measurement report reported by the UAV UAV
  • a determining module configured to determine the target base station according to the signal quality measurement report received by the receiving module.
  • the apparatus further includes:
  • the sending module is configured to send configuration information to the UAV, where the configuration information is used to configure a first threshold, a second threshold, and a timeout period of the measurement timer on which the UAV reports the signal quality measurement report.
  • a UAV comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a target base station is determined based on the signal quality measurement report.
  • a computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of the measurement report reporting method.
  • a computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of the base station determining method.
  • Comparing the signal quality of the measured base station with the first threshold and the second threshold determining whether to report the signal quality measurement report to the current serving base station according to the comparison result and whether the measurement timer is timed out, that is, determining whether the condition is determined according to multiple conditions. Reporting the signal quality measurement report to the current serving base station can prevent the measurement of a measured base station that meets the measurement reporting condition and perform measurement reporting, thereby reducing measurement signaling overhead and saving system resources.
  • the target base station is determined by receiving the signal quality measurement report reported by the UAV, and determining the target base station according to the signal quality measurement report, thereby reducing service interruption and high handover failure rate due to frequent handover.
  • FIG. 1 is a flowchart of a measurement report reporting method according to an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of another measurement report reporting method according to an exemplary embodiment of the present application.
  • FIG. 3 is a flowchart of a method for determining a base station according to an exemplary embodiment of the present application
  • FIG. 4 is a signaling flowchart of a method for determining a base station according to an exemplary embodiment of the present application
  • FIG. 5 is a block diagram of a measurement report reporting apparatus according to an exemplary embodiment
  • FIG. 6 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment
  • FIG. 7 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment.
  • FIG. 8 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment
  • FIG. 9 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment.
  • FIG. 10 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment.
  • FIG. 11 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment.
  • FIG. 12 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment
  • FIG. 13 is a block diagram of a base station determining apparatus according to an exemplary embodiment
  • FIG. 14 is a block diagram of still another base station determining apparatus according to an exemplary embodiment
  • FIG. 15 is a block diagram of a device suitable for measuring report reporting according to an exemplary embodiment
  • FIG. 16 is a block diagram of a device suitable for base station determination, according to an exemplary embodiment.
  • FIG. 1 is a flowchart of a measurement report reporting method according to an exemplary embodiment of the present application. The embodiment is described from the UAV side. As shown in FIG. 1 , the measurement report reporting method includes:
  • step S101 the signal quality of the base station under test is measured.
  • the base station to be tested may be referred to as a first base station to be tested, a second base station to be tested, and the like.
  • step S102 the signal quality of the base station under test is compared with a first threshold and a second threshold, the first threshold being less than or equal to the second threshold.
  • the method may further include: receiving configuration information sent by the current serving base station, where the configuration information is used to configure the UAV report.
  • the first threshold, the second threshold, and the timeout period of the measurement timer based on the signal quality measurement report, and determining the first threshold, the second threshold, and the timeout period of the measurement timer according to the configuration information.
  • step S103 it is determined whether to report the signal quality measurement report to the current serving base station according to whether the comparison result and the measurement timer are timed out.
  • the signal quality measurement report of the base station under test whose signal quality is greater than the second threshold is reported to the current serving base station regardless of whether the measurement timer expires.
  • the next measured base station is measured, and when the signal quality of both is greater than the first threshold, the signal quality is added, if the sum of the signal qualities of the two is greater than The second threshold is used to report the signal quality measurement report of the two to the current serving base station. If the signal quality of one of the tested base stations is less than the first threshold, and the measurement timer has not timed out, the signal measurement of the next base station under test is continued until the timer expires.
  • the signal quality measurement report is discarded to the current serving base station, and if there is a base station whose signal quality exceeds the first threshold, the current serving base station is sent to the current serving base station.
  • a signal quality measurement report of the base station under test whose signal quality exceeds the first threshold is reported. It should be noted that only the part of the report signal quality measurement report is listed above. For the detailed reporting process, refer to the embodiment shown in FIG. 2 .
  • Determining whether to report the signal quality measurement report to the current serving base station can prevent the measurement of a measured base station that meets the measurement reporting condition and perform measurement reporting, thereby reducing measurement signaling overhead and saving system resources.
  • FIG. 2 is a flowchart of another measurement report reporting method according to an exemplary embodiment of the present application. As shown in FIG. 2, the measurement report reporting method includes:
  • step S201 the signal quality of the first base station under test is measured.
  • step S202 it is determined whether the signal quality of the first measured base station is greater than or equal to the first threshold and less than the second threshold.
  • step S203 is performed.
  • step S204 is performed, and when the signal quality of the first measured base station is less than the first threshold, step S212 is performed.
  • step S203 the signal quality measurement report of the first base station under test is reported to the current serving base station, and the operation ends.
  • step S204 the signal quality of the second base station under test is measured.
  • step S205 it is determined whether the signal quality of the second base station under test is greater than or equal to the first threshold.
  • step S206 is performed, when the second base station is tested.
  • step S209 is performed.
  • step S206 the signal quality of the second base station under test is stored, and the stored signal quality of the first measured base station and the signal quality of the second base station under test are added.
  • step S207 it is determined whether the sum of the signal quality of the first base station under test and the signal quality of the second base station under test is greater than or equal to a second threshold, when the signal quality of the first base station under test and the signal of the second base station under test When the sum of the qualities is greater than or equal to the second threshold, step S208 is performed to perform step S209 when the sum of the signal quality of the first measured base station and the signal quality of the second measured base station is less than the second threshold.
  • step S208 the signal quality measurement report of the first measured base station and the signal quality measurement report of the second measured base station are reported to the current serving base station, and the operation ends.
  • step S209 it is judged whether the measurement timer has timed out.
  • step S210 is performed, and when the measurement timer expires, step S211 is performed.
  • step S210 the next base station under test is taken as the second base station under test, and the process proceeds to step S204.
  • step S211 the signal quality measurement report of the base station under test whose signal quality is greater than the first threshold is reported to the current serving base station, and the operation ends.
  • step S212 the signal quality of the second base station under test is measured.
  • step S213 it is determined whether the signal quality of the second base station under test is greater than or equal to a second threshold.
  • step S214 is performed, when the second base station is tested.
  • the signal quality is less than the second threshold, and step S215 is performed.
  • step S214 the signal quality measurement report of the second base station under test is reported to the current serving base station, and the operation ends.
  • step S215 it is judged whether the measurement timer has timed out.
  • step S216 is performed, and when the measurement timer has not timed out, step S219 is performed.
  • step S216 it is determined whether there is a base station under test whose signal quality exceeds the first threshold. If there is no base station under test whose signal quality exceeds the first threshold, step S217 is performed, if there is a base station under test whose signal quality exceeds the first threshold. When it is time, step S218 is performed.
  • step S217 the signal quality measurement report is discarded to the current serving base station, and the operation ends.
  • step S2128 the signal quality measurement report of the base station under test whose signal quality exceeds the first threshold is reported to the current serving base station, and the operation ends.
  • step S219 the next base station under test is taken as the second base station under test, and the process proceeds to step S212.
  • whether the signal quality measurement report is reported to the current serving base station may be determined by using the comparison result between the signal quality of the base station and the first threshold and the second threshold, and whether the measurement timer is timed out, to prevent the current serving base station from measuring.
  • a measured base station that meets the measurement reporting conditions performs measurement reporting, which can reduce the measurement signaling overhead, and can also reduce the interruption of the base station due to frequent handover, and the high handover failure rate, thereby saving system resources.
  • FIG. 3 is a flowchart of a base station determining method according to an exemplary embodiment of the present application. The embodiment is described from a base station side. As shown in FIG. 3, the method includes:
  • step S301 a signal quality measurement report reported by the UAV is received.
  • the method may further include: sending configuration information to the UAV, where the configuration information is used to configure a first threshold, a second threshold, and a timeout period of the measurement timer on which the UAV reports the signal quality measurement report.
  • the UAV may determine whether to report the signal quality measurement report based on the relationship between the configuration information and the signal quality of the base station under test.
  • step S302 the target base station is determined based on the signal quality measurement report.
  • the current base station may determine the target base station according to the signal quality measurement report, so that the base station can be handed over to the target base station.
  • the target quality base station is determined according to the signal quality measurement report reported by the UAV, and the target base station is determined according to the signal quality measurement report, thereby reducing service interruption and high handover failure rate due to frequent handover.
  • FIG. 4 is a signaling flowchart of a method for determining a base station according to an exemplary embodiment of the present application. The embodiment is described from the perspective of interaction between a UAV and a current serving base station. As shown in FIG. 4, the method includes:
  • Step S401 The base station sends configuration information to the UAV, where the configuration information is used to configure a first threshold, a second threshold, and a timeout period of the measurement timer based on the UAV reporting the signal quality measurement report.
  • Step S402 the UAV receives the configuration information, and determines, according to the configuration information, a first threshold, a second threshold, and a timeout period of the measurement timer.
  • Step S403 the UAV measures the signal quality of the first base station under test.
  • Step S404 when the signal quality of the first measured base station is greater than or equal to the first threshold and less than the second threshold, the UAV measures the signal quality of the second base station under test.
  • Step S405 when the signal quality of the second base station under test is greater than or equal to the first threshold, the UAV stores the signal quality of the second base station under test.
  • Step S406 the UAV adds the stored signal quality of the first measured base station and the signal quality of the second measured base station.
  • Step S407 when the sum of the signal quality of the first measured base station and the signal quality of the second measured base station is greater than or equal to the second threshold, the UAV reports the signal quality measurement report of the first measured base station and the second to the current serving base station. Signal quality measurement report of the base station under test.
  • Step S408 The current serving base station receives the signal quality measurement report of the first measured base station and the signal quality measurement report of the second measured base station, and according to the signal quality measurement report of the first measured base station and the signal quality of the second measured base station.
  • the measurement report determines the target base station.
  • the UE can determine whether to report the signal quality measurement report to the current serving base station according to multiple conditions, and the UE can avoid measuring a measured base station that meets the measurement reporting condition.
  • the reporting can reduce the signaling signaling overhead and save system resources, so that the base station can reduce the interruption of the base station due to frequent handover and the high handover failure rate.
  • FIG. 5 is a block diagram of a measurement report reporting device, which may be located in a UAV, as shown in FIG. 5, including a measurement module 51, a comparison module 52, and a determination reporting module 53, according to an exemplary embodiment.
  • the measurement module 51 is configured to measure the signal quality of the base station under test.
  • the base station to be tested may be referred to as a first base station to be tested, a second base station to be tested, and the like.
  • the comparison module 52 is configured to compare the signal quality of the base station under test measured by the measurement module 51 with a first threshold and a second threshold, the first threshold being less than or equal to the second threshold.
  • the method may further include: receiving configuration information sent by the current serving base station, where the configuration information is used to configure the UAV report.
  • the first threshold, the second threshold, and the timeout period of the measurement timer based on the signal quality measurement report, and determining the first threshold, the second threshold, and the timeout period of the measurement timer according to the configuration information.
  • the determining reporting module 53 is configured to determine whether to report the signal quality measurement report to the current serving base station according to the comparison result obtained by the comparing module 52 and whether the measurement timer expires.
  • the signal quality measurement report of the base station under test whose signal quality is greater than the second threshold is reported to the current serving base station regardless of whether the measurement timer expires.
  • the next measured base station is measured, and when the signal quality of both is greater than the first threshold, the signal quality is added, if the sum of the signal qualities of the two is greater than The second threshold is used to report the signal quality measurement report of the two to the current serving base station. If the signal quality of one of the tested base stations is less than the first threshold, and the measurement timer has not timed out, the signal measurement of the next base station under test is continued until the timer expires.
  • the signal quality measurement report is discarded to the current serving base station, and if there is a base station whose signal quality exceeds the first threshold, the current serving base station is sent to the current serving base station.
  • a signal quality measurement report of the base station under test whose signal quality exceeds the first threshold is reported. The detailed reporting process can be seen in the embodiment shown in FIG. 2.
  • Determining whether to report the signal quality measurement report to the current serving base station can prevent the measurement of a measured base station that meets the measurement reporting condition and perform measurement reporting, thereby reducing measurement signaling overhead and saving system resources.
  • FIG. 6 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment. As shown in FIG. 6, on the basis of the embodiment shown in FIG. 5, the determining reporting module 53 may include: a first report. Module 531.
  • the first reporting sub-module 531 is configured to report a signal quality measurement report of the first measured base station to the current serving base station when the signal quality of the first measured base station is greater than or equal to the second threshold.
  • the signal quality measurement report of the first base station to be tested is reported to the current serving base station, so as to avoid measuring a measured base station that meets the measurement reporting condition. The measurement is reported, so that the measurement signaling overhead can be reduced.
  • FIG. 7 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment.
  • the determining reporting module 53 may include: a first measurement sub The module 532, the first storage submodule 533, the addition submodule 534, and the second reporting submodule 535.
  • the first measurement sub-module 532 is configured to measure the signal quality of the second base station under test when the signal quality of the first base station under test is greater than or equal to the first threshold and less than the second threshold.
  • the first storage sub-module 533 is configured to store the signal quality of the second base station under test when the signal quality of the second measured base station measured by the first measurement sub-module 532 is greater than or equal to the first threshold.
  • the adding sub-module 534 is configured to add the signal quality of the first measured base station stored by the first storage sub-module 533 and the signal quality of the second measured base station.
  • the second reporting sub-module 535 is configured to report to the current serving base station when the sum of the signal quality of the first measured base station and the signal quality of the second measured base station obtained by the adding sub-module 534 is greater than or equal to the second threshold.
  • the signal quality is added when the signal quality of the first base station under test and the signal quality of the second base station under test are greater than the first threshold. If the sum of the signal quality of the two base stations is greater than the second threshold, the current The serving base station reports the signal quality measurement report of the two to avoid measuring a measured base station that meets the measurement reporting condition, and can perform measurement reporting, thereby reducing measurement signaling overhead.
  • FIG. 8 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment. As shown in FIG. 8 , on the basis of the foregoing embodiment shown in FIG. 7 , determining the reporting module 53 may further include: Submodule 536 or second processing submodule 537.
  • the first processing sub-module 536 is configured to: when the sum of the signal quality of the first measured base station and the signal quality of the second measured base station obtained by the adding sub-module 534 is less than the second threshold, but the measurement timer has not timed out, The next base station under test is used as the second base station to be tested, and the operation of measuring the signal quality of the second base station under test is performed until the measurement timer expires.
  • the second processing sub-module 537 is configured to: when the sum of the signal quality of the first measured base station and the signal quality of the second measured base station obtained by the adding sub-module 534 is less than a second threshold, and the measurement timer times out, then The current serving base station reports a signal quality measurement report of the base station under test whose signal quality is greater than the first threshold.
  • the measurement timer when the sum of the signal quality of the first base station under test and the signal quality of the second base station under test is less than the second threshold, if the measurement timer does not time out, the measurement of the next base station to be tested is continued until the measurement is performed. The timer expires. If the measurement timer expires, the signal quality measurement report of the measured base station whose signal quality is greater than the first threshold is reported to the current serving base station, so as to avoid measuring a measured base station that meets the measurement reporting condition and performing measurement reporting. Thus, measurement signaling overhead can be reduced.
  • FIG. 9 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment.
  • the determining reporting module 53 may include: a second measurement component.
  • the second measurement sub-module 538 is configured to measure the signal quality of the second base station under test when the signal quality of the first base station under test is less than the first threshold.
  • the third reporting sub-module 539 is configured to report the signal quality measurement report of the second measured base station to the current serving base station when the signal quality of the second measured base station measured by the second measurement sub-module 538 is greater than or equal to the second threshold. .
  • the third processing sub-module 540 is configured to: when the signal quality of the second measured base station measured by the second measurement sub-module 538 is less than the second threshold and the measurement timer expires, if there is no measured signal quality exceeding the first threshold The base station then discards the signal quality measurement report reported to the current serving base station, and if there is a base station under test whose signal quality exceeds the first threshold, reports a signal quality measurement report of the base station under test whose signal quality exceeds the first threshold.
  • the fourth processing sub-module 541 is configured to use the next measured base station as the second measured when the signal quality of the second measured base station measured by the second measurement sub-module 538 is less than the second threshold and the measurement timer has not timed out.
  • the base station moves to perform an operation of measuring the signal quality of the second base station under test until the measurement timer times out.
  • the signal quality of one of the tested base stations is less than the first threshold, and the measurement timer does not time out, the signal measurement of the next base station to be tested is continued until the timer expires, if the timer expires, If the measured base station whose signal quality exceeds the first threshold is reported, the signal quality measurement report is discarded to the current serving base station, and if the measured base station whose signal quality exceeds the first threshold is present, the signal quality of the current serving base station is exceeded by the first threshold.
  • the signal quality measurement report of the base station to be tested is used to avoid measurement of a measured base station that meets the measurement reporting condition, thereby reducing measurement signaling overhead.
  • FIG. 10 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment. As shown in FIG. 10, on the basis of the foregoing embodiment shown in FIG. 7 or FIG. 8, the determining reporting module 53 may further include: The fifth processing sub-module 542 or the sixth processing sub-module 543.
  • the fifth processing sub-module 542 is configured to report, when the signal quality of the second measured base station measured by the first measurement sub-module 532 is less than the first threshold, and report the timeout of the signal to the current serving base station, the signal quality exceeds the first threshold. Signal quality measurement report of the base station under test.
  • the sixth processing sub-module 543 is configured to: when the signal quality of the second measured base station measured by the first measurement sub-module 532 is less than the first threshold, and the measurement timer does not time out, the next measured base station is used as the second measured The base station moves to perform an operation of measuring the signal quality of the second base station under test until the measurement timer times out.
  • the signal quality measurement report of the base station under test whose signal quality exceeds the first threshold is reported to the current serving base station,
  • the measurement timer does not time out, the measurement is continued on the next measured base station until the measurement timer expires to avoid measuring a measured base station that meets the measurement reporting condition. Reporting, which can reduce measurement signaling overhead.
  • FIG. 11 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment. As shown in FIG. 11, on the basis of the foregoing embodiment shown in FIG. 5, the apparatus may further include: a receiving module 54 and determining Module 55.
  • the receiving module 54 is configured to receive the configuration information sent by the current serving base station, where the configuration information is used to configure the first threshold, the second threshold, and the timeout period of the measurement timer on which the UAV reports the signal quality measurement report.
  • the determining module 55 is configured to determine a first threshold, a second threshold, and a timeout period of the measurement timer based on the configuration information received by the receiving module 54.
  • the configuration information sent by the current serving base station is received, and the first threshold, the second threshold, and the timeout period of the measurement timer are determined according to the configuration information, thereby providing conditions for subsequently determining whether to report the signal quality measurement report.
  • FIG. 12 is a block diagram of another measurement report reporting apparatus according to an exemplary embodiment. As shown in FIG. 12, the apparatus may further include: a reset module 56, based on the embodiment shown in FIG.
  • the reset module 56 is configured to reset the measurement timer after determining that the reporting module 53 determines whether to report a signal quality measurement report to the current serving base station.
  • the measurement timer is reset to re-determine whether the measurement timer has timed out.
  • FIG. 13 is a block diagram of a base station determining apparatus, which may be located in a base station, as shown in FIG. 13, including a receiving module 131 and a determining module 132, according to an exemplary embodiment.
  • the receiving module 131 is configured to receive a signal quality measurement report reported by the UAV UAV.
  • the determining module 132 is configured to determine the target base station based on the signal quality measurement report received by the receiving module 131.
  • the current base station may determine the target base station according to the signal quality measurement report, so that the base station can be handed over to the target base station.
  • the target quality base station is determined according to the signal quality measurement report reported by the UAV, and the target base station is determined according to the signal quality measurement report, thereby reducing service interruption and high handover failure rate due to frequent handover.
  • FIG. 14 is a block diagram of another base station determining apparatus according to an exemplary embodiment. As shown in FIG. 14, on the basis of the foregoing embodiment shown in FIG. 13, the apparatus may further include:
  • the sending module 133 is configured to send configuration information to the UAV, where the configuration information is used to configure a first threshold, a second threshold, and a timeout period of the measurement timer on which the UAV reports the signal quality measurement report.
  • the current base station may determine the target base station according to the signal quality measurement report, so that the base station can be handed over to the target base station.
  • the UVA can determine the first threshold, the second threshold, and the timeout period of the measurement timer according to the determination, thereby providing a condition for the UVA to subsequently determine whether to report the signal quality measurement report.
  • FIG. 15 is a block diagram of a device suitable for measurement report reporting, according to an exemplary embodiment.
  • the device 1500 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a drone, and the like.
  • device 1500 can include one or more of the following components: processing component 1502, memory 1504, power component 1506, multimedia component 1508, audio component 1510, input/output (I/O) interface 1512, sensor component 1514, And a communication component 1516.
  • Processing component 1502 typically controls the overall operation of device 1500, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1502 can include one or more processors 1520 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 1502 can include one or more modules to facilitate interaction between component 1502 and other components.
  • processing component 1502 can include a multimedia module to facilitate interaction between multimedia component 1508 and processing component 1502.
  • One of the processors 1520 in the processing component 1502 can be configured to:
  • Memory 1504 is configured to store various types of data to support operation at device 1500. Examples of such data include instructions for any application or method operating on device 1500, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1504 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1506 provides power to various components of device 1500.
  • Power component 1506 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1500.
  • the multimedia component 1508 includes a screen between the device 1500 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1508 includes a front camera and/or a rear camera. When the device 1500 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1510 is configured to output and/or input an audio signal.
  • the audio component 1510 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1500 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1504 or transmitted via communication component 1516.
  • audio component 1510 also includes a speaker for outputting an audio signal.
  • the I/O interface 1512 provides an interface between the processing component 1502 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1514 includes one or more sensors for providing device 1500 with a status assessment of various aspects.
  • sensor assembly 1514 can detect an open/closed state of device 1500, the relative positioning of components, such as a display and a keypad of device 1500, and sensor component 1514 can also detect a change in position of a component of device 1500 or device 1500, the user The presence or absence of contact with device 1500, device 1500 orientation or acceleration/deceleration and temperature change of device 1500.
  • Sensor assembly 1514 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1514 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1514 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1516 is configured to facilitate wired or wireless communication between device 1500 and other devices.
  • the device 1500 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1516 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1516 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 1500 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1504 comprising instructions executable by processor 1520 of apparatus 1500 to perform the above method.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 16 is a block diagram showing another apparatus suitable for measurement report reporting, according to an exemplary embodiment.
  • Apparatus 1600 can be provided as a base station.
  • apparatus 1600 includes a processing component 1622, a wireless transmit/receive component 1624, an antenna component 1626, and a signal processing portion specific to the wireless interface.
  • Processing component 1622 can further include one or more processors.
  • One of the processing components 1622 can be configured to:
  • a target base station is determined based on the signal quality measurement report.
  • non-transitory computer readable storage medium comprising instructions executable by processing component 1622 of apparatus 1600 to perform the base station determination method described above.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. Or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种测量报告上报方法及装置、基站确定方法及装置、无人机、基站和计算机可读存储介质。其中,测量报告上报方法包括:对被测基站的信号质量进行测量;将被测基站的信号质量与第一阈值和第二阈值进行比较,第一阈值小于或等于第二阈值;根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。上述实施例,可以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销,节省系统资源。

Description

测量报告上报方法及装置、基站确定方法及装置和无人机 技术领域
本公开涉及通信技术领域,尤其涉及一种测量报告上报方法及装置、基站确定方法及装置、无人机、基站和计算机可读存储介质。
背景技术
无人驾驶飞机(Unmanned Aerial Vehicle,简称UAV)简称无人机,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。无人机实际上是无人驾驶飞行器的统称,从技术角度定义可以分为:无人固定翼机、无人垂直起降机、无人飞艇、无人直升机、无人多旋翼飞行器和无人伞翼机等。
随着无人机技术的快速发展、成本的降低以及功能的完善,无人机越来越多地应用于生活的各个方面。目前在航拍、农业、植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄、制造浪漫等等领域的应用,大大地拓展了无人机本身的用途,各个国家都在积极扩展行业应用与发展无人机技术。
为了进一步拓展无人机的应用范围,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)通过了增强支持无人机(Enhanced Support for Aerial Vehicles)的立项,旨在研究并标准化使蜂窝网络为无人机提供满足需求的服务。
随着无人机飞高,无人机与基站间会存在较强的直射径,因此,无人机能够检测到的基站数目就会增多,而且受到的干扰也会增加,如果无人机处于连接(CONNECTED)态,并且采用传统的测量机制,那么无人机就会有太多的邻基站需要测量并且上报,导致很大的信令开销。
发明内容
有鉴于此,本申请公开了一种测量报告上报方法及装置、基站确定方法及装置、无人机、基站和计算机可读存储介质,以使处于连接态的蜂窝网络无人机在飞行过程中,可以不用测量到一个符合测量上报条件的基站就进行测量上报,从而减少了测量信令开销,节省了系统资源。
根据本公开实施例的第一方面,提供一种测量报告上报方法,应用于无人机UAV,所述方法包括:
对被测基站的信号质量进行测量;
将所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
在一实施例中,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,包括:
当第一被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告。
在一实施例中,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,包括:
当第一被测基站的信号质量大于或等于所述第一阈值且小于所述第二阈值时,对第二被测基站的信号质量进行测量;
当所述第二被测基站的信号质量大于或等于所述第一阈值时,存储所述第二被测基站的信号质量;
对存储的所述第一被测基站的信号质量和所述第二被测基站的信号质量进行相加;
当所述第一被测基站的信号质量和所述第二被测基站的信号质量之和大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告和所述第二被测基站的信号质量测量报告。
在一实施例中,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,还包括:
当所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,但所述测量计时器未超时时,则将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时;或者
当所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,且所述测量计时器超时时,则向所述当前服务基站上报信号质量大于所述第一阈值的被测基站的信号质量测量报告。
在一实施例中,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,包括:
当第一被测基站的信号质量小于所述第一阈值时,对第二被测基站的信号质量进行测量;
当所述第二被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第二被测基站的信号质量测量报告;
当所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器超时时,若不存在信号质量超过所述第一阈值的被测基站,则放弃向所述当前服务基站上报信号质量测量报告,若存在信号质量超过所述第一阈值的被测基站,则向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;
当所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
在一实施例中,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,还包括:
当所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器超时时,向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;或者
当所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
在一实施例中,所述方法还包括:
接收所述当前服务基站发送的配置信息,所述配置信息用于配置所述UAV上报信号质量测量报告时所基于的所述第一阈值、所述第二阈值和所述测量计时器的超时时长;
根据所述配置信息确定所述第一阈值、所述第二阈值和所述测量计时器的超时时长。
在一实施例中,所述方法还包括:
在所述确定是否向当前服务基站上报信号质量测量报告之后,重置所述测量计时器。
根据本公开实施例的第二方面,提供一种基站确定方法,应用于基站,所述方法包括:
接收无人机UAV上报的信号质量测量报告;
根据所述信号质量测量报告确定目标基站。
在一实施例中,所述方法还包括:
向所述UAV发送配置信息,所述配置信息用于配置所述UAV上报所述信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
根据本公开实施例的第三方面,提供一种测量报告上报装置,应用于无人机UAV,所述装置包括:
测量模块,被配置为对被测基站的信号质量进行测量;
比较模块,被配置为将所述测量模块测量的所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
确定上报模块,被配置为根据所述比较模块得到的比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
在一实施例中,所述确定上报模块包括:
第一上报子模块,被配置为当第一被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告。
在一实施例中,所述确定上报模块包括:
第一测量子模块,被配置为当第一被测基站的信号质量大于或等于所述第一阈值且小于所述第二阈值时,对第二被测基站的信号质量进行测量;
第一存储子模块,被配置为当所述第一测量子模块测量的所述第二被测基站的信号质量大于或等于所述第一阈值时,存储所述第二被测基站的信号质量;
相加子模块,被配置为对所述第一存储子模块存储的所述第一被测基站的信号质量和所述第二被测基站的信号质量进行相加;
第二上报子模块,被配置为当所述相加子模块得到的所述第一被测基站的信号质量和所述第二被测基站的信号质量之和大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告和所述第二被测基站的信号质量测量报告。
在一实施例中,所述确定上报模块还包括:
第一处理子模块,被配置为当所述相加子模块得到的所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,但所述测量计时器未超时时,则将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时;或者
第二处理子模块,被配置为当所述相加子模块得到的所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,且所述测量计时器超时时,则向所述当前服务基站上报信号质量大于所述第一阈值的被测基站的信号质量测量报告。
在一实施例中,所述确定上报模块包括:
第二测量子模块,被配置为当第一被测基站的信号质量小于所述第一阈值时,对第二被测基站的信号质量进行测量;
第三上报子模块,被配置为当所述第二测量子模块测量到的所述第二被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第二被测基站的信号质量测量报告;
第三处理子模块,被配置为当所述第二测量子模块测量到的所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器超时时,若不存在信号质量超过所述第一阈值的被测基站,则放弃向所述当前服务基站上报信号质量测量报告,若存在信号质量超过所述第一阈值的被测基站,则向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;
第四处理子模块,被配置为当所述第二测量子模块测量到的所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
在一实施例中,所述确定上报模块还包括:
第五处理子模块,被配置为当所述第一测量子模块测量的所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器超时时,向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;或者
第六处理子模块,被配置为当所述第一测量子模块测量的所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
在一实施例中,所述装置还包括:
接收模块,被配置为接收所述当前服务基站发送的配置信息,所述配置信息用于配置所述UAV上报信号质量测量报告时所基于的所述第一阈值、所述第二阈值和所述测量计时器的超时时长;
确定模块,被配置为根据所述接收模块接收的所述配置信息确定所述第一阈值、所述第二阈值和所述测量计时器的超时时长。
在一实施例中,所述装置还包括:
重置模块,被配置为在所述确定上报模块确定是否向当前服务基站上报信号质量测量报告之后,重置所述测量计时器。
根据本公开实施例的第四方面,提供一种基站确定装置,应用于基站,所述装置包括:
接收模块,被配置为接收无人机UAV上报的信号质量测量报告;
确定模块,被配置为根据所述接收模块接收的所述信号质量测量报告确定目标基站。
在一实施例中,所述装置还包括:
发送模块,被配置为向所述UAV发送配置信息,所述配置信息用于配置所述UAV上报所述信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
根据本公开实施例的第五方面,提供一种无人机UAV,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
对被测基站的信号质量进行测量;
将所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收无人机UAV上报的信号质量测量报告;
根据所述信号质量测量报告确定目标基站。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述测量报告上报方法的步骤。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述基站确定方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过将所述被测基站的信号质量与第一阈值和第二阈值进行比较,根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,即根据多个条件确定是否向当前服务基站上报信号质量测量报告,可以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销,节省系统资源。
通过接收UAV上报的信号质量测量报告,并根据该信号质量测量报告确定目标基站,从而减少因频繁切换可能导致业务的中断以及较高的切换失败率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本申请一示例性实施例示出的一种测量报告上报方法的流程图;
图2是本申请一示例性实施例示出的另一种测量报告上报方法的流程图;
图3是本申请一示例性实施例示出的一种基站确定方法的流程图;
图4是本申请一示例性实施例示出的一种基站确定方法的信令流程图;
图5是根据一示例性实施例示出的一种测量报告上报装置的框图;
图6是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图7是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图8是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图9是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图10是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图11是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图12是根据一示例性实施例示出的另一种测量报告上报装置的框图;
图13是根据一示例性实施例示出的一种基站确定装置的框图;
图14是根据一示例性实施例示出的又一种基站确定装置的框图;
图15是根据一示例性实施例示出的一种适用于测量报告上报装置的框图;
图16是根据一示例性实施例示出的一种适用于基站确定装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是本申请一示例性实施例示出的一种测量报告上报方法的流程图,该实施例从UAV侧进行描述,如图1所示,该测量报告上报方法包括:
在步骤S101中,对被测基站的信号质量进行测量。
其中,当被测基站有多个时,为了对被测基站进行区分,可以将被测基站称为第一被测基站、第二被测基站等。
在步骤S102中,将被测基站的信号质量与第一阈值和第二阈值进行比较,第一阈值小于或等于第二阈值。
为了避免测量到一个符合测量上报条件的被测基站就进行测量上报,该实施例中,通过设置多个条件,例如,将被测基站的信号质量与两个阈值进行比较,以及判断测量计时器是否超时等来确定是否上报信号质量测量报告。
为了可以将被测基站的信号质量与两个阈值进行比较以及判断测量计时器是否超时,可选地,该方法还可以包括:接收当前服务基站发送的配置信息,该配置信息用于配置UAV上报信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长,并根据该配置信息确定第一阈值、第二阈值和测量计时器的超时时长。
在步骤S103中,根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
其中,若被测基站的信号质量大于或等于第二阈值,则不论测量计时器是否超时,均向当前服务基站上报信号质量大于第二阈值的被测基站的信号质量测量报告。
若被测基站的信号质量小于第二阈值,则对下一个被测基站进行测量,并当二者的信号质量均大于第一阈值时进行信号质量相加,若二者的信号质量之和大于第二阈值,则向当前服务基站上报二者的信号质量测量报告。若其中一个被测基站的信号质量小于第一阈值,且测量计时器未超时,则继续对下一个被测基站进行信号测量,直至计时器超时。若当计时器超时时,不存在信号质量超过第一阈值的被测基站,则放弃向当前服务基站上报信号质量测量报告,若存在信号质量超过第一阈值的被测基站,则向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告。需要说明的是,上述仅列举了上报信号质量测量报告的部分情形,详细的上报过程可参见图2所示实施例。
上述实施例,通过将被测基站的信号质量与第一阈值和第二阈值进行比较,根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,即根据多个条件确定是否向当前服务基站上报信号质量测量报告,可以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销,节省系统资源。
图2是本申请一示例性实施例示出的另一种测量报告上报方法的流程图,如图2所示,该测量报告上报方法包括:
在步骤S201中,对第一被测基站的信号质量进行测量。
在步骤S202中,判断第一被测基站的信号质量是否大于或等于第一阈值且小于第二阈值,当第一被测基站的信号质量大于或等于第二阈值时,执行步骤S203,当第一被测基站的信号质量大于或等于第一阈值且小于第二阈值时,执行步骤S204,当第一被测基站的信号质量小于第一阈值时,执行步骤S212。
在步骤S203中,向当前服务基站上报第一被测基站的信号质量测量报告,操作结束。
在步骤S204中,对第二被测基站的信号质量进行测量。
在步骤S205中,判断第二被测基站的信号质量是否大于或等于第一阈值,当第二被测基站的信号质量大于或等于第一阈值时,执行步骤S206,当第二被测基站的信号质量小于第一阈值时,执行步骤S209。
在步骤S206中,存储第二被测基站的信号质量,并对存储的第一被测基站的信号质量和第二被测基站的信号质量进行相加。
在步骤S207中,判断第一被测基站的信号质量和第二被测基站的信号质量之和是否大于或等于第二阈值,当第一被测基站的信号质量和第二被测基站的信号质量之和大于或等于第二阈值时,执行步骤S208,当第一被测基站的信号质量和第二被测基站的信号质量之和小于第二阈值时,执行步骤S209。
在步骤S208中,向当前服务基站上报第一被测基站的信号质量测量报告和第二被测基站的信号质量测量报告,操作结束。
在步骤S209中,判断测量计时器是否超时,当测量计时器未超时时,执行步骤S210,当测量计时器超时时,执行步骤S211。
在步骤S210中,将下一个被测基站作为第二被测基站,并转向执行步骤S204。
在步骤S211中,向当前服务基站上报信号质量大于第一阈值的被测基站的信号质量测量报告,操作结束。
在步骤S212中,对第二被测基站的信号质量进行测量。
在步骤S213中,判断第二被测基站的信号质量是否大于或等于第二阈值,当第二被测基站的信号质量大于或等于第二阈值时,执行步骤S214,当第二被测基站的信号质量小于第二阈值,执行步骤S215。
在步骤S214中,向当前服务基站上报第二被测基站的信号质量测量报告,操作结束。
在步骤S215中,判断测量计时器是否超时,当测量计时器超时时,执行步骤S216,当测量计时器未超时时,执行步骤S219。
在步骤S216中,判断是否存在信号质量超过第一阈值的被测基站,若不存在信号质量超过第一阈值的被测基站时,执行步骤S217,若存在信号质量超过第一阈值的被测基站时,执行步骤S218。
在步骤S217中,放弃向当前服务基站上报信号质量测量报告,操作结束。
在步骤S218中,向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告,操作结束。
在步骤S219中,将下一个被测基站作为第二被测基站,并转向执行步骤S212。
在该实施例中,在向当前服务基站上报信号质量测量报告之后,还需要重置测量计时器,以便重新确定测量计时器是否超时。
上述实施例,通过根据被测基站的信号质量与第一阈值和第二阈值的比较结果以及测量计时器是否超时,可以确定是否向当前服务基站上报信号质量测量报告,以避免当前服务基站测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销,也可以减少基站因频繁切换可能导致业务的中断以及较高的切换失败率,节省系统资源。
图3是本申请一示例性实施例示出的一种基站确定方法的流程图,该实施例从基站侧进行描述,如图3所示,该方法包括:
在步骤S301中,接收UAV上报的信号质量测量报告。
可选地,该方法还可以包括:向UAV发送配置信息,该配置信息用于配置UAV上报信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。UAV在接收该配置信息后,可以基于该配置信息和被测基站的信号质量之间的关系确定是否上报信号质量测量报告。
在步骤S302中,根据该信号质量测量报告确定目标基站。
其中,当前基站在接收UAV上报的信号质量测量报告后,可以根据该信号质量测量报告确定目标基站,从而可以切换到目标基站。
上述实施例,通过接收UAV上报的信号质量测量报告,并根据该信号质量测量报告确定目标基站,从而减少因频繁切换可能导致业务的中断以及较高的切换失败率。
图4是本申请一示例性实施例示出的一种基站确定方法的信令流程图,该实施例从UAV和当前服务基站交互的角度进行描述,如图4所示,该方法包括:
步骤S401,基站向UAV发送配置信息,该配置信息用于配置UAV上报信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
步骤S402,UAV接收该配置信息,并根据该配置信息确定第一阈值、第二阈值和测量计时器的超时时长。
步骤S403,UAV对第一被测基站的信号质量进行测量。
步骤S404,当第一被测基站的信号质量大于或等于第一阈值且小于第二阈值时,UAV对第二被测基站的信号质量进行测量。
步骤S405,当第二被测基站的信号质量大于或等于第一阈值时,UAV存储第二被测基站的信号质量。
步骤S406,UAV对存储的第一被测基站的信号质量和第二被测基站的信号质量进行 相加。
步骤S407,当第一被测基站的信号质量和第二被测基站的信号质量之和大于或等于第二阈值时,UAV向当前服务基站上报第一被测基站的信号质量测量报告和第二被测基站的信号质量测量报告。
步骤S408,当前服务基站接收第一被测基站的信号质量测量报告和第二被测基站的信号质量测量报告,并根据第一被测基站的信号质量测量报告和第二被测基站的信号质量测量报告确定目标基站。
上述实施例,通过UE和当前服务基站之间的交互,使得UE可以根据多个条件确定是否向当前服务基站上报信号质量测量报告,可以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销,节省系统资源,使得基站可以减少基站因频繁切换可能导致业务的中断以及较高的切换失败率。
图5是根据一示例性实施例示出的一种测量报告上报装置的框图,该装置可以位于UAV中,如图5所示,该装置包括:测量模块51、比较模块52和确定上报模块53。
测量模块51被配置为对被测基站的信号质量进行测量。
其中,当被测基站有多个时,为了对被测基站进行区分,可以将被测基站称为第一被测基站、第二被测基站等。
比较模块52被配置为将测量模块51测量的被测基站的信号质量与第一阈值和第二阈值进行比较,第一阈值小于或等于第二阈值。
为了避免测量到一个符合测量上报条件的被测基站就进行测量上报,该实施例中,通过设置多个条件,例如,将被测基站的信号质量与两个阈值进行比较,以及判断测量计时器是否超时等来确定是否上报信号质量测量报告。
为了可以将被测基站的信号质量与两个阈值进行比较以及判断测量计时器是否超时,可选地,该方法还可以包括:接收当前服务基站发送的配置信息,该配置信息用于配置UAV上报信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长,并根据该配置信息确定第一阈值、第二阈值和测量计时器的超时时长。
确定上报模块53被配置为根据比较模块52得到的比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
其中,若被测基站的信号质量大于或等于第二阈值,则不论测量计时器是否超时,均 向当前服务基站上报信号质量大于第二阈值的被测基站的信号质量测量报告。
若被测基站的信号质量小于第二阈值,则对下一个被测基站进行测量,并当二者的信号质量均大于第一阈值时进行信号质量相加,若二者的信号质量之和大于第二阈值,则向当前服务基站上报二者的信号质量测量报告。若其中一个被测基站的信号质量小于第一阈值,且测量计时器未超时,则继续对下一个被测基站进行信号测量,直至计时器超时。若当计时器超时时,不存在信号质量超过第一阈值的被测基站,则放弃向当前服务基站上报信号质量测量报告,若存在信号质量超过第一阈值的被测基站,则向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告。详细的上报过程可参见图2所示实施例。
上述实施例,通过将被测基站的信号质量与第一阈值和第二阈值进行比较,根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,即根据多个条件确定是否向当前服务基站上报信号质量测量报告,可以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销,节省系统资源。
图6是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图6所示,在上述图5所示实施例的基础上,确定上报模块53可以包括:第一上报子模块531。
第一上报子模块531被配置为当第一被测基站的信号质量大于或等于第二阈值时,向当前服务基站上报第一被测基站的信号质量测量报告。
上述实施例,在第一被测基站的信号质量大于或等于第二阈值时,向当前服务基站上报第一被测基站的信号质量测量报告,以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销。
图7是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图7所示,在上述图5所示实施例的基础上,确定上报模块53可以包括:第一测量子模块532、第一存储子模块533、相加子模块534和第二上报子模块535。
第一测量子模块532被配置为当第一被测基站的信号质量大于或等于第一阈值且小于第二阈值时,对第二被测基站的信号质量进行测量。
第一存储子模块533被配置为当第一测量子模块532测量的第二被测基站的信号质量大于或等于第一阈值时,存储第二被测基站的信号质量。
相加子模块534被配置为对第一存储子模块533存储的第一被测基站的信号质量和第二被测基站的信号质量进行相加。
第二上报子模块535被配置为当相加子模块534得到的第一被测基站的信号质量和第二被测基站的信号质量之和大于或等于第二阈值时,向当前服务基站上报第一被测基站的信号质量测量报告和第二被测基站的信号质量测量报告。
上述实施例,在第一被测基站的信号质量和第二被测基站的信号质量均大于第一阈值时进行信号质量相加,若二者的信号质量之和大于第二阈值,则向当前服务基站上报二者的信号质量测量报告,以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销。
图8是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图8所示,在上述图7所示实施例的基础上,确定上报模块53还可以包括:第一处理子模块536或者第二处理子模块537。
第一处理子模块536被配置为当相加子模块534得到的第一被测基站的信号质量和第二被测基站的信号质量之和小于第二阈值,但测量计时器未超时时,则将下一个被测基站作为第二被测基站,并转向执行对第二被测基站的信号质量进行测量的操作,直至测量计时器超时。
第二处理子模块537被配置为当相加子模块534得到的第一被测基站的信号质量和第二被测基站的信号质量之和小于第二阈值,且测量计时器超时时,则向当前服务基站上报信号质量大于第一阈值的被测基站的信号质量测量报告。
上述实施例,在第一被测基站的信号质量和第二被测基站的信号质量之和小于第二阈值时,若测量计时器未超时,则继续对下一个被测基站进行测量,直至测量计时器超时,若测量计时器超时时,则向当前服务基站上报信号质量大于第一阈值的被测基站的信号质量测量报告,以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销。
图9是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图9所示,在上述图5所示实施例的基础上,确定上报模块53可以包括:第二测量子模块538、第三上报子模块539、第三处理子模块540和第四处理子模块541。
第二测量子模块538被配置为当第一被测基站的信号质量小于第一阈值时,对第二被测基站的信号质量进行测量。
第三上报子模块539被配置为当第二测量子模块538测量到的第二被测基站的信号质量大于或等于第二阈值时,向当前服务基站上报第二被测基站的信号质量测量报告。
第三处理子模块540被配置为当第二测量子模块538测量到的第二被测基站的信号质量小于第二阈值且测量计时器超时时,若不存在信号质量超过第一阈值的被测基站,则放弃向当前服务基站上报信号质量测量报告,若存在信号质量超过第一阈值的被测基站,则向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告。
第四处理子模块541被配置为当第二测量子模块538测量到的第二被测基站的信号质量小于第二阈值且测量计时器未超时时,将下一个被测基站作为第二被测基站,并转向执行对第二被测基站的信号质量进行测量的操作,直至测量计时器超时。
上述实施例,若其中一个被测基站的信号质量小于第一阈值,且测量计时器未超时,则继续对下一个被测基站进行信号测量,直至计时器超时,若当计时器超时时,不存在信号质量超过第一阈值的被测基站,则放弃向当前服务基站上报信号质量测量报告,若存在信号质量超过第一阈值的被测基站,则向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告,以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销。
图10是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图10所示,在上述图7或图8所示实施例的基础上,确定上报模块53还可以包括:第五处理子模块542或者第六处理子模块543。
第五处理子模块542被配置为当第一测量子模块532测量的第二被测基站的信号质量小于第一阈值,且测量计时器超时时,向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告。
第六处理子模块543被配置为当第一测量子模块532测量的第二被测基站的信号质量小于第一阈值,且测量计时器未超时时,将下一个被测基站作为第二被测基站,并转向执行对第二被测基站的信号质量进行测量的操作,直至测量计时器超时。
上述实施例,在第二被测基站的信号质量小于第一阈值,且测量计时器超时时,向当前服务基站上报信号质量超过第一阈值的被测基站的信号质量测量报告,在第二被测基站的信号质量小于第一阈值,且测量计时器未超时时,继续对下一个被测基站进行测量,直至测量计时器超时,以避免测量到一个符合测量上报条件的被测基站就进行测量上报,从而可以减少测量信令开销。
图11是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图11所示,在上述图5所示实施例的基础上,该装置还可以包括:接收模块54和确定模块55。
接收模块54被配置为接收当前服务基站发送的配置信息,配置信息用于配置UAV上报信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
确定模块55被配置为根据接收模块54接收的配置信息确定第一阈值、第二阈值和测量计时器的超时时长。
上述实施例,通过接收当前服务基站发送的配置信息,并根据该配置信息确定第一阈值、第二阈值和测量计时器的超时时长,从而为后续确定是否上报信号质量测量报告提供了条件。
图12是根据一示例性实施例示出的另一种测量报告上报装置的框图,如图12所示,在上述图5所示实施例的基础上,该装置还可以包括:重置模块56。
重置模块56被配置为在确定上报模块53确定是否向当前服务基站上报信号质量测量报告之后,重置测量计时器。
上述实施例,在向当前服务基站上报信号质量测量报告之后,重置测量计时器,以便重新确定测量计时器是否超时。
图13是根据一示例性实施例示出的一种基站确定装置的框图,该装置可以位于基站中,如图13所示,该装置包括:接收模块131和确定模块132。
接收模块131被配置为接收无人机UAV上报的信号质量测量报告。
确定模块132被配置为根据接收模块131接收的信号质量测量报告确定目标基站。
其中,当前基站在接收UAV上报的信号质量测量报告后,可以根据该信号质量测量报告确定目标基站,从而可以切换到目标基站。
上述实施例,通过接收UAV上报的信号质量测量报告,并根据该信号质量测量报告确定目标基站,从而减少因频繁切换可能导致业务的中断以及较高的切换失败率。
图14是根据一示例性实施例示出的另一种基站确定装置的框图,如图14所示,在上述图13所示实施例的基础上,该装置还可以包括:
发送模块133被配置为向UAV发送配置信息,该配置信息用于配置UAV上报信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
其中,当前基站在接收UAV上报的信号质量测量报告后,可以根据该信号质量测量报告确定目标基站,从而可以切换到目标基站。
上述实施例,通过向UAV发送配置信息,使得UVA可以据此确定第一阈值、第二阈值和测量计时器的超时时长,从而为UVA后续确定是否上报信号质量测量报告提供了条件。
图15是根据一示例性实施例示出的一种适用于测量报告上报装置的框图。例如,装置1500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理、无人机等用户设备。
参照图15,装置1500可以包括以下一个或多个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)的接口1512,传感器组件1514,以及通信组件1516。
处理组件1502通常控制装置1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件1502可以包括一个或多个处理器1520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1502可以包括一个或多个模块,便于处理组件1502和其他组件之间的交互。例如,处理部件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。
处理组件1502中的其中一个处理器1520可以被配置为:
对被测基站的信号质量进行测量;
将所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
存储器1504被配置为存储各种类型的数据以支持在设备1500的操作。这些数据的示例包括用于在装置1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为装置1500的各种组件提供电力。电源组件1506可以包括电源管理系统,一个或多个电源,及其他与为装置1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在装置1500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当设备1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当装置1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1516发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1514包括一个或多个传感器,用于为装置1500提供各个方面的状态评估。例如,传感器组件1514可以检测到设备1500的打开/关闭状态,组件的相对定位,例如组件为装置1500的显示器和小键盘,传感器组件1514还可以检测装置1500或装置1500一个组件的位置改变,用户与装置1500接触的存在或不存在,装置1500方位或加速/减速和装置1500的温度变化。传感器组件1514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1516被配置为便于装置1500和其他设备之间有线或无线方式的通信。装置1500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件1516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1500可以被一个或多个应用专用集成电路(ASIC)、数字 信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1504,上述指令可由装置1500的处理器1520执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图16是根据一示例性实施例示出的另一种适用于测量报告上报装置的框图。装置1600可以被提供为一基站。参照图16,装置1600包括处理组件1622、无线发射/接收组件1624、天线组件1626、以及无线接口特有的信号处理部分,处理组件1622可进一步包括一个或多个处理器。
处理组件1622中的其中一个处理器可以被配置为:
接收无人机UAV上报的信号质量测量报告;
根据所述信号质量测量报告确定目标基站。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指令可由装置1600的处理组件1622执行以完成上述基站确定方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的 过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种测量报告上报方法,其特征在于,应用于无人机UAV,所述方法包括:
    对被测基站的信号质量进行测量;
    将所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
    根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
  2. 根据权利要求1所述的方法,其特征在于,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,包括:
    当第一被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告。
  3. 根据权利要求1所述的方法,其特征在于,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,包括:
    当第一被测基站的信号质量大于或等于所述第一阈值且小于所述第二阈值时,对第二被测基站的信号质量进行测量;
    当所述第二被测基站的信号质量大于或等于所述第一阈值时,存储所述第二被测基站的信号质量;
    对存储的所述第一被测基站的信号质量和所述第二被测基站的信号质量进行相加;
    当所述第一被测基站的信号质量和所述第二被测基站的信号质量之和大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告和所述第二被测基站的信号质量测量报告。
  4. 根据权利要求3所述的方法,其特征在于,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,还包括:
    当所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,但所述测量计时器未超时时,则将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时;或者
    当所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,且所述测量计时器超时时,则向所述当前服务基站上报信号质量大于所述第一阈值的被测基站的信号质量测量报告。
  5. 根据权利要求1所述的方法,其特征在于,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,包括:
    当第一被测基站的信号质量小于所述第一阈值时,对第二被测基站的信号质量进行测量;
    当所述第二被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第二被测基站的信号质量测量报告;
    当所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器超时时,若不存在信号质量超过所述第一阈值的被测基站,则放弃向所述当前服务基站上报信号质量测量报告,若存在信号质量超过所述第一阈值的被测基站,则向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;
    当所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
  6. 根据权利要求3或4所述的方法,其特征在于,所述根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告,还包括:
    当所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器超时时,向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;或者
    当所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述当前服务基站发送的配置信息,所述配置信息用于配置所述UAV上报信号质量测量报告时所基于的所述第一阈值、所述第二阈值和所述测量计时器的超时时长;
    根据所述配置信息确定所述第一阈值、所述第二阈值和所述测量计时器的超时时长。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    在所述确定是否向当前服务基站上报信号质量测量报告之后,重置所述测量计时器。
  9. 一种基站确定方法,其特征在于,应用于基站,所述方法包括:
    接收无人机UAV上报的信号质量测量报告;
    根据所述信号质量测量报告确定目标基站。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向所述UAV发送配置信息,所述配置信息用于配置所述UAV上报所述信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
  11. 一种测量报告上报装置,其特征在于,应用于无人机UAV,所述装置包括:
    测量模块,被配置为对被测基站的信号质量进行测量;
    比较模块,被配置为将所述测量模块测量的所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
    确定上报模块,被配置为根据所述比较模块得到的比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
  12. 根据权利要求11所述的装置,其特征在于,所述确定上报模块包括:
    第一上报子模块,被配置为当第一被测基站的信号质量大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告。
  13. 根据权利要求11所述的装置,其特征在于,所述确定上报模块包括:
    第一测量子模块,被配置为当第一被测基站的信号质量大于或等于所述第一阈值且小于所述第二阈值时,对第二被测基站的信号质量进行测量;
    第一存储子模块,被配置为当所述第一测量子模块测量的所述第二被测基站的信号质量大于或等于所述第一阈值时,存储所述第二被测基站的信号质量;
    相加子模块,被配置为对所述第一存储子模块存储的所述第一被测基站的信号质量和所述第二被测基站的信号质量进行相加;
    第二上报子模块,被配置为当所述相加子模块得到的所述第一被测基站的信号质量和所述第二被测基站的信号质量之和大于或等于所述第二阈值时,向所述当前服务基站上报所述第一被测基站的信号质量测量报告和所述第二被测基站的信号质量测量报告。
  14. 根据权利要求13所述的装置,其特征在于,所述确定上报模块还包括:
    第一处理子模块,被配置为当所述相加子模块得到的所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,但所述测量计时器未超时时,则将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时;或者
    第二处理子模块,被配置为当所述相加子模块得到的所述第一被测基站的信号质量和所述第二被测基站的信号质量之和小于所述第二阈值,且所述测量计时器超时时,则向所述当前服务基站上报信号质量大于所述第一阈值的被测基站的信号质量测量报告。
  15. 根据权利要求11所述的装置,其特征在于,所述确定上报模块包括:
    第二测量子模块,被配置为当第一被测基站的信号质量小于所述第一阈值时,对第二被测基站的信号质量进行测量;
    第三上报子模块,被配置为当所述第二测量子模块测量到的所述第二被测基站的信号质 量大于或等于所述第二阈值时,向所述当前服务基站上报所述第二被测基站的信号质量测量报告;
    第三处理子模块,被配置为当所述第二测量子模块测量到的所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器超时时,若不存在信号质量超过所述第一阈值的被测基站,则放弃向所述当前服务基站上报信号质量测量报告,若存在信号质量超过所述第一阈值的被测基站,则向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;
    第四处理子模块,被配置为当所述第二测量子模块测量到的所述第二被测基站的信号质量小于所述第二阈值且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
  16. 根据权利要求13或14所述的装置,其特征在于,所述确定上报模块还包括:
    第五处理子模块,被配置为当所述第一测量子模块测量的所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器超时时,向所述当前服务基站上报信号质量超过所述第一阈值的被测基站的信号质量测量报告;或者
    第六处理子模块,被配置为当所述第一测量子模块测量的所述第二被测基站的信号质量小于所述第一阈值,且所述测量计时器未超时时,将下一个被测基站作为所述第二被测基站,并转向执行所述对第二被测基站的信号质量进行测量的操作,直至所述测量计时器超时。
  17. 根据权利要求11所述的装置,其特征在于,所述装置还包括:
    接收模块,被配置为接收所述当前服务基站发送的配置信息,所述配置信息用于配置所述UAV上报信号质量测量报告时所基于的所述第一阈值、所述第二阈值和所述测量计时器的超时时长;
    确定模块,被配置为根据所述接收模块接收的所述配置信息确定所述第一阈值、所述第二阈值和所述测量计时器的超时时长。
  18. 根据权利要求11-17任一项所述的装置,其特征在于,所述装置还包括:
    重置模块,被配置为在所述确定上报模块确定是否向当前服务基站上报信号质量测量报告之后,重置所述测量计时器。
  19. 一种基站确定装置,其特征在于,应用于基站,所述装置包括:
    接收模块,被配置为接收无人机UAV上报的信号质量测量报告;
    确定模块,被配置为根据所述接收模块接收的所述信号质量测量报告确定目标基站。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    发送模块,被配置为向所述UAV发送配置信息,所述配置信息用于配置所述UAV上报所述信号质量测量报告时所基于的第一阈值、第二阈值和测量计时器的超时时长。
  21. 一种无人机UAV,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    对被测基站的信号质量进行测量;
    将所述被测基站的信号质量与第一阈值和第二阈值进行比较,所述第一阈值小于或等于所述第二阈值;
    根据比较结果和测量计时器是否超时,确定是否向当前服务基站上报信号质量测量报告。
  22. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收无人机UAV上报的信号质量测量报告;
    根据所述信号质量测量报告确定目标基站。
  23. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1-8任一项所述的测量报告上报方法的步骤。
  24. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求9或10所述的基站确定方法的步骤。
PCT/CN2018/087390 2018-05-17 2018-05-17 测量报告上报方法及装置、基站确定方法及装置和无人机 WO2019218326A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/087390 WO2019218326A1 (zh) 2018-05-17 2018-05-17 测量报告上报方法及装置、基站确定方法及装置和无人机
CN201880000675.2A CN108702646B (zh) 2018-05-17 2018-05-17 测量报告上报方法及装置、基站确定方法及装置和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/087390 WO2019218326A1 (zh) 2018-05-17 2018-05-17 测量报告上报方法及装置、基站确定方法及装置和无人机

Publications (1)

Publication Number Publication Date
WO2019218326A1 true WO2019218326A1 (zh) 2019-11-21

Family

ID=63841459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087390 WO2019218326A1 (zh) 2018-05-17 2018-05-17 测量报告上报方法及装置、基站确定方法及装置和无人机

Country Status (2)

Country Link
CN (1) CN108702646B (zh)
WO (1) WO2019218326A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460976B (zh) * 2019-09-23 2020-03-31 成都航空职业技术学院 一种无人机飞行监控方法及系统
CN114641021A (zh) * 2020-12-16 2022-06-17 维沃移动通信有限公司 移动性过程处理方法及相关设备
CN116107342B (zh) * 2023-03-08 2024-01-16 广州爱浦路网络技术有限公司 一种基于5gs的无人机飞行方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157632A1 (en) * 2000-06-26 2004-08-12 Hunzinger Jason F. Robust and efficient reacquisition after call release
CN102638840A (zh) * 2012-03-21 2012-08-15 新邮通信设备有限公司 长期演进中针对协作多点的无线资源管理测量方法和系统
CN104469869A (zh) * 2013-09-23 2015-03-25 中兴通讯股份有限公司 一种小小区切换方法和基站
CN105072643A (zh) * 2015-08-20 2015-11-18 中国联合网络通信集团有限公司 一种小区测量结果的上报方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867980B (zh) * 2009-04-17 2015-12-16 中兴通讯股份有限公司 测量报告上报的实现方法和装置
WO2017119275A1 (ja) * 2016-01-05 2017-07-13 日本電気株式会社 通信負荷推定システム、情報処理装置、方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157632A1 (en) * 2000-06-26 2004-08-12 Hunzinger Jason F. Robust and efficient reacquisition after call release
CN102638840A (zh) * 2012-03-21 2012-08-15 新邮通信设备有限公司 长期演进中针对协作多点的无线资源管理测量方法和系统
CN104469869A (zh) * 2013-09-23 2015-03-25 中兴通讯股份有限公司 一种小小区切换方法和基站
CN105072643A (zh) * 2015-08-20 2015-11-18 中国联合网络通信集团有限公司 一种小区测量结果的上报方法及装置

Also Published As

Publication number Publication date
CN108702646A (zh) 2018-10-23
CN108702646B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2019213909A1 (zh) 飞行路径信息的上报方法及装置、信息确定方法及装置
CN110389738B (zh) 一种投屏方法、装置、终端及存储介质
US11843446B2 (en) Method and device of controlling unmanned aerial vehicle to access network
WO2019080099A1 (zh) 控制无人机的方法及装置和无人机的操作方法及装置
WO2019218326A1 (zh) 测量报告上报方法及装置、基站确定方法及装置和无人机
CN109196794B (zh) 飞行路径的配置方法及装置、飞行方法及装置和基站
WO2022236639A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2019041111A1 (zh) 小区切换的测量参数的管理方法和装置
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2019080101A1 (zh) 信息接收、发送方法及装置、无人机和网络设备
US20220248346A1 (en) Methods and apparatuses for processing transmission power level information, and computer storage media
WO2019113757A1 (zh) 确定用户设备移动速度的方法及装置、基站和用户设备
US11770750B2 (en) Methods of obtaining and sending path information of unmanned aerial vehicle
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
US20210253245A1 (en) Method and device for reporting flight mode and method and device for changing control strategy
WO2023108428A1 (zh) 收发ncd-ssb的配置信息的方法、装置、通信设备及存储介质
WO2023108431A1 (zh) 执行预定操作的方法、装置、通信设备及存储介质
WO2023065080A1 (zh) 测距能力开放的方法、装置、通信设备及存储介质
WO2023225971A1 (zh) 配置信息接收、发送方法和装置、通信装置和存储介质
WO2023206039A1 (zh) 身份信息发送、配置信息发送方法和装置
WO2023206040A1 (zh) 能力信息发送、能力确定方法和装置
WO2022011557A1 (zh) 激活资源切换方法及装置、通信设备及存储介质
WO2024016194A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2023130442A1 (zh) 测量方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919153

Country of ref document: EP

Kind code of ref document: A1