WO2019218307A1 - 柔性电子装置及其弯折位置确定方法 - Google Patents

柔性电子装置及其弯折位置确定方法 Download PDF

Info

Publication number
WO2019218307A1
WO2019218307A1 PCT/CN2018/087316 CN2018087316W WO2019218307A1 WO 2019218307 A1 WO2019218307 A1 WO 2019218307A1 CN 2018087316 W CN2018087316 W CN 2018087316W WO 2019218307 A1 WO2019218307 A1 WO 2019218307A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bending
flexible
bending position
electronic device
Prior art date
Application number
PCT/CN2018/087316
Other languages
English (en)
French (fr)
Inventor
林源城
施文杰
苏伟盛
张亚楠
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880093835.2A priority Critical patent/CN112470207A/zh
Priority to PCT/CN2018/087316 priority patent/WO2019218307A1/zh
Publication of WO2019218307A1 publication Critical patent/WO2019218307A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present application relates to the field of flexible display technologies, and in particular, to a flexible electronic device and a method for determining a bending position thereof.
  • the embodiment of the present application discloses a flexible electronic device and a bending position determining method thereof to solve the above problems.
  • the embodiment of the present application discloses a flexible electronic device including a flexible substrate, a flexible display component, a resistive bending inductor, and a processor, wherein the flexible display component is stacked on the flexible substrate.
  • the resistive bending sensor is flexible and stacked in the flexible substrate, and the resistive bending sensor acquires a bending position of the flexible electronic device in real time and generates a corresponding bending position identification signal.
  • the processor determines a bending position according to the bending position identification signal, and adjusts a content display of the flexible display component according to the bending position.
  • the embodiment of the present application discloses a method for determining a bending position of a flexible electronic device, which is applied to a flexible electronic device.
  • the method for determining a bending position includes the steps of: obtaining a bending of the flexible electronic device in real time by a resistive bending sensor. Folding the position and generating a corresponding bending position identification signal; determining a bending position according to the bending position identification signal; and adjusting a content display of the flexible electronic device according to the bending position.
  • the flexible electronic device of the present application and the bending position determining method thereof can determine any bending position on the flexible electronic device in real time by the resistive bending sensor, so that the flexible electronic device can be according to the bending position Adjust the display content for a better user experience.
  • FIG. 1 is a schematic cross-sectional view of a flexible electronic device in a first embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a flexible electronic device in a second embodiment of the present application.
  • FIG 3 is a schematic cross-sectional view of a flexible electronic device in a third embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of a flexible electronic device in a fourth embodiment of the present application.
  • FIG. 5 is a partially enlarged schematic view of the flexible electronic device of FIG. 1 of the present application.
  • FIG. 6 is a schematic structural view of the flexible electronic device of FIG. 1 after being bent.
  • FIG. 7 is an equivalent circuit diagram of a resistive bending inductor according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an equivalent circuit for measuring the X coordinate of the resistive bending sensor according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an equivalent circuit for measuring the Y coordinate of the resistive bending sensor according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a resistive bending inductor, a flexible circuit board, and a thin film transistor array according to an embodiment of the present application.
  • FIG. 11 is a schematic flow chart of a method for determining a bending position applied to a flexible electronic device according to an embodiment of the present application.
  • Flexible electronic device 1 Flexible substrate 10
  • Flexible display assembly 30 Resistive bending sensor 50 processor 70 Upper substrate 11 Lower substrate 13 Anode layer 31 Luminous layer 32 Cathode layer 33 Flexible display assembly 30a Hole transport layer 34 Electronic transport layer 35 Flexible display assembly 30b Thin film transistor array 36 Flexible display assembly 30c First inorganic layer 37 Organic layer 38 Second inorganic layer 39 First conductive layer 51 Second conductive layer 53 Insulation space point 55 Cartesian coordinate system 2 X-axis direction twenty one Y-axis direction twenty three X-axis positive conductive strip 511 X-axis negative electrode strip 513 Y-axis positive conductive strip 531 Y-axis negative conductive strip 533 Flexible circuit board 90 First side 91
  • FIG. 1 is a schematic cross-sectional view of a flexible electronic device 1 according to a first embodiment of the present application.
  • the flexible electronic device 1 includes a flexible substrate 10, a flexible display assembly 30, a resistive bending sensor 50, and a processor 70.
  • the flexible display assembly 30 is stacked on the flexible substrate 10.
  • the flexible substrate 10 is used to provide support for the flexible display assembly 30.
  • the flexible display assembly 30 is for providing content display.
  • the resistive bending sensor 50 is flexible and laminated in the flexible substrate 10. When the flexible electronic device 1 is integrally bent, the resistive bending sensor 50 responds to the bending behavior of the flexible electronic device 1 and generates a corresponding bending position identification signal.
  • the processor 70 is electrically connected to the flexible display assembly 30 and the resistive bending sensor 50, respectively.
  • the processor 70 acquires a bending position identification signal generated by the resistive bending sensor 50, determines a bending position according to the bending position identification signal, and adjusts the flexible display component according to the bending position.
  • the content of 30 is displayed.
  • the processor 70 can determine the bending position on the flexible electronic device 1 in real time through the bending position identification signal generated by the resistive bending sensor 50, and control the bending position according to the bending position.
  • the flexible display component 30 adjusts its display content for a better user experience.
  • the flexible substrate 10 includes an upper substrate 11 and a lower substrate 13.
  • the flexible display assembly 30 is stacked on the upper substrate 11.
  • the upper substrate 11 is laminated on the lower substrate 13.
  • the resistive bending sensor 50 is laminated between the upper substrate 11 and the lower substrate 13 by a coating process.
  • the upper substrate 11 and the lower substrate 13 can better protect the resistive bending sensor 50 and between the resistive bending sensor 50 and the signal of the flexible display assembly 30. Will not interfere with each other.
  • the flexible substrate 10 may be, but not limited to, a polymer plastic substrate, a foil substrate, an ultra-thin glass substrate, a paper substrate, or the like.
  • the polymer plastic substrate may be, but not limited to, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polysulfone ether ( PES), polyethylene naphthalate (PEN), polyimide (PI) and other materials.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PET polyethylene terephthalate
  • PES polysulfone ether
  • PEN polyethylene naphthalate
  • PI polyimide
  • the flexible display assembly 30 includes an anode layer 31, a light emitting layer 32, and a cathode layer 33.
  • the anode layer 31 is laminated on the flexible substrate 10.
  • the anode layer 31 is laminated on the upper substrate 11 of the flexible substrate 10.
  • the light emitting layer 32 is laminated on the anode layer 31.
  • the cathode layer 33 is laminated on the light-emitting layer 32.
  • the anode layer 31 is generally made of a conductive material having a high work function and good light transmittance.
  • the anode layer 31 is a metal conductive film made of indium tin oxide (ITO).
  • the luminescent layer 32 is typically prepared by doping a fluorescent dopant with a fluorescent dopant.
  • the cathode layer 33 is generally made of an organic metal having a low work function.
  • the cathode layer 33 is an organic thin film metal electrode prepared by an evaporation method.
  • the principle of the light-emitting display assembly 30 is: applying a direct current positive voltage of 2 to 10 V on the anode layer 31, the voltage of the cathode layer 33 is 0 V, that is, grounding, and the anode layer 31 generates an empty space.
  • the electrons generated by the holes and the cathode layer 33 move toward the other side, respectively, and meet at the light-emitting layer 32.
  • energy excitons are generated, thereby exciting the light-emitting molecules to eventually generate visible light.
  • FIG. 2 is a schematic cross-sectional view of the flexible electronic device 1 in the second embodiment of the present application.
  • the flexible display assembly 30a shown in FIG. 2 is similar to the flexible display assembly 30 shown in FIG. 1, except that the flexible display assembly 30a further includes a surface between the anode layer 31 and the luminescent layer 32.
  • the hole transport layer 34, and the electron transport layer 35 disposed between the light emitting layer 32 and the cathode layer 33 to improve luminous efficiency. Since the mobility of holes in the anode layer 31 and the mobility of electrons in the cathode layer 33 are different, the injection of holes and electrons in the light-emitting layer 32 is unbalanced, and the hole transport layer 34 adopts a class.
  • the flexible display unit 30a Made of an aromatic amine compound, which has good thermal stability, can help the holes generated by the anode layer 31 to move to the light-emitting layer 32; the electron transport layer 35 is made of a fluorescent dye compound, and its thermal stability and surface The stability is good, and the electrons released by the cathode layer 33 can be smoothly transmitted to the light-emitting layer 32. Thereby, the luminous efficiency of the flexible display unit 30a can be improved.
  • FIG. 3 is a schematic cross-sectional view of the flexible electronic device 1 in the third embodiment of the present application.
  • the flexible display assembly 30b shown in FIG. 3 is similar to the flexible display assembly 30a shown in FIG. 2, except that in the present embodiment, the flexible display assembly 30b is in an active drive mode.
  • the flexible display assembly 30b further includes a thin film transistor array 36 disposed between the flexible substrate 10 and the anode layer 31, each of the thin film transistor arrays 36 Corresponding to a pixel in the light-emitting layer 32, when a corresponding pixel in the light-emitting layer 32 needs to be lit, the thin film transistor corresponding to the pixel in the thin film transistor array 36 is turned on to drive the pixel, and Continuous illumination.
  • the above active driving method does not need to scan, the power supply current is constant, high peak current is not required, and power consumption is lower.
  • FIG. 4 is a schematic cross-sectional view of the flexible electronic device 1 in the fourth embodiment of the present application.
  • the flexible display assembly 30c shown in Figure 4 is similar to the flexible display assembly 30b shown in Figure 3. The difference is that, in this embodiment, the flexible display component 30c further includes a first inorganic layer 37, an organic layer 38, and a second inorganic layer 39.
  • the first inorganic layer 37 is laminated on the side of the cathode layer 33 facing away from the anode layer 31.
  • the organic layer 38 is stacked on the side of the first inorganic layer 37 facing away from the anode layer 31.
  • the second inorganic layer 39 is disposed on a side of the organic layer 38 that faces away from the anode layer 31.
  • the first inorganic layer 37, the organic layer 38, and the second inorganic layer 39 are encapsulation layers of the flexible display assembly 30c for protecting the flexible display assembly 30c.
  • the flexible display component 30 includes other layers, such as a hole injection layer, an electron injection layer, and the like, which are not limited herein.
  • the resistive bending sensor 50 is substantially equal in size to the flexible display assembly 30, and the resistive bending sensor 50 is adapted to the shape of the flexible display assembly 30.
  • the resistive bending sensor 50 can thus more accurately detect the bending of the flexible display assembly 30 at any position and generate a corresponding bending position identification signal.
  • the processor 70 determines a bending position based on the bending position identification signal, and adjusts a content display of the flexible display assembly 30 according to the bending position.
  • the resistive bending sensor 50 is a resistive sensor.
  • the resistive bending sensor 50 is applied with a constant voltage.
  • the resistive bending sensor 50 is different in magnitude according to the bending position of the bending sensor 50.
  • the processor 70 is configured according to the magnitude of the output voltage. Determine the bending position.
  • the resistive bending sensor 50 may be a four-wire resistive sensor, a five-wire resistive sensor, a seven-wire resistive sensor, or an eight-wire resistive sensor. In this embodiment, the resistive bending sensor 50 is a four-wire resistive sensor.
  • the resistive bending sensor 50 includes a first conductive layer 51, a second conductive layer 53, and the first conductive layer 51 and the second conductive layer.
  • a plurality of insulating space points 55 are provided between 53 and spaced apart.
  • the first conductive layer 51 is disposed on a side of the second substrate layer 13 adjacent to the first substrate layer 11.
  • the second conductive layer 53 is disposed on a side of the first substrate layer 11 adjacent to the second substrate layer 13.
  • the insulating space point 55 corresponding to the position of the resistive bending sensor 50 is pressed and deformed, so that the first conductive layer 51 and the second conductive layer 53 are a position between adjacent two insulating space points 55 in the position is turned on and a bending position identification signal is generated, and the processor 70 determines a bending position according to the bending position identification signal, and according to the bending The content display of the flexible display assembly 30 is adjusted in position.
  • the insulating space point 55 of the corresponding position of the resistive bending sensor 50 is pressed, so that the first conductive layer 51 and the first The corresponding positions of the two conductive layers 53 are in contact with each other and are turned on.
  • the resistive bending sensor 50 is applied with a constant voltage. Therefore, the bending contact point of the resistive bending sensor 50 can be determined according to the magnitude of the output voltage of the corresponding position of the resistive bending sensor 50. That is, the bent position of the flexible electronic device 1.
  • the constant-angle coordinate system 2 is specifically defined, including the X-axis direction 21 and the Y-axis direction 23.
  • the X-axis direction 21 and the Y-axis direction 23 are perpendicular to each other.
  • the flexible electronic device 1 has a rectangular shape as a whole, and the two opposite first sides of the flexible electronic device 1 are parallel to the X-axis direction 21, and the other two opposite second sides are The Y-axis direction 23 is parallel. It can be understood that in other embodiments, the flexible electronic device 1 can also have other shapes, which are not limited herein.
  • the opposite sides of the first conductive layer 51 are respectively disposed with an X-axis positive electrode strip 511 and an X-axis negative electrode conductive strip 513 along the X-axis direction 21, and the second conductive layer 53 is opposite.
  • the Y-axis positive conductive strip 531 and the Y-axis negative conductive strip 533 are disposed on the other two sides in the Y-axis direction 23, respectively.
  • the X-axis positive conductive strip 511, the X-axis negative conductive strip 513, the Y-axis positive conductive strip 531, and the Y-axis negative conductive strip 533 are electrically connected to the processor 70 through leads, respectively.
  • the processor 70 when a constant voltage is applied between the X-axis positive conductive strip 511 and the X-axis negative conductive strip 513 and the X-axis negative conductive strip 513 is grounded, the processor 70 is configured according to the The voltage between the X-axis positive conductive strip 511 and the Y-axis positive conductive strip 531 determines the X-axis coordinate of the bent position.
  • the X-axis positive electrode strip 511 and the X-axis negative electrode conductive strip 513 and the X-axis negative electrode conductive strip 513 is grounded, the X-axis positive conductive strip 511 and the The X-axis negative electrode conductive strips 513 are electrically connected to each other and form a stable electric field, and the first conductive layer 51 corresponds to a large resistance, so that the voltage on the first conductive layer 51 is uniform along the Y-axis direction 23. decline.
  • the contact point divides the first conductive layer 51 into two small resistors, that is, R X+ , R X- .
  • the second conductive layer 53 also corresponds to a large resistance, and the contact point also divides the second conductive layer 53 into two small resistors along the X-axis direction 21, namely, R Y+ , R Y- . Since the voltage has no voltage drop across the second conductive layer 53, the voltage across the R X+ can be measured by the R Y+ lead and the coordinates of the X axis can be calculated from the voltage.
  • the processor 70 when a constant voltage is applied between the Y-axis positive conductive strip 531 and the Y-axis negative conductive strip 533, the processor 70 is configured according to the Y-axis positive conductive strip 531 and the X-axis positive electrode.
  • the voltage between the conductive strips 511 determines the Y-axis coordinate of the bend position.
  • the Y-axis positive conductive strip 531 and the Y-axis negative conductive strip 533 are electrically connected.
  • the second conductive layer 53 When a stable electric field is formed, the second conductive layer 53 also corresponds to a large resistance, and the voltage on the second conductive layer 53 is uniformly lowered along the X-axis direction 21.
  • the contact point divides the second conductive layer 53 into the X-axis direction 21
  • Two small resistors namely R Y+ , R Y- . Since the voltage has no voltage drop across the first conductive layer 51, the voltage across the R Y+ can be measured by the R X+ lead, and the coordinates of the Y axis can be calculated from the voltage across the R Y+ .
  • the above operations of measuring and calculating the X-axis coordinate and the Y-axis coordinate are performed in turn, that is, the driving voltage is first increased between the X-axis positive electrode strip 511 and the X-axis negative electrode strip 513 and the X is measured.
  • the axis coordinates are further increased by a driving voltage between the Y-axis positive conductive strip 531 and the Y-axis negative conductive strip 533 and the Y-axis coordinate is measured.
  • the bending position should include a plurality of contact points, and the plurality of contact points are connected to form a bending line.
  • the flexible electronic device 1 further includes a flexible circuit board 90 disposed adjacent to the flexible display assembly 20, and the processor 70 is disposed on the flexible circuit board. 90, the first side 91 of the flexible circuit board 90 is connected to the line of the thin film transistor array 36, and the second side 93 of the flexible circuit board 90 is connected to the line of the resistive bending sensor 50.
  • the flexible circuit board 90 is provided with a second lap joint 911 on the first surface 91 and a first lap joint 931 on the second surface 93, the second lap joint 911 and the The lines of the thin film transistor array 36 are overlapped, and the first lap joint 931 is overlapped with the line of the resistive bending sensor 50. Further, since the thin film transistor array 36 needs to transmit more signals than the signals required to be transmitted by the resistive bending sensor 50, the size of the second lap joint 911 is larger than the size of the first lap joint 931 to provide more Signal channel.
  • FIG. 11 is a schematic flowchart diagram of a method for determining a bending position according to an embodiment of the present application.
  • the bending position determining method is applied to the aforementioned flexible electronic device 1, and the order of execution is not limited to the order shown in FIG.
  • the method includes the steps of:
  • step 1110 the resistive bending sensor 50 acquires the bending position of the flexible electronic device 1 in real time and generates a corresponding bending position identification signal.
  • Step 1120 Determine a bending position according to the bending position identification signal.
  • the resistive bending sensor 50 is a resistive sensor.
  • the resistive bending sensor 50 is applied with a constant voltage.
  • the resistive bending sensor 50 has a different voltage output according to the bending position thereof, and the processor 70 bends according to the resistance type.
  • the magnitude of the output voltage of the inductor 50 at the bent position determines the bend position.
  • the insulating space point 55 corresponding to the position of the resistive bending sensor 50 is extrusion-deformed, so that the first conductive layer 51 and the second conductive layer 53 is electrically connected at a position between adjacent two insulating space points 55 at the position and generates a bending position identification signal, and the processor 70 determines the bending position according to the bending position identification signal, and according to the The bending position adjusts the content display of the flexible display assembly 30.
  • the bending position identification signal includes an output voltage, and when the resistive bending sensor 50 is applied with a constant voltage, the bending position of the resistive bending sensor 50 is different when the output voltage is The size is different; the step of determining the bending position according to the bending position identification signal is specifically: determining the bending position according to the magnitude of the output voltage in the bending position identification signal.
  • the resistive bending inductor includes a first conductive layer 51, a second conductive layer 53, and a plurality of insulating space points disposed between the first conductive layer 51 and the second conductive layer 53 and spaced apart
  • An X-axis positive electrode strip 511 and an X-axis negative electrode strip 513 are disposed on the two sides of the first conductive layer 51 along the X-axis direction 21, and the other two sides of the second conductive layer 53 are respectively along the Y-axis.
  • a Y-axis positive conductive strip 531 and a Y-axis negative conductive strip 533 are disposed in the direction. The steps of determining the output voltage are as follows:
  • the voltage is determined according to a voltage between the X-axis positive conductive strip 511 and the Y-axis positive conductive strip 531.
  • the X-axis coordinate of the bend position is determined according to a voltage between the X-axis positive conductive strip 511 and the Y-axis positive conductive strip 531.
  • the bending is determined according to a voltage between the Y-axis positive conductive strip 531 and the X-axis positive conductive strip 511.
  • the Y coordinate of the position is determined according to a voltage between the Y-axis positive conductive strip 531 and the X-axis positive conductive strip 511. The Y coordinate of the position.
  • Step 1130 adjusting the content display of the flexible electronic device 1 according to the bending position.
  • the processor 70 adjusts the content display of the flexible electronic device 1 according to the bending position. For example, the processor 70 adjusts a split screen or the like according to the bending position.
  • the flexible electronic device of the present application and the method for determining the bending position thereof can determine the bending of the flexible electronic device at any position in real time through the resistive bending sensor, so that the flexible electronic device can adjust the display according to the bending position. Content, with a better user experience.
  • the processor 70 may be a central processing unit (CPU), or may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like, the processor being a control center of the flexible electronic device 1, connecting the entire flexible electronic device with various interfaces and lines Various parts of the device 1.
  • the flexible electronic device 1 further includes a memory (not shown) in which various data of the flexible electronic device 1 can be stored.
  • the memory is specifically operable to store the computer program and/or module, the processor 70 by running or executing a computer program and/or module stored in the memory, and recalling data stored in the memory, Various functions of the flexible electronic device 1 are achieved.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for a plurality of functions (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored. Data created based on the use of the mobile phone (such as audio data, phone book, etc.).
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD) ) cards, flash cards, multiple disk storage devices, flash memory devices, or other volatile solid-state storage devices.
  • a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD) cards, flash cards, multiple disk storage devices, flash memory devices, or other volatile solid-state storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开一种柔性电子装置,包括柔性衬底、柔性显示组件、电阻式弯折感应器和处理器,所述柔性显示组件层叠设置在所述柔性衬底上,所述电阻式弯折感应器呈柔性并层叠设置在所述柔性衬底中,所述电阻式弯折感应器实时的获取所述柔性电子装置的弯折位置并产生对应的弯折位置识别信号,所述处理器根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所述柔性显示组件的内容显示。本申请还公开一种柔性电子装置的弯折位置确定方法。本申请通过所述电阻式弯折感应器实时的获取所述柔性电子装置在任意位置的弯折位置,所述处理器从而能够根据所述弯折位置调整所述柔性电子装置的内容显示。

Description

柔性电子装置及其弯折位置确定方法 技术领域
本申请涉及柔性显示技术领域,尤其涉及柔性电子装置及其弯折位置确定方法。
背景技术
目前市面上仅有曲面固定的柔性OLED显示器,并没有真正意义上的任意弯折的柔性OLED显示器。对开发可任意弯折的柔性OLED显示器而言,需获得其弯折位置才可以进行相应的内容显示及触控的开启和关闭,因此弯折位置的确定至关重要,否则会出现误触情况。然而,现有技术无法确定柔性OLED显示器的任意弯折的弯折位置。
发明内容
本申请实施例公开一种柔性电子装置及其弯折位置确定方法,以解决上述问题。
本申请实施例公开一种柔性电子装置,所述柔性电子装置包括柔性衬底、柔性显示组件、电阻式弯折感应器和处理器,所述柔性显示组件层叠设置在所述柔性衬底上,所述电阻式弯折感应器呈柔性并层叠设置在所述柔性衬底中,所述电阻式弯折感应器实时的获取所述柔性电子装置的弯折位置并产生对应的弯折位置识别信号,所述处理器根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所述柔性显示组件的内容显示。
本申请实施例公开一种柔性电子装置的弯折位置确定方法,应用于一柔性电子装置,所述弯折位置确定方法包括步骤:电阻式弯折感应器实时的获取所述柔性电子装置的弯折位置并产生对应的弯折位置识别信号;根据所述弯折位置识别信号确定弯折位置;及根据所述弯折位置调整所述柔性电子装置的内容显示。
本申请的柔性电子装置及其弯折位置确定方法,能够通过所述电阻式弯折感应器实时的确定所述柔性电子装置上的任意弯折位置,从而所述柔性电子装 置可以根据弯折位置调整显示内容,具有更好的用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例中的柔性电子装置的截面结构示意图。
图2为本申请第二实施例中的柔性电子装置的截面结构示意图。
图3为本申请第三实施例中的柔性电子装置的截面结构示意图。
图4为本申请第四实施例中的柔性电子装置的截面结构示意图。
图5为本申请图1中的柔性电子装置的局部放大示意图。
图6为本申请图1中的柔性电子装置弯折后的结构示意图。
图7为本申请一实施例中的电阻式弯折感应器的等效电路示意图。
图8为本申请一实施例中的电阻式弯折感应器测X坐标的等效电路示意图。
图9为本申请一实施例中的电阻式弯折感应器测Y坐标的等效电路示意图。
图10为本申请一实施例中的电阻式弯折感应器、柔性电路板、薄膜晶体管阵列的结构示意图。
图11为本申请一实施例中应用于柔性电子装置的弯折位置确定方法的流程示意图。
主要元件符号说明
柔性电子装置 1
柔性衬底 10
柔性显示组件 30
电阻式弯折感应器 50
处理器 70
上衬底 11
下衬底 13
阳极层 31
发光层 32
阴极层 33
柔性显示组件 30a
空穴传输层 34
电子传输层 35
柔性显示组件 30b
薄膜晶体管阵列 36
柔性显示组件 30c
第一无机层 37
有机层 38
第二无机层 39
第一导电层 51
第二导电层 53
绝缘空间点 55
直角坐标系 2
X轴方向 21
Y轴方向 23
X轴正极导电条 511
X轴负极导电条 513
Y轴正极导电条 531
Y轴负极导电条 533
柔性电路板 90
第一面 91
第二面 93
第二搭接头 911
第一搭接头 931
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请第一实施例提供的柔性电子装置1的截面结构示意图。所述柔性电子装置1包括柔性衬底10、柔性显示组件30、电阻式弯折感应器50和处理器70。所述柔性显示组件30层叠设置在所述柔性衬底10上。所述柔性衬底10用于为所述柔性显示组件30提供支撑。所述柔性显示组件30用于提供内容显示。所述电阻式弯折感应器50呈柔性并层叠设置在所述柔性衬底10中。所述柔性电子装置1整体弯折时,所述电阻式弯折感应器50响应所述柔性电子装置1的弯折行为并产生对应的弯折位置识别信号。所述处理器70分别与所述柔性显示组件30和所述电阻式弯折感应器50电性连接。所述处理器70获取所述电阻式弯折感应器50产生的弯折位置识别信号,并根据所述弯折位置识别信号确定弯折位置,以及根据所述弯折位置调整所述柔性显示组件30的内容显示。
从而,所述处理器70能够通过所述电阻式弯折感应器50产生的弯折位置识别信号实时地确定所述柔性电子装置1上的弯折位置,并根据所述弯折位置控制所述柔性显示组件30调整其显示内容,具有更好的用户体验。
进一步地,所述柔性衬底10包括上衬底11和下衬底13。所述柔性显示组件30层叠设置在所述上衬底11上。所述上衬底11层叠设置在所述下衬底13上。所述电阻式弯折感应器50通过涂布工艺层叠设置在所述上衬底11和所述下衬底13之间。
从而,所述上衬底11和下衬底13能够更好的保护所述电阻式弯折感应器50,并使得所述电阻式弯折感应器50与所述柔性显示组件30的信号之间不会相互干扰。
具体地,所述柔性衬底10可以是但不限于聚合物塑料衬底、金属薄片衬底、超薄玻璃衬底及纸衬底等。其中,所述聚合物塑料衬底可以由但不限于聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)、聚砜醚(PES)、聚对萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)等材料制成。
具体地,所述柔性显示组件30包括阳极层31、发光层32和阴极层33。所述阳极层31层叠设置在所述柔性衬底10上。具体地,本实施例中,所述阳极层31层叠设置在所述柔性衬底10的上衬底11上。所述发光层32层叠设置在所述阳极层31上。所述阴极层33层叠设置在所述发光层32上。
其中,所述阳极层31一般采用具有高功函数和透光性好的导电材料制成,例如,所述阳极层31为采用铟锡氧化物(ITO)制成的金属导电薄膜。所述发光层32一般采用在荧光基质材料中掺杂荧光掺杂剂来制备。所述阴极层33一般采用低功函数的有机金属制成,例如,所述阴极层33为使用蒸镀法制备的有机薄膜金属电极。
其中,所述柔性显示组件30的发光原理为:在所述阳极层31上施加2~10V的直流正电压,所述阴极层33的电压为0V,即接地,所述阳极层31产生的空穴和所述阴极层33产生的电子分别向对方移动,并在所述发光层32相遇。当空穴和电子在所述发光层32相遇时,产生能量激子,从而激发发光分子最终产生可见光。
请一并参考图2,图2为本申请第二实施例中的柔性电子装置1的截面结构示意图。图2中所示的柔性显示组件30a与图1中所示的柔性显示组件30相似,不同的是,所述柔性显示组件30a还包括设置在所述阳极层31和所述发光层32之间的空穴传输层34,以及设置在所述发光层32和所述阴极层33之间的电子传输层35,以提高发光效率。由于空穴在所述阳极层31的迁移率和电子在所述阴极层33的迁移率不同,导致所述发光层32中空穴和电子的注入不平衡,所述空穴传输层34采用一类芳香胺化合物制成,其热稳定性好, 可以帮助所述阳极层31产生的空穴移动至所述发光层32;所述电子传输层35采用荧光染料化合物制成,其热稳定性和表面稳定性好,可以帮助所述阴极层33释放的电子能够顺利传输到所述发光层32。从而可以提高所述柔性显示组件30a的发光效率。
请一并参考图3,图3为本申请第三实施例中的柔性电子装置1的截面结构示意图。图3中所示的柔性显示组件30b与图2中所示的柔性显示组件30a相似,不同的是,本实施例中,所述柔性显示组件30b采用主动驱动方式。因此,所述柔性显示组件30b还包括薄膜晶体管阵列36,所述薄膜晶体管阵列36设置在所述柔性衬底10和所述阳极层31之间,所述薄膜晶体管阵列36中的每个薄膜晶体管对应一个所述发光层32中的像素,所述发光层32中的对应像素需要点亮时,所述薄膜晶体管阵列36中对应该像素的所述薄膜晶体管被打开以驱动该像素,并使之连续发光。相对于无源驱动方式而言,上述主动驱动方式无须扫描,供电电流恒定,不需很高的峰值电流,功耗更低。
请一并参考图4,图4为本申请第四实施例中的柔性电子装置1的截面结构示意图。图4中所示的柔性显示组件30c与图3中所示的柔性显示组件30b相似。不同的是,本实施例中,所述柔性显示组件30c还包括第一无机层37、有机层38和第二无机层39。所述第一无机层37层叠设置在所述阴极层33背离所述阳极层31的一侧。所述有机层38层叠设置在所述第一无机层37背离所述阳极层31的一侧。所述第二无机层39设置在所述有机层38背离所述阳极层31的一侧。其中,所述第一无机层37、有机层38和第二无机层39为所述柔性显示组件30c的封装层,用于保护所述柔性显示组件30c。
可理解,在其它实施例中,所述柔性显示组件30包括其它层,例如,空穴注入层、电子注入层等,此处不做限制。
进一步地,本实施例中,所述电阻式弯折感应器50与所述柔性显示组件30的尺寸大致相等,所述电阻式弯折感应器50与所述柔性显示组件30的形状也相适应,所述电阻式弯折感应器50因而能够更精确的检测到所述柔性显示组件30在任意位置处的弯折,并产生对应的弯折位置识别信号。所述处理器70根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所 述柔性显示组件30的内容显示。
具体地,本实施例中,所述电阻式弯折感应器50为电阻式传感器。所述电阻式弯折感应器50被施加恒定的电压,所述电阻式弯折感应器50根据其弯折位置的不同所输出的电压大小不同,所述处理器70根据所述输出电压的大小确定所述弯折位置。
具体地,所述电阻式弯折感应器50可以是四线式电阻式传感器、五线式电阻式传感器、七线式电阻式传感器或者八线式电阻式传感器等。本实施例中,所述电阻式弯折感应器50为四线式电阻式传感器。
具体地,请一并参考图1和图5,所述电阻式弯折感应器50包括第一导电层51、第二导电层53和位于所述第一导电层51和所述第二导电层53之间且间隔设置的若干绝缘空间点55。具体地,所述第一导电层51设置在所述第二衬底层13邻近所述第一衬底层11的一侧上。所述第二导电层53设置在所述第一衬底层11邻近所述第二衬底层13的一侧上。所述柔性电子装置1整体弯折时,所述电阻式弯折感应器50对应位置的绝缘空间点55被挤压形变,使得所述第一导电层51和所述第二导电层53在该位置上的相邻两个绝缘空间点55之间的位置上导通并产生弯折位置识别信号,所述处理器70根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所述柔性显示组件30的内容显示。
请一并参考图6,所述柔性电子装置1弯折时,所述电阻式弯折感应器50的对应位置的绝缘空间点55被挤压,使得所述第一导电层51和所述第二导电层53的对应位置相接触而导通。所述电阻式弯折感应器50被施加恒定的电压,因而,可根据所述电阻式弯折感应器50对应位置的输出电压的大小确定所述电阻式弯折感应器50的弯折接触点,即所述柔性电子装置1的弯折位置。
为方便描述,特定义一直角坐标系2,包括X轴方向21和Y轴方向23。其中,所述X轴方向21和所述Y轴方向23相互垂直。
本实施例中,所述柔性电子装置1整体呈长方形状,所述柔性电子装置1的两条相对的第一边与所述X轴方向21向平行,另外两条相对的第二边与所述Y轴方向23相平行。可理解,在其它实施例中,所述柔性电子装置1还可以呈其它形状,此处不做限制。
请一并参考图7,所述第一导电层51相对的两边上分别沿X轴方向21上设置有X轴正极导电条511和X轴负极导电条513,所述第二导电层53的相对的另外两边上分别沿Y轴方向23上设置有Y轴正极导电条531和Y轴负极导电条533。所述X轴正极导电条511、X轴负极导电条513、Y轴正极导电条531和Y轴负极导电条533分别通过引线与所述处理器70电性连接。
请一并参考图8,所述X轴正极导电条511和所述X轴负极导电条513之间被施加恒定电压并且所述X轴负极导电条513接地时,所述处理器70根据所述X轴正极导电条511与所述Y轴正极导电条531之间的电压确定所述弯折位置的X轴坐标。具体地,当所述X轴正极导电条511和所述X轴负极导电条513之间被施加恒定电压并且所述X轴负极导电条513接地时,所述X轴正极导电条511和所述X轴负极导电条513之间导通并形成稳定的电场,所述第一导电层51相当于一个大电阻,从而,所述第一导电层51上的电压沿着所述Y轴方向23均匀下降。当所述第一导电层51与所述第二导电层53在某一位置弯折而在一接触点接触时,所述接触点将所述第一导电层51分成两个小电阻,即R X+、R X-。所述第二导电层53也相当于一个大电阻,所述接触点还将所述第二导电层53沿着X轴方向21分成两个小电阻,即R Y+、R Y-。由于电压在所述第二导电层53上没有压降,因而,可通过R Y+引线测量所述R X+两端的电压,并根据所述电压计算所述X轴的坐标。
请一并参考图9,所述Y轴正极导电条531和Y轴负极导电条533之间被施加恒定电压时,所述处理器70根据所述Y轴正极导电条531与所述X轴正极导电条511之间的电压确定所述弯折位置的Y轴坐标。具体地,当所述Y轴正极导电条531和所述Y轴负极导电条533之间被施加恒定电压时,所述Y轴正极导电条531和所述Y轴负极导电条533之间导通并形成稳定的电场时,所述第二导电层53也相当于一个大电阻,所述第二导电层53上的电压沿着所述X轴方向21均匀下降。当所述第一导电层51与所述第二导电层53在某一位置因弯折而在一接触点接触时,所述接触点将所述第二导电层53沿着X轴方向21分成两个小电阻,即R Y+、R Y-。由于电压在所述第一导电层51上没有压降,因而,可通过R X+引线测量所述R Y+两端的电压,并根据所述R Y+两端的电压计算所述Y轴的坐标。
可理解,上述测量并计算X轴坐标和Y轴坐标的操作是轮流进行的,即先向所述X轴正极导电条511和所述X轴负极导电条513之间增加驱动电压并测得X轴坐标,再向所述Y轴正极导电条531和所述Y轴负极导电条533之间增加驱动电压并测得Y轴坐标。可理解,实际测量并计算弯折位置的过程中,所述弯折位置应该包括多个接触点,且多个接触点相连成一条弯折线。
进一步地,请一并参考图10,所述柔性电子装置1还包括柔性电路板90,所述柔性电路板90邻近所述柔性显示组件20设置,所述处理器70设置在所述柔性电路板90上,所述柔性电路板90的第一面91与所述薄膜晶体管阵列36的线路连接,所述柔性电路板90的第二面93与所述电阻式弯折感应器50的线路连接。
进一步地,所述柔性电路板90在所述第一面91上设置第二搭接头911以及在所述第二面93上设置有第一搭接头931,所述第二搭接头911与所述薄膜晶体管阵列36的线路搭接,所述第一搭接头931与所述电阻式弯折感应器50的线路搭接。进一步地,由于薄膜晶体管阵列36所需传递的信号多于电阻式弯折感应器50所需传递的信号,因而第二搭接头911的尺寸大于第一搭接头931的尺寸,以提供更多的信号通道。
请一并参阅图11,图11为本申请一实施例中的弯折位置确定方法的流程示意图。所述弯折位置确定方法应用于前述的柔性电子装置1中,执行顺序并不限于图11所示的顺序。方法包括步骤:
步骤1110,电阻式弯折感应器50实时获取所述柔性电子装置1的弯折位置并产生对应的弯折位置识别信号。
步骤1120,根据所述弯折位置识别信号确定弯折位置。
具体地,本实施例中,所述电阻式弯折感应器50为电阻式传感器。所述电阻式弯折感应器50被施加恒定的电压,所述电阻式弯折感应器50根据其弯折位置的不同所输出的电压大小不同,所述处理器70根据所述电阻式弯折感应器50在所述弯折位置的输出电压的大小确定所述弯折位置。
具体地,所述柔性电子装置1整体弯折时,所述电阻式弯折感应器50对应位置的绝缘空间点55被挤压变形,使得所述第一导电层51和所述第二导电层53在该位置上的相邻两个绝缘空间点55之间的位置上导通并产生弯折位置 识别信号,所述处理器70根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所述柔性显示组件30的内容显示。
进一步地,所述弯折位置识别信号中包括输出电压,所述电阻式弯折感应器50被施加恒定电压时,所述电阻式弯折感应器50的弯折位置不同时所述输出电压的大小不同;步骤“根据所述弯折位置识别信号确定弯折位置”具体为:根据所述弯折位置识别信号中的输出电压的大小确定所述弯折位置。
进一步地,所述电阻式弯折感应器包括第一导电层51、第二导电层53和位于所述第一导电层51和所述第二导电层53之间且间隔设置的若干绝缘空间点55,所述第一导电层51的两侧分别沿X轴方向21上设置有X轴正极导电条511和X轴负极导电条513,所述第二导电层53的另外两侧分别沿Y轴方向上设置有Y轴正极导电条531和Y轴负极导电条533。所述输出电压的确定步骤如下:
所述X轴正极导电条511和所述X轴负极导电条513之间被施加恒定电压时,根据所述X轴正极导电条511与所述Y轴正极导电条531之间的电压确定所述弯折位置的X轴坐标。
所述Y轴正极导电条531和Y轴负极导电条533之间被施加恒定电压时,根据所述Y轴正极导电条531与所述X轴正极导电条511之间的电压确定所述弯折位置的Y轴坐标。
步骤1130,根据所述弯折位置调整所述柔性电子装置1的内容显示。
具体地,所述处理器70根据所述弯折位置调整所述柔性电子装置1的内容显示,例如,所述处理器70根据弯折位置调整分屏等。
本申请的柔性电子装置及其弯折位置确定方法,能够通过电阻式弯折感应器实时的确定所述柔性电子装置任意位置上的弯折,从而所述柔性电子装置可以根据弯折位置调整显示内容,具有更好的用户体验。
其中,所述处理器70可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等,所述处理器是所述柔性电子装置1的控制中心,利用各种接口和线路连接整个所述柔性电子装置1的各个部分。
可理解,所述柔性电子装置1还包括存储器(图未示),所述柔性电子装置1的各种数据都可存储在所述存储器中。其中,所述存储器具体可用于存储所述计算机程序和/或模块,所述处理器70通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述柔性电子装置1的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、多个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,所述存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、多个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
以上是本申请的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (15)

  1. 一种柔性电子装置,其特征在于,所述柔性电子装置包括柔性衬底、柔性显示组件、电阻式弯折感应器和处理器,所述柔性显示组件层叠设置在所述柔性衬底上,所述电阻式弯折感应器呈柔性并层叠设置在所述柔性衬底中,所述电阻式弯折感应器实时获取所述柔性电子装置的弯折位置并产生对应的弯折位置识别信号,所述处理器根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所述柔性显示组件的内容显示。
  2. 如权利要求1所述的柔性电子装置,其特征在于,所述柔性衬底包括上衬底和下衬底,所述柔性显示组件层叠设置在所述上衬底上,所述上衬底位于所述下衬底之上,所述电阻式弯折感应器层叠设置在所述上衬底和所述下衬底之间。
  3. 如权利要求1所述的柔性电子装置,其特征在于,所述电阻式弯折感应器为电阻式传感器。
  4. 如权利要求3所述的柔性电子装置,其特征在于,所述电阻式弯折感应器被施加恒定的电压,所述电阻式弯折感应器根据其弯折位置的不同所输出的电压大小不同,所述处理器根据所述电阻式弯折感应器在所述弯折位置的输出电压的大小确定所述弯折位置。
  5. 如权利要求3所述的柔性电子装置,其特征在于,所述电阻式弯折感应器包括第一导电层、第二导电层和位于所述第一导电层和所述第二导电层之间且间隔设置的若干绝缘空间点,所述柔性电子装置弯折时,所述电阻式弯折感应器对应位置的绝缘空间点被挤压变形,使得所述第一导电层和所述第二导电层在该位置上的相邻两个绝缘空间点之间的位置上导通并产生弯折位置识别信号,所述处理器根据所述弯折位置识别信号确定弯折位置,并根据所述弯折位置调整所述柔性显示组件的内容显示。
  6. 如权利要求5所述的柔性电子装置,其特征在于,所述第一导电层的两侧分别沿X轴方向上设置有X轴正极导电条和X轴负极导电条,所述第二导电层的另外两侧分别沿Y轴方向上设置有Y轴正极导电条和Y轴负极导电条,所述X轴正极导电条和所述X轴负极导电条之间被施加恒定电压时,所述处理器根据所述X轴正极导电条与所述Y轴正极导电条之间的电压确定所述弯折位置的X轴坐标,所述Y轴正极导电条和Y轴负极导电条之间被施加恒定电压时,所述处理器根据所述Y轴正极导电条与所述X轴正极导电条之间的电压确定所述弯折位置的Y轴坐标。
  7. 如权利要求1所述的柔性电子装置,其特征在于,所述柔性显示组件至少包括阳极层、发光层和阴极层,所述阳极层层叠设置在所述柔性衬底上,所述发光层层叠设置在所述阳极层上,所述阴极层层叠设置在所述发光层上。
  8. 如权利要求7所述的柔性电子装置,其特征在于,所述柔性显示组件还包括设置在所述阳极层和所述发光层之间的空穴传输层,以及设置在所述发光层和所述阴极层之间的电子传输层,所述空穴传输层用于帮助所述阳极层产生的空穴移动至所述发光层,所述电子传输层用于帮助所述阴极层释放的电子能够顺利传输到所述发光层。
  9. 如权利要求7所述的柔性电子装置,其特征在于,所述柔性显示组件还包括薄膜晶体管阵列,所述薄膜晶体管阵列设置在所述柔性衬底和所述阳极层之间,所述薄膜晶体管阵列中的每个薄膜晶体管对应一个所述发光层中的像素,所述发光层中的对应像素需要点亮时,所述薄膜晶体管阵列中对应该像素的所述薄膜晶体管被打开以驱动该像素。
  10. 如权利要求9所述的柔性电子装置,其特征在于,所述柔性电子装置还包括柔性电路板,所述柔性电路板邻近所述柔性显示组件设置,所述处理器设置在所述柔性电路板上,所述柔性路板的第一面与所述薄膜晶体管阵列的线 路连接,所述柔性电路板的第二面与所述电阻式弯折感应器的线路连接。
  11. 如权利要求10所述的柔性电子装置,其特征在于,所述柔性电路板在所述第一面上设置第二搭接头以及在所述第二面上设置有第一搭接头,所述第二搭接头与所述薄膜晶体管阵列的线路搭接,所述第一搭接头与所述电阻式弯折感应器的线路搭接。
  12. 如权利要求7所述的柔性电子装置,其特征在于,所述柔性显示组件还包括第一无机层、有机层和第二无机层,所述第一无机层层叠设置在所述阴极层背离所述阳极层的一侧,所述有机层层叠设置在所述第一无机层背离所述阳极层的一侧,所述第二无机层设置在所述有机层背离所述阳极层的一侧。
  13. 一种弯折位置确定方法,其特征在于,所述弯折位置确定方法应用于一柔性电子装置,所述弯折位置确定方法包括步骤:
    电阻式弯折感应器实时的获取所述柔性电子装置的弯折位置并产生对应的弯折位置识别信号;
    根据所述弯折位置识别信号确定弯折位置;及
    根据所述弯折位置调整所述柔性电子装置的内容显示。
  14. 如权利要求13所述的弯折位置确定方法,其特征在于,所述弯折位置识别信号中包括输出电压,所述电阻式弯折感应器被施加恒定电压时,所述电阻式弯折感应器的弯折位置不同时所述输出电压的大小不同;所述弯折位置确定方法包括步骤:
    根据所述弯折位置识别信号中的输出电压的大小确定所述弯折位置。
  15. 如权利要求14所述的弯折位置确定方法,其特征在于,所述电阻式弯折感应器包括第一导电层、第二导电层和位于所述第一导电层和所述第二导电层之间且间隔设置的若干绝缘空间点,所述第一导电层的两侧分别沿X轴方向上设置有X轴正极导电条和X轴负极导电条,所述第二导电层的另外两侧 分别沿Y轴方向上设置有Y轴正极导电条和Y轴负极导电条,所述弯折位置确定方法还包括步骤:
    所述X轴正极导电条和所述X轴负极导电条之间被施加恒定电压时,根据所述X轴正极导电条与所述Y轴正极导电条之间的电压确定所述弯折位置的X轴坐标;及
    所述Y轴正极导电条和Y轴负极导电条之间被施加恒定电压时,根据所述Y轴正极导电条与所述X轴正极导电条之间的电压确定所述弯折位置的Y轴坐标。
PCT/CN2018/087316 2018-05-17 2018-05-17 柔性电子装置及其弯折位置确定方法 WO2019218307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093835.2A CN112470207A (zh) 2018-05-17 2018-05-17 柔性电子装置及其弯折位置确定方法
PCT/CN2018/087316 WO2019218307A1 (zh) 2018-05-17 2018-05-17 柔性电子装置及其弯折位置确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/087316 WO2019218307A1 (zh) 2018-05-17 2018-05-17 柔性电子装置及其弯折位置确定方法

Publications (1)

Publication Number Publication Date
WO2019218307A1 true WO2019218307A1 (zh) 2019-11-21

Family

ID=68539539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087316 WO2019218307A1 (zh) 2018-05-17 2018-05-17 柔性电子装置及其弯折位置确定方法

Country Status (2)

Country Link
CN (1) CN112470207A (zh)
WO (1) WO2019218307A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201075211Y (zh) * 2007-08-21 2008-06-18 重庆达迈触摸电脑有限公司 一种超高透光率电阻触摸屏
US20080291225A1 (en) * 2007-05-23 2008-11-27 Motorola, Inc. Method and apparatus for re-sizing an active area of a flexible display
CN102087824A (zh) * 2009-12-04 2011-06-08 索尼公司 显示装置及显示装置的控制方法
CN107566638A (zh) * 2017-08-31 2018-01-09 维沃移动通信有限公司 一种应用程序的显示控制方法及移动终端
CN107656716A (zh) * 2017-09-05 2018-02-02 珠海格力电器股份有限公司 一种内容显示方法及其装置、电子设备
CN107980156A (zh) * 2016-12-29 2018-05-01 深圳市柔宇科技有限公司 柔性显示屏、柔性显示屏的弯折检测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222378A (ja) * 2000-02-10 2001-08-17 Nec Saitama Ltd タッチパネル入力装置
CN105158946B (zh) * 2015-09-10 2019-01-15 武汉华星光电技术有限公司 一种液晶显示模组及其制备方法
KR102424860B1 (ko) * 2015-11-04 2022-07-26 삼성디스플레이 주식회사 플렉서블 표시장치 및 그 구동방법
CN105810715B (zh) * 2016-03-22 2019-05-17 昆山工研院新型平板显示技术中心有限公司 柔性显示装置及制备方法和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080291225A1 (en) * 2007-05-23 2008-11-27 Motorola, Inc. Method and apparatus for re-sizing an active area of a flexible display
CN201075211Y (zh) * 2007-08-21 2008-06-18 重庆达迈触摸电脑有限公司 一种超高透光率电阻触摸屏
CN102087824A (zh) * 2009-12-04 2011-06-08 索尼公司 显示装置及显示装置的控制方法
CN107980156A (zh) * 2016-12-29 2018-05-01 深圳市柔宇科技有限公司 柔性显示屏、柔性显示屏的弯折检测方法及装置
CN107566638A (zh) * 2017-08-31 2018-01-09 维沃移动通信有限公司 一种应用程序的显示控制方法及移动终端
CN107656716A (zh) * 2017-09-05 2018-02-02 珠海格力电器股份有限公司 一种内容显示方法及其装置、电子设备

Also Published As

Publication number Publication date
CN112470207A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
KR102394723B1 (ko) 터치 스크린 패널 및 이를 포함하는 표시 장치
CN106816460B (zh) 一种柔性触控显示面板及柔性触控显示装置
US8564556B2 (en) Display device having capacitive touch screen
CN106527805B (zh) 显示面板、显示装置及显示面板的制造方法
US10466841B2 (en) Curved touch panel and display device comprising same
US8421332B2 (en) Capacitive touch screen and method for manufacturing the same
CN106775173A (zh) 一种触控显示面板和触控显示装置
TW201820094A (zh) 具有觸控感測電極之有機發光二極體顯示面板
US20210223940A1 (en) Flexible touch display device
CN115360228A (zh) 显示装置
WO2019085028A1 (zh) 触控式oled显示面板以及显示装置
US11119600B2 (en) Pressure sensor and display device including the same
US20120062507A1 (en) Capacitive touch screen and manufacturing method thereof
US9547397B2 (en) Touch window and touch device the same
CN107589871B (zh) 一种压感触控模组、制备方法、触摸屏及显示装置
WO2019085169A1 (zh) 触控式oled显示面板以及显示装置
US20150109226A1 (en) Touch panel
CN111290661B (zh) 柔性触控显示装置
WO2019218307A1 (zh) 柔性电子装置及其弯折位置确定方法
WO2019222919A1 (zh) 柔性电子装置及其弯折位置确定方法
US11068102B2 (en) Display device
WO2021104241A1 (zh) 显示屏、电子设备及指纹识别方法
TWI676977B (zh) 可撓式畫素陣列基板及應用其之可撓式顯示面板
CN110244875A (zh) 触控结构、触控装置及触控显示装置
US20240012525A1 (en) Touch Control Substrate, Display Panel, and Electronic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918722

Country of ref document: EP

Kind code of ref document: A1