US20210223940A1 - Flexible touch display device - Google Patents
Flexible touch display device Download PDFInfo
- Publication number
- US20210223940A1 US20210223940A1 US16/652,425 US202016652425A US2021223940A1 US 20210223940 A1 US20210223940 A1 US 20210223940A1 US 202016652425 A US202016652425 A US 202016652425A US 2021223940 A1 US2021223940 A1 US 2021223940A1
- Authority
- US
- United States
- Prior art keywords
- touch
- flexible
- display device
- electrodes
- sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005452 bending Methods 0.000 claims abstract description 75
- 230000002093 peripheral effect Effects 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 230000008859 change Effects 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 71
- 239000010409 thin film Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 239000010936 titanium Substances 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04164—Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/0418—Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
- G06F3/04186—Touch location disambiguation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0448—Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
-
- H01L27/323—
-
- H01L27/3244—
-
- H01L51/0097—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04111—Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- H01L2251/5338—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/40—OLEDs integrated with touch screens
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the sensing electrodes comprise a plurality of conductive lines crossing each other perpendicularly.
- the conductive lines generate capacitances with the ground.
- the bending signal is a capacitance change amount between the conductive line in the bending position and the ground.
- FIG. 2 is a schematic cross-sectional view of a flexible touch display device in a bent state in the prior art.
- FIG. 12 is a schematic diagram illustrating that each sensing electrode of FIG. 8 is another type of mutual-capacitance sensing electrode.
- the present disclosure provides a flexible touch display device 200 comprising a flexible display panel 110 , a touch-sensing structure 120 , a bonding area 180 , and a touch chip 300 .
- the flexible display panel 110 comprises a display area AA and a peripheral area NA surrounding the display area AA.
- the flexible display panel 110 may be an organic light emitting diode display panel, which sequentially, from bottom to top, comprises a flexible substrate 111 , a thin-film transistor layer 112 , an organic light emitting diode layer 113 , and a thin-film encapsulation layer 114 .
- the touch-sensing structure 120 is formed on the thin-film encapsulation layer 114 .
- the thin-film transistors may comprise hydrogenated amorphous silicon thin-film transistors (a-TFT: H), low-temperature poly TFTs (LTPS), organic thin-film transistors (OTFT) and/or metal oxide thin-film transistors, but are not limited thereto.
- the thin-film transistors may be bottom-gate, top-gate, or double-gate thin-film transistors.
- the organic light emitting diode layer 113 comprises a plurality of organic light emitting diodes for emitting light. Each of the organic light emitting diodes may sequentially comprise an anode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode layer.
- the thin-film transistors are electrically connected to the organic light emitting diodes in the organic light emitting diode layer 113 and configured to drive the organic light emitting diodes to emit light.
- the thin-film encapsulation layer 114 is configured to protect the organic light-emitting diodes in the organic light-emitting diode layer 113 from corrosion and damage by moisture and oxygen in the atmosphere, and improve a capability of the flexible display panel 110 to withstand stress.
- the thin-film encapsulation layer 114 may have a structure of inorganic layer/organic layer/inorganic layer.
- the bridge points 121 are disposed in an array in the display area AA. Columns of the bridge points 121 are equally spaced, and rows of the bridge points 121 are also equally spaced.
- the sensing electrodes 122 are disposed in the peripheral area NA and are in same rows or same columns as the bridge points 121 .
- the sensing electrodes 122 may be electrically connected to the touch chip 300 through a plurality of sensing electrode leads 123 .
- the sensing electrode leads 123 are bonded to the bonding area 180 .
- a capacitance between the touch electrodes 141 in the touched position change and then forms a touch signal. That is, the touch signal is a capacitance change amount between the touch electrodes 141 in the touched position. Then, the touch signal is transmitted to the touch chip 300 through the touch electrode leads 142 , and the touch chip 300 recognizes the touched position by processing the touch signal.
- the sensing electrode leads 123 comprise a plurality of transmitting leads 95 and a plurality of receiving leads 96 .
- Each of the driving sensing wires 91 is electrically connected to each of the transmitting leads 95 .
- Each of the receiving sensing wires 92 is electrically connected to each of the receiving leads 96 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Position Input By Displaying (AREA)
Abstract
A flexible touch display device includes a flexible display panel, bridge points, sensing electrodes, a first insulating layer, and touch electrodes. The bridge points and the sensing electrodes are disposed on a display area and a peripheral area of the flexible display panel, respectively. The first insulating layer covers the bridge points, the sensing electrodes, and the flexible display panel, and is provided with via holes in the display area to expose two opposite sides of each bridge point. The touch electrodes are disposed on the first insulating layer in the display area and electrically connected to the bridge points through the via holes to form a metal mesh structure. The sensing electrodes are configured to sense a bending position and a bending degree of the flexible display panel that are used to compensate and correct a touched position sensed by the touch electrodes in the bending position.
Description
- The present disclosure relates to the technical field of display, and particularly to a flexible touch display device.
- Organic light-emitting diode (OLED) display panels have advantages of lightness, thin profile, active illumination, fast response times, wide viewing angles, wide color gamut, high brightness, low power consumption, and flexibility, and thus have become mainstream in display panel technology. Currently, a flexible touch display device comprising an organic light emitting diode display panel and a touch structure is a focus of research and development in the industry.
- Please refer to
FIG. 1 , a current flexibletouch display device 100 comprises an organic light emittingdiode display panel 10, a plurality of first touch electrodes 21, and a plurality of second touch electrodes 22. The first touch electrodes 21 and the second touch electrodes 22 are disposed on the organic light emittingdiode display panel 10 and form a mutual-capacitance touch electrode shaped as a metal mesh. The first touch electrodes 21 and the second touch electrodes 22 are electrically connected to a touch chip through leads. When a finger or a stylus touches a position in a touch display area of the flexibletouch display device 100, a capacitance between the first touch electrode 21 and the second touch electrode 22 in the touched position will be changed. The touch chip can recognize the touched position by processing a change amount of the capacitance. - As shown in
FIG. 2 , when the flexibletouch display device 100 is in a bent state, a distance between the first touch electrode 21 and the second touch electrode 22 changes, so that a capacitance between the first touch electrode 21 and the second touch electrode 22 also changes accordingly, thereby causing the touch chip to misjudge the touched position. - Therefore, there is a need to develop a new flexible touch display device to solve the technical problem of misjudgment of a touched position caused by a change in a capacitance between touch electrodes in a bending position when a current flexible touch display device is bent.
- In order to solve the technical problem that a current flexible touch display device is prone to misjudgment of a touched position when bending, the present disclosure provides a flexible touch display device comprising a flexible display panel, a plurality of bridge points, a plurality of sensing electrodes, a first insulating layer, and a plurality of touch electrodes. The flexible display panel comprises a display area and a peripheral area surrounding the display area. The bridge points are disposed on the display area of the flexible display panel. The sensing electrodes are disposed on the peripheral area of the flexible display panel and configured to sense a bending position and a bending degree of the flexible display panel. The first insulating layer covers the bridge points, the sensing electrodes, and the flexible display panel. The first insulating layer is provided with a plurality of via holes in the display area to expose two opposite sides of each of the bridge points. The touch electrodes are disposed on the first insulating layer in the display area and electrically connected to the bridge points through the via holes to form a metal mesh structure for sensing a touched position of the flexible touch display device.
- In an embodiment, the flexible touch display device further comprises a plurality of touch electrode leads and a touch chip. The touch electrode leads are disposed on the first insulating layer in the peripheral area and electrically connected to the touch electrodes. The touch chip is electrically connected to the touch electrode leads. When the display area is touched, the touch electrodes in the touched position generate a touch signal. The touch signal is transmitted to the touch chip through the touch electrode leads, and the touch chip recognizes the touched position by processing the touch signal.
- In an embodiment, the touch signal is a capacitance change amount between the touch electrodes in the touched position.
- In an embodiment, the sensing electrodes are electrically connected to the touch chip. When the flexible touch display device is touched in a bent state, the sensing electrodes in the bending position generate a bending signal to the touch chip. After the touch chip recognizes the bending position and the bending degree by processing the bending signal, the touch chip compensates and corrects the touch signal generated by the touch electrodes in the bending position.
- In an embodiment, each of the sensing electrodes comprises a comb-shaped transmitting electrode and a comb-shaped receiving electrode. The transmitting electrode and the receiving electrode generate a capacitance. The bending signal is a capacitance change amount between the transmitting electrode and the receiving electrode of the sensing electrode in the bending position.
- In an embodiment, the sensing electrodes comprise a plurality of transmitting electrode lines and a plurality of receiving electrode lines perpendicularly crossing each other. Each of the transmitting electrode lines and each of the receiving electrode lines generate a capacitance at their intersection. The bending signal is a capacitance change amount at the intersection of the conductive lines in the bending position.
- In an embodiment, the sensing electrodes comprise a plurality of conductive lines crossing each other perpendicularly. The conductive lines generate capacitances with the ground. The bending signal is a capacitance change amount between the conductive line in the bending position and the ground.
- In an embodiment, the sensing electrode comprises two conductive layers and a plurality of spacers separating the two conductive layers. The bending signal is a voltage change amount caused by the two conductive layers in contact with each other in the bending position.
- In an embodiment, the flexible touch display device further comprises a scroll connected to a side of the flexible touch display device for rolling or unrolling the flexible touch display device. The sensing electrodes are disposed on a side of the peripheral area that is parallel to the scroll.
- In an embodiment, the bridge points are disposed in an array in the display area. The sensing electrodes are disposed in the peripheral area and are in a same row or a same column as the bridge points.
- In the flexible touch display device provided by the present disclosure, the sensing electrodes are disposed in the peripheral area to sense the bending position and the bending degree of the flexible touch display device that are used to compensate and correct the capacitance between the touch electrodes in the bending position. This solves the technical problem of misjudgment of a touched position caused by a change in a capacitance between touch electrodes in a bending position when a current flexible touch display device is bent. Furthermore, the sensing electrodes may be disposed below the touch electrode leads in the peripheral area to avoid increasing an area of the peripheral area and facilitate a narrow frame design.
- In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure, a brief description of accompanying drawings used in the description of the embodiments of the present disclosure will be given below. Obviously, the accompanying drawings in the following description are merely some embodiments of the present disclosure. For those skilled in the art, other drawings may be obtained from these accompanying drawings without creative labor.
-
FIG. 1 is a schematic cross-sectional view of a flexible touch display device in a flat state in the prior art. -
FIG. 2 is a schematic cross-sectional view of a flexible touch display device in a bent state in the prior art. -
FIG. 3 is a schematic diagram of a flexible touch display device according to an embodiment of the disclosure. -
FIG. 4 is a schematic cross-sectional view of the flexible touch display device ofFIG. 3 along line B-B′. -
FIG. 5 is a schematic diagram of a first arrangement of bridge points and sensing electrodes in a flexible touch display device according to an embodiment of the disclosure. -
FIG. 6 is a schematic diagram of a second arrangement of bridge points and sensing electrodes in a flexible touch display device according to an embodiment of the disclosure. -
FIG. 7 is a schematic diagram of an arrangement of touch electrodes and touch electrode leads in X area ofFIG. 3 . -
FIG. 8 is a schematic diagram of an arrangement of sensing electrodes and sensing electrode leads in Y area ofFIG. 3 . -
FIG. 9 is a schematic diagram illustrating that each sensing electrode ofFIG. 8 is a first type of mutual-capacitance sensing electrode. -
FIG. 10 is a schematic diagram illustrating that each sensing electrode ofFIG. 8 is a second type of mutual-capacitance sensing electrode. -
FIG. 11 is a schematic diagram illustrating that each sensing electrode ofFIG. 8 is a third type of mutual-capacitance sensing electrode. -
FIG. 12 is a schematic diagram illustrating that each sensing electrode ofFIG. 8 is another type of mutual-capacitance sensing electrode. -
FIG. 13 is a partially enlarged view of the mutual-capacitance sensing electrodes ofFIG. 12 . -
FIG. 14 is a schematic diagram illustrating that sensing electrodes ofFIG. 8 are self-capacitance sensing electrodes. -
FIG. 15 is a partially enlarged view of the self-capacitance sensing electrodes ofFIG. 14 . -
FIG. 16 is a schematic diagram illustrating that the sensing electrodes ofFIG. 4 are resistance sensing electrodes. - Technical solutions in embodiments of the present disclosure will be clearly and completely described below with reference to the accompanying drawings. Other embodiments obtained by those skilled in the art based on the embodiments of the present disclosure without any creative labor belong to the scope of the present invention. In addition, directional terms mentioned in the present disclosure, such as “up”, “down”, “parallel”, and “vertical”, are merely used to indicate the direction of the accompanying drawings for illustrating the present invention rather than limiting the present invention. Furthermore, term “a/an”, unless specifically defined otherwise, is intended to comprise plural forms. Terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating a number of technical features indicated. The features defined by “first” and “second” may explicitly or implicitly comprise one or more of the features.
- Please refer to
FIG. 3 andFIG. 4 . The present disclosure provides a flexibletouch display device 200 comprising aflexible display panel 110, a touch-sensing structure 120, abonding area 180, and atouch chip 300. Theflexible display panel 110 comprises a display area AA and a peripheral area NA surrounding the display area AA. Theflexible display panel 110 may be an organic light emitting diode display panel, which sequentially, from bottom to top, comprises aflexible substrate 111, a thin-film transistor layer 112, an organic light emittingdiode layer 113, and a thin-film encapsulation layer 114. The touch-sensing structure 120 is formed on the thin-film encapsulation layer 114. Theflexible substrate 111 may be made of a flexible insulating polymer material, such as polyimide (PI), polycarbonate (PC), polyethersulfone (PES), polyethylene terephthalate (PET), Polyethylene naphthalate (PEN), and thin-film fiber-reinforced polymer (FRP). The thin-film transistor layer 112 comprises a plurality of thin-film transistors. Each of the thin-film transistors comprises a gate electrode layer, an insulating layer, an active layer, and a source-drain layer. The thin-film transistors may comprise hydrogenated amorphous silicon thin-film transistors (a-TFT: H), low-temperature poly TFTs (LTPS), organic thin-film transistors (OTFT) and/or metal oxide thin-film transistors, but are not limited thereto. The thin-film transistors may be bottom-gate, top-gate, or double-gate thin-film transistors. The organic light emittingdiode layer 113 comprises a plurality of organic light emitting diodes for emitting light. Each of the organic light emitting diodes may sequentially comprise an anode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode layer. The thin-film transistors are electrically connected to the organic light emitting diodes in the organic light emittingdiode layer 113 and configured to drive the organic light emitting diodes to emit light. The thin-film encapsulation layer 114 is configured to protect the organic light-emitting diodes in the organic light-emittingdiode layer 113 from corrosion and damage by moisture and oxygen in the atmosphere, and improve a capability of theflexible display panel 110 to withstand stress. The thin-film encapsulation layer 114 may have a structure of inorganic layer/organic layer/inorganic layer. The inorganic layer of the thin-film encapsulation layer 114 is configured to prevent the organic light emitting diodes in the organic light emittingdiode layer 113 from contact with the moisture and oxygen in the atmosphere, so as to prevent the moisture and oxygen in the atmosphere from damaging the organic light emitting diodes. The inorganic layer may be made of aluminum oxide, silicon oxide, magnesium oxide, or a combination thereof. The organic layer of the thin-film encapsulation layer 114 is made of a soft organic material, and thus may be configured to release stress experienced by theflexible display panel 110. The organic layer may be made of alucone, or an organic-inorganic hybrid film comprising aluminum, titanium, zinc, or iron. In an embodiment, the flexibletouch display device 200 may further comprise a second insulatinglayer 160 disposed on the thin-film encapsulation layer 114. The touch-sensing structure 120 is formed on the second insulatinglayer 160. The secondinsulating layer 160 may be made by a low-temperature process. The secondinsulating layer 160 may be made of silicon nitride, silicon oxide, or a combination thereof. - The touch-
sensing structure 120 is disposed on theflexible display panel 110 and comprises a plurality of bridge points 121, a plurality ofsensing electrodes 122, a first insulatinglayer 130, a plurality oftouch electrodes 141, a plurality of touch electrode leads 142, and aflat layer 150. The bridge points 121 are disposed on the display area AA of theflexible display panel 110. Thesensing electrodes 122 are disposed on the peripheral area NA of theflexible display panel 110 and are configured to sense a bending position and a bending degree of theflexible display panel 110. Thesensing electrodes 122 may be in a same layer and made of a same material as the bridge points 121 to avoid adding additional processes. The first insulatinglayer 130 covers the bridge points 121, thesensing electrodes 122, and theflexible display panel 110. The first insulatinglayer 130 is provided with a plurality of viaholes 131 in the display area AA to expose two opposite sides of each of the bridge points 121. Thetouch electrodes 141 are disposed on thefirst insulation layer 130 in the display area AA and are electrically connected to the bridge points 121 through the viaholes 131 to form a metal mesh structure for sensing a touched position of the flexibletouch display device 200. The touch electrode leads 142 are disposed on the first insulatinglayer 130 in the peripheral area NA. Thebonding area 180 is disposed on a side of theflexible display panel 110 and/or the touch-sensing structure 120. The touch electrode leads 142 may be in a same layer and made of a same material as thetouch electrodes 141 to reduce manufacturing processes. Thesensing electrodes 122 may be disposed below the touch electrode leads 142 to avoid increasing an area of the peripheral area NA and facilitate a narrow frame design. The bridge points 121, thesensing electrodes 122, thetouch electrodes 141, and the touch electrode leads 142 may be made of a highly conductive and highly flexible metal material. Specifically, the bridge points 121, thesensing electrodes 122, and thetouch electrodes 141 may be single-layer metal structures such as aluminum, titanium, and molybdenum, or a double-layer metal structure such as aluminum/titanium (Al/Ti) and molybdenum/aluminum (Mo/Al), or a three-layer metal structure such as titanium/aluminum/titanium (Ti/Al/Ti) and molybdenum/aluminum/molybdenum (Mo/Al/Mo). Theflat layer 150 covers thetouch electrodes 141, the touch electrode leads 142, and the first insulatinglayer 130. Theflat layer 150 may be made of an organic photoresist material. The touch-sensing structure 120 may be formed on theflexible display panel 110 using a low-temperature process (process temperature is less than 90 □). - Please refer to
FIG. 5 , in an embodiment, the bridge points 121 are disposed in an array in the display area AA. Columns of the bridge points 121 are equally spaced, and rows of the bridge points 121 are also equally spaced. Thesensing electrodes 122 are disposed in the peripheral area NA and are in same rows or same columns as the bridge points 121. - Please refer to
FIG. 6 , in an embodiment, the flexibletouch display device 200 further comprises ascroll 400 connected to a side of the flexibletouch display device 200 for rolling or unrolling the flexibletouch display device 200. Thesensing electrodes 122 are disposed on one or two sides of the peripheral area NA parallel to thescroll 400. - Please refer to
FIG. 7 , an end of eachtouch electrode lead 142 is electrically connected to one of thetouch electrodes 141, and the other end of eachtouch electrode lead 142 is bonded to thebonding area 180 and is electrically connected to thetouch chip 300. - Please refer to
FIG. 8 , thesensing electrodes 122 may be electrically connected to thetouch chip 300 through a plurality of sensing electrode leads 123. The sensing electrode leads 123 are bonded to thebonding area 180. When a finger or a stylus touches the display area AA, a capacitance between thetouch electrodes 141 in the touched position change and then forms a touch signal. That is, the touch signal is a capacitance change amount between thetouch electrodes 141 in the touched position. Then, the touch signal is transmitted to thetouch chip 300 through the touch electrode leads 142, and thetouch chip 300 recognizes the touched position by processing the touch signal. When the flexibletouch display device 200 is touched in a bent state, thesensing electrodes 122 in a bending position generate a bending signal to thetouch chip 300. After thetouch chip 300 recognizes the bending position and a bending degree thereof by processing the bending signal, thetouch chip 300 compensates and corrects the touch signal generated by thetouch electrodes 141 in the bending position. Therefore, the capacitance between thetouch electrodes 141 in the bending position is prevented from being changed due to change in a distance between thetouch electrodes 141, thereby avoiding misjudgment of the touched position. In this embodiment, thesensing electrodes 122 are mutual-capacitance sensing electrodes 80. - Please refer to
FIGS. 9-11 , which are schematic diagrams of three types of the mutual-capacitance sensing electrodes 80. Each of thesensing electrodes 80 comprises a transmittingelectrode 60 and a receivingelectrode 70, and the transmittingelectrode 60 and the receivingelectrode 70 generate a capacitance. When the flexibletouch display device 200 is bent, a distance between the transmittingelectrode 60 and the receivingelectrode 70 of the mutual-capacitance sensing electrode 80 in a bending position is changed, thereby changing the capacitance between the transmittingelectrode 60 and the receivingelectrode 70. The bending signal is a capacitance change amount between the transmittingelectrode 60 and the receivingelectrode 70 of the mutualcapacitance sensing electrode 80 in the bending position. In this embodiment, the transmittingelectrode 60 and the receivingelectrode 70 are comb-shaped but are not limited thereto. As long as the transmittingelectrode 60 and the receivingelectrode 70 are designed to be interlaced and matched with each other to achieve effect of a mutual-capacitance sensing electrode, they can be applied to the present invention.FIGS. 9-11 are only used to illustrate the transmittingelectrode 60 and the receivingelectrode 70 of the mutual-capacitance sensing electrode 80 and are not intended to limit the present invention. Any design similar toFIGS. 9-11 is also within a scope of the present invention. Intervals of the mutual-capacitance-type sensing electrodes 80 may be equal. The sensing electrode leads 123 comprise a transmittingelectrode lead 61 and a plurality of receiving electrode leads 71. The transmittingelectrodes 60 are electrically connected to the transmittingelectrode lead 61. Each of the receivingelectrodes 70 is electrically connected to each of the receiving electrode leads 71. The transmittingelectrode lead 61 and the receiving electrode leads 71 are bonded to thebonding area 180 and electrically connected to thetouch chip 300. Thetouch chip 300 sequentially emits excitation signals through the transmittingelectrode lead 61 and the transmittingelectrodes 60. The receivingelectrodes 70 sequentially receive the excitation signals and transmit the excitation signals back to thetouch chip 300 through the receiving electrode leads 71. In this way, thetouch chip 300 obtains capacitance values of all the mutual-capacitance sensing electrodes 80, calculates a capacitance change amount of each mutual-capacitance sensing electrode 80, and then calculates the bending position and a bending degree thereof. - In an embodiment, please refer to
FIG. 12 andFIG. 13 , thesensing electrodes 122 may be another type of mutual-capacitance sensing electrodes 90 comprising a plurality of drivingsensing wires 91 and a plurality of receivingsensing wires 92 perpendicularly crossing each other. Each of the drivingsensing wires 91 comprises a plurality offirst electrodes 93 connected in series. Each of the drivingsensing wires 92 comprises a plurality ofsecond electrodes 94 connected in series. In this embodiment, thefirst electrodes 93 and thesecond electrodes 94 are diamond-shaped but are not limited thereto. In this embodiment, please refer toFIG. 13 , thefirst electrodes 93 and thesecond electrodes 94 are disposed on a same layer, and theconnection line 98 between thesecond electrodes 94 bends across theconnection line 97 between thefirst electrodes 93. In another embodiment, the drivingsensing wires 91 and the receivingsensing wires 92 are disposed on two different layers, and a dielectric layer (not shown) is disposed between the two layers. Each of the drivingsensing wires 91 and each of the receivingsensing wires 92 generate a capacitance at their intersection. When the flexibletouch display device 200 is bent, the drivingsensing wire 91 and the receivingsensing wire 92 in a bending position are deformed at their intersection, and thus the capacitance generated by the drivingsensing wire 91 and the receivingsensing wire 92 at their intersection is changed. The bending signal is a capacitance change amount at the intersection of the drivingsensing wire 91 and the receivingsensing wire 92 in the bending position. The sensing electrode leads 123 comprise a plurality of transmitting leads 95 and a plurality of receiving leads 96. Each of the drivingsensing wires 91 is electrically connected to each of the transmitting leads 95. Each of the receivingsensing wires 92 is electrically connected to each of the receiving leads 96. The transmitting leads 95 and the receiving leads 96 are bonded to thebonding area 180 and electrically connected to thetouch chip 300. Thetouch chip 300 sequentially emits excitation signals through the transmitting leads 95 and the drivingsensing wires 91. The receivingsensing wires 92 sequentially receive the excitation signals and transmit the excitation signals back to thetouch chip 300 through the receiving leads 96. In this way, thetouch chip 300 obtains capacitance values at all intersections, calculates a capacitance change amount at each intersection, and then calculates the bending position and a bending degree thereof. - In an embodiment, please refer to
FIG. 14 andFIG. 15 , thesensing electrodes 122 may be self-capacitance sensing electrodes 700 comprising a plurality of firstconductive lines 701 and a plurality of secondconductive lines 702 perpendicularly crossing each other. Each of the firstconductive lines 701 comprises a plurality offirst electrodes 703 connected in series. Each of the secondconductive lines 702 comprises a plurality ofsecond electrodes 704 connected in series. In this embodiment, thefirst electrodes 703 and thesecond electrodes 704 are diamond-shaped but are not limited thereto. In this embodiment, please refer toFIG. 15 , thefirst electrodes 703 and thesecond electrodes 704 are disposed on a same layer, and theconnection line 708 between thesecond electrodes 704 bends across theconnection line 707 between thefirst electrodes 703. In another embodiment, the firstconductive lines 701 and the secondconductive lines 702 are disposed on two different layers, and a dielectric layer (not shown) is disposed between the two layers. The firstconductive lines 701 and the secondconductive lines 702 are grounded. Capacitances are generated between the firstconductive lines 701 and the ground (not shown) and between the secondconductive lines 702 and the ground. When the flexibletouch display device 200 is bent, the firstconductive line 701 and the secondconductive line 702 in a bending position are deformed, and thus the capacitances generated between the firstconductive lines 701 and the ground and between the secondconductive lines 702 and the ground are changed. The bending signal is a capacitance change amount between the firstconductive lines 701 or the secondconductive lines 702 in the bending position and the ground. The sensing electrode leads 123 comprise a plurality offirst leads 705 and a plurality of second leads 706. Each of the firstconductive lines 701 is electrically connected to each of the first leads 705. Each of the secondconductive lines 702 is electrically connected to each of the second leads 706. The first leads 705 and the second leads 706 are bonded to thebonding area 180 and electrically connected to thetouch chip 300. In order to obtain capacitance values between the firstconductive lines 701 and the ground and between the secondconductive lines 702 and the ground, thetouch chip 300 sequentially detects the firstconductive lines 701 extending in a same direction, and then sequentially detects the secondconductive lines 702 extending in another direction. And then, thetouch chip 300 calculates capacitance change amounts between each firstconductive line 701 and the ground and between each secondconductive line 702 and the ground, and then calculates the bending position and a bending degree thereof. - In an embodiment, please refer to
FIG. 16 , thesensing electrodes 122 may beresistance sensing electrodes 800 comprising twoconductive layers 801 and a plurality ofspacers 802 separating the two conductive layers. Thespacers 802 are configured to distance the twoconductive layers 801 from each other. Only when the flexibletouch display device 200 is bent, the twoconductive layers 801 will contact each other at a bending position. In other words, thespacers 802 are configured to prevent the twoconductive layers 801 from being short-circuited due to contact with each other when the flexibletouch display device 200 is not bent, thereby avoiding malfunction. Thespacers 802 may be made of polyester material and may be shaped as spheres. When the flexibletouch display device 200 is bent, the twoconductive layers 801 in a bending position cause a short circuit due to contact with each other, thereby generating a voltage drop. The bending signal is a voltage change amount between the twoconductive layers 801 in the bending position. The touch chip is electrically connected to the twoconductive layers 801 to detect a voltage between the twoconductive layers 801, calculate the voltage change amount, and then calculate the bending position and a bending degree thereof. - In the flexible touch display device provided by the present disclosure, the sensing electrodes are disposed in the peripheral area to sense the bending position and the bending degree of the flexible touch display device that are used to compensate and correct the capacitance between the touch electrodes in the bending position. This solves the technical problem of misjudgment of a touched position caused by a change in a capacitance between touch electrodes in a bending position when a current flexible touch display device is bent. Furthermore, the sensing electrodes may be disposed below the touch electrode leads in the peripheral area to avoid increasing an area of the peripheral area and facilitate a narrow frame design.
- The present application has been described in the above preferred embodiments, but the preferred embodiments are not intended to limit the scope of the present application, and those skilled in the art may make various modifications without departing from the scope of the present application. The scope of the present application is determined by claims.
Claims (10)
1. A flexible touch display device, comprising:
a flexible display panel comprising a display area and a peripheral area surrounding the display area;
a plurality of bridge points disposed in the display area of the flexible display panel;
a plurality of sensing electrodes disposed in the peripheral area of the flexible display panel and on a same layer as the bridge points, and configured to sense a bending position and a bending degree of the flexible display panel;
a first insulating layer disposed on surfaces of the bridge points and the sensing electrodes away from the flexible display panel, wherein the first insulating layer is provided with a plurality of via holes in the display area to expose two opposite sides of each of the bridge points;
a plurality of touch electrodes disposed in the display area and on a surface of the first insulating layer away from the flexible display panel, and electrically connected to the bridge points through the via holes to form a metal mesh structure for sensing a touched position of the flexible touch display device; and
a plurality of touch electrode leads disposed in the peripheral area, on the surface of the first insulating layer away from the flexible display panel, and on the sensing electrodes, and electrically connected to the touch electrodes.
2. The flexible touch display device according to claim 1 , further comprising:
a touch chip electrically connected to the touch electrode leads, wherein when the display area is touched, the touch electrodes in the touched position generate a touch signal, the touch signal is transmitted to the touch chip through the touch electrode leads, and the touch chip recognizes the touched position by processing the touch signal.
3. The flexible touch display device according to claim 2 , wherein the touch signal is a capacitance change amount between the touch electrodes in the touched position.
4. The flexible touch display device according to claim 2 , wherein
the sensing electrodes are electrically connected to the touch chip;
when the flexible touch display device is touched in a bent state, the sensing electrodes in the bending position generate a bending signal to the touch chip; and
after the touch chip recognizes the bending position and the bending degree by processing the bending signal, the touch chip compensates and corrects the touch signal generated by the touch electrodes in the bending position.
5. The flexible touch display device according to claim 4 , wherein each of the sensing electrodes comprises a comb-shaped transmitting electrode and a comb-shaped receiving electrode, the transmitting electrode and the receiving electrode generate a capacitance, and the bending signal is a capacitance change amount between the transmitting electrode and the receiving electrode of the sensing electrode in the bending position.
6. The flexible touch display device according to claim 4 , wherein the sensing electrodes comprise a plurality of driving sensing wires and a plurality of receiving sensing wires perpendicularly crossing each other, each of the driving sensing wires and each of the receiving sensing wires generate a capacitance at their intersection, and the bending signal is a capacitance change amount at the intersection of the driving sensing wire and the receiving sensing wire in the bending position.
7. The flexible touch display device according to claim 4 , wherein the sensing electrodes comprise a plurality of conductive lines crossing each other perpendicularly, the conductive lines generate capacitances with ground, and the bending signal is a capacitance change amount between the conductive line in the bending position and the ground.
8. The flexible touch display device according to claim 4 , wherein each of the sensing electrodes comprises two conductive layers and a plurality of spacers separating the two conductive layers, and the bending signal is a voltage change amount caused by the two conductive layers in contact with each other in the bending position.
9. The flexible touch display device according to claim 1 , further comprising a scroll connected to a side of the flexible touch display device for rolling or unrolling the flexible touch display device, wherein the sensing electrodes are disposed on a side of the peripheral area that is parallel to the scroll.
10. The flexible touch display device according to claim 1 , wherein the bridge points are disposed in an array in the display area, and the sensing electrodes are disposed in the peripheral area and are in a same row or a same column as the bridge points.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010074959.5A CN111290661B (en) | 2020-01-22 | 2020-01-22 | Flexible touch display device |
CN202010074959.5 | 2020-01-22 | ||
PCT/CN2020/077051 WO2021147136A1 (en) | 2020-01-22 | 2020-02-27 | Flexible touch display device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210223940A1 true US20210223940A1 (en) | 2021-07-22 |
US11079879B1 US11079879B1 (en) | 2021-08-03 |
Family
ID=76857045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/652,425 Active US11079879B1 (en) | 2020-01-22 | 2020-02-27 | Flexible touch display device |
Country Status (1)
Country | Link |
---|---|
US (1) | US11079879B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114038331A (en) * | 2021-11-30 | 2022-02-11 | 长沙惠科光电有限公司 | Display panel and display device |
CN114203040A (en) * | 2021-12-03 | 2022-03-18 | 合肥维信诺科技有限公司 | Flexible display panel and flexible display device |
US20220101766A1 (en) * | 2020-09-30 | 2022-03-31 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Flexible display substrate, method for controlling same, and display device |
CN114265518A (en) * | 2021-12-28 | 2022-04-01 | 武汉华星光电半导体显示技术有限公司 | Display panel |
US20220171498A1 (en) * | 2020-11-30 | 2022-06-02 | Lg Display Co., Ltd. | Touch display device |
US20220285463A1 (en) * | 2021-03-05 | 2022-09-08 | Samsung Display Co., Ltd. | Display apparatus |
US20230259242A1 (en) * | 2022-11-03 | 2023-08-17 | Wuhan Tianma Microelectronics Co., Ltd. | Display panel and display device |
US12099679B2 (en) * | 2021-12-09 | 2024-09-24 | Lg Display Co., Ltd. | Touch display device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114153336A (en) | 2020-09-08 | 2022-03-08 | 京东方科技集团股份有限公司 | Touch structure, touch display substrate and touch display device |
CN114647331A (en) * | 2020-12-21 | 2022-06-21 | 三星电子株式会社 | Display device including touch screen panel and method of operating touch driving circuit |
CN113192983B (en) * | 2021-04-19 | 2022-12-06 | 武汉华星光电半导体显示技术有限公司 | Display panel and preparation method thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9019209B2 (en) * | 2005-06-08 | 2015-04-28 | 3M Innovative Properties Company | Touch location determination involving multiple touch location processes |
KR101521219B1 (en) | 2008-11-10 | 2015-05-18 | 엘지전자 주식회사 | Mobile terminal using flexible display and operation method thereof |
CN101950231B (en) | 2009-07-10 | 2012-10-24 | 群康科技(深圳)有限公司 | Method for detecting touching position for touch device |
KR101878251B1 (en) * | 2011-04-08 | 2018-07-13 | 삼성전자주식회사 | Bending sensor and fabrication method thereof |
KR101993333B1 (en) | 2012-05-08 | 2019-06-27 | 삼성디스플레이 주식회사 | Flexible display device and method for sensing wrapage using the same |
KR102058699B1 (en) * | 2013-01-24 | 2019-12-26 | 삼성디스플레이 주식회사 | flexible display device having touch and bending sensing function |
TWI514219B (en) * | 2013-12-17 | 2015-12-21 | Ind Tech Res Inst | Bending sensor and associated bending sensing method and system applied to flexible display panel |
KR102312260B1 (en) * | 2015-01-09 | 2021-10-13 | 삼성디스플레이 주식회사 | Flexible touch panel and flexible display device |
KR20160114510A (en) * | 2015-03-24 | 2016-10-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Touch panel |
CN105159515B (en) | 2015-09-18 | 2018-09-07 | 京东方科技集团股份有限公司 | Touch-control structure and preparation method thereof, touch base plate and display device |
CN105487734B (en) | 2015-12-15 | 2019-04-12 | 昆山工研院新型平板显示技术中心有限公司 | Capacitance touching control formula flexible display panels and its flexible display |
KR102525811B1 (en) * | 2016-07-29 | 2023-04-25 | 엘지디스플레이 주식회사 | Touch panel, foldable display panel and foldable display apparatus using the same |
KR102536791B1 (en) | 2016-07-29 | 2023-05-26 | 엘지디스플레이 주식회사 | Rollable flexible display device |
US11143497B2 (en) * | 2017-09-22 | 2021-10-12 | International Business Machines Corporation | Determination of a flexible display |
US10910592B2 (en) | 2017-12-22 | 2021-02-02 | Lg Display Co., Ltd. | Flexible electroluminescent display device |
CN112703547A (en) * | 2018-10-30 | 2021-04-23 | 深圳市柔宇科技股份有限公司 | Touch display panel and bending detection method |
-
2020
- 2020-02-27 US US16/652,425 patent/US11079879B1/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220101766A1 (en) * | 2020-09-30 | 2022-03-31 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Flexible display substrate, method for controlling same, and display device |
US11475811B2 (en) * | 2020-09-30 | 2022-10-18 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Flexible display substrate, method for controlling same, and display device |
US20220171498A1 (en) * | 2020-11-30 | 2022-06-02 | Lg Display Co., Ltd. | Touch display device |
US11662868B2 (en) * | 2020-11-30 | 2023-05-30 | Lg Display Co., Ltd. | Touch display device |
US20220285463A1 (en) * | 2021-03-05 | 2022-09-08 | Samsung Display Co., Ltd. | Display apparatus |
US12075654B2 (en) * | 2021-03-05 | 2024-08-27 | Samsung Display Co., Ltd. | Display apparatus |
CN114038331A (en) * | 2021-11-30 | 2022-02-11 | 长沙惠科光电有限公司 | Display panel and display device |
CN114203040A (en) * | 2021-12-03 | 2022-03-18 | 合肥维信诺科技有限公司 | Flexible display panel and flexible display device |
US12099679B2 (en) * | 2021-12-09 | 2024-09-24 | Lg Display Co., Ltd. | Touch display device |
CN114265518A (en) * | 2021-12-28 | 2022-04-01 | 武汉华星光电半导体显示技术有限公司 | Display panel |
US20230259242A1 (en) * | 2022-11-03 | 2023-08-17 | Wuhan Tianma Microelectronics Co., Ltd. | Display panel and display device |
Also Published As
Publication number | Publication date |
---|---|
US11079879B1 (en) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11079879B1 (en) | Flexible touch display device | |
US12079040B2 (en) | Flexible display device including touch sensor | |
US11599215B2 (en) | Display device | |
CN106816460B (en) | Flexible touch display panel and flexible touch display device | |
KR102269919B1 (en) | Display device comprising touch sensor | |
US20170220164A1 (en) | Array substrate, touch display panel and touch display device | |
KR102189313B1 (en) | Display device | |
KR102082425B1 (en) | Flat panel display device | |
KR102145961B1 (en) | Organic light emitting device | |
US10971561B2 (en) | OLED display panel and display device | |
CN104769719A (en) | Flexible display | |
US20150168788A1 (en) | Display device | |
CN109144330A (en) | Touch-control display panel and display device | |
CN107731865B (en) | OLED display device | |
CN111290661B (en) | Flexible touch display device | |
US11520435B2 (en) | Touch structure and display apparatus | |
KR20200141017A (en) | Flexible display device including touch detecting sensor | |
US10355141B1 (en) | Sensing element and sensing display panel | |
KR102343806B1 (en) | Touch sensor and display device including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, YUANHANG;REEL/FRAME:052267/0429 Effective date: 20191126 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |