US20210223940A1 - Flexible touch display device - Google Patents

Flexible touch display device Download PDF

Info

Publication number
US20210223940A1
US20210223940A1 US16/652,425 US202016652425A US2021223940A1 US 20210223940 A1 US20210223940 A1 US 20210223940A1 US 202016652425 A US202016652425 A US 202016652425A US 2021223940 A1 US2021223940 A1 US 2021223940A1
Authority
US
United States
Prior art keywords
touch
flexible
display device
electrodes
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/652,425
Other versions
US11079879B1 (en
Inventor
Yuanhang Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010074959.5A external-priority patent/CN111290661B/en
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Assigned to Wuhan China Star Optoelectronics Semiconductor Display Technology Ltd. reassignment Wuhan China Star Optoelectronics Semiconductor Display Technology Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, Yuanhang
Publication of US20210223940A1 publication Critical patent/US20210223940A1/en
Application granted granted Critical
Publication of US11079879B1 publication Critical patent/US11079879B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • H01L27/323
    • H01L27/3244
    • H01L51/0097
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • H01L2251/5338
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the sensing electrodes comprise a plurality of conductive lines crossing each other perpendicularly.
  • the conductive lines generate capacitances with the ground.
  • the bending signal is a capacitance change amount between the conductive line in the bending position and the ground.
  • FIG. 2 is a schematic cross-sectional view of a flexible touch display device in a bent state in the prior art.
  • FIG. 12 is a schematic diagram illustrating that each sensing electrode of FIG. 8 is another type of mutual-capacitance sensing electrode.
  • the present disclosure provides a flexible touch display device 200 comprising a flexible display panel 110 , a touch-sensing structure 120 , a bonding area 180 , and a touch chip 300 .
  • the flexible display panel 110 comprises a display area AA and a peripheral area NA surrounding the display area AA.
  • the flexible display panel 110 may be an organic light emitting diode display panel, which sequentially, from bottom to top, comprises a flexible substrate 111 , a thin-film transistor layer 112 , an organic light emitting diode layer 113 , and a thin-film encapsulation layer 114 .
  • the touch-sensing structure 120 is formed on the thin-film encapsulation layer 114 .
  • the thin-film transistors may comprise hydrogenated amorphous silicon thin-film transistors (a-TFT: H), low-temperature poly TFTs (LTPS), organic thin-film transistors (OTFT) and/or metal oxide thin-film transistors, but are not limited thereto.
  • the thin-film transistors may be bottom-gate, top-gate, or double-gate thin-film transistors.
  • the organic light emitting diode layer 113 comprises a plurality of organic light emitting diodes for emitting light. Each of the organic light emitting diodes may sequentially comprise an anode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode layer.
  • the thin-film transistors are electrically connected to the organic light emitting diodes in the organic light emitting diode layer 113 and configured to drive the organic light emitting diodes to emit light.
  • the thin-film encapsulation layer 114 is configured to protect the organic light-emitting diodes in the organic light-emitting diode layer 113 from corrosion and damage by moisture and oxygen in the atmosphere, and improve a capability of the flexible display panel 110 to withstand stress.
  • the thin-film encapsulation layer 114 may have a structure of inorganic layer/organic layer/inorganic layer.
  • the bridge points 121 are disposed in an array in the display area AA. Columns of the bridge points 121 are equally spaced, and rows of the bridge points 121 are also equally spaced.
  • the sensing electrodes 122 are disposed in the peripheral area NA and are in same rows or same columns as the bridge points 121 .
  • the sensing electrodes 122 may be electrically connected to the touch chip 300 through a plurality of sensing electrode leads 123 .
  • the sensing electrode leads 123 are bonded to the bonding area 180 .
  • a capacitance between the touch electrodes 141 in the touched position change and then forms a touch signal. That is, the touch signal is a capacitance change amount between the touch electrodes 141 in the touched position. Then, the touch signal is transmitted to the touch chip 300 through the touch electrode leads 142 , and the touch chip 300 recognizes the touched position by processing the touch signal.
  • the sensing electrode leads 123 comprise a plurality of transmitting leads 95 and a plurality of receiving leads 96 .
  • Each of the driving sensing wires 91 is electrically connected to each of the transmitting leads 95 .
  • Each of the receiving sensing wires 92 is electrically connected to each of the receiving leads 96 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)

Abstract

A flexible touch display device includes a flexible display panel, bridge points, sensing electrodes, a first insulating layer, and touch electrodes. The bridge points and the sensing electrodes are disposed on a display area and a peripheral area of the flexible display panel, respectively. The first insulating layer covers the bridge points, the sensing electrodes, and the flexible display panel, and is provided with via holes in the display area to expose two opposite sides of each bridge point. The touch electrodes are disposed on the first insulating layer in the display area and electrically connected to the bridge points through the via holes to form a metal mesh structure. The sensing electrodes are configured to sense a bending position and a bending degree of the flexible display panel that are used to compensate and correct a touched position sensed by the touch electrodes in the bending position.

Description

    FIELD OF INVENTION
  • The present disclosure relates to the technical field of display, and particularly to a flexible touch display device.
  • BACKGROUND
  • Organic light-emitting diode (OLED) display panels have advantages of lightness, thin profile, active illumination, fast response times, wide viewing angles, wide color gamut, high brightness, low power consumption, and flexibility, and thus have become mainstream in display panel technology. Currently, a flexible touch display device comprising an organic light emitting diode display panel and a touch structure is a focus of research and development in the industry.
  • Please refer to FIG. 1, a current flexible touch display device 100 comprises an organic light emitting diode display panel 10, a plurality of first touch electrodes 21, and a plurality of second touch electrodes 22. The first touch electrodes 21 and the second touch electrodes 22 are disposed on the organic light emitting diode display panel 10 and form a mutual-capacitance touch electrode shaped as a metal mesh. The first touch electrodes 21 and the second touch electrodes 22 are electrically connected to a touch chip through leads. When a finger or a stylus touches a position in a touch display area of the flexible touch display device 100, a capacitance between the first touch electrode 21 and the second touch electrode 22 in the touched position will be changed. The touch chip can recognize the touched position by processing a change amount of the capacitance.
  • As shown in FIG. 2, when the flexible touch display device 100 is in a bent state, a distance between the first touch electrode 21 and the second touch electrode 22 changes, so that a capacitance between the first touch electrode 21 and the second touch electrode 22 also changes accordingly, thereby causing the touch chip to misjudge the touched position.
  • Therefore, there is a need to develop a new flexible touch display device to solve the technical problem of misjudgment of a touched position caused by a change in a capacitance between touch electrodes in a bending position when a current flexible touch display device is bent.
  • SUMMARY OF DISCLOSURE
  • In order to solve the technical problem that a current flexible touch display device is prone to misjudgment of a touched position when bending, the present disclosure provides a flexible touch display device comprising a flexible display panel, a plurality of bridge points, a plurality of sensing electrodes, a first insulating layer, and a plurality of touch electrodes. The flexible display panel comprises a display area and a peripheral area surrounding the display area. The bridge points are disposed on the display area of the flexible display panel. The sensing electrodes are disposed on the peripheral area of the flexible display panel and configured to sense a bending position and a bending degree of the flexible display panel. The first insulating layer covers the bridge points, the sensing electrodes, and the flexible display panel. The first insulating layer is provided with a plurality of via holes in the display area to expose two opposite sides of each of the bridge points. The touch electrodes are disposed on the first insulating layer in the display area and electrically connected to the bridge points through the via holes to form a metal mesh structure for sensing a touched position of the flexible touch display device.
  • In an embodiment, the flexible touch display device further comprises a plurality of touch electrode leads and a touch chip. The touch electrode leads are disposed on the first insulating layer in the peripheral area and electrically connected to the touch electrodes. The touch chip is electrically connected to the touch electrode leads. When the display area is touched, the touch electrodes in the touched position generate a touch signal. The touch signal is transmitted to the touch chip through the touch electrode leads, and the touch chip recognizes the touched position by processing the touch signal.
  • In an embodiment, the touch signal is a capacitance change amount between the touch electrodes in the touched position.
  • In an embodiment, the sensing electrodes are electrically connected to the touch chip. When the flexible touch display device is touched in a bent state, the sensing electrodes in the bending position generate a bending signal to the touch chip. After the touch chip recognizes the bending position and the bending degree by processing the bending signal, the touch chip compensates and corrects the touch signal generated by the touch electrodes in the bending position.
  • In an embodiment, each of the sensing electrodes comprises a comb-shaped transmitting electrode and a comb-shaped receiving electrode. The transmitting electrode and the receiving electrode generate a capacitance. The bending signal is a capacitance change amount between the transmitting electrode and the receiving electrode of the sensing electrode in the bending position.
  • In an embodiment, the sensing electrodes comprise a plurality of transmitting electrode lines and a plurality of receiving electrode lines perpendicularly crossing each other. Each of the transmitting electrode lines and each of the receiving electrode lines generate a capacitance at their intersection. The bending signal is a capacitance change amount at the intersection of the conductive lines in the bending position.
  • In an embodiment, the sensing electrodes comprise a plurality of conductive lines crossing each other perpendicularly. The conductive lines generate capacitances with the ground. The bending signal is a capacitance change amount between the conductive line in the bending position and the ground.
  • In an embodiment, the sensing electrode comprises two conductive layers and a plurality of spacers separating the two conductive layers. The bending signal is a voltage change amount caused by the two conductive layers in contact with each other in the bending position.
  • In an embodiment, the flexible touch display device further comprises a scroll connected to a side of the flexible touch display device for rolling or unrolling the flexible touch display device. The sensing electrodes are disposed on a side of the peripheral area that is parallel to the scroll.
  • In an embodiment, the bridge points are disposed in an array in the display area. The sensing electrodes are disposed in the peripheral area and are in a same row or a same column as the bridge points.
  • In the flexible touch display device provided by the present disclosure, the sensing electrodes are disposed in the peripheral area to sense the bending position and the bending degree of the flexible touch display device that are used to compensate and correct the capacitance between the touch electrodes in the bending position. This solves the technical problem of misjudgment of a touched position caused by a change in a capacitance between touch electrodes in a bending position when a current flexible touch display device is bent. Furthermore, the sensing electrodes may be disposed below the touch electrode leads in the peripheral area to avoid increasing an area of the peripheral area and facilitate a narrow frame design.
  • BRIEF DESCRIPTION OF DRAWINGS
  • In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure, a brief description of accompanying drawings used in the description of the embodiments of the present disclosure will be given below. Obviously, the accompanying drawings in the following description are merely some embodiments of the present disclosure. For those skilled in the art, other drawings may be obtained from these accompanying drawings without creative labor.
  • FIG. 1 is a schematic cross-sectional view of a flexible touch display device in a flat state in the prior art.
  • FIG. 2 is a schematic cross-sectional view of a flexible touch display device in a bent state in the prior art.
  • FIG. 3 is a schematic diagram of a flexible touch display device according to an embodiment of the disclosure.
  • FIG. 4 is a schematic cross-sectional view of the flexible touch display device of FIG. 3 along line B-B′.
  • FIG. 5 is a schematic diagram of a first arrangement of bridge points and sensing electrodes in a flexible touch display device according to an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a second arrangement of bridge points and sensing electrodes in a flexible touch display device according to an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of an arrangement of touch electrodes and touch electrode leads in X area of FIG. 3.
  • FIG. 8 is a schematic diagram of an arrangement of sensing electrodes and sensing electrode leads in Y area of FIG. 3.
  • FIG. 9 is a schematic diagram illustrating that each sensing electrode of FIG. 8 is a first type of mutual-capacitance sensing electrode.
  • FIG. 10 is a schematic diagram illustrating that each sensing electrode of FIG. 8 is a second type of mutual-capacitance sensing electrode.
  • FIG. 11 is a schematic diagram illustrating that each sensing electrode of FIG. 8 is a third type of mutual-capacitance sensing electrode.
  • FIG. 12 is a schematic diagram illustrating that each sensing electrode of FIG. 8 is another type of mutual-capacitance sensing electrode.
  • FIG. 13 is a partially enlarged view of the mutual-capacitance sensing electrodes of FIG. 12.
  • FIG. 14 is a schematic diagram illustrating that sensing electrodes of FIG. 8 are self-capacitance sensing electrodes.
  • FIG. 15 is a partially enlarged view of the self-capacitance sensing electrodes of FIG. 14.
  • FIG. 16 is a schematic diagram illustrating that the sensing electrodes of FIG. 4 are resistance sensing electrodes.
  • DETAILED DESCRIPTION
  • Technical solutions in embodiments of the present disclosure will be clearly and completely described below with reference to the accompanying drawings. Other embodiments obtained by those skilled in the art based on the embodiments of the present disclosure without any creative labor belong to the scope of the present invention. In addition, directional terms mentioned in the present disclosure, such as “up”, “down”, “parallel”, and “vertical”, are merely used to indicate the direction of the accompanying drawings for illustrating the present invention rather than limiting the present invention. Furthermore, term “a/an”, unless specifically defined otherwise, is intended to comprise plural forms. Terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating a number of technical features indicated. The features defined by “first” and “second” may explicitly or implicitly comprise one or more of the features.
  • Please refer to FIG. 3 and FIG. 4. The present disclosure provides a flexible touch display device 200 comprising a flexible display panel 110, a touch-sensing structure 120, a bonding area 180, and a touch chip 300. The flexible display panel 110 comprises a display area AA and a peripheral area NA surrounding the display area AA. The flexible display panel 110 may be an organic light emitting diode display panel, which sequentially, from bottom to top, comprises a flexible substrate 111, a thin-film transistor layer 112, an organic light emitting diode layer 113, and a thin-film encapsulation layer 114. The touch-sensing structure 120 is formed on the thin-film encapsulation layer 114. The flexible substrate 111 may be made of a flexible insulating polymer material, such as polyimide (PI), polycarbonate (PC), polyethersulfone (PES), polyethylene terephthalate (PET), Polyethylene naphthalate (PEN), and thin-film fiber-reinforced polymer (FRP). The thin-film transistor layer 112 comprises a plurality of thin-film transistors. Each of the thin-film transistors comprises a gate electrode layer, an insulating layer, an active layer, and a source-drain layer. The thin-film transistors may comprise hydrogenated amorphous silicon thin-film transistors (a-TFT: H), low-temperature poly TFTs (LTPS), organic thin-film transistors (OTFT) and/or metal oxide thin-film transistors, but are not limited thereto. The thin-film transistors may be bottom-gate, top-gate, or double-gate thin-film transistors. The organic light emitting diode layer 113 comprises a plurality of organic light emitting diodes for emitting light. Each of the organic light emitting diodes may sequentially comprise an anode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode layer. The thin-film transistors are electrically connected to the organic light emitting diodes in the organic light emitting diode layer 113 and configured to drive the organic light emitting diodes to emit light. The thin-film encapsulation layer 114 is configured to protect the organic light-emitting diodes in the organic light-emitting diode layer 113 from corrosion and damage by moisture and oxygen in the atmosphere, and improve a capability of the flexible display panel 110 to withstand stress. The thin-film encapsulation layer 114 may have a structure of inorganic layer/organic layer/inorganic layer. The inorganic layer of the thin-film encapsulation layer 114 is configured to prevent the organic light emitting diodes in the organic light emitting diode layer 113 from contact with the moisture and oxygen in the atmosphere, so as to prevent the moisture and oxygen in the atmosphere from damaging the organic light emitting diodes. The inorganic layer may be made of aluminum oxide, silicon oxide, magnesium oxide, or a combination thereof. The organic layer of the thin-film encapsulation layer 114 is made of a soft organic material, and thus may be configured to release stress experienced by the flexible display panel 110. The organic layer may be made of alucone, or an organic-inorganic hybrid film comprising aluminum, titanium, zinc, or iron. In an embodiment, the flexible touch display device 200 may further comprise a second insulating layer 160 disposed on the thin-film encapsulation layer 114. The touch-sensing structure 120 is formed on the second insulating layer 160. The second insulating layer 160 may be made by a low-temperature process. The second insulating layer 160 may be made of silicon nitride, silicon oxide, or a combination thereof.
  • The touch-sensing structure 120 is disposed on the flexible display panel 110 and comprises a plurality of bridge points 121, a plurality of sensing electrodes 122, a first insulating layer 130, a plurality of touch electrodes 141, a plurality of touch electrode leads 142, and a flat layer 150. The bridge points 121 are disposed on the display area AA of the flexible display panel 110. The sensing electrodes 122 are disposed on the peripheral area NA of the flexible display panel 110 and are configured to sense a bending position and a bending degree of the flexible display panel 110. The sensing electrodes 122 may be in a same layer and made of a same material as the bridge points 121 to avoid adding additional processes. The first insulating layer 130 covers the bridge points 121, the sensing electrodes 122, and the flexible display panel 110. The first insulating layer 130 is provided with a plurality of via holes 131 in the display area AA to expose two opposite sides of each of the bridge points 121. The touch electrodes 141 are disposed on the first insulation layer 130 in the display area AA and are electrically connected to the bridge points 121 through the via holes 131 to form a metal mesh structure for sensing a touched position of the flexible touch display device 200. The touch electrode leads 142 are disposed on the first insulating layer 130 in the peripheral area NA. The bonding area 180 is disposed on a side of the flexible display panel 110 and/or the touch-sensing structure 120. The touch electrode leads 142 may be in a same layer and made of a same material as the touch electrodes 141 to reduce manufacturing processes. The sensing electrodes 122 may be disposed below the touch electrode leads 142 to avoid increasing an area of the peripheral area NA and facilitate a narrow frame design. The bridge points 121, the sensing electrodes 122, the touch electrodes 141, and the touch electrode leads 142 may be made of a highly conductive and highly flexible metal material. Specifically, the bridge points 121, the sensing electrodes 122, and the touch electrodes 141 may be single-layer metal structures such as aluminum, titanium, and molybdenum, or a double-layer metal structure such as aluminum/titanium (Al/Ti) and molybdenum/aluminum (Mo/Al), or a three-layer metal structure such as titanium/aluminum/titanium (Ti/Al/Ti) and molybdenum/aluminum/molybdenum (Mo/Al/Mo). The flat layer 150 covers the touch electrodes 141, the touch electrode leads 142, and the first insulating layer 130. The flat layer 150 may be made of an organic photoresist material. The touch-sensing structure 120 may be formed on the flexible display panel 110 using a low-temperature process (process temperature is less than 90 □).
  • Please refer to FIG. 5, in an embodiment, the bridge points 121 are disposed in an array in the display area AA. Columns of the bridge points 121 are equally spaced, and rows of the bridge points 121 are also equally spaced. The sensing electrodes 122 are disposed in the peripheral area NA and are in same rows or same columns as the bridge points 121.
  • Please refer to FIG. 6, in an embodiment, the flexible touch display device 200 further comprises a scroll 400 connected to a side of the flexible touch display device 200 for rolling or unrolling the flexible touch display device 200. The sensing electrodes 122 are disposed on one or two sides of the peripheral area NA parallel to the scroll 400.
  • Please refer to FIG. 7, an end of each touch electrode lead 142 is electrically connected to one of the touch electrodes 141, and the other end of each touch electrode lead 142 is bonded to the bonding area 180 and is electrically connected to the touch chip 300.
  • Please refer to FIG. 8, the sensing electrodes 122 may be electrically connected to the touch chip 300 through a plurality of sensing electrode leads 123. The sensing electrode leads 123 are bonded to the bonding area 180. When a finger or a stylus touches the display area AA, a capacitance between the touch electrodes 141 in the touched position change and then forms a touch signal. That is, the touch signal is a capacitance change amount between the touch electrodes 141 in the touched position. Then, the touch signal is transmitted to the touch chip 300 through the touch electrode leads 142, and the touch chip 300 recognizes the touched position by processing the touch signal. When the flexible touch display device 200 is touched in a bent state, the sensing electrodes 122 in a bending position generate a bending signal to the touch chip 300. After the touch chip 300 recognizes the bending position and a bending degree thereof by processing the bending signal, the touch chip 300 compensates and corrects the touch signal generated by the touch electrodes 141 in the bending position. Therefore, the capacitance between the touch electrodes 141 in the bending position is prevented from being changed due to change in a distance between the touch electrodes 141, thereby avoiding misjudgment of the touched position. In this embodiment, the sensing electrodes 122 are mutual-capacitance sensing electrodes 80.
  • Please refer to FIGS. 9-11, which are schematic diagrams of three types of the mutual-capacitance sensing electrodes 80. Each of the sensing electrodes 80 comprises a transmitting electrode 60 and a receiving electrode 70, and the transmitting electrode 60 and the receiving electrode 70 generate a capacitance. When the flexible touch display device 200 is bent, a distance between the transmitting electrode 60 and the receiving electrode 70 of the mutual-capacitance sensing electrode 80 in a bending position is changed, thereby changing the capacitance between the transmitting electrode 60 and the receiving electrode 70. The bending signal is a capacitance change amount between the transmitting electrode 60 and the receiving electrode 70 of the mutual capacitance sensing electrode 80 in the bending position. In this embodiment, the transmitting electrode 60 and the receiving electrode 70 are comb-shaped but are not limited thereto. As long as the transmitting electrode 60 and the receiving electrode 70 are designed to be interlaced and matched with each other to achieve effect of a mutual-capacitance sensing electrode, they can be applied to the present invention. FIGS. 9-11 are only used to illustrate the transmitting electrode 60 and the receiving electrode 70 of the mutual-capacitance sensing electrode 80 and are not intended to limit the present invention. Any design similar to FIGS. 9-11 is also within a scope of the present invention. Intervals of the mutual-capacitance-type sensing electrodes 80 may be equal. The sensing electrode leads 123 comprise a transmitting electrode lead 61 and a plurality of receiving electrode leads 71. The transmitting electrodes 60 are electrically connected to the transmitting electrode lead 61. Each of the receiving electrodes 70 is electrically connected to each of the receiving electrode leads 71. The transmitting electrode lead 61 and the receiving electrode leads 71 are bonded to the bonding area 180 and electrically connected to the touch chip 300. The touch chip 300 sequentially emits excitation signals through the transmitting electrode lead 61 and the transmitting electrodes 60. The receiving electrodes 70 sequentially receive the excitation signals and transmit the excitation signals back to the touch chip 300 through the receiving electrode leads 71. In this way, the touch chip 300 obtains capacitance values of all the mutual-capacitance sensing electrodes 80, calculates a capacitance change amount of each mutual-capacitance sensing electrode 80, and then calculates the bending position and a bending degree thereof.
  • In an embodiment, please refer to FIG. 12 and FIG. 13, the sensing electrodes 122 may be another type of mutual-capacitance sensing electrodes 90 comprising a plurality of driving sensing wires 91 and a plurality of receiving sensing wires 92 perpendicularly crossing each other. Each of the driving sensing wires 91 comprises a plurality of first electrodes 93 connected in series. Each of the driving sensing wires 92 comprises a plurality of second electrodes 94 connected in series. In this embodiment, the first electrodes 93 and the second electrodes 94 are diamond-shaped but are not limited thereto. In this embodiment, please refer to FIG. 13, the first electrodes 93 and the second electrodes 94 are disposed on a same layer, and the connection line 98 between the second electrodes 94 bends across the connection line 97 between the first electrodes 93. In another embodiment, the driving sensing wires 91 and the receiving sensing wires 92 are disposed on two different layers, and a dielectric layer (not shown) is disposed between the two layers. Each of the driving sensing wires 91 and each of the receiving sensing wires 92 generate a capacitance at their intersection. When the flexible touch display device 200 is bent, the driving sensing wire 91 and the receiving sensing wire 92 in a bending position are deformed at their intersection, and thus the capacitance generated by the driving sensing wire 91 and the receiving sensing wire 92 at their intersection is changed. The bending signal is a capacitance change amount at the intersection of the driving sensing wire 91 and the receiving sensing wire 92 in the bending position. The sensing electrode leads 123 comprise a plurality of transmitting leads 95 and a plurality of receiving leads 96. Each of the driving sensing wires 91 is electrically connected to each of the transmitting leads 95. Each of the receiving sensing wires 92 is electrically connected to each of the receiving leads 96. The transmitting leads 95 and the receiving leads 96 are bonded to the bonding area 180 and electrically connected to the touch chip 300. The touch chip 300 sequentially emits excitation signals through the transmitting leads 95 and the driving sensing wires 91. The receiving sensing wires 92 sequentially receive the excitation signals and transmit the excitation signals back to the touch chip 300 through the receiving leads 96. In this way, the touch chip 300 obtains capacitance values at all intersections, calculates a capacitance change amount at each intersection, and then calculates the bending position and a bending degree thereof.
  • In an embodiment, please refer to FIG. 14 and FIG. 15, the sensing electrodes 122 may be self-capacitance sensing electrodes 700 comprising a plurality of first conductive lines 701 and a plurality of second conductive lines 702 perpendicularly crossing each other. Each of the first conductive lines 701 comprises a plurality of first electrodes 703 connected in series. Each of the second conductive lines 702 comprises a plurality of second electrodes 704 connected in series. In this embodiment, the first electrodes 703 and the second electrodes 704 are diamond-shaped but are not limited thereto. In this embodiment, please refer to FIG. 15, the first electrodes 703 and the second electrodes 704 are disposed on a same layer, and the connection line 708 between the second electrodes 704 bends across the connection line 707 between the first electrodes 703. In another embodiment, the first conductive lines 701 and the second conductive lines 702 are disposed on two different layers, and a dielectric layer (not shown) is disposed between the two layers. The first conductive lines 701 and the second conductive lines 702 are grounded. Capacitances are generated between the first conductive lines 701 and the ground (not shown) and between the second conductive lines 702 and the ground. When the flexible touch display device 200 is bent, the first conductive line 701 and the second conductive line 702 in a bending position are deformed, and thus the capacitances generated between the first conductive lines 701 and the ground and between the second conductive lines 702 and the ground are changed. The bending signal is a capacitance change amount between the first conductive lines 701 or the second conductive lines 702 in the bending position and the ground. The sensing electrode leads 123 comprise a plurality of first leads 705 and a plurality of second leads 706. Each of the first conductive lines 701 is electrically connected to each of the first leads 705. Each of the second conductive lines 702 is electrically connected to each of the second leads 706. The first leads 705 and the second leads 706 are bonded to the bonding area 180 and electrically connected to the touch chip 300. In order to obtain capacitance values between the first conductive lines 701 and the ground and between the second conductive lines 702 and the ground, the touch chip 300 sequentially detects the first conductive lines 701 extending in a same direction, and then sequentially detects the second conductive lines 702 extending in another direction. And then, the touch chip 300 calculates capacitance change amounts between each first conductive line 701 and the ground and between each second conductive line 702 and the ground, and then calculates the bending position and a bending degree thereof.
  • In an embodiment, please refer to FIG. 16, the sensing electrodes 122 may be resistance sensing electrodes 800 comprising two conductive layers 801 and a plurality of spacers 802 separating the two conductive layers. The spacers 802 are configured to distance the two conductive layers 801 from each other. Only when the flexible touch display device 200 is bent, the two conductive layers 801 will contact each other at a bending position. In other words, the spacers 802 are configured to prevent the two conductive layers 801 from being short-circuited due to contact with each other when the flexible touch display device 200 is not bent, thereby avoiding malfunction. The spacers 802 may be made of polyester material and may be shaped as spheres. When the flexible touch display device 200 is bent, the two conductive layers 801 in a bending position cause a short circuit due to contact with each other, thereby generating a voltage drop. The bending signal is a voltage change amount between the two conductive layers 801 in the bending position. The touch chip is electrically connected to the two conductive layers 801 to detect a voltage between the two conductive layers 801, calculate the voltage change amount, and then calculate the bending position and a bending degree thereof.
  • In the flexible touch display device provided by the present disclosure, the sensing electrodes are disposed in the peripheral area to sense the bending position and the bending degree of the flexible touch display device that are used to compensate and correct the capacitance between the touch electrodes in the bending position. This solves the technical problem of misjudgment of a touched position caused by a change in a capacitance between touch electrodes in a bending position when a current flexible touch display device is bent. Furthermore, the sensing electrodes may be disposed below the touch electrode leads in the peripheral area to avoid increasing an area of the peripheral area and facilitate a narrow frame design.
  • The present application has been described in the above preferred embodiments, but the preferred embodiments are not intended to limit the scope of the present application, and those skilled in the art may make various modifications without departing from the scope of the present application. The scope of the present application is determined by claims.

Claims (10)

What is claimed is:
1. A flexible touch display device, comprising:
a flexible display panel comprising a display area and a peripheral area surrounding the display area;
a plurality of bridge points disposed in the display area of the flexible display panel;
a plurality of sensing electrodes disposed in the peripheral area of the flexible display panel and on a same layer as the bridge points, and configured to sense a bending position and a bending degree of the flexible display panel;
a first insulating layer disposed on surfaces of the bridge points and the sensing electrodes away from the flexible display panel, wherein the first insulating layer is provided with a plurality of via holes in the display area to expose two opposite sides of each of the bridge points;
a plurality of touch electrodes disposed in the display area and on a surface of the first insulating layer away from the flexible display panel, and electrically connected to the bridge points through the via holes to form a metal mesh structure for sensing a touched position of the flexible touch display device; and
a plurality of touch electrode leads disposed in the peripheral area, on the surface of the first insulating layer away from the flexible display panel, and on the sensing electrodes, and electrically connected to the touch electrodes.
2. The flexible touch display device according to claim 1, further comprising:
a touch chip electrically connected to the touch electrode leads, wherein when the display area is touched, the touch electrodes in the touched position generate a touch signal, the touch signal is transmitted to the touch chip through the touch electrode leads, and the touch chip recognizes the touched position by processing the touch signal.
3. The flexible touch display device according to claim 2, wherein the touch signal is a capacitance change amount between the touch electrodes in the touched position.
4. The flexible touch display device according to claim 2, wherein
the sensing electrodes are electrically connected to the touch chip;
when the flexible touch display device is touched in a bent state, the sensing electrodes in the bending position generate a bending signal to the touch chip; and
after the touch chip recognizes the bending position and the bending degree by processing the bending signal, the touch chip compensates and corrects the touch signal generated by the touch electrodes in the bending position.
5. The flexible touch display device according to claim 4, wherein each of the sensing electrodes comprises a comb-shaped transmitting electrode and a comb-shaped receiving electrode, the transmitting electrode and the receiving electrode generate a capacitance, and the bending signal is a capacitance change amount between the transmitting electrode and the receiving electrode of the sensing electrode in the bending position.
6. The flexible touch display device according to claim 4, wherein the sensing electrodes comprise a plurality of driving sensing wires and a plurality of receiving sensing wires perpendicularly crossing each other, each of the driving sensing wires and each of the receiving sensing wires generate a capacitance at their intersection, and the bending signal is a capacitance change amount at the intersection of the driving sensing wire and the receiving sensing wire in the bending position.
7. The flexible touch display device according to claim 4, wherein the sensing electrodes comprise a plurality of conductive lines crossing each other perpendicularly, the conductive lines generate capacitances with ground, and the bending signal is a capacitance change amount between the conductive line in the bending position and the ground.
8. The flexible touch display device according to claim 4, wherein each of the sensing electrodes comprises two conductive layers and a plurality of spacers separating the two conductive layers, and the bending signal is a voltage change amount caused by the two conductive layers in contact with each other in the bending position.
9. The flexible touch display device according to claim 1, further comprising a scroll connected to a side of the flexible touch display device for rolling or unrolling the flexible touch display device, wherein the sensing electrodes are disposed on a side of the peripheral area that is parallel to the scroll.
10. The flexible touch display device according to claim 1, wherein the bridge points are disposed in an array in the display area, and the sensing electrodes are disposed in the peripheral area and are in a same row or a same column as the bridge points.
US16/652,425 2020-01-22 2020-02-27 Flexible touch display device Active US11079879B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010074959.5A CN111290661B (en) 2020-01-22 2020-01-22 Flexible touch display device
CN202010074959.5 2020-01-22
PCT/CN2020/077051 WO2021147136A1 (en) 2020-01-22 2020-02-27 Flexible touch display device

Publications (2)

Publication Number Publication Date
US20210223940A1 true US20210223940A1 (en) 2021-07-22
US11079879B1 US11079879B1 (en) 2021-08-03

Family

ID=76857045

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/652,425 Active US11079879B1 (en) 2020-01-22 2020-02-27 Flexible touch display device

Country Status (1)

Country Link
US (1) US11079879B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038331A (en) * 2021-11-30 2022-02-11 长沙惠科光电有限公司 Display panel and display device
CN114203040A (en) * 2021-12-03 2022-03-18 合肥维信诺科技有限公司 Flexible display panel and flexible display device
US20220101766A1 (en) * 2020-09-30 2022-03-31 Chengdu Boe Optoelectronics Technology Co., Ltd. Flexible display substrate, method for controlling same, and display device
CN114265518A (en) * 2021-12-28 2022-04-01 武汉华星光电半导体显示技术有限公司 Display panel
US20220171498A1 (en) * 2020-11-30 2022-06-02 Lg Display Co., Ltd. Touch display device
US20220285463A1 (en) * 2021-03-05 2022-09-08 Samsung Display Co., Ltd. Display apparatus
US20230259242A1 (en) * 2022-11-03 2023-08-17 Wuhan Tianma Microelectronics Co., Ltd. Display panel and display device
US12099679B2 (en) * 2021-12-09 2024-09-24 Lg Display Co., Ltd. Touch display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153336A (en) 2020-09-08 2022-03-08 京东方科技集团股份有限公司 Touch structure, touch display substrate and touch display device
CN114647331A (en) * 2020-12-21 2022-06-21 三星电子株式会社 Display device including touch screen panel and method of operating touch driving circuit
CN113192983B (en) * 2021-04-19 2022-12-06 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9019209B2 (en) * 2005-06-08 2015-04-28 3M Innovative Properties Company Touch location determination involving multiple touch location processes
KR101521219B1 (en) 2008-11-10 2015-05-18 엘지전자 주식회사 Mobile terminal using flexible display and operation method thereof
CN101950231B (en) 2009-07-10 2012-10-24 群康科技(深圳)有限公司 Method for detecting touching position for touch device
KR101878251B1 (en) * 2011-04-08 2018-07-13 삼성전자주식회사 Bending sensor and fabrication method thereof
KR101993333B1 (en) 2012-05-08 2019-06-27 삼성디스플레이 주식회사 Flexible display device and method for sensing wrapage using the same
KR102058699B1 (en) * 2013-01-24 2019-12-26 삼성디스플레이 주식회사 flexible display device having touch and bending sensing function
TWI514219B (en) * 2013-12-17 2015-12-21 Ind Tech Res Inst Bending sensor and associated bending sensing method and system applied to flexible display panel
KR102312260B1 (en) * 2015-01-09 2021-10-13 삼성디스플레이 주식회사 Flexible touch panel and flexible display device
KR20160114510A (en) * 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Touch panel
CN105159515B (en) 2015-09-18 2018-09-07 京东方科技集团股份有限公司 Touch-control structure and preparation method thereof, touch base plate and display device
CN105487734B (en) 2015-12-15 2019-04-12 昆山工研院新型平板显示技术中心有限公司 Capacitance touching control formula flexible display panels and its flexible display
KR102525811B1 (en) * 2016-07-29 2023-04-25 엘지디스플레이 주식회사 Touch panel, foldable display panel and foldable display apparatus using the same
KR102536791B1 (en) 2016-07-29 2023-05-26 엘지디스플레이 주식회사 Rollable flexible display device
US11143497B2 (en) * 2017-09-22 2021-10-12 International Business Machines Corporation Determination of a flexible display
US10910592B2 (en) 2017-12-22 2021-02-02 Lg Display Co., Ltd. Flexible electroluminescent display device
CN112703547A (en) * 2018-10-30 2021-04-23 深圳市柔宇科技股份有限公司 Touch display panel and bending detection method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220101766A1 (en) * 2020-09-30 2022-03-31 Chengdu Boe Optoelectronics Technology Co., Ltd. Flexible display substrate, method for controlling same, and display device
US11475811B2 (en) * 2020-09-30 2022-10-18 Chengdu Boe Optoelectronics Technology Co., Ltd. Flexible display substrate, method for controlling same, and display device
US20220171498A1 (en) * 2020-11-30 2022-06-02 Lg Display Co., Ltd. Touch display device
US11662868B2 (en) * 2020-11-30 2023-05-30 Lg Display Co., Ltd. Touch display device
US20220285463A1 (en) * 2021-03-05 2022-09-08 Samsung Display Co., Ltd. Display apparatus
US12075654B2 (en) * 2021-03-05 2024-08-27 Samsung Display Co., Ltd. Display apparatus
CN114038331A (en) * 2021-11-30 2022-02-11 长沙惠科光电有限公司 Display panel and display device
CN114203040A (en) * 2021-12-03 2022-03-18 合肥维信诺科技有限公司 Flexible display panel and flexible display device
US12099679B2 (en) * 2021-12-09 2024-09-24 Lg Display Co., Ltd. Touch display device
CN114265518A (en) * 2021-12-28 2022-04-01 武汉华星光电半导体显示技术有限公司 Display panel
US20230259242A1 (en) * 2022-11-03 2023-08-17 Wuhan Tianma Microelectronics Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
US11079879B1 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
US11079879B1 (en) Flexible touch display device
US12079040B2 (en) Flexible display device including touch sensor
US11599215B2 (en) Display device
CN106816460B (en) Flexible touch display panel and flexible touch display device
KR102269919B1 (en) Display device comprising touch sensor
US20170220164A1 (en) Array substrate, touch display panel and touch display device
KR102189313B1 (en) Display device
KR102082425B1 (en) Flat panel display device
KR102145961B1 (en) Organic light emitting device
US10971561B2 (en) OLED display panel and display device
CN104769719A (en) Flexible display
US20150168788A1 (en) Display device
CN109144330A (en) Touch-control display panel and display device
CN107731865B (en) OLED display device
CN111290661B (en) Flexible touch display device
US11520435B2 (en) Touch structure and display apparatus
KR20200141017A (en) Flexible display device including touch detecting sensor
US10355141B1 (en) Sensing element and sensing display panel
KR102343806B1 (en) Touch sensor and display device including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, YUANHANG;REEL/FRAME:052267/0429

Effective date: 20191126

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE