WO2019216380A1 - 脊髄損傷の治療剤 - Google Patents

脊髄損傷の治療剤 Download PDF

Info

Publication number
WO2019216380A1
WO2019216380A1 PCT/JP2019/018578 JP2019018578W WO2019216380A1 WO 2019216380 A1 WO2019216380 A1 WO 2019216380A1 JP 2019018578 W JP2019018578 W JP 2019018578W WO 2019216380 A1 WO2019216380 A1 WO 2019216380A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinal cord
cells
cord injury
cell
muse
Prior art date
Application number
PCT/JP2019/018578
Other languages
English (en)
French (fr)
Inventor
川村 誠
直哉 桝富
Original Assignee
株式会社生命科学インスティテュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社生命科学インスティテュート filed Critical 株式会社生命科学インスティテュート
Priority to EP19800676.9A priority Critical patent/EP3791888A4/en
Priority to JP2020518336A priority patent/JPWO2019216380A1/ja
Priority to KR1020207034363A priority patent/KR20210006402A/ko
Priority to CN201980030098.6A priority patent/CN112074282A/zh
Priority to SG11202011127WA priority patent/SG11202011127WA/en
Priority to AU2019268009A priority patent/AU2019268009A1/en
Priority to US17/054,001 priority patent/US20210228638A1/en
Priority to CA3099661A priority patent/CA3099661A1/en
Publication of WO2019216380A1 publication Critical patent/WO2019216380A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid

Definitions

  • the present invention relates to a cell preparation in regenerative medicine. More specifically, the present invention relates to a cell preparation containing pluripotent stem cells effective for the treatment of spinal cord injury.
  • Spinal cord injury is a condition in which the spinal cord is damaged mainly by a strong external force applied to the spinal column and the spinal cord is damaged. Similar disorders also occur due to internal causes such as spinal cord tumors and hernias (hereinafter, these may be collectively referred to as spinal cord injury).
  • spinal cord injury Currently, it is said that there are more than 100,000 patients with spinal cord injury in Japan, and more than 5,000 people suffer from spinal cord injury every year.
  • causes of injury include, in descending order: 1. traffic accident, 2. fall from high altitude, 3. fall, 4. bruise / underlay, 5. sports, 6. other. It is divided into “complete type” and “incomplete type” depending on the degree of damage.
  • Complete type is called “complete spinal cord injury”, where the spinal cord is transversally disconnected and the nerve transmission function is completely cut off.
  • “Incomplete type” is called “incomplete spinal cord injury” In this case, a part of the spinal cord is damaged or compressed, and some functions remain.
  • Non-patent Document 1 which has been reported to be effective in animal experiments and clinical trials in the 1990s, has the effect of suppressing aftereffects. However, it is said to be less effective except for relatively young regenerative patients and is not generalized. Therefore, after an injury, rehabilitation is usually performed as soon as possible after an acute period. However, rehabilitation of spinal cord injury cannot restore lost function.
  • Non-patent document 2 neural stem cells
  • Non-patent document 3 embryonic stem cells
  • bone marrow mesenchymal stem cells Non-patent documents 4 to 5
  • olfactory mucosal cells Non-patent document 6
  • a pluripotent stem cell that is present in the mesenchymal cell fraction and expresses as a surface antigen SSEA-3 (Stage-Specific Embryonic Antigen-3) obtained without gene transfer or induction by cytokines or the like ( Multilineage-differentiating Stress Enduring cells; Muse cells) is responsible for the pluripotency of the mesenchymal cell fraction, and is known to have potential for application to disease treatment aimed at tissue regeneration (for example, Patent Document 1; Non-Patent Documents 8 to 10).
  • SSEA-3 Serial-Specific Embryonic Antigen-3
  • Muse cells Multilineage-differentiating Stress Enduring cells; Muse cells
  • the present invention aims to provide a cell preparation for the treatment of spinal cord injury.
  • the present inventors administer human Muse cells from blood vessels or the like, or directly administer human Muse cells to and around the spinal cord injury site, so that the Muse cells migrate, accumulate and engraft at the spinal cord injury site.
  • the present inventors have found that spinal cord tissue is reconstituted, resulting in improvement or recovery of motor function, whereby Muse cells can be used for the treatment of spinal cord injury, and the present invention has been completed.
  • the present invention is as follows.
  • [1] A cell preparation for treating spinal cord injury, comprising SSEA-3-positive pluripotent stem cells derived from living mesenchymal tissue or cultured mesenchymal cells.
  • [2] The cell preparation according to [1], wherein the spinal cord injury is complete spinal cord injury.
  • [3] The cell preparation according to [1], wherein the spinal cord injury is incomplete spinal cord injury.
  • pluripotent stem cell is a pluripotent stem cell having all of the following properties: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; (Iii) no neoplastic growth; and (iv) self-renewal ability.
  • the pluripotent stem cell is a pluripotent stem cell having all of the following properties: (I) SSEA-3 positive; (Ii) CD105 positive; (Iii) low or no telomerase activity; (Iv) has the ability to differentiate into any of the three germ layers; (V) exhibits no neoplastic growth; and (vi) has a self-renewal capability.
  • SSEA-3-positive pluripotent stem cells derived from living mesenchymal tissue or cultured mesenchymal cells in the production of a cell preparation for treating spinal cord injury.
  • Muse cells migrate, accumulate, and engraft at the spinal cord injury site by administering Muse cells from a blood vessel or the like to a spinal cord injury patient or directly to the spinal cord injury site and its periphery.
  • Spinal cord tissue can be reconstituted, resulting in improved or restored motor function. Therefore, the cell preparation of the present invention can be used for the treatment of spinal cord injury.
  • Muse cells can efficiently migrate to the site where spinal cord injury has occurred, accumulate and engraft, and spinal cord tissue can be reconstructed at the site of engraftment, so treatment prior to transplantation (administration) It is not necessary to induce differentiation into target cells. Moreover, it is non-tumorigenic and excellent in safety. Furthermore, since Muse cells do not undergo immune rejection, treatment with other products prepared from donors is also possible. Therefore, the Muse cells having the superior performance described above can provide an easily workable means for treating patients with spinal cord injury.
  • the graph which shows the evaluation result of a hindlimb motor function in the spinal cord injury model rat to which the vehicle (HBSS) or Muse cell (CL2020) was administered (Example 1-4).
  • * P ⁇ 0.05 ** P ⁇ 0.01 vs. HBSS The graph which shows the evaluation result of a hindlimb motor function in the spinal cord injury model rat which administered the vehicle or the Muse cell (Example 2-1).
  • the graph which shows the evaluation result of a hindlimb motor function in the spinal cord injury model rat which administered the vehicle or the Muse cell (Example 3-1).
  • the present invention relates to a cell preparation for treating spinal cord injury comprising SSEA-3 positive pluripotent stem cells (Muse cells).
  • SSEA-3 positive pluripotent stem cells Muse cells
  • the cell preparation containing SSEA-3 positive pluripotent stem cells (Muse cells) of the present invention is used for the treatment of spinal cord injury.
  • spinal cord injury is a state in which a spine is damaged mainly by applying a strong external force to the spinal column, and the spinal cord is damaged.
  • similar disorders occur due to internal causes such as spinal cord tumors and hernias, and the cell preparation of the present invention can also be applied to such cases.
  • the acute phase of spinal cord injury is classified into primary damage caused by external forces and secondary damage that is a subsequent biochemical and biological reaction.
  • Secondary damage unlike primary damage, is a condition that can be a major target for various treatments. Therefore, there is a possibility that the functional prognosis can be improved by suppressing secondary damage by treatment to prevent tissue damage to a minimum.
  • the acute phase is the time when the secondary damage is occurring, and varies depending on the patient. For example, it refers to about 3 weeks after the injury.
  • the subacute phase of spinal cord injury is the period when inflammation in the acute phase has converged and angiogenesis and tissue repair reactions have become active.
  • the subacute phase is the time when the above reaction occurs, and varies depending on the patient, for example, about 1 to 12 weeks after injury.
  • a cavity is formed in the spinal cord injury portion, resulting in a tissue defect.
  • Astrocytes that accumulate around the lesion form hard glial scars that provide a barrier to axonal regeneration.
  • chronic period refers to a period when the above-mentioned situation occurs, and it varies depending on the patient. For example, it refers to the period from about 4 weeks after the injury.
  • the pluripotent stem cell used in the cell preparation of the present invention is a cell whose presence has been found in the human body and has been named “Muse (Multilineage-differentiating Stress Ending) cell”. Muse cells are obtained from bone marrow fluid, adipose tissue (Ogura, F., et al., Stem Cells Dev., Nov 20, 2013 (Epub) (published on Jan 17, 2014)), dermal connective tissue of skin, etc. It is widely known to exist in connective tissues of tissues and organs. Further, this cell is a cell having the properties of both a pluripotent stem cell and a mesenchymal stem cell.
  • a cell surface marker “SSEA-3” positive cell preferably SSEA-3 positive and CD-105 Identified as positive double positive cells. Therefore, Muse cells or cell populations containing Muse cells can be separated from living tissues using, for example, SSEA-3 alone or the expression of SSEA-3 and CD-105 as an index. Details such as a method for separating Muse cells, an identification method, and characteristics are disclosed in International Publication No. WO2011 / 007900.
  • Muse cells using Muse cells' high resistance to various external stresses, proteolytic enzyme treatment, hypoxic conditions, low phosphate conditions, low serum concentrations, low nutrient conditions, exposure to heat shock, harmful Muse cells can be selectively enriched by culturing under various external stress conditions such as substances, active oxygen, mechanical stimulation, pressure treatment, and the like.
  • pluripotent stem cells prepared from mesenchymal tissue or cultured mesenchymal tissue in vivo using SSEA-3 as an index. Cell
  • SSEA-3 positive cells a cell population containing Muse cells
  • Muse cells or cell populations containing Muse cells can be prepared from living tissue (eg, mesenchymal tissue) using cell surface markers SSEA-3 or SSEA-3 and CD-105 as indicators.
  • living body means a living body of a mammal. In the present invention, the living body does not include embryos whose developmental stage is earlier than the fertilized egg or blastocyst stage, but includes embryos in the developmental stage after the blastocyst stage including the fetus and blastocyst.
  • Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats, rabbits, guinea pigs, cats, dogs, sheep, pigs, cows, horses, donkeys, goats, ferrets, etc. It is done. Muse cells used in the cell preparation of the present invention are clearly distinguished from embryonic stem cells (ES cells) and iPS cells in that they are separated from living tissues with a marker directly. “Mesenchymal tissue” refers to tissues existing in various organs such as bone, synovium, fat, blood, bone marrow, skeletal muscle, dermis, ligament, tendon, dental pulp, umbilical cord, umbilical cord blood, amniotic membrane, etc. Say.
  • Muse cells can be obtained from bone marrow, skin, adipose tissue, blood, dental pulp, umbilical cord, umbilical cord blood, amniotic membrane, and the like. For example, it is preferable to collect a mesenchymal tissue of a living body, prepare a Muse cell from this tissue, and use it.
  • Muse cells may be prepared from cultured mesenchymal cells such as fibroblasts and bone marrow mesenchymal stem cells using the above preparation means.
  • the cell population containing Muse cells used in the cell preparation of the present invention provides cells resistant to external stress by applying external stress stimulation to mesenchymal tissue or cultured mesenchymal cells in a living body. It can also be prepared by a method comprising recovering cells that have been selectively grown to increase their abundance.
  • the external stress includes protease treatment, culture at low oxygen concentration, culture under low phosphate conditions, culture at low serum concentration, culture under low nutrient conditions, culture under exposure to heat shock, low temperature Incubation in freezing, culture in the presence of harmful substances, culture in the presence of active oxygen, culture under mechanical stimulation, culture under shaking treatment, culture under pressure treatment or physical impact Any one or a plurality of combinations may be used.
  • the treatment time with the protease is preferably 0.5 to 36 hours in total to give external stress to the cells.
  • the protease concentration may be a concentration used when peeling cells adhered to the culture vessel, separating the cell mass into single cells, or collecting single cells from the tissue.
  • the protease is preferably a serine protease, aspartic protease, cysteine protease, metalloprotease, glutamic acid protease or N-terminal threonine protease. Further, the protease is preferably trypsin, collagenase or dispase.
  • the Muse cell used may be autologous to the recipient who receives the cell transplant, or may be allogeneic.
  • a Muse cell or a cell population containing a Muse cell can be prepared from a living tissue using, for example, SSEA-3 positive or double positive of SSEA-3 and CD-105 as an index.
  • the skin contains various types of stem cells and progenitor cells.
  • Muse cells are not the same as these cells.
  • Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural crest stem cells (NCSC), melanoblast (MB), perivascular cells (PC), endothelial progenitor cells (EP), adipose-derived stem cells (ADSC). ).
  • Muse cells can be prepared using “non-expression” of a marker unique to these cells as an index.
  • Muse cells are CD34 (EP and ADSC markers), CD117 (c-kit) (MB markers), CD146 (PC and ADSC markers), CD271 (NGFR) (NCSC markers), NG2 (PC marker), vWF factor (von Willebrand factor) (EP marker), Sox10 (NCSC marker), Snai1 (SKP marker), Slug (SKP marker), Tyrp1 (MB marker), and At least one of 11 markers selected from the group consisting of Dct (MB marker), for example 2, 3, 4, 5, 6, 7, 8, 9, 10 The non-expression of individual or eleven markers can be separated into indicators.
  • non-expression of CD117 and CD146 can be used as an index
  • non-expression of CD117, CD146, NG2, CD34, vWF and CD271 can be used as an index
  • the non-expression of 11 markers can be prepared as an index.
  • the Muse cell having the above characteristics used in the cell preparation of the present invention is as follows: (I) low or no telomerase activity; (Ii) has the ability to differentiate into cells of any germ layer of the three germ layers; It may have at least one property selected from the group consisting of (iii) showing no neoplastic growth; and (iv) having a self-renewal capability.
  • the Muse cell used in the cell preparation of the present invention has all the above properties.
  • telomerase activity is low or absent means that, for example, when telomerase activity is detected using TRAPEZE XL telomerase detection kit (Millipore), it is low or cannot be detected.
  • “Low” telomerase activity means, for example, telomerase having a telomerase activity comparable to that of somatic human fibroblasts, or 1/5 or less, preferably 1/10 or less compared to Hela cells. It means having activity.
  • the Muse cell has the ability to differentiate into three germ layers (endoderm, mesodermal, and ectoderm) in vitro and in vivo, for example, induction culture in vitro Can differentiate into hepatocytes (including cells that express hepatoblasts or hepatocyte markers), neurons, skeletal muscle cells, smooth muscle cells, bone cells, adipocytes, and the like.
  • Muse cells proliferate at a growth rate of about 1.3 days, but in suspension culture, they proliferate from one cell and grow in about 14 days when they form an embryoid body-like cell mass and reach a certain size.
  • a Muse cell has self-renewal (self-replication) ability.
  • self-renewal means that differentiation from cells contained in embryoid body-like cell clusters obtained by culturing in suspension culture from one Muse cell to trioderm cells can be confirmed, By bringing the cells of embryoid body-like cell mass to one cell again in suspension culture, the next generation embryoid body-like cell mass is formed, from which embryos in 3 germ layer differentiation and suspension culture are again formed. This means that a clot-like cell mass can be confirmed.
  • the self-renewal may be repeated once or multiple times.
  • the cell preparation of the present invention is not limited, but the Muse cell or the cell population containing Muse cell obtained in (1) above is treated with physiological saline or an appropriate buffer (for example, phosphorous). Acid buffered saline).
  • physiological saline or an appropriate buffer for example, phosphorous. Acid buffered saline.
  • the cells may be cultured before cell transplantation and grown until a predetermined number of cells is obtained.
  • International Publication No. WO2011 / 007900 pamphlet since Muse cells do not become tumors, even if cells collected from living tissue remain undifferentiated, they may become cancerous. Is low and safe.
  • the culture of the collected Muse cells is not particularly limited, but can be performed in a normal growth medium (for example, ⁇ -minimum essential medium ( ⁇ -MEM) containing 10% calf serum).
  • a normal growth medium for example, ⁇ -minimum essential medium ( ⁇ -MEM) containing 10% calf serum.
  • a medium, additives for example, antibiotics, serum
  • Muse cells at a predetermined concentration can be prepared.
  • bone marrow fluid is collected from the human iliac bone and, for example, bone marrow mesenchymal stem cells are cultured as adherent cells from the bone marrow fluid and an effective therapeutic amount of Muse.
  • the Muse cells can be separated using the SSEA-3 antigen marker as an indicator, and autologous or other Muse cells can be prepared as cell preparations.
  • the autologous or allogeneic Muse cells are transformed into cells. It can be prepared as a formulation.
  • DMSO dimethyl sulfoxide
  • serum albumin etc.
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc.
  • You may make it contain in a cell formulation.
  • One skilled in the art can add these factors and agents to the cell preparation at appropriate concentrations.
  • Muse cells can also be used as pharmaceutical compositions containing various additives.
  • the dosage form of the cell preparation is not particularly limited, but is preferably a parenteral preparation, and more preferably an injection.
  • the number of Muse cells contained in the above-prepared cell preparation takes into consideration the sex, age, weight, condition of the affected area, cell condition to be used, etc. so that the desired effect can be obtained in the treatment of spinal cord injury. Thus, it can be adjusted as appropriate.
  • the target individuals include mammals such as humans, but are not limited thereto.
  • the cell preparation of the present invention may be administered once, but multiple times (for example, 2 to 10 times), at appropriate intervals (for example, twice a day, one day) until a desired therapeutic effect is obtained. Once a week, twice a week, once a week, once every two weeks, once a month, once every two months, once every three months, once every six months) May be.
  • the administration may be performed in any of the acute phase, subacute phase, and chronic phase, or two or more types selected from these.
  • the therapeutically effective amount depends on the condition of the subject, but for example, a dosage of 1 ⁇ 10 3 cells to 1 ⁇ 10 10 cells per individual is preferably 1 to 10 times.
  • the total administration amount in one individual is not limited, but is 1 ⁇ 10 3 cells to 1 ⁇ 10 11 cells, preferably 1 ⁇ 10 4 cells to 1 ⁇ 10 10 cells, more preferably 1 ⁇ 10 5 cells to 1 ⁇ 10 6. 9 cells and the like can be mentioned.
  • the Muse cell used in the cell preparation of the present invention has a property of migrating to a damaged site of spinal cord injury and engrafting. Therefore, the administration site and administration method of the cell preparation are not limited in the administration of the cell preparation, and may be administered locally to the affected area, or may be administered intravenously.
  • the cell preparation of the present invention can reconstitute spinal cord tissue of a patient with spinal cord injury and can improve or restore the lost function of spinal cord injury.
  • Rats and mice are common as animal species, but monkeys, dogs, rabbits, and the like may be used.
  • the pathology of spinal cord injury is created by direct damage to the spinal cord of these animals, such as amputation, crushing by impact, injury by electricity or heat, and the like.
  • BBB scores Basso-Beattie-Bresnahan
  • caries stimulation (VFH test: Experimental Neurology 225, Issue 2, 366-376, (2010))
  • Catwalk analysis (Abhiraj D) Bhiman et al., Neuroscience & Biobehavioral Reviews 83; 540-546 (2017)) and the like, and evaluation using limb movement and body position or limb sensation as an index, and histopathological evaluation are used.
  • the Frankel classification or the American Spinal Injury Association Impairment (ASIA) scale is often used (Spine and Spinal Cord Injury Treatment and Management Guidelines Preparation Committee: Guidelines for Spinal and Spinal Cord Injury Treatment Management Spinal Surgery 2005; 19 :( supple 1): 1-41).
  • Example 1-1 Preparation of Rat Spinal Cord Injury Model Under anesthesia, an eleven week old female SD rat was subjected to laminectomy of the 9th to 10th thoracic vertebrae to expose the spinal cord, and immediately after the MASCIS Impactor (Rutgers University, USA) was used to drop a weight (diameter 2.5 mm, weight 10 g) from a height of 25 mm to damage the spinal cord (3 groups of 8 animals).
  • Example 1-2 Preparation of human Muse cells Muse cells were obtained according to the method described in International Publication No. WO2011 / 007900 concerning the separation and identification of human Muse cells. More specifically, Muse cells were obtained by expansion-enriched culture by culturing mesenchymal stem cells under stress conditions.
  • Example 1-3 Administration of each cell to rat spinal cord injury model Rats were divided into 3 groups of 8 rats, and the first group contained 5 ⁇ 10 6 cells / kg body weight Muse cells on the first day of spinal cord injury. Administered from the tail vein (single administration group), and the second group received 5 ⁇ 10 6 cells / kg body weight Muse cells from the tail vein after 1 day and 7 days after spinal cord injury (multiple administrations). Administration group). The third group received vehicle (HBSS) via the tail vein 1 day after spinal cord injury (control group).
  • HBSS vehicle
  • Example 1-4 Evaluation of hindlimb motor function
  • a BBB (Basso-Beattie-Bresnahan) score J. Neurotrauma 1995; 12: 1- was used once a week until 4 weeks after spinal cord injury. Based on 21), the hindlimb motor function was examined. As a result, as shown in FIG. 1, the BBB score consistently showed a high value in the Muse cell administration group, and after 7 days after spinal cord injury, the Muse cell single administration group and the multiple administration group were treated with the vehicle administration group. A significant high value was observed, and the effect of improving hindlimb motor function by Muse cells was shown.
  • Example 2-1 Administration of Muse cells to rat spinal cord injury model (acute phase administration) and evaluation of hindlimb motor function
  • the hindlimb motor function was evaluated.
  • the dose of Muse cells was 1 ⁇ 10 6 cells / kg body weight per time.
  • the BBB score measurement results are shown in FIG.
  • Muse cells exhibit significantly improved motor function improvement or recovery effect in the acute administration of spinal cord injury than the level of spontaneous improvement and recovery of motor function seen immediately after spinal cord injury in the control group. I understood.
  • Example 2-2 Histopathological analysis in a rat spinal cord injury model administered with Muse cells (administration in acute phase)
  • Muse cell administration group and the control group of Example 2-1 the last day on the 28th day after spinal cord injury
  • the spinal cord was isolated and histopathological analysis was performed.
  • the isolated spinal cord was formalin-fixed, paraffin sections were prepared according to a conventional method, hematoxylin-eosin (HE) staining and Kluber-Barrera (KB) staining were performed, and observed under an optical microscope.
  • the spinal cord was cut into a coronal section at the central part of the lesion preparation and the rostral and caudal sides of 5 mm, and used as an observation surface.
  • HE hematoxylin-eosin
  • KB Kluber-Barrera
  • grade 3 represents a case where the change occupies 50% or more of the spinal cord cross section
  • grade 2 represents a case of 10-50%
  • grade 1 represents a case of 10% or less.
  • Example 3-1 Muse cell administration (subacute to chronic phase administration) and evaluation of hind limb motor function to rat spinal cord injury model
  • Muse cells were administered to evaluate hindlimb motor function.
  • the administration time of Muse cells (1 ⁇ 10 6 cells / kg body weight) is such that the first group (single administration group) is once after 14 days of spinal cord injury, and the second group (multiple administration group) is One dose each after 14 days and 28 days after spinal cord injury, and the third group received vehicle (HBSS) after 14 days of spinal cord injury (control group).
  • the BBB score measurement results are shown in FIG.
  • Example 3-2 Histopathological Analysis in Rat Spinal Cord Injury Model Administered Muse Cells (Sub-acute to Chronic Phase Administration)
  • Muse cell administration group and control group of Example 3-1, 70 After the final BBB score measurement on the day, the spinal cord was isolated and histopathological analysis was performed. Specifically, the isolated spinal cord was formalin-fixed, paraffin sections were prepared according to a conventional method, hematoxylin-eosin (HE) staining and Kluber-Barrera (KB) staining were performed, and observed under an optical microscope. The spinal cord was cut into a coronal section of the central part of the lesion preparation and its rostral and caudal sides of 5 mm, and used as the observation surface.
  • HE hematoxylin-eosin
  • KB Kluber-Barrera
  • Example 2-2 the number of regenerated myelin myelin sheaths was also measured.
  • the number of regenerated myelin myelin sheaths was determined by the ratio of the number of cells having regenerated myelin sheaths to the number of cell nuclei in a fixed visual field.
  • the cell preparation of the present invention can be applied to patients with spinal cord injury by reconstituting damaged tissue of spinal cord injury and improving or restoring the function by administering it to patients with spinal cord injury.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

生体の間葉系組織又は培養間葉系細胞に由来するSSEA-3陽性の多能性幹細胞(Muse細胞)を含む、脊髄損傷を治療するための細胞製剤。脊髄損傷は好ましくは完全脊髄損傷、不完全脊髄損傷である。

Description

脊髄損傷の治療剤
  本発明は、再生医療における細胞製剤に関する。より具体的には、脊髄損傷の治療に有効な多能性幹細胞を含有する細胞製剤に関する。
 脊髄損傷(Spinal Cord Injury)は、主として脊柱に強い外力が加えられることにより脊椎を損壊し、脊髄に損傷をうける状態である。また、脊髄腫瘍やヘルニアなど内的原因によっても類似の障害が発生する(以後、これらをまとめて脊損と称することもある)。
 現在、日本には10万人以上の脊損患者がいると言われており、毎年5000人以上があらたに脊髄損傷を負っている。受傷原因として割合の高い順に、1.交通事故、2.高所からの落下、3.転倒、4.打撲・下敷き、5.スポーツ 、6.その他、などがある。
 損傷の度合いにより、「完全型」と「不完全型」に分かれる。「完全型」は「完全脊髄損傷」と呼ばれ、脊髄が横断的に離断し、神経伝達機能が完全に絶たれた状態であり、「不完全型」は「不完全脊髄損傷」と呼ばれ、脊髄の一部が損傷、圧迫などを受け、一部機能が残存するものを指す。
 脊髄を含む中枢神経系は末梢神経と異なり、一度損傷すると修復・再生されることは無いと言われている。
 そのため、緊急の治療は脊椎または脊髄への二次損傷の予防であり、固定、酸素化および脊髄灌流の維持、支持療法などが行われる。また、1990年代に動物実験や臨床治験により有効性が報告された急性期ステロイド大量療法(非特許文献1)は、これにより後遺障害を抑える効果があると言われている。しかし、比較的若年の再生力の強い患者以外には効果が薄いと言われており、一般化されたものではない。
 したがって、通常、受傷後、急性期を過ぎたらなるべく早くリハビリテーションを行うことが行われている。ただし、脊髄損傷のリハビリテーションは失われた機能を回復させることはできない。
 破壊された脊髄を再生し、再び機能を取り戻すことは脊損患者の願いであり、様々な分野で研究が進められている。特に、これまで治療が不可能と考えられていた脊髄損傷などの中枢神経疾患に対して、幹細胞による再生医療の研究が試みられている。
 例えば、神経幹細胞(非特許文献2)、胚性幹細胞(非特許文献3)、骨髄間葉系幹細胞(非特許文献4~5)、嗅粘膜細胞(非特許文献6)など実に様々な細胞が動物を用いた実験に用いられ、実際に脊髄損傷の病態改善に有効であったとする報告がなされている。その一部では臨床治験も試みられているが、これまでのところ承認に至ったものはわずかに自己由来骨髄間葉系幹細胞(非特許文献7)のみである。
  一方、間葉系細胞画分に存在し、遺伝子導入やサイトカイン等による誘導操作なしに得られる、SSEA-3(Stage-Specific  Embryonic  Antigen-3)を表面抗原として発現している多能性幹細胞(Multilineage-differentiating  Stress  Enduring  cells;Muse細胞)が間葉系細胞画分の有する多能性を担っており、組織再生を目指した疾患治療に応用できる可能性があることが知られている(例えば、特許文献1;非特許文献8~10)。しかしながら、脊髄損傷の治療にMuse細胞を使用し、期待される治療効果が得られることを明らかにした例はない。
特許第5185443号明細書
Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon : N Engl J Med. 322 :1405-1411, 1990. Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, Iwamoto Y, Nakamura M, Miyoshi H, Okano HJ, Contag CH, Toyama Y, Okano H : FASEB J. 19 : 1839-1841, 2005. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW : Nat Med. 5 : 1410-1412, 1999. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L : Proc Natl Acad Sci U S A. 99 :2199-2204, 2002. Koda M, Okada S, Nakayama T, Koshizuka S, Kamada T, Nishio Y, Someya Y, Yoshinaga K, Okawa A, Moriya H, Yamazaki M : Neuroreport.,16 : 1763-1767, 2005. Ramom-Cueto A, Cordero MI, Santos-Benito FF, Avila J : Neuron. 25 : 425-435, 2000. Honmou O : Spinal Surgery 30(3) 248-250, 2016 Kuroda Y et al. Proc Natl Acad Sci USA,2010: 107: 8639-8643. Wakao S et al. Proc Natl Acad Sci USA,2011: 108: 9875-9880. Kuroda Y et al. Nat Protc, 2013: 8: 1391-1415.
  本発明は、脊髄損傷の治療のための細胞製剤を提供することを目的とする。
  本発明者らは、脊髄損傷モデルラットにおいて、ヒトMuse細胞を血管等から投与、あるいは対象の脊髄損傷部位及びその周辺に直接投与することにより、Muse細胞が脊髄損傷部位に遊走・集積・生着して、脊髄組織を再構成し、運動機能の改善又は回復をもたらすことを見出し、それにより、Muse細胞が脊髄損傷の治療に使用できることを見出し、本発明を完成するに至った。
  すなわち、本発明は、以下の通りである。
  [1]生体の間葉系組織又は培養間葉系細胞に由来するSSEA-3陽性の多能性幹細胞を含む、脊髄損傷を治療するための細胞製剤。
 [2]脊髄損傷が、完全脊髄損傷である、[1]に記載の細胞製剤。
 [3]脊髄損傷が、不完全脊髄損傷である、[1]に記載の細胞製剤。
  [4]前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、上記[1]~[3]のいずれかに記載の細胞製剤:
 (i)テロメラーゼ活性が低いか又は無い;
 (ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
 (iii)腫瘍性増殖を示さない;及び
 (iv)セルフリニューアル能を持つ。
 [5]前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、上記[1]~[3]のいずれかに記載の細胞製剤:
 (i)SSEA-3陽性;
 (ii)CD105陽性;
 (iii)テロメラーゼ活性が低いか又は無い;
 (iv)三胚葉のいずれかの胚葉に分化する能力を持つ;
 (v)腫瘍性増殖を示さない;及び
 (vi)セルフリニューアル能を持つ。
  [6]生体の間葉系組織又は培養間葉系細胞に由来するSSEA-3陽性の多能性幹細胞の、脊髄損傷を治療するための細胞製剤の製造における使用。
  [7]生体の間葉系組織又は培養間葉系細胞に由来するSSEA-3陽性の多能性幹細胞を含む細胞製剤の治療有効量を、治療を必要とする脊髄損傷患者に投与する工程を含む、脊髄損傷の治療方法。
  本発明では、脊髄損傷の患者に対し、Muse細胞を血管等から投与、あるいは対象の脊髄損傷部位及びその周辺に直接投与することにより、Muse細胞が脊髄損傷部位に遊走・集積・生着して、脊髄組織を再構成し、運動機能の改善又は回復をもたらすことができる。したがって、本発明の細胞製剤は脊髄損傷の治療に使用することができる。
 Muse細胞は、脊髄損傷を生じた部位に効率的に遊走して集積・生着することができ、生着した部位で脊髄組織を再構成することができるため、移植(投与)に先立って治療対象細胞への分化誘導が不要である。また、非腫瘍形成性であり安全性にも優れる。さらに、Muse細胞は免疫拒絶を受けないことから、ドナーから製造された他家製剤による治療も可能である。従って、上記に示す優れた性能を有するMuse細胞によって、脊髄損傷の患者の治療に対する容易に実行可能な手段を提供することができる。
媒体(HBSS)またはMuse細胞(CL2020)が投与された、脊髄損傷モデルラットにおける、後肢運動機能の評価結果を示すグラフ(実施例1-4)。* P<0.05 **P<0.01 vs. HBSS 媒体またはMuse細胞が投与された、脊髄損傷モデルラットにおける、後肢運動機能の評価結果を示すグラフ(実施例2-1)。* P<0.05 **P<0.01 vs. HBSS(Control) 媒体またはMuse細胞が投与された、脊髄損傷モデルラットにおける、後肢運動機能の評価結果を示すグラフ(実施例3-1)。* P<0.05 vs. HBSS(Control)
  本発明は、SSEA-3陽性の多能性幹細胞(Muse細胞)を含む、脊髄損傷を治療するための細胞製剤に関する。本発明を以下に詳細に説明する。
1.適用疾患
  本発明のSSEA-3陽性の多能性幹細胞(Muse細胞)を含む細胞製剤は、脊髄損傷の治療に使用される。
  本発明において、「脊髄損傷」とは、主として脊柱に強い外力が加えられることにより脊椎を損壊し、脊髄に損傷をうける状態である。また、脊髄腫瘍やヘルニアなど内的原因によっても類似の障害が発生することが知られており、本発明の細胞製剤はこのような場合にも適用できる。脊髄損傷は、損傷の度合いにより、「完全型」と「不完全型」に分かれ、「完全型」は「完全脊髄損傷」と呼ばれ、脊髄が横断的に離断し、神経伝達機能が完全に絶たれた状態であり、「不完全型」は「不完全脊髄損傷」と呼ばれ、脊髄の一部が損傷、圧迫などを受け、一部機能が残存するものを指す。
 脊髄損傷は損傷後時間経過とともに、損傷に対する生体反応により病態が複雑に変化するため、それぞれの時期にそれぞれの病態に即した適切な治療が必要になる。
 脊髄損傷の急性期は、外力による一次損傷と、引き続いて起こる生化学的・生物学的反応である二次損傷に分類される。血腫、虚血、浮腫、炎症細胞浸潤及び神経伝達物質の漏出による細胞毒性等により神経・グリア細胞の細胞死が引き起こされ障害範囲が拡大してゆく過程を総称して二次損傷と呼ばれる。二次損傷は一次損傷と異なり各種治療の主たるターゲットとなりうる病態である。したがって、治療により二次損傷を抑制して組織障害を最小限に食い止めることで、機能予後を改善できる可能性がある。当該急性期とは、上記二次損傷が生じている時期であり、患者により異なるが、たとえば、受傷後から3週間程度 をいう。
 脊髄損傷の亜急性期は、急性期の炎症が収束し、血管新生・組織修復反応が盛んになる時期である。当該亜急性期とは、上記反応が生じている時期であり、患者により異なるが、たとえば、受傷後、1~12週間程度 をいう。
 また、脊髄損傷の慢性期は、脊髄損傷部に空洞が形成され組織欠損となる。損傷部周囲に集積したアストロサイトは硬いグリア瘢痕を形成し、軸索再生に対するバリアーとなる。また、脊髄損傷慢性期では神経細胞の活性が低下し、細胞体の委縮をきたすことが知られており、治療への反応性が低下している可能性も示唆されている。当該慢性期とは、上記状況が生じている時期であり、患者により異なるが、たとえば、受傷後、4週間程度から以降をいう 。
2.細胞製剤
(1)多能性幹細胞(Muse細胞)
  本発明の細胞製剤に使用される多能性幹細胞は、ヒト生体内にその存在が見出され、「Muse(Multilineage-differentiating  Stress  Enduring)細胞」と命名された細胞である。Muse細胞は、骨髄液、脂肪組織(Ogura,F.,et  al.,Stem  Cells  Dev.,Nov  20,2013(Epub)(published  on  Jan  17,2014))や皮膚の真皮結合組織等から得ることができるほか、広く組織や臓器の結合組織に存在することが知られている。また、この細胞は、多能性幹細胞と間葉系幹細胞の両方の性質を有する細胞であり、例えば、細胞表面マーカーである「SSEA-3」陽性細胞、好ましくはSSEA-3陽性かつCD-105陽性の二重陽性細胞として同定される。したがって、Muse細胞又はMuse細胞を含む細胞集団は、例えば、SSEA-3単独又はSSEA-3及びCD-105の発現を指標として生体組織から分離することができる。Muse細胞の分離法、同定法、及び特徴などの詳細は、国際公開第WO2011/007900号に開示されている。また、Muse細胞が様々な外的ストレスに対する耐性が高いことを利用して、蛋白質分解酵素処理や、低酸素条件、低リン酸条件、低血清濃度、低栄養条件、熱ショックへの暴露、有害物質存在下、活性酸素存在下、機械的刺激下、圧力処理下など各種外的ストレス条件下での培養によりMuse細胞を選択的に濃縮することができる。なお、本明細書においては、脊髄損傷を治療するための細胞製剤として、SSEA-3を指標として用いて、生体の間葉系組織又は培養間葉系組織から調製された多能性幹細胞(Muse細胞)又はMuse細胞を含む細胞集団を単に「SSEA-3陽性細胞」と記載することがある。
  Muse細胞又はMuse細胞を含む細胞集団は、細胞表面マーカーであるSSEA-3又はSSEA-3及びCD-105を指標として生体組織(例えば、間葉系組織)から調製することができる。ここで、「生体」とは、哺乳動物の生体をいう。本発明において、生体には、受精卵や胞胚期より発生段階が前の胚は含まれないが、胎児や胞胚を含む胞胚期以降の発生段階の胚は含まれる。哺乳動物には、限定されないが、ヒト、サル等の霊長類、マウス、ラット、ウサギ、モルモット等のげっ歯類、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が挙げられる。本発明の細胞製剤に使用されるMuse細胞は、生体の組織から直接マーカーを持って分離される点で、胚性幹細胞(ES細胞)やiPS細胞と明確に区別される。また、「間葉系組織」とは、骨、滑膜、脂肪、血液、骨髄、骨格筋、真皮、靭帯、腱、歯髄、臍帯、臍帯血、羊膜などの組織及び各種臓器に存在する組織をいう。例えば、Muse細胞は、骨髄や皮膚、脂肪組織、血液、歯髄、臍帯、臍帯血、羊膜などから得ることができる。例えば、生体の間葉系組織を採取し、この組織からMuse細胞を調製し、利用することが好ましい。また、上記調製手段を用いて、線維芽細胞や骨髄間葉系幹細胞などの培養間葉系細胞からMuse細胞を調製してもよい。
 また、本発明の細胞製剤に使用されるMuse細胞を含む細胞集団は、生体の間葉系組織又は培養間葉系細胞に外的ストレス刺激を与えることにより、該外的ストレスに耐性の細胞を選択的に増殖させてその存在比率を高めた細胞を回収することを含む方法によっても調製することができる。
 前記外的ストレスは、プロテアーゼ処理、低酸素濃度での培養、低リン酸条件下での培養、低血清濃度での培養、低栄養条件での培養、熱ショックへの暴露下での培養、低温での培養、凍結処理、有害物質存在下での培養、活性酸素存在下での培養、機械的刺激下での培養、振とう処理下での培養、圧力処理下での培養又は物理的衝撃のいずれか又は複数の組み合わせであってもよい。
 前記プロテアーゼによる処理時間は、細胞に外的ストレスを与えるために合計0.5~36時間行うことが好ましい。また、プロテアーゼ濃度は、培養容器に接着した細胞を剥がすとき、細胞塊を単一細胞にばらばらにするとき、又は組織から単一細胞を回収するときに用いられる濃度であればよい。
 前記プロテアーゼは、セリンプロテアーゼ、アスパラギン酸プロテアーゼ、システインプロテアーゼ、金属プロテアーゼ、グルタミン酸プロテアーゼ又はN末端スレオニンプロテアーゼであることが好ましい。更に、前記プロテアーゼがトリプシン、コラゲナーゼ又はジスパーゼであることが好ましい。
  なお、本発明の細胞製剤においては、使用されるMuse細胞は、細胞移植を受けるレシピエントに対して自家であってもよく、又は他家であってもよい。
  上記のように、Muse細胞又はMuse細胞を含む細胞集団は、例えば、SSEA-3陽性又はSSEA-3及びCD-105の二重陽性を指標にして生体組織から調製することができるが、ヒト成人皮膚には、種々のタイプの幹細胞及び前駆細胞を含むことが知られている。しかしながら、Muse細胞は、これらの細胞と同じではない。このような幹細胞及び前駆細胞には、皮膚由来前駆細胞(SKP)、神経堤幹細胞(NCSC)、メラノブラスト(MB)、血管周囲細胞(PC)、内皮前駆細胞(EP)、脂肪由来幹細胞(ADSC)が挙げられる。これらの細胞に固有のマーカーの「非発現」を指標として、Muse細胞を調製することができる。より具体的には、Muse細胞は、CD34(EP及びADSCのマーカー)、CD117(c-kit)(MBのマーカー)、CD146(PC及びADSCのマーカー)、CD271(NGFR)(NCSCのマーカー)、NG2(PCのマーカー)、vWF因子(フォンビルブランド因子)(EPのマーカー)、Sox10(NCSCのマーカー)、Snai1(SKPのマーカー)、Slug(SKPのマーカー)、Tyrp1(MBのマーカー)、及びDct(MBのマーカー)からなる群から選択される11個のマーカーのうち少なくとも1個、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個又は11個のマーカーの非発現を指標に分離することができる。例えば、限定されないが、CD117及びCD146の非発現を指標に調製することができ、さらに、CD117、CD146、NG2、CD34、vWF及びCD271の非発現を指標に調製することができ、さらに、上記の11個のマーカーの非発現を指標に調製することができる。
  また、本発明の細胞製剤に使用される上記特徴を有するMuse細胞は、以下: 
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ
からなる群から選択される少なくとも1つの性質を有してもよい。好ましくは、本発明の細胞製剤に使用されるMuse細胞は、上記性質を全て有する。
 ここで、上記(i)について、「テロメラーゼ活性が低いか又は無い」とは、例えば、TRAPEZE  XL  telomerase  detection  kit(Millipore社)を用いてテロメラーゼ活性を検出した場合に、低いか又は検出できないことをいう。テロメラーゼ活性が「低い」とは、例えば、体細胞であるヒト線維芽細胞と同程度のテロメラーゼ活性を有しているか、又はHela細胞に比べて1/5以下、好ましくは1/10以下のテロメラーゼ活性を有していることをいう。
 上記(ii)について、Muse細胞は、in  vitro及びin  vivoにおいて、三胚葉(内胚葉系、中胚葉系、及び外胚葉系)に分化する能力を有し、例えば、in  vitroで誘導培養することにより、肝細胞(肝芽細胞又は肝細胞マーカーを発現する細胞を含む)、神経細胞、骨格筋細胞、平滑筋細胞、骨細胞、脂肪細胞等に分化し得る。また、in  vivoで精巣に移植した場合にも三胚葉に分化する能力を示す場合がある。さらに、静注により生体に移植することで傷害を受けた臓器(心臓、皮膚、脊髄、肝、筋肉等)に遊走及び生着し、組織に応じた細胞に分化する能力を有する。
 上記(iii)について、Muse細胞は、増殖速度約1.3日で増殖するが、浮遊培養では1細胞から増殖し、胚様体様細胞塊を作り一定の大きさになると14日間程度で増殖が止まる、という性質を有するが、これらの胚様体様細胞塊を接着培養に移行すると、再び細胞増殖が開始され、細胞塊から増殖した細胞が約1.3日の増殖速度で広がっていく。さらに精巣に移植した場合、少なくとも半年間は癌化しないという性質を有する。
 また、上記(iv)について、Muse細胞は、セルフリニューアル(自己複製)能を有する。ここで、「セルフリニューアル」とは、1個のMuse細胞から浮遊培養で培養することにより得られる胚様体様細胞塊に含まれる細胞から3胚葉性の細胞への分化が確認できると同時に、胚様体様細胞塊の細胞を再び1細胞で浮遊培養に持っていくことにより、次の世代の胚様体様細胞塊を形成させ、そこから再び3胚葉性の分化と浮遊培養での胚様体様細胞塊が確認できることをいう。セルフリニューアルは1回又は複数回のサイクルを繰り返せばよい。
(2)細胞製剤の調製及び使用
  本発明の細胞製剤は、限定されないが、上記(1)で得られたMuse細胞又はMuse細胞を含む細胞集団を生理食塩水や適切な緩衝液(例えば、リン酸緩衝生理食塩水)に懸濁させることによって得られる。この場合、自家又は他家の組織から分離したMuse細胞数が少ない場合には、細胞移植前に細胞を培養して、所定の細胞数が得られるまで増殖させてもよい。なお、すでに報告されているように(国際公開第WO2011/007900号パンフレット)、Muse細胞は、腫瘍化しないため、生体組織から回収した細胞が未分化のまま含まれていても癌化の可能性が低く安全である。また、回収したMuse細胞の培養は、特に限定されないが、通常の増殖培地(例えば、10%仔牛血清を含むα-最少必須培地(α-MEM)など)において行うことができる。より詳しくは、上記国際公開第WO2011/007900号パンフレットを参照して、Muse細胞の培養及び増殖において、適宜、培地、添加物(例えば、抗生物質、血清)等を選択し、所定濃度のMuse細胞を含む溶液を調製することができる。ヒト対象に本発明の細胞製剤を投与する場合には、ヒトの腸骨から骨髄液を採取し、例えば、骨髄液からの接着細胞として骨髄間葉系幹細胞を培養して有効な治療量のMuse細胞が得られる細胞量に達するまで増やした後、Muse細胞をSSEA-3の抗原マーカーを指標として分離し、自家又は他家のMuse細胞を細胞製剤として調製することができる。あるいは、例えば、骨髄液から得られた骨髄間葉系幹細胞を外的ストレス条件下で培養して有効な治療量に達するまでMuse細胞を増殖、濃縮した後、自家又は他家のMuse細胞を細胞製剤として調製することができる。
  また、Muse細胞の細胞製剤への使用においては、該細胞を保護するためにジメチルスルフォキシド(DMSO)や血清アルブミン等を、細菌の混入及び増殖を防ぐために抗生物質等を細胞製剤に含有させてもよい。さらに、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を細胞製剤に含有させてもよい。当業者は、これら因子及び薬剤を適切な濃度で細胞製剤に添加することができる。このように、Muse細胞は、各種添加物を含む医薬組成物として使用することも可能である。細胞製剤の剤形は特に限定されないが、好ましくは、非経口投与製剤であり、さらに好ましくは注射剤である。
  上記で調製される細胞製剤中に含有するMuse細胞数は、脊髄損傷の治療において所望の効果が得られるように、対象の性別、年齢、体重、患部の状態、使用する細胞の状態等を考慮して、適宜、調整することができる。なお、対象とする個体はヒトなどの哺乳動物を含むがこれに限定されない。また、本発明の細胞製剤は、単回投与でもよいが、所望の治療効果が得られるまで、複数回(例えば、2~10回)、適宜、間隔(例えば、1日に2回、1日に1回、1週間に2回、1週間に1回、2週間に1回、1カ月に1回、2カ月に1回、3カ月に1回、6カ月に1回)をおいて投与されてもよい。投与の時期は、治療効果が得られる限り、急性期、亜急性期、慢性期のいずれでもよく、これらから選ばれる2種類以上の時期でもよい。
 治療上有効量としては、対象の状態にもよるが、例えば、一個体あたり一回につき1×10細胞~1×1010細胞で1~10回の投与量が好ましい。一個体における投与総量としては、限定されないが、1×10細胞~1×1011細胞、好ましくは1×10細胞~1×1010細胞、さらに好ましくは1×10細胞~1×10細胞などが挙げられる。
 本発明の細胞製剤に使用されるMuse細胞は、脊髄損傷の損傷部位へと遊走し、生着する性質を有する。したがって、細胞製剤の投与において、細胞製剤の投与部位や投与方法は限定されず、患部への局所投与でもよいし、静脈等への投与でもよい。
  本発明の細胞製剤は、脊髄損傷の患者の脊髄組織を再構成することができ、脊髄損傷の失われた機能を改善又は回復することができる。
 脊髄損傷治療のため本発明の細胞製剤の効果を測定するためには、通常動物モデルが用いられる。動物種としては、ラット、マウスが一般的であるが、サル、イヌ、ウサギなどが用いられることもある。これら動物の脊髄に直接的な障害、例えば切断、衝撃による挫滅、電気や熱による傷害などを与えることで、脊髄損傷の病態を作成する。
 損傷の程度や治療による回復の評価には、BBBスコア(Basso-Beattie-Bresnahan)、蝕刺激(VFH試験:Experimental Neurology 225, Issue 2, 366-376,(2010))、Catwalk歩行解析(Abhiraj D. Bhimanら、Neuroscience & Biobehavioral Reviews 83; 540-546(2017))などに代表される四肢の運動や体位等または四肢の感覚を指標とした評価や、病理組織学的な評価が用いられる。
 臨床では、Frankel分類あるいはASIA(American Spinal Injury Association Impairment)スケールなどが用いられることが多い(脊椎・脊髄損傷治療・管理のガイドライン作成委員会:脊椎脊髄損傷治療管理のガイドライン 脊髄外科2005;19:(supple 1):1-41)。
  以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
実施例1-1:ラット脊髄損傷モデルの作製
 11週齢の雌のSD系ラットに対し、麻酔下で、第9~10胸椎を椎弓切除し、脊髄を露出させ、直後にMASCIS Impactor (Rutgers University, USA) を用いて重錘(直径2.5mm、重量10g)を25mmの高さから落下させて脊髄を損傷させた(8匹を3群)。
実施例1-2:ヒトMuse細胞の調製
 ヒトMuse細胞の分離及び同定に関する国際公開第WO2011/007900号に記載された方法に準じて、Muse細胞を得た。より具体的には、Muse細胞は、間葉系幹細胞をストレス条件下で培養することにより拡大富化培養して得た。
実施例1-3:ラット脊髄損傷モデルへの各細胞投与
 ラットを8匹ずつ3群に分け、第1の群には、脊髄損傷1日目後に5×10細胞/kg体重のMuse細胞を尾静脈から投与し(単回投与群)、第2の群には、脊髄損傷1日目後および7日後にそれぞれ5×10細胞/kg体重のMuse細胞を尾静脈から投与した(複数回投与群)。第3の群には、脊髄損傷1日目後に媒体(HBSS)を尾静脈から投与した(対照群)。
実施例1-4:後肢運動機能の評価
 各群のラットについて、脊髄損傷4週後まで、週1回の頻度で、BBB(Basso-Beattie-Bresnahan)スコア(J. Neurotrauma 1995; 12: 1-21)に基づいて、後肢運動機能を調べた。その結果、図1に示すように、Muse細胞投与群では、一貫してBBBスコアが高値を示し、脊髄損傷後7日目以降、Muse細胞単回投与群および複数回投与群では、媒体投与群に対して有意な高値が認められ、Muse細胞による後肢運動機能の改善効果が示された。
実施例2-1:ラット脊髄損傷モデルへのMuse細胞投与(急性期投与)と後肢運動機能の評価
 実施例1-1~1-4と同様の手順で、ラット脊髄損傷モデルへMuse細胞を投与し、後肢運動機能の評価を行った。ただし、Muse細胞の投与量は1回あたり1×10細胞/kg体重とした。BBBスコア測定結果を図2に示す。その結果、Muse細胞は、脊髄損傷の急性期投与において、コントロール群において脊髄損傷直後から見られる運動機能の自然改善・回復のレベルよりも、顕著に優れた運動機能改善又は回復効果を発揮することがわかった。
実施例2-2:Muse細胞が投与(急性期投与)されたラット脊髄損傷モデルにおける病理組織学的解析
 実施例2-1のMuse細胞投与群およびコントロール群につき、脊髄損傷から28日目に最後のBBBスコア測定を行ったのち、脊髄を単離し、病理組織学的解析を行った。具体的には、単離された脊髄をホルマリン固定し、常法に従ってパラフィン切片を作製し、ヘマトキシリン・エオジン(HE)染色およびクリューバー・バレラ(KB)染色を施し、光学顕微鏡下で観察した。脊髄は、損傷作製中央部、およびその吻側・尾側各5mmの部位を冠状断面で切り出し、観察面とした。観察は病理組織学的変化の全てを対象とし、正常と異なる所見が観察された場合、その所見の程度に応じて、軽微な変化をグレード1、中等度の変化をグレード2、重度の変化をグレード3とした。例えば、空洞形成の場合、変化が脊髄断面の50%以上を占める場合をグレード3、10~50%の場合をグレード2、10%以下の場合をグレード1とした。
 その結果、コントロール群、Muse細胞投与群ともに、泡沫状マクロファージの出現、グリア細胞の増生、軸索の膨化が顕著であり、空洞形成、脱髄、ヘモジデリン沈着が一部に認められた。脊髄の評価部位毎に観察したところ、泡沫状マクロファージの出現、グリア細胞の増生において、損傷部位では、Muse細胞投与群の変化がコントロール群よりややグレードが高い傾向にあり、損傷部位より尾側では、Muse細胞投与群の変化がコントロール群よりややグレードが低い傾向にあった。
実施例3-1:ラット脊髄損傷モデルへのMuse細胞投与(亜急性期~慢性期投与)と後肢運動機能の評価
 実施例1-1~1-4と同様の手順で、ラット脊髄損傷モデルへMuse細胞を投与し、後肢運動機能の評価を行った。ただし、Muse細胞(1×10細胞/kg体重)の投与時期は、第1の群(単回投与群)は脊髄損傷14日目後に1回、第2の群(複数回投与群)は脊髄損傷14日目後および28日後にそれぞれ1回ずつとし、第3の群には、脊髄損傷14日目後に媒体(HBSS)を投与した(対照群)。
 BBBスコア測定結果を図3に示す。その結果、Muse細胞を脊髄損傷の亜急性期から慢性期において投与した場合において、通常、脊髄損傷後の運動機能の自然改善・回復が頭打ちとなる定常期においても、更なる運動機能改善・回復を示した。そして、その運動機能改善・回復効果は脊髄損傷後70日以上継続するものであった。
実施例3-2:Muse細胞が投与(亜急性期~慢性期投与)されたラット脊髄損傷モデルにおける病理組織学的解析
 実施例3-1のMuse細胞投与群およびコントロール群につき、脊髄損傷から70日目に最後のBBBスコア測定を行ったのち、脊髄を単離し、病理組織学的解析を行った。具体的には、単離された脊髄をホルマリン固定し、常法に従ってパラフィン切片を作製し、ヘマトキシリン・エオジン(HE)染色およびクリューバー・バレラ(KB)染色を施し、光学顕微鏡下で観察した。脊髄は、損傷作製中央部、およびその吻側・尾側各5mmの部位を冠状断面で切り出し、観察面とした。実施例2-2に加えて、再生ミエリン髄鞘数の計測も行った。再生ミエリン髄鞘数は、一定視野の細胞核数に対する再生ミエリン髄鞘を有する細胞数の比率で求めた。
 その結果、脊髄の評価部位毎に観察したところ、特に、損傷部における再生ミエリン髄鞘数において、コントロール群では0.2424±0.2328に対し、Muse細胞複数回投与群では0.3409±0.1836と増加傾向が見られた。
 したがって、Muse細胞投与には、脊髄損傷の神経再生を促進する作用が示唆された。
  本発明の細胞製剤は、脊髄損傷の患者に投与することにより、脊髄損傷の損傷組織を再構成し、機能を改善又は回復させることができ、脊髄損傷の治療に応用することができる。

Claims (5)

  1. 生体の間葉系組織又は培養間葉系細胞に由来するSSEA-3(Stage-Specific  Embryonic  Antigen-3)陽性の多能性幹細胞を含む、脊髄損傷を治療するための細胞製剤。
  2. 脊髄損傷が、完全脊髄損傷である、請求項1に記載の細胞製剤。
  3. 脊髄損傷が、不完全脊髄損傷である、請求項1に記載の細胞製剤。
  4. 前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、請求項1~3のいずれかに記載の細胞製剤:
     (i)テロメラーゼ活性が低いか又は無い;
     (ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
     (iii)腫瘍性増殖を示さない;及び
     (iv)セルフリニューアル能を持つ。
  5. 前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、請求項1~3のいずれかに記載の細胞製剤:
     (i)SSEA-3陽性;
     (ii)CD105陽性;
     (iii)テロメラーゼ活性が低いか又は無い;
     (iv)三胚葉のいずれかの胚葉に分化する能力を持つ;
     (v)腫瘍性増殖を示さない;及び
     (vi)セルフリニューアル能を持つ。
PCT/JP2019/018578 2018-05-09 2019-05-09 脊髄損傷の治療剤 WO2019216380A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19800676.9A EP3791888A4 (en) 2018-05-09 2019-05-09 THERAPEUTIC AGENT FOR SPINAL CORD INJURY
JP2020518336A JPWO2019216380A1 (ja) 2018-05-09 2019-05-09 脊髄損傷の治療剤
KR1020207034363A KR20210006402A (ko) 2018-05-09 2019-05-09 척수 손상 치료제
CN201980030098.6A CN112074282A (zh) 2018-05-09 2019-05-09 脊髓损伤的治疗剂
SG11202011127WA SG11202011127WA (en) 2018-05-09 2019-05-09 Therapeutic agent for spinal cord injury
AU2019268009A AU2019268009A1 (en) 2018-05-09 2019-05-09 Therapeutic agent for spinal cord injury
US17/054,001 US20210228638A1 (en) 2018-05-09 2019-05-09 Therapeutic agent for spinal cord injury
CA3099661A CA3099661A1 (en) 2018-05-09 2019-05-09 Therapeutic agent for spinal cord injury

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018090979 2018-05-09
JP2018-090979 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019216380A1 true WO2019216380A1 (ja) 2019-11-14

Family

ID=68468080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018578 WO2019216380A1 (ja) 2018-05-09 2019-05-09 脊髄損傷の治療剤

Country Status (9)

Country Link
US (1) US20210228638A1 (ja)
EP (1) EP3791888A4 (ja)
JP (1) JPWO2019216380A1 (ja)
KR (1) KR20210006402A (ja)
CN (1) CN112074282A (ja)
AU (1) AU2019268009A1 (ja)
CA (1) CA3099661A1 (ja)
SG (1) SG11202011127WA (ja)
WO (1) WO2019216380A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD297962A5 (de) 1990-07-05 1992-01-30 �������@������������@��k�� Verfahren zur herstellung von 5-carbamoyl-5h-dibenz/b,f/azepin
US9399758B2 (en) * 2009-07-15 2016-07-26 Mari Dezawa SSEA3(+) pluripotent stem cell that can be isolated from body tissue
WO2014190150A1 (en) * 2013-05-22 2014-11-27 The Regents Of The University Of California Pluripotent human adipose adult stem cells: isolation, characterization and clinical implications
CN104946590B (zh) * 2014-09-12 2019-03-29 南通大学 成人骨髓中Muse细胞诱导为神经前体细胞的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
JP5185443B2 (ja) 2009-07-15 2013-04-17 真理 出澤 生体組織から分離できる多能性幹細胞画分

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
ABHIRAJ D. BHIMAN ET AL., NEUROSCIENCE & BIOBEHAVIORAL REVIEWS, vol. 83, 2017, pages 540 - 546
BRACKEN MBSHEPARD MJCOLLINS WFHOLFORD TRYOUNG WBASKIN DSEISENBERG HMFLAMM ELEO-SUMMERS LMAROON, N ENGL J MED, vol. 322, 1990, pages 1405 - 1411
COMMITTEE FOR THE PREPARATION OF GUIDELINES FOR THE TREATMENT AND MANAGEMENT OF SPINAL CORD INJURY: "Guidelines for the Treatment and Management of Spinal Cord Injury", SPINAL SURGERY, vol. 19, 2005, pages 1 - 41
HOFSTETTER CPSCHWARZ EJHESS DWIDENFALK JEL MANIRA APROCKOP DJOLSON L, PROC NATL ACAD SCI U S A., vol. 99, 2002, pages 2199 - 2204
HONMOU O, SPINAL SURGERY, vol. 30, no. 3, 2016, pages 248 - 250
HONMOU, OSAMU: "Intravenous injection of autologous mesenchymal stem cells for treatment of spinal cord injury, Spinal Surgery", PRACTICAL APPLICATION BY DOCTOR-INITIATED CLINICAL TRIALS, vol. 30, no. 3, 2016, pages 248 - 250, XP055762120 *
J. NEUROTRAUMA, vol. 12, 1995, pages 1 - 21
KODA MOKADA SNAKAYAMA TKOSHIZUKA SKAMADA TNISHIO YSOMEYA YYOSHINAGA KOKAWA AMORIYA H, NEUROREPORT., vol. 16, 2005, pages 1763 - 1767
KURODA Y ET AL., NAT PROTC, vol. 8, 2013, pages 1391 - 1415
KURODA Y ET AL., PROC NATL ACAD SCI USA, vol. 107, 2010, pages 8639 - 8643
LAROCCA, T. F. ET AL.: "Image-guided percutaneous intralesional administration of mesenchymal stromal cells in subjects with chronic complete spinal cord injury: a pilot study", CYTOTHERAPY, vol. 19, 2017, pages 1189 - 1196, XP055652199 *
LENG, Z. K. ET AL.: "Cultivation, screening, identification and transplantation of muse cell from human umbilical cord-derived for spinal cord injury in rats", CHINA JOURNAL OF ORTHOPAEDICS AND TRAUMATOLOGY, vol. 32, no. 4, April 2019 (2019-04-01), pages 327 - 334, XP055762123 *
MCDONALD JWLIU XZQU YLIU SMICKEY SKTURETSKY DGOTTLIEB DICHOI DW, NAT MED, vol. 5, 1999, pages 1410 - 1412
NITOBE, YOSHIRO ET AL.: "Establishment of muse cells derived from mouse adipose tissue - Toward the establishment of muse cells transplantation for spinal cord injury", HIROSAKI MEDICAL JOURNAL, vol. 68 *
OGURA, F. ET AL., STEM CELLS DEV., 20 November 2013 (2013-11-20)
OKADA SISHII KYAMANE JIWANAMI AIKEGAMI TKATOH HIWAMOTO YNAKAMURA MMIYOSHI HOKANO HJ, FASEB J, vol. 19, 2005, pages 1839 - 1841
RAMOM-CUETO ACORDERO MISANTOS-BENITO FFAVILA J, NEURON, vol. 25, 2000, pages 425 - 435
See also references of EP3791888A4
TOMONORI MORITA, MASANORI SASAKI, OSAMU HONMOU, TOSHIHIKO YAMASHITA: "Spinal regeneration by intravenous administration of autologous mesenchymal stem cells", JOURNAL OF CLINICAL THERAPEUTICS & MEDICINES, vol. 33, no. 4, 30 November 2016 (2016-11-30), pages 302 (10) - 306 (14), XP009524786, ISSN: 0910-8211 *
VFH STUDY: EXPERIMENTAL NEUROLOGY, vol. 225, 2010, pages 366 - 376
WAKAO S ET AL., PROC NATL ACAD SCI USA, vol. 108, 2011, pages 9875 - 9880

Also Published As

Publication number Publication date
CA3099661A1 (en) 2019-11-14
EP3791888A1 (en) 2021-03-17
JPWO2019216380A1 (ja) 2021-05-13
EP3791888A4 (en) 2022-03-23
SG11202011127WA (en) 2020-12-30
KR20210006402A (ko) 2021-01-18
AU2019268009A1 (en) 2021-01-07
US20210228638A1 (en) 2021-07-29
CN112074282A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US7582292B2 (en) Adipose tissue derived stromal cells for the treatment of neurological disorders
US20230313143A1 (en) Multifunctional immature dental pulp stem cells and therapeutic applications
Azari et al. Effects of transplanted mesenchymal stem cells isolated from Wharton’s jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation
WO2014027684A1 (ja) 心筋梗塞の修復再生を誘導する多能性幹細胞
JP2015159895A (ja) 脳梗塞治療のための多能性幹細胞
Young et al. Chapter 1: Adult stem Cells: From bench-top to bedside
JP5608927B2 (ja) 歯髄幹細胞を用いた神経疾患治療用組成物
AU2018289935A1 (en) Treatment agent for epidermolysis bullosa
Xie et al. In vitro expanded skeletal myogenic progenitors from pluripotent stem cell-derived teratomas have high engraftment capacity
JP2015160820A (ja) 慢性腎障害治療のための多能性幹細胞
Dori et al. Seven days post-injury fate and effects of genetically labelled adipose-derived mesenchymal cells on a rat traumatic brain injury experimental model
JP7072777B2 (ja) 慢性腎障害治療のための多能性幹細胞
JP6604492B2 (ja) 脳梗塞治療のための多能性幹細胞
WO2019216380A1 (ja) 脊髄損傷の治療剤
WO2021029346A1 (ja) 脳血管性認知症の治療または予防剤
WO2021085639A1 (ja) 多能性幹細胞による間質性膀胱炎の治療
WO2021201286A1 (ja) ハイポテンシャル多能性幹細胞
Tsupykov et al. Effect of transplantation of adipose-derived multipotent mesenchymal stromal cells on the nervous tissue and behavioral responses in a mouse model of periventricular leukomalacia
WO2018003997A1 (ja) 臓器線維症の予防または治療剤
Que et al. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair
JP2021073305A (ja) 慢性腎障害治療のための多能性幹細胞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518336

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3099661

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207034363

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019800676

Country of ref document: EP

Effective date: 20201209

ENP Entry into the national phase

Ref document number: 2019268009

Country of ref document: AU

Date of ref document: 20190509

Kind code of ref document: A