WO2019216370A1 - 通信制御方法、無線端末、及び基地局 - Google Patents

通信制御方法、無線端末、及び基地局 Download PDF

Info

Publication number
WO2019216370A1
WO2019216370A1 PCT/JP2019/018522 JP2019018522W WO2019216370A1 WO 2019216370 A1 WO2019216370 A1 WO 2019216370A1 JP 2019018522 W JP2019018522 W JP 2019018522W WO 2019216370 A1 WO2019216370 A1 WO 2019216370A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless terminal
data transmission
random access
access procedure
early data
Prior art date
Application number
PCT/JP2019/018522
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020518331A priority Critical patent/JP6889331B2/ja
Publication of WO2019216370A1 publication Critical patent/WO2019216370A1/ja
Priority to US17/091,381 priority patent/US11350465B2/en
Priority to US17/736,337 priority patent/US11683845B2/en
Priority to US18/313,247 priority patent/US12082267B2/en
Priority to US18/742,895 priority patent/US20240334494A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication control method, a wireless terminal, and a base station in a mobile communication system.
  • a wireless terminal targeted for MTC or IoT has a smaller amount of data to be transmitted / received and a lower frequency of data transmission / reception than a general wireless terminal. Therefore, in order for wireless terminals targeting MTC and IoT to communicate efficiently, early data transmission that transmits user data using a predetermined message during a random access procedure is being studied. .
  • the current mobile communication system does not assume that user data is transmitted during the random access procedure, and there is no mechanism that can realize early data transmission.
  • a communication control method is a method for controlling early data transmission in which user data is transmitted and received during a random access procedure.
  • the wireless terminal receives from the base station a timer value for setting a maximum waiting time until the wireless terminal receives Msg4 after the wireless terminal transmits Msg3 during the random access procedure.
  • Step B in which the wireless terminal derives a predicted value of a required time from when the wireless terminal transmits the Msg3 to reception of user data together with the Msg4, and the wireless terminal receives in the step A Determining whether to start the random access procedure with the early data transmission based on the timer value and the predicted value derived in step B.
  • a communication control method is a method for controlling early data transmission in which user data is transmitted and received during a random access procedure.
  • the communication control method includes a step A in which a wireless terminal receives from the base station a restriction signal for stochastically restricting the early data transmission, and a method in which the wireless terminal receives the restriction signal received in the step A. Determining whether the wireless terminal can use the early data transmission; and determining whether the wireless terminal can use the early data transmission in the step B. Initiating said random access procedure with data transmission.
  • FIG. 1 is a diagram illustrating a configuration of an LTE (Long Term Evolution) system that is a mobile communication system according to the present embodiment.
  • the LTE system is a mobile communication system based on the 3GPP standard.
  • the LTE system includes a radio terminal (UE: User Equipment) 100, a radio access network (E-UTRAN: Evolved-UMTS Terrestrial Radio Access Network) 10, and a core network (EPC: Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 is a mobile communication device.
  • the UE 100 performs radio communication with the eNB 200 that manages a cell (serving cell) in which the UE 100 is located.
  • the E-UTRAN 10 includes a base station (eNB: evolved Node-B) 200.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 manages one or a plurality of cells.
  • the eNB 200 performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter referred to as “data” as appropriate), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • the “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • the EPC 20 includes a mobility management entity (MME) and a serving gateway (S-GW) 300.
  • MME performs various mobility control etc. with respect to UE100.
  • the MME manages information on a tracking area (TA) in which the UE 100 is located by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • the tracking area is an area composed of a plurality of cells.
  • the S-GW performs data transfer control.
  • the MME and S-GW are connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a diagram illustrating a configuration of the UE 100 (wireless terminal).
  • the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes at least one processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • FIG. 3 is a diagram illustrating a configuration of the eNB 200 (base station).
  • the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes at least one processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • the backhaul communication unit 240 is connected to an adjacent eNB via the X2 interface.
  • the backhaul communication unit 240 is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a radio interface in the LTE system.
  • the radio interface protocol is divided into first to third layers of the OSI reference model.
  • the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer constitute an AS (Access Stratum) layer.
  • the PHY layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler. The scheduler determines the uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and the resource blocks allocated to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the PHY layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, data and control information are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control information.
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the eNB 200
  • the UE 100 is in the RRC connected mode.
  • RRC connection When there is no connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC idle mode.
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the MME 300C.
  • the UE 100 has functions such as an application layer in addition to the radio interface protocol.
  • FIG. 5 is a diagram showing a configuration of a radio frame used in the LTE system.
  • the radio frame is composed of 10 subframes on the time axis.
  • Each subframe is composed of two slots on the time axis.
  • the length of each subframe is 1 ms.
  • the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) on the frequency axis.
  • Each subframe includes a plurality of symbols on the time axis.
  • Each resource block includes a plurality of subcarriers on the frequency axis.
  • one RB is configured by 12 subcarriers and one slot.
  • One symbol and one subcarrier constitute one resource element (RE).
  • radio resources (time / frequency resources) allocated to the UE 100 frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting downlink control information.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • both end portions in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCHs) for transmitting uplink control information (PUCCH: Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the remaining part of each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • UE100 of a new category is UE100 by which transmission / reception bandwidth is restrict
  • the new UE category is referred to as, for example, category M1 and category NB (Narrow Band) -IoT.
  • the category M1 is a category to which an eMTC (enhanced machine type communications) UE belongs.
  • Category NB-IoT (category NB1) is a category to which the NB-IoT UE belongs.
  • the category M1 limits the transmission / reception bandwidth of the UE 100 (eMTC UE) to, for example, 1.08 MHz (that is, a bandwidth of 6 resource blocks).
  • Category NB-IoT (category NB1) further restricts the transmission / reception bandwidth of UE 100 (NB-IoT UE) to 180 kHz (that is, the bandwidth of one resource block). Such narrowing of bandwidth makes it possible to reduce the cost and power consumption required for eMTC UE and NB-IoT UE.
  • FIG. 6 is a diagram showing frequency channels handled by the eMTC UE and the NB-IoT UE.
  • the frequency bandwidth of the system frequency band of the LTE system may be 10 MHz.
  • a frequency channel within 6 resource blocks that can be supported by the eMTC UE is referred to as “Narrow Band (NB)”.
  • a frequency channel of one resource block that can be supported by the NB-IoT UE is referred to as a “carrier”.
  • the EMTC UE operates within the LTE transmission / reception bandwidth.
  • the NB-IoT UE supports a form that operates within the LTE transmission / reception bandwidth, a form that operates within a guard band outside the LTE transmission / reception bandwidth, and a form that operates within a frequency band dedicated to NB-IoT.
  • the EMTC UE and NB-IoT UE support an enhanced coverage (EC) function using repeated transmission or the like in order to realize coverage extension.
  • the enhanced coverage function may include repetitive transmission in which the same signal is repeatedly transmitted using a plurality of subframes. The coverage can be expanded as the number of repeated transmissions increases.
  • the enhanced coverage function may include power boosting that increases the power density of the transmitted signal. As an example, the power density is increased by narrowband transmission that narrows the frequency bandwidth of the transmission signal.
  • the coverage can be expanded as the power density of the transmission signal is increased.
  • the enhanced coverage function may include a low MCS (lower MCS) transmission that lowers the MCS used for the transmission signal. Coverage can be extended by performing transmission using MCS with a low data rate and high error tolerance.
  • FIG. 7 is a diagram illustrating a random access procedure for eMTC UE and NB-IoT UE.
  • the UE 100 In the initial state, the UE 100 is in the RRC idle mode.
  • the UE 100 executes a random access procedure in order to transition to the RRC connected mode. Such a case is referred to as an initial connection from RRC_IDLE.
  • a contention based random access procedure is applied.
  • UE100 has selected the cell of eNB200 as a serving cell.
  • the UE 100 does not satisfy the first cell selection criterion (first S-criteria) for normal coverage, and satisfies the second cell selection criterion (second S-criteria) for enhanced coverage If so, you may decide that you are in enhanced coverage.
  • “UE in enhanced coverage” means a UE that is required to use an enhanced coverage function (enhanced coverage mode) to access a cell.
  • eMTC UE must use the enhanced coverage mode.
  • the description will be made assuming that the UE 100 is in the enhanced coverage.
  • the eNB 200 transmits PRACH (Physical Random Access Channel) related information by broadcast signaling (for example, SIB).
  • the PRACH related information includes various parameters provided for each enhanced coverage level. As an example, for the enhanced coverage level, a total of four levels of enhanced coverage levels 0 to 3 are defined. Various parameters include an RSRP (Reference Signal Received Power) threshold, a PRACH resource, and the maximum number of preamble transmissions.
  • the PRACH resource includes a radio resource (time / frequency resource) and a signal sequence (preamble sequence). The UE 100 stores the received PRACH related information.
  • step S1002 UE100 measures RSRP based on the reference signal transmitted from eNB200.
  • the UE 100 determines its own enhanced coverage level (CE level) by comparing the measured RSRP with the RSRP threshold value for each enhanced coverage level.
  • the enhanced coverage level indicates the degree of enhanced coverage required for the UE 100.
  • the enhanced coverage level is associated with at least the number of transmissions (that is, the number of repetitions) in repeated transmission.
  • step S1004 the UE 100 selects a PRACH resource corresponding to its enhanced coverage level.
  • Steps S1005 to S1008 constitute a random access procedure.
  • the UE 100 transmits Msg1 (random access preamble) to the eNB 200 using the selected PRACH resource.
  • Msg is an abbreviation for a message.
  • the eNB 200 specifies the enhanced coverage level of the UE 100 based on the PRACH resource used for the received Msg1.
  • step S1006 the eNB 200 transmits Msg2 (random access response) including scheduling information indicating the PUSCH resource allocated to the UE 100 to the UE 100.
  • the UE 100 can transmit Msg1 a plurality of times up to the maximum number of preamble transmissions corresponding to its own enhanced coverage level until it normally receives Msg2.
  • step S1007 the UE 100 transmits Msg3 to the eNB 200 based on the scheduling information.
  • Msg3 may be an RRC connection request (RRC Connection Request) message.
  • Msg4 may be an RRC connection establishment (RRC Connection Setup) message.
  • step S1009 the UE 100 transitions to the RRC connected mode in response to reception of Msg4.
  • the UE 100 may transmit an Msg 5: RRC connection establishment complete (RRC Connection Setup Complete) message to the eNB 200.
  • RRC connection establishment complete RRC Connection Setup Complete
  • the eNB 200 controls repeated transmission to the UE 100 based on the identified enhanced coverage level.
  • the eMTC UE and the NB-IoT UE have a small amount of data to be transmitted and received, and the frequency of data transmission and reception is low.
  • an eMTC UE or NB-IoT UE performs Early Data Transmission (EDT) for transmitting and receiving user data using a predetermined message during a random access procedure.
  • EDT Early Data Transmission
  • the EDT includes an uplink EDT that transmits and receives uplink data using Msg3 in the random access procedure, and a downlink EDT that transmits and receives downlink data using Msg4 in the random access procedure. Specifically, in one random access procedure, both uplink EDT and downlink EDT are performed, only uplink EDT is performed, and only downlink EDT is performed. There is.
  • EDT EDT
  • UP User Plane
  • CP Control Plane
  • UP User Plane
  • CP Control Plane
  • DTCH user data
  • CCCH RRC message
  • the UP solution is applied when the UE 100 is in a suspended state that is a sub state of the RRC idle mode.
  • the suspended state is a sub-state of the RRC idle mode in which the context information of the UE 100 is maintained in the eNB 200.
  • the RRC message that constitutes Msg3 is an RRC Connection Resume Request message
  • the RRC message that constitutes Msg4 is basically an RRC Connection Release message or an RRC Connection Reject message.
  • the UE 100 ends the random access procedure while maintaining the RRC idle mode.
  • the RRC message constituting Msg4 may be an RRC Connection Resume message.
  • the UE 100 transits to the RRC connected mode and transmits / receives user data in the RRC connected mode.
  • the CP solution is applied when the UE 100 is in the RRC idle mode and is not in the suspended state.
  • the RRC message configuring Msg3 is an Early Data Request message
  • the RRC message configuring Msg4 is basically an Early Data Complete message.
  • the UE 100 ends the random access procedure while maintaining the RRC idle mode.
  • the RRC message constituting Msg4 may be an RRC Connection Setup message.
  • the UE 100 transits to the RRC connected mode and transmits / receives user data in the RRC connected mode.
  • the UE 100 can receive downlink data using Msg4 and terminate the random access procedure while maintaining the RRC idle mode. Thereby, since UE100 can perform transmission / reception of user data, without changing to RRC connected mode, the power consumption of UE100 can be reduced.
  • eNB 200 cannot transmit Msg4 to UE 100 until downlink data is received from the core network side.
  • the timer that defines the maximum reception waiting time of Msg4 expires in the UE 100, and the UE 100 can determine that the random access procedure has failed. If the UE 100 determines that the random access procedure has failed, the UE 100 restarts the random access procedure from the beginning. In such a case, the power consumption of the UE 100 increases.
  • the timer that defines the maximum reception waiting time of Msg4 may be T300 managed in the RRC layer of UE 100, or may be a contention resolution timer managed in the MAC layer of UE 100. In the present embodiment, an example in which the timer is T300 will be described, but the timer may be a contention resolution timer.
  • T300 starts T300 at the time of transmission of Msg3.
  • the value of T300 (timer value) is set in the UE 100 by the SIB from the eNB 200.
  • T300 expires without receiving Msg4 addressed to itself, UE 100 determines that the random access procedure has failed.
  • the UE 100 before starting the random access procedure, the UE 100 derives a predicted value of a required time from when the UE 100 transmits Msg3 until it receives user data together with Msg4. Specifically, when it is assumed that downlink EDT has been performed, the UE 100 determines how much time (required time) is required from the transmission of Msg3 to the reception of Msg4.
  • UE 100 determines whether or not to start a random access procedure involving EDT (specifically, downlink EDT) based on the timer value of T300 received from eNB 200 and the derived prediction value. For example, if the derived prediction value is larger than the timer value of T300 received from the eNB 200, the UE 100 determines not to start the random access procedure with EDT. Thereby, since possibility that T300 will expire without UE100 receiving self-addressed Msg4 can be reduced, the increase in the power consumption of UE100 can be suppressed.
  • EDT specifically, downlink EDT
  • FIG. 8 is a diagram illustrating an example of the operation of the UE 100 according to the first embodiment.
  • the UE 100 in the RRC idle mode receives the following information 1) to 3) from the eNB 200 by SIB.
  • the UE 100 receives the following information 1) to 3) from the eNB 200 by the RRC message in the RRC connected mode before entering the RRC idle mode, and retains it after transitioning to the RRC idle mode. May be.
  • PRACH resource information A part of the PRACH resources that can be used in the cell of the eNB 200 is secured as a PRACH resource for EDT indication. For example, a part of time / frequency resources that can be used as PRACH resources in the cell of the eNB 200 is secured as time / frequency resources for EDT indication.
  • the eNB 200 broadcasts information indicating a PRACH resource (time / frequency resource) for EDT indication by SIB.
  • the UE 100 determines that the EDT can be used when the PRACH resource for EDT indication is provided. On the other hand, the UE 100 determines that the EDT cannot be used when the PRACH resource for EDT indication is not provided.
  • the description will be made assuming that a PRACH resource for EDT indication is provided.
  • the eNB 200 broadcasts information indicating the maximum uplink data amount (maximum transport block size) that can be transmitted by the UE 100 in the uplink EDT by SIB.
  • the eNB 200 may broadcast information indicating the maximum downlink data amount (maximum transport block size) that can be transmitted by the UE 100 in the downlink EDT by SIB.
  • T300 set value (timer value): The value of T300 (timer value) is set in the UE 100 by the SIB from the eNB 200.
  • the eNB 200 uses a T300 timer value for a random access procedure without EDT (hereinafter referred to as “first timer value”) and a T300 timer value for a random access procedure with EDT (hereinafter referred to as “second timer”). Value ”) is set separately in the UE 100.
  • step S102 the UE 100 detects a start trigger of the random access procedure. For example, the UE 100 determines to start the random access procedure in response to the occurrence of uplink data to be transmitted in the UE 100 or the UE 100 receiving a paging message. Note that the process of step S102 may be performed before step S101. In addition, when performing the process of step S102 before the process of step S101, UE100 receives the information of said 1) -3) from eNB200 by SIB, after detecting the start trigger of a random access procedure. You may wait until the start of the process of step S103.
  • step S103 the UE 100 determines whether or not the uplink data amount that the UE 100 intends to transmit to the eNB 200 is equal to or less than the maximum uplink data amount.
  • the UE 100 may determine whether or not the downlink data amount that the UE 100 intends to receive from the eNB 200 is equal to or less than the maximum downlink data amount. If “NO” in step S103, in step S108, the UE 100 starts a random access procedure without EDT. Specifically, the UE 100 does not transmit an EDT indication when transmitting Msg1 in the random access procedure. Even if “NO” in step S103, there is a possibility that only downlink EDT may be executed, and thus the process may proceed to step S104.
  • step S104 the UE 100 determines whether or not to perform downlink EDT in step S104. For example, when transmitting uplink user data (UDP data or the like) that does not require ACK during Msg3 transmission, the UE 100 determines that downlink EDT is not performed. When transmitting uplink user data (TCP data or the like) that requires ACK during Msg3 transmission, the UE 100 determines to perform downlink EDT. If “NO” in the step S104, the processes in the steps S105 and S106 are omitted, and the process proceeds to the process in the step S107.
  • step S107 uplink EDT is performed. Note that the UE 100 does not have to start the T300 for the random access procedure accompanied by the EDT when transmitting Msg3 when it is predicted that there is no response from the server to the uplink EDT.
  • step S105 the UE 100 derives a predicted value of the required time from transmission of Msg3 to reception of user data together with Msg4. Specifically, when it is assumed that downlink EDT has been performed, the UE 100 determines how much time (required time) is required from the transmission of Msg3 to the reception of Msg4. For example, the UE 100 derives a predicted value of the required time based on at least one of the following a) to d).
  • the UE 100 has a fast response (Msg4) when the application request QoS is high (that is, when the delay is low) (that is, until the UE 100 receives the response (Msg4) from the eNB 200 after transmitting the Msg3 to the eNB 200).
  • the application QoS is low (ie, high delay)
  • the response (Msg4) is slow (that is, the UE 100 transmits Msg3 to the eNB 200 and then the response (Msg4). ) May be determined as a long time (required time).
  • a predicted value of required time corresponding to the type of application and / or the type of protocol may be set in the UE 100 in advance, and the preset predicted value of required time may be acquired.
  • Such processing may be performed in the AS layer (specifically, a layer below the RRC layer) of the UE 100, or may be performed in an upper layer (specifically, a layer above the RRC) of the UE 100. Good.
  • Bearer type and / or logical channel type used in the access layer (AS layer) of the UE 100 For example, the UE 100 has a predicted value of a required time corresponding to a bearer type and / or a logical channel type (that is, a predicted value of a time (a required time) required to receive Msg4 after transmitting Msg3) in advance. It is set in the UE 100, and the predicted value of the preset required time is acquired. Such a determination may be made in the AS layer of the UE 100.
  • the bearer is associated with the requested QoS, and the logical channel is associated with the bearer.
  • the UE 100 stores the history of the past required time (specifically, the time taken from the transmission of Msg3 to the reception of user data together with Msg4), and by performing statistical processing on this history Then, the predicted value of the current required time is calculated. Such a determination may be made in the AS layer of the UE 100.
  • the amount of uplink user data that the UE 100 transmits to the eNB 200 by EDT and / or the amount of downlink user data that the UE 100 receives from the eNB 200 by EDT For example, since the processing time on the server side changes according to the amount of uplink user data, the UE 100 has a slower response (Msg4) as the amount of uplink user data increases (that is, the UE 100 transmits Msg3 to the eNB 200). It may be determined that the time (necessary time) required for receiving a response (Msg4) from the eNB 200 is long. Alternatively, the AS layer of the UE 100 may estimate an application according to the uplink user data amount and perform the same process as in the above a).
  • the UE 100 has a slower response (Msg4) as the amount of downlink user data is larger (that is, a longer time (necessary time) is required until the UE 100 receives the response (Msg4) from the eNB 200 after transmitting the Msg3 to the eNB 200). ) May be determined.
  • step S106 the UE 100 determines whether or not the predicted value of the required time derived in step S105 is equal to or less than the timer value (second timer value) received in step S101.
  • step S107 the UE 100 starts a random access procedure involving EDT (at least downlink EDT). Specifically, the UE 100 transmits an EDT indication when Msg1 is transmitted in the random access procedure.
  • the UE 100 may notify the eNB 200 that the downlink EDT is not performed when transmitting Msg3 or Msg1. Thereby, since eNB200 can transmit Msg4 quickly, while being able to prevent the load increase by the delay of a process, UE100 can minimize standby power consumption.
  • Information indicating that downlink EDT is not performed may be a flag included in the RRC message (for example, “no DL data extracted” or the like), and the information is transmitted in a MAC subheader in MAC CE (Control Element). May be.
  • step S106 the UE 100 starts a random access procedure without EDT in step S108. Specifically, the UE 100 does not transmit an EDT indication when transmitting Msg1 in the random access procedure.
  • a communication control method for controlling an EDT that transmits and receives user data during a random access procedure sets a maximum waiting time until the UE 100 receives Msg4 after the UE 100 transmits Msg3 during the random access procedure.
  • Step A for receiving the timer value for the eNB 200
  • Step B for deriving a predicted value of the required time from when the UE 100 transmits Msg3 until the UE 100 receives Msg4,
  • the UE 100 includes a step C (step S106) for determining whether or not to start a random access procedure with EDT based on the timer value received in the step A and the predicted value derived in the step B.
  • Step C when the predicted value derived in Step B is larger than the timer value received in Step A (Step S106: NO), the UE 100 determines not to start the random access procedure with EDT.
  • Step S108 the UE 100 starts the random access procedure without EDT.
  • Step B the UE 100 a) a type of application and / or a protocol used in an upper layer higher than the access layer of the UE 100, b) a type of bearer and / or a logical channel used in the access layer of the UE 100, c) statistics using the history of the required time in the past, d) the amount of uplink user data that the UE 100 transmits to the eNB 200 by EDT and / or the amount of downlink user data that the UE 100 receives from the eNB 200 by EDT A predicted value is derived based on at least one.
  • Step S104 judges whether downlink EDT which receives downlink user data from eNB200 with Msg4 is performed.
  • the UE 100 performs Step C only when it is determined to perform downlink EDT (Step S104: YES).
  • the UE 100 starts a random access procedure with uplink EDT.
  • the UE 100 determines that downlink EDT is not performed in the random access procedure, the UE 100 performs notification indicating that the downlink EDT is not performed to the eNB 200 during the random access procedure.
  • Do not perform downlink EDT means that there is no response of an upper layer to data transmitted in the uplink EDT.
  • the upper layer means a layer higher than the RRC layer.
  • the UE 100 may determine not to perform downlink EDT when performing UDP transmission in uplink EDT (that is, when there is no TCP ACK).
  • the UE 100 may determine not to perform downlink EDT when notified from the upper layer (for example, the application layer) that there is no response from the upper layer.
  • the UE 100 may determine not to perform the downlink EDT when it is determined that there is no response (at the AS layer or the NAS layer) based on the past behavior (data transmission / reception history, etc.) of the application layer. .
  • the UE 100 may perform notification indicating that downlink EDT is not performed using the Msg3.
  • BSR buffer status report
  • the eNB 200 interprets the BSR as a notification indicating that the UE 100 does not perform downlink EDT.
  • UE100 may notify eNB200 by MAC CE that downlink EDT is not performed, and may notify only MAC subheader (there is no MAC CE part).
  • UE100 may notify eNB200 by adding the flag which shows not performing EDT of a downlink to the RRC message (RRC Connection Request / Resume Request) which comprises Msg3.
  • the UE 100 may perform a notification indicating that downlink EDT is not performed using the Msg1. For example, the UE 100 transmits a random access preamble (EDT indication) using a PRACH resource reserved for notifying uplink-only EDT.
  • EDT indication a random access preamble
  • the eNB 200 can release the UE 100 quickly.
  • the eNB 200 can release resources (eNB calculation processing resources and radio resources) at an early stage.
  • UE100 can suppress power consumption to the minimum (The power consumption accompanying standby can be minimized).
  • the UE 100 derives a predicted value of the required time from transmission of Msg3 to reception of user data together with Msg4, the timer value of T300 received from the eNB 200, the derived predicted value, and Based on the above, it is determined whether to start a random access procedure involving EDT (specifically, downlink EDT).
  • EDT specifically, downlink EDT
  • the timer value of T300 set by the eNB 200 may be too short.
  • the timer value of T300 set by the eNB 200 is too long, there is a concern that the random access failure cannot be properly determined. Therefore, in the present modification example, the UE 100 provides information to the eNB 200 so that the eNB 200 can appropriately set the timer value of T300.
  • the UE 100 determines a recommended value (recommended timer value) as a timer value for setting the maximum waiting time from when the UE 100 transmits Msg3 until it receives Msg4 during the random access procedure.
  • the timer value is a value of T300 for EDT.
  • the timer value may be a timer value of a contention resolution timer.
  • UE100 may determine a recommendation timer value based on the prediction similar to 1st Embodiment mentioned above, and may determine a recommendation timer value based on the past track record (history).
  • the UE 100 transmits information indicating the recommended timer value to the eNB 200 while the UE 100 is in the RRC connected mode.
  • the UE 100 includes a recommended timer value in the RRC message transmitted to the eNB 200.
  • the eNB 200 collects recommended timer values from a plurality of UEs 100, determines an appropriate T300 value by performing statistical processing on the collected recommended timer values, and transmits the determined T300 value by SIB.
  • Such a collision is resolved by Msg4 using the mechanism of contention resolution (contention resolution) in the random access procedure.
  • contention resolution contention resolution
  • some UEs 100 that have collided PRACH resources need to restart the random access procedure from the beginning.
  • the power consumption of the UE 100 increases.
  • the transmission of the uplink user data is wasted.
  • the eNB 200 transmits a restriction signal (hereinafter referred to as “EDT restriction signal”) for stochastically restricting the EDT based on its own load state.
  • EDT restriction signal a restriction signal
  • the eNB 200 may transmit (broadcast) the EDT restriction signal by SIB. Thereby, the probability that the collision (specifically, PRACH resource collision) between the UEs 100 using the EDT can be reduced.
  • the eNB 200 may periodically transmit the EDT restriction signal while the eNB 200 is in a high load state. Further, the eNB 200 may individually transmit the EDT restriction signal only to the UE 100 that wants to restrict EDT (the UE 100 having a relatively large amount of data transmission or the UE 100 having a low priority).
  • the eNB 200 may transmit (broadcast) the EDT restriction signal by SIB while individually transmitting the EDT restriction signal.
  • the conditions for making the EDT associated with each EDT restriction signal available may be the same or different.
  • the EDT availability condition associated with the individually transmitted EDT restriction signal is higher in the EDT availability condition associated with the EDT restriction signal transmitted by the SIB with a higher probability. It may be a regulated condition.
  • the load state of the eNB 200 may be a resource load state or a hardware load state.
  • the resource load state includes the frequency of collision between UEs in the PRACH resource (Msg1).
  • the eNB 200 determines the frequency of occurrence of such a collision as follows. Basically, the eNB 200 determines whether or not there is a collision of Msg1 depending on whether or not collision resolution (Contention Resolution) has been completed. For example, two UEs transmit the same random access preamble (EDT indication), the eNB 200 succeeds in receiving them, and returns Msg2. In such a case, the two UEs transmit Msg3 including another random ID on the PUSCH.
  • the eNB 200 may successfully receive only Msg3 transmitted by one UE. In this case, since content resolution is performed by Msg4 transmitted from the eNB 200 to the one UE, it is not known whether or not there is a collision. However, since the eNB 200 knows the setting of the random access preamble and knows that the PRACH space (PRACH resource) is tight based on, for example, the simultaneously received Msg1, there is a high possibility that a collision has occurred. It is possible to guess.
  • PRACH resource PRACH resource
  • “probabilistically restricting” does not restrict EDT uniformly for all UEs 100 but restricts EDT only for some UEs 100 determined at random. Some of the UEs 100 can only perform a random access procedure without an EDT because the EDT is only regulated and the random access procedure itself is not regulated.
  • the UE 100 performing the random access procedure without EDT transitions to the RRC connected mode by the random access procedure.
  • the UE 100 that performs the random access procedure with EDT can end the random access procedure while maintaining the RRC idle mode, the power consumption of the UE 100 can be reduced.
  • the UE100 judges whether UE100 can use EDT based on the EDT regulation signal received from eNB200. In response to determining that the EDT can be used, the UE 100 starts a random access procedure with the EDT. On the other hand, the UE 100 may start a random access procedure without EDT in response to determining that EDT is not available.
  • FIG. 9 is a diagram illustrating an example of the operation of the UE 100 according to the second embodiment. The description of the same operation as that of the UE 100 illustrated in FIG.
  • steps S201 to S203 is the same as the operation of UE 100 shown in FIG. 9.
  • step S203 the UE 100 determines whether or not an EDT restriction signal has been received from the eNB 200 in step S204. If “NO” in step S204, in step S207, the UE 100 starts a random access procedure with EDT. Specifically, the UE 100 transmits an EDT indication when Msg1 is transmitted in the random access procedure.
  • the UE 100 determines whether or not the UE 100 can use the EDT in a step S205.
  • the EDT restriction signal is associated with a condition for enabling EDT.
  • Such an EDT availability condition may be information included in the EDT restriction signal, or may be preset in the UE 100. In the present embodiment, an example in which the EDT availability condition is included in the EDT restriction signal will be described.
  • the UE 100 determines whether or not the random number generated by the UE 100 and / or the identifier (UE-ID) associated with the UE 100 satisfies the condition.
  • An identifier (UE-ID) related to the UE 100 is, for example, an IMSI (International Mobile Subscriber Identity) stored in the SIM of the UE 100.
  • IMSI International Mobile Subscriber Identity
  • an identifier other than the IMSI may be used as long as it is an identifier related to the UE 100.
  • the UE 100 may compare the random number generated by itself with a threshold specified by the eNB 200 and determine whether or not EDT can be used according to the comparison result. For example, the UE 100 may determine that the EDT can be used only when the generated random number exceeds a threshold value.
  • the UE 100 may calculate “UE-ID mod N” and determine whether or not the EDT can be used depending on whether the calculation result is within a certain numerical value or a certain numerical value range.
  • N and / or “numeric value (or numeric value range)” may be designated from the eNB 200.
  • the “numerical value (or numerical value range)” may be an arbitrary fixed value or a variable such as a radio frame number.
  • whether or not EDT can be used may be determined based on a random value (that is, a value that is unlikely to match between UEs).
  • a random value that is, a value that is unlikely to match between UEs.
  • the size (transport block size) of uplink data that the UE 100 wishes to transmit using uplink EDT may be used as a value having randomness.
  • the UE 100 calculates “uplink data size mod N”, and determines whether or not the EDT can be used depending on whether the calculation result is within a certain numerical value or a certain numerical value range. Good.
  • the threshold value may be associated with or included in the EDT restriction signal.
  • step S206 the UE 100 determines whether or not it can use EDT according to the result of step S205. If "YES" in step S206 (EDT can be used), in step S207, the UE 100 starts a random access procedure with EDT. Specifically, the UE 100 transmits an EDT indication when Msg1 is transmitted in the random access procedure.
  • step S208 the UE 100 starts a random access procedure without EDT. Specifically, the UE 100 does not transmit an EDT indication when transmitting Msg1 in the random access procedure.
  • the condition associated with the EDT restriction signal is mainly for probabilistically restricting the EDT, but is not limited thereto. That is, the EDT restriction signal may be one in which the UE 100 that has received the EDT restriction signal is prohibited from performing EDT. That is, when eNB200 wants to restrict
  • a communication control method for controlling an EDT that transmits and receives user data during a random access procedure in which the UE 100 receives an EDT regulation signal for regulating EDT from the eNB 200 in a step A (step S204). Then, based on the EDT restriction signal received in step A, the UE 100 determines whether the UE 100 can use the EDT (step S205), and the UE 100 determines that the EDT can be used in the step B. In response to this, step C (step S207) for starting a random access procedure with EDT and UE 100 determines that the EDT is not available in step B. Step to start Provided (step S208), the.
  • the EDT restriction signal is associated with a condition for making EDT available.
  • the UE 100 determines that EDT can be used when the UE 100 satisfies the condition.
  • Step B includes a step of determining whether a random number generated by the UE 100 and / or an identifier or other information related to the UE 100 satisfies a condition.
  • ENB 200 determines whether or not to transmit an EDT restriction signal based on the load state in eNB 200.
  • EDT EDT of control plane
  • the UP solution is applied when the UE 100 is in a suspended state that is a sub state of the RRC idle mode. Specifically, when the UE 100 receives an RRC Connection Release message for setting a suspend state from the eNB 200, the UE 100 transits to a suspend state that is a sub state of the RRC idle mode. In the suspended state, the context information of the UE 100 is maintained in the eNB 200, and the context information held by the eNB 200 can be used to smoothly restore the RRC connected mode.
  • NCC Next Hop Chaining Count
  • NCC is encryption information used for the PDCP layer to perform processing (including decryption processing) related to encryption in the user plane, and is a value counted based on a sequence number managed by the PDCP layer.
  • the UE 100 to which NCC is not provided cannot start user plane EDT.
  • the eNB 200 provides NCC, which is information necessary for EDT of the user plane and used for encryption processing in the user plane, to the UE 100 by the RRC Connection Release message (providing the first NCC provision) ).
  • the UE 100 that has transitioned to the RRC idle mode (suspended state) transitions to the RRC connected mode by performing a random access procedure without EDT on the eNB 200 after receiving the NCC.
  • the eNB 200 provides the NCC to the UE 100 by the RRC Connection Release message (the second NCC provision).
  • the UE 100 that has transitioned to the RRC idle mode (suspended state) transitions to the RRC connected mode by performing a random access procedure without EDT on the eNB 200 after receiving the NCC.
  • N is a value of 1 or more, but is preferably a value of 2 or more.
  • the eNB 200 counts the number of times that the UE 100 does not perform EDT despite providing the NCC, and stops providing the NCC to the UE 100 when the count value reaches N.
  • eNB200 transmits the RRC Connection Release message which does not contain NCC to UE100.
  • the eNB 200 may transmit the information indicating the value of N included in the SIB, for example.
  • UE100 receives the information which shows the value of N from eNB200.
  • the UE 100 counts the number of times that EDT is not performed even though NCC is provided. If there is still an intention to use EDT, UE 100 notifies eNB 200 of the intention to use EDT before the count value reaches N. Thereby, it can prevent that eNB200 stops provision of NCC.
  • Notification of the intention to use EDT may be performed by the conventional Msg3.
  • the MAC PDU constituting the Msg3 includes an RRC Connection Resume Request and a BSR, but the data PDU is not multiplexed.
  • the UE 100 starts the EDT of the control plane instead of the EDT of the user plane.
  • the UE 100 is a case where the network supports EDT of the control plane (when the MME has a data transmission / reception function), and the application layer of the UE 100 corresponds to EDT of the control plane (MME).
  • the control plane EDT may be started only when the connection to the application server is possible.
  • the UE 100 transmits the RRC message including user data to the eNB 200. Thereby, even if it is UE100 where NCC is not provided from eNB200, EDT can be made available. On the other hand, when receiving the NCC from the eNB 200, the UE 100 starts the EDT of the user plane instead of the EDT of the control plane.
  • the UE 100 transmits to the eNB 200 a notification indicating that it intends to perform EDT after transitioning to the RRC idle mode while it is in the RRC connected mode.
  • a notification is performed by, for example, an RRC message.
  • This notification may be a notification indicating that the user plane has an intention to perform EDT.
  • the eNB 200 uses the notification from the UE 100 as information for prompting the user to provide the NCC to the UE 100 or information for determining whether or not to provide the NCC to the UE 100. eNB200 provides NCC to UE100 based on this notification.
  • wireless terminals eMTC UE and NB-IoT UE
  • eMTC UE and NB-IoT UE wireless terminals
  • the present disclosure is not limited to eMTC UE and NB-IoT UE. You may apply the operation
  • RRC idle, suspend, and connected are mainly described as examples, but the present invention is not limited to this. You may apply to the state of RRC light connection or INACTIVE.
  • the RRC light connection is one state of the RRC connected mode and is a special state to which a part of the procedure of the RRC idle mode is applied.
  • INACTIVE is assumed to be introduced in the fifth generation mobile communication system, and is an RRC state different from the RRC connected mode and the RRC idle mode.
  • “RRC idle mode” in the above-described embodiment may be read as “INACTIVE mode”.
  • the UE in the enhanced coverage has been described as an example, but the present invention is not limited to this. You may apply the operation
  • the LTE system is exemplified as the mobile communication system.
  • the present disclosure is not limited to LTE systems. You may apply the operation
  • a program for causing a computer to execute each process performed by the UE 100 and the eNB 200 may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip set including a memory that stores a program for executing each process performed by the UE 100 and the eNB 200 and a processor that executes the program stored in the memory may be provided.
  • the UE should not send a BSR in Msg3, ie the eNB can assume that there is no next data in the UL. This means that BSR is implicitly equal to 0.
  • the intention is (at least) for UL transmission that no data is available for transmission after EDT.
  • the UE cannot start EDT.
  • a buffer size of zero bytes is triggered for the BSR, and there may be more data the UE will send or receive in the near future: -Cancel pending BSR.
  • RAN2 specifies how to capture “No more data” in the specification without using the term “BSR equals 0” There is a need to.
  • RAN2 If it is also intended for expected DL reception, RAN2, for example, if there is no DL (eg, UDP type in UL EDT), one DL case (eg, TCP ACK in DL EDT), radio resources It is necessary to discuss how to identify one DL that fits within the DL EDT from the viewpoint of (by DL TBS) and round trip time (by T300-EDT).
  • DL eg, UDP type in UL EDT
  • one DL case eg, TCP ACK in DL EDT
  • Proposal 1 RAN2 should clarify how to capture the agreement that “BSR implies implicitly equal to 0” in the specification.
  • NW-led fallback scenarios have been discussed many times and are implemented in either RRC Connection Setup (for CP EDT) or RRC Connection Resume (for UP EDT) in Msg4. NW-initiated fallback is performed when DL data cannot be transmitted in Msg4 DL EDT due to, for example, larger size than available DL resources and / or data arrival after T300-EDT expiration Will be.
  • the UE-led fallback scenario is not explicitly discussed, but has been pointed out somewhat in the previous online discussion. That is, some companies think that new data will arrive after the Msg1 EDT indication before the Msg3 EDT, and some other companies think that this is only related to segmentation support.
  • the NAS layer does not need to indicate that it wants to use EDT when requesting connection establishment / resumption.
  • the decision to use EDT is made by the AS layer. Additional UL data may be delivered to the AS layer after being transmitted. This is especially possible for MTC UEs that install multiple applications.
  • the UE-initiated fallback is considered that the UE transmits Msg3 without data, that is, legacy Msg3, even after transmitting the EDT instruction on Msg1.
  • the problem is that UL resource allocation is already done on Msg2, ie, a larger UL grant size for UL EDT on Msg3. If the UE wants to send legacy Msg3 with a larger UL grant size, the padding problem reappears in this case.
  • One possible solution can take into account that the blind decoding option for Msg3 always allows legacy Msg3 size, ie the minimum TBS for UL EDT is always assumed to be the same as the legacy size. It is desirable that the legacy size be considered as an additional option for the four blind options with a minimum TBS of approximately 320 bits.
  • Proposal 2 RAN2 should discuss whether the EDT UL grant should always allow blind decoding options for legacy Msg3 sizes in addition to the agreed 4 options.
  • RAN2 has agreed that the UE will not initiate UP EDT if NCC is not provided by RRC Connection Release.
  • the UE shall not initiate EDT.
  • the NCC is optionally provided in the RRCConnectionRelease message with suspend.
  • the eNB knows that the UE is likely to use EDT next time because it is used this time. For example, the eNB may decide to stop providing the NCC if the UE does not use the NCC N times, that is, if it initiates an RRC connection request instead.
  • the UE capability (UE Capability) does not convey the UE preference (UE's preference) to use EDT. It remains unclear how to determine whether NCC should be provided to this UE.
  • the eNB may not know whether the NRC needs to be provided to the RRC Connected EDT-enabled UE.
  • Option 1 The eNB always provides NCC when releasing an EDT-compatible UE.
  • Option 2 The eNB determines whether to provide NCC for each UE based on the UE's preference.
  • Option 1 is simple and does not affect the specifications, but option 2 is a smarter method.
  • Option 2 allows the NW to ensure the possibility of a future EDT start, and also informs the UE of the UE's preferences to the eNB, i.e. similar to various other preference indications Make it possible. In this sense, it is preferable to introduce EDT preference indication as additional UE support information.
  • Proposal 3 RAN2 should introduce EDT preference indication into UE support information in order for eNB to decide whether or not to provide NCC to RRC Connected EDT compatible UE, for example.
  • Some NW implementations may be effective for this type of NW optimization, for example by monitoring the behavior of RRC Connected UEs.
  • the data size and higher layer round trip times are from the requirements of the MTC application implemented in the UE.
  • whether the UE should provide feedback on the intended application, in particular the UL data size, should be considered as part of the NW optimization.
  • the UE may have an opportunity to notify the eNB of the UE's preferred TBS for EDT as assistance information.
  • Such support information may be integrated with the EDT preference indication proposed in Proposition 3 above.
  • Proposal 4 RAN2 should agree to allow the UE to send support information for TBS / timer configuration optimization, eg UE preferred TBS and UE preferred T300? EDT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る通信制御方法は、ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための方法である。前記通信制御方法は、無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信するステップAと、前記無線端末が、前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出するステップBと、前記無線端末が、前記ステップAにおいて受信した前記タイマ値と前記ステップBにおいて導出した前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断するステップCと、を備える。

Description

通信制御方法、無線端末、及び基地局
 本発明は、移動通信システムにおける通信制御方法、無線端末、及び基地局に関する。
 近年、人が介在することなく通信を行うMTC(Machine Type Communication)及びIoT(Internet of Things)サービスを対象とした無線端末が注目されている。このような無線端末は、低コスト化、カバレッジ拡張、及び低消費電力化を実現することが求められる。このため、3GPP(3rd Generation Partnership Project)において、システム送受信帯域の一部のみに送受信帯域幅を制限した新たな無線端末のカテゴリが仕様化されている。
 MTCやIoTを対象とした無線端末は、一般的な無線端末に比べて、送受信すべきデータの量が少なく、データの送受信を行う頻度も少ない。よって、MTCやIoTを対象とした無線端末が効率的に通信を行うために、ランダムアクセスプロシージャ中に所定メッセージを利用してユーザデータを送信するアーリーデータ伝送(early data transmission)が検討されている。
 しかしながら、現状の移動通信システムはランダムアクセスプロシージャ中にユーザデータを送信することを想定しておらず、アーリーデータ伝送を実現可能とする仕組みが存在しない。
 一実施形態に係る通信制御方法は、ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための方法である。前記通信制御方法は、無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信するステップAと、前記無線端末が、前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出するステップBと、前記無線端末が、前記ステップAにおいて受信した前記タイマ値と前記ステップBにおいて導出した前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断するステップCと、を備える。
 一実施形態に係る通信制御方法は、ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための方法である。前記通信制御方法は、無線端末が、前記アーリーデータ伝送を確率的に規制するための規制信号を基地局から受信するステップAと、前記無線端末が、前記ステップAにおいて受信した前記規制信号に基づいて、前記無線端末が前記アーリーデータ伝送を利用可能か否か判断するステップBと、前記無線端末が、前記ステップBにおいて前記アーリーデータ伝送を利用可能であると判断したことに応じて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するステップCと、を備える。
実施形態に係るLTEシステム(移動通信システム)の構成を示す図である。 実施形態に係るUE(無線端末)の構成を示す図である。 実施形態に係るeNB(基地局)の構成を示す図である。 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 実施形態に係るLTEシステムの無線フレームの構成を示す図である。 eMTC UE及びNB-IoT UEが取り扱う周波数チャネルの一例を示す図である。 eMTC UE及びNB-IoT UE向けのランダムアクセスプロシージャの一例を示す図である。 第1実施形態に係るUEの動作の一例を示す図である。 第2実施形態に係るUEの動作の一例を示す図である。
 一実施形態に係る移動通信システムについて図面を参照しながら説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 [第1実施形態]
 (移動通信システム)
 本実施形態に係る移動通信システムの構成について説明する。図1は、本実施形態に係る移動通信システムであるLTE(Long Term Evolution)システムの構成を示す図である。LTEシステムは、3GPP規格に基づく移動通信システムである。
 LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E-UTRAN:Evolved-UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。
 UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200との無線通信を行う。
 E-UTRAN10は、基地局(eNB:evolved Node-B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理する。eNB200は、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、適宜「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S-GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。MMEは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するトラッキングエリア(TA)の情報を管理する。トラッキングエリアは、複数のセルからなるエリアである。S-GWは、データの転送制御を行う。MME及びS-GWは、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100(無線端末)の構成を示す図である。UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 図3は、eNB200(基地局)の構成を示す図である。eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続される。バックホール通信部240は、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタックの構成を示す図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1レイヤ乃至第3レイヤに区分されている。第1レイヤは物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、及びRRCレイヤは、AS(Access Stratum)レイヤを構成する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとeNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。eNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御情報を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードである。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドルモードである。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとMME300CのNASレイヤとの間では、NASシグナリングが伝送される。UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等の機能を有する。
 図5は、LTEシステムにおいて用いられる無線フレームの構成を示す図である。無線フレームは、時間軸上で10個のサブフレームで構成される。各サブフレームは、時間軸上で2個のスロットで構成される。各サブフレームの長さは1msである。各スロットの長さは0.5msである。各サブフレームは、周波数軸上で複数個のリソースブロック(RB)を含む。各サブフレームは、時間軸上で複数個のシンボルを含む。各リソースブロックは、周波数軸上で複数個のサブキャリアを含む。具体的には、12個のサブキャリア及び1つのスロットにより1つのRBが構成される。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御情報を伝送するための物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)として用いられる領域である。各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)として用いることができる領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御情報を伝送するための物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)として用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)として用いることができる領域である。
 (eMTC及びNB-IoTの概要)
 eMTC及びNB-IoTの概要について説明する。本実施形態において、MTC及びIoTサービスを対象とした新たなカテゴリのUE100が存在するシナリオを想定する。新たなカテゴリのUE100は、システム送受信帯域(LTE送受信帯域幅)の一部のみに送受信帯域幅が制限されるUE100である。新たなUEカテゴリは、例えば、カテゴリM1及びカテゴリNB(Narrow Band)-IoTと称される。カテゴリM1は、eMTC(enhanced Machine Type Communications)UEが属するカテゴリである。カテゴリNB-IoT(カテゴリNB1)は、NB-IoT UEが属するカテゴリである。カテゴリM1は、UE100(eMTC UE)の送受信帯域幅を例えば1.08MHz(すなわち、6リソースブロックの帯域幅)に制限する。カテゴリNB-IoT(カテゴリNB1)は、UE100(NB-IoT UE)の送受信帯域幅を180kHz(すなわち、1リソースブロックの帯域幅)にさらに制限する。このような狭帯域化により、eMTC UE及びNB-IoT UEに要求される低コスト化及び低消費電力化が実現可能となる。
 図6は、eMTC UE及びNB-IoT UEが取り扱う周波数チャネルを示す図である。図6に示すように、LTEシステムのシステム周波数帯域の周波数帯域幅は10MHzであり得る。システム送受信帯域の帯域幅は、例えば、50リソースブロック=9MHzである。eMTC UEが対応可能な周波数チャネルの帯域幅は、6リソースブロック=1.08MHz以内である。eMTC UEが対応可能な6リソースブロック以内の周波数チャネルは、「狭帯域(NB:Narrow Band)」と称される。NB-IoT UEが対応可能な周波数チャネルの帯域幅は、1リソースブロック=180kHzである。NB-IoT UEが対応可能な1リソースブロックの周波数チャネルは、「キャリア(carrier)」と称される。
 eMTC UEは、LTE送受信帯域幅内で運用される。NB-IoT UEは、LTE送受信帯域幅内で運用される形態、LTE送受信帯域幅外のガードバンドで運用される形態、及びNB-IoT専用の周波数帯域内で運用される形態をサポートする。
 eMTC UE及びNB-IoT UEは、カバレッジ拡張を実現するために、繰り返し送信等を用いた強化カバレッジ(EC:Enhanced Coverage)機能をサポートする。強化カバレッジ機能は、複数のサブフレームを用いて同一信号を繰り返し送信する繰り返し送信(repetition)を含んでもよい。繰り返し送信の回数が多いほど、カバレッジを拡張することができる。強化カバレッジ機能は、送信信号の電力密度を上げる電力ブースト(power boosting)を含んでもよい。一例として、送信信号の周波数帯域幅を狭くする狭帯域送信により電力密度を上げる。送信信号の電力密度を上げるほど、カバレッジを拡張することができる。強化カバレッジ機能は、送信信号に用いるMCSを下げる低MCS(lower MCS)送信を含んでもよい。データレートが低く、誤り耐性の高いMCSを用いて送信を行うことにより、カバレッジを拡張することができる。
 (ランダムアクセスプロシージャの概要)
 図7は、eMTC UE及びNB-IoT UE向けのランダムアクセスプロシージャを示す図である。初期状態において、UE100は、RRCアイドルモードにある。UE100は、RRCコネクティッドモードに遷移するためにランダムアクセスプロシージャを実行する。このようなケースは、初期接続(Initial access from RRC_IDLE)と称される。初期接続時には、競合ベース(contention based)のランダムアクセスプロシージャが適用される。
 UE100は、eNB200のセルをサービングセルとして選択している。UE100は、通常のカバレッジのための第1のセル選択基準(第1のS-criteria)が満たされず、強化カバレッジのための第2のセル選択基準(第2のS-criteria)が満たされた場合、自身が強化カバレッジに居ると判断してもよい。「強化カバレッジに居るUE」とは、セルにアクセスするために強化カバレッジ機能(強化カバレッジモード)を用いることが必要とされるUEを意味する。なお、eMTC UEは、強化カバレッジモードを用いることが必須である。ここでは、UE100が強化カバレッジに居ると仮定して説明を進める。
 ステップS1001において、eNB200は、PRACH(Physical Random Access Channel)関連情報をブロードキャストシグナリング(例えば、SIB)により送信する。PRACH関連情報は、強化カバレッジレベルごとに設けられた各種のパラメータを含む。一例として、強化カバレッジレベルは、強化カバレッジレベル0乃至3の合計4つのレベルが規定される。各種のパラメータは、RSRP(Reference Signal Received Power)閾値、PRACHリソース、及び最大プリアンブル送信回数を含む。PRACHリソースは、無線リソース(時間・周波数リソース)及び信号系列(プリアンブル系列)を含む。UE100は、受信したPRACH関連情報を記憶する。
 ステップS1002において、UE100は、eNB200から送信される参照信号に基づいてRSRPを測定する。
 ステップS1003において、UE100は、測定したRSRPを強化カバレッジレベルごとのRSRP閾値と比較することにより、自身の強化カバレッジレベル(CEレベル)を決定する。強化カバレッジレベルは、UE100に必要とされる強化カバレッジの度合いを示す。強化カバレッジレベルは、少なくとも繰り返し送信における送信回数(すなわち、Repetition回数)と関連する。
 ステップS1004において、UE100は、自身の強化カバレッジレベルに対応するPRACHリソースを選択する。
 ステップS1005~S1008は、ランダムアクセスプロシージャを構成する。ステップS1005において、UE100は、選択したPRACHリソースを用いてMsg1(ランダムアクセスプリアンブル)をeNB200に送信する。なお、「Msg」は、メッセージの略である。eNB200は、受信したMsg1に用いられたPRACHリソースに基づいて、UE100の強化カバレッジレベルを特定する。
 ステップS1006において、eNB200は、UE100に割り当てたPUSCHリソースを示すスケジューリング情報を含むMsg2(ランダムアクセス応答)をUE100に送信する。UE100は、Msg2を正常に受信するまで、自身の強化カバレッジレベルに対応する最大プリアンブル送信回数までMsg1を複数回送信し得る。
 ステップS1007において、UE100は、スケジューリング情報に基づいて、Msg3をeNB200に送信する。Msg3は、RRC接続要求(RRC Connection Request)メッセージであってもよい。
 ステップS1008において、eNB200は、Msg4をUE100に送信する。Msg4は、RRC接続確立(RRC Connection Setup)メッセージであってもよい。
 ステップS1009において、UE100は、Msg4の受信に応じてRRCコネクティッドモードに遷移する。その際、UE100は、Msg 5:RRC接続確立完了(RRC Connection Setup Complete)メッセージをeNB200に送信してもよい。その後、eNB200は、特定した強化カバレッジレベルに基づいて、UE100への繰り返し送信等を制御する。
 (アーリーデータ伝送の概要)
 eMTC UEやNB-IoT UEは、送受信すべきデータの量が少なく、データの送受信を行う頻度も少ない。本実施形態において、eMTC UEやNB-IoT UEが、ランダムアクセスプロシージャ中に所定メッセージを利用してユーザデータを送受信するアーリーデータ伝送(EDT:Early Data Transmission)を行う一例について説明する。
 EDTは、ランダムアクセスプロシージャにおけるMsg3を利用して上りリンクデータを送受信する上りリンクのEDTと、ランダムアクセスプロシージャにおけるMsg4を利用して下りリンクデータを送受信する下りリンクのEDTとを含む。具体的には、1つのランダムアクセスプロシージャにおいて、上りリンクのEDT及び下りリンクのEDTの両方が行われる場合と、上りリンクのEDTのみが行われる場合と、下りリンクのEDTのみが行われる場合とがある。
 EDTには、UP(User Plane)ソリューション及びCP(Control Plane)ソリューションの2種類がある。UPソリューションでは、EDTにおいて、ユーザデータをRRCメッセージに含めずに、MACレイヤにおいてユーザデータ(DTCH)とRRCメッセージ(CCCH)とを1つのMAC PDUに多重化して送信する。一方で、CPソリューションでは、EDTにおいて、ユーザデータをRRCメッセージに含める。
 UPソリューションは、UE100がRRCアイドルモードのサブ状態であるサスペンド状態である場合に適用される。サスペンド状態は、UE100のコンテキスト情報がeNB200において維持される、RRCアイドルモードのサブ状態である。UPソリューションでは、Msg3を構成するRRCメッセージがRRC Connection Resume Requestメッセージであり、Msg4を構成するRRCメッセージが基本的にはRRC Connection Releaseメッセージ又はRRC Connection Rejectメッセージである。UE100は、RRC Connection Releaseメッセージを受信すると、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了する。但し、Msg4を構成するRRCメッセージがRRC Connection Resumeメッセージであり得る。UE100は、RRC Connection Resumeメッセージを受信すると、RRCコネクティッドモードに遷移し、RRCコネクティッドモードにおいてユーザデータを送受信する。
 CPソリューションは、UE100がRRCアイドルモードであってサスペンド状態ではない場合に適用される。CPソリューションでは、Msg3を構成するRRCメッセージがEarly Data Requestメッセージであり、Msg4を構成するRRCメッセージが基本的にはEarly Data Completeメッセージである。UE100は、Early Data Completeメッセージを受信すると、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了する。但し、Msg4を構成するRRCメッセージがRRC Connection Setupメッセージであり得る。UE100は、RRC Connection Setupメッセージを受信すると、RRCコネクティッドモードに遷移し、RRCコネクティッドモードにおいてユーザデータを送受信する。
 (第1実施形態に係る動作)
 EDTにおいて、UE100は、Msg3を利用して上りリンクデータを送信した後、Msg4を利用して下りリンクデータを受信し、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了し得る。これにより、UE100は、RRCコネクティッドモードに遷移することなくユーザデータの送受信を行うことができるため、UE100の消費電力を削減できる。
 しかしながら、Msg4を利用して下りリンクのEDTを行う場合、eNB200は、下りリンクデータをコアネットワーク側から受信するまではMsg4をUE100に送信できない。その結果、UE100においてMsg4の最大受信待ち時間を規定するタイマが満了し、UE100がランダムアクセスプロシージャ失敗と判断し得る。UE100は、ランダムアクセスプロシージャ失敗と判断した場合には、ランダムアクセスプロシージャを最初からやり直す。かかる場合、UE100の消費電力が増加する。
 Msg4の最大受信待ち時間を規定するタイマは、UE100のRRCレイヤにおいて管理されるT300であってもよいし、UE100のMACレイヤにおいて管理するコンテンションリゾリューションタイマであってもよい。本実施形態において、かかるタイマがT300である一例について説明するが、かかるタイマがコンテンションレゾリューションタイマであってもよい。
 UE100は、Msg3の送信時にT300を開始させる。T300の値(タイマ値)は、eNB200からSIBによりUE100に設定される。UE100は、自身宛のMsg4を受信することなくT300が満了すると、ランダムアクセスプロシージャ失敗と判断する。
 第1実施形態において、UE100は、ランダムアクセスプロシージャを開始するよりも前において、UE100がMsg3を送信してからMsg4と共にユーザデータを受信するまでの所要時間の予測値を導出する。具体的には、UE100は、下りリンクのEDTを行ったと仮定した場合に、Msg3を送信してからMsg4を受信するまでにどの程度の時間(所要時間)を要するかを判断する。
 UE100は、eNB200から受信したT300のタイマ値と、導出した予測値とに基づいて、EDT(具体的には、下りリンクのEDT)を伴うランダムアクセスプロシージャを開始するか否かを判断する。例えば、UE100は、eNB200から受信したT300のタイマ値よりも、導出した予測値が大きい場合には、EDTを伴うランダムアクセスプロシージャを開始しないと判断する。これにより、UE100が自身宛のMsg4を受信することなくT300が満了する可能性を低減できるため、UE100の消費電力の増大を抑制できる。
 図8は、第1実施形態に係るUE100の動作の一例を示す図である。
 図8に示すように、ステップS101において、RRCアイドルモードにあるUE100は、下記の1)~3)の情報をeNB200からSIBにより受信する。または、UE100は、RRCアイドルモードになる前のRRCコネクティッドモードにおいて、下記の1)~3)の情報をeNB200からRRCメッセージにより受信し、それをRRCアイドルモードに遷移した後も保持しておいてもよい。
 1)PRACHリソース情報:
 eNB200のセルにおいて利用可能なPRACHリソースのうち一部がEDTインディケーション用のPRACHリソースとして確保される。例えば、eNB200のセルにおいてPRACHリソースとして利用可能な時間・周波数リソースのうち一部がEDTインディケーション用の時間・周波数リソースとして確保される。eNB200は、EDTインディケーション用のPRACHリソース(時間・周波数リソース)を示す情報をSIBによりブロードキャストする。UE100は、EDTインディケーション用のPRACHリソースが提供されている場合に、EDTを利用可能であると判断する。一方、UE100は、EDTインディケーション用のPRACHリソースが提供されていない場合に、EDTを利用不能であると判断する。ここでは、EDTインディケーション用のPRACHリソースが提供されていると仮定して説明を進める。
 2)EDTにおけるユーザデータの最大トランスポートブロックサイズ:
 eNB200は、上りリンクのEDTにおいてUE100が送信可能な最大上りリンクデータ量(最大トランスポートブロックサイズ)を示す情報をSIBによりブロードキャストする。eNB200は、下りリンクのEDTにおいてUE100が送信可能な最大下りリンクデータ量(最大トランスポートブロックサイズ)を示す情報をSIBによりブロードキャストしてもよい。
 3)T300の設定値(タイマ値):
 T300の値(タイマ値)は、eNB200からSIBによりUE100に設定される。eNB200は、EDTを伴わないランダムアクセスプロシージャ用のT300のタイマ値(以下、「第1のタイマ値」という)と、EDTを伴うランダムアクセスプロシージャ用のT300のタイマ値(以下、「第2のタイマ値」という)とを別々にUE100に設定する。
 ステップS102において、UE100は、ランダムアクセスプロシージャの開始トリガを検知する。例えば、UE100は、送信すべき上りリンクデータがUE100において発生したこと、又はUE100がページングメッセージを受信したこと等に応じて、ランダムアクセスプロシージャを開始すると判断する。なお、ステップS102の処理は、ステップS101の前に行われてもよい。なお、ステップS102の処理をステップS101の処理よりも前に行う場合には、UE100は、ランダムアクセスプロシージャの開始トリガを検知した後に、上記の1)~3)の情報をeNB200からSIBにより受信するまでステップS103の処理の開始を待ってもよい。
 ステップS103において、UE100は、自身がeNB200に送信しようとする上りリンクデータ量が最大上りリンクデータ量以下であるか否かを判断する。UE100は、自身がeNB200から受信しようとする下りリンクデータ量が最大下りリンクデータ量以下であるか否かを判断してもよい。ステップS103において「NO」である場合、ステップS108において、UE100は、EDTを伴わないランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信しない。なお、ステップS103において「NO」である場合であっても、下りリンクのEDTのみを実行する可能性があるため、ステップS104に進んでもよい。
 ステップS103において「YES」である場合、ステップS104において、UE100は、下りリンクのEDTを行うか否かを判断する。例えば、UE100は、Msg3送信時に、ACKを必要としない上りリンクユーザデータ(UDPデータ等)を送信する場合には、下りリンクのEDTを行わないと判断する。UE100は、Msg3送信時に、ACKを必要とする上りリンクユーザデータ(TCPデータ等)を送信する場合には、下りリンクのEDTを行うと判断する。ステップS104において「NO」である場合には、ステップS105及びS106の処理が省略されてステップS107の処理に進む。例えば、UE100は、UDPでの送信を行うことや、アプリケーションの種別に基づいて、上りリンクのEDTに対するサーバからのレスポンス(ACK等の下りリンクデータ)が無いと予想した場合に、下りリンクのEDTを行わないと判断し、ステップS107において上りリンクのEDTを行う。なお、UE100は、上りリンクのEDTに対するサーバからのレスポンスが無いと予想した場合には、Msg3送信時にEDTを伴うランダムアクセスプロシージャ用のT300の開始をしなくてもよい。
 ステップS104において「YES」である場合、ステップS105において、UE100は、Msg3を送信してから、Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出する。具体的には、UE100は、下りリンクのEDTを行ったと仮定した場合に、Msg3を送信してからMsg4を受信するまでにどの程度の時間(所要時間)を要するかを判断する。例えば、UE100は、下記のa)~d)の少なくとも1つに基づいて、かかる所要時間の予測値を導出する。
 a)UE100のアクセス層よりも上位の上位層において用いるアプリケーションの種類及び/又はプロトコルの種類:
 例えば、UE100は、アプリケーションの要求QoSが高い場合(すなわち、低遅延の場合)は応答(Msg4)が速い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所用時間)が短い)、アプリケーションの要求QoSが低い(すなわち、高遅延)の場合は応答(Msg4)が遅い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所要時間)が長い)と判断してもよい。或いは、アプリケーションの種類及び/又はプロトコルの種類に対応する所要時間の予測値が予めUE100に設定されており、かかる事前設定された所要時間の予測値を取得してもよい。かかる処理は、UE100のASレイヤ(具体的には、RRCレイヤ以下のレイヤ)において行われてもよいし、UE100の上位レイヤ(具体的には、RRCよりも上のレイヤ)において行われてもよい。
 b)UE100のアクセス層(ASレイヤ)において用いるベアラの種類及び/又は論理チャネルの種類:
 例えば、UE100は、ベアラの種類及び/又は論理チャネルの種類に対応する所要時間の予測値(すなわち、Msg3を送信してからMsg4を受信するまでにかかる時間(所用時間)の予測値)が予めUE100に設定されており、かかる事前設定された所用時間の予測値を取得する。かかる判断は、UE100のASレイヤにおいて行われてもよい。なお、ベアラは要求QoSと関連付けられており、論理チャネルはベアラと関連付けられている。
 c)過去の所要時間の履歴を用いた統計:
 UE100は、過去の所要時間(具体的には、Msg3を送信してから、Msg4と共にユーザデータを受信するまでに実際に掛かった時間)の履歴を記憶し、この履歴に対する統計処理を行うことにより、今回の所要時間の予測値を算出する。かかる判断は、UE100のASレイヤにおいて行われてもよい。
 d)UE100がEDTによりeNB200に送信する上りリンクユーザデータの量及び/又はUE100がEDTによりeNB200から受信する下りリンクユーザデータの量:
 例えば、上りリンクのユーザデータ量に応じてサーバ側の処理時間が変わるため、UE100は、上りリンクのユーザデータ量が多いほど応答(Msg4)が遅い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所用時間)が長い)と判断してもよい。或いは、UE100のASレイヤは、上りリンクのユーザデータ量に応じてアプリケーションを推測し、上記a)と同様な処理を行ってもよい。UE100は、下りリンクのユーザデータ量が多いほど応答(Msg4)が遅い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所用時間)が長い)と判断してもよい。
 ステップS106において、UE100は、ステップS105において導出した所用時間の予測値が、ステップS101において受信したタイマ値(第2のタイマ値)以下であるか否かを判断する。
 ステップS106において「YES」である場合、ステップS107において、UE100は、EDT(少なくとも下りリンクのEDT)を伴うランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信する。なお、ステップS104において、下りリンクのEDTを行わないとUE100が判断した場合、UE100は、下りリンクのEDTを行わない旨をMsg3又はMsg1送信時にeNB200に通知してもよい。これにより、eNB200は、Msg4を素早く送信することができるため、処理の遅延による負荷増大を防ぐことができると共に、UE100は、待ち受け消費電力を最小化することができる。下りリンクのEDTを行わない旨の情報は、RRCメッセージに含められるフラグ(例えば、「no DL data expected」など)であってもよいし、MAC CE(Control Element)におけるMACサブヘッダで当該情報を伝えてもよい。
 ステップS106において「NO」である場合、ステップS108において、UE100は、EDTを伴わないランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信しない。
 (第1実施形態のまとめ)
 上述した第1実施形態に係る動作は、以下のように要約できる。
 ランダムアクセスプロシージャ中にユーザデータの送受信を行うEDTを制御するための通信制御方法は、UE100が、ランダムアクセスプロシージャ中にUE100がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値をeNB200から受信するステップA(ステップS101)と、UE100が、UE100がMsg3を送信してからMsg4を受信するまでの所要時間の予測値を導出するステップB(ステップS105)と、UE100が、ステップAにおいて受信したタイマ値とステップBにおいて導出した予測値とに基づいて、EDTを伴うランダムアクセスプロシージャを開始するか否かを判断するステップC(ステップS106)と、を備える。
 ステップCにおいて、UE100は、ステップAにおいて受信したタイマ値よりも、ステップBにおいて導出した予測値が大きい場合(ステップS106:NO)に、EDTを伴うランダムアクセスプロシージャを開始しないと判断する。
 UE100は、ステップCにおいてEDTを伴うランダムアクセスプロシージャを開始しないと判断したことに応じて、EDTを伴わないランダムアクセスプロシージャを開始する(ステップS108)。
 ステップBにおいて、UE100は、a)UE100のアクセス層よりも上位の上位層において用いるアプリケーションの種類及び/又はプロトコルの種類、b)UE100のアクセス層において用いるベアラの種類及び/又は論理チャネルの種類、c)過去の前記所要時間の履歴を用いた統計、d)UE100がEDTによりeNB200に送信する上りリンクユーザデータの量及び/又はUE100がEDTによりeNB200から受信する下りリンクユーザデータの量、のうち少なくとも1つに基づいて、予測値を導出する。
 UE100は、Msg4と共に下りリンクのユーザデータをeNB200から受信する下りリンクのEDTを行うか否かを判断する(ステップS104)。UE100は、下りリンクのEDTを行うと判断した場合(ステップS104:YES)に限りステップCを行う。
 [第1実施形態の変更例1]
 上述した第1実施形態において、下りリンクのEDTを行わないとUE100が判断した場合に、UE100が、下りリンクのEDTを行わない旨をeNB200に通知する一例について説明した。本変更例において、かかる動作の詳細について説明する。
 具体的には、UE100は、上りリンクのEDTを伴うランダムアクセスプロシージャを開始する。かかるランダムアクセスプロシージャにおいて下りリンクのEDTを行わないとUE100が判断した場合には、UE100は、下りリンクのEDTを行わないことを示す通知をランダムアクセスプロシージャ中にeNB200に対して行う。
 ここで、「下りリンクのEDTを行わない」とは、上りリンクのEDTにおいて送信されたデータに対する上位レイヤの応答が無いことを意味する。なお、上位レイヤとは、RRCレイヤよりも上位のレイヤを意味する。UE100は、上りリンクのEDTにおいてUDP送信を行う場合(つまり、TCP ACKが無い場合)、下りリンクのEDTを行わないと判断してもよい。UE100は、上位レイヤの応答が無いと上位レイヤ(例えばアプリケーションレイヤ)から知らされた場合に、下りリンクのEDTを行わないと判断してもよい。UE100は、過去のアプリケーションレイヤの挙動(データ送受信履歴等)に基づいて(ASレイヤ又はNASレイヤにて)応答が無いと判断された場合に、下りリンクのEDTを行わないと判断してもよい。
 UE100は、下りリンクのEDTを行わないことを示す通知をMsg3により行ってもよい。UE100は、Msg3送信時にeNB200に送信するバッファ状態報告(BSR)として、利用可能な上りリンクデータがゼロであることを示すBSR(BSR=0)を送信してもよい。eNB200は、かかるBSRを、UE100が下りリンクのEDTを行わないことを示す通知と解釈する。或いは、UE100は、下りリンクのEDTを行わないことをMAC CEでeNB200に通知してもよいし、MAC subheaderのみ(MAC CE部無し)で通知してもよい。或いは、UE100は、Msg3を構成するRRCメッセージ(RRC Connection Request/Resume Request)に、下りリンクのEDTを行わないことを示すフラグを追加することによりeNB200に通知してもよい。
 UE100は、下りリンクのEDTを行わないことを示す通知をMsg1により行ってもよい。例えば、UE100は、上りリンクのみのEDTを通知するために確保されているPRACHリソースを用いてランダムアクセスプリアンブル(EDTインディケーション)を送信する。
 このように、UE100が、下りリンクのEDTを行わないことをeNB200に通知することにより、上述したように、eNB200は、UE100を迅速にリリースすることができる。これにより、eNB200は、リソース(eNBの計算処理リソース、無線リソース)を早期に解放できる。また、UE100は、消費電力を最小限に抑えることができる(待ち受けに伴う消費電力を最小化できる)。
 [第1実施形態の変更例2]
 上述した第1実施形態において、UE100は、Msg3を送信してからMsg4と共にユーザデータを受信するまでの所要時間の予測値を導出し、eNB200から受信したT300のタイマ値と、導出した予測値とに基づいて、EDT(具体的には、下りリンクのEDT)を伴うランダムアクセスプロシージャを開始するか否かを判断していた。ここで、eNB200から設定されるT300のタイマ値が基本的に固定であることを想定している。
 しかしながら、eNB200が設定するT300のタイマ値が短すぎる可能性がある。一方で、eNB200が設定するT300のタイマ値が長すぎると、ランダムアクセス失敗の判定を適切に行うことができない懸念がある。そこで、本変更例では、UE100がeNB200に情報を提供することにより、eNB200がT300のタイマ値を適切に設定可能とする。
 本変更例において、UE100は、ランダムアクセスプロシージャ中にUE100がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値として推奨する値(推奨タイマ値)を決定する。タイマ値とは、EDT用のT300の値である。或いは、タイマ値は、コンテンションレゾリューションタイマのタイマ値であってもよい。UE100は、上述した第1実施形態と同様な予測に基づいて推奨タイマ値を決定してもよいし、過去の実績(履歴)に基づいて推奨タイマ値を決定してもよい。
 そして、UE100は、自身がRRCコネクティッドモードにある間に、推奨タイマ値を示す情報をeNB200に送信する。UE100は、例えば、eNB200に送信するRRCメッセージに推奨タイマ値を含める。eNB200は、複数のUE100から推奨タイマ値を収集し、収集した推奨タイマ値に対して統計処理を行うことにより適切なT300の値を決定し、決定したT300の値をSIBにより送信する。
 [第2実施形態]
 第2実施形態について、第1実施形態との相違点を主として説明する。
 (第2実施形態に係る動作)
 eNB200の配下に多数のUE100(特に、eMTC UEやNB-IoT UE)が存在する場合、eNB200における負荷(特に、無線リソース負荷)が大きくなる。かかる状況下においては、EDTインディケーション用のPRACHリソースを用いるUE100の数が多くなり、同一のPRACHリソースを複数のUE100が選択することによりUE100間の衝突(コンテンション)が発生する。
 かかる衝突は、ランダムアクセスプロシージャにおける衝突解消(コンテンションレゾリューション)の仕組みを用いてMsg4により解消されるが、PRACHリソースが衝突した一部のUE100はランダムアクセスプロシージャを最初からやり直す必要があるため、UE100の消費電力が増加する。特に、かかる一部のUE100が上りリンクのEDTにより上りリンクユーザデータを送信していた場合、かかる上りリンクユーザデータの送信が無駄になる。
 第2実施形態において、eNB200は、自身の負荷状態に基づいて、EDTを確率的に規制するための規制信号(以下、「EDT規制信号」という)を送信する。eNB200は、EDT規制信号をSIBにより送信(ブロードキャスト)してもよい。これにより、EDTを利用するUE100間の衝突(具体的には、PRACHリソースの衝突)が生じる確率を低減できる。eNB200は、自身が高負荷状態にある間は、EDT規制信号を周期的に送信してもよい。また、eNB200は、EDTを規制したいUE100(データの送信量が比較的多いUE100又は優先度の低いUE100)に対してのみ、個別的にEDT規制信号を送信してもよい。また、eNB200は、個別的にEDT規制信号を送信すると共に、SIBによりEDT規制信号を送信(ブロードキャスト)してもよい。その場合、それぞれのEDT規制信号に関連付けられているEDTを利用可能とする条件(EDT利用可能条件)を同じくしてもよいし、異ならせてもよい。例えば、個別的に送信したEDT規制信号に関連付けられているEDT利用可能条件が、SIBにより送信されたEDT規制信号に関連付けられているEDT利用可能条件に比べて、より高確率でUE100によるEDTが規制される条件であってもよい。
 ここで、eNB200の負荷状態とは、リソース負荷の状態であってもよいし、ハードウェア負荷の状態であってもよい。また、リソース負荷の状態は、PRACHリソース(Msg1)におけるUE間の衝突発生の頻度を含む。eNB200は、かかる衝突発生の頻度を次のようにして判断する。基本的には、eNB200は、Msg1の衝突有無を衝突解消(Contention Resolution)が完了したか否かに応じて判断する。例えば、2つのUEが同一のランダムアクセスプリアンブル(EDTインディケーション)を送信し、eNB200がそれらの受信に成功し、Msg2を返す。かかる場合、当該2つのUEは、別のランダムIDを含んだMsg3をPUSCHで送信する。この時、eNB200は、UL grant(Msg2)で指定したリソースでPUSCHを受信できなければ、ランダムアクセスプリアンブル(EDTインディケーション)が衝突したと判断できる。但し、eNB200は、一方のUEが送信したMsg3だけ受信が成功することもあり得る。この場合、当該一方のUEに対してeNB200が送信するMsg4によりcontention resolutionされるため、衝突したかどうかは分からない。しかしながら、eNB200は、ランダムアクセスプリアンブルの設定を把握しており、例えば同時に受信したMsg1に基づいて、PRACH空間(PRACHリソース)が逼迫していることは分かるため、衝突が起こっている可能性が高いと推測することは可能である。
 なお、確率的に規制するとは、全てのUE100に対して一律にEDTを規制するのではなく、ランダムに決定される一部のUE100に対してのみEDTを規制することをいう。かかる一部のUE100は、EDTが規制されるだけであり、ランダムアクセスプロシージャ自体は規制されないため、EDTを伴わないランダムアクセスプロシージャを行うことが可能である。
 EDTを伴わないランダムアクセスプロシージャを行うUE100は、ランダムアクセスプロシージャによりRRCコネクティッドモードに遷移する。一方、EDTを伴うランダムアクセスプロシージャを行うUE100は、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了することが可能であるため、UE100の消費電力が少なくて済む。
 UE100は、eNB200から受信したEDT規制信号に基づいて、UE100がEDTを利用可能か否か判断する。UE100は、EDTを利用可能であると判断したことに応じて、EDTを伴うランダムアクセスプロシージャを開始する。一方、UE100は、EDTを利用可能でないと判断したことに応じて、EDTを伴わないランダムアクセスプロシージャを開始してもよい。
 図9は、第2実施形態に係るUE100の動作の一例を示す図である。図8に示したUE100の動作と重複する動作については説明を省略する。
 図9に示すように、ステップS201~S203の処理は、図8に示したUE100の動作と同様である。
 ステップS203において「YES」である場合、ステップS204において、UE100は、eNB200からEDT規制信号を受信したか否かを判断する。ステップS204において「NO」である場合、ステップS207において、UE100は、EDTを伴うランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信する。
 一方、ステップS204において「YES」である場合、ステップS205において、UE100は、自身がEDTを利用可能か否か判断する。EDT規制信号は、EDTを利用可能とする条件と関連付けられている。かかるEDT利用可能条件は、EDT規制信号に含まれる情報であってもよいし、UE100に事前設定されていてもよい。本実施形態において、EDT利用可能条件がEDT規制信号に含まれている一例について説明する。
 UE100は、自身が発生させた乱数及び/又は自身に関する識別子(UE-ID)が条件を満たすか否かを判断する。UE100に関する識別子(UE-ID)は、例えば、UE100のSIMに格納されたIMSI(International Mobile Subscriber Identity)である。但し、UE100に関する識別子であれば、IMSI以外の識別子を用いてもよい。
 UE100は、自身が発生させた乱数を、eNB200から指定された閾値と比較し、比較結果に応じてEDTの利用可否を判断してもよい。例えば、UE100は、発生させた乱数が閾値を超えた場合に限り、EDTが利用可能であると判断してもよい。
 或いは、UE100は、「UE-ID mod N」を計算し、この計算結果が、ある数値又はある数値範囲内にあるか否かに応じて、EDTの利用可否を判断してもよい。ここで「N」及び/又は「数値(又は数値範囲)」は、eNB200から指定されてもよい。「数値(又は数値範囲)」は、任意の固定値であってもよいし、無線フレーム番号等の変数であってもよい。
 或いは、乱数又はUE-IDに代えて、ランダム性を有する値(すなわち、UE間で一致する可能性が低い値)に基づいてEDTの利用可否を判断してもよい。例えば、ランダム性を有する値として、UE100が上りリンクのEDTで送信したい上りリンクデータのサイズ(トランスポートブロックサイズ)を用いてもよい。具体的には、UE100は、「上りリンクデータサイズ mod N」を計算し、この計算結果が、ある数値又はある数値範囲内にあるか否かに応じて、EDTの利用可否を判断してもよい。或いは、上りリンクデータサイズが、ある閾値以上であること、ある閾値以下であること、2つの閾値の間(範囲内)にあることに基づいて、EDTが許可される又は規制されると判断してもよい。なお、当該閾値は、EDT規制信号に関連付けられているか又は含まれていてもよい。
 ステップS206において、UE100は、ステップS205の結果に応じて自身がEDTを利用可能か否か判断する。ステップS206において「YES」(EDTを利用可能)である場合、ステップS207において、UE100は、EDTを伴うランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信する。
 ステップS206において「NO」(EDTを利用不可)である場合、ステップS208において、UE100は、EDTを伴わないランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信しない。
 なお、ここでは、EDT規制信号に関連付けられた条件は、主にEDTを確率的に規制するためのものであったがこれには限られない。つまり、EDT規制信号は、それを受信したUE100が、EDTの実行を禁止されるものであってもよい。つまり、eNB200は、UE100によるEDTを確実に規制したい場合には、その旨を示す信号を個別的に送信又はブロードキャストしてもよく、それを受信したUE100は、EDTの実行が禁止される。
 (第2実施形態のまとめ)
 上述した第2実施形態に係る動作は、以下のように要約できる。
 ランダムアクセスプロシージャ中にユーザデータの送受信を行うEDTを制御するための通信制御方法であって、UE100が、EDTを確率的に規制するためのEDT規制信号をeNB200から受信するステップA(ステップS204)と、UE100が、ステップAにおいて受信したEDT規制信号に基づいて、UE100がEDTを利用可能か否か判断するステップB(ステップS205)と、UE100が、ステップBにおいてEDTを利用可能であると判断したことに応じて、EDTを伴うランダムアクセスプロシージャを開始するステップC(ステップS207)と、UE100が、ステップBにおいてEDTを利用可能でないと判断したことに応じて、EDTを伴わないランダムアクセスプロシージャを開始するステップD(ステップS208)と、を備える。
 EDT規制信号は、EDTを利用可能とする条件と関連付けられている。ステップBにおいて、UE100は、UE100が条件を満たすことに応じて、EDTを利用可能であると判断する。
 ステップBは、UE100が発生させた乱数及び/又はUE100に関する識別子又はその他の情報が条件を満たすか否かを判断するステップを含む。
 eNB200が、eNB200における負荷状態に基づいて、EDT規制信号を送信するか否かを判断する。
 [第3実施形態]
 第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。
 上述したように、EDTには、UPソリューション(すなわち、ユーザプレーンのEDT)及びCPソリューション(制御プレーンのEDT)の2種類がある。UPソリューションは、UE100がRRCアイドルモードのサブ状態であるサスペンド状態である場合に適用される。具体的には、UE100は、サスペンド状態を設定するRRC Connection ReleaseメッセージをeNB200から受信すると、RRCアイドルモードのサブ状態であるサスペンド状態に遷移する。サスペンド状態では、UE100のコンテキスト情報がeNB200において維持されており、eNB200が保持するコンテキスト情報を利用して円滑にRRCコネクティッドモードに復旧可能とする。
 ここで、ユーザプレーンのEDTを利用するためには、UE100がサスペンド状態に設定される際に、RRC Connection Releaseメッセージにより、NCC(Next Hop Chaining Count)がeNB200から提供されている必要がある。NCCは、ユーザプレーンにおいてPDCPレイヤが暗号化に関する処理(復号処理を含む)を行うために用いられる暗号情報であって、PDCPレイヤが管理するシーケンス番号に基づいてカウントされる値である。NCCが提供されていないUE100は、ユーザプレーンのEDTを開始することができない。
 一方、NCCが提供されているUE100であっても、上述したような事情(例えば、送信データ量が最大データ量を超える等)によりEDTを行わないことがある。NCCが提供されているにもかかわらず、EDTを伴わないランダムアクセスプロシージャを繰り返すUE100は、EDTに適していないアプリケーションを実行している可能性がある。よって、そのようなUE100にNCCを提供することは無駄になり得る。
 具体的には、eNB200は、ユーザプレーンのEDTに必要な情報であってユーザプレーンにおける暗号化に関する処理に用いる暗号情報であるNCCをRRC Connection ReleaseメッセージによりUE100に提供する(1回目のNCCの提供)。RRCアイドルモード(サスペンド状態)に遷移したUE100は、NCCの受信後、EDTを伴わないランダムアクセスプロシージャをeNB200に対して行うことにより、RRCコネクティッドモードに遷移する。次に、eNB200は、NCCをRRC Connection ReleaseメッセージによりUE100に提供する(2回目のNCCの提供)。RRCアイドルモード(サスペンド状態)に遷移したUE100は、NCCの受信後、EDTを伴わないランダムアクセスプロシージャをeNB200に対して行うことにより、RRCコネクティッドモードに遷移する。このような動作がある回数Nだけ繰り返された場合、eNB200は、UE100に対するNCCの提供を停止する。ここで、Nは1以上の値であるが、2以上の値とすることが好ましい。eNB200は、NCCを提供したにもかかわらずUE100がEDTを行わなかった回数をカウントし、カウント値がNに達した場合に、UE100に対するNCCの提供を停止する。具体的には、eNB200は、NCCを含まないRRC Connection ReleaseメッセージをUE100に送信する。
 eNB200は、Nの値を示す情報を例えばSIBに含めて送信してもよい。UE100は、Nの値を示す情報をeNB200から受信する。例えば、UE100は、NCCが提供されたにもかかわらずEDTを行わなかった回数をカウントする。UE100は、なおもEDTを使用したい意図がある場合には、カウント値がNに達する前に、EDTを使用したい意図をeNB200に通知する。これにより、eNB200がNCCの提供を停止することを防ぐことができる。EDTを使用したい意図の通知は、従来のMsg3により行われてもよい。具体的には、かかるMsg3を構成するMAC PDUは、RRC Connection Resume Request及びBSRを含むが、データPDUは多重化されない。
 [第3実施形態の変更例1]
 上述した第3実施形態において、NCCが提供されていないUE100はユーザプレーンのEDTを利用することができないと説明したが、かかるUE100であっても制御プレーンのEDTを利用可能であると考えられる。制御プレーンのEDTにおいては、Msg3を構成するRRCメッセージ(Early Data Requestメッセージ)にユーザデータを含めるが、かかるRRCメッセージは制御プレーンのメッセージであり、PDCPレイヤの暗号化処理を必要としないため、NCCが不要である。
 よって、UE100は、NCCをeNB200から受信していない場合には、ユーザプレーンのEDTではなく、制御プレーンのEDTを開始する。UE100は、ネットワークが制御プレーンのEDTに対応している場合(MMEがデータ送受信機能を有している場合)であって、且つUE100のアプリケーションレイヤが制御プレーンのEDTに対応している場合(MME経由でアプリケーションサーバへの接続が可能な場合)に限り、制御プレーンのEDTを開始してもよい。
 かかる制御プレーンのEDTにおいて、UE100は、RRCメッセージにユーザデータを含めてeNB200に送信する。これにより、NCCがeNB200から提供されていないUE100であってもEDTを利用可能にすることができる。一方、UE100は、NCCをeNB200から受信している場合には、制御プレーンのEDTではなく、ユーザプレーンのEDTを開始する。
 [第3実施形態の変更例2]
 NCCをUE100に提供することを促すことができれば、UE100がユーザプレーンのEDTを利用できる可能性を高めることができる。また、NCCをUE100に提供するか否かをeNB200が判断するための情報をUE100から得ることができれば、eNB200が適切にNCCをUE100に提供できる。
 そこで、本変更例では、UE100は、自身がRRCコネクティッドモードにある間に、RRCアイドルモードに遷移した後にEDTを行う意図を有することを示す通知をeNB200に送信する。かかる通知は、例えばRRCメッセージにより行われる。かかる通知は、ユーザプレーンのEDTを行う意図を有することを示す通知であってもよい。
 eNB200は、UE100からの通知を、NCCをUE100に提供することを促すための情報、又はNCCをUE100に提供するか否かを判断するための情報として用いる。eNB200は、かかる通知に基づいてNCCをUE100に提供する。
 [その他の実施形態]
 上述した各実施形態を別個独立に実施してもよいし、2以上の実施形態を併用して実施してもよい。
 上述した実施形態において、MTCやIoTを対象とした無線端末(eMTC UE及びNB-IoT UE)を用いる一例を説明した。しかしながら、本開示はeMTC UE及びNB-IoT UEに限定されない。一般的なUEに対して、上述した実施形態に係る動作を適用してもよい。
 上述した実施形態では、主にRRCアイドル、サスペンド、コネクテッドを例に挙げて説明したが、これに限らない。RRCライトコネクションやINACTIVEの状態に適用してもよい。RRCライトコネクションは、RRCコネクティッドモードの一状態であって、RRCアイドルモードのプロシージャの一部が適用される特殊な状態である。INACTIVEは、第5世代移動通信システムにおいて導入されることが想定されており、RRCコネクティッドモード及びRRCアイドルモードとは異なるRRC状態である。上述した実施形態における「RRCアイドルモード」を「INACTIVEモード」と読み替えてもよい。
 上述した実施形態では強化カバレッジに居るUEを例に挙げて説明したが、これに限らない。ノーマルカバレッジに居るUEに対して、上述した実施形態に係る動作を適用してもよい。具体的には、RACHプロシージャにおいて、RSRP測定に基づくCEレベル判断を行わなくてもよい。
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本開示はLTEシステムに限定されない。LTEシステム以外の移動通信システム(例えば、第5世代移動通信システム)に対して、上述した実施形態に係る動作を適用してもよい。
 UE100及びeNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。UE100及びeNB200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップセットが提供されてもよい。
 (付記)
(1.はじめに)
 この付記では、EDT機能を完成させるための残りの問題について検討する。
(2.検討)
(2.1.Msg 3における暗黙(Implicit)の「BSR=0」)
 以下の事項が合意された。
 - EDTがトリガされた場合、UEはMsg3でBSRを送信してはならない、すなわち、eNBはULにおいて次に来るデータがないと仮定することができる。これはBSRが暗黙的に0に等しいことを意味する。
 意図が、(少なくとも)UL送信に関して、EDT後の送信に利用可能なデータがないことであることは当然に理解され得る。言い換えれば、ULデータサイズがブロードキャストされた最大TBSを超える場合、UEがEDTを開始できないようにする。
 一方、「BSR=0」をトリガすることの定義(すなわち、NB?IoTおよびBL UEのための解放支援インディケーション(Release Assistance Indication)を実現するためにゼロバイトBSRをキャンセルしないための条件)は、次のように、送信されるデータがないことと、近い将来に受信されるデータがないことと、を考慮する。
 NB-IoTまたはBL UEの場合:
 - rai-Activationが設定されており、かつ、BSRに対してゼロバイトのバッファサイズがトリガされており、かつ、近い将来にUEが送信または受信するデータがもっとある可能性がある場合:
 - ペンディングのBSRをキャンセルする。
 EDTの典型的なユースケースは、RRC Connectedに移行することなく、Msg3およびMsg4においてデータ送信/受信を完了すること、例えば、UL EDT上でのセンサデータの報告、及び、DL EDT上でのUEの上位層のACK、が想定される。しかし、「BSRが暗黙的に0に等しいことを意味する」という最近の合意では、そのケースを十分に説明できない可能性がある。
 考察1:「BSRが0に暗黙的に等しいことを意味する」という最近の合意が、ULのみ、またはULとDLの両方についてこれ以上データがない(No more data)ことを意図するか否かは明確ではない。
 ULバッファステータスのみを意図している場合、RAN2は、「BSRが0に等しい」という用語を使用せずに、仕様書において「これ以上データがない(No more data)」をキャプチャする方法を特定する必要がある。
 それが予想されるDL受信も意図している場合、RAN2は、例えば、DLがないケース合(例えば、UL EDTにおけるUDPタイプ)、1つのDLケース(例えば、DL EDTにおけるTCP ACK)、無線リソース(DL TBSによる)およびラウンドトリップ時間(T300-EDTによる)の観点からDL EDT内に収まる一つのDLをどのように識別する方法、などについて議論する必要がある。
 提案1:RAN2は、仕様書において「BSRが暗黙的に0に等しいことを意味する」という合意をどのようにキャプチャするかを明確にすべきである。
 (2.2.フォールバックのシナリオ)
 NW主導のフォールバックシナリオは何度も議論されており、Msg4ではRRC Connection Setup(CP EDT用)又はRRC Connection Resume(UP EDT用)のいずれかで実現されている。NW主導のフォールバックは、例えば、利用可能なDLリソースよりも大きいサイズ及び/又はT300-EDT満了後のデータ到着に起因して、Msg4 DL EDTにおいてDLデータを送信することができないときに実行されることになる。
 考察2:NW主導のフォールバックは、eNB実装及び/又はeNB外部の上位層問題のために常に許可される。
 UE主導のフォールバックシナリオは明示的には議論されていないが、前回のオンラインディスカッションで多少指摘されている。すなわち、一部の会社は、Msg3のEDTの前にMsg1のEDT インディケーションの後に新しいデータが到着すると考え、他の会社の一部は、これがセグメンテーションのサポートに関連するだけであると考える。
 「NAS層は、接続の確立/再開を要求するときにEDTを使用する意思を示す必要はない。EDTを使用するという決定はAS層によって行われる。」という合意事項にともない、EDTインディケーションが送信された後において追加のULデータがASレイヤに送達される可能性がある。特に、複数のアプリケーションをインストールするMTC UEにとってこの可能性がある。
 考察3:UE主導のフォールバックシナリオは、Msg1上のEDTインディケーションとMsg3上のUL EDTの間に別のULデータが到着することによって、検討する価値があり得る。
 UE主導のフォールバックは、Msg1上でEDT指示を送信した後でも、UEがデータなしのMsg3、すなわちレガシーMsg3を送信すると考えられる。しかしながら、問題は、ULリソース割り当てがMsg2上で既に行われている、すなわち、Msg3上のUL EDTに対するより大きいULグラントサイズである。UEがより大きいULグラントサイズでレガシーMsg3を送信したい場合、パディングの問題がこの場合に再び現れる。1つの可能な解決策は、Msg3に対するブラインド復号化オプションが常にレガシーMsg3サイズを許容する、すなわちUL EDTに対する最小TBSが常にレガシーサイズと同じと仮定されることを考慮することができる。レガシーサイズが、約320ビットとする最小TBSで、4つのブラインドオプションに対する追加オプションとして考えられることが望まれる。
 提案2:RAN2は、合意された4つのオプションに加えて、EDT ULグラントがレガシーMsg3サイズのためのブラインド復号化オプションを常に許可すべきかどうかを議論すべきである。
 (2.3.RRC Connectedの支援情報)
 (2.3.1.NCC提供)
 RAN2は、NCCがRRC Connection Releaseによって提供されていない場合、UEはUP EDTを開始しないことに合意した。
 - UEがNCCなしでサスペンドされている場合、UEはEDTを開始してはならない。
 - UEがEDTを使用しているとき、又はUEがRRC CONNECTEDにあるとき、NCCは任意選択でサスペンドととものRRCConnectionReleaseメッセージに提供される。
 NCCがEDT手順内で提供される場合、eNBは、今回使用されるので、UEが次回でEDTを使用する可能性が高いことを知っている。例えば、eNBは、UEがN回NCCを使用しない場合、すなわち、代わりにRRC接続要求を開始する場合、NCCの提供を停止することを決定してもよい。
 しかしながら、UEが接続されている場合(例えば、初めてNCCを提供するとき)、UE能力(UE Capability)が、EDTを使用するというUEのプリファレンス(UE’s preference)を伝えないので、eNBがNCCをこのUEに提供すべきかどうかを決定する方法は依然として不明である。
 考察4:eNBは、NRCがRRC ConnectedのEDT対応UEに提供される必要があるかどうかを知らない可能性がある。
 可能な解決策は次のように考えられる。
 オプション1:eNBは、EDT対応UEを解放するときに常にNCCを提供する。
 オプション2:eNBは、UEのプリファレンス(UE’s preference)に基づいて、UEごとにNCCを提供するかどうかを決定する。
 オプション1は単純で、仕様には影響を与えないが、オプション2はよりスマートな方法である。オプション2は、NWが将来のEDT開始の可能性を確実にすることを可能にし、また、UEがeNBにUEのプリファレンスを通知すること、すなわち、他の様々なプリファレンス表示と同様にすることを可能にする。この意味で、追加のUE支援情報としてEDTプリファレンスインジケーションを導入することが好ましいである。
 提案3:RAN2は、例えば、RRC ConnectedのEDT対応UEにNCCを提供するか否かをeNBが決定するために、UE支援情報にEDTプリファレンスインジケーションを導入すべきである。
(2.3.2.NW最適化)
 EDTの最適な使用は、NWとUEの両方の観点、例えば、キャパシティの増大と電力消費の改善などから有益であるが、EDTの有用性は、NW構成とMTCアプリケーションの挙動の両方に依存する。したがって、NWは、UL EDTに対する最大TBS/ブラインド復号オプション、及び、タイマ(T300-EDT及び競合解決タイマ-EDT)に関し、中期的にNWの構成を変更し、及び/又は長期的に最適化を必要とする可能性がある。
考察5:NW構成の変更/最適化は、EDTの利点を最大化するために必要になる。
 いくつかのNW実装は、例えばRRC ConnectedのUEの挙動を監視することによって、この種のNW最適化のために有効であろう。しかしながら、データサイズ及び上位層のラウンドトリップ時間は、UEに実装されたMTCアプリケーションの要件からのものである。
 考察6:EDTの設定は、MTCアプリケーションの要件に基づくべきである。
 上記の考察を考慮して、UEが意図したアプリケーション、特に、ULデータサイズ、に関してフィードバックを提供すべきかどうかは、NW最適化の一部として考慮されるべきである。UEがRRC IDLEに戻る(例えば、RAIを送信する)前に、UEは、支援情報として、EDTのためのUEの好ましいTBSをeNBに通知する機会を有することができる。そのような支援情報は、上記の提案3で提案されたEDTプリファレンスインジケーションと統合されてもよい。
 提案4:RAN2は、UEが、TBS/タイマ構成最適化のための支援情報、例えば、UEの好ましいTBS及びUEの好ましいT300?EDTを送信することを可能にすることに同意すべきである。
 [相互参照]
 本願は、米国仮出願第62/668889号(2018年5月9日出願)の優先権を主張し、その内容が、参照により、本願明細書に組み込まれている。

Claims (21)

  1.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信するステップAと、
     前記無線端末が、前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出するステップBと、
     前記無線端末が、前記ステップAにおいて受信した前記タイマ値と前記ステップBにおいて導出した前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断するステップCと、を備える
     通信制御方法。
  2.  前記ステップCにおいて、前記無線端末は、前記ステップAにおいて受信した前記タイマ値よりも、前記ステップBにおいて導出した前記予測値が大きい場合に、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始しないと判断する
     請求項1に記載の通信制御方法。
  3.  前記無線端末が、前記ステップCにおいて前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始しないと判断したことに応じて、前記アーリーデータ伝送を伴わない前記ランダムアクセスプロシージャを開始するステップをさらに備える
     請求項1に記載の通信制御方法。
  4.  前記ステップBにおいて、前記無線端末は、
      前記無線端末のアクセス層よりも上位の上位層において用いるアプリケーションの種類及び/又はプロトコルの種類、
      前記無線端末のアクセス層において用いるベアラの種類及び/又は論理チャネルの種類、
      過去の前記所要時間の履歴を用いた統計、
      前記無線端末が前記アーリーデータ伝送により前記基地局に送信する上りリンクユーザデータの量及び/又は前記無線端末が前記アーリーデータ伝送により前記基地局から受信する下りリンクユーザデータの量
     のうち少なくとも1つに基づいて、前記予測値を導出する
     請求項1に記載の通信制御方法。
  5.  前記無線端末が、前記Msg4と共に下りリンクのユーザデータを前記基地局から受信する下りリンクのアーリーデータ伝送を行うか否かを判断するステップをさらに備え、
     前記無線端末は、前記下りリンクのアーリーデータ伝送を行うと判断した場合に限り前記ステップCを行う
     請求項1に記載の通信制御方法。
  6.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送の機能を有する無線端末であって、
     前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信する受信部と、
     前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出する制御部と、を備え、
     前記制御部は、前記タイマ値と前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断する
     無線端末。
  7.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     無線端末が、上りリンクのアーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するステップと、
     前記ランダムアクセスプロシージャにおける下りリンクのアーリーデータ伝送を行わないと前記無線端末が判断した場合に、前記無線端末が、前記下りリンクのアーリーデータ伝送を行わないことを示す通知を前記ランダムアクセスプロシージャ中に基地局に対して行うステップと、を備える
     通信制御方法。
  8.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値として推奨する値を決定するステップと、
     RRCコネクティッドモードにある無線端末が、前記ステップAにおいて決定された推奨タイマ値を示す情報を基地局に送信するステップと、を備える
     通信制御方法。
  9.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     無線端末が、前記アーリーデータ伝送を確率的に規制するための規制信号を基地局から受信するステップAと、
     前記無線端末が、前記ステップAにおいて受信した前記規制信号に基づいて、前記無線端末が前記アーリーデータ伝送を利用可能か否か判断するステップBと、
     前記無線端末が、前記ステップBにおいて前記アーリーデータ伝送を利用可能であると判断したことに応じて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するステップCと、を備える
     通信制御方法。
  10.  前記無線端末が、前記ステップBにおいて前記アーリーデータ伝送を利用可能でないと判断したことに応じて、前記アーリーデータ伝送を伴わない前記ランダムアクセスプロシージャを開始するステップをさらに備える
     請求項9に記載の通信制御方法。
  11.  前記規制信号は、前記アーリーデータ伝送を利用可能とする条件と関連付けられており、
     前記ステップBにおいて、前記無線端末は、前記無線端末が前記条件を満たすことに応じて、前記アーリーデータ伝送を利用可能であると判断する
     請求項9に記載の通信制御方法。
  12.  前記ステップBは、前記無線端末が発生させた乱数及び/又は前記無線端末に関する識別子が前記条件を満たすか否かを判断するステップを含む
     請求項11に記載の通信制御方法。
  13.  前記基地局が、前記基地局における負荷状態に基づいて、前記規制信号を送信するか否かを判断するステップをさらに備える
     請求項9に記載の通信制御方法。
  14.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送の機能を有する無線端末であって、
     前記アーリーデータ伝送を確率的に規制するための規制信号を基地局から受信する受信部と、
     前記規制信号に基づいて、前記無線端末が前記アーリーデータ伝送を利用可能か否か判断する制御部と、を備え、
     前記制御部は、前記アーリーデータ伝送を利用可能であると判断したことに応じて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始する
     無線端末。
  15.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送の機能を有する基地局であって、
     前記アーリーデータ伝送を確率的に規制するための規制信号を無線端末に送信する送信部を備える
     基地局。
  16.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     基地局が、ユーザプレーンのアーリーデータ伝送に必要な情報であって前記ユーザプレーンにおける暗号化に関する処理に用いる暗号情報を無線端末に送信するステップと、
     前記無線端末が、前記暗号情報の受信後、前記アーリーデータ伝送を伴わないランダムアクセスプロシージャを前記基地局に対して行うステップと、
     前記ステップA及び前記ステップBがN回繰り返された場合に、前記基地局が、前記無線端末に対する前記暗号情報の提供を停止するステップと、を備える
     通信制御方法。
  17.  前記基地局が、前記Nの値を示す情報を送信するステップと、
     前記無線端末が、前記Nの値を示す情報を前記基地局から受信するステップと、をさらに備える
     請求項16に記載の通信制御方法。
  18.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     無線端末が、ユーザプレーンのアーリーデータ伝送に必要な情報であって前記ユーザプレーンにおける暗号化に関する処理に用いる暗号情報を基地局から受信していない場合に、制御プレーンのアーリーデータ伝送を開始するステップと、
     前記無線端末が、前記制御プレーンのアーリーデータ伝送において、前記制御プレーンのメッセージに前記ユーザデータを含めて前記基地局に送信するステップと、を備える
     通信制御方法。
  19.  前記無線端末が、前記暗号情報を前記基地局から受信している場合に、前記ユーザプレーンのアーリーデータ伝送を開始するステップをさらに備える
     請求項18に記載の通信制御方法。
  20.  ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
     RRCコネクティッドモードにある無線端末が、前記RRCコネクティッドモードからRRCアイドルモードに遷移した後に前記アーリーデータ伝送を行う意図を有することを示す通知を基地局に送信するステップを備える
     通信制御方法。
  21.  前記基地局が、前記通知に基づいて、ユーザプレーンのアーリーデータ伝送に必要な情報であって前記ユーザプレーンにおける暗号化に関する処理に用いる暗号情報を無線端末に提供するステップをさらに備える
     請求項20に記載の通信制御方法。
     
PCT/JP2019/018522 2018-05-09 2019-05-09 通信制御方法、無線端末、及び基地局 WO2019216370A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020518331A JP6889331B2 (ja) 2018-05-09 2019-05-09 通信制御方法、無線端末、及び基地局
US17/091,381 US11350465B2 (en) 2018-05-09 2020-11-06 Communication control method, radio terminal, and base station
US17/736,337 US11683845B2 (en) 2018-05-09 2022-05-04 Communication control method, radio terminal, apparatus and base station
US18/313,247 US12082267B2 (en) 2018-05-09 2023-05-05 Communication control method, radio terminal, apparatus and base station
US18/742,895 US20240334494A1 (en) 2018-05-09 2024-06-13 Communication control method, radio terminal, apparatus and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862668889P 2018-05-09 2018-05-09
US62/668,889 2018-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/091,381 Continuation US11350465B2 (en) 2018-05-09 2020-11-06 Communication control method, radio terminal, and base station

Publications (1)

Publication Number Publication Date
WO2019216370A1 true WO2019216370A1 (ja) 2019-11-14

Family

ID=68468019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018522 WO2019216370A1 (ja) 2018-05-09 2019-05-09 通信制御方法、無線端末、及び基地局

Country Status (3)

Country Link
US (4) US11350465B2 (ja)
JP (3) JP6889331B2 (ja)
WO (1) WO2019216370A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728420B (zh) * 2018-08-07 2021-05-21 財團法人資訊工業策進會 在隨機存取程序進行提早資料傳輸的基地台與使用者設備
CN111447644A (zh) * 2019-01-17 2020-07-24 北京三星通信技术研究有限公司 用户设备以及上行数据传输方法
US11202198B1 (en) * 2020-12-04 2021-12-14 Ultralogic 5G, Llc Managed database of recipient addresses for fast 5G message delivery
CN114245441B (zh) * 2021-12-28 2024-04-23 天翼物联科技有限公司 同时满足物用及人用场景的5g组网方法以及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528985A (ja) * 2010-04-16 2013-07-11 ゼットティーイー コーポレイション ネットワークにアクセスするためのマシン型通信装置を制御する方法及びシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9215731B2 (en) 2007-12-19 2015-12-15 Qualcomm Incorporated Method and apparatus for transfer of a message on a common control channel for random access in a wireless communication network
US20120254890A1 (en) 2011-04-01 2012-10-04 Renesas Mobile Corporation Small Data Transmission For Detached Mobile Devices
US10009926B2 (en) 2014-07-11 2018-06-26 Qualcomm Incorporated Methods and apparatus for connectionless access
US10299244B2 (en) 2015-06-19 2019-05-21 Qualcomm Incorporated Small data transmission in a wireless communications system
US20170099660A1 (en) 2015-10-01 2017-04-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink data
US20200322923A1 (en) * 2016-03-31 2020-10-08 Ntt Docomo, Inc. User equipment and transmission method
EP3498035B1 (en) * 2016-08-10 2023-12-13 InterDigital Patent Holdings, Inc. Light connectivity and autonomous mobility
WO2018062957A1 (ko) 2016-09-29 2018-04-05 삼성전자 주식회사 Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치
KR102310719B1 (ko) * 2017-03-20 2021-10-08 삼성전자 주식회사 차세대 이동통신에서 대기 모드 동작을 효과적으로 하는 방법 및 장치
US20180324854A1 (en) 2017-05-04 2018-11-08 Qualcomm Incorporated Uplink small data transmission for enhanced machine-type-communication (emtc) and internet of things (iot) communication
WO2018201483A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 数据传输的方法、终端设备和接入网设备
CN110012557A (zh) * 2018-01-05 2019-07-12 夏普株式会社 无线通信设备和方法
CN110351833B (zh) * 2018-04-02 2024-02-20 夏普株式会社 用户设备执行的方法、基站执行的方法、用户设备和基站
WO2019217829A1 (en) * 2018-05-10 2019-11-14 Convida Wireless, Llc Small data transmission with non-orthogonal multiple access

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528985A (ja) * 2010-04-16 2013-07-11 ゼットティーイー コーポレイション ネットワークにアクセスするためのマシン型通信装置を制御する方法及びシステム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Details on PRACH partitioning for EDT", 3GPP TSG RAN WG2#101 R2-1803078, 16 February 2018 (2018-02-16), XP051400382 *
HUAWEI: "Report of the Email discussion [101#57][NB-IoT/MTC R15] EDT remaining issues", 3GPP TSG RAN WG2#101BIS R2-1805078, 5 April 2018 (2018-04-05), XP051414947 *
HUAWEI; HISILICON: "Early DL data transmission", 3GPP TSG RAN WG2#101 R2-1802222, 15 February 2018 (2018-02-15), XP051399419 *
INTEL CORPORATION: "[101#58][NB-IoT/MTC R15] EDT security issues", 3 GPP TSG RAN WG2#101BIS R2-1804899, 6 April 2018 (2018-04-06), XP051415715 *
LG ELECTRONICS: "Data transmission during random access procedure in NB-IoT", 3GPP TSG RAN WGL#92B R1-1804522, 7 April 2018 (2018-04-07), XP051413945 *

Also Published As

Publication number Publication date
US20210058973A1 (en) 2021-02-25
US20230276507A1 (en) 2023-08-31
JP2023120313A (ja) 2023-08-29
JP2021132399A (ja) 2021-09-09
JPWO2019216370A1 (ja) 2021-02-12
US11683845B2 (en) 2023-06-20
JP6889331B2 (ja) 2021-06-18
US12082267B2 (en) 2024-09-03
JP7297811B2 (ja) 2023-06-26
US20220264655A1 (en) 2022-08-18
US11350465B2 (en) 2022-05-31
US20240334494A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
US11716754B2 (en) Communication control method, user equipment, and apparatus for performing early data transmission
US11350445B2 (en) Communication control method for controlling a user equipment to perform early data transmission
US11706814B2 (en) Communications device, infrastructure equipment and methods
JP5719058B2 (ja) Macpduを送信する方法
JP7297811B2 (ja) 通信制御方法、無線端末、及び基地局
US10021039B2 (en) Mobile communication system and user terminal
WO2018173805A1 (ja) 通信制御方法及び無線端末
US11617209B2 (en) Timer control in early data transmission
KR101845558B1 (ko) 무선 통신 시스템에서의 그룹 페이징 방법 및 장치와 이를 이용한 랜덤 액세스 수행 방법 및 장치
US10973080B2 (en) Radio terminal, processor, and base station
US20230379126A1 (en) Method, device, and system for small data transmission in wireless networks
CN116058045A (zh) 控制ue的缓冲器中的用于小数据传输的用户数据的指示

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800675

Country of ref document: EP

Kind code of ref document: A1