JPWO2019216370A1 - 通信制御方法、無線端末、及び基地局 - Google Patents

通信制御方法、無線端末、及び基地局 Download PDF

Info

Publication number
JPWO2019216370A1
JPWO2019216370A1 JP2020518331A JP2020518331A JPWO2019216370A1 JP WO2019216370 A1 JPWO2019216370 A1 JP WO2019216370A1 JP 2020518331 A JP2020518331 A JP 2020518331A JP 2020518331 A JP2020518331 A JP 2020518331A JP WO2019216370 A1 JPWO2019216370 A1 JP WO2019216370A1
Authority
JP
Japan
Prior art keywords
wireless terminal
data transmission
random access
access procedure
early data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020518331A
Other languages
English (en)
Other versions
JP6889331B2 (ja
Inventor
真人 藤代
真人 藤代
ヘンリー チャン
ヘンリー チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2019216370A1 publication Critical patent/JPWO2019216370A1/ja
Priority to JP2021085017A priority Critical patent/JP7297811B2/ja
Application granted granted Critical
Publication of JP6889331B2 publication Critical patent/JP6889331B2/ja
Priority to JP2023098142A priority patent/JP2023120313A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る通信制御方法は、ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための方法である。前記通信制御方法は、無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信するステップAと、前記無線端末が、前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出するステップBと、前記無線端末が、前記ステップAにおいて受信した前記タイマ値と前記ステップBにおいて導出した前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断するステップCと、を備える。

Description

本発明は、移動通信システムにおける通信制御方法、無線端末、及び基地局に関する。
近年、人が介在することなく通信を行うMTC(Machine Type Communication)及びIoT(Internet of Things)サービスを対象とした無線端末が注目されている。このような無線端末は、低コスト化、カバレッジ拡張、及び低消費電力化を実現することが求められる。このため、3GPP(3rd Generation Partnership Project)において、システム送受信帯域の一部のみに送受信帯域幅を制限した新たな無線端末のカテゴリが仕様化されている。
MTCやIoTを対象とした無線端末は、一般的な無線端末に比べて、送受信すべきデータの量が少なく、データの送受信を行う頻度も少ない。よって、MTCやIoTを対象とした無線端末が効率的に通信を行うために、ランダムアクセスプロシージャ中に所定メッセージを利用してユーザデータを送信するアーリーデータ伝送(early data transmission)が検討されている。
しかしながら、現状の移動通信システムはランダムアクセスプロシージャ中にユーザデータを送信することを想定しておらず、アーリーデータ伝送を実現可能とする仕組みが存在しない。
一実施形態に係る通信制御方法は、ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための方法である。前記通信制御方法は、無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信するステップAと、前記無線端末が、前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出するステップBと、前記無線端末が、前記ステップAにおいて受信した前記タイマ値と前記ステップBにおいて導出した前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断するステップCと、を備える。
一実施形態に係る通信制御方法は、ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための方法である。前記通信制御方法は、無線端末が、前記アーリーデータ伝送を確率的に規制するための規制信号を基地局から受信するステップAと、前記無線端末が、前記ステップAにおいて受信した前記規制信号に基づいて、前記無線端末が前記アーリーデータ伝送を利用可能か否か判断するステップBと、前記無線端末が、前記ステップBにおいて前記アーリーデータ伝送を利用可能であると判断したことに応じて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するステップCと、を備える。
実施形態に係るLTEシステム(移動通信システム)の構成を示す図である。 実施形態に係るUE(無線端末)の構成を示す図である。 実施形態に係るeNB(基地局)の構成を示す図である。 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 実施形態に係るLTEシステムの無線フレームの構成を示す図である。 eMTC UE及びNB−IoT UEが取り扱う周波数チャネルの一例を示す図である。 eMTC UE及びNB−IoT UE向けのランダムアクセスプロシージャの一例を示す図である。 第1実施形態に係るUEの動作の一例を示す図である。 第2実施形態に係るUEの動作の一例を示す図である。
一実施形態に係る移動通信システムについて図面を参照しながら説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
[第1実施形態]
(移動通信システム)
本実施形態に係る移動通信システムの構成について説明する。図1は、本実施形態に係る移動通信システムであるLTE(Long Term Evolution)システムの構成を示す図である。LTEシステムは、3GPP規格に基づく移動通信システムである。
LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E−UTRAN:Evolved−UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。
UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200との無線通信を行う。
E−UTRAN10は、基地局(eNB:evolved Node−B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理する。eNB200は、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、適宜「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S−GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。MMEは、NAS(Non−Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するトラッキングエリア(TA)の情報を管理する。トラッキングエリアは、複数のセルからなるエリアである。S−GWは、データの転送制御を行う。MME及びS−GWは、S1インターフェイスを介してeNB200と接続される。
図2は、UE100(無線端末)の構成を示す図である。UE100は、受信部110、送信部120、及び制御部130を備える。
受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
図3は、eNB200(基地局)の構成を示す図である。eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
制御部230は、eNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続される。バックホール通信部240は、S1インターフェイスを介してMME/S−GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
図4は、LTEシステムにおける無線インターフェイスのプロトコルスタックの構成を示す図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1レイヤ乃至第3レイヤに区分されている。第1レイヤは物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、及びRRCレイヤは、AS(Access Stratum)レイヤを構成する。
PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとeNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。eNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
RRCレイヤは、制御情報を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードである。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドルモードである。
RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとMME300CのNASレイヤとの間では、NASシグナリングが伝送される。UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等の機能を有する。
図5は、LTEシステムにおいて用いられる無線フレームの構成を示す図である。無線フレームは、時間軸上で10個のサブフレームで構成される。各サブフレームは、時間軸上で2個のスロットで構成される。各サブフレームの長さは1msである。各スロットの長さは0.5msである。各サブフレームは、周波数軸上で複数個のリソースブロック(RB)を含む。各サブフレームは、時間軸上で複数個のシンボルを含む。各リソースブロックは、周波数軸上で複数個のサブキャリアを含む。具体的には、12個のサブキャリア及び1つのスロットにより1つのRBが構成される。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御情報を伝送するための物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)として用いられる領域である。各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)として用いることができる領域である。
上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御情報を伝送するための物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)として用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)として用いることができる領域である。
(eMTC及びNB−IoTの概要)
eMTC及びNB−IoTの概要について説明する。本実施形態において、MTC及びIoTサービスを対象とした新たなカテゴリのUE100が存在するシナリオを想定する。新たなカテゴリのUE100は、システム送受信帯域(LTE送受信帯域幅)の一部のみに送受信帯域幅が制限されるUE100である。新たなUEカテゴリは、例えば、カテゴリM1及びカテゴリNB(Narrow Band)−IoTと称される。カテゴリM1は、eMTC(enhanced Machine Type Communications)UEが属するカテゴリである。カテゴリNB−IoT(カテゴリNB1)は、NB−IoT UEが属するカテゴリである。カテゴリM1は、UE100(eMTC UE)の送受信帯域幅を例えば1.08MHz(すなわち、6リソースブロックの帯域幅)に制限する。カテゴリNB−IoT(カテゴリNB1)は、UE100(NB−IoT UE)の送受信帯域幅を180kHz(すなわち、1リソースブロックの帯域幅)にさらに制限する。このような狭帯域化により、eMTC UE及びNB−IoT UEに要求される低コスト化及び低消費電力化が実現可能となる。
図6は、eMTC UE及びNB−IoT UEが取り扱う周波数チャネルを示す図である。図6に示すように、LTEシステムのシステム周波数帯域の周波数帯域幅は10MHzであり得る。システム送受信帯域の帯域幅は、例えば、50リソースブロック=9MHzである。eMTC UEが対応可能な周波数チャネルの帯域幅は、6リソースブロック=1.08MHz以内である。eMTC UEが対応可能な6リソースブロック以内の周波数チャネルは、「狭帯域(NB:Narrow Band)」と称される。NB−IoT UEが対応可能な周波数チャネルの帯域幅は、1リソースブロック=180kHzである。NB−IoT UEが対応可能な1リソースブロックの周波数チャネルは、「キャリア(carrier)」と称される。
eMTC UEは、LTE送受信帯域幅内で運用される。NB−IoT UEは、LTE送受信帯域幅内で運用される形態、LTE送受信帯域幅外のガードバンドで運用される形態、及びNB−IoT専用の周波数帯域内で運用される形態をサポートする。
eMTC UE及びNB−IoT UEは、カバレッジ拡張を実現するために、繰り返し送信等を用いた強化カバレッジ(EC:Enhanced Coverage)機能をサポートする。強化カバレッジ機能は、複数のサブフレームを用いて同一信号を繰り返し送信する繰り返し送信(repetition)を含んでもよい。繰り返し送信の回数が多いほど、カバレッジを拡張することができる。強化カバレッジ機能は、送信信号の電力密度を上げる電力ブースト(power boosting)を含んでもよい。一例として、送信信号の周波数帯域幅を狭くする狭帯域送信により電力密度を上げる。送信信号の電力密度を上げるほど、カバレッジを拡張することができる。強化カバレッジ機能は、送信信号に用いるMCSを下げる低MCS(lower MCS)送信を含んでもよい。データレートが低く、誤り耐性の高いMCSを用いて送信を行うことにより、カバレッジを拡張することができる。
(ランダムアクセスプロシージャの概要)
図7は、eMTC UE及びNB−IoT UE向けのランダムアクセスプロシージャを示す図である。初期状態において、UE100は、RRCアイドルモードにある。UE100は、RRCコネクティッドモードに遷移するためにランダムアクセスプロシージャを実行する。このようなケースは、初期接続(Initial access from RRC_IDLE)と称される。初期接続時には、競合ベース(contention based)のランダムアクセスプロシージャが適用される。
UE100は、eNB200のセルをサービングセルとして選択している。UE100は、通常のカバレッジのための第1のセル選択基準(第1のS−criteria)が満たされず、強化カバレッジのための第2のセル選択基準(第2のS−criteria)が満たされた場合、自身が強化カバレッジに居ると判断してもよい。「強化カバレッジに居るUE」とは、セルにアクセスするために強化カバレッジ機能(強化カバレッジモード)を用いることが必要とされるUEを意味する。なお、eMTC UEは、強化カバレッジモードを用いることが必須である。ここでは、UE100が強化カバレッジに居ると仮定して説明を進める。
ステップS1001において、eNB200は、PRACH(Physical Random Access Channel)関連情報をブロードキャストシグナリング(例えば、SIB)により送信する。PRACH関連情報は、強化カバレッジレベルごとに設けられた各種のパラメータを含む。一例として、強化カバレッジレベルは、強化カバレッジレベル0乃至3の合計4つのレベルが規定される。各種のパラメータは、RSRP(Reference Signal Received Power)閾値、PRACHリソース、及び最大プリアンブル送信回数を含む。PRACHリソースは、無線リソース(時間・周波数リソース)及び信号系列(プリアンブル系列)を含む。UE100は、受信したPRACH関連情報を記憶する。
ステップS1002において、UE100は、eNB200から送信される参照信号に基づいてRSRPを測定する。
ステップS1003において、UE100は、測定したRSRPを強化カバレッジレベルごとのRSRP閾値と比較することにより、自身の強化カバレッジレベル(CEレベル)を決定する。強化カバレッジレベルは、UE100に必要とされる強化カバレッジの度合いを示す。強化カバレッジレベルは、少なくとも繰り返し送信における送信回数(すなわち、Repetition回数)と関連する。
ステップS1004において、UE100は、自身の強化カバレッジレベルに対応するPRACHリソースを選択する。
ステップS1005〜S1008は、ランダムアクセスプロシージャを構成する。ステップS1005において、UE100は、選択したPRACHリソースを用いてMsg1(ランダムアクセスプリアンブル)をeNB200に送信する。なお、「Msg」は、メッセージの略である。eNB200は、受信したMsg1に用いられたPRACHリソースに基づいて、UE100の強化カバレッジレベルを特定する。
ステップS1006において、eNB200は、UE100に割り当てたPUSCHリソースを示すスケジューリング情報を含むMsg2(ランダムアクセス応答)をUE100に送信する。UE100は、Msg2を正常に受信するまで、自身の強化カバレッジレベルに対応する最大プリアンブル送信回数までMsg1を複数回送信し得る。
ステップS1007において、UE100は、スケジューリング情報に基づいて、Msg3をeNB200に送信する。Msg3は、RRC接続要求(RRC Connection Request)メッセージであってもよい。
ステップS1008において、eNB200は、Msg4をUE100に送信する。Msg4は、RRC接続確立(RRC Connection Setup)メッセージであってもよい。
ステップS1009において、UE100は、Msg4の受信に応じてRRCコネクティッドモードに遷移する。その際、UE100は、Msg 5:RRC接続確立完了(RRC Connection Setup Complete)メッセージをeNB200に送信してもよい。その後、eNB200は、特定した強化カバレッジレベルに基づいて、UE100への繰り返し送信等を制御する。
(アーリーデータ伝送の概要)
eMTC UEやNB−IoT UEは、送受信すべきデータの量が少なく、データの送受信を行う頻度も少ない。本実施形態において、eMTC UEやNB−IoT UEが、ランダムアクセスプロシージャ中に所定メッセージを利用してユーザデータを送受信するアーリーデータ伝送(EDT:Early Data Transmission)を行う一例について説明する。
EDTは、ランダムアクセスプロシージャにおけるMsg3を利用して上りリンクデータを送受信する上りリンクのEDTと、ランダムアクセスプロシージャにおけるMsg4を利用して下りリンクデータを送受信する下りリンクのEDTとを含む。具体的には、1つのランダムアクセスプロシージャにおいて、上りリンクのEDT及び下りリンクのEDTの両方が行われる場合と、上りリンクのEDTのみが行われる場合と、下りリンクのEDTのみが行われる場合とがある。
EDTには、UP(User Plane)ソリューション及びCP(Control Plane)ソリューションの2種類がある。UPソリューションでは、EDTにおいて、ユーザデータをRRCメッセージに含めずに、MACレイヤにおいてユーザデータ(DTCH)とRRCメッセージ(CCCH)とを1つのMAC PDUに多重化して送信する。一方で、CPソリューションでは、EDTにおいて、ユーザデータをRRCメッセージに含める。
UPソリューションは、UE100がRRCアイドルモードのサブ状態であるサスペンド状態である場合に適用される。サスペンド状態は、UE100のコンテキスト情報がeNB200において維持される、RRCアイドルモードのサブ状態である。UPソリューションでは、Msg3を構成するRRCメッセージがRRC Connection Resume Requestメッセージであり、Msg4を構成するRRCメッセージが基本的にはRRC Connection Releaseメッセージ又はRRC Connection Rejectメッセージである。UE100は、RRC Connection Releaseメッセージを受信すると、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了する。但し、Msg4を構成するRRCメッセージがRRC Connection Resumeメッセージであり得る。UE100は、RRC Connection Resumeメッセージを受信すると、RRCコネクティッドモードに遷移し、RRCコネクティッドモードにおいてユーザデータを送受信する。
CPソリューションは、UE100がRRCアイドルモードであってサスペンド状態ではない場合に適用される。CPソリューションでは、Msg3を構成するRRCメッセージがEarly Data Requestメッセージであり、Msg4を構成するRRCメッセージが基本的にはEarly Data Completeメッセージである。UE100は、Early Data Completeメッセージを受信すると、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了する。但し、Msg4を構成するRRCメッセージがRRC Connection Setupメッセージであり得る。UE100は、RRC Connection Setupメッセージを受信すると、RRCコネクティッドモードに遷移し、RRCコネクティッドモードにおいてユーザデータを送受信する。
(第1実施形態に係る動作)
EDTにおいて、UE100は、Msg3を利用して上りリンクデータを送信した後、Msg4を利用して下りリンクデータを受信し、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了し得る。これにより、UE100は、RRCコネクティッドモードに遷移することなくユーザデータの送受信を行うことができるため、UE100の消費電力を削減できる。
しかしながら、Msg4を利用して下りリンクのEDTを行う場合、eNB200は、下りリンクデータをコアネットワーク側から受信するまではMsg4をUE100に送信できない。その結果、UE100においてMsg4の最大受信待ち時間を規定するタイマが満了し、UE100がランダムアクセスプロシージャ失敗と判断し得る。UE100は、ランダムアクセスプロシージャ失敗と判断した場合には、ランダムアクセスプロシージャを最初からやり直す。かかる場合、UE100の消費電力が増加する。
Msg4の最大受信待ち時間を規定するタイマは、UE100のRRCレイヤにおいて管理されるT300であってもよいし、UE100のMACレイヤにおいて管理するコンテンションリゾリューションタイマであってもよい。本実施形態において、かかるタイマがT300である一例について説明するが、かかるタイマがコンテンションレゾリューションタイマであってもよい。
UE100は、Msg3の送信時にT300を開始させる。T300の値(タイマ値)は、eNB200からSIBによりUE100に設定される。UE100は、自身宛のMsg4を受信することなくT300が満了すると、ランダムアクセスプロシージャ失敗と判断する。
第1実施形態において、UE100は、ランダムアクセスプロシージャを開始するよりも前において、UE100がMsg3を送信してからMsg4と共にユーザデータを受信するまでの所要時間の予測値を導出する。具体的には、UE100は、下りリンクのEDTを行ったと仮定した場合に、Msg3を送信してからMsg4を受信するまでにどの程度の時間(所要時間)を要するかを判断する。
UE100は、eNB200から受信したT300のタイマ値と、導出した予測値とに基づいて、EDT(具体的には、下りリンクのEDT)を伴うランダムアクセスプロシージャを開始するか否かを判断する。例えば、UE100は、eNB200から受信したT300のタイマ値よりも、導出した予測値が大きい場合には、EDTを伴うランダムアクセスプロシージャを開始しないと判断する。これにより、UE100が自身宛のMsg4を受信することなくT300が満了する可能性を低減できるため、UE100の消費電力の増大を抑制できる。
図8は、第1実施形態に係るUE100の動作の一例を示す図である。
図8に示すように、ステップS101において、RRCアイドルモードにあるUE100は、下記の1)〜3)の情報をeNB200からSIBにより受信する。または、UE100は、RRCアイドルモードになる前のRRCコネクティッドモードにおいて、下記の1)〜3)の情報をeNB200からRRCメッセージにより受信し、それをRRCアイドルモードに遷移した後も保持しておいてもよい。
1)PRACHリソース情報:
eNB200のセルにおいて利用可能なPRACHリソースのうち一部がEDTインディケーション用のPRACHリソースとして確保される。例えば、eNB200のセルにおいてPRACHリソースとして利用可能な時間・周波数リソースのうち一部がEDTインディケーション用の時間・周波数リソースとして確保される。eNB200は、EDTインディケーション用のPRACHリソース(時間・周波数リソース)を示す情報をSIBによりブロードキャストする。UE100は、EDTインディケーション用のPRACHリソースが提供されている場合に、EDTを利用可能であると判断する。一方、UE100は、EDTインディケーション用のPRACHリソースが提供されていない場合に、EDTを利用不能であると判断する。ここでは、EDTインディケーション用のPRACHリソースが提供されていると仮定して説明を進める。
2)EDTにおけるユーザデータの最大トランスポートブロックサイズ:
eNB200は、上りリンクのEDTにおいてUE100が送信可能な最大上りリンクデータ量(最大トランスポートブロックサイズ)を示す情報をSIBによりブロードキャストする。eNB200は、下りリンクのEDTにおいてUE100が送信可能な最大下りリンクデータ量(最大トランスポートブロックサイズ)を示す情報をSIBによりブロードキャストしてもよい。
3)T300の設定値(タイマ値):
T300の値(タイマ値)は、eNB200からSIBによりUE100に設定される。eNB200は、EDTを伴わないランダムアクセスプロシージャ用のT300のタイマ値(以下、「第1のタイマ値」という)と、EDTを伴うランダムアクセスプロシージャ用のT300のタイマ値(以下、「第2のタイマ値」という)とを別々にUE100に設定する。
ステップS102において、UE100は、ランダムアクセスプロシージャの開始トリガを検知する。例えば、UE100は、送信すべき上りリンクデータがUE100において発生したこと、又はUE100がページングメッセージを受信したこと等に応じて、ランダムアクセスプロシージャを開始すると判断する。なお、ステップS102の処理は、ステップS101の前に行われてもよい。なお、ステップS102の処理をステップS101の処理よりも前に行う場合には、UE100は、ランダムアクセスプロシージャの開始トリガを検知した後に、上記の1)〜3)の情報をeNB200からSIBにより受信するまでステップS103の処理の開始を待ってもよい。
ステップS103において、UE100は、自身がeNB200に送信しようとする上りリンクデータ量が最大上りリンクデータ量以下であるか否かを判断する。UE100は、自身がeNB200から受信しようとする下りリンクデータ量が最大下りリンクデータ量以下であるか否かを判断してもよい。ステップS103において「NO」である場合、ステップS108において、UE100は、EDTを伴わないランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信しない。なお、ステップS103において「NO」である場合であっても、下りリンクのEDTのみを実行する可能性があるため、ステップS104に進んでもよい。
ステップS103において「YES」である場合、ステップS104において、UE100は、下りリンクのEDTを行うか否かを判断する。例えば、UE100は、Msg3送信時に、ACKを必要としない上りリンクユーザデータ(UDPデータ等)を送信する場合には、下りリンクのEDTを行わないと判断する。UE100は、Msg3送信時に、ACKを必要とする上りリンクユーザデータ(TCPデータ等)を送信する場合には、下りリンクのEDTを行うと判断する。ステップS104において「NO」である場合には、ステップS105及びS106の処理が省略されてステップS107の処理に進む。例えば、UE100は、UDPでの送信を行うことや、アプリケーションの種別に基づいて、上りリンクのEDTに対するサーバからのレスポンス(ACK等の下りリンクデータ)が無いと予想した場合に、下りリンクのEDTを行わないと判断し、ステップS107において上りリンクのEDTを行う。なお、UE100は、上りリンクのEDTに対するサーバからのレスポンスが無いと予想した場合には、Msg3送信時にEDTを伴うランダムアクセスプロシージャ用のT300の開始をしなくてもよい。
ステップS104において「YES」である場合、ステップS105において、UE100は、Msg3を送信してから、Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出する。具体的には、UE100は、下りリンクのEDTを行ったと仮定した場合に、Msg3を送信してからMsg4を受信するまでにどの程度の時間(所要時間)を要するかを判断する。例えば、UE100は、下記のa)〜d)の少なくとも1つに基づいて、かかる所要時間の予測値を導出する。
a)UE100のアクセス層よりも上位の上位層において用いるアプリケーションの種類及び/又はプロトコルの種類:
例えば、UE100は、アプリケーションの要求QoSが高い場合(すなわち、低遅延の場合)は応答(Msg4)が速い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所用時間)が短い)、アプリケーションの要求QoSが低い(すなわち、高遅延)の場合は応答(Msg4)が遅い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所要時間)が長い)と判断してもよい。或いは、アプリケーションの種類及び/又はプロトコルの種類に対応する所要時間の予測値が予めUE100に設定されており、かかる事前設定された所要時間の予測値を取得してもよい。かかる処理は、UE100のASレイヤ(具体的には、RRCレイヤ以下のレイヤ)において行われてもよいし、UE100の上位レイヤ(具体的には、RRCよりも上のレイヤ)において行われてもよい。
b)UE100のアクセス層(ASレイヤ)において用いるベアラの種類及び/又は論理チャネルの種類:
例えば、UE100は、ベアラの種類及び/又は論理チャネルの種類に対応する所要時間の予測値(すなわち、Msg3を送信してからMsg4を受信するまでにかかる時間(所用時間)の予測値)が予めUE100に設定されており、かかる事前設定された所用時間の予測値を取得する。かかる判断は、UE100のASレイヤにおいて行われてもよい。なお、ベアラは要求QoSと関連付けられており、論理チャネルはベアラと関連付けられている。
c)過去の所要時間の履歴を用いた統計:
UE100は、過去の所要時間(具体的には、Msg3を送信してから、Msg4と共にユーザデータを受信するまでに実際に掛かった時間)の履歴を記憶し、この履歴に対する統計処理を行うことにより、今回の所要時間の予測値を算出する。かかる判断は、UE100のASレイヤにおいて行われてもよい。
d)UE100がEDTによりeNB200に送信する上りリンクユーザデータの量及び/又はUE100がEDTによりeNB200から受信する下りリンクユーザデータの量:
例えば、上りリンクのユーザデータ量に応じてサーバ側の処理時間が変わるため、UE100は、上りリンクのユーザデータ量が多いほど応答(Msg4)が遅い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所用時間)が長い)と判断してもよい。或いは、UE100のASレイヤは、上りリンクのユーザデータ量に応じてアプリケーションを推測し、上記a)と同様な処理を行ってもよい。UE100は、下りリンクのユーザデータ量が多いほど応答(Msg4)が遅い(すなわち、UE100がMsg3をeNB200へ送信してからeNB200から応答(Msg4)を受信するまでに掛かる時間(所用時間)が長い)と判断してもよい。
ステップS106において、UE100は、ステップS105において導出した所用時間の予測値が、ステップS101において受信したタイマ値(第2のタイマ値)以下であるか否かを判断する。
ステップS106において「YES」である場合、ステップS107において、UE100は、EDT(少なくとも下りリンクのEDT)を伴うランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信する。なお、ステップS104において、下りリンクのEDTを行わないとUE100が判断した場合、UE100は、下りリンクのEDTを行わない旨をMsg3又はMsg1送信時にeNB200に通知してもよい。これにより、eNB200は、Msg4を素早く送信することができるため、処理の遅延による負荷増大を防ぐことができると共に、UE100は、待ち受け消費電力を最小化することができる。下りリンクのEDTを行わない旨の情報は、RRCメッセージに含められるフラグ(例えば、「no DL data expected」など)であってもよいし、MAC CE(Control Element)におけるMACサブヘッダで当該情報を伝えてもよい。
ステップS106において「NO」である場合、ステップS108において、UE100は、EDTを伴わないランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信しない。
(第1実施形態のまとめ)
上述した第1実施形態に係る動作は、以下のように要約できる。
ランダムアクセスプロシージャ中にユーザデータの送受信を行うEDTを制御するための通信制御方法は、UE100が、ランダムアクセスプロシージャ中にUE100がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値をeNB200から受信するステップA(ステップS101)と、UE100が、UE100がMsg3を送信してからMsg4を受信するまでの所要時間の予測値を導出するステップB(ステップS105)と、UE100が、ステップAにおいて受信したタイマ値とステップBにおいて導出した予測値とに基づいて、EDTを伴うランダムアクセスプロシージャを開始するか否かを判断するステップC(ステップS106)と、を備える。
ステップCにおいて、UE100は、ステップAにおいて受信したタイマ値よりも、ステップBにおいて導出した予測値が大きい場合(ステップS106:NO)に、EDTを伴うランダムアクセスプロシージャを開始しないと判断する。
UE100は、ステップCにおいてEDTを伴うランダムアクセスプロシージャを開始しないと判断したことに応じて、EDTを伴わないランダムアクセスプロシージャを開始する(ステップS108)。
ステップBにおいて、UE100は、a)UE100のアクセス層よりも上位の上位層において用いるアプリケーションの種類及び/又はプロトコルの種類、b)UE100のアクセス層において用いるベアラの種類及び/又は論理チャネルの種類、c)過去の前記所要時間の履歴を用いた統計、d)UE100がEDTによりeNB200に送信する上りリンクユーザデータの量及び/又はUE100がEDTによりeNB200から受信する下りリンクユーザデータの量、のうち少なくとも1つに基づいて、予測値を導出する。
UE100は、Msg4と共に下りリンクのユーザデータをeNB200から受信する下りリンクのEDTを行うか否かを判断する(ステップS104)。UE100は、下りリンクのEDTを行うと判断した場合(ステップS104:YES)に限りステップCを行う。
[第1実施形態の変更例1]
上述した第1実施形態において、下りリンクのEDTを行わないとUE100が判断した場合に、UE100が、下りリンクのEDTを行わない旨をeNB200に通知する一例について説明した。本変更例において、かかる動作の詳細について説明する。
具体的には、UE100は、上りリンクのEDTを伴うランダムアクセスプロシージャを開始する。かかるランダムアクセスプロシージャにおいて下りリンクのEDTを行わないとUE100が判断した場合には、UE100は、下りリンクのEDTを行わないことを示す通知をランダムアクセスプロシージャ中にeNB200に対して行う。
ここで、「下りリンクのEDTを行わない」とは、上りリンクのEDTにおいて送信されたデータに対する上位レイヤの応答が無いことを意味する。なお、上位レイヤとは、RRCレイヤよりも上位のレイヤを意味する。UE100は、上りリンクのEDTにおいてUDP送信を行う場合(つまり、TCP ACKが無い場合)、下りリンクのEDTを行わないと判断してもよい。UE100は、上位レイヤの応答が無いと上位レイヤ(例えばアプリケーションレイヤ)から知らされた場合に、下りリンクのEDTを行わないと判断してもよい。UE100は、過去のアプリケーションレイヤの挙動(データ送受信履歴等)に基づいて(ASレイヤ又はNASレイヤにて)応答が無いと判断された場合に、下りリンクのEDTを行わないと判断してもよい。
UE100は、下りリンクのEDTを行わないことを示す通知をMsg3により行ってもよい。UE100は、Msg3送信時にeNB200に送信するバッファ状態報告(BSR)として、利用可能な上りリンクデータがゼロであることを示すBSR(BSR=0)を送信してもよい。eNB200は、かかるBSRを、UE100が下りリンクのEDTを行わないことを示す通知と解釈する。或いは、UE100は、下りリンクのEDTを行わないことをMAC CEでeNB200に通知してもよいし、MAC subheaderのみ(MAC CE部無し)で通知してもよい。或いは、UE100は、Msg3を構成するRRCメッセージ(RRC Connection Request/Resume Request)に、下りリンクのEDTを行わないことを示すフラグを追加することによりeNB200に通知してもよい。
UE100は、下りリンクのEDTを行わないことを示す通知をMsg1により行ってもよい。例えば、UE100は、上りリンクのみのEDTを通知するために確保されているPRACHリソースを用いてランダムアクセスプリアンブル(EDTインディケーション)を送信する。
このように、UE100が、下りリンクのEDTを行わないことをeNB200に通知することにより、上述したように、eNB200は、UE100を迅速にリリースすることができる。これにより、eNB200は、リソース(eNBの計算処理リソース、無線リソース)を早期に解放できる。また、UE100は、消費電力を最小限に抑えることができる(待ち受けに伴う消費電力を最小化できる)。
[第1実施形態の変更例2]
上述した第1実施形態において、UE100は、Msg3を送信してからMsg4と共にユーザデータを受信するまでの所要時間の予測値を導出し、eNB200から受信したT300のタイマ値と、導出した予測値とに基づいて、EDT(具体的には、下りリンクのEDT)を伴うランダムアクセスプロシージャを開始するか否かを判断していた。ここで、eNB200から設定されるT300のタイマ値が基本的に固定であることを想定している。
しかしながら、eNB200が設定するT300のタイマ値が短すぎる可能性がある。一方で、eNB200が設定するT300のタイマ値が長すぎると、ランダムアクセス失敗の判定を適切に行うことができない懸念がある。そこで、本変更例では、UE100がeNB200に情報を提供することにより、eNB200がT300のタイマ値を適切に設定可能とする。
本変更例において、UE100は、ランダムアクセスプロシージャ中にUE100がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値として推奨する値(推奨タイマ値)を決定する。タイマ値とは、EDT用のT300の値である。或いは、タイマ値は、コンテンションレゾリューションタイマのタイマ値であってもよい。UE100は、上述した第1実施形態と同様な予測に基づいて推奨タイマ値を決定してもよいし、過去の実績(履歴)に基づいて推奨タイマ値を決定してもよい。
そして、UE100は、自身がRRCコネクティッドモードにある間に、推奨タイマ値を示す情報をeNB200に送信する。UE100は、例えば、eNB200に送信するRRCメッセージに推奨タイマ値を含める。eNB200は、複数のUE100から推奨タイマ値を収集し、収集した推奨タイマ値に対して統計処理を行うことにより適切なT300の値を決定し、決定したT300の値をSIBにより送信する。
[第2実施形態]
第2実施形態について、第1実施形態との相違点を主として説明する。
(第2実施形態に係る動作)
eNB200の配下に多数のUE100(特に、eMTC UEやNB−IoT UE)が存在する場合、eNB200における負荷(特に、無線リソース負荷)が大きくなる。かかる状況下においては、EDTインディケーション用のPRACHリソースを用いるUE100の数が多くなり、同一のPRACHリソースを複数のUE100が選択することによりUE100間の衝突(コンテンション)が発生する。
かかる衝突は、ランダムアクセスプロシージャにおける衝突解消(コンテンションレゾリューション)の仕組みを用いてMsg4により解消されるが、PRACHリソースが衝突した一部のUE100はランダムアクセスプロシージャを最初からやり直す必要があるため、UE100の消費電力が増加する。特に、かかる一部のUE100が上りリンクのEDTにより上りリンクユーザデータを送信していた場合、かかる上りリンクユーザデータの送信が無駄になる。
第2実施形態において、eNB200は、自身の負荷状態に基づいて、EDTを確率的に規制するための規制信号(以下、「EDT規制信号」という)を送信する。eNB200は、EDT規制信号をSIBにより送信(ブロードキャスト)してもよい。これにより、EDTを利用するUE100間の衝突(具体的には、PRACHリソースの衝突)が生じる確率を低減できる。eNB200は、自身が高負荷状態にある間は、EDT規制信号を周期的に送信してもよい。また、eNB200は、EDTを規制したいUE100(データの送信量が比較的多いUE100又は優先度の低いUE100)に対してのみ、個別的にEDT規制信号を送信してもよい。また、eNB200は、個別的にEDT規制信号を送信すると共に、SIBによりEDT規制信号を送信(ブロードキャスト)してもよい。その場合、それぞれのEDT規制信号に関連付けられているEDTを利用可能とする条件(EDT利用可能条件)を同じくしてもよいし、異ならせてもよい。例えば、個別的に送信したEDT規制信号に関連付けられているEDT利用可能条件が、SIBにより送信されたEDT規制信号に関連付けられているEDT利用可能条件に比べて、より高確率でUE100によるEDTが規制される条件であってもよい。
ここで、eNB200の負荷状態とは、リソース負荷の状態であってもよいし、ハードウェア負荷の状態であってもよい。また、リソース負荷の状態は、PRACHリソース(Msg1)におけるUE間の衝突発生の頻度を含む。eNB200は、かかる衝突発生の頻度を次のようにして判断する。基本的には、eNB200は、Msg1の衝突有無を衝突解消(Contention Resolution)が完了したか否かに応じて判断する。例えば、2つのUEが同一のランダムアクセスプリアンブル(EDTインディケーション)を送信し、eNB200がそれらの受信に成功し、Msg2を返す。かかる場合、当該2つのUEは、別のランダムIDを含んだMsg3をPUSCHで送信する。この時、eNB200は、UL grant(Msg2)で指定したリソースでPUSCHを受信できなければ、ランダムアクセスプリアンブル(EDTインディケーション)が衝突したと判断できる。但し、eNB200は、一方のUEが送信したMsg3だけ受信が成功することもあり得る。この場合、当該一方のUEに対してeNB200が送信するMsg4によりcontention resolutionされるため、衝突したかどうかは分からない。しかしながら、eNB200は、ランダムアクセスプリアンブルの設定を把握しており、例えば同時に受信したMsg1に基づいて、PRACH空間(PRACHリソース)が逼迫していることは分かるため、衝突が起こっている可能性が高いと推測することは可能である。
なお、確率的に規制するとは、全てのUE100に対して一律にEDTを規制するのではなく、ランダムに決定される一部のUE100に対してのみEDTを規制することをいう。かかる一部のUE100は、EDTが規制されるだけであり、ランダムアクセスプロシージャ自体は規制されないため、EDTを伴わないランダムアクセスプロシージャを行うことが可能である。
EDTを伴わないランダムアクセスプロシージャを行うUE100は、ランダムアクセスプロシージャによりRRCコネクティッドモードに遷移する。一方、EDTを伴うランダムアクセスプロシージャを行うUE100は、RRCアイドルモードを維持したままランダムアクセスプロシージャを終了することが可能であるため、UE100の消費電力が少なくて済む。
UE100は、eNB200から受信したEDT規制信号に基づいて、UE100がEDTを利用可能か否か判断する。UE100は、EDTを利用可能であると判断したことに応じて、EDTを伴うランダムアクセスプロシージャを開始する。一方、UE100は、EDTを利用可能でないと判断したことに応じて、EDTを伴わないランダムアクセスプロシージャを開始してもよい。
図9は、第2実施形態に係るUE100の動作の一例を示す図である。図8に示したUE100の動作と重複する動作については説明を省略する。
図9に示すように、ステップS201〜S203の処理は、図8に示したUE100の動作と同様である。
ステップS203において「YES」である場合、ステップS204において、UE100は、eNB200からEDT規制信号を受信したか否かを判断する。ステップS204において「NO」である場合、ステップS207において、UE100は、EDTを伴うランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信する。
一方、ステップS204において「YES」である場合、ステップS205において、UE100は、自身がEDTを利用可能か否か判断する。EDT規制信号は、EDTを利用可能とする条件と関連付けられている。かかるEDT利用可能条件は、EDT規制信号に含まれる情報であってもよいし、UE100に事前設定されていてもよい。本実施形態において、EDT利用可能条件がEDT規制信号に含まれている一例について説明する。
UE100は、自身が発生させた乱数及び/又は自身に関する識別子(UE−ID)が条件を満たすか否かを判断する。UE100に関する識別子(UE−ID)は、例えば、UE100のSIMに格納されたIMSI(International Mobile Subscriber Identity)である。但し、UE100に関する識別子であれば、IMSI以外の識別子を用いてもよい。
UE100は、自身が発生させた乱数を、eNB200から指定された閾値と比較し、比較結果に応じてEDTの利用可否を判断してもよい。例えば、UE100は、発生させた乱数が閾値を超えた場合に限り、EDTが利用可能であると判断してもよい。
或いは、UE100は、「UE−ID mod N」を計算し、この計算結果が、ある数値又はある数値範囲内にあるか否かに応じて、EDTの利用可否を判断してもよい。ここで「N」及び/又は「数値(又は数値範囲)」は、eNB200から指定されてもよい。「数値(又は数値範囲)」は、任意の固定値であってもよいし、無線フレーム番号等の変数であってもよい。
或いは、乱数又はUE−IDに代えて、ランダム性を有する値(すなわち、UE間で一致する可能性が低い値)に基づいてEDTの利用可否を判断してもよい。例えば、ランダム性を有する値として、UE100が上りリンクのEDTで送信したい上りリンクデータのサイズ(トランスポートブロックサイズ)を用いてもよい。具体的には、UE100は、「上りリンクデータサイズ mod N」を計算し、この計算結果が、ある数値又はある数値範囲内にあるか否かに応じて、EDTの利用可否を判断してもよい。或いは、上りリンクデータサイズが、ある閾値以上であること、ある閾値以下であること、2つの閾値の間(範囲内)にあることに基づいて、EDTが許可される又は規制されると判断してもよい。なお、当該閾値は、EDT規制信号に関連付けられているか又は含まれていてもよい。
ステップS206において、UE100は、ステップS205の結果に応じて自身がEDTを利用可能か否か判断する。ステップS206において「YES」(EDTを利用可能)である場合、ステップS207において、UE100は、EDTを伴うランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信する。
ステップS206において「NO」(EDTを利用不可)である場合、ステップS208において、UE100は、EDTを伴わないランダムアクセスプロシージャを開始する。具体的には、UE100は、ランダムアクセスプロシージャにおけるMsg1送信時にEDTインディケーションを送信しない。
なお、ここでは、EDT規制信号に関連付けられた条件は、主にEDTを確率的に規制するためのものであったがこれには限られない。つまり、EDT規制信号は、それを受信したUE100が、EDTの実行を禁止されるものであってもよい。つまり、eNB200は、UE100によるEDTを確実に規制したい場合には、その旨を示す信号を個別的に送信又はブロードキャストしてもよく、それを受信したUE100は、EDTの実行が禁止される。
(第2実施形態のまとめ)
上述した第2実施形態に係る動作は、以下のように要約できる。
ランダムアクセスプロシージャ中にユーザデータの送受信を行うEDTを制御するための通信制御方法であって、UE100が、EDTを確率的に規制するためのEDT規制信号をeNB200から受信するステップA(ステップS204)と、UE100が、ステップAにおいて受信したEDT規制信号に基づいて、UE100がEDTを利用可能か否か判断するステップB(ステップS205)と、UE100が、ステップBにおいてEDTを利用可能であると判断したことに応じて、EDTを伴うランダムアクセスプロシージャを開始するステップC(ステップS207)と、UE100が、ステップBにおいてEDTを利用可能でないと判断したことに応じて、EDTを伴わないランダムアクセスプロシージャを開始するステップD(ステップS208)と、を備える。
EDT規制信号は、EDTを利用可能とする条件と関連付けられている。ステップBにおいて、UE100は、UE100が条件を満たすことに応じて、EDTを利用可能であると判断する。
ステップBは、UE100が発生させた乱数及び/又はUE100に関する識別子又はその他の情報が条件を満たすか否かを判断するステップを含む。
eNB200が、eNB200における負荷状態に基づいて、EDT規制信号を送信するか否かを判断する。
[第3実施形態]
第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。
上述したように、EDTには、UPソリューション(すなわち、ユーザプレーンのEDT)及びCPソリューション(制御プレーンのEDT)の2種類がある。UPソリューションは、UE100がRRCアイドルモードのサブ状態であるサスペンド状態である場合に適用される。具体的には、UE100は、サスペンド状態を設定するRRC Connection ReleaseメッセージをeNB200から受信すると、RRCアイドルモードのサブ状態であるサスペンド状態に遷移する。サスペンド状態では、UE100のコンテキスト情報がeNB200において維持されており、eNB200が保持するコンテキスト情報を利用して円滑にRRCコネクティッドモードに復旧可能とする。
ここで、ユーザプレーンのEDTを利用するためには、UE100がサスペンド状態に設定される際に、RRC Connection Releaseメッセージにより、NCC(Next Hop Chaining Count)がeNB200から提供されている必要がある。NCCは、ユーザプレーンにおいてPDCPレイヤが暗号化に関する処理(復号処理を含む)を行うために用いられる暗号情報であって、PDCPレイヤが管理するシーケンス番号に基づいてカウントされる値である。NCCが提供されていないUE100は、ユーザプレーンのEDTを開始することができない。
一方、NCCが提供されているUE100であっても、上述したような事情(例えば、送信データ量が最大データ量を超える等)によりEDTを行わないことがある。NCCが提供されているにもかかわらず、EDTを伴わないランダムアクセスプロシージャを繰り返すUE100は、EDTに適していないアプリケーションを実行している可能性がある。よって、そのようなUE100にNCCを提供することは無駄になり得る。
具体的には、eNB200は、ユーザプレーンのEDTに必要な情報であってユーザプレーンにおける暗号化に関する処理に用いる暗号情報であるNCCをRRC Connection ReleaseメッセージによりUE100に提供する(1回目のNCCの提供)。RRCアイドルモード(サスペンド状態)に遷移したUE100は、NCCの受信後、EDTを伴わないランダムアクセスプロシージャをeNB200に対して行うことにより、RRCコネクティッドモードに遷移する。次に、eNB200は、NCCをRRC Connection ReleaseメッセージによりUE100に提供する(2回目のNCCの提供)。RRCアイドルモード(サスペンド状態)に遷移したUE100は、NCCの受信後、EDTを伴わないランダムアクセスプロシージャをeNB200に対して行うことにより、RRCコネクティッドモードに遷移する。このような動作がある回数Nだけ繰り返された場合、eNB200は、UE100に対するNCCの提供を停止する。ここで、Nは1以上の値であるが、2以上の値とすることが好ましい。eNB200は、NCCを提供したにもかかわらずUE100がEDTを行わなかった回数をカウントし、カウント値がNに達した場合に、UE100に対するNCCの提供を停止する。具体的には、eNB200は、NCCを含まないRRC Connection ReleaseメッセージをUE100に送信する。
eNB200は、Nの値を示す情報を例えばSIBに含めて送信してもよい。UE100は、Nの値を示す情報をeNB200から受信する。例えば、UE100は、NCCが提供されたにもかかわらずEDTを行わなかった回数をカウントする。UE100は、なおもEDTを使用したい意図がある場合には、カウント値がNに達する前に、EDTを使用したい意図をeNB200に通知する。これにより、eNB200がNCCの提供を停止することを防ぐことができる。EDTを使用したい意図の通知は、従来のMsg3により行われてもよい。具体的には、かかるMsg3を構成するMAC PDUは、RRC Connection Resume Request及びBSRを含むが、データPDUは多重化されない。
[第3実施形態の変更例1]
上述した第3実施形態において、NCCが提供されていないUE100はユーザプレーンのEDTを利用することができないと説明したが、かかるUE100であっても制御プレーンのEDTを利用可能であると考えられる。制御プレーンのEDTにおいては、Msg3を構成するRRCメッセージ(Early Data Requestメッセージ)にユーザデータを含めるが、かかるRRCメッセージは制御プレーンのメッセージであり、PDCPレイヤの暗号化処理を必要としないため、NCCが不要である。
よって、UE100は、NCCをeNB200から受信していない場合には、ユーザプレーンのEDTではなく、制御プレーンのEDTを開始する。UE100は、ネットワークが制御プレーンのEDTに対応している場合(MMEがデータ送受信機能を有している場合)であって、且つUE100のアプリケーションレイヤが制御プレーンのEDTに対応している場合(MME経由でアプリケーションサーバへの接続が可能な場合)に限り、制御プレーンのEDTを開始してもよい。
かかる制御プレーンのEDTにおいて、UE100は、RRCメッセージにユーザデータを含めてeNB200に送信する。これにより、NCCがeNB200から提供されていないUE100であってもEDTを利用可能にすることができる。一方、UE100は、NCCをeNB200から受信している場合には、制御プレーンのEDTではなく、ユーザプレーンのEDTを開始する。
[第3実施形態の変更例2]
NCCをUE100に提供することを促すことができれば、UE100がユーザプレーンのEDTを利用できる可能性を高めることができる。また、NCCをUE100に提供するか否かをeNB200が判断するための情報をUE100から得ることができれば、eNB200が適切にNCCをUE100に提供できる。
そこで、本変更例では、UE100は、自身がRRCコネクティッドモードにある間に、RRCアイドルモードに遷移した後にEDTを行う意図を有することを示す通知をeNB200に送信する。かかる通知は、例えばRRCメッセージにより行われる。かかる通知は、ユーザプレーンのEDTを行う意図を有することを示す通知であってもよい。
eNB200は、UE100からの通知を、NCCをUE100に提供することを促すための情報、又はNCCをUE100に提供するか否かを判断するための情報として用いる。eNB200は、かかる通知に基づいてNCCをUE100に提供する。
[その他の実施形態]
上述した各実施形態を別個独立に実施してもよいし、2以上の実施形態を併用して実施してもよい。
上述した実施形態において、MTCやIoTを対象とした無線端末(eMTC UE及びNB−IoT UE)を用いる一例を説明した。しかしながら、本開示はeMTC UE及びNB−IoT UEに限定されない。一般的なUEに対して、上述した実施形態に係る動作を適用してもよい。
上述した実施形態では、主にRRCアイドル、サスペンド、コネクテッドを例に挙げて説明したが、これに限らない。RRCライトコネクションやINACTIVEの状態に適用してもよい。RRCライトコネクションは、RRCコネクティッドモードの一状態であって、RRCアイドルモードのプロシージャの一部が適用される特殊な状態である。INACTIVEは、第5世代移動通信システムにおいて導入されることが想定されており、RRCコネクティッドモード及びRRCアイドルモードとは異なるRRC状態である。上述した実施形態における「RRCアイドルモード」を「INACTIVEモード」と読み替えてもよい。
上述した実施形態では強化カバレッジに居るUEを例に挙げて説明したが、これに限らない。ノーマルカバレッジに居るUEに対して、上述した実施形態に係る動作を適用してもよい。具体的には、RACHプロシージャにおいて、RSRP測定に基づくCEレベル判断を行わなくてもよい。
上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本開示はLTEシステムに限定されない。LTEシステム以外の移動通信システム(例えば、第5世代移動通信システム)に対して、上述した実施形態に係る動作を適用してもよい。
UE100及びeNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD−ROMやDVD−ROM等の記録媒体であってもよい。UE100及びeNB200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップセットが提供されてもよい。
(付記)
(1.はじめに)
この付記では、EDT機能を完成させるための残りの問題について検討する。
(2.検討)
(2.1.Msg 3における暗黙(Implicit)の「BSR=0」)
以下の事項が合意された。
− EDTがトリガされた場合、UEはMsg3でBSRを送信してはならない、すなわち、eNBはULにおいて次に来るデータがないと仮定することができる。これはBSRが暗黙的に0に等しいことを意味する。
意図が、(少なくとも)UL送信に関して、EDT後の送信に利用可能なデータがないことであることは当然に理解され得る。言い換えれば、ULデータサイズがブロードキャストされた最大TBSを超える場合、UEがEDTを開始できないようにする。
一方、「BSR=0」をトリガすることの定義(すなわち、NB?IoTおよびBL UEのための解放支援インディケーション(Release Assistance Indication)を実現するためにゼロバイトBSRをキャンセルしないための条件)は、次のように、送信されるデータがないことと、近い将来に受信されるデータがないことと、を考慮する。
NB−IoTまたはBL UEの場合:
− rai−Activationが設定されており、かつ、BSRに対してゼロバイトのバッファサイズがトリガされており、かつ、近い将来にUEが送信または受信するデータがもっとある可能性がある場合:
− ペンディングのBSRをキャンセルする。
EDTの典型的なユースケースは、RRC Connectedに移行することなく、Msg3およびMsg4においてデータ送信/受信を完了すること、例えば、UL EDT上でのセンサデータの報告、及び、DL EDT上でのUEの上位層のACK、が想定される。しかし、「BSRが暗黙的に0に等しいことを意味する」という最近の合意では、そのケースを十分に説明できない可能性がある。
考察1:「BSRが0に暗黙的に等しいことを意味する」という最近の合意が、ULのみ、またはULとDLの両方についてこれ以上データがない(No more data)ことを意図するか否かは明確ではない。
ULバッファステータスのみを意図している場合、RAN2は、「BSRが0に等しい」という用語を使用せずに、仕様書において「これ以上データがない(No more data)」をキャプチャする方法を特定する必要がある。
それが予想されるDL受信も意図している場合、RAN2は、例えば、DLがないケース合(例えば、UL EDTにおけるUDPタイプ)、1つのDLケース(例えば、DL EDTにおけるTCP ACK)、無線リソース(DL TBSによる)およびラウンドトリップ時間(T300−EDTによる)の観点からDL EDT内に収まる一つのDLをどのように識別する方法、などについて議論する必要がある。
提案1:RAN2は、仕様書において「BSRが暗黙的に0に等しいことを意味する」という合意をどのようにキャプチャするかを明確にすべきである。
(2.2.フォールバックのシナリオ)
NW主導のフォールバックシナリオは何度も議論されており、Msg4ではRRC Connection Setup(CP EDT用)又はRRC Connection Resume(UP EDT用)のいずれかで実現されている。NW主導のフォールバックは、例えば、利用可能なDLリソースよりも大きいサイズ及び/又はT300−EDT満了後のデータ到着に起因して、Msg4 DL EDTにおいてDLデータを送信することができないときに実行されることになる。
考察2:NW主導のフォールバックは、eNB実装及び/又はeNB外部の上位層問題のために常に許可される。
UE主導のフォールバックシナリオは明示的には議論されていないが、前回のオンラインディスカッションで多少指摘されている。すなわち、一部の会社は、Msg3のEDTの前にMsg1のEDT インディケーションの後に新しいデータが到着すると考え、他の会社の一部は、これがセグメンテーションのサポートに関連するだけであると考える。
「NAS層は、接続の確立/再開を要求するときにEDTを使用する意思を示す必要はない。EDTを使用するという決定はAS層によって行われる。」という合意事項にともない、EDTインディケーションが送信された後において追加のULデータがASレイヤに送達される可能性がある。特に、複数のアプリケーションをインストールするMTC UEにとってこの可能性がある。
考察3:UE主導のフォールバックシナリオは、Msg1上のEDTインディケーションとMsg3上のUL EDTの間に別のULデータが到着することによって、検討する価値があり得る。
UE主導のフォールバックは、Msg1上でEDT指示を送信した後でも、UEがデータなしのMsg3、すなわちレガシーMsg3を送信すると考えられる。しかしながら、問題は、ULリソース割り当てがMsg2上で既に行われている、すなわち、Msg3上のUL EDTに対するより大きいULグラントサイズである。UEがより大きいULグラントサイズでレガシーMsg3を送信したい場合、パディングの問題がこの場合に再び現れる。1つの可能な解決策は、Msg3に対するブラインド復号化オプションが常にレガシーMsg3サイズを許容する、すなわちUL EDTに対する最小TBSが常にレガシーサイズと同じと仮定されることを考慮することができる。レガシーサイズが、約320ビットとする最小TBSで、4つのブラインドオプションに対する追加オプションとして考えられることが望まれる。
提案2:RAN2は、合意された4つのオプションに加えて、EDT ULグラントがレガシーMsg3サイズのためのブラインド復号化オプションを常に許可すべきかどうかを議論すべきである。
(2.3.RRC Connectedの支援情報)
(2.3.1.NCC提供)
RAN2は、NCCがRRC Connection Releaseによって提供されていない場合、UEはUP EDTを開始しないことに合意した。
− UEがNCCなしでサスペンドされている場合、UEはEDTを開始してはならない。
− UEがEDTを使用しているとき、又はUEがRRC CONNECTEDにあるとき、NCCは任意選択でサスペンドととものRRCConnectionReleaseメッセージに提供される。
NCCがEDT手順内で提供される場合、eNBは、今回使用されるので、UEが次回でEDTを使用する可能性が高いことを知っている。例えば、eNBは、UEがN回NCCを使用しない場合、すなわち、代わりにRRC接続要求を開始する場合、NCCの提供を停止することを決定してもよい。
しかしながら、UEが接続されている場合(例えば、初めてNCCを提供するとき)、UE能力(UE Capability)が、EDTを使用するというUEのプリファレンス(UE’s preference)を伝えないので、eNBがNCCをこのUEに提供すべきかどうかを決定する方法は依然として不明である。
考察4:eNBは、NRCがRRC ConnectedのEDT対応UEに提供される必要があるかどうかを知らない可能性がある。
可能な解決策は次のように考えられる。
オプション1:eNBは、EDT対応UEを解放するときに常にNCCを提供する。
オプション2:eNBは、UEのプリファレンス(UE’s preference)に基づいて、UEごとにNCCを提供するかどうかを決定する。
オプション1は単純で、仕様には影響を与えないが、オプション2はよりスマートな方法である。オプション2は、NWが将来のEDT開始の可能性を確実にすることを可能にし、また、UEがeNBにUEのプリファレンスを通知すること、すなわち、他の様々なプリファレンス表示と同様にすることを可能にする。この意味で、追加のUE支援情報としてEDTプリファレンスインジケーションを導入することが好ましいである。
提案3:RAN2は、例えば、RRC ConnectedのEDT対応UEにNCCを提供するか否かをeNBが決定するために、UE支援情報にEDTプリファレンスインジケーションを導入すべきである。
(2.3.2.NW最適化)
EDTの最適な使用は、NWとUEの両方の観点、例えば、キャパシティの増大と電力消費の改善などから有益であるが、EDTの有用性は、NW構成とMTCアプリケーションの挙動の両方に依存する。したがって、NWは、UL EDTに対する最大TBS/ブラインド復号オプション、及び、タイマ(T300−EDT及び競合解決タイマ−EDT)に関し、中期的にNWの構成を変更し、及び/又は長期的に最適化を必要とする可能性がある。
考察5:NW構成の変更/最適化は、EDTの利点を最大化するために必要になる。
いくつかのNW実装は、例えばRRC ConnectedのUEの挙動を監視することによって、この種のNW最適化のために有効であろう。しかしながら、データサイズ及び上位層のラウンドトリップ時間は、UEに実装されたMTCアプリケーションの要件からのものである。
考察6:EDTの設定は、MTCアプリケーションの要件に基づくべきである。
上記の考察を考慮して、UEが意図したアプリケーション、特に、ULデータサイズ、に関してフィードバックを提供すべきかどうかは、NW最適化の一部として考慮されるべきである。UEがRRC IDLEに戻る(例えば、RAIを送信する)前に、UEは、支援情報として、EDTのためのUEの好ましいTBSをeNBに通知する機会を有することができる。そのような支援情報は、上記の提案3で提案されたEDTプリファレンスインジケーションと統合されてもよい。
提案4:RAN2は、UEが、TBS/タイマ構成最適化のための支援情報、例えば、UEの好ましいTBS及びUEの好ましいT300?EDTを送信することを可能にすることに同意すべきである。
[相互参照]
本願は、米国仮出願第62/668889号(2018年5月9日出願)の優先権を主張し、その内容が、参照により、本願明細書に組み込まれている。

Claims (21)

  1. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信するステップAと、
    前記無線端末が、前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出するステップBと、
    前記無線端末が、前記ステップAにおいて受信した前記タイマ値と前記ステップBにおいて導出した前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断するステップCと、を備える
    通信制御方法。
  2. 前記ステップCにおいて、前記無線端末は、前記ステップAにおいて受信した前記タイマ値よりも、前記ステップBにおいて導出した前記予測値が大きい場合に、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始しないと判断する
    請求項1に記載の通信制御方法。
  3. 前記無線端末が、前記ステップCにおいて前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始しないと判断したことに応じて、前記アーリーデータ伝送を伴わない前記ランダムアクセスプロシージャを開始するステップをさらに備える
    請求項1に記載の通信制御方法。
  4. 前記ステップBにおいて、前記無線端末は、
    前記無線端末のアクセス層よりも上位の上位層において用いるアプリケーションの種類及び/又はプロトコルの種類、
    前記無線端末のアクセス層において用いるベアラの種類及び/又は論理チャネルの種類、
    過去の前記所要時間の履歴を用いた統計、
    前記無線端末が前記アーリーデータ伝送により前記基地局に送信する上りリンクユーザデータの量及び/又は前記無線端末が前記アーリーデータ伝送により前記基地局から受信する下りリンクユーザデータの量
    のうち少なくとも1つに基づいて、前記予測値を導出する
    請求項1に記載の通信制御方法。
  5. 前記無線端末が、前記Msg4と共に下りリンクのユーザデータを前記基地局から受信する下りリンクのアーリーデータ伝送を行うか否かを判断するステップをさらに備え、
    前記無線端末は、前記下りリンクのアーリーデータ伝送を行うと判断した場合に限り前記ステップCを行う
    請求項1に記載の通信制御方法。
  6. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送の機能を有する無線端末であって、
    前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値を基地局から受信する受信部と、
    前記無線端末が前記Msg3を送信してから前記Msg4と共にユーザデータを受信するまでの所要時間の予測値を導出する制御部と、を備え、
    前記制御部は、前記タイマ値と前記予測値とに基づいて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するか否かを判断する
    無線端末。
  7. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    無線端末が、上りリンクのアーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するステップと、
    前記ランダムアクセスプロシージャにおける下りリンクのアーリーデータ伝送を行わないと前記無線端末が判断した場合に、前記無線端末が、前記下りリンクのアーリーデータ伝送を行わないことを示す通知を前記ランダムアクセスプロシージャ中に基地局に対して行うステップと、を備える
    通信制御方法。
  8. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    無線端末が、前記ランダムアクセスプロシージャ中に前記無線端末がMsg3を送信してからMsg4を受信するまでの最大待ち時間を設定するためのタイマ値として推奨する値を決定するステップと、
    RRCコネクティッドモードにある無線端末が、前記ステップAにおいて決定された推奨タイマ値を示す情報を基地局に送信するステップと、を備える
    通信制御方法。
  9. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    無線端末が、前記アーリーデータ伝送を確率的に規制するための規制信号を基地局から受信するステップAと、
    前記無線端末が、前記ステップAにおいて受信した前記規制信号に基づいて、前記無線端末が前記アーリーデータ伝送を利用可能か否か判断するステップBと、
    前記無線端末が、前記ステップBにおいて前記アーリーデータ伝送を利用可能であると判断したことに応じて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始するステップCと、を備える
    通信制御方法。
  10. 前記無線端末が、前記ステップBにおいて前記アーリーデータ伝送を利用可能でないと判断したことに応じて、前記アーリーデータ伝送を伴わない前記ランダムアクセスプロシージャを開始するステップをさらに備える
    請求項9に記載の通信制御方法。
  11. 前記規制信号は、前記アーリーデータ伝送を利用可能とする条件と関連付けられており、
    前記ステップBにおいて、前記無線端末は、前記無線端末が前記条件を満たすことに応じて、前記アーリーデータ伝送を利用可能であると判断する
    請求項9に記載の通信制御方法。
  12. 前記ステップBは、前記無線端末が発生させた乱数及び/又は前記無線端末に関する識別子が前記条件を満たすか否かを判断するステップを含む
    請求項11に記載の通信制御方法。
  13. 前記基地局が、前記基地局における負荷状態に基づいて、前記規制信号を送信するか否かを判断するステップをさらに備える
    請求項9に記載の通信制御方法。
  14. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送の機能を有する無線端末であって、
    前記アーリーデータ伝送を確率的に規制するための規制信号を基地局から受信する受信部と、
    前記規制信号に基づいて、前記無線端末が前記アーリーデータ伝送を利用可能か否か判断する制御部と、を備え、
    前記制御部は、前記アーリーデータ伝送を利用可能であると判断したことに応じて、前記アーリーデータ伝送を伴う前記ランダムアクセスプロシージャを開始する
    無線端末。
  15. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送の機能を有する基地局であって、
    前記アーリーデータ伝送を確率的に規制するための規制信号を無線端末に送信する送信部を備える
    基地局。
  16. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    基地局が、ユーザプレーンのアーリーデータ伝送に必要な情報であって前記ユーザプレーンにおける暗号化に関する処理に用いる暗号情報を無線端末に送信するステップと、
    前記無線端末が、前記暗号情報の受信後、前記アーリーデータ伝送を伴わないランダムアクセスプロシージャを前記基地局に対して行うステップと、
    前記ステップA及び前記ステップBがN回繰り返された場合に、前記基地局が、前記無線端末に対する前記暗号情報の提供を停止するステップと、を備える
    通信制御方法。
  17. 前記基地局が、前記Nの値を示す情報を送信するステップと、
    前記無線端末が、前記Nの値を示す情報を前記基地局から受信するステップと、をさらに備える
    請求項16に記載の通信制御方法。
  18. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    無線端末が、ユーザプレーンのアーリーデータ伝送に必要な情報であって前記ユーザプレーンにおける暗号化に関する処理に用いる暗号情報を基地局から受信していない場合に、制御プレーンのアーリーデータ伝送を開始するステップと、
    前記無線端末が、前記制御プレーンのアーリーデータ伝送において、前記制御プレーンのメッセージに前記ユーザデータを含めて前記基地局に送信するステップと、を備える
    通信制御方法。
  19. 前記無線端末が、前記暗号情報を前記基地局から受信している場合に、前記ユーザプレーンのアーリーデータ伝送を開始するステップをさらに備える
    請求項18に記載の通信制御方法。
  20. ランダムアクセスプロシージャ中にユーザデータの送受信を行うアーリーデータ伝送を制御するための通信制御方法であって、
    RRCコネクティッドモードにある無線端末が、前記RRCコネクティッドモードからRRCアイドルモードに遷移した後に前記アーリーデータ伝送を行う意図を有することを示す通知を基地局に送信するステップを備える
    通信制御方法。
  21. 前記基地局が、前記通知に基づいて、ユーザプレーンのアーリーデータ伝送に必要な情報であって前記ユーザプレーンにおける暗号化に関する処理に用いる暗号情報を無線端末に提供するステップをさらに備える
    請求項20に記載の通信制御方法。
JP2020518331A 2018-05-09 2019-05-09 通信制御方法、無線端末、及び基地局 Active JP6889331B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021085017A JP7297811B2 (ja) 2018-05-09 2021-05-20 通信制御方法、無線端末、及び基地局
JP2023098142A JP2023120313A (ja) 2018-05-09 2023-06-14 通信制御方法、ユーザ装置、プロセッサ、基地局、及びシステム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862668889P 2018-05-09 2018-05-09
US62/668,889 2018-05-09
PCT/JP2019/018522 WO2019216370A1 (ja) 2018-05-09 2019-05-09 通信制御方法、無線端末、及び基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021085017A Division JP7297811B2 (ja) 2018-05-09 2021-05-20 通信制御方法、無線端末、及び基地局

Publications (2)

Publication Number Publication Date
JPWO2019216370A1 true JPWO2019216370A1 (ja) 2021-02-12
JP6889331B2 JP6889331B2 (ja) 2021-06-18

Family

ID=68468019

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020518331A Active JP6889331B2 (ja) 2018-05-09 2019-05-09 通信制御方法、無線端末、及び基地局
JP2021085017A Active JP7297811B2 (ja) 2018-05-09 2021-05-20 通信制御方法、無線端末、及び基地局
JP2023098142A Pending JP2023120313A (ja) 2018-05-09 2023-06-14 通信制御方法、ユーザ装置、プロセッサ、基地局、及びシステム

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021085017A Active JP7297811B2 (ja) 2018-05-09 2021-05-20 通信制御方法、無線端末、及び基地局
JP2023098142A Pending JP2023120313A (ja) 2018-05-09 2023-06-14 通信制御方法、ユーザ装置、プロセッサ、基地局、及びシステム

Country Status (3)

Country Link
US (3) US11350465B2 (ja)
JP (3) JP6889331B2 (ja)
WO (1) WO2019216370A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831240B (zh) * 2018-08-07 2023-07-18 财团法人资讯工业策进会 在随机接入程序进行提早数据传输的基站与用户设备
US11202198B1 (en) * 2020-12-04 2021-12-14 Ultralogic 5G, Llc Managed database of recipient addresses for fast 5G message delivery
CN114245441B (zh) * 2021-12-28 2024-04-23 天翼物联科技有限公司 同时满足物用及人用场景的5g组网方法以及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508538A (ja) * 2007-12-19 2011-03-10 クゥアルコム・インコーポレイテッド ワイヤレス通信ネットワークにおいてランダムアクセス用の共通制御チャネル上でメッセージを転送するための方法および装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223729B (zh) 2010-04-16 2016-06-29 中兴通讯股份有限公司 控制机器类型通信设备接入网络的方法及系统
US10009926B2 (en) 2014-07-11 2018-06-26 Qualcomm Incorporated Methods and apparatus for connectionless access
US10299244B2 (en) 2015-06-19 2019-05-21 Qualcomm Incorporated Small data transmission in a wireless communications system
US20170099660A1 (en) 2015-10-01 2017-04-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink data
CN108781451A (zh) * 2016-03-31 2018-11-09 株式会社Ntt都科摩 用户装置以及发送方法
US20180324854A1 (en) 2017-05-04 2018-11-08 Qualcomm Incorporated Uplink small data transmission for enhanced machine-type-communication (emtc) and internet of things (iot) communication
WO2018201483A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 数据传输的方法、终端设备和接入网设备
CN110012557A (zh) * 2018-01-05 2019-07-12 夏普株式会社 无线通信设备和方法
CN110351833B (zh) * 2018-04-02 2024-02-20 夏普株式会社 用户设备执行的方法、基站执行的方法、用户设备和基站
WO2019217829A1 (en) * 2018-05-10 2019-11-14 Convida Wireless, Llc Small data transmission with non-orthogonal multiple access

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508538A (ja) * 2007-12-19 2011-03-10 クゥアルコム・インコーポレイテッド ワイヤレス通信ネットワークにおいてランダムアクセス用の共通制御チャネル上でメッセージを転送するための方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining Issues in Early Data Transmission over NAS", 3GPP TSG RAN WG2#100 R2-1713056, JPN6020047734, 17 November 2017 (2017-11-17), FR, pages 2 - 3, ISSN: 0004405614 *

Also Published As

Publication number Publication date
US11683845B2 (en) 2023-06-20
US20220264655A1 (en) 2022-08-18
US11350465B2 (en) 2022-05-31
JP6889331B2 (ja) 2021-06-18
JP2023120313A (ja) 2023-08-29
WO2019216370A1 (ja) 2019-11-14
JP2021132399A (ja) 2021-09-09
US20210058973A1 (en) 2021-02-25
US20230276507A1 (en) 2023-08-31
JP7297811B2 (ja) 2023-06-26

Similar Documents

Publication Publication Date Title
US11706814B2 (en) Communications device, infrastructure equipment and methods
EP3955690B1 (en) Communication control method
JP5540066B2 (ja) Macpduを送信する方法
JP7297811B2 (ja) 通信制御方法、無線端末、及び基地局
JP7068530B2 (ja) 無線端末及び基地局
RU2701991C1 (ru) Узел радиосети, беспроводное устройство и способы
WO2018173805A1 (ja) 通信制御方法及び無線端末
US11617209B2 (en) Timer control in early data transmission
KR101845558B1 (ko) 무선 통신 시스템에서의 그룹 페이징 방법 및 장치와 이를 이용한 랜덤 액세스 수행 방법 및 장치
US10973080B2 (en) Radio terminal, processor, and base station
JP6814280B2 (ja) 通信制御方法、無線端末、及び基地局
JP7178412B2 (ja) 無線端末及び方法
JP7227401B2 (ja) 通信制御方法及びユーザ装置
CN116058045A (zh) 控制ue的缓冲器中的用于小数据传输的用户数据的指示

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201104

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6889331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150