WO2019216267A1 - Nonaqueous-electrolyte secondary cell - Google Patents

Nonaqueous-electrolyte secondary cell Download PDF

Info

Publication number
WO2019216267A1
WO2019216267A1 PCT/JP2019/017927 JP2019017927W WO2019216267A1 WO 2019216267 A1 WO2019216267 A1 WO 2019216267A1 JP 2019017927 W JP2019017927 W JP 2019017927W WO 2019216267 A1 WO2019216267 A1 WO 2019216267A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
container
negative electrode
electrolyte secondary
secondary battery
Prior art date
Application number
PCT/JP2019/017927
Other languages
French (fr)
Japanese (ja)
Inventor
秀史 二川
綾香 森
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020518275A priority Critical patent/JPWO2019216267A1/en
Priority to CN201980028125.6A priority patent/CN112020790A/en
Publication of WO2019216267A1 publication Critical patent/WO2019216267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode mixture layer and a positive electrode current collector, a negative electrode having a negative electrode material mixture layer and a negative electrode current collector, and a non-aqueous electrolyte in a container.
  • a non-aqueous electrolyte secondary battery for example, lithium ions are used as the charge carrier responsible for the battery reaction.
  • a non-aqueous electrolyte secondary battery that includes an energization cutoff mechanism that interrupts energization between the positive electrode or the negative electrode and the outside when the internal pressure increases due to overcharging (see, for example, Patent Document 1).
  • the non-aqueous electrolyte contains a gas generating agent that reacts with a voltage equal to or higher than the maximum operating power of the non-aqueous electrolyte secondary battery to generate gas.
  • An electrolyte secondary battery is known (see, for example, Patent Document 2). According to the non-aqueous electrolyte secondary battery containing the gas generating agent in the electrolyte, at the time of overcharging, the non-aqueous electrolyte is generated by the gas generated from the gas generating agent prior to gas generation by electrolysis of the non-aqueous solvent or the like. By increasing the internal pressure of the electrolyte secondary battery, the energization cutoff mechanism can be reliably operated.
  • the gas generating agent in the nonaqueous electrolyte secondary battery, it may be possible to add the gas generating agent to the positive electrode mixture layer or the negative electrode mixture layer.
  • the generated gas is used as the positive electrode mixture layer or the negative electrode layer.
  • the current-carrying-off mechanism cannot be operated because it is trapped in the mixture layer.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can eliminate such inconvenience and can reliably operate an energization cutoff mechanism during overcharge without deteriorating battery performance.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode having a positive electrode mixture layer and a positive electrode current collector in a container, and a positive electrode mixture layer of the positive electrode current collector not formed.
  • In-container positive electrode terminal that is electrically connected to a portion, a negative electrode having a negative electrode mixture layer and a negative electrode current collector, and a negative electrode in a container that is electrically connected to a negative electrode mixture layer-unformed portion of the negative electrode current collector
  • a non-aqueous electrolyte comprising: a terminal; a non-aqueous electrolyte; and an energization cutoff mechanism capable of interrupting energization between the positive electrode terminal in the container or the negative electrode terminal in the container and the outside of the container when the internal pressure of the container increases.
  • the internal pressure of the container is increased by reacting with at least one member of the positive electrode mixture layer unformed part or the positive electrode terminal in the container with a voltage higher than the maximum operating power of the nonaqueous electrolyte secondary battery.
  • a positive electrode active material layer that generates a gas capable of operating the energization cutoff mechanism; To.
  • the positive electrode active material that forms the positive electrode active material layer that generates gas is A gas is generated when the element in the composition of the positive electrode active material is vaporized by being decomposed or altered.
  • the positive electrode active material or the modified positive electrode active material reacts with the conductive auxiliary agent, binder, or electrolytic solution at the interface thereof, and the conductive auxiliary agent, binder, or electrolytic solution is decomposed to generate gas.
  • the non-aqueous electrolyte secondary battery of the present invention includes the positive electrode active material layer in at least one member of the positive electrode mixture layer unformed part or the positive electrode terminal in the container.
  • the battery reaction in the agent layer, the negative electrode mixture layer, or the non-aqueous electrolyte is not inhibited by the positive electrode active material, and the battery performance such as energy density can be prevented from being lowered.
  • a gas generated by decomposition or alteration of the positive electrode active material or by decomposition of the conductive additive, binder or electrolyte solution reacted with the positive electrode active material or the altered positive electrode active material is the positive electrode mixture layer or Since the negative electrode mixture layer is not trapped, the energization cutoff mechanism can be operated reliably.
  • the positive electrode active material layer that generates the gas preferably contains LiNi 0.5 Mn 1.5 O 4 (LNMO) as the positive electrode active material. Since LiNi 0.5 Mn 1.5 O 4 (LNMO) has a high reaction potential and a high reactivity with the electrolytic solution, gas can be easily generated.
  • LNMO LiNi 0.5 Mn 1.5 O 4
  • the perspective view which shows the example of 1 structure of the nonaqueous electrolyte secondary battery of this embodiment.
  • the disassembled perspective view of the nonaqueous electrolyte secondary battery shown in FIG. The disassembled perspective view of the electrode body element of the nonaqueous electrolyte secondary battery shown in FIG.
  • the fragmentary sectional view which shows the structure of the electricity supply interruption
  • the nonaqueous electrolyte secondary battery 1 of the present embodiment includes a battery can 4 having a square deep-drawn shape and a battery lid 3 that seals the opening 4 a of the battery can 4.
  • the battery container 2 is provided.
  • a power generation element is accommodated in the battery container 2.
  • the power generation element includes an electrode body element 40 wound in a flat shape in a state where the separators 43 and 44 are interposed between the positive electrode 41 and the negative electrode 42 so as to overlap each other.
  • the electrode body element 40 is inserted into the battery can 4 while being covered with an insulating sheet (not shown) from the outside together with the positive electrode current collecting plate 21 and the negative electrode current collecting plate 31.
  • the battery can 4 and the battery lid 3 are both made of an aluminum alloy, and the battery lid 3 is joined to the battery can 4 by laser welding to seal the opening 4a.
  • the battery lid 3 is provided with a positive electrode side terminal component 60 and a negative electrode terminal component 70 to form a lid assembly.
  • the positive electrode side terminal component 60 and the negative electrode terminal component 70 have a positive electrode terminal 61 and a negative electrode terminal 71 disposed between the battery lid 3 via first insulators 64 and 74.
  • the battery lid 3 includes a gas discharge valve 13 that is opened when the pressure in the battery container 2 rises above a predetermined value and discharges the gas in the battery container 2, and the battery container A liquid injection port 12 for injecting an electrolytic solution into 2 and a liquid injection plug 11 for sealing the liquid injection port 12 after the injection of the electrolytic solution are disposed.
  • the injection plug 11 is joined to the battery lid 3 by laser welding in a state where the injection port 12 is closed, and seals the injection port 12.
  • the positive electrode terminal 61 and the negative electrode terminal 71 are arranged outside the rectangular battery lid 3 and at positions separated from each other on one side and the other side in the direction along the long side.
  • the positive electrode terminal 61 and the negative electrode terminal 71 hold terminal bolts 63 and 73 for fixing the bus bar connection terminal, and are arranged and connected to the inside of the battery lid 3.
  • the positive terminal 61 is made of aluminum or an aluminum alloy
  • the negative terminal 71 is made of a copper alloy.
  • the positive electrode terminal 61 has a gasket 66 and a first insulator 64 interposed outside the battery lid 3 and a second insulator 65 interposed inside the battery lid 3 (see FIG. 4). 3 is electrically insulated.
  • the positive electrode terminal 61 is caulked together with the second insulator 65 and the connection electrode 67 and fixed to the battery lid 3.
  • the positive electrode terminal 61 is electrically connected to the positive electrode current collector plate 21 through an energization cutoff mechanism. Details of the configuration of the energization cutoff mechanism will be described later.
  • the negative electrode terminal 71 is electrically connected to the negative electrode current collector plate 31 via a connection terminal (not shown).
  • the positive electrode current collecting plate 21 and the negative electrode current collecting plate 31 have a pair of flat joining pieces 23 and 33 that extend toward the bottom of the battery can 4 and are electrically connected to the electrode body element 40.
  • the positive electrode current collecting plate 21 and the joining piece 23 constitute an in-container positive electrode terminal
  • the negative electrode current collecting plate 31 and the joining piece 33 constitute an in-container negative electrode terminal.
  • Each joining piece 23 and 33 is joined to the positive electrode 41 and the negative electrode 42 which are provided in the winding-axis direction both ends of the electrode body element 40 by welding.
  • a welding method ultrasonic welding, resistance welding, laser welding, or the like can be used.
  • the electrode body element 40 is disposed between the joint piece 23 of the positive electrode current collector plate 21 and the joint piece 33 of the negative electrode current collector plate 31, and both ends thereof are supported, and the lid assembly and the electrode body element 40 generate power.
  • An element assembly 5 is configured.
  • the electrode body element 40 is wound in a flat shape by disposing a negative electrode 42 and a positive electrode 41 between the first and second separators 43 and 44, respectively, as shown in FIG. Consists of.
  • the positive electrode 41 includes a positive electrode mixture layer 41a formed on a positive electrode current collector (not shown) and a positive electrode mixture layer non-formed portion 41b.
  • the negative electrode 42 is a negative electrode formed on a negative electrode current collector (not shown).
  • a mixture layer 42a and a negative electrode mixture layer unformed portion 42b are provided.
  • the outermost electrode is the negative electrode 42, and the separator 44 is wound around the outer side thereof.
  • the separators 43 and 44 have a role of insulating the positive electrode 41 and the negative electrode 42.
  • the negative electrode mixture layer 42a of the negative electrode 42 is larger in the width direction than the positive electrode mixture layer 41a of the positive electrode 41, so that the positive electrode mixture layer 41a is always sandwiched between the negative electrode mixture layers 42a.
  • the positive electrode mixture layer non-formed part 41b and the negative electrode mixture layer non-formed part 42b are bundled in a plane portion and connected to the positive electrode terminal 61 and the negative electrode terminal 71 by welding or the like. 31 is connected.
  • the separators 43 and 44 are wider than the negative electrode mixture layer 42a in the width direction, the separators 43 and 44 are wound at positions where the metal foil surface is exposed at the positive electrode mixture layer non-formed portion 41b and the negative electrode mixture layer non-formed portion 42b. Therefore, it does not hinder bundle welding.
  • the electrode body element 40 has a configuration in which a long negative electrode 42 and a positive electrode 41 are arranged between the long first and second separators 43 and 44, respectively, and wound in a flat shape.
  • a configuration in which a plurality of units are stacked with the first separator 43 disposed between the strip-shaped positive electrode 41 and the negative electrode 42 as a unit and the second separator 44 is disposed between the units may be employed.
  • the energization cutoff mechanism is provided in the current path from the positive electrode terminal 61 of the positive electrode side terminal component 60 to the positive electrode current collector plate 21.
  • the positive electrode side terminal component 60 includes a positive electrode terminal 61, a positive electrode terminal bolt 63, a first insulator 64, a second insulator 65, a gasket 66, a positive electrode connection electrode 67, a conductive plate 68 that is deformed by an increase in battery internal pressure, and
  • the positive electrode current collector plate 21 is configured.
  • the positive electrode terminal 61, the first insulator 64, the second insulator 65, the gasket 66, and the positive electrode connection electrode 67 are caulked and fixed integrally at the battery inner end surface portion of the positive electrode terminal 61 and attached to the battery lid 3. Yes.
  • the positive electrode current collector plate 21 is integrally fixed to the second insulator 65.
  • the positive electrode terminal 61 includes a plate-like main body portion 61a disposed along the upper surface that is the outer side of the battery lid 3, a bolt insertion hole 61b that passes through the main body portion 61a and supports the positive terminal bolt 63, and a battery lid. 3 has a shaft portion 61c that is inserted through the opening 3a and protrudes to the inside of the battery lid 3, and the shaft portion 61c is provided with a through hole 61d that penetrates in the axial direction along the center thereof. .
  • the positive terminal bolt 63 includes a shaft portion 63a that is inserted into the bolt insertion hole 61b of the positive electrode terminal 61, and a head portion (bottom flat portion) that is supported by being interposed between the main body portion 61a and the first insulator 64. 63b.
  • the first insulator 64 is made of an insulating plate-like member interposed between the positive electrode terminal 61 and the upper surface of the battery lid 3, communicates with the opening 3 a of the battery lid 3, and the shaft portion of the positive electrode terminal 61.
  • An opening 64a (see FIG. 5) for inserting 61c is provided.
  • the gasket 66 is inserted into the opening 3 a of the battery lid 3 to insulate and seal between the shaft 61 c of the positive electrode terminal 61 and the battery lid 3.
  • the positive electrode connection electrode 67 is made of a conductive flat plate member disposed inside the battery lid 3, and is connected to the opening 3 a of the battery lid 3 at the center position thereof and inserted through the shaft portion 61 c of the positive electrode terminal 61.
  • An opening 67a is provided.
  • the positive electrode connection electrode 67 is disposed along the lower surface of the battery lid 3 with the second insulator 65 interposed between the positive electrode connection electrode 67 and an opening in a planar lower surface (planar portion) 67b. 67a is opened, and the tip of the shaft portion 61c of the positive electrode terminal 61 protruding from the opening 67a is expanded outward in the radial direction to be electrically connected to the positive electrode terminal 61 and insulated from the battery lid 3.
  • the battery lid 3 is integrally fixed in a state.
  • a caulking portion 61e of the shaft portion 61c of the positive electrode terminal 61 protrudes from the lower surface 67b of the positive electrode connection electrode 67, and a through hole 61d communicating with the outside of the battery opens toward the inside of the battery.
  • the second insulator 65 is made of an insulating plate-like member disposed along the lower surface of the battery lid 3, between the battery lid 3 and the positive electrode connection electrode 67, and between the battery lid 3 and the positive electrode current collector plate. 21 is interposed between the two to insulate them.
  • the second insulator 65 has a predetermined plate thickness, and is provided with a through hole 65 a that communicates with the opening 3 a of the battery lid 3 and through which the shaft portion 61 c of the positive electrode terminal 61 is inserted.
  • the second insulator 65 is caulked and fixed integrally with the battery lid 3 together with the positive electrode connection electrode 67 by the caulking portion 61e.
  • the second insulator 65 is provided with a recess 65b communicating with the through hole 65a and accommodating the positive electrode connection electrode 67 and the conductive plate 68.
  • the recess 65b is recessed in the lower surface of the second insulator 65 and communicates with the other space inside the battery.
  • the conductive plate 68 has a dome-shaped diaphragm portion 68a that gradually decreases in diameter as it moves in the axial direction, and a ring-shaped flange portion 68b that expands radially outward from the outer peripheral edge of the diaphragm portion 68a. Yes.
  • the diaphragm portion 68a gradually decreases in diameter as it moves in the direction away from the lower surface 67b of the positive electrode connection electrode 67 along the axial direction, and a curved surface portion having a circular arc shape with a convex cross section at least in part in the axial direction. In this embodiment, it has a hemispherical shape with a semi-elliptical cross section.
  • the diaphragm portion 68a faces and covers the opening end of the through hole 61d that opens to the lower surface 67b of the positive electrode connection electrode 67, and the flange portion 68b is bonded to the lower surface 67b of the positive electrode connection electrode 67 and hermetically sealed,
  • the space outside the battery and the space inside the battery communicated by the through hole 61d is partitioned.
  • the diaphragm portion 68a When the internal pressure of the battery case 2 rises above a preset upper limit value, the diaphragm portion 68a is deformed in a direction in which the protruding height is lowered due to a pressure difference with the outside of the battery case 2, and the positive electrode collector By breaking the fragile portion 25 of the electric plate 21 and separating the joint portion 24 with the conductive plate 68 from the base portion 22 of the positive current collector plate 21, the current path is interrupted, thereby acting as an energization interruption mechanism of the present invention. .
  • the flange portion 68b provided at the outer peripheral edge of the diaphragm portion 68a extends along a plane toward the radially outer side, continues at a constant width over the entire circumference, and contacts the lower surface of the positive electrode connection electrode 67. It has a ring shape that faces, and is continuously joined to the lower surface 67b of the positive electrode connection electrode 67 over the entire circumference by laser welding and hermetically sealed.
  • the diaphragm 68 a is set in material, plate thickness, cross-sectional shape, etc. so as to hold the joint 24 at a position separated from the positive electrode current collector 21 by plastic deformation even after the internal pressure of the battery container 2 is lowered.
  • a central portion 68c which is the top of the diaphragm portion 68a, is joined to the joint portion 24 of the positive electrode current collector plate 21 by laser welding.
  • the center portion 68c may be joined by resistance welding or ultrasonic welding in addition to laser welding.
  • the positive electrode current collector 21 is attached to and fixed to the second insulator 65.
  • the positive electrode current collector plate 21 has a flat plate-like base portion (upper surface flat portion) 22 that extends parallel to the lower surface of the battery lid 3, and a plurality of support holes 22 b are formed. They are formed so as to penetrate each other at a predetermined interval.
  • the base portion 22 is provided with a pair of edges 22a formed by bending in a direction away from the battery lid 3 along the pair of long sides, and the rigidity is improved so as to maintain a planar shape.
  • the pair of joining pieces 23 of the positive electrode current collector plate 21 are provided so as to continuously protrude from the respective edges 22a.
  • the positive electrode current collector plate 21 is formed by inserting a plurality of convex portions 65c projecting from the lower surface of the second insulator 65 into the respective support holes 22b of the base portion 22 and thermally welding the tips of the convex portions 65c. It is joined to the second insulator 65 and fixed integrally.
  • the positive electrode current collector plate 21 is provided with a joint portion 24 to be joined to the central portion 68c of the conductive plate 68.
  • the joint portion 24 is configured by a thin portion in which a part of the base portion 22 is thinned.
  • the fragile portion 25 is configured by providing a groove portion in a thin portion so as to surround the periphery of the joint portion 24, and is cut off at the groove portion by the conductive plate 68 that is deformed outward from the battery when the battery internal pressure rises.
  • the joint portion 24 can be separated from the base portion 22.
  • the fragile portion 25 breaks when a force in the pulling direction is applied to the battery lid 3 side due to the deformation of the conductive plate 68 due to the increase in the internal pressure of the battery case 2, while it is broken under normal operating environment such as vibration during traveling. Then, the dimensional shape and the like are set so that the strength does not break.
  • the center portion 68c of the conductive plate 68 and the joint portion 24 of the positive electrode current collector plate 21 are joined by laser welding, but resistance welding, ultrasonic welding, and the like are also possible.
  • a positive electrode active material layer (not shown) that reacts when the battery voltage becomes equal to or higher than the maximum operating power of the nonaqueous electrolyte secondary battery 1 to generate gas.
  • gas generation layer is provided on one member of the positive electrode mixture layer non-formed part 41b or the positive electrode current collector plate 21 as the positive electrode terminal in the container and the joining piece 23.
  • the energization cutoff mechanism operates when the internal pressure of the battery container 2 is increased by the gas generated by the reaction of the gas generation layer.
  • the positive electrode 41 includes a positive electrode current collector, a positive electrode mixture layer 41a formed on one or both surfaces of the positive electrode current collector, and a positive electrode mixture layer non-formed part. 41b.
  • the positive electrode current collector copper, aluminum, nickel, titanium, stainless steel foil or sheet metal, carbon sheet, carbon nanotube sheet, or the like can be used alone.
  • the positive electrode current collector may be a metal clad foil made of two or more kinds of materials, if necessary.
  • the positive electrode current collector can have a thickness of 5 to 100 ⁇ m, but preferably has a thickness of 7 to 20 ⁇ m from the viewpoint of structure and performance.
  • the positive electrode mixture layer 41a is composed of a first positive electrode active material, a conductive additive, and a binder.
  • the conductive auxiliary agent is at least one material selected from carbon black such as acetylene black (AB) and ketjen black (KB), carbon material such as graphite powder, and conductive metal powder such as nickel powder. Can be used.
  • carbon black such as acetylene black (AB) and ketjen black (KB)
  • carbon material such as graphite powder
  • conductive metal powder such as nickel powder.
  • At least one material selected from cellulose polymers, fluorine resins, vinyl acetate copolymers, rubbers and the like can be used.
  • at least one material selected from polyvinylidene fluoride (PVdF), polyimide (PI), polyvinylidene chloride (PVdC), polyethylene oxide (PEO), and the like can be used as the binder.
  • the positive electrode mixture layer 41a includes a positive electrode mixture slurry prepared by mixing the positive electrode active material, the conductive auxiliary agent, and the binder in an organic solvent such as N-methylpyrrolidone (NMP). It can be formed by coating on one or both sides and drying. The drying may be performed under reduced pressure.
  • NMP N-methylpyrrolidone
  • the positive electrode mixture layer 41a can be adjusted in thickness and density by appropriately pressing after the drying.
  • the positive electrode mixture layer 41a formed on the positive electrode current collector preferably has a density of 2.0 to 4.2 g / cm 3 because the balance between energy density and input / output characteristics is improved. More preferably, the density is 2.6 to 3.2 g / cm 3 .
  • the negative electrode 42 includes a negative electrode current collector, a negative electrode mixture layer 42a formed on one or both sides of the negative electrode current collector, and a negative electrode mixture layer non-formed part 42b.
  • the negative electrode current collector materials such as copper, aluminum, nickel, titanium, and stainless steel foil or sheet metal, carbon sheet, and carbon nanotube sheet can be used alone.
  • the negative electrode current collector may be a metal clad foil made of two or more materials as required.
  • the negative electrode current collector can have a thickness of 5 to 100 ⁇ m, but preferably has a thickness of 7 to 20 ⁇ m from the viewpoint of structure and performance.
  • the negative electrode mixture layer 42a is composed of a negative electrode active material, a conductive auxiliary agent, and a binder.
  • the negative electrode active material include soft carbon (graphitizable carbon), hard carbon (non-graphitizable carbon), carbon powder (amorphous carbon) such as graphite (graphite), silica (SiO x ), and titanium composite oxide.
  • At least one material selected from (Li 4 Ti 5 O 7 , TiO 2 , Nb 2 TiO 7 ), tin composite oxide, lithium alloy, metallic lithium and the like can be used.
  • the conductive auxiliary agent is at least one material selected from carbon black such as acetylene black (AB) and ketjen black (KB), carbon material such as graphite powder, and conductive metal powder such as nickel powder. Can be used.
  • carbon black such as acetylene black (AB) and ketjen black (KB)
  • carbon material such as graphite powder
  • conductive metal powder such as nickel powder.
  • the binder at least one material selected from cellulose polymers, fluorine resins, vinyl acetate copolymers, rubbers and the like can be used.
  • Specific examples of the binder in the case where an organic solvent is used as a solvent for the negative electrode mixture slurry described later include polyvinylidene fluoride (PVdF), polyimide (PI), polyvinylidene chloride (PVdC), polyethylene oxide (PEO), and the like. At least one material selected from can be used.
  • SBR styrene butadiene rubber
  • SBR latex acrylic acid-modified SBR resin
  • CMC carboxymethyl cellulose
  • PVA polytyrene butadiene rubber
  • PTFE polytetrafluoroethylene
  • HPMC hydroxypropylmethylcellulose
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the negative electrode mixture layer 42a can be adjusted in thickness and density by appropriately pressing after the drying.
  • the negative electrode mixture layer 42a formed on the negative electrode current collector preferably has a density of 0.7 to 2.0 g / cm 3 because the balance between energy density and input / output characteristics is improved. More preferably, the density is 1.0 to 1.7 g / cm 3 .
  • the electrolytic solution a non-aqueous solvent and an electrolyte can be used, and the concentration of the electrolyte is preferably in the range of 0.1 to 10 mol / L.
  • non-aqueous solvent examples include at least one aprotic solvent selected from carbonates, ethers, sulfones, lactones and the like.
  • aprotic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane ( DME), 1,2-diethoxyethane (DEE), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile (AN), propionitrile, nitromethane, At least one compound selected from N, N-dimethylformamide (DMF), dimethyl sulfoxide, sulfolane, y-butyrolactone and the like can be used.
  • a porous structure can be mentioned.
  • alumina Al 2 O 3
  • silica SiO 2
  • LiF LiCl
  • LiI Li 2 O
  • Li 2 S Li 3 N
  • Li 3 P Li 10 GeP 2 S 12
  • LGPS Li 3 PS 4
  • Li 6 PS 5 Cl Li 7 P 2 S 8 I
  • Li x PO y N z (x 2y + 3z-5, LiPON)
  • Li 7 La 3 Zr 2 O 12 LLZO
  • Li 3x La 2 / 3-x TiO 3 LLTO
  • Li 4 2x Zn x at least one compound selected from the GeO 4 (LISICON), or the like can
  • the separators 43 and 44 can be configured using at least one material selected from the porous resin sheet or the porous structure.
  • the separators 43 and 44 are made of only one of the materials, the separators 43 and 44 have a single layer structure, but when made of two or more kinds, the separators 43 and 44 may have a structure in which each material is laminated or may be in a mixed state.
  • the form is not particularly limited.
  • the gas generation layer includes a second positive electrode active material that generates gas, a conductive additive, and a binder.
  • the second positive electrode active material the same one as the first positive electrode active material can be used.
  • the reaction potential is high, the reactivity with the electrolytic solution is high, and gas is easily generated.
  • LiNi 0.5 Mn 1.5 O 4 (LNMO) is preferred.
  • the conductive additive or binder used for the gas generating layer the same one as used for the positive electrode mixture layer 41a can be used.
  • the gas generation layer includes a gas generation slurry obtained by mixing the second positive electrode active material, the conductive additive, and the binder in an organic solvent such as N-methylpyrrolidone (NMP), and the positive electrode current collector. It can form by apply
  • NMP N-methylpyrrolidone
  • the gas generating layer may be formed of a crystal or sintered body of the second positive electrode active material, at least one member of the positive electrode mixture layer unformed portion 41b of the positive electrode current collector, or the positive electrode terminals 21 and 23 in the container. You may form by adhering to.
  • the nonaqueous electrolyte secondary battery 1 is a battery container made of an aluminum alloy having a battery can 4 having a square deep-drawing shape and a battery lid 3 that seals the opening 4 a of the battery can 4.
  • the electrode body element 40 is accommodated in 2.
  • the nonaqueous electrolyte secondary battery 1 is not limited to the configuration of the present embodiment, and the material can be, for example, aluminum, steel, stainless steel, and the container shape is, for example, a cylindrical shape, a rectangular shape, A coin cell, a pouch (laminate), etc. can be used.
  • the diaphragm portion 68a that deforms according to the increase in the internal pressure of the battery container 2 and breaks the fragile portion 25 of the positive electrode current collector plate 21 is used. Any configuration may be used as long as it can cut off the energization between the positive electrode terminals 21 and 23 in the container or the negative electrode terminals 22 and 24 in the container and the outside of the container in accordance with the increase in the internal pressure of the battery container 2. .
  • the operating pressure of the energization cutoff mechanism can be, for example, in the range of 0.1 to 5 MPa, and preferably in the range of 0.5 to 2.2 MPa.
  • LiNi 0.5 Mn 1.5 O 4 (LNMO) as a second positive electrode active material that generates gas
  • AB acetylene black
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the positive electrode current collector including the positive electrode mixture layer 41a and the gas generation layer is dried and pressed to adjust the electrode density of the positive electrode mixture layer 41a to 3.2 g / cm 3 to form the positive electrode 41. did.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the negative electrode current collector including the negative electrode mixture layer 42a was dried and pressed to adjust the electrode density of the negative electrode mixture layer 42a to 1.5 g / cm 3 to form the negative electrode 42.
  • a positive electrode 41 and a negative electrode 42 are arranged between separators 43 and 44 having a two-layer structure of alumina (Al 2 O 3 ) and polyethylene (PE), respectively, and are rolled in a flat shape.
  • the electrode body element 40 was formed.
  • the end of the positive electrode current collector of the electrode body element 40 is ultrasonically welded to the bonding piece 23 of the positive electrode current collector plate 21 and the end of the negative electrode current collector is bonded to the bonding piece 24 of the negative electrode current collector plate 22 respectively.
  • the power generation element assembly 5 was formed by bonding.
  • the periphery of the electrode body element 40 is covered with an insulating sheet (not shown) and inserted into the battery can 4, the opening 4 a of the battery can 4 is closed with the battery lid 3, and the battery lid 3 is attached by laser welding.
  • the battery can 4 was joined and sealed.
  • an electrolytic solution is injected into the battery container 2 from the injection port 12, the injection port 12 is closed with the injection plug 11, joined to the battery lid 3 by laser welding, and sealed.
  • a secondary battery 1 was formed.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • a nonaqueous electrolytic solution in which LiPF 6 as a supporting salt was dissolved at a concentration of 1.2 mol / L was used.
  • the element energy density was calculated from the battery capacity in the range of 2.5 to 4.2 V at a current value equivalent to 0.33 C. The results are shown in Table 1.
  • Example 2 a lithium ion secondary battery 1 was formed in exactly the same manner as in Example 1 except that the negative electrode 42 and the electrolytic solution were as follows.
  • lithium titanate (LTO) as a negative electrode active material lithium titanate (LTO) as a negative electrode active material
  • AB acetylene black
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the solid content ratio was adjusted to 55% by mass to prepare a negative electrode mixture slurry.
  • NMP N-methylpyrrolidone
  • an aluminum foil having a thickness of 15 ⁇ m was used as a negative electrode current collector, and the negative electrode mixture slurry was applied to the negative electrode current collector to form a 42 mg / cm 2 negative electrode mixture layer 42a.
  • the negative electrode current collector provided with the negative electrode mixture layer 42 a was dried and pressed to adjust the electrode density of the negative electrode mixture layer 42 a to 2.1 g / cm 3 , thereby forming the negative electrode 42.
  • LiPF 6 LiPF 6
  • PC propylene carbonate
  • DEC diethyl carbonate
  • a non-aqueous electrolyte was formed by dissolving at a concentration of / L.
  • the element energy density was calculated from the battery capacity in the range of 1.5 to 2.7 V at a current value equivalent to 0.33 C.
  • the overcharge SOC and voltage when the pressure at which the energization shut-off mechanism is operated were reached in exactly the same manner as above. The results are shown in Table 1.
  • the element energy density is calculated in exactly the same way as in Example 1, while the overcharge SOC when the pressure at which the power cut-off mechanism is reached is calculated.
  • the voltage was measured. The results are shown in Table 1.
  • the element energy density is calculated in exactly the same way as in Example 2, while the overcharge SOC when the pressure at which the power cut-off mechanism is reached is calculated. The voltage was measured. The results are shown in Table 1.
  • Gr. Graphite powder
  • LTO Lithium titanate
  • LMNO LiNi 0.5 Mn 1.5 O 4
  • Operating SOC % Operating voltage: V From Table 1, according to the lithium ion secondary battery of Examples 1 and 2 provided with the gas generation layer in the positive electrode mixture layer non-formed part 41b, the lithium ion secondary of Comparative Examples 1 and 2 not including the gas generation layer While the element volume energy density is the same for each battery, the operating SOC and operating voltage of the energization interruption mechanism are low, and the energization interruption mechanism can be reliably activated during overcharge without degrading battery performance. it is obvious.
  • Nonaqueous electrolyte secondary battery 2 ... Battery container, 21, 23 ... Positive electrode terminal in a container, 22, 24 ... Negative electrode terminal in a container, 41 ... Positive electrode, 41a ... Positive electrode mixture layer, 41b ... Positive electrode mixture layer not Forming part, 42 ... negative electrode, 42a ... negative electrode mixture layer, 42b ... negative electrode mixture layer non-formed part, 68b ... diaphragm part (energization interruption mechanism).

Abstract

A nonaqueous-electrolyte secondary cell is provided with which it is possible to cause a powering interruption mechanism to operate reliably during overcharging without reducing cell performance. The nonaqueous-electrolyte secondary cell 1 comprises: a positive electrode 41 inside a container 2; in-container positive electrode terminals 21, 23; a negative electrode 42; in-container negative electrode terminals 22, 24; a nonaqueous electrolytic solution; and a powering interruption mechanism 68b that can interrupt powering with a unit outside the container when the container internal pressure has increased. A positive-electrode mixture layer non-formed section 41b, or at least one of the in-container positive electrode terminals 21, 23, comprises a positive-electrode active material layer that generates a gas that enables operation of the powering interruption mechanism 68b.

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は、非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.
 従来、容器内に、正極合剤層と正極集電体とを有する正極と、負極合剤層と負極集電体とを有する負極と、非水電解液とを備える非水電解質二次電池が知られている。前記非水電解質二次電池では、電池反応を担う電荷担体として、例えば、リチウムイオンが用いられる。 Conventionally, a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode mixture layer and a positive electrode current collector, a negative electrode having a negative electrode material mixture layer and a negative electrode current collector, and a non-aqueous electrolyte in a container. Are known. In the non-aqueous electrolyte secondary battery, for example, lithium ions are used as the charge carrier responsible for the battery reaction.
 前記非水電解質二次電池は、過充電状態になると電解液の非水溶媒等が電気分解されて気体が発生し、内圧が上昇する。そこで、過充電により内圧が上昇したときに、正極又は負極と外部との通電を遮断する通電遮断機構を備える非水電解質二次電池が知られている(例えば、特許文献1参照)。 When the non-aqueous electrolyte secondary battery is overcharged, the non-aqueous solvent of the electrolytic solution is electrolyzed to generate gas, and the internal pressure rises. Therefore, a non-aqueous electrolyte secondary battery is known that includes an energization cutoff mechanism that interrupts energization between the positive electrode or the negative electrode and the outside when the internal pressure increases due to overcharging (see, for example, Patent Document 1).
 また、過充電時に前記通電遮断機構を確実に作動させるために、前記非水電解質二次電池の最大動作電力以上の電圧により反応して気体を生成する気体発生剤を電解液中に含む非水電解質二次電池が知られている(例えば、特許文献2参照)。前記気体発生剤を電解液中に含む非水電解質二次電池によれば、過充電時には、前記非水溶媒等の電気分解による気体の発生に先だって、前記気体発生剤から生成する気体により該非水電解質二次電池の内圧を上昇させ、前記通電遮断機構を確実に作動可能とすることができる。 In addition, in order to reliably operate the energization cutoff mechanism during overcharge, the non-aqueous electrolyte contains a gas generating agent that reacts with a voltage equal to or higher than the maximum operating power of the non-aqueous electrolyte secondary battery to generate gas. An electrolyte secondary battery is known (see, for example, Patent Document 2). According to the non-aqueous electrolyte secondary battery containing the gas generating agent in the electrolyte, at the time of overcharging, the non-aqueous electrolyte is generated by the gas generated from the gas generating agent prior to gas generation by electrolysis of the non-aqueous solvent or the like. By increasing the internal pressure of the electrolyte secondary battery, the energization cutoff mechanism can be reliably operated.
国際公開第2014/049848号International Publication No. 2014/049848 特開2013-69490号公報JP 2013-69490 A
 しかしながら、特許文献2に記載の非水電解質二次電池では、前記気体発生剤が電解液中に添加されているために、該気体発生剤により電池反応が阻害され、入出力特性やエネルギー密度等の電池性能が低下するという不都合がある。 However, in the nonaqueous electrolyte secondary battery described in Patent Document 2, since the gas generating agent is added to the electrolytic solution, the cell reaction is inhibited by the gas generating agent, and the input / output characteristics, energy density, etc. There is an inconvenience that the battery performance decreases.
 また、非水電解質二次電池において、前記気体発生剤を正極合剤層又は、負極合剤層中に添加することも考えられるが、この場合には生成した気体が正極合剤層又は、負極合剤層中に閉じ込められ、前記通電遮断機構を作動させることができないことが懸念される。 In addition, in the nonaqueous electrolyte secondary battery, it may be possible to add the gas generating agent to the positive electrode mixture layer or the negative electrode mixture layer. In this case, the generated gas is used as the positive electrode mixture layer or the negative electrode layer. There is a concern that the current-carrying-off mechanism cannot be operated because it is trapped in the mixture layer.
 本発明は、かかる不都合を解消して、電池性能を低下させることなく、過充電時には通電遮断機構を確実に作動させることができる非水電解質二次電池を提供することを目的とする。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can eliminate such inconvenience and can reliably operate an energization cutoff mechanism during overcharge without deteriorating battery performance.
 かかる目的を達成するために、本発明の非水電解質二次電池は、容器内に、正極合剤層と正極集電体とを有する正極と、該正極集電体の正極合剤層未形成部と電気的に接続する容器内正極端子と、負極合剤層と負極集電体とを有する負極と、該負極集電体の負極合剤層未形成部と電気的に接続する容器内負極端子と、非水電解液と、該容器の内圧が上昇したときに該容器内正極端子又は該容器内負極端子と該容器外部との通電を遮断可能な通電遮断機構とを備える非水電解質二次電池において、該正極合剤層未形成部又は、該容器内正極端子の少なくとも1つの部材に、該非水電解質二次電池の最大動作電力以上の電圧により反応して該容器の内圧を上昇させ該通電遮断機構を作動可能とする気体を生成する正極活物質層を備えることを特徴とする。 In order to achieve this object, the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode having a positive electrode mixture layer and a positive electrode current collector in a container, and a positive electrode mixture layer of the positive electrode current collector not formed. In-container positive electrode terminal that is electrically connected to a portion, a negative electrode having a negative electrode mixture layer and a negative electrode current collector, and a negative electrode in a container that is electrically connected to a negative electrode mixture layer-unformed portion of the negative electrode current collector A non-aqueous electrolyte comprising: a terminal; a non-aqueous electrolyte; and an energization cutoff mechanism capable of interrupting energization between the positive electrode terminal in the container or the negative electrode terminal in the container and the outside of the container when the internal pressure of the container increases. In the secondary battery, the internal pressure of the container is increased by reacting with at least one member of the positive electrode mixture layer unformed part or the positive electrode terminal in the container with a voltage higher than the maximum operating power of the nonaqueous electrolyte secondary battery. A positive electrode active material layer that generates a gas capable of operating the energization cutoff mechanism; To.
 本発明の非水電解質二次電池によれば、電池電圧が過充電により該非水電解質二次電池の最大動作電力以上の電圧になると、気体を生成する正極活物質層を形成する正極活物質が分解又は変質し、該正極活物質の組成中の元素が気化することにより気体が発生する。或いは、前記正極活物質又は変質した正極活物質が、前記導電助剤、バインダー又は電解液と、その界面で反応し、該導電助剤、バインダー又は電解液が分解して気体が発生する。 According to the nonaqueous electrolyte secondary battery of the present invention, when the battery voltage becomes a voltage equal to or higher than the maximum operating power of the nonaqueous electrolyte secondary battery due to overcharging, the positive electrode active material that forms the positive electrode active material layer that generates gas is A gas is generated when the element in the composition of the positive electrode active material is vaporized by being decomposed or altered. Alternatively, the positive electrode active material or the modified positive electrode active material reacts with the conductive auxiliary agent, binder, or electrolytic solution at the interface thereof, and the conductive auxiliary agent, binder, or electrolytic solution is decomposed to generate gas.
 この結果、前記容器内の内圧が上昇して、前記通電遮断機構が作動し、前記容器内正極端子又は前記容器内負極端子と該容器外部との通電を遮断するので、過充電を防止することができる。 As a result, the internal pressure in the container rises, the energization shut-off mechanism operates, and the energization between the positive electrode terminal in the container or the negative electrode terminal in the container and the outside of the container is interrupted, thereby preventing overcharge. Can do.
 このとき、本発明の非水電解質二次電池は、前記正極合剤層未形成部又は、前記容器内正極端子の少なくとも1つの部材に、前記正極活物質層を備えているので、前記正極合剤層、前記負極合剤層又は前記非水電解液における電池反応が前記正極活物質により阻害されることがなく、エネルギー密度等の電池性能が低下することを防止することができる。また、前記正極活物質の分解若しくは変質により、又は、該正極活物質又は変質した正極活物質と反応した前記導電助剤、バインダーもしくは電解液の分解により生成した気体が、該正極合剤層又は、該負極合剤層中に閉じ込められることがないので、前記通電遮断機構を確実に作動させることができる。 At this time, the non-aqueous electrolyte secondary battery of the present invention includes the positive electrode active material layer in at least one member of the positive electrode mixture layer unformed part or the positive electrode terminal in the container. The battery reaction in the agent layer, the negative electrode mixture layer, or the non-aqueous electrolyte is not inhibited by the positive electrode active material, and the battery performance such as energy density can be prevented from being lowered. Further, a gas generated by decomposition or alteration of the positive electrode active material or by decomposition of the conductive additive, binder or electrolyte solution reacted with the positive electrode active material or the altered positive electrode active material is the positive electrode mixture layer or Since the negative electrode mixture layer is not trapped, the energization cutoff mechanism can be operated reliably.
 本発明の非水電解質二次電池において、前記気体を生成する正極活物質層は、正極活物質としてLiNi0.5Mn1.5(LNMO)を含むことが好ましい。LiNi0.5Mn1.5(LNMO)は、反応電位が高く、前記電解液との反応性が高いので、容易に気体を発生させることができる。 In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material layer that generates the gas preferably contains LiNi 0.5 Mn 1.5 O 4 (LNMO) as the positive electrode active material. Since LiNi 0.5 Mn 1.5 O 4 (LNMO) has a high reaction potential and a high reactivity with the electrolytic solution, gas can be easily generated.
本実施形態の非水電解質二次電池の一構成例を示す斜視図。The perspective view which shows the example of 1 structure of the nonaqueous electrolyte secondary battery of this embodiment. 図1に示す非水電解質二次電池の分解斜視図。The disassembled perspective view of the nonaqueous electrolyte secondary battery shown in FIG. 図1に示す非水電解質二次電池の電極体素子の分解斜視図。The disassembled perspective view of the electrode body element of the nonaqueous electrolyte secondary battery shown in FIG. 図1に示す非水電解質二次電池の通電遮断機構の構成を示す部分断面図。The fragmentary sectional view which shows the structure of the electricity supply interruption | blocking mechanism of the nonaqueous electrolyte secondary battery shown in FIG. 図4に示す構成の部品の分解斜視図。The disassembled perspective view of the components of the structure shown in FIG.
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
 本実施形態の非水電解質二次電池1は、図1及び図2に示すように、角形の深絞り形状を有する電池缶4と、電池缶4の開口部4aを封口する電池蓋3とを有する電池容器2を有している。電池容器2内には、発電要素が収容されている。発電要素は、正極41と負極42との間にセパレータ43,44を介在させて重ね合わせた状態で扁平状に捲回した電極体素子40を有している。電極体素子40は、正極集電板21、負極集電板31と共にその外側から絶縁シート(図示せず)によって覆われた状態で電池缶4内に挿入される。 As shown in FIGS. 1 and 2, the nonaqueous electrolyte secondary battery 1 of the present embodiment includes a battery can 4 having a square deep-drawn shape and a battery lid 3 that seals the opening 4 a of the battery can 4. The battery container 2 is provided. A power generation element is accommodated in the battery container 2. The power generation element includes an electrode body element 40 wound in a flat shape in a state where the separators 43 and 44 are interposed between the positive electrode 41 and the negative electrode 42 so as to overlap each other. The electrode body element 40 is inserted into the battery can 4 while being covered with an insulating sheet (not shown) from the outside together with the positive electrode current collecting plate 21 and the negative electrode current collecting plate 31.
 電池缶4及び電池蓋3は、共にアルミニウム合金で製作されており、電池蓋3は、レーザー溶接によって電池缶4に接合されて、開口部4aを封口する。電池蓋3には、正極側端子構成部60と、負極側端子構成部70が設けられており、蓋組立体が形成されている。 The battery can 4 and the battery lid 3 are both made of an aluminum alloy, and the battery lid 3 is joined to the battery can 4 by laser welding to seal the opening 4a. The battery lid 3 is provided with a positive electrode side terminal component 60 and a negative electrode terminal component 70 to form a lid assembly.
 正極側端子構成部60と負極側端子構成部70は、電池蓋3との間に第1の絶縁体64、74を介して配設された正極端子61と負極端子71とを有している。電池蓋3には、正極端子61及び負極端子71の他に、電池容器2内の圧力が所定値よりも上昇すると開放されて電池容器2内のガスを排出するガス排出弁13と、電池容器2内に電解液を注入するための注液口12と、電解液の注液後に注液口12を封止する注液栓11が配設されている。注液栓11は、注液口12を閉塞した状態でレーザー溶接により電池蓋3に接合され、注液口12を封口する。 The positive electrode side terminal component 60 and the negative electrode terminal component 70 have a positive electrode terminal 61 and a negative electrode terminal 71 disposed between the battery lid 3 via first insulators 64 and 74. . In addition to the positive electrode terminal 61 and the negative electrode terminal 71, the battery lid 3 includes a gas discharge valve 13 that is opened when the pressure in the battery container 2 rises above a predetermined value and discharges the gas in the battery container 2, and the battery container A liquid injection port 12 for injecting an electrolytic solution into 2 and a liquid injection plug 11 for sealing the liquid injection port 12 after the injection of the electrolytic solution are disposed. The injection plug 11 is joined to the battery lid 3 by laser welding in a state where the injection port 12 is closed, and seals the injection port 12.
 正極端子61及び負極端子71は、長方形を有する電池蓋3の外側で且つ長辺に沿った方向の一方側と他方側の互いに離れた位置に配置されている。正極端子61及び負極端子71は、バスバー接続端子を固定するための端子ボルト63,73を保持し、電池蓋3の内側にまで配置されて導通接続されている。正極端子61は、アルミニウム、またはアルミニウム合金で製作され、負極端子71は、銅合金で製作されている。 The positive electrode terminal 61 and the negative electrode terminal 71 are arranged outside the rectangular battery lid 3 and at positions separated from each other on one side and the other side in the direction along the long side. The positive electrode terminal 61 and the negative electrode terminal 71 hold terminal bolts 63 and 73 for fixing the bus bar connection terminal, and are arranged and connected to the inside of the battery lid 3. The positive terminal 61 is made of aluminum or an aluminum alloy, and the negative terminal 71 is made of a copper alloy.
 正極端子61は、電池蓋3の外側にガスケット66及び第1の絶縁体64が介在され且つ電池蓋3の内側に第2の絶縁体65が介在されており(図4を参照)、電池蓋3から電気的に絶縁されている。正極端子61は、第2の絶縁体65と接続電極67とともにかしめられて、電池蓋3に固定される。 The positive electrode terminal 61 has a gasket 66 and a first insulator 64 interposed outside the battery lid 3 and a second insulator 65 interposed inside the battery lid 3 (see FIG. 4). 3 is electrically insulated. The positive electrode terminal 61 is caulked together with the second insulator 65 and the connection electrode 67 and fixed to the battery lid 3.
 正極端子61は、通電遮断機構を間に介して正極集電板21に電気的に接続されている。尚、通電遮断機構の構成についての詳細は後述する。負極端子71は、接続端子(図示せず)を間に介して負極集電板31に電気的に接続されている。 The positive electrode terminal 61 is electrically connected to the positive electrode current collector plate 21 through an energization cutoff mechanism. Details of the configuration of the energization cutoff mechanism will be described later. The negative electrode terminal 71 is electrically connected to the negative electrode current collector plate 31 via a connection terminal (not shown).
 正極集電板21、負極集電板31は、電池缶4の底部に向かって延出して電極体素子40に導通接続される平坦状の一対の接合片23、33を有している。そして、正極集電板21、接合片23により容器内正極端子が構成され、負極集電板31、接合片33により容器内負極端子が構成されている。各接合片23,33は、電極体素子40の捲回軸方向両端部に設けられている正極41及び負極42に溶接により接合される。溶接方法としては、超音波溶接、抵抗溶接、レーザー溶接等を用いることができる。 The positive electrode current collecting plate 21 and the negative electrode current collecting plate 31 have a pair of flat joining pieces 23 and 33 that extend toward the bottom of the battery can 4 and are electrically connected to the electrode body element 40. The positive electrode current collecting plate 21 and the joining piece 23 constitute an in-container positive electrode terminal, and the negative electrode current collecting plate 31 and the joining piece 33 constitute an in-container negative electrode terminal. Each joining piece 23 and 33 is joined to the positive electrode 41 and the negative electrode 42 which are provided in the winding-axis direction both ends of the electrode body element 40 by welding. As a welding method, ultrasonic welding, resistance welding, laser welding, or the like can be used.
 電極体素子40は、正極集電板21の接合片23と負極集電板31の接合片33との間に配置されて両端が支持されており、蓋組立体及び電極体素子40によって、発電要素組立体5が構成されている。 The electrode body element 40 is disposed between the joint piece 23 of the positive electrode current collector plate 21 and the joint piece 33 of the negative electrode current collector plate 31, and both ends thereof are supported, and the lid assembly and the electrode body element 40 generate power. An element assembly 5 is configured.
 電極体素子40は、巻き終わり側を展開した状態で図3に示すように、第1、第2セパレータ43,44の間に、それぞれ負極42、正極41を配置して扁平状に捲回することによって構成される。正極41は、図示しない正極集電体上に形成された正極合剤層41aと、正極合剤層未形成部41bとを備え、負極42は、図示しない負極集電体上に形成された負極合剤層42aと、負極合剤層未形成部42bとを備えている。電極体素子40は、図3に示すように、最外周の電極が負極42であり、さらにその外側にセパレータ44が捲回される。 The electrode body element 40 is wound in a flat shape by disposing a negative electrode 42 and a positive electrode 41 between the first and second separators 43 and 44, respectively, as shown in FIG. Consists of. The positive electrode 41 includes a positive electrode mixture layer 41a formed on a positive electrode current collector (not shown) and a positive electrode mixture layer non-formed portion 41b. The negative electrode 42 is a negative electrode formed on a negative electrode current collector (not shown). A mixture layer 42a and a negative electrode mixture layer unformed portion 42b are provided. As shown in FIG. 3, in the electrode body element 40, the outermost electrode is the negative electrode 42, and the separator 44 is wound around the outer side thereof.
 セパレータ43,44は、正極41と負極42を絶縁する役割を有している。負極42の負極合剤層42aは、正極41の正極合剤層41aよりも幅方向に大きく、これにより正極合剤層41aは、必ず負極合剤層42aに挟まれるように構成されている。 The separators 43 and 44 have a role of insulating the positive electrode 41 and the negative electrode 42. The negative electrode mixture layer 42a of the negative electrode 42 is larger in the width direction than the positive electrode mixture layer 41a of the positive electrode 41, so that the positive electrode mixture layer 41a is always sandwiched between the negative electrode mixture layers 42a.
 正極合剤層未形成部41b、負極合剤層未形成部42bは、平面部分で束ねられて溶接等により正極端子61、負極端子71につながる各極の正極集電板21及び負極集電板31に接続される。尚、セパレータ43,44は、幅方向で負極合剤層42aよりも広いが、正極合剤層未形成部41b、負極合剤層未形成部42bで金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。 The positive electrode mixture layer non-formed part 41b and the negative electrode mixture layer non-formed part 42b are bundled in a plane portion and connected to the positive electrode terminal 61 and the negative electrode terminal 71 by welding or the like. 31 is connected. Although the separators 43 and 44 are wider than the negative electrode mixture layer 42a in the width direction, the separators 43 and 44 are wound at positions where the metal foil surface is exposed at the positive electrode mixture layer non-formed portion 41b and the negative electrode mixture layer non-formed portion 42b. Therefore, it does not hinder bundle welding.
 本実施形態では、電極体素子40を、長尺の第1、第2セパレータ43,44の間に、それぞれ長尺の負極42、正極41を配置して扁平状に捲回した構成としているが、それぞれ短冊状の正極41、負極42の間に第1セパレータ43を配置したものを単位として、複数の単位を積層し、各単位の間に第2セパレータ44を配置した構成としてもよい。 In the present embodiment, the electrode body element 40 has a configuration in which a long negative electrode 42 and a positive electrode 41 are arranged between the long first and second separators 43 and 44, respectively, and wound in a flat shape. A configuration in which a plurality of units are stacked with the first separator 43 disposed between the strip-shaped positive electrode 41 and the negative electrode 42 as a unit and the second separator 44 is disposed between the units may be employed.
 次に、図4及び図5を参照して、通電遮断機構の詳細について説明する。 Next, with reference to FIG.4 and FIG.5, the detail of an electricity interruption | blocking mechanism is demonstrated.
 通電遮断機構は、正極側端子構成部60の正極端子61から正極集電板21までの電流経路に設けられている。 The energization cutoff mechanism is provided in the current path from the positive electrode terminal 61 of the positive electrode side terminal component 60 to the positive electrode current collector plate 21.
 正極側端子構成部60は、正極端子61、正極端子ボルト63、第1の絶縁体64、第2の絶縁体65、ガスケット66、正極接続電極67、電池内圧の上昇により変形する導電板68及び、正極集電板21から構成される。正極端子61、第1の絶縁体64、第2の絶縁体65、ガスケット66、正極接続電極67は、正極端子61の電池内側端面部で一体的にかしめ固定され、電池蓋3に取り付けられている。そして、正極集電板21は、第2の絶縁体65に一体的に固定されている。 The positive electrode side terminal component 60 includes a positive electrode terminal 61, a positive electrode terminal bolt 63, a first insulator 64, a second insulator 65, a gasket 66, a positive electrode connection electrode 67, a conductive plate 68 that is deformed by an increase in battery internal pressure, and The positive electrode current collector plate 21 is configured. The positive electrode terminal 61, the first insulator 64, the second insulator 65, the gasket 66, and the positive electrode connection electrode 67 are caulked and fixed integrally at the battery inner end surface portion of the positive electrode terminal 61 and attached to the battery lid 3. Yes. The positive electrode current collector plate 21 is integrally fixed to the second insulator 65.
 正極端子61は、電池蓋3の外側である上面に沿って配置される板状の本体部61aと、本体部61aを貫通して正極端子ボルト63を挿通支持するボルト挿通孔61bと、電池蓋3の開口部3aに挿通されて電池蓋3の内側に突出する軸部61cを有しており、軸部61cには、その中心に沿って軸方向に貫通する貫通孔61dが設けられている。 The positive electrode terminal 61 includes a plate-like main body portion 61a disposed along the upper surface that is the outer side of the battery lid 3, a bolt insertion hole 61b that passes through the main body portion 61a and supports the positive terminal bolt 63, and a battery lid. 3 has a shaft portion 61c that is inserted through the opening 3a and protrudes to the inside of the battery lid 3, and the shaft portion 61c is provided with a through hole 61d that penetrates in the axial direction along the center thereof. .
 正極端子ボルト63は、正極端子61のボルト挿通孔61bに挿通される軸部63aと、本体部61aと第1の絶縁体64との間に介在されて支持されるヘッド部(底平坦部)63bとを有している。 The positive terminal bolt 63 includes a shaft portion 63a that is inserted into the bolt insertion hole 61b of the positive electrode terminal 61, and a head portion (bottom flat portion) that is supported by being interposed between the main body portion 61a and the first insulator 64. 63b.
 第1の絶縁体64は、正極端子61と電池蓋3の上面との間に介在される絶縁性の板状部材からなり、電池蓋3の開口部3aに連通して正極端子61の軸部61cを挿通するための開口部64a(図5を参照)を有している。 The first insulator 64 is made of an insulating plate-like member interposed between the positive electrode terminal 61 and the upper surface of the battery lid 3, communicates with the opening 3 a of the battery lid 3, and the shaft portion of the positive electrode terminal 61. An opening 64a (see FIG. 5) for inserting 61c is provided.
 ガスケット66は、電池蓋3の開口部3aに挿入されて正極端子61の軸部61cと電池蓋3との間を絶縁しかつシールする。 The gasket 66 is inserted into the opening 3 a of the battery lid 3 to insulate and seal between the shaft 61 c of the positive electrode terminal 61 and the battery lid 3.
 正極接続電極67は、電池蓋3の内側に配置される導電性の平板部材からなり、その中心位置には、電池蓋3の開口部3aに連通して正極端子61の軸部61cを挿通するための開口部67aが設けられている。正極接続電極67は、電池蓋3との間に第2の絶縁体65を介在させた状態で電池蓋3の下面に沿って配置されており、平面状の下面(平面部)67bに開口部67aが開口し、その開口部67aから突出する正極端子61の軸部61cの先端を径方向外側に拡げてかしめることにより、正極端子61に電気的に接続され且つ電池蓋3から絶縁された状態で電池蓋3に一体に固定されている。正極接続電極67の下面67bには、正極端子61の軸部61cのかしめ部61eが突出しており、電池外側に連通する貫通孔61dが電池内側に向かって開口している。 The positive electrode connection electrode 67 is made of a conductive flat plate member disposed inside the battery lid 3, and is connected to the opening 3 a of the battery lid 3 at the center position thereof and inserted through the shaft portion 61 c of the positive electrode terminal 61. An opening 67a is provided. The positive electrode connection electrode 67 is disposed along the lower surface of the battery lid 3 with the second insulator 65 interposed between the positive electrode connection electrode 67 and an opening in a planar lower surface (planar portion) 67b. 67a is opened, and the tip of the shaft portion 61c of the positive electrode terminal 61 protruding from the opening 67a is expanded outward in the radial direction to be electrically connected to the positive electrode terminal 61 and insulated from the battery lid 3. The battery lid 3 is integrally fixed in a state. A caulking portion 61e of the shaft portion 61c of the positive electrode terminal 61 protrudes from the lower surface 67b of the positive electrode connection electrode 67, and a through hole 61d communicating with the outside of the battery opens toward the inside of the battery.
 第2の絶縁体65は、電池蓋3の下面に沿って配置される絶縁性の板状部材からなり、電池蓋3と正極接続電極67との間、及び、電池蓋3と正極集電板21との間に介在されて、これらの間を絶縁する。第2の絶縁体65は、所定の板厚を有しており、電池蓋3の開口部3aに連通して正極端子61の軸部61cが挿通される貫通孔65aが設けられている。第2の絶縁体65は、かしめ部61eによって、正極接続電極67と共に電池蓋3に一体にかしめ固定されている。 The second insulator 65 is made of an insulating plate-like member disposed along the lower surface of the battery lid 3, between the battery lid 3 and the positive electrode connection electrode 67, and between the battery lid 3 and the positive electrode current collector plate. 21 is interposed between the two to insulate them. The second insulator 65 has a predetermined plate thickness, and is provided with a through hole 65 a that communicates with the opening 3 a of the battery lid 3 and through which the shaft portion 61 c of the positive electrode terminal 61 is inserted. The second insulator 65 is caulked and fixed integrally with the battery lid 3 together with the positive electrode connection electrode 67 by the caulking portion 61e.
 そして、第2の絶縁体65には、貫通孔65aに連通しかつ正極接続電極67と導電板68が収容される凹部65bが設けられている。凹部65bは、第2の絶縁体65の下面に凹設されており、電池内側の他の空間部分と連通している。 The second insulator 65 is provided with a recess 65b communicating with the through hole 65a and accommodating the positive electrode connection electrode 67 and the conductive plate 68. The recess 65b is recessed in the lower surface of the second insulator 65 and communicates with the other space inside the battery.
 導電板68は、軸方向に移行するにしたがって漸次縮径するドーム状のダイアフラム部68aと、ダイアフラム部68aの外形周縁部から径方向外側に向かって拡がるリング状のフランジ部68bとを有している。ダイアフラム部68aは、軸方向に沿って正極接続電極67の下面67bから離反する方向に移行するにしたがって漸次縮径し、軸方向の少なくとも一部に断面が凸状の円弧形状となる湾曲面部を有しており、本実施の形態では、断面が半楕円形状となる半球面形状を有している。そして、ダイアフラム部68aが正極接続電極67の下面67bに開口する貫通孔61dの開口端に対向してこれを覆い、フランジ部68bが正極接続電極67の下面67bに接合されて密閉封止し、貫通孔61dによって連通されている電池外側の空間と電池内側の空間との間を区画している。 The conductive plate 68 has a dome-shaped diaphragm portion 68a that gradually decreases in diameter as it moves in the axial direction, and a ring-shaped flange portion 68b that expands radially outward from the outer peripheral edge of the diaphragm portion 68a. Yes. The diaphragm portion 68a gradually decreases in diameter as it moves in the direction away from the lower surface 67b of the positive electrode connection electrode 67 along the axial direction, and a curved surface portion having a circular arc shape with a convex cross section at least in part in the axial direction. In this embodiment, it has a hemispherical shape with a semi-elliptical cross section. Then, the diaphragm portion 68a faces and covers the opening end of the through hole 61d that opens to the lower surface 67b of the positive electrode connection electrode 67, and the flange portion 68b is bonded to the lower surface 67b of the positive electrode connection electrode 67 and hermetically sealed, The space outside the battery and the space inside the battery communicated by the through hole 61d is partitioned.
 ダイアフラム部68aは、電池容器2の内圧が予め設定された上限値よりも上昇した場合に、電池容器2の外部との圧力差により、その突出高さが低くなる方向に変形して、正極集電板21の脆弱部25を破断させ、導電板68との接合部24を正極集電板21の基部22から分離して、電流経路を遮断することにより、本発明の通電遮断機構として作用する。 When the internal pressure of the battery case 2 rises above a preset upper limit value, the diaphragm portion 68a is deformed in a direction in which the protruding height is lowered due to a pressure difference with the outside of the battery case 2, and the positive electrode collector By breaking the fragile portion 25 of the electric plate 21 and separating the joint portion 24 with the conductive plate 68 from the base portion 22 of the positive current collector plate 21, the current path is interrupted, thereby acting as an energization interruption mechanism of the present invention. .
 ダイアフラム部68aの外形周縁部に設けられているフランジ部68bは、径方向外側に向かって一平面上に沿って拡がり、全周に亘って一定幅で連続し、正極接続電極67の下面に接面するリング形状を有しており、レーザー溶接により正極接続電極67の下面67bに全周に亘って連続して接合されて密閉封止されている。 The flange portion 68b provided at the outer peripheral edge of the diaphragm portion 68a extends along a plane toward the radially outer side, continues at a constant width over the entire circumference, and contacts the lower surface of the positive electrode connection electrode 67. It has a ring shape that faces, and is continuously joined to the lower surface 67b of the positive electrode connection electrode 67 over the entire circumference by laser welding and hermetically sealed.
 ダイアフラム部68aは、電池容器2の内圧が低下した後も塑性変形により接合部24を正極集電板21から分離した位置に保持するように、材料、板厚、断面形状等が設定されている。ダイアフラム部68aの頂部である中央部68cは、レーザー溶接によって正極集電板21の接合部24に接合されている。中央部68cの接合は、レーザー溶接の他、抵抗溶接、超音波溶接によって行ってもよい。 The diaphragm 68 a is set in material, plate thickness, cross-sectional shape, etc. so as to hold the joint 24 at a position separated from the positive electrode current collector 21 by plastic deformation even after the internal pressure of the battery container 2 is lowered. . A central portion 68c, which is the top of the diaphragm portion 68a, is joined to the joint portion 24 of the positive electrode current collector plate 21 by laser welding. The center portion 68c may be joined by resistance welding or ultrasonic welding in addition to laser welding.
 正極集電板21は、第2の絶縁体65に取り付けられて固定されている。正極集電板21は、図5に示すように、電池蓋3の下面に対向して平行に延在する平板状の基部(上面平面部)22を有しており、複数の支持穴22bが互いに所定間隔をおいて配置されるように貫通して形成されている。基部22には、一対の長辺に沿って電池蓋3から離反する方向に折り曲げて形成された一対のエッジ22aが設けられており、平面形状を保つように剛性の向上が図られている。正極集電板21の一対の接合片23は、各エッジ22aに連続して突出するように設けられている。 The positive electrode current collector 21 is attached to and fixed to the second insulator 65. As shown in FIG. 5, the positive electrode current collector plate 21 has a flat plate-like base portion (upper surface flat portion) 22 that extends parallel to the lower surface of the battery lid 3, and a plurality of support holes 22 b are formed. They are formed so as to penetrate each other at a predetermined interval. The base portion 22 is provided with a pair of edges 22a formed by bending in a direction away from the battery lid 3 along the pair of long sides, and the rigidity is improved so as to maintain a planar shape. The pair of joining pieces 23 of the positive electrode current collector plate 21 are provided so as to continuously protrude from the respective edges 22a.
 正極集電板21は、第2の絶縁体65の下面に突設された複数の凸部65cを基部22の各支持穴22bに挿入して、凸部65cの先端を熱溶着することにより、第2の絶縁体65に接合されて一体に固定される。 The positive electrode current collector plate 21 is formed by inserting a plurality of convex portions 65c projecting from the lower surface of the second insulator 65 into the respective support holes 22b of the base portion 22 and thermally welding the tips of the convex portions 65c. It is joined to the second insulator 65 and fixed integrally.
 正極集電板21には、導電板68の中央部68cに接合される接合部24が設けられている。接合部24は、基部22の一部を薄肉化した薄肉部によって構成されている。脆弱部25は、接合部24の周囲を囲むように薄肉部に溝部を設けることによって構成されており、電池内圧が上昇したときに電池外方向に変形する導電板68によって溝部で断絶されて、基部22から接合部24を分離できるようになっている。 The positive electrode current collector plate 21 is provided with a joint portion 24 to be joined to the central portion 68c of the conductive plate 68. The joint portion 24 is configured by a thin portion in which a part of the base portion 22 is thinned. The fragile portion 25 is configured by providing a groove portion in a thin portion so as to surround the periphery of the joint portion 24, and is cut off at the groove portion by the conductive plate 68 that is deformed outward from the battery when the battery internal pressure rises. The joint portion 24 can be separated from the base portion 22.
 脆弱部25は、電池容器2の内圧の上昇による導電板68の変形に伴い、電池蓋3側に引っ張る方向の力が作用した際に破断する一方、走行中の振動などの通常の使用環境下では破断しない強度となるように、その寸法形状等が設定されている。導電板68の中央部68cと正極集電板21の接合部24との接合は、レーザー溶接により行われるが、その他に、抵抗溶接、超音波溶接なども可能である。 The fragile portion 25 breaks when a force in the pulling direction is applied to the battery lid 3 side due to the deformation of the conductive plate 68 due to the increase in the internal pressure of the battery case 2, while it is broken under normal operating environment such as vibration during traveling. Then, the dimensional shape and the like are set so that the strength does not break. The center portion 68c of the conductive plate 68 and the joint portion 24 of the positive electrode current collector plate 21 are joined by laser welding, but resistance welding, ultrasonic welding, and the like are also possible.
 本実施形態の非水電解質二次電池1では、電池電圧が非水電解質二次電池1の最大動作電力以上になったときに反応して、気体を生成する正極活物質層(図示せず、以下気体生成層と略記する)が、正極合剤層未形成部41b又は、容器内正極端子としての正極集電板21、接合片23の1つの部材に設けられている。前記通電遮断機構は、前記気体生成層の反応で生成する気体により、電池容器2の内圧が上昇させられたときに作動する。 In the nonaqueous electrolyte secondary battery 1 of the present embodiment, a positive electrode active material layer (not shown) that reacts when the battery voltage becomes equal to or higher than the maximum operating power of the nonaqueous electrolyte secondary battery 1 to generate gas. (Hereinafter abbreviated as gas generation layer) is provided on one member of the positive electrode mixture layer non-formed part 41b or the positive electrode current collector plate 21 as the positive electrode terminal in the container and the joining piece 23. The energization cutoff mechanism operates when the internal pressure of the battery container 2 is increased by the gas generated by the reaction of the gas generation layer.
 本実施形態の非水電解質二次電池1において、正極41は、正極集電体と、該正極集電体の片面又は両面に形成された正極合剤層41aと、正極合剤層未形成部41bとからなる。 In the nonaqueous electrolyte secondary battery 1 of the present embodiment, the positive electrode 41 includes a positive electrode current collector, a positive electrode mixture layer 41a formed on one or both surfaces of the positive electrode current collector, and a positive electrode mixture layer non-formed part. 41b.
 前記正極集電体としては、銅、アルミニウム、ニッケル、チタン、ステンレス鋼の箔又は板 、カーボンシート、カーボンナノチューブシート等の材料を単体で用いることができる。また、前記正極集電体は、必要に応じて2種以上の材料から構成される金属クラッド箔等を用いてもよい。前記正極集電体は、5~100μmの厚さとすることができるが、構造及び性能の観点から7~20μmの厚さとすることが好ましい。 As the positive electrode current collector, copper, aluminum, nickel, titanium, stainless steel foil or sheet metal, carbon sheet, carbon nanotube sheet, or the like can be used alone. In addition, the positive electrode current collector may be a metal clad foil made of two or more kinds of materials, if necessary. The positive electrode current collector can have a thickness of 5 to 100 μm, but preferably has a thickness of 7 to 20 μm from the viewpoint of structure and performance.
 正極合剤層41aは、第1の正極活物質と、導電助剤と、バインダーとからなる。前記第1の正極活物質としては、リチウム複合酸化物(LiNiCoMn(x+y+z=1)、(LiNiCoAl(x+y+z=1))、リン酸鉄リチウム(LiFePO(LFP))等から選択される少なくとも1種の材料を用いることができる。 The positive electrode mixture layer 41a is composed of a first positive electrode active material, a conductive additive, and a binder. Examples of the first positive electrode active material include lithium composite oxides (LiNi x Co y Mn z O 2 (x + y + z = 1), (LiNi x Co y Al z O 2 (x + y + z = 1))), lithium iron phosphate ( At least one material selected from LiFePO 4 (LFP)) or the like can be used.
 前記導電助剤としては、アセチレンブラック(AB)、ケッチェンブラック(KB)等のカーボンブラック、グラファイト粉末等の炭素材料や、ニッケル粉末等の導電性金属粉末等から選択される少なくとも1種の材料を用いることができる。 The conductive auxiliary agent is at least one material selected from carbon black such as acetylene black (AB) and ketjen black (KB), carbon material such as graphite powder, and conductive metal powder such as nickel powder. Can be used.
 前記バインダーとしては、セルロース系ポリマー、フッ素系樹脂、酢酸ビニル共重合体、ゴム類等から選択される少なくとも1種の材料を用いることができる。前記バインダーは、具体的には、ポリフッ化ビニリデン(PVdF)、ポリイミド(PI)、ポリ塩化ビニリデン(PVdC)、ポリエチレンオキサイド(PEO)等から選択される少なくとも1種の材料を用いることができる。 As the binder, at least one material selected from cellulose polymers, fluorine resins, vinyl acetate copolymers, rubbers and the like can be used. Specifically, at least one material selected from polyvinylidene fluoride (PVdF), polyimide (PI), polyvinylidene chloride (PVdC), polyethylene oxide (PEO), and the like can be used as the binder.
 正極合剤層41aは、前記正極活物質と、前記導電助剤と、前記バインダーとを、N-メチルピロリドン(NMP)等の有機溶媒に混合した正極合剤スラリーを、前記正極集電体の片面又は両面に塗布し、乾燥させることにより形成することができる。前記乾燥は、減圧下で行ってもよい。 The positive electrode mixture layer 41a includes a positive electrode mixture slurry prepared by mixing the positive electrode active material, the conductive auxiliary agent, and the binder in an organic solvent such as N-methylpyrrolidone (NMP). It can be formed by coating on one or both sides and drying. The drying may be performed under reduced pressure.
 正極合剤層41aは、前記乾燥後、適度にプレスすることにより、厚さや密度を調整することができる。前記正極集電体上に形成された正極合剤層41aは、エネルギー密度と入出力特性とのバランスが良くなることから、2.0~4.2g/cmの密度とすることが好ましく、2.6~3.2g/cmの密度とすることがさらに好ましい。 The positive electrode mixture layer 41a can be adjusted in thickness and density by appropriately pressing after the drying. The positive electrode mixture layer 41a formed on the positive electrode current collector preferably has a density of 2.0 to 4.2 g / cm 3 because the balance between energy density and input / output characteristics is improved. More preferably, the density is 2.6 to 3.2 g / cm 3 .
 負極42は、負極集電体と、該負極集電体の片面又は両面に形成された負極合剤層42aと、負極合剤層未形成部42bとからなる。 The negative electrode 42 includes a negative electrode current collector, a negative electrode mixture layer 42a formed on one or both sides of the negative electrode current collector, and a negative electrode mixture layer non-formed part 42b.
 前記負極集電体としては、銅、アルミニウム、ニッケル、チタン、ステンレス鋼の箔又は板 、カーボンシート、カーボンナノチューブシート等の材料を単体で用いることができる。また、前記負極集電体は、必要に応じて2種以上の材料から構成される金属クラッド箔等を用いてもよい。前記負極集電体は、5~100μmの厚さとすることができるが、構造及び性能の観点から7~20μmの厚さとすることが好ましい。 As the negative electrode current collector, materials such as copper, aluminum, nickel, titanium, and stainless steel foil or sheet metal, carbon sheet, and carbon nanotube sheet can be used alone. In addition, the negative electrode current collector may be a metal clad foil made of two or more materials as required. The negative electrode current collector can have a thickness of 5 to 100 μm, but preferably has a thickness of 7 to 20 μm from the viewpoint of structure and performance.
 負極合剤層42aは、負極活物質と、導電助剤と、バインダーとからなる。前記負極活物質としては、ソフトカーボン(易黒鉛化炭素)、ハードカーボン(難黒鉛化炭素)、グラファイト(黒鉛)等のカーボン粉末(非晶質炭素)、シリカ(SiO)、チタン複合酸化物(LiTi、TiO、NbTiO)、スズ複合酸化物、リチウム合金、金属リチウム等から選択される少なくとも1種の材料を用いることができる。 The negative electrode mixture layer 42a is composed of a negative electrode active material, a conductive auxiliary agent, and a binder. Examples of the negative electrode active material include soft carbon (graphitizable carbon), hard carbon (non-graphitizable carbon), carbon powder (amorphous carbon) such as graphite (graphite), silica (SiO x ), and titanium composite oxide. At least one material selected from (Li 4 Ti 5 O 7 , TiO 2 , Nb 2 TiO 7 ), tin composite oxide, lithium alloy, metallic lithium and the like can be used.
 前記導電助剤としては、アセチレンブラック(AB)、ケッチェンブラック(KB)等のカーボンブラック、グラファイト粉末等の炭素材料や、ニッケル粉末等の導電性金属粉末等から選択される少なくとも1種の材料を用いることができる。 The conductive auxiliary agent is at least one material selected from carbon black such as acetylene black (AB) and ketjen black (KB), carbon material such as graphite powder, and conductive metal powder such as nickel powder. Can be used.
 前記バインダーとしては、セルロース系ポリマー、フッ素系樹脂、酢酸ビニル共重合体、ゴム類等から選択される少なくとも1種の材料を用いることができる。後述の負極合剤スラリーの溶媒として有機溶媒を用いる場合の前記バインダーとしては、具体的には、ポリフッ化ビニリデン(PVdF)、ポリイミド(PI)、ポリ塩化ビニリデン(PVdC)、ポリエチレンオキサイド(PEO)等から選択される少なくとも1種の材料を用いることができる。また、負極合剤スラリーの溶媒として水系溶媒を用いる場合の前記バインダーとしては、具体的には、スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、ヒドロキシプロピルメチルセルロース(HPMC)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等から選択される少なくとも1種の材料を用いることができる。 As the binder, at least one material selected from cellulose polymers, fluorine resins, vinyl acetate copolymers, rubbers and the like can be used. Specific examples of the binder in the case where an organic solvent is used as a solvent for the negative electrode mixture slurry described later include polyvinylidene fluoride (PVdF), polyimide (PI), polyvinylidene chloride (PVdC), polyethylene oxide (PEO), and the like. At least one material selected from can be used. Specific examples of the binder when an aqueous solvent is used as the solvent for the negative electrode mixture slurry include styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), carboxymethyl cellulose (CMC), and polyvinyl. At least one material selected from alcohol (PVA), polytetrafluoroethylene (PTFE), hydroxypropylmethylcellulose (HPMC), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and the like can be used.
 負極合剤層42aは、前記負極活物質と、前記導電助剤と、前記バインダーとを、N-メチルピロリドン(NMP)等の有機溶媒又は純水等の水系溶媒に混合した負極合剤スラリーを、前記負極集電体の片面又は両面に塗布し、乾燥させることにより形成することができる。前記乾燥は、減圧下で行ってもよい。 The negative electrode mixture layer 42a is a negative electrode mixture slurry obtained by mixing the negative electrode active material, the conductive auxiliary agent, and the binder in an organic solvent such as N-methylpyrrolidone (NMP) or an aqueous solvent such as pure water. The negative electrode current collector can be formed by coating on one side or both sides and drying. The drying may be performed under reduced pressure.
 負極合剤層42aは、前記乾燥後、適度にプレスすることにより、厚さや密度を調整することができる。前記負極集電体上に形成された負極合剤層42aは、エネルギー密度と入出力特性とのバランスが良くなることから、0.7~2.0g/cmの密度とすることが好ましく、1.0~1.7g/cmの密度とすることがさらに好ましい。 The negative electrode mixture layer 42a can be adjusted in thickness and density by appropriately pressing after the drying. The negative electrode mixture layer 42a formed on the negative electrode current collector preferably has a density of 0.7 to 2.0 g / cm 3 because the balance between energy density and input / output characteristics is improved. More preferably, the density is 1.0 to 1.7 g / cm 3 .
 前記電解液としては、非水溶媒と、電解質とからなるものを用いることができ、該電解質の濃度は0.1~10モル/Lの範囲とすることが好ましい。 As the electrolytic solution, a non-aqueous solvent and an electrolyte can be used, and the concentration of the electrolyte is preferably in the range of 0.1 to 10 mol / L.
 前記非水溶媒としては、カーボネート類、エーテル類、スルホン類、ラクトン類等から選択される少なくとも1種の非プロトン性溶媒を挙げることができる。前記非プロトン性溶媒として、具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル(AN)、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド、スルホラン、y-ブチロラクトン等から選択される少なくとも1種の化合物を用いることができる。 Examples of the non-aqueous solvent include at least one aprotic solvent selected from carbonates, ethers, sulfones, lactones and the like. Specific examples of the aprotic solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane ( DME), 1,2-diethoxyethane (DEE), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile (AN), propionitrile, nitromethane, At least one compound selected from N, N-dimethylformamide (DMF), dimethyl sulfoxide, sulfolane, y-butyrolactone and the like can be used.
 前記電解質としては、LiPF、LiBF、LiClO、LiN(SOCF)、LiN(SO、LiCFSO、LiCSO、LiC(SOCF、LiF、LiCl、LiI、LiO、LiN、LiP、Li10GeP12(LGPS)、LiPS、LiPSCl、LiI、LiPO(x=2y+3z-5、LiPON)、LiLaZr12(LLZO)、Li3xLa2/3-xTiO(LLTO)、Li1+xAlTi2-x(PO(LATP)、Li1.5Al0.5Ge1.5(PO(LAGP)、Li1+x+yAlTi2-xSi3-y12、Li1+x+yAl(Ti,Ge)2-xSi3-y12、Li4-2xZnGeO(LISICON)等から選択される少なくとも1種の化合物を用いることができるが、LiPF、LiBF又はその混合物が好ましい。 Examples of the electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ), LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (SO 2 CF 3) 3, LiF, LiCl, LiI, Li 2 O, Li 3 N, Li 3 P, Li 10 GeP 2 S 12 (LGPS), Li 3 PS 4, Li 6 PS 5 Cl, Li 7 P 2 S 8 I Li x PO y N z (x = 2y + 3z-5, LiPON), Li 7 La 3 Zr 2 O 12 (LLZO), Li 3x La 2 / 3-x TiO 3 (LLTO), Li 1 + x Al x Ti 2− x (PO 4) 3 (LATP ), Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 (LAGP), Li 1 + x + y Al x Ti 2-x Si y 3-y O 12, Li 1 + x + y Al x (Ti, Ge) using 2-x Si y P 3- y O 12, Li 4-2x Zn x at least one compound selected from the GeO 4 (LISICON), etc. Although LiPF 6 , LiBF 4 or mixtures thereof are preferred.
 セパレータ43,44としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成るフィルム、不織布等の多孔質樹脂シート又は、無機材料を焼結し、若しくはバインダーと混合した多孔質構造体を挙げることができる。前記多孔質構造体に用いる無機材料としては、アルミナ(Al)、シリカ(SiO)、LiF、LiCl、LiI、LiO、LiS、LiN、LiP、Li10GeP12(LGPS)、LiPS、LiPSCl、LiI、LiPO(x=2y+3z-5、LiPON)、LiLaZr12(LLZO)、Li3xLa2/3-xTiO(LLTO)、Li1+xAlTi2-x(PO(LATP)、Li1.5Al0.5Ge1.5(PO(LAGP)、Li1+x+yAlTi2-xSi3-y12、Li1+x+yAl(Ti,Ge)2-xSi3-y12、Li4-2xZnGeO(LISICON)等から選択される少なくとも1種の化合物を用いることができる。 As the separators 43 and 44, a film made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, polyamide or the like, a porous resin sheet such as a nonwoven fabric, or an inorganic material is sintered or mixed with a binder. A porous structure can be mentioned. As an inorganic material used for the porous structure, alumina (Al 2 O 3 ), silica (SiO 2 ), LiF, LiCl, LiI, Li 2 O, Li 2 S, Li 3 N, Li 3 P, Li 10 GeP 2 S 12 (LGPS), Li 3 PS 4, Li 6 PS 5 Cl, Li 7 P 2 S 8 I, Li x PO y N z (x = 2y + 3z-5, LiPON), Li 7 La 3 Zr 2 O 12 (LLZO), Li 3x La 2 / 3-x TiO 3 (LLTO), Li 1 + x Al x Ti 2-x (PO 4 ) 3 (LATP), Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 (LAGP), Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12, Li 1 + x + y Al x (Ti, Ge) 2-x Si y P 3-y O 12, Li 4 2x Zn x at least one compound selected from the GeO 4 (LISICON), or the like can be used.
 セパレータ43,44は、前記多孔質樹脂シート又は、前記多孔質構造体から選択される少なくとも1種の材料を用いて構成することができる。セパレータ43,44は、前記材料の1種のみからなる場合は単層構造となるが、2種以上からなる場合は各材料が積層された構造であってもよく、混合状態であってもよく、その形態は特に限定されない。 The separators 43 and 44 can be configured using at least one material selected from the porous resin sheet or the porous structure. When the separators 43 and 44 are made of only one of the materials, the separators 43 and 44 have a single layer structure, but when made of two or more kinds, the separators 43 and 44 may have a structure in which each material is laminated or may be in a mixed state. The form is not particularly limited.
 前記気体生成層は、気体を生成する第2の正極活物質と、導電助剤と、バインダーとからなる。前記第2の正極活物質としては、第1の正極活物質と同一のものを用いることができるが、特に反応電位が高く、前記電解液との反応性が高く、気体を発生させやすい点で、LiNi0.5Mn1.5(LNMO)が好ましい。前記気体生成層に用いる前記導電助剤又はバインダーとしては、正極合剤層41aに用いたものと同一のものを用いることができる。 The gas generation layer includes a second positive electrode active material that generates gas, a conductive additive, and a binder. As the second positive electrode active material, the same one as the first positive electrode active material can be used. However, in particular, the reaction potential is high, the reactivity with the electrolytic solution is high, and gas is easily generated. LiNi 0.5 Mn 1.5 O 4 (LNMO) is preferred. As the conductive additive or binder used for the gas generating layer, the same one as used for the positive electrode mixture layer 41a can be used.
 前記気体生成層は、前記第2の正極活物質と、前記導電助剤と、前記バインダーとを、N-メチルピロリドン(NMP)等の有機溶媒に混合した気体生成スラリーを、前記正極集電体の正極合剤層未形成部41bに塗布し、乾燥させることにより形成することができる。前記乾燥は、減圧下で行ってもよい。 The gas generation layer includes a gas generation slurry obtained by mixing the second positive electrode active material, the conductive additive, and the binder in an organic solvent such as N-methylpyrrolidone (NMP), and the positive electrode current collector. It can form by apply | coating to the positive mix layer unformed part 41b of this, and making it dry. The drying may be performed under reduced pressure.
 また、前記気体生成層は、前記第2の正極活物質の結晶又は焼結体を前記正極集電体の正極合剤層未形成部41b又は、容器内正極端子21,23の少なくとも1つの部材に接着することにより形成してもよい。 In addition, the gas generating layer may be formed of a crystal or sintered body of the second positive electrode active material, at least one member of the positive electrode mixture layer unformed portion 41b of the positive electrode current collector, or the positive electrode terminals 21 and 23 in the container. You may form by adhering to.
 尚、本実施形態では、非水電解質二次電池1は、角形の深絞り形状を有する電池缶4と、電池缶4の開口部4aを封口する電池蓋3とを有するアルミニウム合金製の電池容器2に電極体素子40が収容される構成となっている。しかし、非水電解質二次電池1は、本実施形態の構成に限定されることなく、材質としては例えばアルミニウム、鋼、ステンレス等を用いることができ、容器形状としては例えば円筒形、角型、コインセル、パウチ(ラミネート)等を用いることができる。 In the present embodiment, the nonaqueous electrolyte secondary battery 1 is a battery container made of an aluminum alloy having a battery can 4 having a square deep-drawing shape and a battery lid 3 that seals the opening 4 a of the battery can 4. The electrode body element 40 is accommodated in 2. However, the nonaqueous electrolyte secondary battery 1 is not limited to the configuration of the present embodiment, and the material can be, for example, aluminum, steel, stainless steel, and the container shape is, for example, a cylindrical shape, a rectangular shape, A coin cell, a pouch (laminate), etc. can be used.
 また、本実施形態では、通電遮断機構として、電池容器2の内圧の上昇に応じて変形して正極集電板21の脆弱部25を破断させるダイアフラム部68aを用いているが、通電遮断機構は、電池容器2の内圧の上昇に応じて容器内正極端子21,23又は容器内負極端子22,24と、容器外部との通電を遮断可能な構成であればどのような構成であってもよい。前記通電遮断機構の作動圧力は、例えば、0.1~5MPaの範囲とすることができ、好ましくは0.5~2.2MPaの範囲とすることができる。 In the present embodiment, as the energization interruption mechanism, the diaphragm portion 68a that deforms according to the increase in the internal pressure of the battery container 2 and breaks the fragile portion 25 of the positive electrode current collector plate 21 is used. Any configuration may be used as long as it can cut off the energization between the positive electrode terminals 21 and 23 in the container or the negative electrode terminals 22 and 24 in the container and the outside of the container in accordance with the increase in the internal pressure of the battery container 2. . The operating pressure of the energization cutoff mechanism can be, for example, in the range of 0.1 to 5 MPa, and preferably in the range of 0.5 to 2.2 MPa.
 次に、本発明の実施例及び比較例を示す。 Next, examples and comparative examples of the present invention will be shown.
 〔実施例1〕
 本実施例では、まず、第1の正極活物質としてのLiNiCoMn(x+y+z=1、x:y:z=6:2:2、以下、NCM622と略記する)と、導電助剤としてのアセチレンブラック(AB)と、バインダーとしてのポリフッ化ビニリデン(PVdF)とを、NCM622:AB:PFdV=94:3:3(質量比)となるようにして、N-メチルピロリドン(NMP)と混合し、固形分比が55質量%となるように調整することにより、正極合剤スラリーを作成した。次に、厚さ15μmのアルミニウム箔を正極集電体とし、該正極集電体に前記正極合剤スラリーを塗布、乾燥させて24mg/cmの正極合剤層41aを形成した。
[Example 1]
In this embodiment, first, the first cathode active LiNi as substance x Co y Mn z O 2 ( x + y + z = 1, x: y: z = 6: 2: 2, hereinafter abbreviated as NCM622) and conductive N-methylpyrrolidone (NMP) was prepared by using NCM622: AB: PFdV = 94: 3: 3 (mass ratio) of acetylene black (AB) as an auxiliary agent and polyvinylidene fluoride (PVdF) as a binder. ) And adjusting the solid content ratio to 55% by mass to prepare a positive electrode mixture slurry. Next, an aluminum foil having a thickness of 15 μm was used as a positive electrode current collector, and the positive electrode mixture slurry was applied to the positive electrode current collector and dried to form a 24 mg / cm 2 positive electrode mixture layer 41a.
 次に、気体を生成する第2の正極活物質としてのLiNi0.5Mn1.5(LNMO)と、導電助剤としてのアセチレンブラック(AB)と、バインダーとしてのポリフッ化ビニリデン(PVdF)とを、LNMO:AB:PFdV=94:3:3(質量比)となるようにして、N-メチルピロリドン(NMP)と混合し、固形分比が55質量%となるように調整することにより、気体生成スラリーを作成した。次に、前記正極集電体の正極合剤層未形成部41bに前記気体生成スラリーを塗布、乾燥させて12mg/cmの気体生成層を形成した。 Next, LiNi 0.5 Mn 1.5 O 4 (LNMO) as a second positive electrode active material that generates gas, acetylene black (AB) as a conductive auxiliary agent, and polyvinylidene fluoride (PVdF) as a binder ) Is mixed with N-methylpyrrolidone (NMP) so that LNMO: AB: PFdV = 94: 3: 3 (mass ratio), and the solid content ratio is adjusted to 55 mass%. Thus, a gas generation slurry was prepared. Next, the gas generation slurry was applied to the positive electrode mixture layer-unformed portion 41b of the positive electrode current collector and dried to form a 12 mg / cm 2 gas generation layer.
 次に、正極合剤層41a及び前記気体生成層を備える前記正極集電体を乾燥及びプレスして、正極合剤層41aの電極密度を3.2g/cmに調整し、正極41を形成した。 Next, the positive electrode current collector including the positive electrode mixture layer 41a and the gas generation layer is dried and pressed to adjust the electrode density of the positive electrode mixture layer 41a to 3.2 g / cm 3 to form the positive electrode 41. did.
 次に、負極活物質としての黒鉛粉末(Gr.)と、バインダーとしてのスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)とを、Gr.:SBR:CMC=98:1:1(質量比)となるようにして、純水と混合し、固形分比が50質量%となるように調整することにより、負極合剤スラリーを作成した。次に、厚さ8μmの銅箔を負極集電体とし、該負極集電体に前記負極合剤スラリーを塗布、乾燥させて22mg/cmの負極合剤層42aを形成した。次に、負極合剤層42aを備える前記負極集電体を乾燥及びプレスして、負極合剤層42aの電極密度を1.5g/cmに調整し、負極42を形成した
 次に、図3に示すように、アルミナ(Al)とポリエチレン(PE)との二層構造からなるセパレータ43,44の間に、それぞれ正極41と負極42とを配置して扁平状に捲き回すことにより、電極体素子40を形成した。次に、電極体素子40の正極集電体端部を正極集電板21の接合片23に、負極集電体端部を負極集電板22の接合片24に、それぞれ超音波溶接にて接合し、発電要素組立体5を形成した。
Next, graphite powder (Gr.) As the negative electrode active material and styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as the binder were used. : SBR: CMC = 98: 1: 1 (mass ratio) was mixed with pure water and adjusted so that the solid content ratio was 50% by mass to prepare a negative electrode mixture slurry. Next, a copper foil having a thickness of 8 μm was used as a negative electrode current collector, and the negative electrode mixture slurry was applied to the negative electrode current collector and dried to form a 22 mg / cm 2 negative electrode mixture layer 42a. Next, the negative electrode current collector including the negative electrode mixture layer 42a was dried and pressed to adjust the electrode density of the negative electrode mixture layer 42a to 1.5 g / cm 3 to form the negative electrode 42. As shown in FIG. 3, a positive electrode 41 and a negative electrode 42 are arranged between separators 43 and 44 having a two-layer structure of alumina (Al 2 O 3 ) and polyethylene (PE), respectively, and are rolled in a flat shape. Thus, the electrode body element 40 was formed. Next, the end of the positive electrode current collector of the electrode body element 40 is ultrasonically welded to the bonding piece 23 of the positive electrode current collector plate 21 and the end of the negative electrode current collector is bonded to the bonding piece 24 of the negative electrode current collector plate 22 respectively. The power generation element assembly 5 was formed by bonding.
 次に、電極体素子40の周りを絶縁シート(図示せず)で覆って電池缶4に挿入し、電池缶4の開口部4aを電池蓋3で閉塞して、レーザー溶接によって電池蓋3を電池缶4に接合して封止した。そして、注液口12から電池容器2内に電解液を注液し、注液口12を注液栓11で閉塞してレーザー溶接により電池蓋3に接合して封止することにより、リチウムイオン二次電池1を形成した。前記電解液としては、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、EC:EMC:DMC=3:4:3の容積比で混合した混合溶媒に、支持塩としてのLiPFを1.2モル/Lの濃度で溶解させた非水電解液を用いた。 Next, the periphery of the electrode body element 40 is covered with an insulating sheet (not shown) and inserted into the battery can 4, the opening 4 a of the battery can 4 is closed with the battery lid 3, and the battery lid 3 is attached by laser welding. The battery can 4 was joined and sealed. Then, an electrolytic solution is injected into the battery container 2 from the injection port 12, the injection port 12 is closed with the injection plug 11, joined to the battery lid 3 by laser welding, and sealed. A secondary battery 1 was formed. As the electrolytic solution, a mixed solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) are mixed at a volume ratio of EC: EMC: DMC = 3: 4: 3, A nonaqueous electrolytic solution in which LiPF 6 as a supporting salt was dissolved at a concentration of 1.2 mol / L was used.
 次に、本実施例で得られたリチウムイオン二次電池1について、0.33C相当の電流値における2.5~4.2Vの範囲の電池容量から素子エネルギー密度を算出した。結果を表1に示す。 Next, for the lithium ion secondary battery 1 obtained in this example, the element energy density was calculated from the battery capacity in the range of 2.5 to 4.2 V at a current value equivalent to 0.33 C. The results are shown in Table 1.
 次に、本実施例で得られたリチウムイオン二次電池1について、1C相当の電流値にて、最大電池容量の2倍容量の(SOC200%)の過充電試験を実施し、通電遮断機構が作動する圧力に達したときの過充電SOCと電圧とを測定した。結果を表1に示す。 Next, with respect to the lithium ion secondary battery 1 obtained in this example, an overcharge test (SOC 200%) having a capacity twice as large as the maximum battery capacity was performed at a current value equivalent to 1C. The overcharge SOC and voltage when the operating pressure was reached were measured. The results are shown in Table 1.
 〔実施例2〕
 本実施例では、負極42及び電解液を次のようにした以外は、実施例1と全く同一にしてリチウムイオン二次電池1を形成した。
[Example 2]
In this example, a lithium ion secondary battery 1 was formed in exactly the same manner as in Example 1 except that the negative electrode 42 and the electrolytic solution were as follows.
 まず、負極活物質としてのチタン酸リチウム(LTO)と、導電助剤としてのアセチレンブラック(AB)と、バインダーとしてのポリフッ化ビニリデン(PVdF)とを、LTO:AB:PVdF=96:2:2(質量比)となるようにして、N-メチルピロリドン(NMP)と混合し、固形分比が55質量%となるように調整することにより、負極合剤スラリーを作成した。次に、厚さ15μmのアルミニウム箔を負極集電体とし、該負極集電体に該負極合剤スラリーを塗布して42mg/cmの負極合剤層42aを形成した。次に、負極合剤層42aを備える前記負極集電体を乾燥及びプレスして、負極合剤層42aの電極密度を2.1g/cmに調整し、負極42を形成した。 First, lithium titanate (LTO) as a negative electrode active material, acetylene black (AB) as a conductive auxiliary agent, and polyvinylidene fluoride (PVdF) as a binder are LTO: AB: PVdF = 96: 2: 2. (Mass ratio) was mixed with N-methylpyrrolidone (NMP), and the solid content ratio was adjusted to 55% by mass to prepare a negative electrode mixture slurry. Next, an aluminum foil having a thickness of 15 μm was used as a negative electrode current collector, and the negative electrode mixture slurry was applied to the negative electrode current collector to form a 42 mg / cm 2 negative electrode mixture layer 42a. Next, the negative electrode current collector provided with the negative electrode mixture layer 42 a was dried and pressed to adjust the electrode density of the negative electrode mixture layer 42 a to 2.1 g / cm 3 , thereby forming the negative electrode 42.
 次に、電解液として、プロピレンカーボネート(PC)と、ジエチルカーボネート(DEC)とを、PC:DEC=2:1の容積比で混合した混合溶媒に、支持塩としてのLiPFを1.2モル/Lの濃度で溶解させて非水電解液を形成した。 Next, 1.2 mol of LiPF 6 as a supporting salt is mixed with a mixed solvent in which propylene carbonate (PC) and diethyl carbonate (DEC) are mixed at a volume ratio of PC: DEC = 2: 1 as an electrolytic solution. A non-aqueous electrolyte was formed by dissolving at a concentration of / L.
 次に、本実施例で得られたリチウムイオン二次電池1について、0.33C相当の電流値における1.5~2.7Vの範囲の電池容量から素子エネルギー密度を算出する一方、実施例1と全く同一にして通電遮断機構が作動する圧力に達したときの過充電SOCと電圧とを測定した。結果を表1に示す。 Next, for the lithium ion secondary battery 1 obtained in this example, the element energy density was calculated from the battery capacity in the range of 1.5 to 2.7 V at a current value equivalent to 0.33 C. The overcharge SOC and voltage when the pressure at which the energization shut-off mechanism is operated were reached in exactly the same manner as above. The results are shown in Table 1.
 〔比較例1〕
 本比較例では、気体生成層を全く形成しなかった以外は、実施例1と全く同一にしてリチウムイオン二次電池1を形成した。
[Comparative Example 1]
In this comparative example, a lithium ion secondary battery 1 was formed in the same manner as in Example 1 except that no gas generation layer was formed.
 次に、本比較例で得られたリチウムイオン二次電池1について、実施例1と全く同一にして素子エネルギー密度を算出する一方、通電遮断機構が作動する圧力に達したときの過充電SOCと電圧とを測定した。結果を表1に示す。 Next, for the lithium ion secondary battery 1 obtained in this comparative example, the element energy density is calculated in exactly the same way as in Example 1, while the overcharge SOC when the pressure at which the power cut-off mechanism is reached is calculated. The voltage was measured. The results are shown in Table 1.
 〔比較例2〕
 本比較例では、気体生成層を全く形成しなかった以外は、実施例2と全く同一にしてリチウムイオン二次電池1を形成した。
[Comparative Example 2]
In this comparative example, a lithium ion secondary battery 1 was formed in the same manner as in Example 2 except that no gas generation layer was formed.
 次に、本比較例で得られたリチウムイオン二次電池1について、実施例2と全く同一にして素子エネルギー密度を算出する一方、通電遮断機構が作動する圧力に達したときの過充電SOCと電圧とを測定した。結果を表1に示す。 Next, for the lithium ion secondary battery 1 obtained in this comparative example, the element energy density is calculated in exactly the same way as in Example 2, while the overcharge SOC when the pressure at which the power cut-off mechanism is reached is calculated. The voltage was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
NCM622:LiNiCoMn(x+y+z=1、x:y:z=6:2:2)
Gr.:黒鉛粉末
LTO:チタン酸リチウム
LMNO:LiNi0.5Mn1.5
素子体積エネルギー密度:Wh/L
作動SOC:%
作動電圧:V
 
 表1から、正極合剤層未形成部41bに気体生成層を備える実施例1,2のリチウムイオン二次電池によれば、気体生成層を備えていない比較例1,2のリチウムイオン二次電池に対し、それぞれ素子体積エネルギー密度は同一でありながら、通電遮断機構の作動SOC及び作動電圧が低く、電池性能を低下させることなく、過充電時には通電遮断機構を確実に作動させることができることが明らかである。
Figure JPOXMLDOC01-appb-T000001
NCM622: LiNi x Co y Mn z O 2 (x + y + z = 1, x: y: z = 6: 2: 2)
Gr. : Graphite powder LTO: Lithium titanate LMNO: LiNi 0.5 Mn 1.5 O 4
Element volume energy density: Wh / L
Operating SOC:%
Operating voltage: V

From Table 1, according to the lithium ion secondary battery of Examples 1 and 2 provided with the gas generation layer in the positive electrode mixture layer non-formed part 41b, the lithium ion secondary of Comparative Examples 1 and 2 not including the gas generation layer While the element volume energy density is the same for each battery, the operating SOC and operating voltage of the energization interruption mechanism are low, and the energization interruption mechanism can be reliably activated during overcharge without degrading battery performance. it is obvious.
 1…非水電解質二次電池、 2…電池容器、 21,23…容器内正極端子、 22,24…容器内負極端子、41…正極、 41a…正極合剤層、 41b…正極合剤層未形成部、 42…負極、 42a…負極合剤層、 42b…負極合剤層未形成部、 68b…ダイアフラム部(通電遮断機構)。 DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte secondary battery, 2 ... Battery container, 21, 23 ... Positive electrode terminal in a container, 22, 24 ... Negative electrode terminal in a container, 41 ... Positive electrode, 41a ... Positive electrode mixture layer, 41b ... Positive electrode mixture layer not Forming part, 42 ... negative electrode, 42a ... negative electrode mixture layer, 42b ... negative electrode mixture layer non-formed part, 68b ... diaphragm part (energization interruption mechanism).

Claims (5)

  1.  容器内に、正極合剤層と正極集電体とを有する正極と、該正極集電体の正極合剤層未形成部と電気的に接続する容器内正極端子と、負極合剤層と負極集電体とを有する負極と、該負極集電体の負極合剤層未形成部と電気的に接続する容器内負極端子と、非水電解液と、該容器の内圧が上昇したときに該容器内正極端子又は該容器内負極端子と該容器外部との通電を遮断可能な通電遮断機構とを備える非水電解質二次電池において、
     該正極合剤層未形成部又は、該容器内正極端子の少なくとも1つの部材に、該非水電解質二次電池の最大動作電力以上の電圧により反応して該容器の内圧を上昇させ該通電遮断機構を作動可能とする気体を生成する正極活物質層を備えることを特徴とする非水電解質二次電池。
    A positive electrode having a positive electrode mixture layer and a positive electrode current collector in a container, a positive electrode terminal in a container electrically connected to a portion where the positive electrode material mixture layer of the positive electrode current collector is not formed, a negative electrode mixture layer and a negative electrode A negative electrode having a current collector, a negative electrode terminal in a container that is electrically connected to a negative electrode mixture layer unformed portion of the negative electrode current collector, a non-aqueous electrolyte, and when the internal pressure of the container increases In a non-aqueous electrolyte secondary battery comprising a positive electrode terminal in a container or a current-carrying-off mechanism capable of cutting off the conduction between the negative electrode terminal in the container and the outside of the container,
    The energization shut-off mechanism increases the internal pressure of the container by reacting with at least one member of the positive electrode mixture layer unformed part or the positive electrode terminal in the container with a voltage higher than the maximum operating power of the non-aqueous electrolyte secondary battery. A non-aqueous electrolyte secondary battery comprising a positive electrode active material layer that generates a gas capable of operating.
  2.  請求項1記載の非水電解質二次電池において、前記通電遮断機構は、容器の内圧が上昇したときに形状を変形可能な形状可変部材と、該形状可変部材の変形に伴って脆弱部が破断することにより、前記容器内正極端子又は前記容器内負極端子と前記容器外部との通電を遮断することを特徴とする非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the energization shut-off mechanism includes a shape-variable member whose shape can be deformed when the internal pressure of the container is increased, and a fragile portion is broken along with the deformation of the shape-variable member. By doing so, electricity supply with the said positive electrode terminal in a container or the said negative electrode terminal in a container, and the said container exterior is interrupted | blocked, The nonaqueous electrolyte secondary battery characterized by the above-mentioned.
  3.  請求項1記載の非水電解質二次電池において、前記形状可変部材はダイアフラムであることを特徴とする非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the shape variable member is a diaphragm.
  4.  請求項1記載の非水電解質二次電池において、前記気体を生成する正極活物質層は、正極活物質として、リチウム複合酸化物(LiNiCoMn(x+y+z=1)、(LiNiCoAl(x+y+z=1))、リン酸鉄リチウム(LiFePO(LFP))から選択される少なくとも1種の材料を含むことを特徴とする非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material layer that generates the gas includes, as a positive electrode active material, a lithium composite oxide (LiNi x Co y Mn z O 2 (x + y + z = 1), (LiNi A non-aqueous electrolyte secondary battery comprising at least one material selected from x Co y Al z O 2 (x + y + z = 1)) and lithium iron phosphate (LiFePO 4 (LFP)).
  5.  請求項1記載の非水電解質二次電池において、前記気体を生成する正極活物質層は、正極活物質としてLiNi0.5Mn1.5(LNMO)を含むことを特徴とする非水電解質二次電池。 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material layer that generates the gas includes LiNi 0.5 Mn 1.5 O 4 (LNMO) as a positive electrode active material. 3. Electrolyte secondary battery.
PCT/JP2019/017927 2018-05-07 2019-04-26 Nonaqueous-electrolyte secondary cell WO2019216267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020518275A JPWO2019216267A1 (en) 2018-05-07 2019-04-26 Non-aqueous electrolyte secondary battery
CN201980028125.6A CN112020790A (en) 2018-05-07 2019-04-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-089475 2018-05-07
JP2018089475 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019216267A1 true WO2019216267A1 (en) 2019-11-14

Family

ID=68466749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017927 WO2019216267A1 (en) 2018-05-07 2019-04-26 Nonaqueous-electrolyte secondary cell

Country Status (3)

Country Link
JP (1) JPWO2019216267A1 (en)
CN (1) CN112020790A (en)
WO (1) WO2019216267A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149953A (en) * 1989-04-26 2000-05-30 Sony Corp Nonaqueous electrolyte secondary battery
WO2015056515A1 (en) * 2013-10-16 2015-04-23 株式会社豊田自動織機 Current breaker and storage device using same
JP2015204211A (en) * 2014-04-14 2015-11-16 電気化学工業株式会社 Composite particle and secondary battery positive electrode using the same, and secondary battery
JP2017054739A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW400661B (en) * 1996-09-24 2000-08-01 Shin Kobe Electric Machinery Non-aqueous liquid electrolyte battery
JP5822089B2 (en) * 2011-10-06 2015-11-24 トヨタ自動車株式会社 Sealed lithium secondary battery
JP5896218B2 (en) * 2012-02-23 2016-03-30 トヨタ自動車株式会社 Sealed non-aqueous electrolyte secondary battery
EP2822083B1 (en) * 2012-04-20 2017-07-19 LG Chem, Ltd. Lithium secondary battery having improved rate characteristics
JP6017978B2 (en) * 2013-01-24 2016-11-02 トヨタ自動車株式会社 Positive electrode active material and lithium secondary battery using the active material
US20160064738A1 (en) * 2013-03-29 2016-03-03 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP6631506B2 (en) * 2014-02-27 2020-01-15 戸田工業株式会社 Positive electrode mixture and non-aqueous electrolyte secondary battery
JP5963012B2 (en) * 2014-04-21 2016-08-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6079696B2 (en) * 2014-05-19 2017-02-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149953A (en) * 1989-04-26 2000-05-30 Sony Corp Nonaqueous electrolyte secondary battery
WO2015056515A1 (en) * 2013-10-16 2015-04-23 株式会社豊田自動織機 Current breaker and storage device using same
JP2015204211A (en) * 2014-04-14 2015-11-16 電気化学工業株式会社 Composite particle and secondary battery positive electrode using the same, and secondary battery
JP2017054739A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JPWO2019216267A1 (en) 2021-02-18
CN112020790A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP6662377B2 (en) Cylindrical battery
JP6538650B2 (en) Cylindrical sealed battery
WO2016157750A1 (en) Cylindrical battery
WO2018180828A1 (en) Cylindrical battery
US20090297937A1 (en) Lithium-ion secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JP5173095B2 (en) Sealed battery
JP2006202680A (en) Polymer battery
JP2009021133A (en) Nonaqueous electrolyte secondary battery
US11069935B2 (en) Cell and battery
WO2019216018A1 (en) Non-aqueous electrolyte secondary battery
JP3583592B2 (en) Thin rechargeable battery
JP3579227B2 (en) Thin rechargeable battery
WO2019216267A1 (en) Nonaqueous-electrolyte secondary cell
JPH11162436A (en) Thin secondary battery
JP2009302019A (en) Sealed battery
JP4374861B2 (en) Square lithium secondary battery
WO2019181285A1 (en) Secondary battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP4018881B2 (en) Electrochemical devices
JPH11102682A (en) Thin secondary battery
US20230006311A1 (en) Electrochemical device and electronic device containing same
WO2022264526A1 (en) Secondary battery
JPH1145700A (en) Sealed nonaqueous electrolyte battery
JP2001345081A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799262

Country of ref document: EP

Kind code of ref document: A1