WO2019216151A1 - Polyamide-imide resin, polyamide-imide varnish, and polyamide-imide film - Google Patents

Polyamide-imide resin, polyamide-imide varnish, and polyamide-imide film Download PDF

Info

Publication number
WO2019216151A1
WO2019216151A1 PCT/JP2019/016583 JP2019016583W WO2019216151A1 WO 2019216151 A1 WO2019216151 A1 WO 2019216151A1 JP 2019016583 W JP2019016583 W JP 2019016583W WO 2019216151 A1 WO2019216151 A1 WO 2019216151A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
polyamide
imide
mol
imide resin
Prior art date
Application number
PCT/JP2019/016583
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安孫子
慎司 関口
末永 修也
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020207030455A priority Critical patent/KR20210007960A/en
Priority to CN201980026288.0A priority patent/CN111989353B/en
Priority to JP2020518223A priority patent/JP7375749B2/en
Publication of WO2019216151A1 publication Critical patent/WO2019216151A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyamide-imide resin, a polyamide-imide varnish, and a polyamide-imide film.
  • polyimide resins have excellent mechanical properties and heat resistance, and thus are being used in various fields such as electrical and electronic parts.
  • a glass substrate used for an image display device such as a liquid crystal display or an OLED display
  • a plastic substrate for the purpose of reducing the weight or flexibility of the device.
  • High transparency is required for polyimide films for such applications.
  • Patent Document 1 discloses a unit structure derived from 2,2′-bis (trifluoromethyl) benzidine as a copolymerized polyamide-imide film having excellent thermal, mechanical and optical properties, 4,4 ′-(hexa Unit structure derived from fluoroisopropylidene) diphthalic anhydride, unit structure derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and unit structure derived from terephthalic acid chloride (TPC) A resin is disclosed.
  • TPC terephthalic acid chloride
  • Patent Document 2 discloses a fragrance containing at least one selected from 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, cyclobutanetetracarboxylic dianhydride, and cyclopentanetetracarboxylic dianhydride.
  • Polyamide-imide resin which is an imidized polyamic acid obtained by copolymerization of an aromatic dianhydride, an aromatic dicarbonyl compound, and an aromatic diamine containing 2,2′-bis (trifluoromethyl) benzidine Has been.
  • the polyimide film is required to have high transparency and low residual stress, but it is not easy to improve these characteristics while maintaining excellent mechanical characteristics and heat resistance.
  • This invention is made
  • the subject of this invention is excellent in a mechanical characteristic, heat resistance, and transparency, and also the formation of the film in which reduction of a residual stress is achieved is possible.
  • the object is to provide a polyamide-imide resin, and a polyamide-imide varnish and a polyamide-imide film containing the polyamide-imide resin.
  • the present inventors have found that a polyamide-imide resin containing a specific combination of structural units can solve the above problems, and have completed the invention.
  • a polyamide-imide resin having a structural unit A derived from tetracarboxylic dianhydride, a structural unit B derived from diamine, and a structural unit C derived from aromatic dicarboxylic acid chloride,
  • the structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1)
  • the structural unit B includes a structural unit (B-1) derived from a compound represented by the following formula (b-1)
  • a polyamide-imide resin in which the structural unit C includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
  • the ratio of the structural unit (A-1) in the total of the structural unit A and the structural unit C is 10 to 90 mol%
  • the polyamide-imide resin according to the above [1], wherein the ratio of the structural unit (C-1) in the total of the structural unit A and the structural unit C is 10 to 60 mol%.
  • the polyamide-imide resin according to claim 1 or 2 wherein the structural unit A includes a structural unit (A-2) derived from a compound represented by the following formula (a-2).
  • the polyamide-imide resin of the present invention has a structural unit A derived from tetracarboxylic dianhydride, a structural unit B derived from diamine, and a structural unit C derived from aromatic dicarboxylic acid chloride.
  • the structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1)
  • the structural unit B includes a structural unit (B-1) derived from a compound represented by the following formula (b-1)
  • the structural unit C includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
  • the polyamide-imide resin of the present invention has a structure in which the structural unit A and the structural unit B are connected by an imide bond in the molecular chain, and a structure in which the structural unit C and the structural unit B are connected by an amide bond. Is included.
  • the structural unit A is a structural unit derived from tetracarboxylic dianhydride in the polyamide-imide resin, and includes a structural unit (A-1) derived from a compound represented by the following formula (a-1). .
  • the structural unit A may contain a structural unit (A-2) derived from a compound represented by the following formula (a-2) in addition to the structural unit (A-1).
  • the compound represented by the formula (a-1) is norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic Acid dianhydride.
  • the compound represented by the formula (a-2) is biphenyltetracarboxylic dianhydride (BPDA), and specific examples thereof include 3,3 ′, 4, represented by the following formula (a-2s): 4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) represented by the following formula (a-2a), Examples thereof include 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride (i-BPDA) represented by the following formula (a-2i).
  • BPDA biphenyltetracarboxylic dianhydride
  • the structural unit A includes at least the structural unit (A-1), the mechanical properties, heat resistance and transparency of the film are further improved, and the residual stress is further decreased. Further, when the structural unit A contains the structural unit (A-2) in addition to the structural unit (A-1), the mechanical properties of the film are further improved, and the residual stress is further reduced.
  • the ratio of the structural unit (A-1) in the structural unit A is preferably 30 mol% or more, more preferably 40 mol% or more, and further preferably 50 mol% or more.
  • the upper limit value of the ratio of the structural unit (A-1) is not particularly limited, that is, 100 mol%.
  • the structural unit A may consist of only the structural unit (A-1).
  • the ratio of the structural unit (A-2) in the structural unit A is preferably 70 mol% or less, more preferably 15 to 60 mol%, and still more preferably 25 to 50 mol%.
  • the total ratio of the structural units (A-1) and (A-2) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more. And particularly preferably 99 mol% or more.
  • the upper limit value of the total ratio of the structural units (A-1) and (A-2) is not particularly limited, that is, 100 mol%.
  • the structural unit A may consist of only the structural unit (A-1) and the structural unit (A-2).
  • the ratio of the structural unit (A-1) in the total of the structural unit A and the structural unit C is preferably 10 to 90 mol%, more preferably 30 to 85 mol%, still more preferably 35 to 75 mol%. %.
  • the ratio of the structural unit (A-2) in the total of the structural unit A and the structural unit C is preferably 50 mol% or less, more preferably 5 to 45 mol%, still more preferably 10 to 35 mol%. It is.
  • the ratio of the total of the structural units (A-1) and (A-2) in the total of the structural unit A and the structural unit C is preferably 40 to 90 mol%, more preferably 50 to 85 mol%. More preferably, it is 60 to 75 mol%.
  • the structural unit A may include structural units other than the structural units (A-1) and (A-2).
  • the tetracarboxylic dianhydride that gives such a structural unit is not particularly limited, but pyromellitic dianhydride, 9,9′-bis (3,4-dicarboxyphenyl) fluorene dianhydride, and 4 , 4 ′-(Hexafluoroisopropylidene) diphthalic anhydride and other aromatic tetracarboxylic dianhydrides (excluding compounds represented by formula (a-2)); 1,2,3,4- Cyclobutanetetracarboxylic dianhydride and alicyclic tetracarboxylic dianhydrides such as 1,2,4,5-cyclohexanetetracarboxylic dianhydride (provided that the compound represented by the formula (a-1) And aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride.
  • an aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • an alicyclic tetracarboxylic dianhydride means one alicyclic ring.
  • the tetracarboxylic dianhydride containing the above and containing no aromatic ring means an aliphatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural units other than the structural units (A-1) and (A-2) optionally contained in the structural unit A may be one type or two or more types.
  • the structural unit B is a structural unit derived from a diamine in the polyamide-imide resin, and includes a structural unit (B-1) derived from a compound represented by the following formula (b-1).
  • the compound represented by the formula (b-1) is 2,2′-bis (trifluoromethyl) benzidine.
  • the structural unit B includes the structural unit (B-1)
  • the transparency and heat resistance of the film are improved, and the residual stress is reduced.
  • the ratio of the structural unit (B-1) in the structural unit B is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and particularly preferably 99 mol%. % Or more.
  • the upper limit value of the ratio of the structural unit (B-1) is not particularly limited, that is, 100 mol%.
  • the structural unit B may consist of only the structural unit (B-1).
  • the structural unit B may include a structural unit other than the structural unit (B-1).
  • the diamine which gives such a structural unit is not particularly limited, but 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 1,5-diaminonaphthalene, 2,2′-dimethyl Biphenyl-4,4′-diamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4′-diaminodiphenylsulfone, 4 , 4′-diaminobenzanilide, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-indene-5-amine, ⁇ , ⁇ ′-bis (4-aminophenyl) ) -1,4-di
  • an aromatic diamine means a diamine containing one or more aromatic rings
  • an alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring
  • a group diamine means a diamine containing neither an aromatic ring nor an alicyclic ring.
  • the number of structural units other than the structural unit (B-1) optionally included in the structural unit B may be one or more.
  • the structural unit C is a structural unit derived from an aromatic dicarboxylic acid chloride in the polyamide-imide resin, and includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
  • the compound represented by the formula (c-1) is terephthalic acid chloride.
  • the structural unit C includes the structural unit (C-1)
  • the mechanical properties, heat resistance and transparency of the film are improved, and the residual stress is reduced.
  • the ratio of the structural unit (C-1) in the structural unit C is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and particularly preferably 99 mol%. % Or more.
  • the upper limit value of the ratio of the structural unit (C-1) is not particularly limited, that is, 100 mol%.
  • the structural unit C may consist of only the structural unit (C-1).
  • the ratio of the structural unit (C-1) in the total of the structural unit A and the structural unit C is preferably 10 to 60 mol%, more preferably 15 to 50 mol%, and still more preferably 25 to 40 mol%. %.
  • the structural unit C may include a structural unit other than the structural unit (C-1).
  • the aromatic dicarboxylic acid chloride giving such a structural unit is not particularly limited, and examples thereof include 4,4′-biphenyldicarbonyl chloride, 4,4′-oxydibenzoyl chloride, and isophthalic acid chloride.
  • the number of structural units other than the structural unit (C-1) optionally contained in the structural unit C may be one or two or more.
  • the number average molecular weight of the polyamide-imide resin of the present invention is preferably 5,000 to 300,000, more preferably 5,000 to 100,000, from the viewpoint of mechanical strength of the obtained polyamide-imide film.
  • the number average molecular weight of the polyamide-imide resin can be determined from, for example, a standard polymethyl methacrylate (PMMA) conversion value measured by gel filtration chromatography.
  • the polyamide-imide resin of the present invention comprises a polyimide chain (structure in which structural unit A and structural unit B are imide-bonded) and a polyamide chain (structure in which structural unit C and structural unit B are amide-bonded).
  • the structure etc. which contain are mentioned.
  • the molar ratio of the structural unit A to the structural unit C is preferably 40/60 to 90/10, more preferably 50/50 to 85 /. 15 and more preferably 60/40 to 75/25.
  • the polyamide-imide resin of the present invention has a polyimide chain (structure in which the structural unit A and the structural unit B are imide-bonded) and a polyamide chain (structure in which the structural unit C and the structural unit B are amide-bonded). It is preferable to include as a main structure. Therefore, the total ratio of the polyimide chain and the polyamide chain in the polyamide-imide resin of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. Especially preferably, it is 60 mass% or more.
  • the polyamide-imide resin of the present invention By using the polyamide-imide resin of the present invention, it is possible to form a film that is excellent in mechanical properties, heat resistance, and transparency, and further achieves a reduction in residual stress. Is as follows.
  • the tensile elastic modulus is preferably 2.5 GPa or more, more preferably 3.0 GPa or more, and further preferably 4.0 GPa or more.
  • the tensile strength is preferably 100 MPa or more, more preferably 120 MPa or more, and further preferably 150 MPa or more.
  • the glass transition temperature (Tg) is preferably 320 ° C. or higher, more preferably 350 ° C. or higher, and still more preferably 365 ° C. or higher.
  • the total light transmittance is preferably 88% or more, more preferably 88.5% or more, and further preferably 89% or more, when a film having a thickness of 10 ⁇ m is formed.
  • the residual stress is preferably 18.0 MPa or less, more preferably 15.0 MPa or less, and even more preferably 10.0 MPa or less.
  • the said physical-property value in this invention can be specifically measured by the method as described in an Example.
  • Examples of the compound that provides the structural unit (A-1) include compounds represented by the formula (a-1), but are not limited thereto, and may be derivatives thereof within a range that provides the same structural unit.
  • Examples of the derivative include tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-1) (that is, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′). -Norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acid), and alkyl esters of the tetracarboxylic acid.
  • a-1 that is, dianhydride
  • the tetracarboxylic acid component may contain a compound that provides the structural unit (A-2).
  • the compound that provides the structural unit (A-2) include compounds represented by the formula (a-2), but are not limited thereto, and may be derivatives thereof within a range that provides the same structural unit.
  • the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) and an alkyl ester of the tetracarboxylic acid.
  • a-2 that is, dianhydride
  • the tetracarboxylic acid component preferably contains 30 mol% or more, more preferably 40 mol% or more, and still more preferably 50 mol% or more of the compound that gives the structural unit (A-1).
  • the upper limit of the content of the compound giving the structural unit (A-1) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist only of a compound that provides the structural unit (A-1).
  • the tetracarboxylic acid component when the tetracarboxylic acid component contains the structural unit (A-2), the tetracarboxylic acid component preferably contains 70 mol% or less of the compound that gives the structural unit (A-2), more preferably 15 to 60%. Containing mol%, more preferably 25 to 50 mol%.
  • the tetracarboxylic acid component contains, in total, a compound that provides the structural unit (A-1) and a compound that provides the structural unit (A-2), preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably Contains 90 mol% or more, particularly preferably 99 mol% or more.
  • the upper limit of the total content of the compound that provides the structural unit (A-1) and the compound that provides the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist only of a compound that provides the structural unit (A-1) and a compound that provides the structural unit (A-2).
  • the tetracarboxylic acid component may include a compound other than the compound that provides the structural unit (A-1) and the compound that provides the structural unit (A-2).
  • the compound include the aromatic tetracarboxylic dianhydride described above. , Alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides, and derivatives thereof (tetracarboxylic acids, alkyl esters of tetracarboxylic acids, etc.).
  • the compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) optionally contained in the tetracarboxylic acid component may be one kind or two or more kinds.
  • Examples of the compound that provides the structural unit (B-1) include compounds represented by the formula (b-1), but are not limited thereto, and may be derivatives thereof within a range that provides the same structural unit.
  • Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-1).
  • a compound represented by the formula (b-1) that is, a diamine is preferable.
  • the diamine component preferably contains 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 99 mol% or more of the compound that gives the structural unit (B-1). .
  • the upper limit of the content of the compound that gives the structural unit (B-1) is not particularly limited, that is, 100 mol%.
  • the diamine component may consist only of a compound that provides the structural unit (B-1).
  • the diamine component may contain a compound other than the compound that gives the structural unit (B-1).
  • the compound include the above-mentioned aromatic diamine, alicyclic diamine, and aliphatic diamine, and derivatives thereof (such as diisocyanate). Is mentioned.
  • the compound other than the compound that provides the structural unit (B-1) optionally contained in the diamine component may be one kind or two or more kinds.
  • Examples of the compound that provides the structural unit (C-1) include compounds represented by the formula (c-1), but are not limited thereto and may be derivatives thereof within a range that provides the same structural unit.
  • Examples of the derivative include other dicarboxylic acid halides corresponding to the dicarboxylic acid chloride represented by the formula (c-1) (that is, acid fluoride, acid bromide, acid iodide).
  • a compound represented by the formula (c-1) that is, an acid chloride is preferable.
  • the dicarboxylic acid component preferably contains 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 99 mol% or more of the compound that gives the structural unit (C-1). Including.
  • the upper limit of the content of the compound giving the structural unit (C-1) is not particularly limited, that is, 100 mol%.
  • the dicarboxylic acid component may consist only of the compound giving the structural unit (C-1).
  • the dicarboxylic acid component may contain a compound other than the compound giving the structural unit (C-1), and examples of the compound include the above-mentioned aromatic dicarboxylic acid chlorides and other carboxylic acid halides corresponding thereto (that is, acid fluorides). Compound, acid bromide, acid iodide).
  • the number of compounds other than the compound that gives the structural unit (C-1) optionally contained in the dicarboxylic acid component may be one, or two or more.
  • the charge ratio [(tetracarboxylic acid component + dicarboxylic acid component) / diamine component, molar ratio] of the total of the tetracarboxylic acid component and dicarboxylic acid component used in the production of the polyamide-imide resin and the diamine component is:
  • the diamine component is preferably 0.9 to 1.1 mol with respect to 1 mol in total of the tetracarboxylic acid component and the dicarboxylic acid component.
  • the charge ratio of the tetracarboxylic acid component and the dicarboxylic acid component used in the production of the polyamide-imide resin is preferably 40/60 to 90/10, 50/50 to 85/15 is more preferable, and 60/40 to 75/25 is still more preferable.
  • a terminal-blocking agent may be used in the production of the polyamide-imide resin in addition to the above-described tetracarboxylic acid component dicarboxylic acid component and diamine component.
  • end-capping agents monoamines or dicarboxylic acids are preferred.
  • the amount of the terminal blocking agent introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
  • monoamine end-capping agents examples include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used.
  • dicarboxylic acid end-capping agents examples include dicarboxylic acids (excluding the aforementioned dicarboxylic acid component), and a cyclic carboxylic acid anhydride in which two carboxy groups in the molecule have undergone a dehydration condensation reaction, and Dicarboxylic acids that can form carboxylic anhydrides are preferred.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane- 1,2-dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like are recommended.
  • phthalic acid and phthalic anhydride can be suitably used.
  • tetracarboxylic acid component a diamine component, and a dicarboxylic acid component react
  • a well-known method can be used. Specifically, (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged into a reactor, stirred at room temperature to 80 ° C. for 0.5 to 30 hours, and then heated to imidize. A method in which a dicarboxylic acid component is added and then agitated at room temperature to 80 ° C. for 0.5 to 30 hours to perform an amidation reaction. (2) A diamine component and a reaction solvent are charged into a reactor and dissolved.
  • a tetracarboxylic acid component is charged, and if necessary, stirred at room temperature to 80 ° C. for 0.5 to 30 hours. Thereafter, the temperature is raised to carry out an imidization reaction, and then the dicarboxylic acid component is added, and the room temperature to 80 (3)
  • a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged into a reactor and stirred at room temperature to 80 ° C. for 0.5 to 30 hours.
  • dicarboxylic acid Add a minute, stir at room temperature to 80 ° C for 0.5 to 30 hours to perform amidation reaction, then raise the temperature to perform imidization reaction, (4) Charge diamine component and reaction solvent into the reactor Then, the tetracarboxylic acid component is charged, and if necessary, stirred at room temperature to 80 ° C. for 0.5 to 30 hours. Further, the dicarboxylic acid component is added, and if necessary, 0.5 to 30 ° C. at room temperature to 80 ° C.
  • the amidation reaction may be carried out by stirring at room temperature to 80 ° C. for 0.5 to 30 hours, and then the temperature may be raised to carry out the imidization reaction.
  • the reaction solvent used for the production of the polyamide-imide resin may be any solvent that does not inhibit the amidation reaction and the imidization reaction and can dissolve the produced polyamide-imide resin.
  • an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent, and the like can be given.
  • aprotic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea, etc.
  • Amide solvents lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing dimethylsulfone, dimethylsulfoxide, sulfolane and the like
  • solvents such as ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picoline and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenol solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -Xylenol, 3,5-xylenol and the like.
  • ether solvents include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
  • the carbonate solvent examples include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
  • amide solvents or lactone solvents are preferable.
  • the reaction it is preferable to perform the reaction using a Dean Stark apparatus or the like while removing water produced during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
  • a known imidation catalyst can be used.
  • the imidization catalyst include a base catalyst and an acid catalyst.
  • Base catalysts include pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N, N -Organic base catalysts such as dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate and sodium bicarbonate.
  • the acid catalyst examples include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. Is mentioned.
  • the above imidation catalysts may be used alone or in combination of two or more. Among these, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, still more preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.
  • the temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C., from the viewpoint of suppressing the reaction rate and gelation.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the polyamide-imide varnish of the present invention is obtained by dissolving the polyamide-imide resin of the present invention in an organic solvent. That is, the polyamide-imide varnish of the present invention contains the polyamide-imide resin of the present invention and an organic solvent, and the polyamide-imide resin is dissolved in the organic solvent.
  • the organic solvent is not particularly limited as long as it dissolves the polyamide-imide resin, and the above-mentioned compounds as reaction solvents used for the production of the polyamide-imide resin may be used alone or in combination of two or more. preferable.
  • the polyamide-imide varnish of the present invention may be a polyamide-imide solution itself in which a polyamide-imide resin obtained by a polymerization method is dissolved in a reaction solvent, or a dilution solvent is further added to the polyamide-imide solution. It may be a thing.
  • the polyamide-imide varnish of the present invention preferably contains 5 to 40% by mass of the polyamide-imide resin of the present invention, and more preferably 10 to 30% by mass.
  • the viscosity of the polyamide-imidoimide varnish is preferably 1 to 200 Pa ⁇ s, more preferably 5 to 150 Pa ⁇ s.
  • the viscosity of the polyamide-imide varnish is a value measured at 25 ° C. using an E-type viscometer.
  • the polyamide-imide varnish of the present invention is an inorganic filler, an adhesion promoter, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, and an antifoaming agent as long as the required properties of the polyamide-imide film are not impaired.
  • Various additives such as a fluorescent brightening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer may be included.
  • the method for producing the polyamide-imide varnish of the present invention is not particularly limited, and a known method can be applied.
  • the polyamide-imide film of the present invention contains the polyamide-imide resin of the present invention. Therefore, the polyamide-imide film of the present invention is excellent in mechanical properties, heat resistance and transparency, and has a low residual stress.
  • the preferred physical properties of the polyamide-imide film of the present invention are as described above.
  • the polyamide-imide varnish of the present invention is coated on a smooth support such as a glass plate, a metal plate, or a plastic, or formed into a film, and then an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish. The method of removing by heating etc. is mentioned. If necessary, a release agent may be applied to the surface of the support in advance.
  • the method for removing the organic solvent contained in the varnish by heating the following method is preferable. That is, after evaporating the organic solvent at a temperature of 120 ° C. or less to form a self-supporting film, the self-supporting film is peeled off from the support, the ends of the self-supporting film are fixed, and the organic solvent used It is preferable to produce a polyamide-imide film by drying at a temperature equal to or higher than the boiling point. Moreover, it is preferable to dry in nitrogen atmosphere. The pressure in the dry atmosphere may be any of reduced pressure, normal pressure, and increased pressure.
  • the heating temperature for producing the polyamide-imide film by drying the self-supporting film is not particularly limited, but is preferably 200 to 400 ° C.
  • the polyamide-imide film of the present invention can also be produced using a polyamide-amide acid varnish obtained by dissolving polyamide-amide acid in an organic solvent.
  • the polyamide-amide acid contained in the polyamide-amide acid varnish is a precursor of the polyamide-imide resin of the present invention, and includes a tetracarboxylic acid component containing a compound that gives the structural unit (A-1) described above, and A dicarboxylic acid component having an amic acid structure in which a diamine component containing a compound giving the structural unit (B-1) is bonded by a polyaddition reaction and containing a compound giving the structural unit (C-1); A product having a structure in which the diamine component containing the compound giving the structural unit (B-1) is linked by an amide bond.
  • the polyamide-amide acid varnish By imidizing (dehydrating and cyclizing) the polyamide-amide acid, the final product, the polyamide-imide resin of the present invention, is obtained.
  • the organic solvent contained in the polyamide-amide acid varnish the organic solvent contained in the polyamide-imide varnish of the present invention can be used.
  • the polyamide-amide acid varnish may be a polyamide-amide acid solution itself obtained by the reaction of the above-described tetracarboxylic acid component, diamine component, and dicarboxylic acid component, or may be based on the polyamide acid solution. Further, a dilution solvent may be added.
  • a polyamide-amic acid varnish is coated on a smooth support such as a glass plate, metal plate, plastic, or formed into a film, and an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish is heated.
  • a polyamide-amide acid film is obtained by removing the polyamide-amide acid film, and the polyamide-amide acid in the polyamide-amide acid film is imidized by heating to produce a polyamide-imide film.
  • the heating temperature for obtaining the polyamide-amide acid film by drying the polyamide-amide acid varnish is preferably 50 to 120 ° C.
  • the heating temperature for imidizing the polyamide-amic acid by heating is preferably 200 to 400 ° C.
  • the imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
  • the thickness of the polyamide-imide film of the present invention can be appropriately selected according to the use and the like, but is preferably in the range of 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, still more preferably 5 to 30 ⁇ m. When the thickness is 1 to 100 ⁇ m, practical use as a self-supporting film becomes possible.
  • the thickness of the polyamide-imide imide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyamide-imide varnish.
  • the polyamide-imide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, optical members and the like.
  • the polyamide-imide film of the present invention is particularly preferably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
  • Solid content concentration The solid content concentration of the varnish was calculated from the difference in mass of the sample before and after heating by heating the sample at 320 ° C. ⁇ 120 min in a small electric furnace “MMF-1” manufactured by AS ONE Corporation.
  • Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Corporation.
  • Tensile Elastic Modulus and Tensile Strength The tensile elastic modulus and tensile strength were measured using a tensile tester “Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7127. The distance between chucks was 50 mm, the test piece size was 10 mm ⁇ 50 mm, and the test speed was 20 mm / min.
  • the tensile modulus and the tensile strength are both excellent in mechanical properties as the numerical value is large.
  • Glass transition temperature (Tg) Residual stress is removed using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Co., Ltd. under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min. The temperature was raised to a sufficient temperature to remove residual stress, and then cooled to room temperature. Thereafter, the measurement of the elongation of the test piece was performed under the same conditions as the treatment for removing the residual stress, and the place where the inflection point of the elongation was observed was determined as the glass transition temperature.
  • Total Light Transmittance was measured using a color / turbidity simultaneous measuring device “COH400” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1: 1997. The closer the total light transmittance is to 100%, the better the transparency.
  • Residual stress Using a residual stress measuring device “FLX-2320” manufactured by KLA-Tencor Corporation, the “warping amount” was measured in advance on a 4-inch silicon wafer having a thickness of 525 ⁇ m ⁇ 25 ⁇ m. An imide varnish or a polyamide-amic acid varnish was applied using a spin coater and prebaked.
  • Example 1 In a 1 L 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap, 32.024 g (0.100 mol) of TFMB, N -Methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) (63.570 g) was added, and the system temperature was 70 ° C. and stirred in a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
  • N -Methyl-2-pyrrolidone Mitsubishi Chemical Co., Ltd.
  • a polyamide-imide varnish was obtained. Thereafter, the polyamide-imide varnish is diluted with N-methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) to a solid content concentration of 5.0% by mass and added dropwise to a large excess of methanol to precipitate a polyamide-imide powder. I let you. Then, it suction-filtered with the Kiriyama funnel, and wash
  • N-methyl-2-pyrrolidone Mitsubishi Chemical Co., Ltd.
  • a polyamide-imide varnish having a solid content of 10.0% by mass was obtained by dissolving 5.000 g of polyamide-imide powder in 45.000 g of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Corporation). Thereafter, the obtained polyamide-imide varnish is applied onto a glass or silicon wafer, held at 80 ° C. for 20 minutes on a hot plate, and then heated at 350 ° C. for 30 minutes in a hot air dryer under a nitrogen atmosphere. Evaporation gave a film with a thickness of 8 ⁇ m. The results are shown in Table 1.
  • Example 2 The same as Example 1 except that CpODA was changed from 26.907 g (0.070 mol) to 15.375 g (0.040 mol), and 8.826 g (0.030 mol) of BPDA was added simultaneously with the addition of CpODA.
  • a polyamide-imide varnish was prepared by the method to obtain a polyamide-imide varnish having a solid content concentration of 10.0% by mass. Using the obtained polyamide-imide varnish, a film was produced in the same manner as in Example 1 to obtain a film having a thickness of 9 ⁇ m. The results are shown in Table 1.
  • the polyamide-imide films of Examples 1 and 2 are excellent in mechanical properties, heat resistance and transparency, and can further reduce the residual stress.
  • the polyimide film of Comparative Example 1 produced using only CpODA as the tetracarboxylic acid component without using the dicarboxylic acid component is excellent in transparency as compared with the polyamide-imide films of Examples 1 and 2.
  • the mechanical properties and heat resistance are inferior and the residual stress is high, it can be seen that the residual stress cannot be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

The present invention provides: a polyamide–imide resin that can be used to form a film having excellent mechanical characteristics, heat resistance, and transparency, and also having reduced residual stress; and a polyamide-imide varnish and polyamide-imide film containing the polyamide-imide resin. The present invention pertains to: a polyamide-imide resin having constituent unit A derived from a tetracarboxylic dianhydride, constituent unit B derived from a diamine, and constituent unit C derived from an aromatic dicarboxylic acid dichloride, wherein constituent unit A contains a constituent unit (A-1) derived from a compound represented by formula (a-1), constituent unit B contains a constituent unit (B-1) derived from a compound represented by formula (b-1), and constituent unit C contains a constituent unit (C-1) derived from a compound represented by formula (c-1); and a polyamide-imide varnish and polyamide-imide film containing the polyamide-imide resin.

Description

ポリアミド-イミド樹脂、ポリアミド-イミドワニス及びポリアミド-イミドフィルムPolyamide-imide resin, polyamide-imide varnish and polyamide-imide film
 本発明はポリアミド-イミド樹脂、ポリアミド-イミドワニス及びポリアミド-イミドフィルムに関する。 The present invention relates to a polyamide-imide resin, a polyamide-imide varnish, and a polyamide-imide film.
 一般に、ポリイミド樹脂は優れた機械的特性及び耐熱性を有することから、電気・電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック基板として適するポリイミドフィルムの研究が進められている。このような用途のポリイミドフィルムには高い透明性が求められる。 Generally, polyimide resins have excellent mechanical properties and heat resistance, and thus are being used in various fields such as electrical and electronic parts. For example, it is desired to replace a glass substrate used for an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight or flexibility of the device. Research is ongoing. High transparency is required for polyimide films for such applications.
 ガラス支持体やシリコンウェハ上に塗布したワニスを加熱してポリイミドフィルムを形成すると、ポリイミドフィルムに残留応力が生じる。ポリイミドフィルムの残留応力が大きいと、ガラス支持体やシリコンウェハが反ってしまうという問題が生じるため、ポリイミドフィルムには残留応力の低減も求められる。
 一方、ポリイミドフィルムの主材料であるポリイミド樹脂にポリアミドを混合または共重合しようとする試みが行われている。
 特許文献1には、熱的、機械的および光学的特性に優れる共重合ポリアミド-イミドフィルムとして、2,2’-ビス(トリフルオロメチル)ベンジジンに由来する単位構造、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物に由来する単位構造、3,3’,4,4’-ビフェニルテトラカルボン二酸無水物に由来する単位構造およびテレフタル酸クロリド(TPC)に由来する単位構造を有する樹脂が開示されている。
 特許文献2には、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物と、シクロブタンテトラカルボン酸二無水物、及びシクロペンタンテトラカルボン酸二無水物から選択される1種以上を含む芳香族ジアンヒドリドと、芳香族ジカルボニル化合物と、2,2’-ビス(トリフルオロメチル)ベンジジンを含む芳香族ジアミンと、が共重合されたポリアミック酸のイミド化物である、ポリアミド-イミド樹脂が開示されている。
When a varnish applied on a glass support or a silicon wafer is heated to form a polyimide film, residual stress is generated in the polyimide film. When the residual stress of the polyimide film is large, there arises a problem that the glass support or the silicon wafer is warped. Therefore, the polyimide film is also required to reduce the residual stress.
On the other hand, attempts have been made to mix or copolymerize polyamide with polyimide resin which is the main material of polyimide film.
Patent Document 1 discloses a unit structure derived from 2,2′-bis (trifluoromethyl) benzidine as a copolymerized polyamide-imide film having excellent thermal, mechanical and optical properties, 4,4 ′-(hexa Unit structure derived from fluoroisopropylidene) diphthalic anhydride, unit structure derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and unit structure derived from terephthalic acid chloride (TPC) A resin is disclosed.
Patent Document 2 discloses a fragrance containing at least one selected from 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, cyclobutanetetracarboxylic dianhydride, and cyclopentanetetracarboxylic dianhydride. Polyamide-imide resin, which is an imidized polyamic acid obtained by copolymerization of an aromatic dianhydride, an aromatic dicarbonyl compound, and an aromatic diamine containing 2,2′-bis (trifluoromethyl) benzidine Has been.
特表2014-528490号公報Special table 2014-528490 gazette 特表2017-503887号公報Special table 2017-503887 gazette
 上述のように、ポリイミドフィルムには高透明性や低残留応力が要求されるが、優れた機械的特性及び耐熱性を維持しながら、それら特性を向上させることは容易ではない。
 本発明はこのような状況に鑑みてなされたものであり、本発明の課題は、機械的特性、耐熱性、及び透明性に優れ、更に残留応力の低減が達成されるフィルムの形成が可能なポリアミド-イミド樹脂、並びに該ポリアミド-イミド樹脂を含むポリアミド-イミドワニス及びポリアミド-イミドフィルムを提供することにある。
As described above, the polyimide film is required to have high transparency and low residual stress, but it is not easy to improve these characteristics while maintaining excellent mechanical characteristics and heat resistance.
This invention is made | formed in view of such a condition, The subject of this invention is excellent in a mechanical characteristic, heat resistance, and transparency, and also the formation of the film in which reduction of a residual stress is achieved is possible. The object is to provide a polyamide-imide resin, and a polyamide-imide varnish and a polyamide-imide film containing the polyamide-imide resin.
 本発明者らは、特定の構成単位の組み合わせを含むポリアミド-イミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have found that a polyamide-imide resin containing a specific combination of structural units can solve the above problems, and have completed the invention.
 即ち、本発明は、下記の[1]~[8]に関する。
[1]
 テトラカルボン酸二無水物に由来する構成単位A、ジアミンに由来する構成単位B、及び芳香族ジカルボン酸クロリドに由来する構成単位Cを有するポリアミド-イミド樹脂であって、
 構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)を含み、
 構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、
 構成単位Cが下記式(c-1)で表される化合物に由来する構成単位(C-1)を含む、ポリアミド-イミド樹脂。
Figure JPOXMLDOC01-appb-C000003
That is, the present invention relates to the following [1] to [8].
[1]
A polyamide-imide resin having a structural unit A derived from tetracarboxylic dianhydride, a structural unit B derived from diamine, and a structural unit C derived from aromatic dicarboxylic acid chloride,
The structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1),
The structural unit B includes a structural unit (B-1) derived from a compound represented by the following formula (b-1),
A polyamide-imide resin in which the structural unit C includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
Figure JPOXMLDOC01-appb-C000003
[2]
 構成単位A及び構成単位Cの合計中における構成単位(A-1)の比率が10~90モル%であり、
 構構成単位A及び構成単位Cの合計中における構成単位(C-1)の比率が10~60モル%である、上記[1]に記載のポリアミド-イミド樹脂。
[3]
 構成単位Aが下記式(a-2)で表される化合物に由来する構成単位(A-2)を含む、請求項1又は2に記載のポリアミド-イミド樹脂。
Figure JPOXMLDOC01-appb-C000004

[4]
 構成単位A及び構成単位Cの合計中における構成単位(A-2)の比率が50モル%以下である、上記[3]に記載のポリアミド-イミド樹脂。
[5]
 構成単位C中における構成単位(C-1)の比率が50モル%以上である、上記[1]~[4]のいずれかに記載のポリアミド-イミド樹脂。
[6]
 構成単位B中における構成単位(B-1)の比率が50モル%以上である、上記[1]~[5]のいずれかに記載のポリアミド-イミド樹脂。
[7]
 上記[1]~[6]のいずれかに記載のポリアミド-イミド樹脂が有機溶媒に溶解してなるポリアミド-イミドワニス。
[8]
 上記[1]~[6]のいずれかに記載のポリアミド-イミド樹脂を含む、ポリアミド-イミドフィルム。
[2]
The ratio of the structural unit (A-1) in the total of the structural unit A and the structural unit C is 10 to 90 mol%,
The polyamide-imide resin according to the above [1], wherein the ratio of the structural unit (C-1) in the total of the structural unit A and the structural unit C is 10 to 60 mol%.
[3]
The polyamide-imide resin according to claim 1 or 2, wherein the structural unit A includes a structural unit (A-2) derived from a compound represented by the following formula (a-2).
Figure JPOXMLDOC01-appb-C000004

[4]
The polyamide-imide resin according to the above [3], wherein the proportion of the structural unit (A-2) in the total of the structural unit A and the structural unit C is 50 mol% or less.
[5]
The polyamide-imide resin according to any one of [1] to [4] above, wherein the proportion of the structural unit (C-1) in the structural unit C is 50 mol% or more.
[6]
The polyamide-imide resin according to any one of [1] to [5] above, wherein the proportion of the structural unit (B-1) in the structural unit B is 50 mol% or more.
[7]
A polyamide-imide varnish obtained by dissolving the polyamide-imide resin according to any one of [1] to [6] above in an organic solvent.
[8]
A polyamide-imide film comprising the polyamide-imide resin according to any one of [1] to [6] above.
 本発明によれば、機械的特性、耐熱性、及び透明性に優れ、更に残留応力の低減が達成されるフィルムを形成することができる。 According to the present invention, it is possible to form a film that is excellent in mechanical properties, heat resistance, and transparency, and further achieves a reduction in residual stress.
[ポリアミド-イミド樹脂]
 本発明のポリアミド-イミド樹脂は、テトラカルボン酸二無水物に由来する構成単位A、ジアミンに由来する構成単位B、及び芳香族ジカルボン酸クロリドに由来する構成単位Cを有し、
 構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)を含み、
 構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、
 構成単位Cが下記式(c-1)で表される化合物に由来する構成単位(C-1)を含む。
Figure JPOXMLDOC01-appb-C000005
[Polyamide-imide resin]
The polyamide-imide resin of the present invention has a structural unit A derived from tetracarboxylic dianhydride, a structural unit B derived from diamine, and a structural unit C derived from aromatic dicarboxylic acid chloride.
The structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1),
The structural unit B includes a structural unit (B-1) derived from a compound represented by the following formula (b-1),
The structural unit C includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
Figure JPOXMLDOC01-appb-C000005
 本発明のポリアミド-イミド樹脂は、その分子鎖中に構成単位Aと構成単位Bとがイミド結合で連結してなる構造と、構成単位Cと構成単位Bとがアミド結合で連結してなる構造とを含むものである。 The polyamide-imide resin of the present invention has a structure in which the structural unit A and the structural unit B are connected by an imide bond in the molecular chain, and a structure in which the structural unit C and the structural unit B are connected by an amide bond. Is included.
<構成単位A>
 構成単位Aは、ポリアミド-イミド樹脂に占めるテトラカルボン酸二無水物に由来する構成単位であって、下記式(a-1)で表される化合物に由来する構成単位(A-1)を含む。構成単位Aは、構成単位(A-1)の他に、下記式(a-2)で表される化合物に由来する構成単位(A-2)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000006
<Structural unit A>
The structural unit A is a structural unit derived from tetracarboxylic dianhydride in the polyamide-imide resin, and includes a structural unit (A-1) derived from a compound represented by the following formula (a-1). . The structural unit A may contain a structural unit (A-2) derived from a compound represented by the following formula (a-2) in addition to the structural unit (A-1).
Figure JPOXMLDOC01-appb-C000006
 式(a-1)で表される化合物は、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物である。 The compound represented by the formula (a-1) is norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane-5,5 ″, 6,6 ″ -tetracarboxylic Acid dianhydride.
 式(a-2)で表される化合物は、ビフェニルテトラカルボン酸二無水物(BPDA)であり、その具体例としては、下記式(a-2s)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、下記式(a-2a)で表される2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、下記式(a-2i)で表される2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)が挙げられる。
Figure JPOXMLDOC01-appb-C000007
The compound represented by the formula (a-2) is biphenyltetracarboxylic dianhydride (BPDA), and specific examples thereof include 3,3 ′, 4, represented by the following formula (a-2s): 4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) represented by the following formula (a-2a), Examples thereof include 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride (i-BPDA) represented by the following formula (a-2i).
Figure JPOXMLDOC01-appb-C000007
 構成単位Aが構成単位(A-1)を少なくとも含むことによって、フィルムの機械的特性、耐熱性及び透明性がより向上し、残留応力がより低下する。また、構成単位Aが構成単位(A-1)の他に、構成単位(A-2)を含むことによって、フィルムの機械的特性がより一層向上し、残留応力がより一層低下する。 When the structural unit A includes at least the structural unit (A-1), the mechanical properties, heat resistance and transparency of the film are further improved, and the residual stress is further decreased. Further, when the structural unit A contains the structural unit (A-2) in addition to the structural unit (A-1), the mechanical properties of the film are further improved, and the residual stress is further reduced.
 構成単位A中における構成単位(A-1)の比率は、好ましくは30モル%以上であり、より好ましくは40モル%以上であり、更に好ましくは50モル%以上である。当該構成単位(A-1)の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)のみからなっていてもよい。 The ratio of the structural unit (A-1) in the structural unit A is preferably 30 mol% or more, more preferably 40 mol% or more, and further preferably 50 mol% or more. The upper limit value of the ratio of the structural unit (A-1) is not particularly limited, that is, 100 mol%. The structural unit A may consist of only the structural unit (A-1).
 構成単位A中における構成単位(A-2)の比率は、好ましくは70モル%以下であり、より好ましくは15~60モル%であり、更に好ましくは25~50モル%である。
 構成単位A中における構成単位(A-1)及び(A-2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(A-1)及び(A-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)及び構成単位(A-2)のみからなっていてもよい。
The ratio of the structural unit (A-2) in the structural unit A is preferably 70 mol% or less, more preferably 15 to 60 mol%, and still more preferably 25 to 50 mol%.
The total ratio of the structural units (A-1) and (A-2) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more. And particularly preferably 99 mol% or more. The upper limit value of the total ratio of the structural units (A-1) and (A-2) is not particularly limited, that is, 100 mol%. The structural unit A may consist of only the structural unit (A-1) and the structural unit (A-2).
 構成単位A及び構成単位Cの合計中における構成単位(A-1)の比率は、好ましくは10~90モル%であり、より好ましくは30~85モル%であり、更に好ましくは35~75モル%である。
 構成単位A及び構成単位Cの合計中における構成単位(A-2)の比率は、好ましくは50モル%以下であり、より好ましくは5~45モル%であり、更に好ましくは10~35モル%である。
 構成単位A及び構成単位Cの合計中における構成単位(A-1)及び(A-2)の合計の比率は、好ましくは40~90モル%であり、より好ましくは50~85モル%であり、更に好ましくは60~75モル%である。
The ratio of the structural unit (A-1) in the total of the structural unit A and the structural unit C is preferably 10 to 90 mol%, more preferably 30 to 85 mol%, still more preferably 35 to 75 mol%. %.
The ratio of the structural unit (A-2) in the total of the structural unit A and the structural unit C is preferably 50 mol% or less, more preferably 5 to 45 mol%, still more preferably 10 to 35 mol%. It is.
The ratio of the total of the structural units (A-1) and (A-2) in the total of the structural unit A and the structural unit C is preferably 40 to 90 mol%, more preferably 50 to 85 mol%. More preferably, it is 60 to 75 mol%.
 構成単位Aは、構成単位(A-1)及び(A-2)以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a-2)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物、及び1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a-1)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位(A-1)及び(A-2)以外の構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit A may include structural units other than the structural units (A-1) and (A-2). The tetracarboxylic dianhydride that gives such a structural unit is not particularly limited, but pyromellitic dianhydride, 9,9′-bis (3,4-dicarboxyphenyl) fluorene dianhydride, and 4 , 4 ′-(Hexafluoroisopropylidene) diphthalic anhydride and other aromatic tetracarboxylic dianhydrides (excluding compounds represented by formula (a-2)); 1,2,3,4- Cyclobutanetetracarboxylic dianhydride and alicyclic tetracarboxylic dianhydrides such as 1,2,4,5-cyclohexanetetracarboxylic dianhydride (provided that the compound represented by the formula (a-1) And aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride.
In this specification, an aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and an alicyclic tetracarboxylic dianhydride means one alicyclic ring. The tetracarboxylic dianhydride containing the above and containing no aromatic ring means an aliphatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
The structural units other than the structural units (A-1) and (A-2) optionally contained in the structural unit A may be one type or two or more types.
<構成単位B>
 構成単位Bは、ポリアミド-イミド樹脂に占めるジアミンに由来する構成単位であって、下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む。
Figure JPOXMLDOC01-appb-C000008
<Structural unit B>
The structural unit B is a structural unit derived from a diamine in the polyamide-imide resin, and includes a structural unit (B-1) derived from a compound represented by the following formula (b-1).
Figure JPOXMLDOC01-appb-C000008
 式(b-1)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジンである。
 構成単位Bが構成単位(B-1)を含むことによって、フィルムの透明性及び耐熱性が向上し、残留応力が低下する。
The compound represented by the formula (b-1) is 2,2′-bis (trifluoromethyl) benzidine.
When the structural unit B includes the structural unit (B-1), the transparency and heat resistance of the film are improved, and the residual stress is reduced.
 構成単位B中における構成単位(B-1)の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(B-1)の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)のみからなっていてもよい。 The ratio of the structural unit (B-1) in the structural unit B is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and particularly preferably 99 mol%. % Or more. The upper limit value of the ratio of the structural unit (B-1) is not particularly limited, that is, 100 mol%. The structural unit B may consist of only the structural unit (B-1).
 構成単位Bは構成単位(B-1)以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、3,5-ジアミノ安息香酸、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、及び9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン(ただし、式(b-1)で表される化合物を除く);1,3-ビス(アミノメチル)シクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位(B-1)以外の構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit B may include a structural unit other than the structural unit (B-1). The diamine which gives such a structural unit is not particularly limited, but 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 1,5-diaminonaphthalene, 2,2′-dimethyl Biphenyl-4,4′-diamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4′-diaminodiphenylsulfone, 4 , 4′-diaminobenzanilide, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-indene-5-amine, α, α′-bis (4-aminophenyl) ) -1,4-diisopropylbenzene, N, N′-bis (4-aminophenyl) terephthalamide, 4,4′-bis (4-aminophenoxy) Biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2′-bis (trifluoromethyl) ) -4,4′-diaminodiphenyl ether, and aromatic diamines such as 9,9-bis (4-aminophenyl) fluorene (excluding the compound represented by the formula (b-1)); And alicyclic diamines such as bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane; and aliphatic diamines such as ethylenediamine and hexamethylenediamine.
In this specification, an aromatic diamine means a diamine containing one or more aromatic rings, an alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring, A group diamine means a diamine containing neither an aromatic ring nor an alicyclic ring.
The number of structural units other than the structural unit (B-1) optionally included in the structural unit B may be one or more.
<構成単位C>
 構成単位Cは、ポリアミド-イミド樹脂に占める芳香族ジカルボン酸クロリドに由来する構成単位であって、下記式(c-1)で表される化合物に由来する構成単位(C-1)を含む。
Figure JPOXMLDOC01-appb-C000009
<Structural unit C>
The structural unit C is a structural unit derived from an aromatic dicarboxylic acid chloride in the polyamide-imide resin, and includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
Figure JPOXMLDOC01-appb-C000009
 式(c-1)で表される化合物は、テレフタル酸クロリドである。
 構成単位Cが構成単位(C-1)を含むことによって、フィルムの機械的特性、耐熱性及び透明性が向上し、残留応力が低下する。
The compound represented by the formula (c-1) is terephthalic acid chloride.
When the structural unit C includes the structural unit (C-1), the mechanical properties, heat resistance and transparency of the film are improved, and the residual stress is reduced.
 構成単位C中における構成単位(C-1)の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(C-1)の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Cは構成単位(C-1)のみからなっていてもよい。
 構成単位A及び構成単位Cの合計中における構成単位(C-1)の比率は、好ましくは10~60モル%であり、より好ましくは15~50モル%であり、更に好ましくは25~40モル%である。
The ratio of the structural unit (C-1) in the structural unit C is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and particularly preferably 99 mol%. % Or more. The upper limit value of the ratio of the structural unit (C-1) is not particularly limited, that is, 100 mol%. The structural unit C may consist of only the structural unit (C-1).
The ratio of the structural unit (C-1) in the total of the structural unit A and the structural unit C is preferably 10 to 60 mol%, more preferably 15 to 50 mol%, and still more preferably 25 to 40 mol%. %.
 構成単位Cは、構成単位(C-1)以外の構成単位を含んでもよい。そのような構成単位を与える芳香族ジカルボン酸クロリドとしては、特に限定されないが、4,4’-ビフェニルジカルボニルクロリド、4,4’-オキシジベンゾイルクロリド、イソフタル酸クロリド等が挙げられる。
 構成単位Cに任意に含まれる構成単位(C-1)以外の構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit C may include a structural unit other than the structural unit (C-1). The aromatic dicarboxylic acid chloride giving such a structural unit is not particularly limited, and examples thereof include 4,4′-biphenyldicarbonyl chloride, 4,4′-oxydibenzoyl chloride, and isophthalic acid chloride.
The number of structural units other than the structural unit (C-1) optionally contained in the structural unit C may be one or two or more.
 本発明のポリアミド-イミド樹脂の数平均分子量は、得られるポリアミド-イミドフィルムの機械的強度の観点から、好ましくは5,000~300,000、より好ましくは5,000~100,000である。なお、ポリアミド-イミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。 The number average molecular weight of the polyamide-imide resin of the present invention is preferably 5,000 to 300,000, more preferably 5,000 to 100,000, from the viewpoint of mechanical strength of the obtained polyamide-imide film. The number average molecular weight of the polyamide-imide resin can be determined from, for example, a standard polymethyl methacrylate (PMMA) conversion value measured by gel filtration chromatography.
 本発明のポリアミド-イミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)と、ポリアミド鎖(構成単位Cと構成単位Bとがアミド結合してなる構造)とを含む構造等が挙げられる。
 本発明のポリアミド-イミド樹脂中における、構成単位Aと構成単位Cのモル比率(構成単位A/構成単位C)は、好ましくは40/60~90/10、より好ましくは50/50~85/15、更に好ましくは60/40~75/25である。
The polyamide-imide resin of the present invention comprises a polyimide chain (structure in which structural unit A and structural unit B are imide-bonded) and a polyamide chain (structure in which structural unit C and structural unit B are amide-bonded). The structure etc. which contain are mentioned.
In the polyamide-imide resin of the present invention, the molar ratio of the structural unit A to the structural unit C (structural unit A / structural unit C) is preferably 40/60 to 90/10, more preferably 50/50 to 85 /. 15 and more preferably 60/40 to 75/25.
 本発明のポリアミド-イミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)と、ポリアミド鎖(構成単位Cと構成単位Bとがアミド結合してなる構造)を主たる構造として含むことが好ましい。したがって、本発明ポリアミド-イミド樹脂中に占めるポリイミド鎖及びポリアミド鎖の合計の比率は、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは50質量%以上であり、特に好ましくは60質量%以上である。 The polyamide-imide resin of the present invention has a polyimide chain (structure in which the structural unit A and the structural unit B are imide-bonded) and a polyamide chain (structure in which the structural unit C and the structural unit B are amide-bonded). It is preferable to include as a main structure. Therefore, the total ratio of the polyimide chain and the polyamide chain in the polyamide-imide resin of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. Especially preferably, it is 60 mass% or more.
 本発明のポリアミド-イミド樹脂を用いることで、機械的特性、耐熱性、及び透明性に優れ、更に残留応力の低減が達成されるフィルムを形成することができ、当該フィルムの有する好適な物性値は以下の通りである。 By using the polyamide-imide resin of the present invention, it is possible to form a film that is excellent in mechanical properties, heat resistance, and transparency, and further achieves a reduction in residual stress. Is as follows.
 引張弾性率は、好ましくは2.5GPa以上であり、より好ましくは3.0GPa以上であり、更に好ましくは4.0GPa以上である。
 引張強度は、好ましくは100MPa以上であり、より好ましくは120MPa以上であり、更に好ましくは150MPa以上である。
 ガラス転移温度(Tg)は、好ましくは320℃以上であり、より好ましくは350℃以上であり、更に好ましくは365℃以上である。
 全光線透過率は、厚さ10μmのフィルムとした際に、好ましくは88%以上であり、より好ましくは88.5%以上であり、更に好ましくは89%以上である。
 残留応力は、好ましくは18.0MPa以下であり、より好ましくは15.0MPa以下であり、更に好ましくは10.0MPa以下である。
 なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
The tensile elastic modulus is preferably 2.5 GPa or more, more preferably 3.0 GPa or more, and further preferably 4.0 GPa or more.
The tensile strength is preferably 100 MPa or more, more preferably 120 MPa or more, and further preferably 150 MPa or more.
The glass transition temperature (Tg) is preferably 320 ° C. or higher, more preferably 350 ° C. or higher, and still more preferably 365 ° C. or higher.
The total light transmittance is preferably 88% or more, more preferably 88.5% or more, and further preferably 89% or more, when a film having a thickness of 10 μm is formed.
The residual stress is preferably 18.0 MPa or less, more preferably 15.0 MPa or less, and even more preferably 10.0 MPa or less.
In addition, the said physical-property value in this invention can be specifically measured by the method as described in an Example.
[ポリアミド-イミド樹脂の製造方法]
 本発明のポリアミド-イミド樹脂は、上述の構成単位(A-1)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物を含むジアミン成分とを反応させた後に、構成単位(C-1)を与える化合物を含むジカルボン酸成分を反応させることにより製造することができる。
[Production method of polyamide-imide resin]
In the polyamide-imide resin of the present invention, the tetracarboxylic acid component containing the compound giving the structural unit (A-1) was reacted with the diamine component containing the compound giving the structural unit (B-1). Thereafter, it can be produced by reacting a dicarboxylic acid component containing a compound that gives the structural unit (C-1).
 構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物(即ち、二無水物)が好ましい。 Examples of the compound that provides the structural unit (A-1) include compounds represented by the formula (a-1), but are not limited thereto, and may be derivatives thereof within a range that provides the same structural unit. Examples of the derivative include tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-1) (that is, norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″). -Norbornane-5,5 ″, 6,6 ″ -tetracarboxylic acid), and alkyl esters of the tetracarboxylic acid. As the compound giving the structural unit (A-1), a compound represented by the formula (a-1) (that is, dianhydride) is preferable.
 テトラカルボン酸成分は、上述の構成単位(A-2)を与える化合物を含んでいてもよい。
 構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物(即ち、二無水物)が好ましい。
The tetracarboxylic acid component may contain a compound that provides the structural unit (A-2).
Examples of the compound that provides the structural unit (A-2) include compounds represented by the formula (a-2), but are not limited thereto, and may be derivatives thereof within a range that provides the same structural unit. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) and an alkyl ester of the tetracarboxylic acid. As the compound giving the structural unit (A-2), a compound represented by the formula (a-2) (that is, dianhydride) is preferable.
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物を、好ましくは30モル%以上含み、より好ましくは40モル%以上含み、更に好ましくは50モル%以上含む。構成単位(A-1)を与える化合物の含有量の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物のみからなっていてもよい。 The tetracarboxylic acid component preferably contains 30 mol% or more, more preferably 40 mol% or more, and still more preferably 50 mol% or more of the compound that gives the structural unit (A-1). The upper limit of the content of the compound giving the structural unit (A-1) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of a compound that provides the structural unit (A-1).
 テトラカルボン酸成分が構成単位(A-2)を含む場合には、テトラカルボン酸成分は、構成単位(A-2)を与える化合物を、好ましくは70モル%以下含み、より好ましくは15~60モル%含み、更に好ましくは25~50モル%含む。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物の合計の含有量の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物および構成単位(A-2)を与える化合物のみからなっていてもよい。
When the tetracarboxylic acid component contains the structural unit (A-2), the tetracarboxylic acid component preferably contains 70 mol% or less of the compound that gives the structural unit (A-2), more preferably 15 to 60%. Containing mol%, more preferably 25 to 50 mol%.
The tetracarboxylic acid component contains, in total, a compound that provides the structural unit (A-1) and a compound that provides the structural unit (A-2), preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably Contains 90 mol% or more, particularly preferably 99 mol% or more. The upper limit of the total content of the compound that provides the structural unit (A-1) and the compound that provides the structural unit (A-2) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of a compound that provides the structural unit (A-1) and a compound that provides the structural unit (A-2).
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may include a compound other than the compound that provides the structural unit (A-1) and the compound that provides the structural unit (A-2). Examples of the compound include the aromatic tetracarboxylic dianhydride described above. , Alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides, and derivatives thereof (tetracarboxylic acids, alkyl esters of tetracarboxylic acids, etc.).
The compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) optionally contained in the tetracarboxylic acid component may be one kind or two or more kinds.
 構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b-1)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物(即ち、ジアミン)が好ましい。 Examples of the compound that provides the structural unit (B-1) include compounds represented by the formula (b-1), but are not limited thereto, and may be derivatives thereof within a range that provides the same structural unit. Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-1). As the compound that gives the structural unit (B-1), a compound represented by the formula (b-1) (that is, a diamine) is preferable.
 ジアミン成分は、構成単位(B-1)を与える化合物を、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(B-1)を与える化合物の含有量の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B-1)を与える化合物のみからなっていてもよい。 The diamine component preferably contains 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 99 mol% or more of the compound that gives the structural unit (B-1). . The upper limit of the content of the compound that gives the structural unit (B-1) is not particularly limited, that is, 100 mol%. The diamine component may consist only of a compound that provides the structural unit (B-1).
 ジアミン成分は構成単位(B-1)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる構成単位(B-1)を与える化合物以外の化合物は、1種でもよいし、2種以上であってもよい。
The diamine component may contain a compound other than the compound that gives the structural unit (B-1). Examples of the compound include the above-mentioned aromatic diamine, alicyclic diamine, and aliphatic diamine, and derivatives thereof (such as diisocyanate). Is mentioned.
The compound other than the compound that provides the structural unit (B-1) optionally contained in the diamine component may be one kind or two or more kinds.
 構成単位(C-1)を与える化合物としては、式(c-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(c-1)で表されるジカルボン酸クロリドに対応する他のジカルボン酸ハロゲン化物(即ち、酸フッ化物、酸臭化物、酸ヨウ化物)が挙げられる。構成単位(C-1)を与える化合物としては、式(c-1)で表される化合物(即ち、酸塩化物)が好ましい。 Examples of the compound that provides the structural unit (C-1) include compounds represented by the formula (c-1), but are not limited thereto and may be derivatives thereof within a range that provides the same structural unit. Examples of the derivative include other dicarboxylic acid halides corresponding to the dicarboxylic acid chloride represented by the formula (c-1) (that is, acid fluoride, acid bromide, acid iodide). As the compound giving the structural unit (C-1), a compound represented by the formula (c-1) (that is, an acid chloride) is preferable.
 ジカルボン酸成分は、構成単位(C-1)を与える化合物を、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(C-1)を与える化合物の含有量の上限値は特に限定されず、即ち、100モル%である。ジカルボン酸成分は構成単位(C-1)を与える化合物のみからなっていてもよい。 The dicarboxylic acid component preferably contains 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 99 mol% or more of the compound that gives the structural unit (C-1). Including. The upper limit of the content of the compound giving the structural unit (C-1) is not particularly limited, that is, 100 mol%. The dicarboxylic acid component may consist only of the compound giving the structural unit (C-1).
 ジカルボン酸成分は構成単位(C-1)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジカルボン酸クロリド、それらに対応する他のカルボン酸ハロゲン化物(即ち、酸フッ化物、酸臭化物、酸ヨウ化物)が挙げられる。
 ジカルボン酸成分に任意に含まれる構成単位(C-1)を与える化合物以外の化合物は、1種でもよいし、2種以上であってもよい。
The dicarboxylic acid component may contain a compound other than the compound giving the structural unit (C-1), and examples of the compound include the above-mentioned aromatic dicarboxylic acid chlorides and other carboxylic acid halides corresponding thereto (that is, acid fluorides). Compound, acid bromide, acid iodide).
The number of compounds other than the compound that gives the structural unit (C-1) optionally contained in the dicarboxylic acid component may be one, or two or more.
 本発明において、ポリアミド-イミド樹脂の製造に用いるテトラカルボン酸成分及びジカルボン酸成分の合計とジアミン成分との仕込み量比〔(テトラカルボン酸成分+ジカルボン酸成分)/ジアミン成分、モル比〕は、テトラカルボン酸成分及びジカルボン酸成分の合計1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 In the present invention, the charge ratio [(tetracarboxylic acid component + dicarboxylic acid component) / diamine component, molar ratio] of the total of the tetracarboxylic acid component and dicarboxylic acid component used in the production of the polyamide-imide resin and the diamine component is: The diamine component is preferably 0.9 to 1.1 mol with respect to 1 mol in total of the tetracarboxylic acid component and the dicarboxylic acid component.
 本発明において、ポリアミド-イミド樹脂の製造に用いるテトラカルボン酸成分とジカルボン酸成分との仕込み量比(テトラカルボン酸成分/ジカルボン酸成分、モル比)は、40/60~90/10が好ましく、50/50~85/15がより好ましく、60/40~75/25が更に好ましい。 In the present invention, the charge ratio of the tetracarboxylic acid component and the dicarboxylic acid component used in the production of the polyamide-imide resin (tetracarboxylic acid component / dicarboxylic acid component, molar ratio) is preferably 40/60 to 90/10, 50/50 to 85/15 is more preferable, and 60/40 to 75/25 is still more preferable.
 また、本発明において、ポリアミド-イミド樹脂の製造には、前述のテトラカルボン酸成分ジカルボン酸成分、及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。
 導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。
 モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。
 ジカルボン酸類末端封止剤としては、ジカルボン酸類(但し、前述のジカルボン酸成分を除く)が挙げられ、分子内に有する2つのカルボキシ基が脱水縮合反応を起こした環状のカルボン酸無水物、及び当該カルボン酸無水物を形成しうるジカルボン酸が好ましい。具体的には、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。
In the present invention, a terminal-blocking agent may be used in the production of the polyamide-imide resin in addition to the above-described tetracarboxylic acid component dicarboxylic acid component and diamine component. As end-capping agents, monoamines or dicarboxylic acids are preferred.
The amount of the terminal blocking agent introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
Examples of monoamine end-capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used.
Examples of dicarboxylic acid end-capping agents include dicarboxylic acids (excluding the aforementioned dicarboxylic acid component), and a cyclic carboxylic acid anhydride in which two carboxy groups in the molecule have undergone a dehydration condensation reaction, and Dicarboxylic acids that can form carboxylic anhydrides are preferred. Specifically, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane- 1,2-dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like are recommended. Of these, phthalic acid and phthalic anhydride can be suitably used.
 前述のテトラカルボン酸成分とジアミン成分とジカルボン酸成分を反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行い、その後にジカルボン酸成分を加え、室温~80℃で0.5~30時間撹拌してアミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行い、その後にジカルボン酸成分を加え、室温~80℃で0.5~30時間撹拌してアミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温~80℃で0.5~30時間撹拌し、さらにジカルボン酸成分を加え、室温~80℃で0.5~30時間撹拌してアミド化反応を行い、その後に昇温してイミド化反応を行う方法、(4)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温~80℃で0.5~30時間撹拌し、さらにジカルボン酸成分を加え、必要に応じて室温~80℃で0.5~30時間撹拌してアミド化反応を行い、その後に昇温してイミド化反応を行う方法、(5)テトラカルボン酸成分、ジアミン成分、ジカルボン酸成分、及び反応溶剤を反応器に仕込み、必要に応じて室温~80℃で0.5~30時間撹拌してアミド化反応を行い、その後に昇温してイミド化反応を行う方法等が挙げられる。
There is no restriction | limiting in particular in the method of making the above-mentioned tetracarboxylic acid component, a diamine component, and a dicarboxylic acid component react, A well-known method can be used.
Specifically, (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged into a reactor, stirred at room temperature to 80 ° C. for 0.5 to 30 hours, and then heated to imidize. A method in which a dicarboxylic acid component is added and then agitated at room temperature to 80 ° C. for 0.5 to 30 hours to perform an amidation reaction. (2) A diamine component and a reaction solvent are charged into a reactor and dissolved. Thereafter, a tetracarboxylic acid component is charged, and if necessary, stirred at room temperature to 80 ° C. for 0.5 to 30 hours. Thereafter, the temperature is raised to carry out an imidization reaction, and then the dicarboxylic acid component is added, and the room temperature to 80 (3) A tetracarboxylic acid component, a diamine component, and a reaction solvent are charged into a reactor and stirred at room temperature to 80 ° C. for 0.5 to 30 hours. And dicarboxylic acid Add a minute, stir at room temperature to 80 ° C for 0.5 to 30 hours to perform amidation reaction, then raise the temperature to perform imidization reaction, (4) Charge diamine component and reaction solvent into the reactor Then, the tetracarboxylic acid component is charged, and if necessary, stirred at room temperature to 80 ° C. for 0.5 to 30 hours. Further, the dicarboxylic acid component is added, and if necessary, 0.5 to 30 ° C. at room temperature to 80 ° C. Stirring for 30 hours to perform amidation reaction, then raising temperature and performing imidization reaction, (5) Charge tetracarboxylic acid component, diamine component, dicarboxylic acid component, and reaction solvent into reactor, necessary Depending on the method, the amidation reaction may be carried out by stirring at room temperature to 80 ° C. for 0.5 to 30 hours, and then the temperature may be raised to carry out the imidization reaction.
 ポリアミド-イミド樹脂の製造に用いられる反応溶剤は、アミド化反応及びイミド化反応を阻害せず、生成するポリアミド-イミド樹脂を溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used for the production of the polyamide-imide resin may be any solvent that does not inhibit the amidation reaction and the imidization reaction and can dissolve the produced polyamide-imide resin. For example, an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent, and the like can be given.
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of aprotic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea, etc. Amide solvents, lactone solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing dimethylsulfone, dimethylsulfoxide, sulfolane and the like And solvents such as ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picoline and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of the phenol solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -Xylenol, 3,5-xylenol and the like.
Specific examples of ether solvents include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of the carbonate solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
Among the above reaction solvents, amide solvents or lactone solvents are preferable. Moreover, you may use said reaction solvent individually or in mixture of 2 or more types.
 アミド化反応及びイミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the amidation reaction and imidation reaction, it is preferable to perform the reaction using a Dean Stark apparatus or the like while removing water produced during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いることが特に好ましい。
In the above imidation reaction, a known imidation catalyst can be used. Examples of the imidization catalyst include a base catalyst and an acid catalyst.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N, N -Organic base catalysts such as dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate and sodium bicarbonate.
Examples of the acid catalyst include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. Is mentioned. The above imidation catalysts may be used alone or in combination of two or more.
Among these, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, still more preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C., from the viewpoint of suppressing the reaction rate and gelation. The reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
[ポリアミド-イミドワニス]
 本発明のポリアミド-イミドワニスは、本発明のポリアミド-イミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリアミド-イミドワニスは、本発明のポリアミド-イミド樹脂及び有機溶媒を含み、当該ポリアミド-イミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリアミド-イミド樹脂が溶解するものであればよく、特に限定されないが、ポリアミド-イミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリアミド-イミドワニスは、重合法により得られるポリアミド-イミド樹脂が反応溶剤に溶解したポリアミド-イミド溶液そのものであってもよいし、又は当該ポリアミド-イミド溶液に対して更に希釈溶剤を追加したものであってもよい。
[Polyamide-imide varnish]
The polyamide-imide varnish of the present invention is obtained by dissolving the polyamide-imide resin of the present invention in an organic solvent. That is, the polyamide-imide varnish of the present invention contains the polyamide-imide resin of the present invention and an organic solvent, and the polyamide-imide resin is dissolved in the organic solvent.
The organic solvent is not particularly limited as long as it dissolves the polyamide-imide resin, and the above-mentioned compounds as reaction solvents used for the production of the polyamide-imide resin may be used alone or in combination of two or more. preferable.
The polyamide-imide varnish of the present invention may be a polyamide-imide solution itself in which a polyamide-imide resin obtained by a polymerization method is dissolved in a reaction solvent, or a dilution solvent is further added to the polyamide-imide solution. It may be a thing.
 本発明のポリアミド-イミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリアミド-イミドワニスは、本発明のポリアミド-イミド樹脂を5~40質量%含むことが好ましく、10~30質量%含むことがより好ましい。ポリアミド-イミドイミドワニスの粘度は1~200Pa・sが好ましく、5~150Pa・sがより好ましい。ポリアミド-イミドワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
 また、本発明のポリアミド-イミドワニスは、ポリアミド-イミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリアミド-イミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
Since the polyamide-imide resin of the present invention has solvent solubility, it can be a highly concentrated varnish stable at room temperature. The polyamide-imide varnish of the present invention preferably contains 5 to 40% by mass of the polyamide-imide resin of the present invention, and more preferably 10 to 30% by mass. The viscosity of the polyamide-imidoimide varnish is preferably 1 to 200 Pa · s, more preferably 5 to 150 Pa · s. The viscosity of the polyamide-imide varnish is a value measured at 25 ° C. using an E-type viscometer.
The polyamide-imide varnish of the present invention is an inorganic filler, an adhesion promoter, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, and an antifoaming agent as long as the required properties of the polyamide-imide film are not impaired. Various additives such as a fluorescent brightening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer may be included.
The method for producing the polyamide-imide varnish of the present invention is not particularly limited, and a known method can be applied.
[ポリアミド-イミドフィルム]
 本発明のポリアミド-イミドフィルムは、本発明のポリアミド-イミド樹脂を含む。したがって、本発明のポリアミド-イミドフィルムは、機械的特性、耐熱性、及び透明性に優れ、更に残留応力が低い。本発明のポリアミド-イミドフィルムが有する好適な物性値は上述の通りである。
 本発明のポリアミド-イミドフィルムの製造方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリアミド-イミドワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形した後、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去する方法等が挙げられる。前記支持体の表面には、必要に応じて、予め離形剤を塗布しておいてもよい。
[Polyamide-imide film]
The polyamide-imide film of the present invention contains the polyamide-imide resin of the present invention. Therefore, the polyamide-imide film of the present invention is excellent in mechanical properties, heat resistance and transparency, and has a low residual stress. The preferred physical properties of the polyamide-imide film of the present invention are as described above.
There is no restriction | limiting in particular in the manufacturing method of the polyamide-imide film of this invention, A well-known method can be used. For example, the polyamide-imide varnish of the present invention is coated on a smooth support such as a glass plate, a metal plate, or a plastic, or formed into a film, and then an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish. The method of removing by heating etc. is mentioned. If necessary, a release agent may be applied to the surface of the support in advance.
 ワニス中に含まれる有機溶媒を加熱により除去する方法としては、以下の方法が好ましい。即ち、120℃以下の温度で有機溶媒を蒸発させて自己支持性フィルムとした後、該自己支持性フィルムを支持体より剥離し、該自己支持性フィルムの端部を固定し、用いた有機溶媒の沸点以上の温度で乾燥してポリアミド-イミドフィルムを製造することが好ましい。また、窒素雰囲気下で乾燥することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。自己支持性フィルムを乾燥してポリアミド-イミドフィルムを製造する際の加熱温度は、特に限定されないが、200~400℃が好ましい。 As the method for removing the organic solvent contained in the varnish by heating, the following method is preferable. That is, after evaporating the organic solvent at a temperature of 120 ° C. or less to form a self-supporting film, the self-supporting film is peeled off from the support, the ends of the self-supporting film are fixed, and the organic solvent used It is preferable to produce a polyamide-imide film by drying at a temperature equal to or higher than the boiling point. Moreover, it is preferable to dry in nitrogen atmosphere. The pressure in the dry atmosphere may be any of reduced pressure, normal pressure, and increased pressure. The heating temperature for producing the polyamide-imide film by drying the self-supporting film is not particularly limited, but is preferably 200 to 400 ° C.
 また、本発明のポリアミド-イミドフィルムは、ポリアミド-アミド酸が有機溶媒に溶解してなるポリアミド-アミド酸ワニスを用いて製造することもできる。
 前記ポリアミド-アミド酸ワニスに含まれるポリアミド-アミド酸は、本発明のポリアミド-イミド樹脂の前駆体であって、上述の構成単位(A-1)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物を含むジアミン成分とが重付加反応により結合したアミド酸構造を有し、かつ上述の構成単位(C-1)を与える化合物を含むジカルボン酸成分と、上述の構成単位(B-1)を与える化合物を含むジアミン成分とがアミド結合により連結してなる構造を有する生成物である。このポリアミド-アミド酸をイミド化(脱水閉環)することで、最終生成物である本発明のポリアミド-イミド樹脂が得られる。
 前記ポリアミド-アミド酸ワニスに含まれる有機溶媒としては、本発明のポリアミド-イミドワニスに含まれる有機溶媒を用いることができる。
 本発明において、ポリアミド-アミド酸ワニスは、上述のテトラカルボン酸成分とジアミン成分とジカルボン酸成分との反応により得られるポリアミド-アミド酸溶液そのものであってもよいし、又は当該ポリアミド酸溶液に対して更に希釈溶剤を追加したものであってもよい。
The polyamide-imide film of the present invention can also be produced using a polyamide-amide acid varnish obtained by dissolving polyamide-amide acid in an organic solvent.
The polyamide-amide acid contained in the polyamide-amide acid varnish is a precursor of the polyamide-imide resin of the present invention, and includes a tetracarboxylic acid component containing a compound that gives the structural unit (A-1) described above, and A dicarboxylic acid component having an amic acid structure in which a diamine component containing a compound giving the structural unit (B-1) is bonded by a polyaddition reaction and containing a compound giving the structural unit (C-1); A product having a structure in which the diamine component containing the compound giving the structural unit (B-1) is linked by an amide bond. By imidizing (dehydrating and cyclizing) the polyamide-amide acid, the final product, the polyamide-imide resin of the present invention, is obtained.
As the organic solvent contained in the polyamide-amide acid varnish, the organic solvent contained in the polyamide-imide varnish of the present invention can be used.
In the present invention, the polyamide-amide acid varnish may be a polyamide-amide acid solution itself obtained by the reaction of the above-described tetracarboxylic acid component, diamine component, and dicarboxylic acid component, or may be based on the polyamide acid solution. Further, a dilution solvent may be added.
 ポリアミド-アミド酸ワニスを用いてポリアミド-イミドフィルムを製造する方法には特に制限はなく、公知の方法を用いることができる。例えば、ポリアミド-アミド酸ワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形し、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去してポリアミド-アミド酸フィルムを得て、該ポリアミド-アミド酸フィルム中のポリアミド-アミド酸を加熱によりイミド化することで、ポリアミド-イミドフィルムを製造することができる。
 ポリアミド-アミド酸ワニスを乾燥させてポリアミド-アミド酸フィルムを得る際の加熱温度としては、好ましくは50~120℃である。ポリアミド-アミド酸を加熱によりイミド化する際の加熱温度としては好ましくは200~400℃である。
 なお、イミド化の方法は熱イミド化に限定されず、化学イミド化を適用することもできる。
There is no particular limitation on the method for producing the polyamide-imide film using the polyamide-amic acid varnish, and a known method can be used. For example, a polyamide-amic acid varnish is coated on a smooth support such as a glass plate, metal plate, plastic, or formed into a film, and an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish is heated. Thus, a polyamide-amide acid film is obtained by removing the polyamide-amide acid film, and the polyamide-amide acid in the polyamide-amide acid film is imidized by heating to produce a polyamide-imide film.
The heating temperature for obtaining the polyamide-amide acid film by drying the polyamide-amide acid varnish is preferably 50 to 120 ° C. The heating temperature for imidizing the polyamide-amic acid by heating is preferably 200 to 400 ° C.
The imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
 本発明のポリアミド-イミドフィルムの厚みは用途等に応じて適宜選択することができるが、好ましくは1~100μm、より好ましくは3~50μm、更に好ましくは5~30μmの範囲である。厚みが1~100μmであることで、自立膜としての実用的な使用が可能となる。
 ポリアミド-イミドイミドフィルムの厚みは、ポリアミド-イミドワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyamide-imide film of the present invention can be appropriately selected according to the use and the like, but is preferably in the range of 1 to 100 μm, more preferably 3 to 50 μm, still more preferably 5 to 30 μm. When the thickness is 1 to 100 μm, practical use as a self-supporting film becomes possible.
The thickness of the polyamide-imide imide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyamide-imide varnish.
 本発明のポリアミド-イミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリアミド-イミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyamide-imide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, optical members and the like. The polyamide-imide film of the present invention is particularly preferably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
 実施例及び比較例で得たワニスの固形分濃度及びフィルムの各物性は以下に示す方法によって測定した。
Hereinafter, the present invention will be described specifically by way of examples. However, this invention is not restrict | limited at all by these Examples.
The solid content concentration of the varnish obtained in Examples and Comparative Examples and the physical properties of the film were measured by the methods shown below.
(1)固形分濃度
 ワニスの固形分濃度の測定は、アズワン株式会社製の小型電気炉「MMF-1」で試料を320℃×120minで加熱し、加熱前後の試料の質量差から算出した。
(2)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(3)引張弾性率、引張強度
 引張弾性率及び引張強度は、JIS K7127に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×50mm、試験速度は20mm/minとした。引張弾性率及び引張強度は、いずれも数値が大きいほど、機械的特性に優れる。
(4)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件で、残留応力を取り除くのに十分な温度まで昇温して残留応力を取り除き、その後室温まで冷却した。その後、前記残留応力を取り除くための処理と同じ条件で試験片伸びの測定の測定を行い、伸びの変曲点が見られたところをガラス転移温度として求めた。Tgは数値が大きいほど、耐熱性に優れる。
(5)全光線透過率
 全光線透過率は、JIS K7361-1:1997に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて測定した。全光線透過率は100%に近いほど、透明性に優れる。
(6)残留応力
 ケーエルエー・テンコール社製の残留応力測定装置「FLX-2320」を用いて、予め「反り量」を測定しておいた、厚み525μm±25μmの4インチシリコンウェハ上に、ポリアミド-イミドワニスあるいはポリアミド-アミド酸ワニスを、スピンコーターを用いて塗布し、プリベークした。その後、熱風乾燥器を用いて、窒素雰囲気下、350℃30分の条件下で加熱処理を施し、加熱後膜厚8~20μmのポリアミド-イミドフィルムのついたシリコンウェハを作製した。このウェハの反り量を前述の残留応力測定装置を用いて測定し、シリコンウェハとポリアミド-イミドフィルムの間に生じた残留応力を評価した。
(1) Solid content concentration The solid content concentration of the varnish was calculated from the difference in mass of the sample before and after heating by heating the sample at 320 ° C. × 120 min in a small electric furnace “MMF-1” manufactured by AS ONE Corporation.
(2) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Corporation.
(3) Tensile Elastic Modulus and Tensile Strength The tensile elastic modulus and tensile strength were measured using a tensile tester “Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7127. The distance between chucks was 50 mm, the test piece size was 10 mm × 50 mm, and the test speed was 20 mm / min. The tensile modulus and the tensile strength are both excellent in mechanical properties as the numerical value is large.
(4) Glass transition temperature (Tg)
Residual stress is removed using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Co., Ltd. under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min. The temperature was raised to a sufficient temperature to remove residual stress, and then cooled to room temperature. Thereafter, the measurement of the elongation of the test piece was performed under the same conditions as the treatment for removing the residual stress, and the place where the inflection point of the elongation was observed was determined as the glass transition temperature. The larger the value of Tg, the better the heat resistance.
(5) Total Light Transmittance Total light transmittance was measured using a color / turbidity simultaneous measuring device “COH400” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1: 1997. The closer the total light transmittance is to 100%, the better the transparency.
(6) Residual stress Using a residual stress measuring device “FLX-2320” manufactured by KLA-Tencor Corporation, the “warping amount” was measured in advance on a 4-inch silicon wafer having a thickness of 525 μm ± 25 μm. An imide varnish or a polyamide-amic acid varnish was applied using a spin coater and prebaked. Thereafter, heat treatment was performed using a hot air drier in a nitrogen atmosphere at 350 ° C. for 30 minutes, and a silicon wafer with a polyamide-imide film having a thickness of 8 to 20 μm after heating was produced. The amount of warpage of the wafer was measured using the above-described residual stress measuring apparatus, and the residual stress generated between the silicon wafer and the polyamide-imide film was evaluated.
 実施例及び比較例にて使用したテトラカルボン酸成分、ジカルボン酸成分及びジアミン成分、並びにその略号は以下の通りである。
<テトラカルボン酸成分>
CpODA:ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製;式(a-1)で表される化合物)
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(三菱ケミカル株式会社製;式(a-2)で表される化合物)
<ジカルボン酸成分>
TPC:テレフタル酸クロリド(東京化成工業株式会社製;式(c-1)で表される化合物)
<ジアミン>
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン(セイカ株式会社製;式(b-1)で表される化合物)
The tetracarboxylic acid component, dicarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
<Tetracarboxylic acid component>
CpODA: Norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane-5,5 ″, 6,6 ″ -tetracarboxylic dianhydride (manufactured by JX Energy Corporation; Compound represented by formula (a-1))
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (Mitsubishi Chemical Corporation; compound represented by formula (a-2))
<Dicarboxylic acid component>
TPC: terephthalic acid chloride (Tokyo Chemical Industry Co., Ltd .; compound represented by formula (c-1))
<Diamine>
TFMB: 2,2′-bis (trifluoromethyl) benzidine (manufactured by Seika Corporation; compound represented by formula (b-1))
<実施例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、TFMB32.024g(0.100モル)、N-メチル-2-ピロリドン(三菱ケミカル株式会社製)63.570gを投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、CpODA26.907g(0.070モル)、及びN-メチル-2-ピロリドン(三菱ケミカル株式会社製)15.894gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)0.354g及びトリエチレンジアミン(東京化成工業株式会社製)0.039gを投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して2時間還流した。
 その後、N-メチル-2-ピロリドン(三菱ケミカル株式会社製)268.560gを添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化し、固形分濃度15質量%のポリイミドワニスを得た。続いてTPC6.091g(0.030モル)、N-メチル-2-ピロリドン(三菱ケミカル株式会社製)204.70gを投入し、系内温度50℃、窒素雰囲気下、回転数200rpmで2時間撹拌してポリアミド-イミドワニスを得た。
 その後、ポリアミド-イミドワニスをN-メチル-2-ピロリドン(三菱ケミカル株式会社製)にて固形分濃度5.0質量%に希釈し、大過剰のメタノールに滴下することでポリアミド-イミド粉体を沈殿させた。その後、桐山ロートにより吸引ろ過し、大過剰のメタノール、イオン交換水で各2回洗浄した。桐山ロートにより吸引ろ過し窒素雰囲気下、200℃で2時間乾燥させることでポリアミド-イミド粉体を得た。
 ポリアミド-イミド粉体5.000gをN-メチル-2-ピロリドン(三菱ケミカル株式会社製)45.000gに溶解し固形分濃度10.0質量%のポリアミド-イミドワニスを得た。
 その後、ガラス、あるいはシリコンウェハ上へ、得られたポリアミド-イミドワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中350℃で30分加熱し溶媒を蒸発させ、厚み8μmのフィルムを得た。結果を表1に示す。
<Example 1>
In a 1 L 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap, 32.024 g (0.100 mol) of TFMB, N -Methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) (63.570 g) was added, and the system temperature was 70 ° C. and stirred in a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 26.907 g (0.070 mol) of CpODA and 15.894 g of N-methyl-2-pyrrolidone (Mitsubishi Chemical Corporation) were added all at once, and then triethylamine (manufactured by Kanto Chemical Co., Ltd.) as an imidization catalyst. ) 0.354 g and 0.039 g of triethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and heated with a mantle heater, and the reaction system temperature was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was maintained at 190 ° C. and refluxed for 2 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 268.560 g of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Co., Ltd.) was added, and the reaction system temperature was cooled to 120 ° C., followed by further stirring for about 3 hours to obtain a solid content of 15 A mass% polyimide varnish was obtained. Subsequently, 6.091 g (0.030 mol) of TPC and 204.70 g of N-methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) were added, and the system was stirred for 2 hours at a system temperature of 50 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm. Thus, a polyamide-imide varnish was obtained.
Thereafter, the polyamide-imide varnish is diluted with N-methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) to a solid content concentration of 5.0% by mass and added dropwise to a large excess of methanol to precipitate a polyamide-imide powder. I let you. Then, it suction-filtered with the Kiriyama funnel, and wash | cleaned twice each with a large excess methanol and ion-exchange water. A polyamide-imide powder was obtained by suction filtration with a Kiriyama funnel and drying at 200 ° C. for 2 hours in a nitrogen atmosphere.
A polyamide-imide varnish having a solid content of 10.0% by mass was obtained by dissolving 5.000 g of polyamide-imide powder in 45.000 g of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Corporation).
Thereafter, the obtained polyamide-imide varnish is applied onto a glass or silicon wafer, held at 80 ° C. for 20 minutes on a hot plate, and then heated at 350 ° C. for 30 minutes in a hot air dryer under a nitrogen atmosphere. Evaporation gave a film with a thickness of 8 μm. The results are shown in Table 1.
<実施例2>
 CpODA26.907g(0.070モル)から15.375g(0.040モル)に変更し、CpODA添加と同時にBPDAを8.826g(0.030モル)追加で投入した以外は実施例1と同様の方法によりポリアミド-イミドワニスを作製し、固形分濃度10.0質量%のポリアミド-イミドワニスを得た。
 得られたポリアミド-イミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み9μmのフィルムを得た。結果を表1に示す。
<Example 2>
The same as Example 1 except that CpODA was changed from 26.907 g (0.070 mol) to 15.375 g (0.040 mol), and 8.826 g (0.030 mol) of BPDA was added simultaneously with the addition of CpODA. A polyamide-imide varnish was prepared by the method to obtain a polyamide-imide varnish having a solid content concentration of 10.0% by mass.
Using the obtained polyamide-imide varnish, a film was produced in the same manner as in Example 1 to obtain a film having a thickness of 9 μm. The results are shown in Table 1.
<比較例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、TFMB32.024g(0.100モル)、N-メチル-2-ピロリドン(三菱ケミカル株式会社製)84.554gを投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、CpODA38.438g(0.100モル)、及びN-メチル-2-ピロリドン(三菱ケミカル株式会社製)21.139gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)0.506g及びトリエチレンジアミン(東京化成工業株式会社製)0.056gを投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して3時間還流した。
 その後、N-メチル-2-ピロリドン(三菱ケミカル株式会社製)496.029gを添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化し、固形分濃度10質量%のポリイミドワニスを得た。
 その後、ガラス、あるいはシリコンウェハ上へ、得られたポリイミドワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中400℃で30分加熱し溶媒を蒸発させ、厚み14μmのフィルムを得た。結果を表1に示す。
<Comparative Example 1>
In a 1 L 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap, 32.024 g (0.100 mol) of TFMB, N -84.554 g of methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Co., Ltd.) was added, and stirred at a rotation speed of 200 rpm in a nitrogen atmosphere at a system temperature of 70 ° C to obtain a solution.
To this solution, 38.438 g (0.100 mol) of CpODA and 21.139 g of N-methyl-2-pyrrolidone (Mitsubishi Chemical Corporation) were added all at once, and then triethylamine (manufactured by Kanto Chemical Co., Ltd.) was used as an imidization catalyst. 0.506 g and 0.056 g of triethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and heated with a mantle heater, and the reaction system temperature was raised to 190 ° C. over about 20 minutes. The component to be distilled off was collected, and the temperature in the reaction system was maintained at 190 ° C. and refluxed for 3 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 4960.29 g of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Co., Ltd.) was added and the reaction system internal temperature was cooled to 120 ° C., followed by further stirring for about 3 hours to obtain a solid content of 10%. A mass% polyimide varnish was obtained.
Then, the obtained polyimide varnish is applied onto a glass or silicon wafer, kept on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 400 ° C. for 30 minutes in a nitrogen atmosphere to evaporate the solvent. And a film having a thickness of 14 μm was obtained. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1に示すように、実施例1及び2のポリアミド-イミドフィルムは、機械的特性、耐熱性、及び透明性に優れ、更に残留応力の低減を達成できることが分かる。
 一方、ジカルボン酸成分を使用せず、テトラカルボン酸成分としてCpODAのみを使用して製造した比較例1のポリイミドフィルムは、実施例1及び2のポリアミド-イミドフィルムと対比して、透明性に優れるものの、機械的特性、及び耐熱性に劣り、更に残留応力が高いことから、残留応力の低減を達成できないことが分かる。
As shown in Table 1, it can be seen that the polyamide-imide films of Examples 1 and 2 are excellent in mechanical properties, heat resistance and transparency, and can further reduce the residual stress.
On the other hand, the polyimide film of Comparative Example 1 produced using only CpODA as the tetracarboxylic acid component without using the dicarboxylic acid component is excellent in transparency as compared with the polyamide-imide films of Examples 1 and 2. However, since the mechanical properties and heat resistance are inferior and the residual stress is high, it can be seen that the residual stress cannot be reduced.

Claims (8)

  1.  テトラカルボン酸二無水物に由来する構成単位A、ジアミンに由来する構成単位B、及び芳香族ジカルボン酸クロリドに由来する構成単位Cを有するポリアミド-イミド樹脂であって、
     構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)を含み、
     構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、
     構成単位Cが下記式(c-1)で表される化合物に由来する構成単位(C-1)を含む、ポリアミド-イミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    A polyamide-imide resin having a structural unit A derived from tetracarboxylic dianhydride, a structural unit B derived from diamine, and a structural unit C derived from aromatic dicarboxylic acid chloride,
    The structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1),
    The structural unit B includes a structural unit (B-1) derived from a compound represented by the following formula (b-1),
    A polyamide-imide resin in which the structural unit C includes a structural unit (C-1) derived from a compound represented by the following formula (c-1).
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位A及び構成単位Cの合計中における構成単位(A-1)の比率が10~90モル%であり、
     構成単位A及び構成単位Cの合計中における構成単位(C-1)の比率が10~60モル%である、請求項1に記載のポリアミド-イミド樹脂。
    The ratio of the structural unit (A-1) in the total of the structural unit A and the structural unit C is 10 to 90 mol%,
    The polyamide-imide resin according to claim 1, wherein the ratio of the structural unit (C-1) in the total of the structural unit A and the structural unit C is 10 to 60 mol%.
  3.  構成単位Aが下記式(a-2)で表される化合物に由来する構成単位(A-2)を含む、請求項1又は2に記載のポリアミド-イミド樹脂。
    Figure JPOXMLDOC01-appb-C000002
    The polyamide-imide resin according to claim 1 or 2, wherein the structural unit A includes a structural unit (A-2) derived from a compound represented by the following formula (a-2).
    Figure JPOXMLDOC01-appb-C000002
  4.  構成単位A及び構成単位Cの合計中における構成単位(A-2)の比率が50モル%以下である、請求項3に記載のポリアミド-イミド樹脂。 The polyamide-imide resin according to claim 3, wherein the proportion of the structural unit (A-2) in the total of the structural unit A and the structural unit C is 50 mol% or less.
  5.  構成単位C中における構成単位(C-1)の比率が50モル%以上である、請求項1~4のいずれかに記載のポリアミド-イミド樹脂。 The polyamide-imide resin according to any one of claims 1 to 4, wherein the proportion of the structural unit (C-1) in the structural unit C is 50 mol% or more.
  6.  構成単位B中における構成単位(B-1)の比率が50モル%以上である、請求項1~5のいずれかに記載のポリアミド-イミド樹脂。 The polyamide-imide resin according to any one of claims 1 to 5, wherein the proportion of the structural unit (B-1) in the structural unit B is 50 mol% or more.
  7.  請求項1~6のいずれかに記載のポリアミド-イミド樹脂が有機溶媒に溶解してなるポリアミド-イミドワニス。 A polyamide-imide varnish obtained by dissolving the polyamide-imide resin according to any one of claims 1 to 6 in an organic solvent.
  8.  請求項1~6のいずれかに記載のポリアミド-イミド樹脂を含む、ポリアミド-イミドフィルム。 A polyamide-imide film comprising the polyamide-imide resin according to any one of claims 1 to 6.
PCT/JP2019/016583 2018-05-10 2019-04-18 Polyamide-imide resin, polyamide-imide varnish, and polyamide-imide film WO2019216151A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207030455A KR20210007960A (en) 2018-05-10 2019-04-18 Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
CN201980026288.0A CN111989353B (en) 2018-05-10 2019-04-18 Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
JP2020518223A JP7375749B2 (en) 2018-05-10 2019-04-18 Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-091591 2018-05-10
JP2018091591 2018-05-10

Publications (1)

Publication Number Publication Date
WO2019216151A1 true WO2019216151A1 (en) 2019-11-14

Family

ID=68467342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016583 WO2019216151A1 (en) 2018-05-10 2019-04-18 Polyamide-imide resin, polyamide-imide varnish, and polyamide-imide film

Country Status (5)

Country Link
JP (1) JP7375749B2 (en)
KR (1) KR20210007960A (en)
CN (1) CN111989353B (en)
TW (1) TWI787499B (en)
WO (1) WO2019216151A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740758B (en) * 2020-12-25 2021-09-21 律勝科技股份有限公司 Polyamide-imide copolymer and film containing the same
CN113480732A (en) * 2021-06-16 2021-10-08 浙江中科玖源新材料有限公司 Polyimide and colorless transparent polyimide film
CN113717384B (en) * 2021-07-29 2023-10-20 株洲时代新材料科技股份有限公司 Modified polyamide imide material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074915A (en) * 2013-10-11 2016-05-12 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, varnish and substrate
JP2016204568A (en) * 2015-04-27 2016-12-08 宇部興産株式会社 Polyamic acid solution composition and polyimide film
WO2017010566A1 (en) * 2015-07-16 2017-01-19 宇部興産株式会社 Polyamic acid solution composition and polyimide film
US20180044475A1 (en) * 2016-08-11 2018-02-15 Sk Innovation Co., Ltd. Polyamic acid resin, polyamideimide film, and method for preparing the same
JP2018024726A (en) * 2016-08-08 2018-02-15 Jxtgエネルギー株式会社 Polyimide, polyamide acid, polyamide acid solution, and polyimide film
JP2018172669A (en) * 2017-03-30 2018-11-08 Jxtgエネルギー株式会社 Polyamide imide, resin solution and film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459178B1 (en) 2011-09-30 2014-11-07 코오롱인더스트리 주식회사 Co-polymerized polyamide-imide film and method of producing the co-polmerized polyamide-imide
WO2014046064A1 (en) * 2012-09-18 2014-03-27 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, varnish, and substrate
KR101870341B1 (en) 2013-12-26 2018-06-22 코오롱인더스트리 주식회사 Colorless Polyamide―imide Resin and Film Thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074915A (en) * 2013-10-11 2016-05-12 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, varnish and substrate
JP2016204568A (en) * 2015-04-27 2016-12-08 宇部興産株式会社 Polyamic acid solution composition and polyimide film
WO2017010566A1 (en) * 2015-07-16 2017-01-19 宇部興産株式会社 Polyamic acid solution composition and polyimide film
JP2018024726A (en) * 2016-08-08 2018-02-15 Jxtgエネルギー株式会社 Polyimide, polyamide acid, polyamide acid solution, and polyimide film
US20180044475A1 (en) * 2016-08-11 2018-02-15 Sk Innovation Co., Ltd. Polyamic acid resin, polyamideimide film, and method for preparing the same
JP2018172669A (en) * 2017-03-30 2018-11-08 Jxtgエネルギー株式会社 Polyamide imide, resin solution and film

Also Published As

Publication number Publication date
CN111989353B (en) 2023-12-19
TWI787499B (en) 2022-12-21
KR20210007960A (en) 2021-01-20
CN111989353A (en) 2020-11-24
TW201946954A (en) 2019-12-16
JP7375749B2 (en) 2023-11-08
JPWO2019216151A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7302595B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7205491B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2019188306A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
WO2020138360A1 (en) Imide-(amic acid) copolymer and method for producing same, varnish, and polyimide film
JP7375749B2 (en) Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
WO2020040057A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2019163830A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2022220286A1 (en) Imide-amic acid copolymer and production method therefor, varnish, and polyimide film
JP7255489B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2021210640A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
WO2020203264A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7484913B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
CN116157463A (en) Polyimide resin, polyamic acid, varnish and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799092

Country of ref document: EP

Kind code of ref document: A1