WO2019216073A1 - 端末及び送信方法 - Google Patents

端末及び送信方法 Download PDF

Info

Publication number
WO2019216073A1
WO2019216073A1 PCT/JP2019/015067 JP2019015067W WO2019216073A1 WO 2019216073 A1 WO2019216073 A1 WO 2019216073A1 JP 2019015067 W JP2019015067 W JP 2019015067W WO 2019216073 A1 WO2019216073 A1 WO 2019216073A1
Authority
WO
WIPO (PCT)
Prior art keywords
urllc
terminal
grant
pusch
parameter
Prior art date
Application number
PCT/JP2019/015067
Other languages
English (en)
French (fr)
Inventor
岩井 敬
鈴木 秀俊
哲矢 山本
知也 布目
智史 高田
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020518195A priority Critical patent/JP7313342B2/ja
Priority to MX2020011233A priority patent/MX2020011233A/es
Priority to EP19799249.8A priority patent/EP3793268B1/en
Priority to KR1020207030573A priority patent/KR20210005019A/ko
Priority to US17/049,433 priority patent/US11553437B2/en
Priority to AU2019267660A priority patent/AU2019267660B2/en
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201980027561.1A priority patent/CN112005586B/zh
Priority to BR112020020999-6A priority patent/BR112020020999A2/pt
Publication of WO2019216073A1 publication Critical patent/WO2019216073A1/ja
Priority to ZA2020/06539A priority patent/ZA202006539B/en
Priority to US18/062,985 priority patent/US20230115816A1/en
Priority to JP2023113212A priority patent/JP2023130459A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/545Signalisation aspects of the TPC commands, e.g. frame structure modifying TPC bits in special situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/56Detection of errors of TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • H04W52/58Format of the TPC bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This disclosure relates to a terminal and a transmission method.
  • NR New Radio access technology
  • URLLC Ultra-Reliable and Low Latency Communications
  • the transmission of the uplink channel (PUSCH: Physical-Uplink-Shared Channel) of URLLC data uses higher transmission power (for example, power boost) than the uplink channel of other data.
  • Transmission of URLLC data has been studied (see, for example, Non-Patent Document 2).
  • 3GPP TR 38.913 V14.3.0 "Study on Scenarios and Requirements for Next Generation Access TEchnologies (Release 14)” (2017-06) R1-1803359, "Summary on handling UL multiplexing of transmission with different reliability requirements", vivo, February 2018 3GPP TS 38.213 V15.1.0, “NR; Physical layer procedures for control (Release 15)” (2018-03) 3GPP TS 38.212 V15.1.1, “NR; Multiplexing and channel coding (Release 15)” (2018-04) R1-1805630, Summary of 7.2.2 Study of necessity of a new DCI format ", Huawei, April 2018 3GPP TS38.214 V15.2.0, "NR; Physical layer procedures for data (Release 15)” (2018-06)
  • the non-limiting example of the present disclosure contributes to provision of a terminal and a transmission method that can appropriately transmit an uplink signal.
  • a terminal sets a first power control parameter corresponding to a first service when a predetermined condition related to a control channel used for transmission of uplink signal allocation information is satisfied, If the predetermined condition is not satisfied, a transmission that is calculated using a circuit that sets a second power control parameter corresponding to a second service and the first power control parameter or the second power control parameter And a transmission circuit that transmits the uplink signal using power.
  • a transmission method sets a first power control parameter corresponding to a first service when a predetermined condition related to a control channel used for transmission of uplink signal allocation information is satisfied. If the predetermined condition is not satisfied, a second power control parameter corresponding to a second service is set, and the transmission power calculated using the first power control parameter or the second power control parameter The uplink signal is transmitted using.
  • FIG. 3 is a block diagram showing a configuration example of part of the terminal according to Embodiment 1;
  • FIG. 2 is a block diagram showing a configuration example of a terminal according to Embodiment 1;
  • FIG. 3 is a block diagram showing a configuration example of a base station according to the first embodiment.
  • FIG. 9 is a block diagram showing a configuration example of a terminal according to the second embodiment.
  • FIG. 9 is a block diagram illustrating a configuration example of a terminal according to the third embodiment.
  • PUSCH transmission power control (TPC: Transmission Power Control) of a terminal for NR (sometimes referred to as “UE (User Equipment)”) is performed, for example, according to the following equation (1) (for example, non-patent literature) 3).
  • P PUSCH, f, c (i, j, q d , l) is a carrier number “f”, a serving cell number “c”, a slot number “i”, and a PC (power control) parameter set number
  • the transmission power [dBm] of PUSCH in “j”, PL (pathloss) estimation RS (reference signal) number “q d ”, and Closed loop process number “l” is shown.
  • P CMAX, f, c (i) indicates the maximum transmission power [dBm] of the terminal in slot number i.
  • P O_PUSCH, f, c (j) represents the target received power [dBm] (Parameter value) of the PC parameter set number j.
  • 2 ⁇ ⁇ M RB, f, c PUSCH (i) indicates the PUSCH transmission bandwidth [PRB] obtained by normalizing the SCS (subcarrier spacing) applied to the PUSCH in the slot number i based on the 15 kHz SCS.
  • ⁇ f, c (j) represents a weight coefficient (Parameter value) indicating the compensation ratio of the path loss of the PC parameter set number j.
  • PL f, c (q d ) indicates a path loss [dB] measured from the RS of the RS number q d by the terminal.
  • ⁇ TF, f, c (i) represents an offset [dB] depending on MCS (Modulation and Coding Scheme) of data to be transmitted in slot number i.
  • f f, c (i, l) indicates a closed loop correction value [dB] in slot number i and closed loop process number l.
  • PC parameter set P O_PUSCH, f, c (j) and ⁇ f, c (j) are called “PC parameter set”.
  • the value of the PC parameter set for each PC parameter set number j is transferred from the base station (sometimes referred to as “eNB” or “gNB”) to the terminal, for example, RRC (Radio Resource Control). ) Set in advance by notification.
  • eNB base station
  • RRC Radio Resource Control
  • a PC parameter set ( P_O_PUSCH, f, c (j) that has higher transmission power than other service types (for example, eMBB) in order to satisfy the URLLC reliability requirements. ), ⁇ f, c (j)) are being studied. For example, it is considered that URLLC data is transmitted with higher transmission power compared to eMBB data by applying a power boost to URLLC data.
  • PUSCH scheduling information (for example, frequency resource allocation information, time resource allocation information, or MCS) is called DCI (Downlink Control Channel) and transmitted from the base station to the terminal using PDCCH (Physical Downlink Control Channel). Is done.
  • the PDCCH used to indicate PUSCH scheduling information is referred to as an “uplink grant”.
  • DCI format 0_0 In NR, two types of formats “DCI format 0_0” and “DCI format format 0_1” are defined as DCI formats for UL grant (see, for example, Non-Patent Document 4). DCI format 0_0 is also referred to as “fallback DCI”. In DCI format 0_0, part of the information included in DCI format 0_1 is not included, so the payload size is smaller than that of DCI format_10_1.
  • PDCCH for example, UL grant
  • URLLC PUSCH scheduling information of URLLC data
  • DCI format 0_1 includes an SRI (SRS resource indicator) field.
  • SRI SRS resource indicator
  • the base station can instruct the terminal to perform power boost transmission of the URLLC PUSCH using DCI format 0_1.
  • the base station uses the SRI field included in DCI format 0_1 to set the PC parameter set ( PO_PUSCH, f, c (j), ⁇ f, c (j)) suitable for the transmission power of the URLLC PUSCH.
  • the PC parameter set number j corresponding to can be explicitly instructed to the terminal.
  • the terminal uses a fixed PC parameter set value regardless of the service type (also referred to as traffic type) such as URLLC and eMBB
  • the uplink transmission power suitable for the service type cannot be set.
  • the parameter value for eMBB is set to a fixed PC parameter set value
  • URLLC data is scheduled
  • the transmission power is insufficient and the required quality of URLLC cannot be satisfied.
  • the parameter value for URLLC is set to a fixed PC parameter set value
  • scheduling eMBB data there is a concern that excessive transmission power is generated, interference increases, and system performance deteriorates.
  • a communication system includes a terminal 100 and a base station 200.
  • Terminal 100 transmits PUSCH using predetermined transmission power based on the DCI included in the UL grant from base station 200.
  • Base station 200 transmits UL grant to terminal 100 and receives PUSCH from terminal 100.
  • FIG. 2 is a block diagram illustrating a partial configuration of the terminal 100 according to the embodiment of the present disclosure.
  • the PC parameter control unit 104 performs a first service (for example, URLLC) when a predetermined condition regarding a control channel (for example, UL grant) used for transmission of uplink signal allocation is satisfied. ) Is set, and if the predetermined condition is not satisfied, the second power control parameter corresponding to the second service (for example, eMBB) is set.
  • the transmission unit 109 transmits an uplink signal using transmission power calculated using the first power control parameter or the second power control parameter.
  • FIG. 3 is a block diagram showing a configuration example of terminal 100 according to the present embodiment.
  • the transmission part 109 includes an antenna 101, a receiving unit 102, a demodulation / decoding unit 103, a PC parameter control unit 104, a transmission power calculation unit 105, a data generation unit 106, an encoding / modulation unit 107, a resource allocation unit 108, And the transmission part 109 is included.
  • the receiving unit 102 receives a signal transmitted from the base station 200 via the antenna 101, performs reception processing such as down-conversion or A / D (Analog-to-Digital) conversion on the received signal, and performs reception processing
  • reception processing such as down-conversion or A / D (Analog-to-Digital) conversion on the received signal
  • the subsequent received signal is output to demodulation / decoding section 103.
  • Demodulation / decoding section 103 demodulates and decodes the received signal input from receiving section 102, and extracts (receives) and extracts UL reception (PDCCH or NR-PDCCH) addressed to terminal 100 from the decoding result.
  • the DCI for scheduling PUSCH included in the UL grant is decoded.
  • Demodulation / decoding section 103 outputs the decoded DCI to PC parameter control section 104, transmission power calculation section 105, encoding / modulation section 107, and resource allocation section 108.
  • DCI includes, for example, frequency resource information, time resource information, MCS, transmission power information, payload size, DCI scrambling sequence, retransmission control information, or TPC command information.
  • a DCI format having a small payload size is used for the UL grant transmitted from the base station 200 to the terminal 100.
  • the DCI format having a small payload size may be, for example, a DCI format having a size equivalent to the payload size of DCI format 0_0 or less than the payload size of DCI format 0_0.
  • the UL grant transmitted from the base station 200 to the terminal 100 does not include information that explicitly indicates the PC parameterjset number j.
  • the DCI including all the control information need not be notified to the terminal 100 at the same time.
  • some DCIs may be notified to the terminal 100 as cell common information or quasi-static notification information.
  • some DCIs are defined in the specifications as system common information, for example, and may not be notified from the base station 200 to the terminal 100.
  • the PC parameter control unit 104 uses the DCI input from the demodulation / decoding unit 103 to determine a PC parameter set number j to be applied to the scheduled PUSCH.
  • the PC parameter control unit 104 outputs the determined PC parameter set number to the transmission power calculation unit 105.
  • the PC parameter control unit 104 determines that the PUSCH scheduled by the UL grant is a URLLC PUSCH when a predetermined condition is satisfied with respect to the UL grant used for transmission of PUSCH scheduling information (allocation information). .
  • a predetermined condition is not satisfied with respect to the UL grant, it is determined that the PUSCH scheduled by the UL grant is a PUSCH of a service type other than URLLC.
  • service type other than URLLC for example, eMBB
  • the transmission power calculation unit 105 is input from the update value (control value such as +1 dB, ⁇ 1 dB) of the Closed loop correction value included in the DCI input from the demodulation / decoding unit 103 and the PC parameter control unit 104. Using the PC parameter set number j, for example, the PUSCH transmission power value in slot number i is calculated according to equation (1). Transmission power calculation section 105 outputs the calculated transmission power value of PUSCH to transmission section 109.
  • the transmission power calculation unit 105 with respect to slot number i and PC parameter The set number is a parameter other than j for PL estimated RS number q d and Closed loop process number l shown in equation (1), the PC parameter control unit 104
  • the transmission power calculation unit 105 is a value instructed by the PC parameter control unit 104.
  • the data generation unit 106 generates data to be transmitted by the terminal 100 and outputs the generated transmission data to the encoding / modulation unit 107.
  • the encoding / modulation unit 107 encodes and modulates the transmission data input from the data generation unit 106 based on the DCI input from the demodulation / decoding unit 103, and uses the modulated data signal as a resource. It outputs to the allocation part 108.
  • the resource allocation unit 108 Based on the DCI input from the demodulation / decoding unit 103, the resource allocation unit 108 converts the modulated data signal input from the encoding / modulation unit 107 into predetermined radio resources (eg, frequency resource and time resource). Assign to. Resource allocation section 108 outputs the signal after resource allocation to transmission section 109.
  • predetermined radio resources eg, frequency resource and time resource.
  • the transmission unit 109 performs transmission processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from the resource allocation unit 108. Transmitting section 109 transmits the signal after transmission processing to base station 200 via antenna 101 using the transmission power value input from transmission power calculating section 105.
  • D / A Digital-to-Analog
  • FIG. 4 is a block diagram showing a configuration example of the base station 200 according to the present embodiment.
  • a scheduling unit 201 includes a scheduling unit 201, a control information generation unit 202, an encoding / modulation unit 203, a transmission unit 204, an antenna 205, a reception unit 206, and a demodulation / decoding unit 207.
  • the scheduling unit 201 determines radio resource allocation information (for example, frequency resource allocation information, time resource allocation information, MCS, transmission power information, etc.) for the PUSCH of the terminal 100. For example, the scheduling unit 201 may determine radio resource allocation information based on quality information notified from the terminal 100 at a predetermined timing. The scheduling unit 201 outputs the determined radio resource allocation information and the corresponding service type (for example, URLLC or eMBB) to the control information generation unit 202.
  • radio resource allocation information for example, frequency resource allocation information, time resource allocation information, MCS, transmission power information, etc.
  • the control information generation unit 202 generates a UL grant including a DCI to be notified to the terminal 100 based on the radio resource allocation information and the service type input from the scheduling unit 201.
  • the control information generation unit 202 outputs the generated UL grant to the encoding / modulation unit 203.
  • UL grant is, for example, a fallback DCI having a small payload size (for example, DCI format 0_0), and UL grant does not include information that explicitly indicates the PC parameter set number.
  • the encoding / modulation unit 203 encodes and modulates the UL grant input from the control information generation unit 202, and outputs the modulated UL grant to the transmission unit 204.
  • Transmitting section 204 performs transmission processing such as D / A conversion, up-conversion, and amplification on the signal input from encoding / modulating section 203 and transmits the signal after transmission to terminal 100 via antenna 205. .
  • the receiving unit 206 performs reception processing such as down-conversion or A / D conversion on the PUSCH received from the antenna 205 and transmitted from the terminal 100, and demodulates and decodes the received signal after the reception processing. Output to.
  • the demodulation / decoding unit 207 demodulates and decodes the reception signal input from the reception unit 206 and acquires reception data from the terminal 100.
  • FIG. 5 is a sequence diagram showing an operation example of the terminal 100 (FIG. 3) and the base station 200 (FIG. 4).
  • the base station 200 determines radio resource allocation information related to an uplink signal (for example, PUSCH) for the terminal 100, and generates a DCI (ST101). Base station 200 transmits a UL grant including the generated DCI to terminal 100 (ST102).
  • an uplink signal for example, PUSCH
  • PUSCH uplink signal
  • Base station 200 transmits a UL grant including the generated DCI to terminal 100 (ST102).
  • Terminal 100 calculates PUSCH transmission power based on the radio resource allocation information indicated in the DCI included in the UL grant from base station 200 (ST103). At this time, the terminal 100 determines a PC parameter set number j for calculating the transmission power of the PULC for URLLC depending on whether or not a predetermined condition regarding UL grant is satisfied.
  • Terminal 100 transmits the PUSCH to base station 200 using the calculated transmission power (ST104).
  • PC parameter set selection method Next, a method for selecting a PC parameter set in the PC parameter control unit 104 of the terminal 100 will be described.
  • the PC parameter control unit 104 of the terminal 100 schedules URLLC data when UL ⁇ ⁇ grant from the base station 200 (see, for example, ST102 in Fig. 5) when a predetermined condition (details will be described later) regarding UL grant is satisfied.
  • a predetermined condition (details will be described later) regarding UL grant is satisfied.
  • Judge that it is ULrantgrant and set PC parameter set value of PC parameter set number j A corresponding to URLLC.
  • the transmission power calculation unit 105 of the terminal 100 calculates the transmission power of the PUSCH using the set PC parameter set number j, for example, according to Equation (1).
  • predetermined conditions for determining whether or not it is a UL grant that schedules URLLC data will be described.
  • Example 1 Payload size of UL grant
  • the predetermined condition is that the Payload size of the DCI format used for the UL grant is different from the predetermined size.
  • the predetermined condition is that the Payload size of the DCI format used for the UL grant is less than the predetermined size.
  • the UL format grant is: Judged as UL grant for scheduling URLLC data.
  • the PC parameter control unit 104 determines that the PUSCH scheduled by the UL grant is the URLLC PUSCH (URLLC PUSCH) when the Payload size of the DCI format is different from the predetermined size or less than the predetermined size. Judge that there is.
  • the UL ⁇ grant may be determined to be a UL grant that schedules the URLLC PUSCH.
  • the PC parameter control unit 104 uses the UL grant that the UL LC grant schedules the PULC for URLLC. You may judge that there is.
  • Example 1 the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 according to the Payload size of the DCI format used for UL grant.
  • Example 2 Scrambling sequence used in UL grant
  • the predetermined condition is that the scrambling sequence used for the UL grant is different from the predetermined sequence.
  • the PC parameter control unit 104 determines that the UL-grant is a UL-grant for scheduling URLLC data. . In other words, if the terminal-specific scrambling sequence used in the UL-grant DCI format is different from the predetermined terminal-specific sequence, the PC parameter control unit 104 determines that the PUSCH scheduled by the UL-grant is a URLSCH PUSCH (URLLC-PUSCH ).
  • C-RNTI Cell--Radio-Network-Temporary-Identifier
  • CS-RNTI Configured-Scheduling -RNTI
  • the PC parameter control unit 104 determines that the UL grant is a UL grant granting the URLLC PUSCH.
  • Select PC parameter set for PC parameter parameter set number j A corresponding to URLLC.
  • the PC parameter control unit 104 uses the UL grant that schedules data of a service type other than URLLC. Judge that there is, select the PC parameter set corresponding to the service type other than URLLC.
  • Example 2 the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 in accordance with the DCI format scrambling sequence used in the UL grant.
  • Example 3 UL grant after sending SR (Scheduling Request) for URLLC
  • the predetermined condition is that the UL grant is a UL grant that is received after transmitting the SR (URLLC SR) that requests URLLC scheduling from the terminal 100.
  • UL grant to be received after sending URLLC SR may be, for example, UL grant received within a predetermined period X1 [symbol] after sending URLLC SR, and after sending URLLC SR The first received UL grant may be used.
  • the URLLC SR may be explicitly indicated to be for URLLC when the SR resource is set from the base station 200, for example.
  • SR transmission that occurs during transmission of eMBB data and has high urgency or high priority may be defined as SR transmission for URLLC.
  • a radio resource for URLLC SR transmission may be defined in the specification.
  • the cycle of the SR resource set from the base station 200 is equal to or less than the predetermined value X2 [symbol], it may be defined as the SR for URLLC that requires low delay.
  • the PC parameter control unit 104 determines that the UL grant is a UL ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ grant for scheduling the URL LC PUSCH, and the PC parameter set number corresponding to the URL LC.
  • Select j A PC parameter set.
  • the PC parameter control unit 104 determines that the UL grant is a UL grant that schedules data of a service type other than URLLC. Judgment is made and a PC parameter set corresponding to a service type other than URLLC is selected.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 depending on whether or not a UL grant that satisfies a predetermined condition is received after the URLLC SR transmission.
  • threshold values X1 and X2 may be defined in advance in the specification, or may be set from the base station 200 to the terminal 100.
  • Example 4 UL grant instructing retransmission of Grant-free uplink transmission
  • the predetermined condition is that the UL grant indicates retransmission in Grant-free uplink transmission (hereinafter simply referred to as “Grant-free transmission”).
  • “Grant-free transmission” is a transmission method in which radio resources (scheduling information) used for initial transmission of an uplink signal are set in advance from the base station 200 to the terminal 100.
  • the terminal 100 transmits the transmission data using radio resources reserved in advance.
  • Grant-free transmission it is possible to reduce the time from when transmission data is generated in the terminal 100 until the SR is transmitted to the base station 200 and PUSCH is scheduled by UL grant from the base station 200. For this reason, Grant-free transmission is assumed to be used for initial transmission for URLLC requiring low delay.
  • the PC parameter control unit 104 determines that the UL grant is a UL grant for scheduling the URLLC PUSCH, and the PC corresponding to the URLLC.
  • Select parameter set number j A PC ⁇ parameter set. Note that the PC parameter control unit 104 may determine whether or not it is retransmission in Grant-free transmission based on the value of an NDI (New data indicator) field in the UL grant.
  • NDI New data indicator
  • Example 4 the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 according to whether or not retransmission in Grant-free transmission is instructed by UL grant.
  • the grant-free transmission resource for URLLC and the grant-free transmission resource for service types other than URLLC may be distinguished by the setting by the base station 200 or the provisions in the specification.
  • the terminal 100 uses a PC parameter set value for grant-free transmission preset from the base station 200 (PC parameter parameter set used for UL-grant-based uplink transmission (for example, , (See FIG. 1) may be used).
  • PC parameter parameter set used for UL-grant-based uplink transmission for example, , (See FIG. 1) may be used.
  • a PC is used for uplink transmission using a grant-free transmission resource for URLLC and for uplink transmission using a grant-free transmission resource for a service type other than URLLC.
  • the parameter set value may be distinguished.
  • UL grant for instructing retransmission of Grant-free transmission may be scrambled using CS-RNTI, for example.
  • the terminal 100 may determine that the PUSCH scheduled with the UL grant is for URLLC.
  • Example 5 PUSCH transmission timing or number of transmission symbols indicated by UL grant
  • the predetermined condition is that the period from when the terminal 100 receives the UL grant to the transmission of the uplink signal is within a predetermined time.
  • the predetermined condition is that the number of uplink signal transmission symbols indicated in the UL grant is equal to or less than a predetermined value.
  • the UL grant includes time resource information (for example, time domain resource assignment field).
  • the time resource information for example, time domain resource assignment field.
  • the time resource information the time from the reception of the UL grant before sending a PUSCH (e.g., PUSCH preparation time: also known as N 2) or PUSCH number of symbols (or time length) is included.
  • PUSCH preparation time or the symbol length is likely to be set shorter than other service types in order to satisfy the low latency requirement.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 in accordance with the PUSCH transmission timing (or the number of transmission symbols) indicated by the UL grant.
  • Example 6 UL grant detection cycle
  • the predetermined condition is that the UL grant detection period in the terminal 100 is equal to or less than a predetermined value.
  • a predetermined detection cycle for each terminal 100 is set from the base station 200 in each DCI format including the UL grant.
  • URLLC data is scheduled, it is likely that a short detection period is set for UL grant to satisfy the low latency requirement.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 in accordance with the detection period of UL grant.
  • Example 7 MCS (Modulation and coding scheme) table used in UL grant]
  • the predetermined condition is that the MCS table used for the UL grant is different from the predetermined MCS table.
  • an MCS table (an MCS pattern table uniquely corresponding to an MCS number) used in UL grant for instructing a terminal to MCS (coding rate and modulation scheme) includes an “MCS table for URLLC” and “eMBB MCS table "is defined.
  • FIG. 7A An example of the MLC table for URLLC is shown in FIG. 7A, and an example of the MCS table for eMBB is shown in FIGS. 7B and 7C (see, for example, Non-Patent Document 6).
  • MCS (in other words, MCS with low spectral efficiency) is included.
  • which MCS table is used by the terminal 100 is determined in advance by a terminal-specific scrambling sequence (for example, RNTI) used in the DCI format or a search space that is a PDCCH allocation resource.
  • RNTI terminal-specific scrambling sequence
  • the PC parameter control unit 104 determines that the UL grant is a UL grant that schedules URLLC data.
  • the PC parameter control unit 104 determines that the PUSCH scheduled by the UL grant is the URLLC PUSCH (URLLC PUSCH).
  • the PC parameter control unit 104 determines that the UL grant is a UL grant for scheduling the URLLC PUSCH, and corresponds to the URLLC.
  • Select PC parameter set for PC parameter number set j A.
  • Example 7 the PC parameter set number is implicitly notified from the base station 200 to the terminal 100 according to the MCS table of DCI format used for UL grant.
  • predetermined conditions that can be determined as UL grant for scheduling URLLC data has been described.
  • the transmission power of URLLC PUSCH is set to be at least larger than the transmission power of PUSCH of service types other than URLLC (for example, eMBB).
  • Equation (1) the larger the target received power P O_PUSCH, f, c (j) in the PC parameter set, the higher the PUSCH transmission power P PUSCH, f, c (i, j, q d , l) Is likely to grow. Also, in the PC parameter set, the larger the weighting coefficient ⁇ f, c (j) indicating the path loss compensation ratio, the higher the path loss value is, the PUSCH transmission power P PUSCH, f, c (i, j, q d , l ), And PUSCH transmission power P PUSCH, f, c (i, j, q d , l) is likely to increase.
  • the transmission power P PUSCH, f, c (i, 0, q d , l) of the PUSCH in this case is likely to be larger.
  • the PC parameter set number A is set to the maximum value J-1 of j and the PC parameter set number B is set to the minimum value 0 of j has been described. It is not limited to the value of.
  • the PC parameter set number B may be set to a value larger than the PC parameter set number A.
  • FIG. 8 shows an example of setting the PC parameter set value for each TRP.
  • a PC parameter set suitable for each TRP may be defined and selectable. Thereby, the terminal 100 can appropriately set the PUSCH transmission power for each TRP.
  • the setting of the PC parameter set for each TRP shown in FIG. 8 is an example, and is not limited to this.
  • PUSCH is at least the transmission power of PUSCH of a service type other than URLLC. It should just be set larger than.
  • the URLLC PC parameter set value for TRP # 0 may be set lower than the PC parameter setting value of a service type other than URLLC.
  • the base station 200 having a plurality of antenna panels and the terminal 100 communicate in different arrangement environments (in other words, different QCL (Quaisi-colocation))
  • the plurality of TRPs communicate with the terminal 100 (for example, As in FIG. 8, a URLLC PC parameter set number A and a service parameter PC parameter set number B other than URLLC may be defined for each antenna panel.
  • the TRP number and the antenna panel number can be determined from, for example, a transmission resource for a control channel (for example, called CORESET (Control Resource Set)) in which a control channel (for example, PDCCH) received by the terminal 100 is set.
  • CORESET Control Resource Set
  • PDCCH Physical Downlink Control Channel
  • the correspondence relationship between the PC parameter set number j and the PC parameter set (for example, P O_PUSCH, f, c (j) and ⁇ f, c (j)) is not limited to the example shown in FIG.
  • P O_PUSCH, f, c (j) and ⁇ f, c (j) increase as the value of the PC parameter set number j increases (in other words, P O_PUSCH, f, c ( j) and ⁇ f, c (j) in ascending order).
  • the value of the PC parameter set number j increases, the value of P O_PUSCH, f, c (j) or ⁇ f, c (j) may not increase.
  • the terminal 100 sets the PC parameter set (power control parameter) corresponding to the URLLC when the predetermined condition regarding the UL grant is satisfied, and if the terminal 100 does not satisfy the predetermined condition, the URLLC Set PC parameter set for service types other than. Then, the terminal 100 transmits the uplink signal using the transmission power calculated using the set PC parameter set.
  • PC parameter set power control parameter
  • the transmission power control (for example, power boost) parameter (for example, PC parameter set) of the PULC for URLLC can be implicitly notified from the base station 200 to the terminal 100. Therefore, uplink transmission power suitable for the service type such as URLLC and eMBB can be appropriately set even with UL grant that does not include information (or field) that explicitly indicates the PC parameter set number. In addition, since there is no need to add new information to the UL grant, it is possible to prevent an increase in PDCCH overhead.
  • terminal 100 can appropriately transmit an uplink signal using the uplink channel transmission power according to the service type.
  • the URLLC data (URLLCURLPUSCH) may be scheduled over the radio resources already assigned to other terminals for eMBB data (eMBB PUSCH).
  • URLLC allocates broadband radio resources in order to obtain frequency diversity gain. For this reason, it is assumed that a part of radio resources (for example, time resources or frequency resources) overlap between URLLC and eMBB.
  • terminal 100 can appropriately set the uplink transmission power at which base station 200 can decode URLLC data in the uplink transmission of URLLC data. For this reason, URLLC's low latency and high reliability requirements can be satisfied.
  • the terminal uses UCI, UL -Multiplexed with SCH (Uplink Shared Channel, uplink data information) and transmitted on PUSCH (also called "UCI Piggyback").
  • UCI Uplink Shared Channel, uplink data information
  • UCI for URLLC when the terminal transmits UCI that requires the same high quality as URLLC data (hereinafter referred to as “UCI for URLLC”) via PUSCH, power boost is required to satisfy UCI quality There is.
  • a power boost may be required as compared to the case of transmitting a service type other than URLLC (for example, eMBB).
  • PUSCH transmission power control is determined regardless of the presence or absence of UCI. Therefore, when the SRI field is not included as in the fallback DCI (for example, DCI format 0_0), that is, when the UL class grant that does not include information that explicitly indicates the PC parameter set number is used, PUSCH Is determined regardless of the presence or absence of UCI for URLLC. For this reason, the terminal may not be able to appropriately boost the transmission power of PUSCH including UCI. For example, when the terminal transmits eMBB data and URLLC UCI using a single PUSCH, it is the same as when eMBB data is transmitted alone (in other words, when eMBB data is transmitted without UCI). Transmit power is applied. Therefore, there is a case where the transmission power is insufficient with respect to UCI for URLLC and the required quality of URLLC cannot be satisfied.
  • the fallback DCI for example, DCI format 0_0
  • the communication system includes a terminal 300 (see FIG. 10 described later) and a base station 200 (see, for example, FIG. 4).
  • FIG. 10 is a block diagram showing a configuration example of terminal 300 according to the present embodiment.
  • the same components as those of terminal 100 (FIG. 3) of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a UCI generating unit 301, an encoding / modulating unit 302, and a multiplexing unit 303 are added to the terminal 100 shown in FIG. The operation of is different.
  • the UCI generating unit 301 generates UCI (uplink control information such as ACK / NACK or CSI) transmitted by the terminal 300 and outputs the generated UCI to the encoding / modulating unit 302. Further, the UCI generating unit 301 outputs information related to the UCI to be transmitted to the PC parameter control unit 304.
  • UCI uplink control information such as ACK / NACK or CSI
  • the encoding / modulating unit 302 performs encoding and modulation on the UCI input from the UCI generating unit 301 based on the DCI input from the demodulating / decoding unit 103, and multiplexes the modulated UCI signal. To 303.
  • the multiplexing unit 303 multiplexes the UCI signal input from the encoding / modulation unit 302 and the modulated data signal input from the encoding / modulation unit 107, and sends the multiplexed data signal to the resource allocation unit 108. Output.
  • the multiplexing unit 303 may puncture a part of the RE (Resource Element) of the data signal and put the UCI signal in the punctured part.
  • the multiplexing unit 303 may determine the RE size of the data signal (rate matching) in consideration of the RE size of the UCI signal in advance.
  • the PC parameter control unit 304 uses the DCI input from the demodulation / decoding unit 103 and the UCI information input from the UCI generation unit 301 to determine the PC parameter set number j to be applied to the scheduled PUSCH. .
  • the PC parameter control unit 304 outputs the determined PC parameter set number to the transmission power calculation unit 105.
  • the base station according to the present embodiment has the same basic configuration as base station 200 according to Embodiment 1, and will be described with reference to FIG. Note that the received data after decoding in base station 200 according to the present embodiment includes UCI in addition to data from terminal 300 (see FIG. 10).
  • Example 1 Including ACK / NACK for PDLC (downlink data channel) for URLLC
  • the predetermined condition is that the UCI included in the PUSCH scheduled by the UL grant is an ACK / NACK (response signal) for the URLSCH PDSCH. It is conceivable that ACK / NACK for the URLLC PDSCH requires low delay and high reliability like the URLLC PDSCH.
  • the terminal 300 determines that the PDSCH is different when a scrambling sequence (for example, RNTI) used in the DCI that schedules the PDSCH is different from a predetermined sequence (for example, C-RNTI or CS-RNTI that schedules the PDSCH for eMBB). It can be determined that the PDSCH is for URLLC. For example, when the scrambling sequence used in the DCI that schedules the PDSCH is the RNTI for URLLC, the terminal 300 may determine that the PDSCH is the URLLC PDSCH.
  • a scrambling sequence for example, RNTI
  • CS-RNTI that schedules the PDSCH for eMBB
  • the terminal 300 can determine that the PDSCH is the URLLC PDSCH when the URLLC MCS table is used in the DCI that schedules the PDSCH.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 300 depending on whether or not the PUSCH scheduled by UL grant includes ACK / NACK for the PDSCH for URLLC.
  • Example 2 ACK / NACK whose time interval from PDSCH reception to ACK / NACK transmission is below a predetermined threshold
  • the predetermined condition is that the UCI included in the PUSCH scheduled by the UL grant has a time interval from PDSCH reception to ACK / NACK transmission (for example, sometimes called N1 [symbol]) as a predetermined threshold X6 [ symbol] is the following ACK / NACK.
  • N1 is included in the DCI that schedules the PDSCH.
  • the predetermined condition is that the period N1 [symbol] from when the terminal 300 receives the PDSCH until the UCI including the ACK / NACK for the PDSCH is transmitted is within the predetermined time X6.
  • the terminal 300 can determine that the UCI included in the PUSCH scheduled in UL grant is a ULC for URLLC requiring low delay when N1 is short (in other words, when N1 ⁇ X6).
  • the PC parameter control unit 304 determines that the UL grant is UCI for URLLC.
  • PC parameter set for PC parameter set number j A corresponding to URLLC is determined.
  • the PC parameter control unit 304 includes the ULC for URLLC in the UL grant. It is determined that it is a UL grant that schedules a non-PUSCH, and a PC parameter set corresponding to a service type other than URLLC is selected.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 300 depending on whether or not the PUSCH scheduled by UL tag grant includes an ACK / NACK with a short N1. .
  • Example 3 CSI calculated with a target BLER below a predetermined threshold
  • the predetermined condition is that the UCI included in the PUSCH scheduled by UL grant is CSI calculated using a target error rate (for example, target BLER) that is equal to or less than a predetermined threshold X7.
  • target error rate for example, target BLER
  • the target BLER used for CSI calculation is preset from the base station 300 to the terminal 200.
  • the PC parameter set number is transmitted from the base station 200 to the terminal 300 depending on whether or not the PUSCH scheduled by UL grant includes the CSI calculated with the target BLER equal to or less than the predetermined threshold X7. Implicitly notified.
  • Example 4 Including ACK / NACK for PDSCH for eMBB
  • the predetermined condition is that the UCI included in the PUSCH scheduled by UL grant is ACK / NACK for the PDSCH for eMBB. That is, the condition is the reverse of the condition in Example 1 according to the present embodiment (the ACK / NACK for the URLLC PDSCH).
  • the base station 200 multiplies each error rate of PDSCH and ACK / NACK with respect to the PDSCH. It is conceivable to control the error rate so that it has a predetermined quality.
  • the base station 200 has a PDSCH error rate of 10E-1 (quality equivalent to PDMB for eMBB) and an ACK / NACK error rate of 10E-5 (quality equivalent to URLLC UCI).
  • the base station 200 may set the PDSCH error rate to 10E-5 (quality equivalent to URLLC PDSCH) and the ACK / NACK error rate to 10E-1 (quality equivalent to eMBB UCI). Control.
  • ACK / NACK for PDSCH (PDMB for eMBB) controlled so that the error rate is 10E-1 is UCI for URLLC controlled so that the error rate is 10E-5.
  • ACK / NACK for PDSCH (PDLC for URLLC) controlled so that the error rate is 10E-5 is UCI for eMBB controlled so that the error rate is 10E-1.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 300 depending on whether or not an ACK / NACK for the PDSCH for eMBB is included in the PUSCH scheduled by UL grant. .
  • Example 1 and Example 4 the control method of the PC parameter set value is reversed, but an appropriate control method may be selected according to the scheduling method assumed by the base station 200. .
  • Example 5 The number of REs required for UCI for URLLC reaches the upper limit
  • the predetermined condition is that the PULC scheduled with UL grant includes the URLLC UCI applicable to any of Examples 1 to 4 according to the present embodiment (Piggybacked), and is required for the URLLC UCI.
  • the number of REs reaches the upper limit of the number of REs that can be placed in PUSCH.
  • the number of UCI REs that can be arranged in PUSCH is determined according to the following equation (2).
  • Q ' ACK is the number of REs of ACK / NACK that are actually transmitted by PUSCH (referred to as Actual RE number)
  • O ACK is the number of ACK / NACK bits
  • L ACK is the number of CRC (Cyclic Redundancy Check) bits
  • ⁇ offset PUSCH is ACK / NACK coding rate correction factor (parameter) for data (UL-SCH)
  • represents the ratio of the number of REs of UCI (ACK / NACK) transmitted by PUSCH.
  • is a parameter that determines the upper limit of the number of REs of UCI in order to ensure the UL-SCH quality
  • Equation (2) the left side of the min function in Equation (2) (assuming Q " ACK as in Equation (3) below) is the number of REs used for PUSCH transmission to obtain the quality required for ACK / NACK ( Required RE number).
  • terminal 300 sets the required quality.
  • the number of UCIs for the number of REs to satisfy cannot be placed on PUSCH.
  • the PC parameter control unit 304 determines the quality of the URLLC UCI.
  • PC parameter set of PC parameter set number j A corresponding to URLLC is selected.
  • the PC parameter set number is set according to whether or not the number of REs required for the ULC for URLLC included in the PUSCH scheduled by the UL grant reaches the upper limit of the number of REs that can be arranged in the PUSCH.
  • the station 200 implicitly notifies the terminal 300.
  • Example 6 The number of REs of UCI including UCI for URLLC is larger than a predetermined ratio]
  • the predetermined condition is that the PUSCH scheduled with UL grant includes the UCI for URLLC that applies to any of Examples 1 to 4 according to the present embodiment, and the UCI including the UCI for URLLC is included in the entire PUSCH.
  • the RE number is larger than a predetermined ratio.
  • the terminal 300 power boosts the PUSCH when the condition shown in the following equation (4) is satisfied.
  • Q ′ ACK , Q ′ CSI-1 , and Q ′ CSI-2 respectively indicate the number of REs (Actual RE number) of ACK / NACK, CSI part1, and CSI part2 that are actually transmitted by PUSCH.
  • the total number of UCIs including CSI For example, when the ratio of the number of UCI REs to the total number of PUSCHs exceeds this ratio ⁇ , it is assumed that UCI is more dominant than UL-SCH in PUSCH.
  • the PC parameter control unit 304 compares the UCI with the UL-SCH in the PUSCH.
  • the PC parameter set number is implicitly notified from the base station 200 to the terminal 300 depending on whether or not UCI is dominant in comparison with UL-SCH in PUSCH.
  • PC parameter set selection method Next, a method for selecting a PC parameter set when UCI is included in the PUSCH in the PC parameter control unit 304 of the terminal 300 will be described.
  • Example 1 Selection of PC parameter set for each UCI type of UCI for URLLC
  • the PC parameter control unit 304 selects a PC parameter set for each UCI type (for example, ACK / NACK, CSI part1, or CSI part2) of UCI for URLLC.
  • CSI part1 includes Wideband CQI or Rank Indiator
  • CSI part2 includes Subband CQI.
  • CSI part1 is considered to be more important information used more frequently in base station scheduling than CSI part2. Therefore, the PC parameter control unit 304 may define PC parmeter set so that higher transmission power is set when CSI ⁇ ⁇ ⁇ part1 is included as the UCI for URLLC than when only CSI part2 is included as UCI. .
  • Example 2 Selection of PC parameter set according to the number of UCI bits including UCI for URLLC
  • the PC parameter control unit 304 selects the PC parameter set according to the number of UCI bits including the URLLC UCI.
  • Example 3 Selection of PC parameter set according to service type combination of UL-SCH and ULC for URLLC
  • the PC parameter control unit 304 selects a PC parameter set according to a combination of service types of UL-SCH and ULC for URLLC.
  • FIG. 13 there are four combinations of service types of UL-SCH (PUSCH) and UCI for URLLC.
  • PUSCH UL-SCH
  • FIG. 13 (1) is a combination in which UMB for eMBB is transmitted using PUSCH for eMBB
  • (2) is a combination in which UCI for URLLC is transmitted using PUSCH for URLLC
  • (3) is a UCI for URLLC transmitted using PUSCH for eMBB.
  • Combination (4) shows a combination in which eMBB UCI is transmitted using URLLC PUSCH.
  • the PC parameter control unit 304 may select a PC parameter set according to each combination.
  • select PC parameter set for PC parameter parameter set number j A1 to A3 corresponding to URLLC.
  • the PC parameter control unit 304 sets the transmission power in the order of (2) ⁇ (3) ⁇ (4). Set a higher PC parameter set.
  • the setting method of PC parameter set is not limited to the example shown in FIG.
  • the PC parameter control unit 304 may set the PC parameter set that increases the transmission power in the order of (2) ⁇ (4) ⁇ (3). Good.
  • the terminal 300 can set the transmission power according to the combination of the UL-SCH (PUSCH) and the URLLC UCI service type.
  • terminal 300 sets a PC parameter set (power control parameter) corresponding to URLLC when a predetermined condition related to UCI for URLLC included in PUSCH scheduled by UL tag grant is satisfied. If the predetermined condition is not satisfied, a PC parameter set corresponding to a service type other than URLLC is set. Then, terminal 300 transmits an uplink signal using transmission power calculated using the set PC parameter set.
  • a PC parameter set power control parameter
  • terminal 300 can control the transmission power of PUSCH according to the presence or absence of UCI for URLLC, so that the power boost of PUSCH including UCI (particularly UCI for URLLC) can be appropriately boosted. can do.
  • the terminal 300 does not depend on other information included in the UCI.
  • the present embodiment can be similarly applied to a transmission power setting method in the case of transmitting ULC for URLLC with PUSCH that performs Grant-free transmission.
  • the terminal 300 when changing the PC parameter set, the terminal 300 does not need to change the number of UCI REs arranged in the PUSCH. That is, terminal 300 does not need to change the parameters ( ⁇ , ⁇ offset PUSCH ) for calculating the number of UCI REs (Coding rate). For this reason, the terminal 300 can set the transmission power according to the required quality of UCI by simple control for changing the PC parameter set.
  • the terminal 300 may change the number of REs of UCI arranged in the PUSCH in accordance with the change of the PC parameter set.
  • the terminal 300 individually sets parameters used for the calculation of the UCI Coding rate according to the PC parameter set, or changes the Coding rate calculation in consideration of transmission power increase / decrease due to the PC parameter set.
  • terminal 300 can more appropriately set the transmission power according to the required quality of UCI by control for changing PC parameter set and UCI Coding rate calculation.
  • Embodiment 3 a method for setting uplink transmission power of PUSCH when URLLC UCI is transmitted by PUSCH as in Embodiment 2 will be described.
  • the PC parameter set is fixed regardless of the service type, and the UCI (by setting the UCI-dependent power adjustment parameter to the transmission power equation (see, for example, equation (1)).
  • the UCI by setting the UCI-dependent power adjustment parameter to the transmission power equation (see, for example, equation (1)).
  • a method for appropriately boosting the transmission power of PUSCH including URLLC UCI will be described.
  • the communication system includes a terminal 400 (see FIG. 14 described later) and a base station 200 (see, for example, FIG. 4).
  • FIG. 14 is a block diagram showing a configuration example of terminal 400 according to the present embodiment.
  • the same components as those in terminal 100 (FIG. 3) of the first embodiment or terminal 300 (FIG. 10) of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the operations of the UCI generating unit 401 and the transmission power calculating unit 402 are different from those of the terminal 300 illustrated in FIG. 10.
  • the PC parameter control unit 104 performs the same processing as in the first embodiment. That is, the PC parameter control unit 104 determines the PC parameter set number j to be applied to the scheduled PUSCH using the DCI input from the demodulation / decoding unit 103 regardless of the presence or absence of UCI.
  • the UCI generating unit 401 generates a UCI transmitted by the terminal 400 and outputs the generated UCI to the encoding / modulating unit 302. In addition, UCI generating section 401 outputs information related to UCI to be transmitted to transmission power calculating section 402.
  • the transmission power calculation unit 402 uses the PC parameter set number j set in the PC parameter control unit 104 to calculate PUSCH transmission power, for example, according to Equation (6).
  • ⁇ UCI UCI-dependent power adjustment parameter [dB]
  • the base station according to the present embodiment has the same basic configuration as base station 200 according to Embodiment 1 or Embodiment 2, and will be described with reference to FIG. Note that the received data after decoding in base station 200 according to the present embodiment includes UCI in addition to uplink data from terminal 400 (see FIG. 14).
  • the PUSCH including the UCI describes an example of a power boost method of the transmission power by the power adjustment parameter delta UCI dependent on UCI.
  • Delta UCI for example, is calculated by the following equation (7).
  • Q " UCI indicates the number of UCI REs (Required REs) transmitted by PUSCH in order to obtain the quality required for UCI.
  • Q" UCI Indicates the total number of REs of the required RE numbers (Q " ACK , Q” CSI-1 and Q " CSI-2 ) of ACK / NACK, CSI part1, and CSI part2, respectively.
  • Q ′ UCI represents the number of UCI REs (Actual REs) actually transmitted on the PUSCH.
  • Q 'UCI is, ACK / NACK, each Actual RE number of CSI part1 and CSI part2 (Q' ACK, Q 'CSI-1 and Q' CSI-2) Indicates the total number of REs.
  • the transmission power of PUSCH can be controlled according to the UCI for URLLC, the transmission power of PUSCH including UCI (particularly UCI for URLLC) can be appropriately boosted.
  • the present embodiment can be similarly applied to a transmission power setting method in the case of transmitting ULC for URLLC with PUSCH that performs Grant-free transmission.
  • the service type or traffic type (for example, information indicating either URLLC or eMBB) may be included in UL grant.
  • the base station 200 can easily instruct the terminal 100 of the service type of the PUSCH scheduled using UL grant, and the terminal 100 can transmit the PUSCH using the PC parameter set suitable for the service type.
  • PC parameter set for example, the PC parameter set number j
  • PC parameters other than the PC parameter set number j for example, PL estimation RS number q d , Closed loop process number l
  • PC parameters other than the PC parameter set number j for example, PL estimation RS number q d , Closed loop process number l
  • a Closed loop process (number l) that differs between URLLC and eMBB may be set according to a predetermined condition regarding UL grant.
  • different Closed loop correction values may be set between URLLC and eMBB in accordance with predetermined conditions regarding UL grant. For example, if the Closed loop correction value included in DCI is 2 bits (4 patterns), ⁇ +3, -1, 0, +1 ⁇ for eMBB, and ⁇ +6, -2, 0, + for URLLC As in 2 ⁇ , URLLC may apply a correction value larger than eMBB.
  • the terminal 100 can perform Closed loop transmission power control according to the required quality of the service type.
  • the parameter set according to the predetermined condition relating to UL grant is not limited to Closed loop process, but may be other parameters.
  • PUSCH transmission power control has been described.
  • an embodiment of the present disclosure can also be applied to uplink channels other than PUSCH (for example, PUCCH (Physical-Uplink-Control-Channel)).
  • PUCCH Physical-Uplink-Control-Channel
  • PUCCH transmission power control is performed, for example, according to the following equation (10) (see, for example, Non-Patent Document 3).
  • P PUCCH, b, f, c (i, q u , q d , l) is the UL BWP (Bandwidth part) number “b”, Carrier number “f”, serving cell number “c”, PUCCH transmission power [dBm] in Slot number “i”, PC parameter number “q u ”, PL estimation RS number “q d ”, and Closed loop process number “l” are shown.
  • P O_PUCCH, b, f, c (q u ) represents the target received power [dBm] (Parameter value) of the PC parameter number q u .
  • PUCCH (i) indicates the transmission bandwidth [PRB] of the PUCCH obtained by normalizing the SCS applied to the PUCCH in the slot number i based on the 15 kHz SCS.
  • PL b, f, c (q d ) indicates a path loss [dB] measured from the RS of the RS number q d by the terminal.
  • ⁇ F_PUCCH (F) indicates an offset [dB] depending on the PUCCH format.
  • ⁇ TF, b, f, c (i) indicates an offset [dB] depending on MCS of data to be transmitted in slot number i.
  • g b, f, c (i, l) indicates a closed loop correction value [dB] in slot number i and closed loop process number l.
  • PDSCH Physical Downlink Shared Channel
  • PUCCH-Spatial-relation-info the MAC-CE information of PDSCH (specifically, PUCCH-Spatial-relation-info)
  • PUCCH-Spatial-relation-info the MAC-CE information of PDSCH
  • the terminal 100 determines the PC parameter value (for example, the PC parameter number q u according to a predetermined condition regarding the UL grant). ) Can be switched.
  • the PC parameter value for example, the PC parameter number q u according to a predetermined condition regarding the UL grant.
  • a PC parameter value that is a higher transmission power value may be set for PUCCH that performs SR transmission for URLLC as compared to SR transmission of a service type other than URLLC.
  • the URLLC SR can be transmitted with high quality, and the URLLC requirement can be satisfied. In this way, the same effect as PUSCH transmission can be obtained for PUCCH transmission.
  • service types with different requirements such as reliability or low latency (in other words, service, traffic type, logical channel type, use case or usageus scenario) are URLLC or Not limited to eMBB.
  • service, traffic type, logical channel type, use case or usageus scenario are URLLC or Not limited to eMBB.
  • an embodiment of the present disclosure can be applied to mmTCC transmission, and similar effects can be obtained.
  • the present disclosure can be realized by software, hardware, or software linked with hardware.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process described in the above embodiment is partially or entirely performed. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of the functional blocks.
  • the LSI may include data input and output.
  • An LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.
  • the present disclosure can be implemented in all kinds of apparatuses, devices, and systems (collectively referred to as communication apparatuses) having a communication function.
  • communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.) ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication devices are not limited to those that are portable or movable, but any kind of devices, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or non-portable or fixed) Measurement equipment, control panels, etc.), vending machines, and any other “things” that may exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or non-portable or fixed
  • Measurement equipment control panels, etc.
  • vending machines and any other “things” that may exist on the IoT (Internet of Things) network.
  • Communication includes data communication by a combination of these in addition to data communication by a cellular system, a wireless LAN system, a communication satellite system, and the like.
  • the communication apparatus also includes devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • a controller or a sensor that generates a control signal or a data signal used by a communication device that executes a communication function of the communication apparatus is included.
  • the communication apparatus includes infrastructure equipment such as a base station, an access point, and any other apparatus, device, or system that communicates with or controls the various non-limiting apparatuses described above. .
  • the terminal of the present disclosure When the terminal of the present disclosure satisfies a predetermined condition regarding a control channel used for transmission of uplink signal allocation information, the terminal sets a first power control parameter corresponding to a first service, and sets the predetermined condition to If not, the circuit sets a second power control parameter corresponding to a second service, and the transmission power calculated using the first power control parameter or the second power control parameter is used. And a transmission circuit for transmitting an uplink signal.
  • the predetermined condition is that a payload size of a format used for the control channel is different from a predetermined size.
  • the predetermined condition is that a payload size of a format used for the control channel is less than a predetermined size.
  • the predetermined condition is that a scrambling sequence used for the control channel is different from the predetermined sequence.
  • the predetermined condition is that the control channel is received by the terminal within a predetermined period after transmitting a signal requesting scheduling of the first service from the terminal. It is.
  • the predetermined condition is that the control channel is a control channel that the terminal first receives after transmitting a signal requesting scheduling of the first service from the terminal.
  • the predetermined condition is that the control channel indicates retransmission in a transmission method in which resources used for initial transmission of the uplink signal are set in advance.
  • the predetermined condition is that a period from when the terminal receives the control channel to when the uplink signal is transmitted is within a predetermined time.
  • the predetermined condition is that the number of transmission symbols of the uplink signal indicated in the control channel is equal to or less than a predetermined value.
  • the predetermined condition is that a detection period of the control channel in the terminal is equal to or less than a predetermined value.
  • the predetermined condition is that a table indicating a coding and modulation scheme used for the control channel is different from the predetermined table.
  • the predetermined condition is that the uplink control information included in the uplink signal is a response signal to the downlink data of the first service.
  • the predetermined condition is that a period from when the terminal receives downlink data to transmission of the uplink signal including a response signal to the downlink data is within a predetermined time. It is.
  • the predetermined condition is that the uplink control information included in the uplink signal is channel state information calculated using a target error rate equal to or lower than a predetermined threshold.
  • the overall error rate of the downlink data and the response signal to the downlink data is a constant value
  • the predetermined condition is that the uplink control information included in the uplink signal is This is a response signal for downlink data of service No. 2.
  • the predetermined condition is that the number of resources of uplink control information included in the uplink signal is equal to or greater than a predetermined threshold.
  • the predetermined condition is that a ratio of the number of resources of the uplink control information included in the uplink signal to the number of resources of the entire uplink signal is larger than a predetermined threshold.
  • the transmission power calculated using the first power control parameter is larger than the transmission power calculated using the second power control parameter.
  • the transmission method sets a first power control parameter corresponding to a first service when a predetermined condition regarding a control channel used for transmission of uplink signal allocation information is satisfied, and the predetermined condition Is not satisfied, the second power control parameter corresponding to the second service is set, and the uplink power is transmitted using the first power control parameter or the transmission power calculated using the second power control parameter.
  • One embodiment of the present disclosure is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

上りリンク信号を適切に送信することができる端末。端末(100)において、PCパラメータ制御部(104)は、上りリンク信号の割り当ての送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定する。送信部(109)は、第1の電力制御パラメータ又は第2の電力制御パラメータを用いて計算された送信電力を用いて上りリンク信号を送信する。

Description

端末及び送信方法
 本開示は、端末及び送信方法に関する。
 5Gの標準化において、LTE/LTE-Advancedとは必ずしも後方互換性を持たない新しい無線アクセス技術(NR:New Radio access technology)が3GPPで議論されている。
 NRでは、5Gの要件の1つであるURLLC(Ultra-Reliable and Low Latency Communications:超高信頼低遅延通信)をターゲットとした技術検討が進められている。URLLCは、32バイトのパケットデータ量を10-5以下のパケット送信誤り率(99.999%以上のパケット送信成功率)の「高信頼」と、無線区間1ms以下の「低遅延」とを同時に満たすことが求められる(例えば、非特許文献1を参照)。
 上述したURLLCの要求条件を満たすために、URLLCデータの上りチャネル(PUSCH:Physical Uplink Shared Channel)の送信では、他のデータの上りチャネルと比較して高い送信電力(例えば、パワーブースト)を用いてURLLCデータを送信することが検討されている(例えば、非特許文献2を参照)。
 しかしながら、URLLCのPUSCHを送信する方法については十分に検討されていない。
 本開示の非限定的な実施例は、上りリンク信号を適切に送信することができる端末及び送信方法の提供に資する。
 本開示の一実施例に係る端末は、上りリンク信号の割当情報の送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、前記所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定する回路と、前記第1の電力制御パラメータ又は前記第2の電力制御パラメータを用いて計算された送信電力を用いて前記上りリンク信号を送信する送信回路と、を具備する。
 本開示の一実施例に係る送信方法は、上りリンク信号の割当情報の送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、前記所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定し、前記第1の電力制御パラメータ又は前記第2の電力制御パラメータを用いて計算された送信電力を用いて前記上りリンク信号を送信する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、上りリンク信号を適切に送信することができる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
PC parameter setの一例を示す図 実施の形態1に係る端末の一部の構成例を示すブロック図 実施の形態1に係る端末の構成例を示すブロック図 実施の形態1に係る基地局の構成例を示すブロック図 実施の形態1に係る端末及び基地局の動作例を示すシーケンス図 実施の形態1に係るPC parameter set番号A, Bの設定例を示す図 URLLC用MCSテーブルの一例を示す図 eMBB用MCSテーブルの一例を示す図 eMBB用MCSテーブルの一例を示す図 実施の形態1に係るPC parameter set番号A, Bの設定例を示す図 実施の形態1に係るURLLCとeMBBとの間において無線リソースが重なる例を示す図 実施の形態2に係る端末の構成例を示すブロック図 実施の形態2に係るPC parameter set番号の設定例を示す図 実施の形態2に係るPC parameter set番号の設定例を示す図 実施の形態2に係るPC parameter set番号の設定例を示す図 実施の形態3に係る端末の構成例を示すブロック図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 NR向けの端末(「UE(User Equipment)」と呼ぶこともある)のPUSCHの送信電力制御(TPC:Transmission Power Control)は、例えば、以下の式(1)に従って行われる(例えば、非特許文献3を参照)。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、PPUSCH,f,c(i, j, qd, l)は、Carrier番号"f"、サービングセル番号"c"、Slot番号"i"、PC(power control)parameter set番号"j"、PL(pathloss)推定用RS(reference signal)番号"qd"、Closed loop process番号"l"におけるPUSCHの送信電力[dBm]を示す。PCMAX,f,c(i)は、Slot番号iにおける端末の最大送信電力[dBm]を示す。PO_PUSCH,f,c(j)は、PC parameter set番号jの目標受信電力[dBm](Parameter値)を示す。2μ・MRB,f,c PUSCH(i)は、Slot番号iにおいてPUSCHに適用するSCS(subcarrier spacing)を、15kHz SCSを基準に正規化したPUSCHの送信帯域幅[PRB]を示す。αf,c(j)はPC parameter set番号jのパスロスの補償割合を示す重み係数(Parameter値)を示す。PLf,c(qd)は端末がRS番号qdのRSから測定したパスロス(Path Loss)[dB]を示す。ΔTF,f,c(i)はSlot番号iにおいて送信するデータのMCS(Modulation and Coding Scheme)に依存したオフセット[dB]を示す。ff,c(i,l)はSlot番号i、Closed loop process番号lにおけるClosed loop補正値[dB]を示す。
 式(1)において、PO_PUSCH,f,c(j)及びαf,c(j)は、「PC parameter set」と呼ばれる。例えば、図1に示すように、PC parameter set番号j毎のPC parameter setの値が、基地局(「eNB」又は「gNB」と呼ぶこともある)から端末へ、例えば、RRC(Radio Resource Control)通知によって予め設定される。
 URLLCデータの上り送信では、URLLCの信頼性に関する要求条件を満たすために、他のサービス種別(例えば、eMBB)と比較してより高い送信電力となるPC parameter set(PO_PUSCH,f,c(j)、αf,c(j))を用いることが検討されている。例えば、URLLCデータにはパワーブーストが適用されることにより、URLLCデータをeMBBデータと比較してより高い送信電力で送信することが検討されている。
 PUSCHのスケジューリング情報(例えば、周波数リソース割当情報、時間リソース割当情報、又は、MCS等)は、DCI(Downlink Control Information)と呼ばれ、PDCCH(Physical Downlink Control Channel)を用いて基地局から端末へ送信される。なお、PUSCHのスケジューリング情報を指示するために使用されるPDCCHは「上りグラント(UL grant)」と呼ばれる。
 NRでは、UL grant用のDCIフォーマットとして「DCI format 0_0」及び「DCI format 0_1」の2種類のフォーマットが規定されている(例えば、非特許文献4を参照)。DCI format 0_0は、「フォールバック用DCI」とも呼ばれる。DCI format 0_0では、DCI format 0_1に含まれる情報の一部が含まれないため、DCI format 0_1と比較してPayloadサイズが小さい。
 また、URLLCデータ(URLLC用PUSCHと呼ぶこともある)のスケジューリング情報を指示するPDCCH(例えば、UL grant)も、URLLCデータと同等又はURLLCデータ以上に高信頼性及び低遅延が要求される。ここで、Payloadサイズが小さいほど、符号化利得がより大きくなり、信頼性を向上できる。そこで、フォールバック用DCI(例えば、DCI format 0_0)をURLLCデータのスケジューリング情報を指示するPDCCHのDCIフォーマットに用いることが検討されている(例えば、非特許文献5を参照)。
 例えば、DCI format 0_1には、SRI(SRS resource indicator)fieldが含まれる。UL grantのDCIフォーマットにDCI format 0_1を用いる場合、SRI fieldによりPC parameter set番号jを端末へ指示できる。このため、基地局は、DCI format 0_1を用いて、URLLC用PUSCHのパワーブースト送信を端末に指示できる。換言すると、基地局は、DCI format 0_1に含まれるSRI fieldを用いて、URLLC用PUSCHの送信電力に適したPC parameter set(PO_PUSCH,f,c(j)、αf,c(j))に対応するPC parameter set番号jを端末へ明示的に指示できる。
 一方、フォールバック用DCI(例えば、DCI format 0_0)には、SRI fieldが含まれない。SRI fieldが含まれない場合、つまり、PC parameter set番号を明示的に指示する情報が含まれないUL grantが使用される場合、例えば、固定のPC parameter set値(例えば、j=0のPC parameter set値)が用いられる。
 この場合、端末では、URLLC及びeMBB等のサービス種別(トラフィック種別とも呼ばれる)に依らず、固定のPC parameter set値が適用されるため、サービス種別に適した上りチャネルの送信電力が設定できない。例えば、eMBB用のパラメータ値を固定のPC parameter set値に設定した場合、URLLCデータをスケジューリングする場合には送信電力不足となり、URLLCの要求品質を満たせない。一方、URLLC用のパラメータ値を固定のPC parameter set値に設定した場合、eMBBデータをスケジューリングする場合には過剰な送信電力となり、与干渉が増加し、システム性能が劣化する懸念がある。
 このように、例えば、PC parameter set番号を明示的に指示する情報を含まないUL grantにおいて、URLLC用PUSCHのパワーブーストを端末へ指示する方法については十分に議論されていない。
 そこで、本開示の一実施例では、URLLC及びeMBB等のサービス種別に適した上りチャネルの送信電力を適切に設定する方法について説明する。
 (実施の形態1)
 [通信システムの概要]
 本開示の一実施の形態に係る通信システムは、端末100及び基地局200を備える。端末100は、基地局200からのUL grantに含まれるDCIに基づいて所定の送信電力を用いてPUSCHを送信する。基地局200は、UL grantを端末100へ送信し、端末100からのPUSCHを受信する。
 図2は本開示の実施の形態に係る端末100の一部の構成を示すブロック図である。図2に示す端末100において、PCパラメータ制御部104は、上りリンク信号の割り当ての送信に使用される制御チャネル(例えば、UL grant)に関する所定の条件を満たす場合、第1のサービス(例えば、URLLC)に対応する第1の電力制御パラメータを設定し、所定の条件を満たさない場合、第2のサービス(例えば、eMBB)に対応する第2の電力制御パラメータを設定する。送信部109は、第1の電力制御パラメータ又は第2の電力制御パラメータを用いて計算された送信電力を用いて上りリンク信号を送信する。
 [端末100の構成]
 図3は、本実施の形態に係る端末100の構成例を示すブロック図である。
 図3に示す端末100は、アンテナ101、受信部102、復調・復号部103、PCパラメータ制御部104、送信電力計算部105、データ生成部106、符号化・変調部107、リソース割当部108、及び、送信部109を含む。
 受信部102は、基地局200から送信された信号をアンテナ101を介して受信し、受信信号に対してダウンコンバート又はA/D(Analog-to-Digital)変換などの受信処理を行い、受信処理後の受信信号を復調・復号部103へ出力する。
 復調・復号部103は、受信部102から入力される受信信号に対して復調及び復号を行い、復号結果から、端末100宛てのUL grant(PDCCH又はNR-PDCCH)を抽出(受信)し、抽出したUL grantに含まれる、PUSCHをスケジューリングするためのDCIを復号する。復調・復号部103は、復号後のDCIを、PCパラメータ制御部104、送信電力計算部105、符号化・変調部107及びリソース割当部108へ出力する。
 DCIには、例えば、周波数リソース情報、時間リソース情報、MCS、送信電力情報、Payloadサイズ、DCIのスクランブリング系列、再送制御情報、又は、TPCコマンド情報等が含まれる。ここで、基地局200から端末100へ送信されるUL grantには、Payloadサイズが小さいDCI formatが用いられる。Payloadサイズが小さいDCI formatは、例えば、DCI format 0_0のPayloadサイズと同等又はDCI format 0_0のPayloadサイズ未満のサイズのDCI formatでもよい。換言すると、基地局200から端末100へ送信されるUL grantには、PC parameter set番号jを明示的に指示する情報は含まれていない。
 なお、全ての制御情報を含むDCIが端末100に対して同時に通知される必要はない。例えば、一部のDCIはセル共通情報として、又は、準静的な通知情報として端末100に通知されてもよい。また、一部のDCIは、例えば、システム共通情報としてスペックで規定され、基地局200から端末100に通知されなくてもよい。
 PCパラメータ制御部104は、復調・復号部103から入力されるDCIを用いて、スケジューリングされたPUSCHに適用するPC parameter set番号jを決定する。PCパラメータ制御部104は、決定したPC parameter set番号を送信電力計算部105へ出力する。
 例えば、PCパラメータ制御部104は、PUSCHのスケジューリング情報(割当情報)の送信に使用されるUL grantに関して所定の条件を満たす場合、当該UL grantによってスケジューリングされたPUSCHがURLLC用PUSCHであると判断する。UL grantによってスケジューリングされたPUSCHがURLLC用PUSCHであると判断した場合、PCパラメータ制御部104は、URLLCに対応するPC parameter set番号j=Aを設定する。一方、UL grantに関して所定の条件を満たさない場合、当該UL grantによってスケジューリングされたPUSCHがURLLC以外のサービス種別のPUSCHであると判断する。UL grantによってスケジューリングされたPUSCHがURLLC以外のサービス種別のPUSCHであると判断した場合、PCパラメータ制御部104は、URLLC以外のサービス種別(例えば、eMBB)に対応するPC parameter set番号j=Bを設定する。
 なお、PC parameter setのテーブル(例えば、図1を参照)は、基地局200から端末100へ事前に設定されている。また、j=AのPC parameter setには、URLLCを想定した送信電力値となるパラメータ値が設定され、j=BのPC parameter setには、URLLC以外のサービス種別(例えば、eMBB)を想定した送信電力となるパラメータ値が設定される。換言すると、j=AのPC parameter setを用いて計算される送信電力値は、j=BのPC parameter setを用いて計算される送信電力値より大きい。
 なお、PCパラメータ制御部104におけるPC parameter set番号の選択方法の詳細については後述する。
 送信電力計算部105は、復調・復号部103から入力されるDCIに含まれるClosed loop補正値の更新値(+1dB、-1dB等の制御値)、及び、PCパラメータ制御部104から入力されるPC parameter set番号jを用いて、例えば、式(1)に従って、slot番号iにおけるPUSCHの送信電力値を計算する。送信電力計算部105は、計算したPUSCHの送信電力値を送信部109へ出力する。
 なお、送信電力計算部105において、式(1)に示すslot番号i及びPC parameter set番号j以外のパラメータであるPL推定用RS番号qd及びClosed loop process番号lに関して、PCパラメータ制御部104から明示的に指示がない場合、送信電力計算部105は、所定の固定値(例えば、qd=0、l=0)を適用してもよい。一方、PL推定用RS番号qd、及び、Closed loop process番号lに関して、PCパラメータ制御部104から明示的に指示がある場合、送信電力計算部105は、PCパラメータ制御部104から指示された値を設定する。
 データ生成部106は、端末100が送信するデータを生成し、生成した送信データを符号化・変調部107へ出力する。
 符号化・変調部107は、復調・復号部103から入力されるDCIに基づいて、データ生成部106から入力される送信データに対して、符号化及び変調を行い、変調後のデータ信号をリソース割当部108へ出力する。
 リソース割当部108は、復調・復号部103から入力されるDCIに基づいて、符号化・変調部107から入力される変調後のデータ信号を、所定の無線リソース(例えば、周波数リソース及び時間リソース)に割り当てる。リソース割当部108は、リソース割当後の信号を送信部109に出力する。
 送信部109は、リソース割当部108から入力される信号に対してD/A(Digital-to-Analog)変換及びアップコンバート等の送信処理を行う。送信部109は、送信電力計算部105から入力される送信電力値を用いて、送信処理後の信号をアンテナ101を介して基地局200へ送信する。
 [基地局200の構成]
 図4は、本実施の形態に係る基地局200の構成例を示すブロック図である。
 図4に示す基地局200は、スケジューリング部201、制御情報生成部202、符号化・変調部203、送信部204、アンテナ205、受信部206、及び、復調・復号部207を含む。
 スケジューリング部201は、端末100のPUSCHに対する無線リソース割当情報(例えば、周波数リソース割当情報、時間リソース割当情報、MCS、送信電力情報など)を決定する。例えば、スケジューリング部201は、端末100から所定のタイミングで通知される品質情報に基づいて無線リソース割当情報を決定してもよい。スケジューリング部201は、決定した無線リソース割当情報、及び、対応するサービス種別(例えば、URLLC又はeMBB)を、制御情報生成部202へ出力する。
 制御情報生成部202は、スケジューリング部201から入力される無線リソース割当情報及びサービス種別に基づいて、端末100に通知するDCIを含むUL grantを生成する。制御情報生成部202は、生成したUL grantを符号化・変調部203へ出力する。ここで、UL grantは、例えば、Payloadサイズが小さいフォールバック用DCI(例えば、DCI format 0_0)であり、UL grantには、PC parameter set番号を明示的に指示する情報が含まれない。
 符号化・変調部203は、制御情報生成部202から入力されるUL grantを符号化及び変調して、変調後のUL grantを送信部204へ出力する。
 送信部204は、符号化・変調部203から入力される信号に対してD/A変換、アップコンバート、増幅等の送信処理を行い、送信後の信号をアンテナ205を介して端末100へ送信する。
 受信部206は、アンテナ205を介して受信された、端末100から送信されたPUSCHに対してダウンコンバート又はA/D変換などの受信処理を行い、受信処理後の受信信号を復調・復号部207へ出力する。
 復調・復号部207は、受信部206から入力される受信信号に対して、復調及び復号を行い、端末100からの受信データを取得する。
 [基地局及び端末の動作]
 以上の構成を有する端末100及び基地局200の動作について詳細に説明する。
 図5は端末100(図3)及び基地局200(図4)の動作例を示すシーケンス図である。
 基地局200は、端末100に対する上りリンク信号(例えば、PUSCH)に関する無線リソース割当情報を決定し、DCIを生成する(ST101)。基地局200は、生成したDCIを含むUL grantを端末100へ送信する(ST102)。
 端末100は、基地局200からのUL grantに含まれるDCIに示される無線リソース割当情報に基づいて、PUSCHの送信電力を計算する(ST103)。この際、端末100は、UL grantに関する所定の条件を満たすか否かに応じて、URLLC用のPUSCHの送信電力を計算するためのPC parameter set番号jを決定する。
 端末100は、計算した送信電力を用いて、PUSCHを基地局200へ送信する(ST104)。
 [PC parameter setの選択方法]
 次に、端末100のPCパラメータ制御部104におけるPC parameter setの選択方法について説明する。
 端末100のPCパラメータ制御部104は、UL grantに関する所定の条件(詳細は後述する)を満たす場合、基地局200からのUL grant(例えば、図5のST102を参照)が、URLLCデータをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter set値を設定する。
 一方、端末100のPCパラメータ制御部104は、UL grantに関する所定の条件を満たさない場合、基地局200からのUL grantが、URLLC以外の他のサービス種別のデータをスケジューリングするUL grantであると判断し、URLLC以外の他のサービス種別に対応するPC parameter set番号j=BのPC parameter set値を設定する。
 端末100の送信電力計算部105は、設定したPC parameter set番号jを用いて、例えば、式(1)に従ってPUSCHの送信電力を計算する。
 以下、URLLCデータをスケジューリングするUL grantであるか否かを判断するための「所定の条件」の例について説明する。
 [例1:UL grantのPayloadサイズ]
 例1では、所定の条件は、UL grantに用いられるDCI formatのPayloadサイズが所定のサイズと異なることである。または、例1では、所定の条件は、UL grantに用いられるDCI formatのPayloadサイズが所定のサイズ未満であることである。
 上述したように、URLLCデータをスケジューリングするUL grantのPayloadサイズが小さいほど、符号化利得がより大きくなり、信頼性を向上できる。よって、URLLCデータのスケジューリングに用いるUL grantには、Payloadサイズの小さいフォーマットが設定されることが考えられる。
 例えば、例1では、PCパラメータ制御部104は、基地局200からのUL grantに用いられるDCI formatのPayloadサイズが所定のサイズと異なる場合、又は、所定のサイズ未満の場合、当該UL grantが、URLLCデータをスケジューリングするUL grantであると判断する。換言すると、PCパラメータ制御部104は、DCI formatのPayloadサイズが所定のサイズと異なる場合、又は、所定のサイズ未満の場合、当該UL grantによってスケジューリングされたPUSCHがURLLC用のPUSCH(URLLC PUSCH)であると判断する。
 例えば、端末100が検出したUL grantのPayloadサイズが、eMBBを想定したPUSCH用UL grantに規定されているDCI format 0_0及びDCI format 0_1の双方のPayloadサイズと異なる場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断してもよい。
 または、端末100が検出したUL grantのPayloadサイズが、フォールバック用DCIであるDCI format 0_0のPayloadサイズ未満の場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断してもよい。
 PCパラメータ制御部104は、UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断した場合、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、端末100が検出したUL grantのPayloadサイズが、DCI format 0_0又はDCI format 0_1のPayloadサイズと同じ場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別(例えば、eMBB用PUSCH)のデータをスケジューリングするUL grantであると判断する。PCパラメータ制御部104は、UL grantがURLLC以外のサービス種別のデータをスケジューリングするUL grantであると判断した場合、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例1では、UL grantに用いられるDCI formatのPayloadサイズに応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 [例2:UL grantで用いるスクランブリング系列]
 例2では、所定の条件は、UL grantに用いられるスクランブリング系列が所定の系列と異なることである。
 例えば、PCパラメータ制御部104は、UL grantのDCI formatで用いる端末固有のスクランブリング系列が所定の端末固有の系列と異なる場合、当該UL grantが、URLLCデータをスケジューリングするUL grantであると判断する。換言すると、PCパラメータ制御部104は、UL grantのDCI formatで用いる端末固有のスクランブリング系列が所定の端末固有の系列と異なる場合、当該UL grantによってスケジューリングされたPUSCHがURLLC用のPUSCH(URLLC PUSCH)であると判断する。
 例えば、eMBBを想定したPUSCH用UL grantに規定されているDCI format 0_0又はDCI format 0_1では、端末固有のスクランブリング系列に、C-RNTI(Cell - Radio Network Temporary Identifier)又はCS-RNTI(Configured Scheduling - RNTI)等が用いられる。
 例えば、端末100が検出したUL grantで用いるスクランブリング系列がC-RNTI及びCS-RNTIと異なる場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、端末100が検出したUL grantで用いるスクランブリング系列がC-RNTI又はCS-RNTIである場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別のデータをスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例2では、UL grantに用いられるDCI formatのスクランブリング系列に応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 [例3:URLLC用SR(Scheduling Request)送信後のUL grant]
 例3では、所定の条件は、UL grantが、URLLCのスケジューリングを要求するSR(URLLC用SR)を端末100から送信した後に受信するUL grantであることである。
 ここで、「URLLC用SRを送信した後に受信するUL grant」とは、例えば、URLLC用SR送信してから所定期間X1[symbol]以内に受信したUL grantでもよく、URLLC用SR送信してから最初に受信したUL grantでもよい。
 また、URLLC用SRは、例えば、基地局200からのSRリソース設定の際にURLLC用であることを明示的に示されてもよい。また、eMBBデータの送信中に発生するSR送信であって、緊急度又は優先度の高いSR送信をURLLC用SR送信と定義してもよい。または、スペックにおいてURLLC用SR送信のための無線リソースが定義されてもよい。または、基地局200から設定されたSRリソースの周期が所定値X2[symbol]以下の場合、低遅延が要求されるURLLC用SRとして定義されてもよい。
 例えば、URLLC用SRを送信した後のUL grantを受信した場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、URLLC用SRを送信した後の上記所定の条件を満たさないUL grantを受信した場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別のデータをスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例3では、URLLC用SR送信後に所定の条件を満たすUL grantを受信するか否かに応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 なお、上述した閾値X1、X2の値は、スペックにおいて予め規定されてもよく、基地局200から端末100へ設定されてもよい。
 [例4:Grant-free上り送信の再送を指示するUL grant]
 例4では、所定の条件は、UL grantが、Grant-free上り送信(以下、単に「Grant-free送信」と呼ぶ)における再送を示すことである。
 「Grant-free送信」とは、上りリンク信号の初回送信に使用される無線リソース(スケジューリング情報)が基地局200から端末100に予め設定されている送信方法である。Grant-free送信において、端末100は、送信すべき送信データが発生した場合に、予め確保されている無線リソースを用いて送信データを送信する。
 Grant-free送信によれば、端末100において送信データが発生してから、基地局200へSRを送信し、基地局200からのUL grantによってPUSCHをスケジューリングされるまでの時間を削減できる。このため、Grant-free送信は、低遅延が要求されるURLLC用の初期送信に用いることが想定される。
 なお、Grant-free送信の再送はUL grantによって指示される。
 例えば、Grant-free送信の再送を指示するためのUL grantを受信した場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。なお、PCパラメータ制御部104は、例えば、UL grant内のNDI(New data indicator)fieldの値に基づいて、Grant-free送信における再送であるか否かを判断してもよい。
 一方、Grant-free送信が適用されていない場合、又は、Grant-free送信の再送を指示するためのUL grantを受信していない場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別のデータをスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例4では、UL grantによってGrant-free送信における再送が指示されるか否かに応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 なお、URLLC用Grant-free送信リソースと、URLLC以外のサービス種別(例えばeMBB)用Grant-free送信リソースとは、基地局200による設定、又は、スペックでの規定によって区別されてもよい。
 例えば、Grant-free送信リソースを用いた上り送信時には、端末100は、基地局200から予め設定されたGrant-free送信用のPC parameter set値(UL grantベースの上り送信時に用いるPC parameter set(例えば、図1を参照)とは独立の固定値)を用いてもよい。また、URLLC用Grant-free送信リソースを定義する場合、URLLC用Grant-free送信リソースを用いた上り送信時と、URLLC以外のサービス種別用Grant-free送信リソースを用いた上り送信時とで、PC parameter set値を区別してもよい。
 これにより、Grant-free送信リソースを用いたURLLCの初期送信における上り送信電力制御を適切に行うことができる。
 また、Grant-free送信の再送を指示するためのUL grantは、例えば、CS-RNTIを用いてスクランブリングされてもよい。この場合、端末100は、検出したUL grantがCS-RNTIでスクランブリングされる場合、当該UL grantでスケジューリングされたPUSCHがURLLC用であると判断してもよい。
 [例5:UL grantが指示するPUSCHの送信タイミング又は送信シンボル数]
 例5では、所定の条件は、端末100がUL grantを受信してから上りリンク信号を送信するまでの期間が所定時間以内であることである。または、所定の条件は、UL grantに示される上りリンク信号の送信シンボル数が所定値以下であることである。
 UL grantには、時間リソース情報(例えば、Time domain resource assignment field等)が含まれる。時間リソース情報には、UL grantを受信してからPUSCHを送信するまでの時間(例えば、PUSCH preparation time:N2とも呼ばれる)又はPUSCHのシンボル数(又は、時間長)が含まれる。URLLCデータがスケジューリングされる場合、低遅延の要求を満たすため、他のサービス種別と比較して、PUSCH preparation time又はシンボル長は短く設定される可能性が高い。
 例えば、UL grantが指示するPUSCH preparation timeがX3[symbol]以下の場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、PC parameter set番号j=AのPC parameter setを選択する。一方、UL grantが指示するPUSCH preparation timeがX3[symbol]より大きい場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別のPUSCHをスケジューリングするUL grantであると判断し、PC parameter set番号j=BのPC parameter setを選択する。
 または、UL grantが指示するPUSCHのシンボル数がX4[symbol]以下の場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、PC parameter set番号j=AのPC parameter setを選択する。一方、UL grantが指示するPUSCHのシンボル数がX4[symbol]より多い場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別のPUSCHをスケジューリングするUL grantであると判断し、PC parameter set番号j=BのPC parameter setを選択する。
 このように、例5では、UL grantによって指示されるPUSCHの送信タイミング(又は送信シンボル数)に応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 [例6:UL grantの検出周期]
 例6では、所定の条件は、端末100におけるUL grantの検出周期が所定値以下であることである。
 UL grantを含む各DCI formatには、端末100毎の所定の検出周期が基地局200から設定される。URLLCデータがスケジューリングされる場合、低遅延の要求を満たすため、UL grantに対して短い検出周期が設定される可能性が高い。
 例えば、UL grantの検出周期がX5[symbol]以下の場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、PC parameter set番号j=AのPC parameter setを選択する。
 一方、UL grantの検出周期がX5[symbol]より長い場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別のPUSCHをスケジューリングするUL grantであると判断し、PC parameter set番号j=BのPC parameter setを選択する。
 このように、例6では、UL grantの検出周期に応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 [例7:UL grantで用いるMCS(Modulation and coding scheme)テーブル]
 例7では、所定の条件は、UL grantに用いられるMCSテーブルが所定のMCSテーブルと異なることである。
 NRでは、端末にMCS(符号化率及び変調方式)を指示するためにUL grantで用いるMCSテーブル(MCS番号と一意に対応するMCSのパターン表)には、「URLLC用MCSテーブル」と、「eMBB用MCSテーブル」とが定義されている。
 URLLC用MCSテーブルの一例を図7Aに示し、eMBB用MCSテーブルの一例を図7B及び図7Cに示す(例えば、非特許文献6を参照)。図7Aに示すURLLC用MCSテーブルは、図7Cに示すeMBB用MCSテーブルに含まれている256QAM(Modulation Order Qm = 8)が無く、図7B及び図7Cに示すeMBB用MCSテーブルよりコーディングレートが低いMCS(換言すると、Spectral efficiencyが低いMCS)が含まれる。
 例えば、DCI formatで用いる端末固有のスクランブリング系列(例えば、RNTI)、又は、PDCCHの割当リソースであるサーチスペースによって、端末100がどのMCSテーブルを用いるかが予め決定される。
 例えば、PCパラメータ制御部104は、UL grantで用いるMCSテーブルがURLLC用MCSテーブルの場合、当該UL grantが、URLLCデータをスケジューリングするUL grantであると判断する。換言すると、PCパラメータ制御部104は、UL grantで用いるMCSテーブルがURLLC用MCSテーブルの場合、当該UL grantによってスケジューリングされたPUSCHがURLLC用のPUSCH(URLLC PUSCH)であると判断する。
 例えば、端末100が検出したUL grantで用いるMCSテーブルがURLLC用MCSテーブルの場合、PCパラメータ制御部104は、当該UL grantがURLLC用PUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、端末100が検出したUL grantで用いるMCSテーブルがeMBB用MCSテーブル(あるいは、URLLC用MCSテーブル以外のMCSテーブル)の場合、PCパラメータ制御部104は、当該UL grantがURLLC以外のサービス種別(例えば、eMBB)のデータをスケジューリングするUL grantであると判断する。PCパラメータ制御部104は、UL grantがURLLC以外のサービス種別のデータをスケジューリングするUL grantであると判断した場合、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例7では、UL grantに用いられるDCI formatのMCSテーブルに応じて、PC parameter set番号が基地局200から端末100へ暗黙的に通知される。
 以上、URLLCデータをスケジューリングするUL grantと判断できる「所定の条件」の例について説明した。
 なお、例1~例7において説明した所定の条件を複数組み合わせてもよい。
 [PC parameter set番号j=A、Bの設定例]
 次に、PCパラメータ制御部104において設定されるPC parameter set番号j=A及びBの設定例について説明する。
 例えば、URLLC PUSCHの送信電力は、少なくとも、URLLC以外のサービス種別(例えば、eMBB)のPUSCHの送信電力よりも大きく設定される。
 例えば、式(1)において、PC parameter setのうち、目標受信電力PO_PUSCH,f,c(j)が大きいほど、PUSCHの送信電力PPUSCH,f,c(i, j, qd, l)は大きくなる可能性が高い。また、PC parameter setのうち、パスロスの補償割合を示す重み係数αf,c(j)が大きいほど、パスロスの値がPUSCHの送信電力PPUSCH,f,c(i, j, qd, l)に反映されやすくなり、PUSCHの送信電力PPUSCH,f,c(i, j, qd, l)は大きくなる可能性が高い。
 そこで、例えば、図6に示すように、PC parameter set番号j(j=0~J-1の何れか)の最も小さい番号0を、例えば、URLLC以外のサービス種別(例えば、eMBB用)のPC parameter set値(B=0)に設定し、PC parameter set番号jの最も大きい番号J-1を、URLLC用PC parameter set値(A=J-1)に設定してもよい。図6に示すように、PC parameter set番号j=0の場合、PO_PUSCH,f,c(0)=-80dBm及びαf,c(0)=0.6であり、PC parameter set番号j=J-1の場合、PO_PUSCH,f,c(J-1)=-50dBm及びαf,c(J-1)=1.0である。よって、PC parameter set番号j=J-1が設定される場合のPUSCHの送信電力PPUSCH,f,c(i, J-1, qd, l)は、PC parameter set番号j=0が設定される場合のPUSCHの送信電力PPUSCH,f,c(i, 0, qd, l)よりも大きくなる可能性が高い。
 なお、図6では、PC parameter set番号Aをjの最大値J-1とし、PC parameter set番号Bをjの最小値0とする場合について説明したが、PC parameter set番号A及びBは、これらの値に限定されない。例えば、PC parameter set番号Bが、PC parameter set番号Aより大きい値に設定されればよい。
 または、URLLC以外のサービス種別(例えば、eMBB)のPC parameter set番号Bに対して所定のオフセットΔを加えたPC parameter set番号を、URLLC用PC parameter set番号A(= B+Δ)としてもよい。
 または、URLLC以外のサービス種別(例えば、eMBB)のPC parameter set値に所定のオフセットΔ[dB]を加えたPC parameter set値(PO_PUSCH,f,c(B)+Δ)を、URLLC用のPC parameter set値(PO_PUSCH,f,c(A))として用いてもよい。つまり、PO_PUSCH,f,c(A)=PO_PUSCH,f,c(B)+Δでもよい。
 なお、端末100が複数の送受信ポイント(TRP(Transmission/ Reception Point))と送受信する場合、TRP毎にURLLC用PC parameter set番号A、および、URLLC以外のサービス種別のPC parameter set番号Bが定義されてもよい。図8は、TRP毎のPC parameter set値の設定例を示す。図8では、例えば、TRP#0に対して、URLLC用PC parameter set値としてPC parameter set番号j=J-2が設定され、URLLC以外のサービス種別のPC parameter set値としてPC parameter set番号j=0が設定されている。同様に、TRP#1に対して、URLLC用PC parameter set値としてPC parameter set番号j=J-1が設定され、URLLC以外のサービス種別のPC parameter set値としてPC parameter set番号j=1が設定されている。
 TRPが異なれば、パスロス等の伝搬環境が大きく異なる。このため、図8に示すように、各TRPに適したPC parameter setを定義し、選択可能としてもよい。これにより、端末100は、PUSCHの送信電力をTRP毎に適切に設定できる。
 なお、図8に示すTRP毎のPC parameter setの設定は一例であり、これに限定されず、各TRPに対して、URLLC PUSCHの送信電力が、少なくとも、URLLC以外のサービス種別のPUSCHの送信電力よりも大きく設定されればよい。例えば、TRP#0及びTRP#1の伝搬環境によっては、TRP#0に対するURLLC用PC parameter set値が、URLLC以外のサービス種別のPC parameter set値より低く設定される場合もある。
 また、配置環境が異なる(換言すると、QCL(Quaisi-colocation)が異なる)複数アンテナパネルを持つ基地局200と端末100とが通信する場合、複数のTRPと端末100とが通信する場合(例えば、図8を参照)と同様に、アンテナパネル毎にURLLC用PC parameter set番号AおよびURLLC以外のサービス種別のPC parameter set番号Bが定義されてもよい。
 なお、TRP番号およびアンテナパネル番号は、例えば、端末100が受信した制御チャネル(例えば、PDCCH)が設定された制御チャネル用の送信リソース(例えば、CORESET(Control Resource Set)と呼ばれる)から判断できる。
 以上、PC parameter set番号j=A及びBの設定例について説明した。
 なお、PC parameter set番号jと、PC parameter set(例えば、PO_PUSCH,f,c(j)及びαf,c(j))との対応関係は、図6に示す一例に限定されない。例えば、図6では、PC parameter set番号jの値の増加に伴い、PO_PUSCH,f,c(j)及びαf,c(j)が増加する場合(換言すると、PO_PUSCH,f,c(j)及びαf,c(j)が昇順の場合)について示した。しかし、PC parameter set番号jの値の増加に伴い、PO_PUSCH,f,c(j)又はαf,c(j)の値は増加しなくてもよい。
 このように、本実施の形態では、端末100は、UL grantに関する所定の条件を満たす場合、URLLCに対応するPC parameter set(電力制御パラメータ)を設定し、上記所定の条件を満たさない場合、URLLC以外のサービス種別に対応するPC parameter setを設定する。そして、端末100は、設定したPC parameter setを用いて計算された送信電力を用いて上りリンク信号を送信する。
 これにより、URLLC用PUSCHの送信電力制御(例えば、パワーブースト)のパラメータ(例えば、PC parameter set)を基地局200から端末100へ暗黙的に通知できる。よって、PC parameter set番号を明示的に指示する情報(またはフィールド)を含まないUL grantでも、URLLC及びeMBB等のサービス種別に適した上りチャネルの送信電力を適切に設定できる。また、UL grantに新たな情報を追加する必要がないため、PDCCHのオーバーヘッドの増加を防止できる。
 よって、本実施の形態によれば、端末100は、サービス種別に応じた上りチャネルの送信電力を用いて、上りリンク信号を適切に送信できる。
 ここで、URLLCの上り送信には低遅延が要求される。このため、図9に示すように、URLLCデータ(URLLC PUSCH)は、eMBBデータ(eMBB PUSCH)用に他の端末へ既に割り当てられた無線リソースに重ねてスケジューリングされる場合がある。また、URLLCは周波数ダイバーシチゲインを得るために広帯域の無線リソースを割り当てることが検討されている。このため、URLLCとeMBBとの間において無線リソース(例えば、時間リソース又は周波数リソース)の一部が重なることが想定される。
 このように、異なる端末(例えば、図9ではUE#0及びUE#1)からのeMBBデータとURLLCデータとの間において、上り送信用の無線リソースの一部又は全てが衝突する(重なる)場合でも、本実施の形態によれば、端末100は、URLLCデータの上り送信において、基地局200においてURLLCデータを復号可能な上り送信電力を適切に設定できる。このため、URLLCの低遅延及び高信頼性の要求仕様を満たすことができる。
 (実施の形態2)
 本実施の形態では、URLLC用の上りリンク制御情報(以下、UCI(Uplink Control Information))をPUSCHで送信する(「UCIをPiggybackする」とも呼ばれる)場合のPUSCHの送信電力の設定方法について説明する。
 例えば、UCI送信用の上りチャネルであるPUCCHの送信タイミングが、PUSCHの送信タイミングと重なる場合、マルチキャリア送信によるPAPR(Peak to Average Power Ratio)の増加を避けるために、端末は、UCIを、UL-SCH(Uplink Shared Channel。上りデータ情報)と多重し、PUSCHで送信する(「UCIをPiggybackする」とも呼ばれる)。
 ここで、端末が、URLLCデータと同様の高品質が要求されるUCI(以下、「URLLC用UCI」と呼ぶ)をPUSCHで送信する場合、UCIの品質を満たすためにパワーブーストが必要になる場合がある。換言すると、端末においてURLLC用UCIをPUSCHで送信する場合、URLLC以外のサービス種別(例えば、eMBB)を送信する場合と比較して、パワーブーストが必要となる場合がある。なお、URLLC用UCIとしては、例えば、URLLC用データに対するACK/NACK情報、又は、URLLC用の目標BLER(Block Error Rate)(例えば、BLER=10E-5)に対するチャネル状態情報(以下、CSI(Channel State Information))等が想定される(詳細は後述する)。
 しかしながら、PUSCHの送信電力制御は、UCIの有無に関わらず決定される。よって、フォールバック用DCI(例えば、DCI format 0_0)のようにSRI fieldが含まれない場合、つまり、PC parameter set番号を明示的に指示する情報が含まれないUL grantが使用される場合、PUSCHの送信電力は、URLLC用UCIの有無に依らずに決定される。このため、端末は、UCIを含むPUSCHの送信電力を適切にパワーブーストできない場合がある。例えば、端末がeMBB用のデータとURLLC用UCIとを1つのPUSCHで送信する場合にも、eMBB用データを単独で送信する場合(換言すると、UCI無しでeMBB用データを送信する場合)と同じ送信電力が適用される。よって、URLLC用UCIに対して送信電力不足となり、URLLCの要求品質を満たせない場合がある。
 そこで、本実施の形態では、PC parameter setの選択によって、UCI(特に、URLLC用UCI)を含むPUSCHの送信電力を適切にパワーブーストする方法について説明する。
 本実施の形態に係る通信システムは、端末300(後述する図10を参照)及び基地局200(例えば、図4を参照)を備える。
 [端末300の構成]
 図10は、本実施の形態に係る端末300の構成例を示すブロック図である。なお、図10において実施の形態1の端末100(図3)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、図10に示す端末300では、図3に示す端末100に対し、UCI生成部301、符号化・変調部302、及び、多重部303が追加され、かつ、PCパラメータ制御部304の動作が異なる。
 UCI生成部301は、端末300が送信するUCI(ACK/NACKあるいはCSI等の上りリンク制御情報)を生成し、生成したUCIを符号化・変調部302へ出力する。また、UCI生成部301は、送信するUCIに関する情報をPCパラメータ制御部304へ出力する。
 符号化・変調部302は、復調・復号部103から入力されるDCIに基づいて、UCI生成部301から入力されるUCIに対して、符号化及び変調を行い、変調後のUCI信号を多重部303へ出力する。
 多重部303は、符号化・変調部302から入力されるUCI信号と、符号化・変調部107から入力される変調後のデータ信号とを多重し、多重後のデータ信号をリソース割当部108へ出力する。多重部303は、UCIとデータ信号との多重方法として、例えば、データ信号の一部のRE(Resource Element)をパンクチャし、パンクチャした部分にUCI信号を入れてもよい。あるいは、多重部303は、UCI信号のREサイズを予め考慮し、データ信号のREサイズを決定(レートマッチ)してもよい。
 PCパラメータ制御部304は、復調・復号部103から入力されるDCIと、UCI生成部301から入力されるUCIに関する情報とを用いて、スケジューリングされたPUSCHに適用するPC parameter set番号jを決定する。PCパラメータ制御部304は、決定したPC parameter set番号を送信電力計算部105へ出力する。
 [基地局の構成]
 本実施の形態に係る基地局は、実施の形態1に係る基地局200と基本構成が共通するので、図4を援用して説明する。なお、本実施の形態に係る基地局200における復号後の受信データには、端末300(図10を参照)からのデータに加えてUCIが含まれる。
 以下、UCI(特に、URLLC用UCI)を含む(多重する、あるいは、Piggybackする)PUSCHについて、PC parameter setの変更による送信電力のパワーブーストを適応する「所定の条件」の例について説明する。
 [例1:URLLC用PDSCH(下りデータチャネル)に対するACK/NACKを含む]
 例1では、所定条件は、UL grantでスケジューリングするPUSCHに含まれるUCIがURLLC用PDSCHに対するACK/NACK(応答信号)であることである。URLLC用PDSCHに対するACK/NACKは、URLLC用PDSCHと同様に低遅延及び高信頼性が求められることが考えられる。
 なお、端末300は、PDSCHをスケジューリングするDCIで用いるスクランブリング系列(例えば、RNTI)が所定の系列(例えば、eMBB用PDSCHをスケジューリングするC-RNTIあるいはCS-RNTI)と異なる場合に、当該PDSCHがURLLC用PDSCHであることを判断できる。例えば、端末300は、PDSCHをスケジューリングするDCIで用いるスクランブリング系列がURLLC用のRNTIである場合に、当該PDSCHがURLLC用PDSCHであることを判断してもよい。
 あるいは、端末300は、PDSCHをスケジューリングするDCIでURLLC用MCSテーブルを用いる場合に、当該PDSCHがURLLC用PDSCHであることを判断できる。
 例えば、端末300が検出したUL grantでスケジューリングするPUSCHに、URLLC用PDSCHに対するACK/NACKが含まれる場合、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含むPUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、端末300が検出したUL grantでスケジューリングするPUSCHに、URLLC用PDSCHに対するACK/NACKが含まれない場合、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含まないPUSCHをスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例1では、UL grantでスケジューリングするPUSCHに、URLLC用PDSCHに対するACK/NACKが含まれるか否かに応じて、PC parameter set番号が基地局200から端末300へ暗黙的に通知される。
 [例2:PDSCH受信からACK/NACK送信までの時間間隔が所定の閾値以下のACK/NACK]
 例2では、所定条件は、UL grantでスケジューリングするPUSCHに含まれるUCIが、PDSCH受信からACK/NACK送信までの時間間隔(例えば、N1[symbol]と呼ばれることもある)が所定の閾値X6[symbol]以下のACK/NACKであることである。例えば、N1は、PDSCHをスケジューリングするDCIに含まれる。
 換言すると、所定の条件は、端末300がPDSCHを受信してから、当該PDSCHに対するACK/NACKを含むUCIを送信するまでの期間N1[symbol]が所定時間X6以内であることである。
 端末300は、N1が短い場合(換言すると、N1≦X6の場合)、UL grantでスケジューリングされたPUSCHに含まれるUCIが、低遅延が要求されるURLLC用UCIであると判断できる。
 例えば、端末300が検出したUL grantでスケジューリングするPUSCHに、N1が短いACK/NACK(N1≦X6となるACK/NACK)が含まれる場合、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含むPUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、上記以外の場合(例えば、PUSCHに、N1が長いACK/NACK(N1>X6となるACK/NACK)が含まれる場合)、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含まないPUSCHをスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例2では、UL grantでスケジューリングするPUSCHに、N1が短いACK/NACKが含まれるか否かに応じて、PC parameter set番号が基地局200から端末300へ暗黙的に通知される。
 [例3:所定の閾値以下の目標BLERで計算されたたCSI]
 例3では、所定条件は、UL grantでスケジューリングするPUSCHに含まれるUCIが、所定閾値X7以下の目標誤り率(例えば、目標BLER)を用いて計算されたCSIであることである。
 CSI計算に用いる目標BLERは、基地局300から端末200に予め設定される。端末300は、閾値X7以下の低い目標BLER(例えば、目標BLER=10E-5)で計算されたCSIが、URLLC用UCIであると判断できる。
 例えば、端末300が検出したUL grantでスケジューリングするPUSCHに、所定閾値X7以下の目標BLER(例えば、目標BLER=10E-5)で計算されたCSIが含まれる場合、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含むPUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、上記以外の場合(例えば、PUSCHに、閾値X7より大きい目標BLER(例えば、目標BLER=10E-1)で計算されたCSIが含まれる場合)、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含まないPUSCHをスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例3では、UL grantでスケジューリングするPUSCHに、所定閾値X7以下の目標BLERで計算されたCSIが含まれるか否かに応じて、PC parameter set番号が基地局200から端末300へ暗黙的に通知される。
 [例4:eMBB用PDSCHに対するACK/NACKを含む]
 例4では、所定条件は、UL grantでスケジューリングするPUSCHに含まれるUCIがeMBB用PDSCHに対するACK/NACKであることである。つまり、本実施の形態に係る例1の条件(URLLC用PDSCHに対するACK/NACKであること)と逆の条件となる。
 例えば、低遅延の優先度が低く、高信頼性の優先度がより高いサービスをスケジューリングする場合、基地局200は、PDSCH、及び、当該PDSCHに対するACK/NACKのそれぞれの誤り率を乗算したトータルの誤り率が所定の品質になるように制御することが考えられる。
 例えば、PDSCH及びACK/NACKの全体の誤り率(各誤り率を乗算した値)が一定の値(例えば、10E-6)になる場合について説明する。この場合、基地局200は、例えば、PDSCHの誤り率が10E-1(eMBB用PDSCH相当の品質)になり、ACK/NACKの誤り率が10E-5(URLLC用UCI相当の品質)になるように制御する。あるいは、基地局200は、例えば、PDSCHの誤り率が10E-5(URLLC用PDSCH相当の品質)になり、ACK/NACKの誤り率が10E-1(eMBB用UCI相当の品質)になるように制御する。
 換言すると、誤り率が10E-1になるように制御されたPDSCH(eMBB用PDSCH)に対するACK/NACKは、誤り率が10E-5になるように制御されたURLLC用UCIである。一方、誤り率が10E-5になるように制御されたPDSCH(URLLC用PDSCH)に対するACK/NACKは、誤り率が10E-1になるように制御されたeMBB用UCIである。
 よって、基地局200が上記のように制御する場合、例えば、端末300が検出したUL grantでスケジューリングするPUSCHに、eMBB用PDSCHに対するACK/NACKが含まれる場合、PCパラメータ制御部304は、当該UL grantがURLLC用UCI(ACK/NACK)を含むPUSCHをスケジューリングするUL grantであると判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、上記以外の場合には、PCパラメータ制御部304は、当該UL grantがURLLC用UCIを含まないPUSCH(例えば、eMBB用UCIを含むPUSCH)をスケジューリングするUL grantであると判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例4では、UL grantでスケジューリングするPUSCHにeMBB用PDSCHに対するACK/NACKが含まれるか否かに応じて、PC parameter set番号が基地局200から端末300へ暗黙的に通知される。
 なお、本実施の形態に係る例1と例4とで、PC parameter set値の制御方法が逆になるが、基地局200が想定するスケジューリング方法に応じて適切な制御方法が選択されればよい。
 [例5:URLLC用UCIに要求されるRE数が上限に達する]
 例5では、所定条件は、UL grantでスケジューリングするPUSCHに、本実施の形態に係る例1~4の何れかに当てはまるURLLC用UCIが含まれ(Piggybackされ)、当該URLLC用UCIに要求されるRE数がPUSCHに配置可能なRE数の上限に達することである。
 NRでは、例えば、ACK/NACKの場合、以下の式(2)に従って、PUSCHに配置できるUCIのRE数が決定される。
Figure JPOXMLDOC01-appb-M000002
 ここで、Q'ACKは実際にPUSCHで送信するACK/NACKのRE数(Actual RE数と呼ぶ)、OACKはACK/NACKビット数、LACKはCRC(Cyclic Redundancy Check)ビット数、βoffset PUSCHはデータ(UL-SCH)に対するACK/NACKの符号化率の補正係数(パラメータ)、ΣMSC UCI(l)(ただし、l=0~(Nsymb,all PUSCH-1))はPUSCHの送信に用いるRE数、ΣKr(ただし、r=0~CUL-SCH-1)はPUSCHで送信するデータ(UL-SCH)のビット数を示す。また、αはPUSCHで送信するUCI(ACK/NACK)のRE数の割合を示す。換言すると、αは、UL-SCHの品質を確保するためにUCIのRE数の上限を決めるパラメータである。
 ここで、式(2)のmin関数の左辺(以下の式(3)のようにQ"ACKとおく)は、ACK/NACKに要求される品質を得るためにPUSCHの送信に用いるRE数(Required RE数と呼ぶ)を示す。
Figure JPOXMLDOC01-appb-M000003
 URLLC用UCIに要求されるRE数(Required RE数)が上限に達する場合、つまり、αによってRE数が制限され、Q'ACK<Q"ACKとなる場合、端末300は、要求される品質を満たすためのRE数のUCIをPUSCHに配置できない。
 そこで、URLLC用UCIに要求されるRE数がPUSCHに配置できるRE数の上限に達する場合(つまり、Q'ACK<Q"ACKとなる場合)、PCパラメータ制御部304は、URLLC用UCIの品質を改善するため、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、URLLC用UCIに要求されるRE数がPUSCHに配置できるRE数の上限に達していない場合(つまり、Q'ACK≧Q"ACKとなる場合)、PCパラメータ制御部304は、パワーブーストする必要無しと判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例5では、UL grantでスケジューリングするPUSCHに含まれるURLLC用UCIに要求されるRE数がPUSCHに配置できるRE数の上限に達するか否かに応じて、PC parameter set番号が基地局200から端末300へ暗黙的に通知される。
 なお、URLLC用UCIが、CSI(詳細にはCSI-1(CSI part1)とCSI-2(CSI part2))の場合にも端末300は上述した処理と同様な処理を行う。つまり、端末300は、αによってPUSCHに配置するCSIのRE数が制限される場合に、URLLC用UCIの品質を改善するため、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 [例6:URLLC用UCIを含むUCIのRE数が所定割合より大きい]
 例6では、所定条件は、UL grantでスケジューリングするPUSCHに、本実施の形態に係る例1~4の何れかに当てはまるURLLC用UCIが含まれ、PUSCH全体において、当該URLLC用UCIを含むUCIのRE数が所定割合より大きいことである。
 例えば、端末300は、以下の式(4)に示す条件を満たす場合にPUSCHをパワーブーストする。
Figure JPOXMLDOC01-appb-M000004
 ここで、Q'ACK、Q'CSI-1、Q'CSI-2はそれぞれ、実際にPUSCHで送信するACK/NACK、CSI part1及びCSI part2のRE数(Actual RE数)を示す。また、ΣMSC UCI(l)(ただし、l=0~(Nsymb,all PUSCH-1))はPUSCHの送信に用いるRE数、γはPUSCHで送信するURLLC用UCIを含むUCI(ACK/NACKとCSIを含めたトータルのUCI)のRE数の上限の割合である。例えば、PUSCH全体のRE数に対する、UCIのRE数の割合が、この割合γを超える場合、PUSCHの中において、UCIがUL-SCHよりも支配的であると想定される。
 例えば、URLLC用UCIを含むUCIのトータルのRequired RE数が上限に達する場合、つまり、式(4)の条件が成り立つ場合、PCパラメータ制御部304は、PUSCHの中でUCIがUL-SCHに比べて支配的と判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。
 一方、URLLC用UCIを含むUCIのトータルのRequired RE数が上限に達していない場合、つまり、式(4)の条件が成り立たない場合、PCパラメータ制御部304は、PUSCHの中でUL-SCHがUCIに比べて支配的と判断し、URLLC以外のサービス種別に対応するPC parameter set番号j=BのPC parameter setを選択する。
 このように、例6では、PUSCHの中でUCIがUL-SCHに比べて支配的か否かに応じて、PC parameter set番号が基地局200から端末300へ暗黙的に通知される。
 なお、以下の式(5)のように、PUSCHで送信するUCIのRE数の上限値(RE数)を示すδが定義されてもよい。つまり、端末300は、式(5)の条件が成り立つ場合、PUSCHの中でUCIがUL-SCHに比べて支配的と判断し、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択する。これにより、式(4)に示す割合γを用いた制御と同様の効果が得られる。
Figure JPOXMLDOC01-appb-M000005
 以上、UCIを含むPUSCHについて、PC parameter setの変更による送信電力のパワーブーストを適応する「所定の条件」の例について説明した。
 なお、例1~例6において説明した所定の条件を複数組み合わせてもよい。
 [PC parameter setの選択方法]
 次に、端末300のPCパラメータ制御部304における、PUSCHにUCIが含まれる場合のPC parameter setの選択方法について説明する。
 [例1:URLLC用UCIのUCI type毎のPC parameter setの選択]
 例1では、PCパラメータ制御部304は、URLLC用UCIのUCI type(例えば、ACK/NACK、CSI part1又はCSI part2等)毎にPC parameter setを選択する。
 例えば、図11に示すように、UCI typeがCSI(CSI part1又はCSI part2)の場合、PCパラメータ制御部304は、URLLCに対応するPC parameter set番号j=J-2のPC parameter setを選択する。また、UCI typeがACK/NACKの場合、PCパラメータ制御部304は、URLLCに対応するPC parameter set番号j=J-1のPC parameter setを選択する。
 これにより、CSIに比べてパケット伝送の遅延時間に影響が大きいと考えられるACK/NACKの送信電力をより大きくすることができる。
 なお、CSI part1はWideband CQI又はRank Indiatorを含み、CSI part2はSubband CQIを含む。CSI part1の方が、CSI part2に比べて、基地局のスケジューリングにおいてより使用頻度が高い重要情報と考えられる。そこで、PCパラメータ制御部304は、URLLC用UCIとしてCSI part1を含む場合、UCIとしてCSI part2のみを含む場合に比べて、より高い送信電力が設定されるようにPC parmeter setを定義してもよい。
 例えば、UCIにCSI part1が含まれる場合には、PCパラメータ制御部304は、PC parameter set番号j=J-2のPC parameter set(例えば、Po_PUSCH,f,c(j)=-60dBm、αf,c(j)=0.9)を選択する。また、UCIにCSI part2のみが含まれる場合には、PCパラメータ制御部304は、PC parameter set番号j=J-3で定義したPC parameter set(例えば、Po_PUSCH,f,c(j)=-55dBm、αf,c(j)=0.9)を選択する。
 これにより、CSIの情報の重要度に応じた適切な送信電力が設定できる。
 [例2:URLLC用UCIを含むUCIビット数に応じたPC parameter setの選択]
 例2では、PCパラメータ制御部304は、URLLC用UCIを含むUCIビット数に応じてPC parameter setを選択する。
 例えば、図12に示すように、URLLC用UCIを含むUCIビット数が所定閾値X8[bit]以下の場合、PCパラメータ制御部304は、URLLCに対応するPC parameter set番号j=J-2のPC parameter setを選択する。また、URLLC用UCIを含むUCIビット数が所定閾値X8[bit]より大きい場合、PCパラメータ制御部304は、URLLCに対応するPC parameter set番号j=J-1のPC parameter setを選択する。
 これにより、UCIビット数が多いほど、つまり、PUSCH全体においてUCIが支配的になるほど、PUSCHの送信電力をより大きくすることができる。
 [例3:UL-SCHとURLLC用UCIとのサービス種別の組み合わせに応じたPC parameter setの選択]
 例3では、PCパラメータ制御部304は、UL-SCHとURLLC用UCIとのサービス種別の組み合わせに応じてPC parameter setを選択する。
 図13に示すように、UL-SCH(PUSCH)とURLLC用UCIとのサービス種別の組み合わせは4つある。図13において、(1)はeMBB用UCIをeMBB用PUSCHで送信する組み合わせ、(2)はURLLC用UCIをURLLC用PUSCHで送信する組み合わせ、(3)はURLLC用UCIをeMBB用PUSCHで送信する組み合わせ、(4)はeMBB用UCIをURLLC用PUSCHで送信する組み合わせを示す。
 例えば、図13に示すOption 1のように、PCパラメータ制御部304は、URLLC用UCI及びURLLC用PUSCHの少なくとも一方が含まれる組み合わせ(図13の(2)、(3)又は(4)の組み合わせ)の場合、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択してもよい。一方、図13に示すOption 1のように、PCパラメータ制御部304は、URLLC用UCI及びURLLC用PUSCHの何れも含まない組み合わせ(図13の(1)の組み合わせ)の場合、URLLCに対応するPC parameter set番号j=BのPC parameter setを選択してもよい。
 あるいは、図13のOption 2のように、PCパラメータ制御部304は、各組み合わせに応じてPC parameter setを選択してもよい。図13のOption 2では、PCパラメータ制御部304は、(1)の組み合わせの場合にはeMBBに対応するPC parameter set番号j=BのPC parameter setを選択し、(2)~(4)の組み合わせの場合にはURLLCに対応するPC parameter set番号j=A1~A3のPC parameter setをそれぞれ選択する。
 例えば、図13のOption 2に示すように、URLLC用PUSCHよりもURLLC用UCIの品質を優先する場合、PCパラメータ制御部304は、(2)⇒(3)⇒(4)の順に送信電力が高くなるPC parameter setを設定する。なお、PC parameter setの設定方法は、図13に示す例に限らない。例えば、URLLC用UCIよりもURLLC用PUSCHの品質を優先する場合、PCパラメータ制御部304は、(2)⇒(4)⇒(3)の順に送信電力が高くなるPC parameter setを設定してもよい。
 これにより、端末300は、UL-SCH(PUSCH)とURLLC用UCIのサービス種別の組み合わせに応じた送信電力を設定できる。
 以上、PC parameter setの選択方法について説明した。なお、図11~図13において設定されるPC parameter set値(例えば、j=0、J-3、J-2又はJ-1)は一例であり、他の値でもよい。
 このように、本実施の形態では、端末300は、UL grantによってスケジューリングされるPUSCHに含まれるURLLC用UCIに関する所定の条件を満たす場合、URLLCに対応するPC parameter set(電力制御パラメータ)を設定し、上記所定の条件を満たさない場合、URLLC以外のサービス種別に対応するPC parameter setを設定する。そして、端末300は、設定したPC parameter setを用いて計算された送信電力を用いて上りリンク信号を送信する。
 これにより、本実施の形態では、端末300は、URLLC用UCIの有無に応じて、PUSCHの送信電力を制御できるので、UCI(特に、URLLC用UCI)を含むPUSCHの送信電力を適切にパワーブーストすることができる。
 なお、端末300は、PUSCHに含めて送信するUCIの中に、上述した例1~4の所定条件を満たすURLLC用UCIが少なくとも1つ含まれる場合、当該UCIに含まれる他の情報に依らず、URLLCに対応するPC parameter set番号j=AのPC parameter setを選択してもよい。
 また、DCI(例えば、C-RNTI又はCS-RNTIでスクランブリングされたDCI format 0_0、あるいは、DCI format 0_1)でスケジューリングされたeMBB用PUSCHに、上述した所定条件を満たすURLLC用UCIを含める場合、端末300は、eMBB用PUSCHの場合でもURLLCに対応するPC parameter set番号j=AのPC parameter setを選択してもよい。
 また、本実施の形態は、Grant-free送信を行うPUSCHでURLLC用UCIを送信する場合の送信電力の設定方法にも同様に適用できる。
 また、端末300は、PC parameter setを変更する場合、PUSCHに配置するUCIのRE数を変更する必要はない。つまり、端末300は、UCIのRE数(Coding rate)を計算するためのパラメータ(α、βoffset PUSCH)を変更する必要ない。このため、端末300では、PC parameter setを変更する簡易な制御によって、UCIの要求品質に応じた送信電力を設定できる。
 あるいは、端末300は、PC parameter setの変更に伴い、PUSCHに配置するUCIのRE数を変更してもよい。この場合、端末300は、PC parameter setに応じて、UCIのCoding rateの計算に用いるパラメータを個別に設定するか、PC parameter setによる送信電力増減を考慮してCoding rate計算を変更する。これにより、端末300では、PC parameter setの変更およびUCIのCoding rate計算の変更を行う制御によって、UCIの要求品質に応じた送信電力をより適切に設定できる。
 (実施の形態3)
 本実施の形態では、実施の形態2と同様に、URLLC用UCIをPUSCHで送信する場合のPUSCHの上り送信電力の設定方法について説明する。
 本実施の形態では、サービス種別に依らずPC parameter setは固定とし、送信電力式(例えば、式(1)を参照)に対して、UCIに依存した電力調整パラメータを導入することによって、UCI(特に、URLLC用UCI)を含むPUSCHの送信電力を適切にパワーブーストする方法について説明する。
 本実施の形態に係る通信システムは、端末400(後述する図14を参照)及び基地局200(例えば、図4を参照)を備える。
 [端末400の構成]
 図14は、本実施の形態に係る端末400の構成例を示すブロック図である。なお、図14において、実施の形態1の端末100(図3)又は実施の形態2の端末300(図10)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、図14に示す端末400では、図10に示す端末300に対し、UCI生成部401及び送信電力計算部402の動作が異なる。
 PCパラメータ制御部104は、実施の形態1と同様の処理を行う。つまり、PCパラメータ制御部104は、UCIの有無に依らず、復調・復号部103から入力されるDCIを用いて、スケジューリングされたPUSCHに適用するPC parameter set番号jを決定する。
 UCI生成部401は、端末400が送信するUCIを生成し、生成したUCIを符号化・変調部302へ出力する。また、UCI生成部401は、送信するUCIに関する情報を送信電力計算部402へ出力する。
 送信電力計算部402は、PCパラメータ制御部104において設定されたPC parameter set番号jを用いて、例えば、式(6)に従ってPUSCHの送信電力を計算する。式(6)は、式(1)に対してΔUCI(UCIに依存した電力調整パラメータ[dB])が追加されている。
Figure JPOXMLDOC01-appb-M000006
 [基地局の構成]
 本実施の形態に係る基地局は、実施の形態1又は実施の形態2に係る基地局200と基本構成が共通するので、図4を援用して説明する。なお、本実施の形態に係る基地局200における復号後の受信データには、端末400(図14を参照)からの上りリンクデータに加えてUCIが含まれる。
 以下、UCIを含むPUSCHについて、UCIに依存した電力調整パラメータΔUCIによる送信電力のパワーブースト方法の例について説明する。
 ΔUCIは例えば、次式(7)のように算出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、Q"UCIは、UCIに要求される品質を得るためにPUSCHで送信するUCIのRE数(Required RE数)を示す。詳細には、次式(8)のように、Q"UCIは、ACK/NACK、CSI part1及びCSI part2のそれぞれのRequired RE数(Q"ACK、Q"CSI-1及びQ"CSI-2)のトータルのRE数を示す。
Figure JPOXMLDOC01-appb-M000008
 また、式(7)において、Q'UCIは、PUSCHで実際に送信されるUCIのRE数(Actual RE数)を示す。詳細には、次式(9)のように、Q'UCIは、ACK/NACK、CSI part1及びCSI part2のそれぞれのActual RE数(Q'ACK、Q'CSI-1及びQ'CSI-2)のトータルのRE数を示す。
Figure JPOXMLDOC01-appb-M000009
 よって、端末400は、UCIに要求される品質を満たすためのUCIのRE数をPUSCHに配置できない場合(Q'UCI(Actual RE数) < Q"UCI(Required RE数)の場合)でも、ΔUCIの適用により、不足したRE数に応じたパワーブーストを適用できる。例えば、Q"UCIに対してQ'UCIが小さいほど、ΔUCIが大きくなり、送信電力計算部402は、PUSCHに対してより大きな送信電力を設定する。
 これにより、本実施の形態では、URLLC用UCIに応じて、PUSCHの送信電力を制御できるので、UCI(特に、URLLC用UCI)を含むPUSCHの送信電力を適切にパワーブーストすることができる。
 なお、本実施の形態において、端末400がUCIをPUSCHで送信しない場合、式(6)において、ΔUCIは非適用(ΔUCI=0[dB])とすればよい。
 また、本実施の形態は、Grant-free送信を行うPUSCHでURLLC用UCIを送信する場合の送信電力の設定方法にも同様に適用できる。
 また、本実施の形態は、URLLC用UCIが含まれる場合にのみΔUCIを適用し、URLLC用UCIが含まれない場合はΔUCIは非適用(ΔUCI=0[dB])としてもよい。または、UCIのサービス種別に依らず(URLLC用UCIとeMBB用UCIに依らず)、ΔUCIを適用してもよい。
 以上、本開示の各実施の形態について説明した。
 (1)サービス種別又はトラフィック種別(例えば、URLLC及びeMBBの何れかを示す情報)をUL grantに含めてもよい。この場合、基地局200はUL grantを用いてスケジューリングされたPUSCHのサービス種別を端末100へ容易に指示でき、端末100はサービス種別に適したPC parameter setを用いてPUSCHを送信できる。
 (2)上記実施の形態では、UL grantに関する所定の条件に応じてPC parameter set(例えば、PC parameter set番号j)を変更する場合について説明した。しかし、本実施の形態では、PC parameter set番号j以外のPCパラメータ(例えば、PL推定用RS番号qd、Closed loop process番号l)についても、UL grantに関する所定の条件に応じて変更してもよい。
 例えば、UL grantに関する所定の条件に応じてURLLCとeMBBとの間で異なるClosed loop process(番号l)が設定されてもよい。また、UL grantに関する所定の条件に応じてURLLCとeMBBとの間で異なるClosed loop補正値が設定されてもよい。例えば、DCIに含まれるClosed loop補正値が2bits(4パターン)の場合、eMBBに対して{+3, -1, 0, +1}、URLLCに対して{+6, -2, 0, +2}のように、URLLCの方がeMBBよりも大きい補正値を適用してもよい。この場合、端末100は、サービス種別の要求品質に応じたClosed loop送信電力制御を行うことができる。また、UL grantに関する所定の条件に応じて設定するパラメータは、Closed loop processに限らず、他のパラメータでもよい。
 (3)上記実施の形態では、PUSCHの送信電力制御について説明した。しかし、本開示の一実施例は、PUSCH以外の上りチャネル(例えば、PUCCH(Physical Uplink Control Channel))にも適用できる。
 PUCCHの送信電力制御は、例えば、以下の式(10)に従って行われる(例えば、非特許文献3を参照)。
Figure JPOXMLDOC01-appb-M000010
 式(10)において、PPUCCH,b,f,c(i, qu, qd, l)は、UL BWP(Bandwidth part)番号"b"、Carrier番号"f"、サービングセル番号"c"、Slot番号"i"、PC parameter番号"qu"、PL推定用RS番号"qd"、Closed loop process番号"l"におけるPUCCHの送信電力[dBm]を示す。PO_PUCCH,b,f,c(qu)は、PC parameter番号quの目標受信電力[dBm](Parameter値)を示す。2μ・MRB,b,f,c PUCCH(i)は、Slot番号iにおけるPUCCHに適用するSCSを、15kHz SCSを基準に正規化したPUCCHの送信帯域幅[PRB]を示す。PLb,f,c(qd)は端末がRS番号qdのRSから測定したパスロス(Path Loss)[dB]を示す。ΔF_PUCCH(F)は、PUCCH formatに依存したオフセット[dB]を示す。ΔTF,b,f,c(i)はSlot番号iにおいて送信するデータのMCSに依存したオフセット[dB]を示す。gb,f,c(i,l)はSlot番号i、Closed loop process番号lにおけるClosed loop補正値[dB]を示す。
 例えば、下りデータチャネル(PDSCH:Physical Downlink Shared Channel)に対するACK/NACKを送信するためのPUCCHであれば、PDSCHのMAC-CE情報(詳細にはPUCCH-Spatial-relation-info)を用いて、PC parameter番号quが基地局200から端末100へ指示できる。しかしながら、SR送信を行うためのPUCCHについては、付随するPDSCHが無いため、基地局200から端末100への明示的なPC parameter値の指示はない。
 このようなPC parameter値の明示的な指示がないPUCCH送信に関しては、上記実施の形態と同様に、端末100は、UL grantに関する所定の条件に応じてPC parameter値(例えば、PC parameter番号qu)を切り替えることができる。例えば、URLLC用SR送信を行うPUCCHに対して、URLLC以外のサービス種別のSR送信と比較して、より高い送信電力値となるPC parameter値が設定されてもよい。これにより、URLLC用SRを高品質に送信することができ、URLLCの要求を満たすことができる。このようにして、PUCCH送信についても、PUSCH送信と同様の効果が得られる。
 (4)本実施の形態において、信頼性又は低遅延性等の要求条件の異なるサービス種別(換言すると、サービス、トラフィック種別、ロジカルチャネル(Logical channel)種別、ユースケース又はusage scenario)は、URLLC又はeMBBに限定されない。例えば、mMTCの送信にも本開示の一実施例を適用でき、同様の効果を得ることができる。
 (5)本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の端末は、上りリンク信号の割当情報の送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、前記所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定する回路と、前記第1の電力制御パラメータ又は前記第2の電力制御パラメータを用いて計算された送信電力を用いて前記上りリンク信号を送信する送信回路と、を具備する。
 本開示の端末において、前記所定の条件は、前記制御チャネルに用いられるフォーマットのペイロードサイズが所定のサイズと異なることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルに用いられるフォーマットのペイロードサイズが所定のサイズ未満であることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルに用いられるスクランブリング系列が所定の系列と異なることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルが、前記第1のサービスのスケジューリングを要求する信号を前記端末から送信した後の所定期間内に前記端末において受信する制御チャネルであることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルが、前記第1のサービスのスケジューリングを要求する信号を前記端末から送信した後に前記端末が最初に受信する制御チャネルであることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルが、前記上りリンク信号の初回送信に使用されるリソースが予め設定された送信方法における再送を示すことである。
 本開示の端末において、前記所定の条件は、前記端末が前記制御チャネルを受信してから前記上りリンク信号を送信するまでの期間が所定時間以内であることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルに示される前記上りリンク信号の送信シンボル数が所定値以下であることである。
 本開示の端末において、前記所定の条件は、前記端末における前記制御チャネルの検出周期が所定値以下であることである。
 本開示の端末において、前記所定の条件は、前記制御チャネルに用いられる、符号化及び変調方式を示すテーブルが所定のテーブルと異なることである。
 本開示の端末において、前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報が、前記第1のサービスの下りリンクデータに対する応答信号であることである。
 本開示の端末において、前記所定の条件は、前記端末が下りリンクデータを受信してから、当該下りリンクデータに対する応答信号を含む前記上りリンク信号を送信するまでの期間が所定時間以内であることである。
 本開示の端末において、前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報が、所定の閾値以下の目標誤り率を用いて計算されたチャネル状態情報であることである。
 本開示の端末において、下りリンクデータ及び当該下りリンクデータに対する応答信号の全体の誤り率が一定の値であり、前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報が、前記第2のサービスの下りリンクデータに対する応答信号であることである。
 本開示の端末において、前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報のリソース数が所定の閾値以上であることである。
 本開示の端末において、前記所定の条件は、前記上りリンク信号全体のリソース数に対する、前記上りリンク信号に含まれる上りリンク制御情報のリソース数の割合が所定の閾値より大きいことである。
 本開示の端末において、前記第1の電力制御パラメータを用いて計算される前記送信電力は、前記第2の電力制御パラメータを用いて計算される前記送信電力より大きい。
 本開示の送信方法は、上りリンク信号の割当情報の送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、前記所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定し、前記第1の電力制御パラメータ又は前記第2の電力制御パラメータを用いて計算された送信電力を用いて前記上りリンク信号を送信する。
 2018年5月8日出願の特願2018-090120及び2018年7月18日出願の特願2018-135011の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、移動通信システムに有用である。
 100,300,400 端末
 101,205 アンテナ
 102,206 受信部
 103,207 復調・復号部
 104,304 PCパラメータ制御部
 105,402 送信電力計算部
 106 データ生成部
 107,203,302 符号化・変調部
 108 リソース割当部
 109,204 送信部
 200 基地局
 201 スケジューリング部
 202 制御情報生成部
 301,401 UCI生成部
 303 多重部

Claims (19)

  1.  上りリンク信号の割当情報の送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、前記所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定する回路と、
     前記第1の電力制御パラメータ又は前記第2の電力制御パラメータを用いて計算された送信電力を用いて前記上りリンク信号を送信する送信回路と、
     を具備する端末。
  2.  前記所定の条件は、前記制御チャネルに用いられるフォーマットのペイロードサイズが所定のサイズと異なることである、
     請求項1に記載の端末。
  3.  前記所定の条件は、前記制御チャネルに用いられるフォーマットのペイロードサイズが所定のサイズ未満であることである、
     請求項1に記載の端末。
  4.  前記所定の条件は、前記制御チャネルに用いられるスクランブリング系列が所定の系列と異なることである、
     請求項1に記載の端末。
  5.  前記所定の条件は、前記制御チャネルが、前記第1のサービスのスケジューリングを要求する信号を前記端末から送信した後の所定期間内に前記端末において受信する制御チャネルであることである、
     請求項1に記載の端末。
  6.  前記所定の条件は、前記制御チャネルが、前記第1のサービスのスケジューリングを要求する信号を前記端末から送信した後に前記端末が最初に受信する制御チャネルであることである、
     請求項1に記載の端末。
  7.  前記所定の条件は、前記制御チャネルが、前記上りリンク信号の初回送信に使用されるリソースが予め設定された送信方法における再送を示すことである、
     請求項1に記載の端末。
  8.  前記所定の条件は、前記端末が前記制御チャネルを受信してから前記上りリンク信号を送信するまでの期間が所定時間以内であることである、
     請求項1に記載の端末。
  9.  前記所定の条件は、前記制御チャネルに示される前記上りリンク信号の送信シンボル数が所定値以下であることである、
     請求項1に記載の端末。
  10.  前記所定の条件は、前記端末における前記制御チャネルの検出周期が所定値以下であることである、
     請求項1に記載の端末。
  11.  前記所定の条件は、前記制御チャネルに用いられる、符号化及び変調方式を示すテーブルが所定のテーブルと異なることである、
     請求項1に記載の端末。
  12.  前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報が、前記第1のサービスの下りリンクデータに対する応答信号であることである、
     請求項1に記載の端末。
  13.  前記所定の条件は、前記端末が下りリンクデータを受信してから、当該下りリンクデータに対する応答信号を含む前記上りリンク信号を送信するまでの期間が所定時間以内であることである、
     請求項1に記載の端末。
  14.  前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報が、所定の閾値以下の目標誤り率を用いて計算されたチャネル状態情報であることである、
     請求項1に記載の端末。
  15.  下りリンクデータ及び当該下りリンクデータに対する応答信号の全体の誤り率が一定の値であり、
     前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報が、前記第2のサービスの下りリンクデータに対する応答信号であることである、
     請求項1に記載の端末。
  16.  前記所定の条件は、前記上りリンク信号に含まれる上りリンク制御情報のリソース数が所定の閾値以上であることである、
     請求項12に記載の端末。
  17.  前記所定の条件は、前記上りリンク信号全体のリソース数に対する、前記上りリンク信号に含まれる上りリンク制御情報のリソース数の割合が所定の閾値より大きいことである、
     請求項12に記載の端末。
  18.  前記第1の電力制御パラメータを用いて計算される前記送信電力は、前記第2の電力制御パラメータを用いて計算される前記送信電力より大きい、
     請求項1に記載の端末。
  19.  上りリンク信号の割当情報の送信に使用される制御チャネルに関する所定の条件を満たす場合、第1のサービスに対応する第1の電力制御パラメータを設定し、前記所定の条件を満たさない場合、第2のサービスに対応する第2の電力制御パラメータを設定し、
     前記第1の電力制御パラメータ又は前記第2の電力制御パラメータを用いて計算された送信電力を用いて前記上りリンク信号を送信する、
     送信方法。
PCT/JP2019/015067 2018-05-08 2019-04-05 端末及び送信方法 WO2019216073A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
MX2020011233A MX2020011233A (es) 2018-05-08 2019-04-05 Terminal y metodo de transmision.
EP19799249.8A EP3793268B1 (en) 2018-05-08 2019-04-05 Terminal and transmission method
KR1020207030573A KR20210005019A (ko) 2018-05-08 2019-04-05 단말 및 송신 방법
US17/049,433 US11553437B2 (en) 2018-05-08 2019-04-05 Terminal and transmission method
AU2019267660A AU2019267660B2 (en) 2018-05-08 2019-04-05 Terminal and transmission method
JP2020518195A JP7313342B2 (ja) 2018-05-08 2019-04-05 端末、通信方法及び集積回路
CN201980027561.1A CN112005586B (zh) 2018-05-08 2019-04-05 终端及发送方法
BR112020020999-6A BR112020020999A2 (pt) 2018-05-08 2019-04-05 Terminal e método de transmissão
ZA2020/06539A ZA202006539B (en) 2018-05-08 2020-10-21 Terminal and transmission method
US18/062,985 US20230115816A1 (en) 2018-05-08 2022-12-07 Terminal and transmission method
JP2023113212A JP2023130459A (ja) 2018-05-08 2023-07-10 基地局、通信方法及び集積回路

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018090120 2018-05-08
JP2018-090120 2018-05-08
JP2018135011 2018-07-18
JP2018-135011 2018-07-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/049,433 A-371-Of-International US11553437B2 (en) 2018-05-08 2019-04-05 Terminal and transmission method
US18/062,985 Continuation US20230115816A1 (en) 2018-05-08 2022-12-07 Terminal and transmission method

Publications (1)

Publication Number Publication Date
WO2019216073A1 true WO2019216073A1 (ja) 2019-11-14

Family

ID=68467945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015067 WO2019216073A1 (ja) 2018-05-08 2019-04-05 端末及び送信方法

Country Status (10)

Country Link
US (2) US11553437B2 (ja)
EP (1) EP3793268B1 (ja)
JP (2) JP7313342B2 (ja)
KR (1) KR20210005019A (ja)
CN (1) CN112005586B (ja)
AU (1) AU2019267660B2 (ja)
BR (1) BR112020020999A2 (ja)
MX (1) MX2020011233A (ja)
WO (1) WO2019216073A1 (ja)
ZA (1) ZA202006539B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021102086A1 (en) * 2019-11-21 2021-05-27 Qualcomm Incorporated Power control indication for multiple services

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031382A1 (ja) * 2018-08-10 2020-02-13 株式会社Nttドコモ ユーザ端末
US11601889B2 (en) 2018-09-12 2023-03-07 Qualcomm Incorporated Power control optimization for wireless communications
CN113424600A (zh) * 2019-02-15 2021-09-21 中兴通讯股份有限公司 功率控制参数指示
WO2022205222A1 (zh) * 2021-03-31 2022-10-06 北京小米移动软件有限公司 上行pusch的开环功率控制方法、装置及存储介质
GB202406888D0 (en) * 2021-11-29 2024-06-26 Arris Entpr Inc Network-based end-to-end low latency docsis
WO2023174565A1 (en) * 2022-03-18 2023-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Transmission power boost for packet with high priority

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090120A (ja) 2016-12-05 2018-06-14 株式会社Jvcケンウッド 映像表示装置、及び映像表示方法
JP2018135011A (ja) 2017-02-22 2018-08-30 和博 高橋 自転車の動力伝達装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065706B1 (ko) * 2008-11-23 2011-09-19 엘지전자 주식회사 무선 이동 통신 시스템에서 제어 정보를 전송하는 방법
WO2010087674A2 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
WO2013047130A1 (ja) * 2011-09-30 2013-04-04 シャープ株式会社 端末、通信システム、基地局および通信方法
JP6037963B2 (ja) * 2013-07-25 2016-12-07 シャープ株式会社 基地局装置、移動局装置、無線通信方法および集積回路
JP5863736B2 (ja) * 2013-09-25 2016-02-17 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
US20160227491A1 (en) * 2014-01-24 2016-08-04 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal on special subframe in tdd-type wireless communication system and device therefor
US10075309B2 (en) * 2014-04-25 2018-09-11 Qualcomm Incorporated Modulation coding scheme (MCS) indication in LTE uplink
US10079665B2 (en) * 2015-01-29 2018-09-18 Samsung Electronics Co., Ltd. System and method for link adaptation for low cost user equipments
CN107432020B (zh) * 2015-03-12 2021-06-08 Lg 电子株式会社 在短tti中减少用于控制信道的传输资源的方法和设备
EP3350951B1 (en) * 2015-09-17 2021-10-27 Apple Inc. Transmission of uplink control information in wireless systems
WO2017146287A1 (ko) * 2016-02-26 2017-08-31 엘지전자(주) 무선 통신 시스템에서 harq 수행 방법 및 이를 위한 장치
EP3472960A1 (en) 2016-06-15 2019-04-24 Convida Wireless, LLC Grant-less uplink transmission for new radio
WO2018030185A1 (ja) * 2016-08-10 2018-02-15 ソニー株式会社 通信装置及び通信方法
KR102534044B1 (ko) * 2016-08-12 2023-05-19 삼성전자 주식회사 이동 통신 시스템에서 데이터 디코딩 방법 및 장치
CN107889206B (zh) * 2016-09-30 2023-01-20 中兴通讯股份有限公司 上行信号发送功率的处理方法及装置、基站、终端
WO2018080274A1 (ko) * 2016-10-31 2018-05-03 주식회사 케이티 차세대 무선망에서 데이터 채널을 송수신하는 방법 및 장치
KR102108079B1 (ko) * 2017-02-05 2020-05-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10432441B2 (en) * 2017-02-06 2019-10-01 Samsung Electronics Co., Ltd. Transmission structures and formats for DL control channels
CN113873659A (zh) * 2017-03-24 2021-12-31 中兴通讯股份有限公司 波束恢复的处理和波束恢复的方法,基站和终端
US10638469B2 (en) * 2017-06-23 2020-04-28 Qualcomm Incorporated Data transmission in a physical downlink control channel
WO2019048934A1 (en) * 2017-09-11 2019-03-14 Lenovo (Singapore) Pte. Ltd. REFERENCE SIGNALS FOR RADIO LINK MONITORING
US11122549B2 (en) * 2017-11-17 2021-09-14 Qualcomm Incorporated Channel state information and hybrid automatic repeat request feedback resource allocation in 5G
CN110035485B (zh) 2018-01-11 2022-11-22 华为技术有限公司 上行信息的传输方法和装置
JP2019134249A (ja) * 2018-01-30 2019-08-08 シャープ株式会社 基地局装置および端末装置
US10560901B2 (en) * 2018-02-16 2020-02-11 Lenovo (Singapore) Pte. Ltd. Method and apparatus having power control for grant-free uplink transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090120A (ja) 2016-12-05 2018-06-14 株式会社Jvcケンウッド 映像表示装置、及び映像表示方法
JP2018135011A (ja) 2017-02-22 2018-08-30 和博 高橋 自転車の動力伝達装置

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"NR; Multiplexing and channel coding (Release 15", 3GPP TS 38.212, April 2018 (2018-04-01)
"NR; Physical layer procedures for control (Release 15", 3GPP TS 38.213, March 2018 (2018-03-01)
"NR; Physical layer procedures for data (Release 15", 3GPP TS38.214, June 2018 (2018-06-01)
"Study on Scenarios and Requirements for Next Generation Access TEchnologies (Release 14", 3GPP TR 38.913, June 2017 (2017-06-01)
"Summary of 7.2.2 Study of necessity of a new DCI format", RI-1805630, April 2018 (2018-04-01)
"Summary on handling UL multiplexing of transmission with different reliability requirements", RI-1803359, February 2018 (2018-02-01)
ASUSTEK: "Power control details for multiplexing UL eMBB and URLLC", 3GPP TSG RAN WG1 #92B R1- 1804084, 3 April 2018 (2018-04-03), XP051412838, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1804084.zip> *
ERICSSON: "Indication of URLLC Configuration", 3GPP TSG RAN WG1 #92B R1-1803936, 15 April 2018 (2018-04-15), XP051413754, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1803936.zip> *
HUAWEI, HISILICON: "Summary of remaining issues on pre-emption indication with TP", 3GPP TSG RAN WG1 #92B R1-1803662, 15 April 2018 (2018-04-15), XP051425959, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1803662.zip> *
NTT DOCOMO, INC: "Low latency uplink for URLLC", 3GPP TSG RAN WG1 #88B R1-1705751, 2 April 2017 (2017-04-02), XP051243866, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/R1-1705751.zip> *
PANASONIC: "Discussion on uplink power control for NR URLLC", 3GPP TSG RAN WG1 #93 R1- 1806179, 11 May 2018 (2018-05-11), XP051461760, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_93/Docs/R1-1806179.zip> *
PANASONIC: "On NR URLLC L1 enhancements", 3GPP TSG RAN WG1 #94 R1-1808827, 10 August 2018 (2018-08-10), XP051516200, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94/Docs/R1-1808827.zip> *
TCL COMMUNICATION: "Multiplexing of UL transmissions with different reliabilities", 3GPP TSG RAN WG1 MEETING 92B R1-1805098, 15 April 2018 (2018-04-15), XP051427358, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1805098.zip> *
VIVO: "Discussion on handling UL multiplexing of transmissions with different reliability", 3GPP TSG RAN WG1 #92B R1- 1803848, 6 April 2018 (2018-04-06), XP051413030, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1803848.zip> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021102086A1 (en) * 2019-11-21 2021-05-27 Qualcomm Incorporated Power control indication for multiple services
US11729723B2 (en) 2019-11-21 2023-08-15 Qualcomm Incorporated Power control indication for multiple services

Also Published As

Publication number Publication date
CN112005586A (zh) 2020-11-27
ZA202006539B (en) 2022-04-28
MX2020011233A (es) 2020-11-11
AU2019267660A1 (en) 2020-11-19
JP7313342B2 (ja) 2023-07-24
CN112005586B (zh) 2024-06-14
US20230115816A1 (en) 2023-04-13
AU2019267660B2 (en) 2024-02-22
EP3793268A4 (en) 2021-06-23
US11553437B2 (en) 2023-01-10
JP2023130459A (ja) 2023-09-20
BR112020020999A2 (pt) 2021-01-19
KR20210005019A (ko) 2021-01-13
EP3793268A1 (en) 2021-03-17
US20210250870A1 (en) 2021-08-12
JPWO2019216073A1 (ja) 2021-06-10
EP3793268B1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2019216073A1 (ja) 端末及び送信方法
US20220182207A1 (en) Enhancements to reception reliability for data and control information
US10939384B2 (en) Power control method and apparatus
EP2603047B1 (en) Mobile station apparatus, communication system, communication method, integrated circuit, and circuit device
JP6376564B2 (ja) 端末装置、基地局装置、通信方法および集積回路
CN107534527B (zh) 用于对harq反馈进行压缩的方法和用户设备
CN110731104A (zh) 控制无线通信系统中的终端的传输功率的方法和装置
JP6410153B2 (ja) 端末装置、基地局装置、通信方法および集積回路
US20120188947A1 (en) Uplink Power Control in Wireless Communication Systems
CN110431815B (zh) 终端及通信方法
US9961690B2 (en) Method and base station for selecting a transport format
WO2015005325A1 (ja) 端末装置、基地局装置、通信方法、および集積回路
JP6362114B2 (ja) 端末装置、基地局装置、および通信方法
BR112012001554B1 (pt) Sistema de comunicação sem fio, aparelho de estação base e aparelho de estação móvel
WO2017195655A1 (ja) 端末装置、基地局装置および通信方法
KR20120035817A (ko) 이동통신 시스템에서 상향 링크 전송 전력 제어 방법 및 장치
KR102425579B1 (ko) 무선 통신 시스템에서 전력 제어 및 전력 정보 제공 방법 및 장치
KR20210082648A (ko) 무선 통신 시스템에서 상향링크 전송 전력 결정 방법 및 장치
RU2784380C2 (ru) Терминал и способ передачи
KR20210116069A (ko) 상향링크 전력 제어를 위한 전자장치 및 그 방법
JP2012044701A (ja) 通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518195

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020020999

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019267660

Country of ref document: AU

Date of ref document: 20190405

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020131806

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019799249

Country of ref document: EP

Effective date: 20201208

ENP Entry into the national phase

Ref document number: 112020020999

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201014