WO2022205222A1 - 上行pusch的开环功率控制方法、装置及存储介质 - Google Patents

上行pusch的开环功率控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2022205222A1
WO2022205222A1 PCT/CN2021/084744 CN2021084744W WO2022205222A1 WO 2022205222 A1 WO2022205222 A1 WO 2022205222A1 CN 2021084744 W CN2021084744 W CN 2021084744W WO 2022205222 A1 WO2022205222 A1 WO 2022205222A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
power
open
power control
parameter
Prior art date
Application number
PCT/CN2021/084744
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/284,240 priority Critical patent/US20240163804A1/en
Priority to EP21933883.7A priority patent/EP4319325A4/en
Priority to PCT/CN2021/084744 priority patent/WO2022205222A1/zh
Priority to CN202180001073.0A priority patent/CN115486144A/zh
Publication of WO2022205222A1 publication Critical patent/WO2022205222A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, an apparatus, and a storage medium for open-loop power control of an uplink PUSCH.
  • a network device such as a base station
  • multiple TRPs multiple TRPs (Multi-TRP)/multi-panel (PANEL) can be used to provide services for the terminal.
  • the application of network equipment multi-TRP/PANEL is mainly to improve the coverage of the cell edge, provide a more balanced quality of service in the service area, and use different methods to cooperatively transmit data among multiple TRP/PANELs. From the perspective of network morphology, network deployment in the form of a large number of distributed access points and baseband centralized processing will be more conducive to providing a balanced user experience rate, and significantly reduce the delay and signaling overhead caused by handover.
  • Ultra Reliable Low Latency Communication (URLLC) service improves transmission quality and meets reliability requirements.
  • the transmission enhancement of the physical downlink shared channel was carried out. Because data transmission includes scheduling feedback of uplink and downlink channels. Therefore, in the research of URLLC, only the downlink data channel enhancement cannot guarantee the service performance. Therefore, in the research of R17, continue to enhance the downlink control channel (physical downlink control channel, PDCCH), uplink control channel (physical uplink control channel, PUCCH) and uplink shared channel (physical uplink shared channel, PUSCH).
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • PUSCH uplink shared channel
  • Enhanced Mobile Broadband (eMBB) services URLLC will use a shorter transmission time interval for scheduling, and the URLLC service is bursty and random, showing scattered characteristics in resource distribution, and its resource utilization rate is low, so consider multiplexing with eMBB transmission. to improve resource utilization. Different from downlink transmission, when a terminal sends uplink data, it cannot determine whether the transmission resources of service data overlap with services of different priorities transmitted by other terminals.
  • eMBB Enhanced Mobile Broadband
  • R16 introduces an open-loop power control parameter set indication (Open-loop power control parameter set indication) in the scheduling downlink control information (DCI) to indicate the power boost for scheduling PUSCH (power boosting) indication function, a new radio resource control (Radio Resource Control, RRC) parameter: P0-PUSCH-Set is introduced to indicate power control.
  • each sounding reference signal (Sounding Reference Signal, SRS) resource indication corresponds to an open-loop power control P0-PUSCH-Set parameter, and through the Open-loop power control parameter set indication to instruct.
  • SRS Sounding Reference Signal
  • SRI Sounding Reference Signal
  • the present disclosure provides an open-loop power control method, device and storage medium for uplink PUSCH.
  • an open-loop power control method for uplink PUSCH is provided, which is applied to a network device.
  • the open-loop power control method for uplink PUSCH includes:
  • OLPC parameters include power boost parameters corresponding to one or more TRPs; send first indication information, where the first indication information is used to indicate multi-TRP cooperative transmission
  • the power boosting parameter used when PUSCH is sent, wherein the power boosting parameter used when sending PUSCH corresponds to different cooperative TRPs for sending PUSCH.
  • the determining the OLPC parameters includes:
  • the OLPC parameters are determined based on the radio resource control RRC configuration information; the RRC configuration information is used to configure respective power boosting parameters for the PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support PUSCH power boosting control parameter configuration extended to multiple TRPs:
  • Multiple PUSCH power boosting parameter configuration sets where different PUSCH power boosting parameter configuration sets in the multiple PUSCH power boosting parameter configuration sets correspond to different SRS resource sets; SRI resource set identifier, the PUSCH power boosting parameter configuration set passes the SRI resource The set identifier establishes a corresponding relationship with the SRS resource set; and multiple sets of power parameter configurations are included in the PUSCH power boosting parameter configuration set.
  • the sending the first indication information includes:
  • the first indication information is sent through downlink control information DCI.
  • the DCI includes a first indication field and a second indication field
  • the first indication field is used to indicate the PUSCH transmit power boost parameter for the first TRP
  • the second indication field is used to indicate the PUSCH transmit power boost parameter for the second TRP.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating with the corresponding power parameter set.
  • the information indicated in the first indication field or the second indication field is respectively indicated.
  • the power parameter set is associated with the PUSCH transmit power boost parameter of the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is associated with a PUSCH power set corresponding to the TRPs
  • the sending the first indication information includes: sending the first indication information based on the power control indication information.
  • the power control indication information is used to indicate the power adjustment value corresponding to one or more TRPs.
  • the open-loop power control method for the uplink PUSCH further includes:
  • Send second indication information where the second indication information is used to indicate whether the power adjustment value indicated by the power control indication information uses cumulative calculation.
  • an open-loop power control method for uplink PUSCH is provided, which is applied to a terminal, and the open-loop power control method for uplink PUSCH includes:
  • the OLPC parameters include power boost parameters corresponding to one or more transmission and reception point TRPs, and receiving first indication information; the first indication information is used to indicate multi-TRP cooperation
  • the power boosting parameter used when sending PUSCH wherein the power boosting parameter used when sending PUSCH corresponds to different cooperative TRPs for sending PUSCH; based on the first indication information, determine the power boosting parameter used when sending PUSCH based on multi-TRP coordination Power boost parameters.
  • the OLPC parameter is determined based on radio resource control RRC configuration information
  • the RRC configuration information is used to configure respective power boosting parameters for PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support the configuration of PUSCH power boosting control parameters extended to multiple TRPs: multiple PUSCH power boosting parameter configuration sets, the multiple PUSCH power boosting parameters Different PUSCH power boost parameter configuration sets in the configuration set correspond to different SRS resource sets; SRI resource set identifier, PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier; multiple groups of power parameter configurations, The multiple sets of power parameter configurations are included in a PUSCH power boost parameter configuration set.
  • the receiving the first indication information includes: receiving the first indication information through downlink control information DCI.
  • the DCI includes a first indication field and a second indication field
  • the first indication field is used to indicate the PUSCH transmit power boost parameter for the first TRP
  • the second indication field is used to indicate the PUSCH transmit power boost parameter for the second TRP.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating with the corresponding power parameter set.
  • the information indicated in the first indication field or the second indication field is respectively indicated.
  • the power parameter set is associated with the PUSCH transmit power boost parameter of the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is associated with a PUSCH power set corresponding to the TRP.
  • the receiving the first indication information includes:
  • the first indication information is received based on the power control indication information.
  • the power control indication information is used to indicate the power adjustment value corresponding to one or more TRPs.
  • the open-loop power control method for the uplink PUSCH further includes: receiving second indication information, where the second indication information is used to indicate whether the power adjustment value indicated by the power control indication information uses cumulative calculation .
  • an apparatus for open-loop power control of uplink PUSCH includes:
  • a processing unit configured to configure and determine open-loop power control OLPC parameters required by the terminal, where the OLPC parameters include power boost parameters corresponding to one or more TRPs;
  • a sending unit configured to send first indication information, where the first indication information is used to indicate a power boosting parameter used when the PUSCH is sent cooperatively with multiple TRPs, wherein the power boosting parameter used when sending the PUSCH is different from the coordination of sending the PUSCH TRP corresponds.
  • the processing unit is configured to: determine OLPC parameters based on RRC configuration information of radio resource control; the RRC configuration information is used to configure respective power boost parameters for PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support PUSCH power boosting control parameter configuration extended to multiple TRPs:
  • Multiple PUSCH power boosting parameter configuration sets where different PUSCH power boosting parameter configuration sets in the multiple PUSCH power boosting parameter configuration sets correspond to different SRS resource sets; SRI resource set identifier, the PUSCH power boosting parameter configuration set passes the SRI resource The set identifier establishes a corresponding relationship with the SRS resource set; and multiple sets of power parameter configurations are included in the PUSCH power boosting parameter configuration set.
  • the sending unit sends the first indication information through downlink control information DCI.
  • the DCI includes a first indication field and a second indication field
  • the first indication field is used to indicate the PUSCH transmit power boost parameter for the first TRP
  • the second indication field is used to indicate the PUSCH transmit power boost parameter for the second TRP.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating with the corresponding power parameter set.
  • the information indicated in the first indication field or the second indication field is respectively indicated.
  • the power parameter set is associated with the PUSCH transmit power boost parameter of the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is associated with a PUSCH power set corresponding to the TRP.
  • the sending unit sends the first indication information based on the power control indication information.
  • the power control indication information is used to indicate the power adjustment value corresponding to one or more TRPs.
  • the sending unit is further configured to: send second indication information, where the second indication information is used to indicate whether the power adjustment value indicated by the power control indication information uses cumulative calculation.
  • an open-loop power control apparatus for uplink PUSCH includes:
  • a receiving unit configured to receive first indication information when the terminal is configured with open-loop power control OLPC parameters, where the OLPC parameters include power boosting parameters corresponding to one or more transmission and reception points TRP, and the first indication information uses Power boosting parameters used when instructing multiple TRPs to transmit PUSCH cooperatively, wherein the power boosting parameters used when transmitting PUSCH correspond to different coordinated TRPs that transmit PUSCH.
  • the processing unit is configured to determine, based on the first indication information, a power boosting parameter used when the PUSCH is sent based on multi-TRP cooperation.
  • the OLPC parameters are determined based on radio resource control RRC configuration information; the RRC configuration information is used to configure respective power boost parameters for PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support the configuration of PUSCH power boosting control parameters extended to multiple TRPs: multiple PUSCH power boosting parameter configuration sets, the multiple PUSCH power boosting parameters Different PUSCH power boost parameter configuration sets in the configuration set correspond to different SRS resource sets; SRI resource set identifier, PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier; multiple groups of power parameter configurations, The multiple sets of power parameter configurations are included in a PUSCH power boost parameter configuration set.
  • the receiving unit receives the first indication information through downlink control information DCI.
  • the DCI includes a first indication field and a second indication field
  • the first indication field is used to indicate the PUSCH transmit power boost parameter for the first TRP
  • the second indication field is used to indicate the PUSCH transmit power boost parameter for the second TRP.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating with the corresponding power parameter set.
  • the information indicated in the first indication field or the second indication field is respectively indicated.
  • the power parameter set is associated with the PUSCH transmit power boost parameter of the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is associated with a PUSCH power set corresponding to the TRP.
  • the receiving unit receives the first indication information based on the power control indication information.
  • the power control indication information is used to indicate the power adjustment value corresponding to one or more TRPs.
  • the receiving unit is further configured to receive second indication information, where the second indication information is used to indicate whether the power adjustment value indicated by the power control indication information uses cumulative calculation.
  • an open-loop power control apparatus for uplink PUSCH including:
  • processor ; memory for storing processor-executable instructions;
  • the processor is configured to: execute the open-loop power control method for the uplink PUSCH described in the first aspect or any implementation manner of the first aspect.
  • an apparatus for open-loop power control of uplink PUSCH including:
  • processor ; memory for storing processor-executable instructions;
  • the processor is configured to: execute the open-loop power control method for the uplink PUSCH described in the second aspect or any implementation manner of the second aspect.
  • a storage medium where instructions are stored in the storage medium, and when the instructions in the storage medium are executed by a processor of a network device, the network device can execute the first The open-loop power control method for the uplink PUSCH described in any one of the embodiments of the aspect or the first aspect.
  • a storage medium where instructions are stored in the storage medium, and when the instructions in the storage medium are executed by a processor of a terminal, the terminal can execute the second aspect or In the second aspect, the open-loop power control method for the uplink PUSCH described in any one of the embodiments.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: when the terminal is configured with OLPC parameters including one or more TRP power boosting parameters, the network device sends first indication information to instruct multi-TRP cooperative transmission of PUSCH The power boost parameter used when .
  • the power boosting parameters used when transmitting the PUSCH correspond to different cooperative TRPs for transmitting the PUSCH, so the present disclosure can realize the adjustment of the power boosting parameters for multi-TRP transmission of the PUSCH.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • FIG. 2 is a flowchart of an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • FIG. 4 is a flowchart of an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • Fig. 5 is a flowchart showing an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • Fig. 8 is a flowchart showing an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • Fig. 9 is a flowchart showing an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • Fig. 10 is a flowchart showing an open-loop power control method for an uplink PUSCH according to an exemplary embodiment.
  • FIG. 11 is a block diagram of an apparatus for open-loop power control of an uplink PUSCH according to an exemplary embodiment.
  • FIG. 12 is a block diagram of an apparatus for open-loop power control of an uplink PUSCH according to an exemplary embodiment.
  • Fig. 13 is a block diagram of an apparatus for open-loop power control of uplink PUSCH according to an exemplary embodiment.
  • FIG. 14 is a block diagram of an apparatus for open-loop power control of uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for the uplink PUSCH provided by the embodiment of the present disclosure can be applied to the wireless communication system shown in FIG. 1 .
  • the wireless communication system includes network equipment and terminals.
  • the terminal is connected to the network device through wireless resources, and performs data transmission.
  • the data transmission between the network device and the terminal is based on beams.
  • the enhancement of PUSCH uplink transmission can be performed between the network device and the terminal based on Multi-TRP.
  • the number of TRPs for data transmission between the network device and the terminal based on Multi-TRP may be one or more.
  • the network device in the wireless communication system shown in FIG. 1 performs data transmission with the terminal 1 and the terminal 2 based on TRP1 and TRP2, which is only a schematic illustration, and is not intended to be limiting.
  • the wireless communication system shown in FIG. 1 is only a schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc. , not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system is a network providing a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (frequency division multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency-division multiple access, OFDMA), single carrier frequency division multiple access (single Carrier FDMA, SC-FDMA), carrier sense Carrier Sense Multiple Access with Collision Avoidance.
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single Carrier FDMA, SC-FDMA
  • carrier sense Carrier Sense Multiple Access with Collision Avoidance CDMA
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure will sometimes refer to a wireless communication network simply as a network.
  • the wireless access network device may be: a base station, an evolved node B (evolved node B, base station), a home base station, an access point (AP) in a wireless fidelity (wireless fidelity, WIFI) system, a wireless relay A node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP), etc., can also be a gNB in an NR system, or can also be a component or part of a device that constitutes a base station Wait. It should be understood that, in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network device are not limited.
  • a network device may provide communication coverage for a specific geographic area, and may communicate with terminals located within the coverage area (cell).
  • the network device may also be an in-vehicle device.
  • V2X vehicle-to-everything
  • the terminal involved in the present disclosure may also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device that provides voice and/or data connectivity for example, a terminal may be a handheld device with wireless connectivity, a vehicle-mounted device, or the like.
  • some examples of terminals are: Smart Phone (Mobile Phone), Customer Premise Equipment (CPE), Pocket Personal Computer (PPC), PDA, Personal Digital Assistant (PDA) , laptops, tablets, wearables, or in-vehicle devices.
  • V2X vehicle-to-everything
  • the terminal device may also be an in-vehicle device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • open-loop power control can be performed between the network device and the terminal.
  • R16 introduced Open-loop power control parameter set indication in scheduling DCI to indicate the power boosting indication function for scheduling PUSCH, and introduced a new RRC parameter P0-PUSCH-Set to indicate power control, each SRI corresponds to an open loop
  • the P0-PUSCH-Set parameter of the loop power control is indicated by the open-loop control parameter indication field (Open-loop power control parameter set indication).
  • the network device informs the terminal whether there is a power control parameter indication field through high layer signaling p0-PUSCH-SetList-r16.
  • the open-loop power control parameter indication field is 0 bits, that is, the open-loop power control parameter indication field does not exist, and the terminal changes from P0-PUSCH-AlphaSet according to the original Rel-15 mechanism. Get P0.
  • the open-loop power control parameter indication field can be configured to be 1 bit or 2 bits through high-layer signaling, where:
  • the open loop power control parameter indication field is configured as 1 bit.
  • the open-loop power control parameter indication field can be configured as 1 bit or 2 bits according to high-layer signaling.
  • the Rel-15 mechanism is still used to obtain the P0 from the P0-PUSCH-AlphaSet according to the SRI indication. If the open-loop power control parameter indication field information is "1", the terminal obtains P0 from the open-loop parameter set P0-PUSCH-Set for power boosting according to the SRI indication.
  • the RAN1#99 meeting passed the open-loop power control indication field in DCI can be configured as 1 bit or 2 bits, and the P0-PUSCH-Set parameter can be configured with up to two P0 values.
  • the application scenario of the open-loop power control method for the uplink PUSCH in the embodiment of the present disclosure is the scenario in which the terminal adjusts the power control parameter due to service conflict during the communication process.
  • the terminal 1 performs the URLLC service and the eMBB service
  • the terminal 2 performs the eMBB service.
  • the starting point of the embodiments of the present disclosure is to apply to when the terminal 1 configured with the eMBB and URLLC services at the same time conflicts with the terminal 2 configured with the eMBB service, the terminal 1 needs three different open-loop power levels for the power of eMBB and URLLC
  • the enhancements are: 1) baseline P0 for eMBB, obtained from P0-PUSCH-AlphaSet; 2) higher P0, used for power enhancement of URLLC services that do not conflict with eMBB; 3) highest P0, used with eMBB Conflicting URLLC PUSCH.
  • Table 1 shows how the terminal determines P0 according to higher layer parameters and DCI indication.
  • data transmission is performed between a network device and a terminal based on beams.
  • enhancement of PUSCH uplink transmission based on Multi-TRP can be performed between the network device and the terminal.
  • the URLLC service sent based on multi-TRP may conflict with the eMBB service in different TRPs. That is, the conflict and interference received by the two TRPs of the network device are different.
  • the conflicting scheduling PUSCH corresponds to a power boost adjustment parameter of the open-loop power, and the terminal is not sure which TRP resource conflicts occur .
  • the open-loop power can only be adjusted in two different TRP transmission directions at the same time based on the power boosting parameter of the same open-loop power, which will cause the terminal to waste precious transmit power and directly increase the interference to other users. cause problems that degrade system performance. therefore.
  • the power boosting mechanism of OLPC needs to be enhanced.
  • An embodiment of the present disclosure provides an open-loop power control method for uplink PUSCH.
  • the open-loop power control method for uplink PUSCH power boosting parameters corresponding to one or more TRPs are configured for a terminal, and multiple TRPs are instructed to cooperatively transmit PUSCH when The power boosting parameter used corresponds to the different cooperative TRPs used for transmitting the PUSCH, so as to realize an enhanced open-loop power control method for the uplink PUSCH.
  • the indication information used to indicate the power boosting parameter used when the multi-TRP cooperatively transmits the PUSCH is referred to as the first indication information.
  • FIG. 2 is a flow chart of a method for open-loop power control of uplink PUSCH according to an exemplary embodiment. As shown in FIG. 2 , the method for open-loop power control of uplink PUSCH includes the following steps.
  • step S11 OLPC parameters required by the terminal are configured and determined, and the OLPC parameters include power boosting parameters corresponding to one or more TRPs.
  • step S12 first indication information is sent, where the first indication information is used to indicate a power boosting parameter used when the PUSCH is sent in coordination with multiple TRPs.
  • the power boosting parameter used when sending the PUSCH corresponds to different cooperative TRPs for sending the PUSCH.
  • the open-loop power control method for the uplink PUSCH configures OLPC parameters required by the terminal, where the OLPC parameters include power boost parameters corresponding to one or more TRPs, and the first indication information indicates multiple TRP parameters.
  • the power boosting parameters used when TRP cooperatively transmits PUSCH so that the power boosting parameters used when sending PUSCH correspond to different cooperative TRPs that transmit PUSCH, and then the power boosting parameters of multiple TRPs are enhanced.
  • the loop power control parameters are extended and enhanced for power boosting, which realizes the enhancement of the power boosting mechanism of OLPC.
  • the RRC configuration of power boost power parameters of OLPC can be enhanced to support configuring different power boost parameters for PUSCH sent for different TRPs.
  • FIG. 3 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S21 OLPC parameters are determined based on the RRC configuration information.
  • the RRC configuration information is used to configure respective power boosting parameters for PUSCHs sent for different TRPs.
  • the extended and enhanced RRC configuration information may be enhanced in at least one of the following manners to support the PUSCH power boosting control parameter configuration extended to multiple TRPs.
  • Method 1 Add a PUSCH power boost parameter configuration (p0-PUSCH-SetList-r16) set configuration, corresponding to different SRS resource sets respectively.
  • the corresponding RRC configuration information includes multiple PUSCH power boost parameter configuration sets, and different PUSCH power boost parameter configuration sets in the multiple PUSCH power boost parameter configuration sets correspond to different SRS resource sets.
  • Method 2 Add an SRI resource set identifier (sri-resource-setId) to each P0-PUSCH-Set-r16 to indicate a specific SRS resource set. That is, the RRC configuration information includes an SRI resource set identifier, and the PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier.
  • Mode 3 Add a "p0-List-r16" to each P0-PUSCH-Set-r16 for the extended P0 indication. That is, the RRC configuration information includes multiple sets of power parameter configurations, and the multiple sets of power parameter configurations are included in the PUSCH power boost parameter configuration set.
  • the power indication of the OLPC in the DCI needs to be enhanced to support indicating different power boosting parameters for the PUSCH sent for different TRPs respectively. That is, in this embodiment of the present disclosure, the network device may send the first indication information through DCI.
  • FIG. 4 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S31 the first indication information is sent based on the DCI.
  • the DCI field may be extended, and PUSCH transmit power boost parameters for different TRPs can be independently indicated based on the extended DCI field.
  • the DCI fields used to independently indicate the transmission power boosting parameters for different TRP PUSCHs are referred to as the first indication field and the second indication field.
  • the first indication field is used to indicate the PUSCH transmission power boosting parameter for the first TRP
  • the second indication field is used for indicating the PUSCH transmission power boosting parameter for the second TRP.
  • the DCI includes SRI indication information indicating transmission for different TRPs
  • a 1-bit indication field can be extended, and each indication field is used to indicate whether to indicate power boosting parameters. That is, for different cooperative TRPs that transmit PUSCH, in the open-loop power parameter set indicated by the first indication field or the second indication field of the DCI respectively, the SRI indication information indicated in the direction of the TRP is correlated in the corresponding power parameter set.
  • the PUSCH transmit power boost parameter in the TRP transmit direction can be obtained from the link.
  • the indications are indicated in the first indication field or the second indication field respectively.
  • the PUSCH transmit power boost parameter of the TRP transmit direction is associated with the power parameter set of . That is, when there is no SRI field in the DCI, a 1-bit indication field or a 2-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter, and to indicate which indicated power boosting parameter to use.
  • the open-loop power parameter set indicated by the first indication field and/or the second indication field in the embodiment of the present disclosure may be P0-PUSCH-AlphaSet in the Rel-15 mechanism, or may be the R-16 mechanism p0-PUSCH-SetList-r16.
  • the DCI field may be extended, and based on the extended DCI field, the PUSCH transmit power boost parameters for different TRPs are jointly indicated.
  • the PUSCH transmission power boosting parameters for different TRPs are jointly indicated by the extended DCI field, which may be one or more TRPs associated with PUSCH transmission through OLPC power code points, and correspond to TRPs
  • the PUSCH power set is associated.
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is related to the PUSCH power set corresponding to the TRPs
  • Table 2 and Table 3 The schematic corresponding relationship of the connection can be found in Table 2 and Table 3 below.
  • Table 2 shows that the DCI includes SRI indication information indicating transmission for different TRPs, and 2 bits are used to indicate the correspondence between the OLPC power code point and the TRP associated with the PUSCH transmission.
  • Table 3 shows that the DCI includes SRI indication information indicating transmission for different TRPs, and 3 bits are used to indicate the correspondence between the OLPC power code point and the TRP associated with the PUSCH transmission.
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is related to the PUSCH power set corresponding to the TRPs
  • Table 4 The schematic corresponding relationship of the connection can be seen in Table 4 below.
  • Table 4 shows that there is no SRI indication information indicating transmission for different TRPs in the DCI, and 3 bits are used to indicate the correspondence between the OLPC power code point and the TRP associated with the PUSCH transmission.
  • the power used when transmitting the PUSCH cooperatively by multiple TRPs may be indicated by extending transmit power control (Transmit Power Control, TPC) indication information boost parameters. That is, in this embodiment of the present disclosure, the first indication information may be sent based on the TPC.
  • TPC Transmit Power Control
  • the RRC configuration information that needs to be extended and enhanced may be enhanced in the following manner, so as to support the PUSCH power boosting control parameter configuration extended to multiple TRPs: adding a PUSCH power boost parameter configuration (p0-PUSCH-SetList-r16) set configuration, corresponding to different SRS resource sets respectively.
  • the corresponding RRC configuration information includes multiple PUSCH power boost parameter configuration sets, and different PUSCH power boost parameter configuration sets in the multiple PUSCH power boost parameter configuration sets correspond to different SRS resource sets.
  • the DCI field can be enhanced, and based on the extended DCI field, the PUSCH transmission power boosting parameters for different TRPs can be independently indicated.
  • the DCI fields used to independently indicate the transmission power boosting parameters for different TRP PUSCHs are referred to as the first indication field and the second indication field.
  • the first indication field is used to indicate the PUSCH transmission power boosting parameter for the first TRP
  • the second indication field is used for indicating the PUSCH transmission power boosting parameter for the second TRP.
  • a 1-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter.
  • the SRI indication information indicated in the direction of the TRP is correlated in the corresponding power parameter set.
  • the PUSCH transmit power boost parameter in the TRP transmit direction can be obtained from the link. If there is no SRI indication information corresponding to different TRP transmissions in the DCI, for different cooperative TRPs that transmit PUSCH, the PUSCH in the transmission direction of the TRP is associated with the power parameter set indicated by the first indication field or the second indication field respectively. Transmit power boost parameters. That is, when there is no SRI field in the DCI, a 1-bit indication field or a 2-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter, and to indicate which indicated power boosting parameter to use.
  • the RRC configuration information that needs to be extended and enhanced may be enhanced in the following manner, so as to support the PUSCH power boost control parameter configuration extended to multiple TRPs: increase A PUSCH power boost parameter configuration (p0-PUSCH-SetList-r16) set configuration, corresponding to different SRS resource sets respectively.
  • the corresponding RRC configuration information includes multiple PUSCH power boost parameter configuration sets, and different PUSCH power boost parameter configuration sets in the multiple PUSCH power boost parameter configuration sets correspond to different SRS resource sets.
  • the DCI field can be enhanced, and based on the extended DCI field, the PUSCH transmit power boost parameters for different TRPs can be jointly indicated.
  • the PUSCH transmission power boosting parameters for different TRPs are jointly indicated by the extended DCI field, which may be one or more TRPs associated with PUSCH transmission through OLPC power code points, and correspond to TRPs The PUSCH power set is associated.
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is related to the PUSCH power set corresponding to the TRPs Refer to Table 2 and Table 3 for the schematic corresponding relationship of the connection.
  • the RRC configuration information that needs to be extended and enhanced may be enhanced in the following manner, so as to support the PUSCH power boost control parameter configuration extended to multiple TRPs:
  • Each P0-PUSCH-Set-r16 is additionally configured with an SRI resource set identifier (sri-resource-setId) to indicate a specific SRS resource set. That is, the RRC configuration information includes an SRI resource set identifier, and the PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier.
  • the DCI field can be enhanced, and based on the extended DCI field, the PUSCH transmission power boosting parameters for different TRPs can be independently indicated.
  • the DCI fields used to independently indicate the transmission power boosting parameters for different TRP PUSCHs are referred to as the first indication field and the second indication field.
  • the first indication field is used to indicate the PUSCH transmission power boosting parameter for the first TRP
  • the second indication field is used for indicating the PUSCH transmission power boosting parameter for the second TRP.
  • a 1-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter.
  • the SRI indication information indicated in the direction of the TRP is correlated in the corresponding power parameter set.
  • the PUSCH transmit power boost parameter in the TRP transmit direction can be obtained from the link. If there is no SRI indication information corresponding to different TRP transmissions in the DCI, for different cooperative TRPs that transmit PUSCH, the PUSCH in the transmission direction of the TRP is associated with the power parameter set indicated by the first indication field or the second indication field respectively. Transmit power boost parameters. That is, when there is no SRI field in the DCI, a 1-bit indication field or a 2-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter, and to indicate which indicated power boosting parameter to use.
  • the RRC configuration information that needs to be extended and enhanced may be enhanced in the following manner, so as to support the PUSCH power boosting control parameter configuration extended to multiple TRPs:
  • Each P0-PUSCH-Set-r16 is additionally configured with an SRI resource set identifier (sri-resource-setId) to indicate a specific SRS resource set. That is, the RRC configuration information includes an SRI resource set identifier, and the PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier.
  • the DCI field can be enhanced, and based on the extended DCI field, the PUSCH transmit power boost parameters for different TRPs can be jointly indicated.
  • the PUSCH transmission power boosting parameters for different TRPs are jointly indicated by the extended DCI field, which may be one or more TRPs associated with PUSCH transmission through OLPC power code points, and correspond to TRPs The PUSCH power set is associated.
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is related to the PUSCH power set corresponding to the TRPs Refer to Table 2 and Table 3 for the schematic corresponding relationship of the connection.
  • the RRC configuration information that needs to be extended and enhanced may be enhanced in the following manner, so as to support the PUSCH power boost control parameter configuration extended to multiple TRPs:
  • Each P0-PUSCH-Set-r16 is additionally configured with a "p0-List-r16" for extended P0 indication. That is, the RRC configuration information includes multiple sets of power parameter configurations, and the multiple sets of power parameter configurations are included in the PUSCH power boost parameter configuration set.
  • the DCI field can be enhanced, and based on the extended DCI field, the PUSCH transmission power boosting parameters for different TRPs can be independently indicated.
  • the DCI fields used to independently indicate the transmission power boosting parameters for different TRP PUSCHs are referred to as the first indication field and the second indication field.
  • the first indication field is used to indicate the PUSCH transmission power boosting parameter for the first TRP
  • the second indication field is used for indicating the PUSCH transmission power boosting parameter for the second TRP.
  • a 1-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter.
  • the SRI indication information indicated in the direction of the TRP is correlated in the corresponding power parameter set.
  • the PUSCH transmit power boost parameter in the TRP transmit direction can be obtained from the link. If there is no SRI indication information corresponding to different TRP transmissions in the DCI, for different cooperative TRPs that transmit PUSCH, the PUSCH in the transmission direction of the TRP is associated with the power parameter set indicated by the first indication field or the second indication field respectively. Transmit power boost parameters. That is, when there is no SRI field in the DCI, a 1-bit indication field or a 2-bit indication field can be extended, and each indication field is used to indicate whether to indicate a power boosting parameter, and to indicate which indicated power boosting parameter to use.
  • the RRC configuration information that needs to be extended and enhanced may be enhanced in the following manner, so as to support the PUSCH power boosting control parameter configuration extended to multiple TRPs:
  • Each P0-PUSCH-Set-r16 is additionally configured with a "p0-List-r16" for extended P0 indication. That is, the RRC configuration information includes multiple sets of power parameter configurations, and the multiple sets of power parameter configurations are included in the PUSCH power boost parameter configuration set.
  • the DCI field can be enhanced, and based on the extended DCI field, the PUSCH transmit power boost parameters for different TRPs can be jointly indicated.
  • the PUSCH transmission power boosting parameters for different TRPs are jointly indicated by the extended DCI field, which may be one or more TRPs associated with PUSCH transmission through OLPC power code points, and correspond to TRPs The PUSCH power set is associated.
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is related to the PUSCH power set corresponding to the TRPs Refer to Table 2 and Table 3 for the schematic corresponding relationship of the connection.
  • FIG. 5 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S41 the first indication information is sent based on the TPC.
  • the TPC may be used to indicate a power adjustment value corresponding to one or more TRPs.
  • the network device may also send a TPC command indicating whether to calculate based on accumulation.
  • the indication information for indicating whether the power adjustment value indicated by the TPC uses cumulative calculation may be referred to as second indication information.
  • FIG. 6 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S51 second indication information is sent, where the second indication information is used to indicate whether the power adjustment value indicated by the TPC uses cumulative calculation.
  • the open-loop power control method for the uplink PUSCH indicates the power adjustment value corresponding to one or more TRPs through the TPC field extended based on the multi-TRP. Further, each TPC domain extends the power adjustment indication range, and it may be determined whether the power adjustment value indicated by the TPC uses the accumulatively calculated adjustment parameter based on the control parameter indicated by the second indication information.
  • the second indication information may be used to indicate a TPC command based on cumulative calculation.
  • the terminal determines the adjustment parameters based on the accumulated calculated TPC commands.
  • the second indication information may also be used to indicate a TPC command based on non-accumulation calculation.
  • the terminal determines the adjustment parameters based on the TPC commands that are not cumulatively calculated. Wherein, whether the TPC command based on the accumulation calculation is indicated by the high layer signaling.
  • TPC parameters controlled by different TRPs may use independently indicated TPC control fields, or may use jointly indicated TPC control fields.
  • the independent control indication fields are shown in Table 5 below, and the indication meaning of each TPC corresponds to the same table definition.
  • the open-loop power control method for the uplink PUSCH realizes the power boosting control of different TRPs respectively controlling the OLPC for the uplink PUSCH through the design enhancement of high-level signaling and DCI commands, and solves the conflict between the URLLC service and the eMBB service. Time interference control to ensure high reliability of URLLC services.
  • the embodiments of the present disclosure also provide an open-loop power control method for uplink PUSCH, and the open-loop power control method for uplink PUSCH can be performed by a terminal.
  • FIG. 7 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S61 in response to the terminal being configured with OLPC parameters, and the OLPC parameters include power boosting parameters corresponding to one or more TRPs, first indication information is received.
  • the first indication information is used to indicate a power boosting parameter used when multiple TRPs cooperate to transmit the PUSCH, wherein the power boosting parameter used when sending the PUSCH corresponds to different cooperative TRPs that transmit the PUSCH.
  • step S62 based on the first indication information, a power boosting parameter used when transmitting the PUSCH based on multi-TRP coordination is determined.
  • the OLPC parameters may be determined based on RRC configuration information, where the RRC configuration information is used to configure respective power boost parameters for PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support the configuration of PUSCH power boosting control parameters extended to multiple TRPs: multiple PUSCH power boosting parameter configuration sets, and different PUSCH power boosting parameter configuration sets in the multiple PUSCH power boosting parameter configuration sets.
  • the PUSCH power boost parameter configuration set corresponds to different SRS resource sets; the SRI resource set identifier, the PUSCH power boost parameter configuration set is identified by the SRI resource set, and establishes a corresponding relationship with the SRS resource set; multiple sets of power parameter configurations, the multiple sets of power parameter configurations include In the PUSCH power boost parameter configuration set.
  • FIG. 8 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S71 the first indication information is received through the DCI.
  • the DCI includes a first indication field and a second indication field; the first indication field is used to indicate the PUSCH transmission power boost parameter for the first TRP, and the second indication field is used to indicate the PUSCH for the second TRP. Transmit power boost parameters.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating in the corresponding power parameter set.
  • the power parameter sets indicated in the first indication field or the second indication field are associated with each other.
  • PUSCH transmit power boost parameter in the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with transmitting PUSCH, and is associated with a PUSCH power set corresponding to the TRP.
  • FIG. 9 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S81 the first indication information is received based on the TPC.
  • the TPC is used to indicate the corresponding power adjustment value of one or more TRPs.
  • FIG. 10 is a flowchart of an open-loop power control method for uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control method for uplink PUSCH includes the following steps:
  • step S91 second indication information is received, where the second indication information is used to indicate whether the power adjustment value indicated by the TPC uses cumulative calculation.
  • the open-loop power control method for the uplink PUSCH performed by the terminal in the embodiment of the present disclosure is similar to the open-loop power control method for the uplink PUSCH performed by the network device.
  • the description of the open-loop power control method for the uplink PUSCH is not detailed enough, you can refer to the open-loop power control method for the uplink PUSCH performed by the network device in the above embodiment.
  • the open-loop power control method for the uplink PUSCH provided by the embodiments of the present disclosure can also be applied to an implementation process in which the terminal and the network device interact to realize the open-loop power control of the uplink PUSCH.
  • the network device and the terminal respectively have the relevant functions involved in performing the above-mentioned embodiments, which are not described in detail here.
  • an embodiment of the present disclosure also provides an open-loop power control apparatus for an uplink PUSCH.
  • the apparatus for open-loop power control of the uplink PUSCH provided by the embodiments of the present disclosure includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • FIG. 11 is a block diagram of an apparatus for open-loop power control of an uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control apparatus 100 for the uplink PUSCH includes a processing unit 101 and a sending unit 102 .
  • the processing unit 101 is configured to configure and determine open-loop power control OLPC parameters required by the terminal, where the OLPC parameters include power boosting parameters corresponding to one or more TRPs.
  • a sending unit 102 configured to send first indication information, where the first indication information is used to indicate a power boost parameter used when multiple TRPs cooperate to send a PUSCH, wherein the power boost parameter used when sending the PUSCH is the same as a different cooperative TRP that sends the PUSCH Corresponding.
  • the processing unit 101 is configured to: determine the OLPC parameter based on the radio resource control RRC configuration information.
  • the RRC configuration information is used to configure respective power boosting parameters for PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support PUSCH power boosting control parameter configuration extended to multiple TRPs:
  • the SRI resource set identifier, the PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier. Multiple sets of power parameter configurations are included in the PUSCH power boost parameter configuration set.
  • the sending unit 102 sends the first indication information through downlink control information DCI.
  • the DCI includes a first indication field and a second indication field.
  • the first indication field is used to indicate the PUSCH transmit power boost parameter for the first TRP
  • the second indication field is used to indicate the PUSCH transmit power boost parameter for the second TRP.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating in the corresponding power parameter set.
  • the power parameter sets indicated in the first indication field or the second indication field are associated with each other.
  • PUSCH transmit power boost parameter in the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is associated with a PUSCH power set corresponding to the TRP.
  • the sending unit 102 sends the first indication information based on the power control indication information.
  • the power control indication information is used to indicate the power adjustment value corresponding to one or more TRPs.
  • the sending unit 102 is further configured to: send second indication information, where the second indication information is used to indicate whether the power adjustment value indicated by the power control indication information uses cumulative calculation.
  • FIG. 12 is a block diagram of an apparatus for open-loop power control of an uplink PUSCH according to an exemplary embodiment.
  • the open-loop power control apparatus 200 for the uplink PUSCH includes a receiving unit 201 and a processing unit 202 .
  • the receiving unit 201 is configured to receive first indication information when the terminal is configured with open-loop power control OLPC parameters, where the OLPC parameters include power boost parameters corresponding to one or more transmission and reception points TRP, and the first indication information is used to indicate multiple A power boost parameter used when the TRP cooperates to transmit the PUSCH, wherein the power boost parameter used when the PUSCH is sent corresponds to different coordinated TRPs for sending the PUSCH.
  • the processing unit 202 is configured to determine, based on the first indication information, a power boosting parameter used when the PUSCH is transmitted based on the multi-TRP coordination.
  • the OLPC parameters are determined based on the radio resource control RRC configuration information.
  • the RRC configuration information is used to configure respective power boosting parameters for PUSCH sent for different TRPs.
  • the RRC configuration information includes at least one of the following messages, and is used to support the configuration of PUSCH power boosting control parameters extended to multiple TRPs: multiple PUSCH power boosting parameter configuration sets, and different PUSCH power boosting parameter configuration sets in the multiple PUSCH power boosting parameter configuration sets.
  • the PUSCH power boost parameter configuration sets correspond to different SRS resource sets.
  • the SRI resource set identifier, the PUSCH power boost parameter configuration set establishes a corresponding relationship with the SRS resource set through the SRI resource set identifier. Multiple sets of power parameter configurations are included in the PUSCH power boost parameter configuration set.
  • the receiving unit 201 receives the first indication information through downlink control information DCI.
  • the DCI includes a first indication field and a second indication field
  • the first indication field is used to indicate the PUSCH transmit power boost parameter for the first TRP
  • the second indication field is used to indicate the PUSCH transmit power boost parameter for the second TRP.
  • the PUSCH transmission power boosting parameters in the TRP transmission direction are obtained by associating in the corresponding power parameter set.
  • the power parameter sets indicated in the first indication field or the second indication field are associated with each other.
  • PUSCH transmit power boost parameter in the TRP transmit direction.
  • the DCI includes an OLPC power code point
  • the OLPC power code point corresponds to one or more TRPs associated with PUSCH transmission, and is associated with a PUSCH power set corresponding to the TRP.
  • the receiving unit 201 receives the first indication information based on the power control indication information.
  • the power control indication information is used to indicate the power adjustment value corresponding to one or more TRPs.
  • the receiving unit 201 is further configured to receive second indication information, where the second indication information is used to indicate whether the power adjustment value indicated by the power control indication information uses cumulative calculation.
  • FIG. 13 is a block diagram of an apparatus for open-loop power control of uplink PUSCH according to an exemplary embodiment.
  • apparatus 300 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • apparatus 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and Communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to perform all or some of the steps of the methods described above. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • Memory 304 is configured to store various types of data to support operations at device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like. Memory 304 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to device 300 .
  • Multimedia component 308 includes screens that provide an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front-facing camera and/or a rear-facing camera. When the apparatus 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 310 is configured to output and/or input audio signals.
  • audio component 310 includes a microphone (MIC) that is configured to receive external audio signals when device 300 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 304 or transmitted via communication component 316 .
  • audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing status assessment of various aspects of device 300 .
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor assembly 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the orientation or acceleration/deceleration of the device 300 and the temperature change of the device 300 .
  • Sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 316 is configured to facilitate wired or wireless communication between apparatus 300 and other devices.
  • Device 300 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 304 including instructions, executable by the processor 320 of the apparatus 300 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 14 is a block diagram of an apparatus for open-loop power control of uplink PUSCH according to an exemplary embodiment.
  • apparatus 400 may be provided as a network device.
  • apparatus 400 includes a processing component 422, which further includes one or more processors, and a memory resource, represented by memory 432, for storing instructions executable by processing component 422, such as an application program.
  • An application program stored in memory 432 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above-described methods.
  • Device 400 may also include a power supply assembly 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input output (I/O) interface 458 .
  • Device 400 may operate based on an operating system stored in memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-transitory computer-readable storage medium including instructions such as a memory 432 including instructions, executable by the processing component 422 of the apparatus 400 to perform the method described above is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • first, second, etc. are used to describe various information, but the information should not be limited by these terms. These terms are only used to distinguish the same type of information from one another, and do not imply a particular order or level of importance. In fact, the expressions “first”, “second” etc. are used completely interchangeably. For example, first information may also be referred to as second information, and similarly, second information may also be referred to as first information, without departing from the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种上行PUSCH的开环功率控制方法、装置及存储介质。上行PUSCH的开环功率控制方法,包括:配置并确定终端所需的开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个TRP的功率提升参数;发送第一指示信息,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。通过本公开可以实现针对多TRP传输PUSCH的功率提升参数进行调整。

Description

上行PUSCH的开环功率控制方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种上行PUSCH的开环功率控制方法、装置及存储介质。
背景技术
随着通信技术的发展,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。当网络设备(例如基站)有多个发送接收点(Transmission Reception Point,TRP)时,可以使用多个TRP(Multi-TRP)/多面板(PANEL)为终端提供服务。网络设备多TRP/PANEL的应用主要为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,用不同的方式在多个TRP/PANEL间协作传输数据。从网络形态角度考虑,以大量的分布式接入点加基带集中处理的方式进行网络部署将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。利用多个TRP/PANEL之间的协作,从多个角度的多个波束进行信道的传输/接收,可以更好的克服各种遮挡/阻挡效应,保障链路连接的鲁棒性,适合超可靠低延时通信(Ultra Reliable Low Latency Communication,URLLC)业务提升传输质量和满足可靠性要求。
在R16研究阶段,基于下行多TRP/PANEL间的多点协作传输技术的应用,对物理下行共享信道(physical downlink shared channel,PDSCH)进行了传输增强。由于数据传输包括上下行信道的调度反馈。因此在URLLC的研究中,只对下行数据信道增强不能保证业务性能。因此在R17的研究中,继续对下行控制信道(physical downlink control channel,PDCCH)以及上行控制信道(physical uplink control channel,PUCCH)和上行共享信道(physical uplink shared channel,PUSCH)进行增强。
在通信系统中,存在有不同优先级、时延需求或者可靠性要求的数据业务,比如对时延和可靠性都有极高要求的URLLC业务,和对时延和可靠性要求相对较低的增强移动宽带(Enhanced Mobile Broadband,eMBB)业务。通常情况下URLLC会采用更短的传输时间间隔进行调度,且URLLC业务具有突发性和随机性,在资源分布上呈现出零散特性,其资源利用率较低,因此考虑和eMBB传输进行复用,以提升资源的利用率。与下行传输不同的是,某个终端在发送上行数据时并不能确定业务数据的传输资源是否与其他终端传输的不同优先级的业务有重叠。为了保证URLLC业务传输的可靠性,R16在调度下行控制信息(downlink control information,DCI)中引入了开环功率控制参数集合指示(Open-loop power control parameter set indication)来指示针对调度PUSCH的功率提升(power  boosting)指示功能,引入了新的无线资源控制(Radio Resource Control,RRC)参数:P0-PUSCH-Set,以用于指示功率控制。相关技术中,每一个探测参考信号(Sounding Reference Signal,SRS)资源指示(SRS Resource indication,SRI)都对应一个开环功控的P0-PUSCH-Set参数,并通过Open-loop power control parameter set indication来进行指示。
对于R17基于多TRP/PANEL的PUSCH增强中,PUSCH的传输场景会出现基于multi-TRP发送的URLLC业务,在不同的TRP上与eMBB业务发生冲突情况,即网络设备侧两个TRP接收的冲突干扰情况不同。如何对多TRP进行开环功率控制(Open-loop power control,OLPC)的功率提升(power boosting)机制进行增强,是需要研究的课题。
发明内容
为克服相关技术中存在的问题,本公开提供一种上行PUSCH的开环功率控制方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种上行PUSCH的开环功率控制方法,应用于网络设备,所述上行PUSCH的开环功率控制方法包括:
配置并确定终端所需的开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个TRP的功率提升参数;发送第一指示信息,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
一种实施方式中,所述确定OLPC参数,包括:
基于无线资源控制RRC配置信息,确定OLPC参数;所述RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,所述RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:
多个PUSCH功率提升参数配置集合,所述多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系;多组功率参数配置,所述多组功率参数配置包含在PUSCH功率提升参数配置集合中。
一种实施方式中,所述发送第一指示信息,包括:
通过下行控制信息DCI发送第一指示信息。
一种实施方式中,所述DCI中包括第一指示域和第二指示域
所述第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,所述DCI中包括OLPC功率码点,所述OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与所述TRP对应的PUSCH功率集合相关联
一种实施方式中,所述发送第一指示信息,包括:基于功率控制指示信息,发送第一指示信息。
一种实施方式中,所述功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
一种实施方式中,所述上行PUSCH的开环功率控制方法还包括:
发送第二指示信息,所述第二指示信息用于指示所述功率控制指示信息所指示的功率调整值是否使用累积计算。
根据本公开实施例第二方面,提供一种上行PUSCH的开环功率控制方法,应用于终端,所述上行PUSCH的开环功率控制方法包括:
响应于终端配置有开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个发送接收点TRP的功率提升参数,接收第一指示信息;所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应;基于所述第一指示信息,确定基于多TRP协作发送PUSCH时所使用的功率提升参数。
一种实施方式中,所述OLPC参数基于无线资源控制RRC配置信息确定;
所述RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,所述RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:多个PUSCH功率提升参数配置集合,所述多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系;多组功率参数配置,所述多组功率参数配置包含在PUSCH功率提升参数配置集合中。
一种实施方式中,所述接收第一指示信息,包括:通过下行控制信息DCI接收第一指示信息。
一种实施方式中,所述DCI中包括第一指示域和第二指示域;
所述第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,所述DCI中包括OLPC功率码点,所述OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与所述TRP对应的PUSCH功率集合相关联。
一种实施方式中,所述接收第一指示信息,包括:
基于功率控制指示信息,接收第一指示信息。
一种实施方式中,所述功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
一种实施方式中,所述上行PUSCH的开环功率控制方法还包括:接收第二指示信息,所述第二指示信息用于指示所述功率控制指示信息所指示的功率调整值是否使用累积计算。
根据本公开实施例第三方面,提供一种上行PUSCH的开环功率控制装置,所述上行PUSCH的开环功率控制装置包括:
处理单元,用于配置并确定终端所需的开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个TRP的功率提升参数;
发送单元,用于发送第一指示信息,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
一种实施方式中,所述处理单元被配置为:基于无线资源控制RRC配置信息,确定OLPC参数;所述RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,所述RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:
多个PUSCH功率提升参数配置集合,所述多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系;多组功率参数配置,所述多组功率参数配置包含在PUSCH功率提升参数配置集合中。
一种实施方式中,所述发送单元通过下行控制信息DCI发送第一指示信息。
一种实施方式中,所述DCI中包括第一指示域和第二指示域;
所述第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,所述DCI中包括OLPC功率码点,所述OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与所述TRP对应的PUSCH功率集合相关联。
一种实施方式中,所述发送单元基于功率控制指示信息,发送第一指示信息。
一种实施方式中,所述功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
一种实施方式中,所述发送单元还被配置为:发送第二指示信息,所述第二指示信息用于指示所述功率控制指示信息所指示的功率调整值是否使用累积计算。
根据本公开实施例第四方面,提供一种上行PUSCH的开环功率控制装置,所述功率控制装置包括:
接收单元,用于在终端配置有开环功率控制OLPC参数情况下接收第一指示信息,所述OLPC参数中包括对应一个或多个发送接收点TRP的功率提升参数,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。处理单元,被配置为基于所述第一指示信息,确定基于多TRP协作发送PUSCH时所使用的功率提升参数。
一种实施方式中,所述OLPC参数基于无线资源控制RRC配置信息确定;所述RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,所述RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:多个PUSCH功率提升参数配置集合,所述多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系;多组功率参数配置,所述多组功率参数配置包含在PUSCH功率提升参数配置集合中。
一种实施方式中,所述接收单元通过下行控制信息DCI接收第一指示信息。
一种实施方式中,所述DCI中包括第一指示域和第二指示域
所述第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于所述DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,所述DCI中包括OLPC功率码点,所述OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与所述TRP对应的PUSCH功率集合相关联。
一种实施方式中,所述接收单元基于功率控制指示信息,接收第一指示信息。
一种实施方式中,所述功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
一种实施方式中,所述接收单元还用于接收第二指示信息,所述第二指示信息用于指示所述功率控制指示信息所指示的功率调整值是否使用累积计算。
根据本公开实施例第五方面,提供一种上行PUSCH的开环功率控制装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的上行PUSCH的开环功率控制方法。
根据本公开实施例第六方面,提供一种上行PUSCH的开环功率控制装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的上行PUSCH的开环功率控制方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得所述网络设备能够执行第一方面或者第一方面任意一种实施方式中所述的上行PUSCH的开环功率控制方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得所述终端能够执行第二方面或者第二方面任意一种实施方式中所述的上行PUSCH的开环功率控制方法。
本公开的实施例提供的技术方案可以包括以下有益效果:在终端配置有包括一个或多个TRP功率提升参数的OLPC参数的情况下,网络设备发送第一指示信息,以指示多TRP协作发送PUSCH时所使用的功率提升参数。其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应,故通过本公开可以实现针对多TRP传输PUSCH的功率提升参数进行调整。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图3是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图4是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图5是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图6是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图8是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图9是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图10是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图。
图11是根据一示例性实施例示出的一种上行PUSCH的开环功率控制装置框图。
图12是根据一示例性实施例示出的一种上行PUSCH的开环功率控制装置框图。
图13是根据一示例性实施例示出的一种用于上行PUSCH的开环功率控制的装置的框 图。
图14是根据一示例性实施例示出的一种用于上行PUSCH的开环功率控制的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的上行PUSCH的开环功率控制方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。其中,网络设备与终端之间基于波束进行数据传输。其中,网络设备与终端之间可以基于Multi-TRP进行PUSCH上行传输的增强。
可以理解的是,网络设备基于Multi-TRP与终端进行数据传输的TRP数量可以为一个或多个。图1所示的无线通信系统中网络设备基于TRP1和TRP2与终端1和终端2进行数据传输仅是进行示意性说明,并不引以为限。
进一步可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity, WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、客户前置设备(Customer Premise Equipment,CPE),口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开中网络设备与终端之间可以进行开环功率控制。R16在调度DCI中引入了Open-loop power control parameter set indication来指示针对调度PUSCH的power boosting指示功能,引入了新的RRC参数P0-PUSCH-Set用于指示功率控制,每一个SRI都对应一个开环功控的P0-PUSCH-Set参数,并通过开环控制参数指示域(Open-loop power control parameter set indication)来进行指示。
其中,网络设备通过高层信令p0-PUSCH-SetList-r16通知终端是否有功率控制参数指示域。当没有配置高层参数p0-PUSCH-SetList-r16时,开环功率控制参数指示域为0比特,即开环功率控制参数指示域不存在,终端根据原Rel-15的机制从P0-PUSCH-AlphaSet获得P0。当配置有高层参数p0-PUSCH-SetList-r16时,开环功率控制参数指示域可以通过高层信令配置为1比特或者2比特,其中:
1)当DCI中存在SRI指示域时,开环功率控制参数指示域配置为1比特。
2)当DCI中不存在SRI指示域时,开环功率控制参数指示域可根据高层信令配置为1比特或者2比特。
3)针对上述DCI中存在SRI指示域的场景,若开环功率控制参数指示域信息为“0”,则依然沿用Rel-15的机制根据SRI指示从P0-PUSCH-AlphaSet获得P0。若开环功率控制参数指示域信息为“1”,则终端根据SRI指示从用于功率提升的开环参数集合P0-PUSCH-Set中获得P0。
针对DCI中不存在SRI域的场景,RAN1#99会议通过了DCI中开环功率控制的指示域可以配置为1比特或者2比特,P0-PUSCH-Set参数最多可以配置两个P0值。
本公开实施例中上行PUSCH的开环功率控制方法应用的场景为终端进行通信过程中发生业务冲突进行功率控制参数调整的场景。例如,图1中,终端1进行URLLC业务和eMBB业务,终端2进行eMBB业务。本公开实施例的出发点为应用于当同时配置有eMBB和URLLC业务的终端1与配置了eMBB业务的终端2发生冲突时,终端1需三个不同的开环功率等级用于eMBB和URLLC的功率提升,分别为:1)用于eMBB的baseline P0,从P0-PUSCH-AlphaSet获取;2)higher P0,用于没有与eMBB发生冲突的URLLC业务的功率提升;3)highest P0,用于与eMBB发生冲突的URLLC PUSCH。
为了更清晰地描述终端如何根据高层参数和DCI指示来确定P0,可以参阅表1所示。表1示出了终端如何根据高层参数和DCI指示来确定P0。
表1
Figure PCTCN2021084744-appb-000001
相关技术中,网络设备和终端之间基于波束进行数据传输。R17中,网络设备与终端之间可以基于Multi-TRP进行PUSCH上行传输的增强。对于基于multi-TRP的PUSCH增强方案中,PUSCH的传输场景也会出现基于multi-TRP发送的URLLC业务在不同的TRP,与eMBB业务冲突的情况。即,网络设备的两个TRP接收的冲突干扰情况不同,按照目前调整方式,由于出现冲突的调度PUSCH对应一个开环功率的功率提升调整参数,并且终端并不确定是哪个TRP上的资源出现冲突。因此只能同时在两个不同的TRP发送方向上基于该同一个开环功率的功率提升参数进行开环功率的调整,这样会导致终端浪费宝贵的发送功率,直接加大对其他用户的干扰,造成降低系统性能的问题。因此。需要对OLPC的power boosting机制进行增强。
本公开实施例提供一种上行PUSCH的开环功率控制方法,在该上行PUSCH的开环功率控制方法中,为终端配置对应一个或多个TRP的功率提升参数,并指示多TRP协作发送PUSCH时所使用的功率提升参数,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应,以实现增强的上行PUSCH的开环功率控制方法。
本公开实施例为描述方便,将用于指示多TRP协作发送PUSCH时所使用功率提升参数的指示信息称为第一指示信息。
图2是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,如图2所示,上行PUSCH的开环功率控制方法包括以下步骤。
在步骤S11中,配置并确定终端所需的OLPC参数,OLPC参数中包括对应一个或多个TRP的功率提升参数。
在步骤S12中,发送第一指示信息,第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数。其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
本公开实施例提供的上行PUSCH的开环功率控制方法,配置终端所需的OLPC参数,该OLPC参数,OLPC参数中包括对应一个或多个TRP的功率提升参数,并通过第一指示信息指示多TRP协作发送PUSCH时所使用的功率提升参数,实现发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应,进而对多TRP的功率提升参数进行了增强,对于多TRP的使用开环功率控制参数进行扩展增强以进行功率提升,实现了对OLPC的power boosting机制进行增强。
本公开实施例提供的上行PUSCH的开环功率控制方法,一种实施方式中可以通过增强OLPC的功率提升功率参数的RRC配置,以支持为面向不同的TRP发送的PUSCH配置不同的功率提升参数。
图3是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图3所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S21中,基于RRC配置信息,确定OLPC参数。其中,RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
本公开实施例提供的上行PUSCH的开环功率控制方法中,扩展增强的RRC配置信息可以采用如下至少一种方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置。
方式一:增加一个PUSCH功率提升参数配置(p0-PUSCH-SetList-r16)集合配置,分别对应不同的SRS resource set。其中,此种情况下,对应的RRC配置信息中包括有多个PUSCH功率提升参数配置集合,多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合。
方式二:在每个P0-PUSCH-Set-r16增加配置一个SRI资源集合标识(sri-resource-setId),用于指示具体的SRS resource set。即,RRC配置信息中包括有SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系。
方式三:在每个P0-PUSCH-Set-r16增加配置一个“p0-List-r16”,用于扩展的P0指示。即,RRC配置信息中包括有多组功率参数配置,多组功率参数配置包含在PUSCH功率提升参数配置集合中。
本公开实施例提供的上行PUSCH的开环功率控制方法中,需要增强DCI中的OLPC的功率指示,以支持为面向不同的TRP发送的PUSCH分别指示不同的功率提升参数。即,本公开实施例中,网络设备可以通过DCI发送第一指示信息。
图4是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图4所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S31中,基于DCI发送第一指示信息。
本公开实施例提供的上行PUSCH的开环功率控制方法中,可以扩展DCI域,基于扩展的DCI域独立指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中将DCI中用于独立指示面向不同TRP PUSCH发送功率提升参数的DCI域称为第一指示域和第二指示域。其中,第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
本公开实施例提供的上行PUSCH的功率控制方法,若DCI中包括有指示面向不同TRP发送的SRI指示信息,则可以扩展1比特指示域,每一指示域分别用于指示是否指示功率提升参数。即,针对发送PUSCH的不同协作TRP,分别在DCI的第一指示域或第二指示 域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
本公开实施例提供的上行PUSCH的功率控制方法,若DCI中不存在指示对应面向不同TRP发送的SRI指示信息,则针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。即,在DCI中不存在SRI域的情况下,可以扩展1比特指示域或2比特指示域,每个指示域分别用于指示是否指示功率提升参数,并用于指示具体使用哪个指示功率提升参数。
进一步的,本公开实施例中第一指示域和/或第二指示域指示的开环功率参数集合可以是Rel-15的机制中的P0-PUSCH-AlphaSet,也可以是R-16机制中的p0-PUSCH-SetList-r16。
本公开实施例提供的上行PUSCH的开环功率控制方法中,可以扩展DCI域,基于扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数。
一示例中,本公开实施例中通过扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数,可以是通过OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。
一示例中,本公开实施例中若DCI中包括有指示面向不同TRP发送的SRI指示信息,OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联的示意性对应关系可参阅如下表2和表3。
其中,表2示出了DCI中包括有指示面向不同TRP发送的SRI指示信息,通过2比特指示OLPC功率码点与PUSCH发送关联的TRP之间的对应关系。
表2
Figure PCTCN2021084744-appb-000002
Figure PCTCN2021084744-appb-000003
表3
Figure PCTCN2021084744-appb-000004
Figure PCTCN2021084744-appb-000005
其中,表3示出了DCI中包括有指示面向不同TRP发送的SRI指示信息,通过3比特指示OLPC功率码点与PUSCH发送关联的TRP之间的对应关系。
可以理解的是,本公开实施例中表2和表3所示,通过引入2个P0值的支持,增加了终端同时配置有eMBB和URLLC业务与eMBB终端发生冲突时的功率控制提升。进一步的,本公开实施例中表2和表3所示出的OLPC功率码点与PUSCH发送关联的TRP之间的对应关系仅是进行示意性说明,并不引以为限,还可以是其他的对应关系。
一示例中,本公开实施例中若DCI中不存在指示面向不同TRP发送的SRI指示信息,OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联的示意性对应关系可参阅如下表4。
表4
Figure PCTCN2021084744-appb-000006
Figure PCTCN2021084744-appb-000007
其中,表4示出了DCI中不存在指示面向不同TRP发送的SRI指示信息,通过3比特指示OLPC功率码点与PUSCH发送关联的TRP之间的对应关系。
可以理解的是,本公开实施例中表3所示出的OLPC功率码点与PUSCH发送关联的TRP之间的对应关系仅是进行示意性说明,并不引以为限,还可以是其他的对应关系。
本公开实施例提供的上行PUSCH的开环功率控制方法中,另一种实施方式中,可以通过扩展发射功率控制(Transmit Power Control,TPC)指示信息,指示多TRP协作发送PUSCH时所使用的功率提升参数。即,本公开实施例中可以基于TPC发送第一指示信息。
本公开实施例提供的一个上行PUSCH的开环功率控制方法中,首先需要扩展增强的RRC配置信息可以采用如下方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置:增加一个PUSCH功率提升参数配置(p0-PUSCH-SetList-r16)集合配置, 分别对应不同的SRS resource set。其中,此种情况下,对应的RRC配置信息中包括有多个PUSCH功率提升参数配置集合,多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合。
其次,可以增强DCI域,基于扩展的DCI域独立指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中将DCI中用于独立指示面向不同TRP PUSCH发送功率提升参数的DCI域称为第一指示域和第二指示域。其中,第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。若DCI中包括有指示面向不同TRP发送的SRI指示信息,则可以扩展1比特指示域,每一指示域分别用于指示是否指示功率提升参数。即,针对发送PUSCH的不同协作TRP,分别在DCI的第一指示域或第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。若DCI中不存在指示对应面向不同TRP发送的SRI指示信息,则针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。即,在DCI中不存在SRI域的情况下,可以扩展1比特指示域或2比特指示域,每个指示域分别用于指示是否指示功率提升参数,并用于指示具体使用哪个指示功率提升参数。
本公开实施例提供的另外一个上行PUSCH的开环功率控制方法中,首先需要扩展增强的RRC配置信息可以采用如下方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置:增加一个PUSCH功率提升参数配置(p0-PUSCH-SetList-r16)集合配置,分别对应不同的SRS resource set。其中,此种情况下,对应的RRC配置信息中包括有多个PUSCH功率提升参数配置集合,多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合。
其次,可以增强DCI域,基于扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中通过扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数,可以是通过OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。一示例中,本公开实施例中若DCI中包括有指示面向不同TRP发送的SRI指示信息,OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联的示意性对应关系可参阅如表2和表3。
本公开实施例提供的一个上行PUSCH的开环功率控制方法中,首先需要扩展增强的RRC配置信息可以采用如下方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置:在每个P0-PUSCH-Set-r16增加配置一个SRI资源集合标识(sri-resource-setId),用于指示具体的SRS resource set。即,RRC配置信息中包括有SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系。
其次,可以增强DCI域,基于扩展的DCI域独立指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中将DCI中用于独立指示面向不同TRP PUSCH发送功率提升参数的DCI域称为第一指示域和第二指示域。其中,第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。若DCI中包括有指示面向不同TRP发送的SRI指示信息,则可以扩展1比特指示域,每一指示域分别用于指示是否指示功率提升参数。即,针对发送PUSCH的不同协作TRP,分别在DCI的第一指示域或第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。若DCI中不存在指示对应面向不同TRP发送的SRI指示信息,则针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。即,在DCI中不存在SRI域的情况下,可以扩展1比特指示域或2比特指示域,每个指示域分别用于指示是否指示功率提升参数,并用于指示具体使用哪个指示功率提升参数。
本公开实施例提供的另外一个上行PUSCH的开环功率控制方法中,首先需要扩展增强的RRC配置信息可以采用如下方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置:在每个P0-PUSCH-Set-r16增加配置一个SRI资源集合标识(sri-resource-setId),用于指示具体的SRS resource set。即,RRC配置信息中包括有SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系。
其次,可以增强DCI域,基于扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中通过扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数,可以是通过OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。一示例中,本公开实施例中若DCI中包括有指示面向不同TRP发送的SRI指示信息,OLPC功率码点与PUSCH发送关 联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联的示意性对应关系可参阅如表2和表3。
本公开实施例提供的一个上行PUSCH的开环功率控制方法中,首先需要扩展增强的RRC配置信息可以采用如下方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置:在每个P0-PUSCH-Set-r16增加配置一个“p0-List-r16”,用于扩展的P0指示。即,RRC配置信息中包括有多组功率参数配置,多组功率参数配置包含在PUSCH功率提升参数配置集合中。
其次,可以增强DCI域,基于扩展的DCI域独立指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中将DCI中用于独立指示面向不同TRP PUSCH发送功率提升参数的DCI域称为第一指示域和第二指示域。其中,第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。若DCI中包括有指示面向不同TRP发送的SRI指示信息,则可以扩展1比特指示域,每一指示域分别用于指示是否指示功率提升参数。即,针对发送PUSCH的不同协作TRP,分别在DCI的第一指示域或第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。若DCI中不存在指示对应面向不同TRP发送的SRI指示信息,则针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。即,在DCI中不存在SRI域的情况下,可以扩展1比特指示域或2比特指示域,每个指示域分别用于指示是否指示功率提升参数,并用于指示具体使用哪个指示功率提升参数。
本公开实施例提供的另外一个上行PUSCH的开环功率控制方法中,首先需要扩展增强的RRC配置信息可以采用如下方式进行增强,以用于支持扩展到多TRP的PUSCH功率提升控制参数配置:在每个P0-PUSCH-Set-r16增加配置一个“p0-List-r16”,用于扩展的P0指示。即,RRC配置信息中包括有多组功率参数配置,多组功率参数配置包含在PUSCH功率提升参数配置集合中。
其次,可以增强DCI域,基于扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数。一示例中,本公开实施例中通过扩展的DCI域联合指示面向不同TRP的PUSCH发送功率提升参数,可以是通过OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。一示例中,本公开实施例中若 DCI中包括有指示面向不同TRP发送的SRI指示信息,OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联的示意性对应关系可参阅如表2和表3。
图5是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图5所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S41中,基于TPC发送第一指示信息。
本公开实施例提供的上行PUSCH的开环功率控制方法中,TPC可用于指示一个或多个TRP各自对应的功率调整值。
进一步的,本公开实施例中,网络设备还可以发送指示是否基于累积计算的TPC命令。
本公开实施例中为描述方便,可以将用于指示TPC所指示的功率调整值是否使用累积计算的指示信息称为第二指示信息。
图6是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图6所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S51中,发送第二指示信息,第二指示信息用于指示TPC所指示的功率调整值是否使用累积计算。
本公开实施例提供的上行PUSCH的开环功率控制方法,通过基于multi-TRP扩展的TPC域指示一个或多个TRP各自对应的功率调整值。进一步的,每个TPC域扩展功率调整指示范围,可以分别基于第二指示信息所指示的控制参数,确定TPC所指示的功率调整值是否使用累积计算的调整参数。其中,第二指示信息可以是用于指示基于累积计算的TPC命令。终端基于累积计算的TPC命令确定调整参数。第二指示信息也可以是用于指示基于不累积计算的TPC命令。终端基于不累积计算的TPC命令确定调整参数。其中,是否基于累积计算的TPC命令是由高层信令指示的。
本公开实施例中,不同的TRP控制的TPC参数可以使用独立指示的TPC控制域,也可以使用联合指示的TPC控制域。独立的控制指示域如下表5所示,每个TPC的指示含义都对应相同的表格释义。
表5
Figure PCTCN2021084744-appb-000008
Figure PCTCN2021084744-appb-000009
本公开实施例提供的上行PUSCH的开环功率控制方法,对于上行PUSCH通过高层信令和DCI命令的设计增强来实现对不同的TRP分别控制OLPC的功率提升控制,解决了URLLC业务和eMBB业务冲突时的干扰控制,保证URLLC业务的高可靠性。
基于相同的构思,本公开实施例还提供了一种上行PUSCH的开环功率控制方法,该上行PUSCH的开环功率控制方法可以由终端执行。
图7是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图7所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S61中,响应于终端配置有OLPC参数,且OLPC参数中包括对应一个或多个TRP的功率提升参数,接收第一指示信息。
其中,第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
在步骤S62中,基于第一指示信息,确定基于多TRP协作发送PUSCH时所使用的功率提升参数。
本公开实施例提供的上行PUSCH的开环功率控制方法中,OLPC参数可以是基于RRC配置信息确定的,该RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:多个PUSCH功率提升参数配置集合,多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;SRI资源集合标识,PUSCH功率提升参数配置集合通过SRI资源集合标识,与SRS资源集合建立对应关系;多组功率参数配置,多组功率参数配置包含在PUSCH功率提升参数配置集合中。
图8是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图8所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S71中,通过DCI接收第一指示信息。
一种实施方式中,DCI中包括第一指示域和第二指示域;第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,DCI中包括OLPC功率码点,OLPC功率码点与发送PUSCH所关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。
图9是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图9所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S81中,基于TPC,接收第一指示信息。
一种实施方式中,TPC用于指示一个或多个TRP各自对应的功率调整值。
图10是根据一示例性实施例示出的一种上行PUSCH的开环功率控制方法的流程图,参阅图10所示上行PUSCH的开环功率控制方法包括如下步骤:
在步骤S91中,接收第二指示信息,第二指示信息用于指示TPC所指示的功率调整值是否使用累积计算。
可以理解的是,本公开实施例中由终端执行的上行PUSCH的开环功率控制方法,与网络设备执行的上行PUSCH的开环功率控制方法具有相似之处,故对于本公开实施例中终端执行的上行PUSCH的开环功率控制方法描述不够详尽的地方,可以参阅上述实施例中网络设备执行的上行PUSCH的开环功率控制方法。
进一步可以理解的是,本公开实施例提供的上行PUSCH的开环功率控制方法也可以应用于终端和网络设备交互实现上行PUSCH的开环功率控制的实施过程。对于网络设备和终端交互实现上行PUSCH的开环功率控制的过程中,网络设备和终端分别具备执行上述实施例涉及的相关功能,故在此不再详述。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种上行PUSCH的开环功率控制装置。
可以理解的是,本公开实施例提供的上行PUSCH的开环功率控制装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图11是根据一示例性实施例示出的一种上行PUSCH的开环功率控制装置框图。参照图11,该上行PUSCH的开环功率控制装置100包括处理单元101和发送单元102。
处理单元101,用于配置并确定终端所需的开环功率控制OLPC参数,OLPC参数中包括对应一个或多个TRP的功率提升参数。发送单元102,用于发送第一指示信息,第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
一种实施方式中,处理单元101被配置为:基于无线资源控制RRC配置信息,确定OLPC参数。RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:
多个PUSCH功率提升参数配置集合,多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合。SRI资源集合标识,PUSCH功率提升参数配置集合通过SRI资源集合标识,与SRS资源集合建立对应关系。多组功率参数配置,多组功率参数配置包含在PUSCH功率提升参数配置集合中。
一种实施方式中,发送单元102通过下行控制信息DCI发送第一指示信息。
一种实施方式中,DCI中包括第一指示域和第二指示域。
第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,DCI中包括OLPC功率码点,OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。
一种实施方式中,发送单元102基于功率控制指示信息,发送第一指示信息。
一种实施方式中,功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
一种实施方式中,发送单元102还被配置为:发送第二指示信息,第二指示信息用于指示功率控制指示信息所指示的功率调整值是否使用累积计算。
图12是根据一示例性实施例示出的一种上行PUSCH的开环功率控制装置框图。参照图12,该上行PUSCH的开环功率控制装置200包括接收单元201和处理单元202。
接收单元201,用于在终端配置有开环功率控制OLPC参数情况下接收第一指示信息,OLPC参数中包括对应一个或多个发送接收点TRP的功率提升参数,第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。处理单元202,被配置为基于第一指示信息,确定基于多TRP协作发送PUSCH时所使用的功率提升参数。
一种实施方式中,OLPC参数基于无线资源控制RRC配置信息确定。RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
一种实施方式中,RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:多个PUSCH功率提升参数配置集合,多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合。SRI资源集合标识,PUSCH功率提升参数配置集合通过SRI资源集合标识,与SRS资源集合建立对应关系。多组功率参数配置,多组功率参数配置包含在PUSCH功率提升参数配置集合中。
一种实施方式中,接收单元201通过下行控制信息DCI接收第一指示信息。
一种实施方式中,DCI中包括第一指示域和第二指示域
第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
一种实施方式中,响应于DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
一种实施方式中,响应于DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在第一指示域或第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
一种实施方式中,DCI中包括OLPC功率码点,OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与TRP对应的PUSCH功率集合相关联。
一种实施方式中,接收单元201基于功率控制指示信息,接收第一指示信息。
一种实施方式中,功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
一种实施方式中,接收单元201还用于接收第二指示信息,第二指示信息用于指示功率控制指示信息所指示的功率调整值是否使用累积计算。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图13是根据一示例性实施例示出的一种用于上行PUSCH的开环功率控制的装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消 息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实 施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图14是根据一示例性实施例示出的一种用于上行PUSCH的开环功率控制的装置的框图。例如,装置400可以被提供为一网络设备。参照图14,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应 限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种上行PUSCH的开环功率控制方法,其特征在于,应用于网络设备,所述上行PUSCH的开环功率控制方法包括:
    配置并确定终端所需的开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个TRP的功率提升参数;
    发送第一指示信息,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
  2. 根据权利要求1所述的上行PUSCH的开环功率控制方法,其特征在于,所述确定OLPC参数,包括:
    基于无线资源控制RRC配置信息,确定OLPC参数;
    所述RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
  3. 根据权利要求2所述的上行PUSCH的开环功率控制方法,其特征在于,所述RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制参数配置:
    多个PUSCH功率提升参数配置集合,所述多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;
    SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系;
    多组功率参数配置,所述多组功率参数配置包含在PUSCH功率提升参数配置集合中。
  4. 根据权利要求2或3所述的上行PUSCH的开环功率控制方法,其特征在于,所述发送第一指示信息,包括:
    通过下行控制信息DCI发送第一指示信息。
  5. 根据权利要求4所述的上行PUSCH的开环功率控制方法,其特征在于,所述DCI中包括第一指示域和第二指示域;
    所述第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
  6. 根据权利要求5所述的上行PUSCH的开环功率控制方法,其特征在于,响应于所述DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的开环功率参数集合中,通过该TRP 方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
  7. 根据权利要求5所述的上行PUSCH的开环功率控制方法,其特征在于,响应于所述DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
  8. 根据权利要求4所述的上行PUSCH的开环功率控制方法,其特征在于,所述DCI中包括OLPC功率码点,所述OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与所述TRP对应的PUSCH功率集合相关联。
  9. 根据权利要求1所述的上行PUSCH的开环功率控制方法,其特征在于,所述发送第一指示信息,包括:
    基于扩展的发射功率控制(TPC)指示信息,发送第一指示信息。
  10. 根据权利要求9所述的上行PUSCH的开环功率控制方法,其特征在于,所述功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
  11. 根据权利要求10所述的上行PUSCH的开环功率控制方法,其特征在于,所述上行PUSCH的开环功率控制方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述扩展的发射功率控制指示信息所指示的功率调整值是否使用累积计算。
  12. 一种上行PUSCH的开环功率控制方法,其特征在于,应用于终端,所述上行PUSCH的开环功率控制方法包括:
    响应于终端配置有开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个发送接收点TRP的功率提升参数,接收第一指示信息;
    所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应;
    基于所述第一指示信息,确定基于多TRP协作发送PUSCH时所使用的功率提升参数。
  13. 根据权利要求12所述的上行PUSCH的开环功率控制方法,其特征在于,所述OLPC参数基于无线资源控制RRC配置信息确定;
    所述RRC配置信息用于为面向不同的TRP发送的PUSCH配置各自的功率提升参数。
  14. 根据权利要求13所述的上行PUSCH的开环功率控制方法,其特征在于,所述RRC配置信息包括如下至少一种消息,并用于支持扩展到多TRP的PUSCH功率提升控制 参数配置:
    多个PUSCH功率提升参数配置集合,所述多个PUSCH功率提升参数配置集合中不同PUSCH功率提升参数配置集合对应不同的SRS资源集合;
    SRI资源集合标识,PUSCH功率提升参数配置集合通过所述SRI资源集合标识,与SRS资源集合建立对应关系;
    多组功率参数配置,所述多组功率参数配置包含在PUSCH功率提升参数配置集合中。
  15. 根据权利要求13或14所述的上行PUSCH的开环功率控制方法,其特征在于,所述接收第一指示信息,包括:
    通过下行控制信息DCI接收第一指示信息。
  16. 根据权利要求15所述的上行PUSCH的开环功率控制方法,其特征在于,所述DCI中包括第一指示域和第二指示域;
    所述第一指示域用于指示面向第一TRP的PUSCH发送功率提升参数,第二指示域用于指示面向第二TRP的PUSCH发送功率提升参数。
  17. 根据权利要求16所述的上行PUSCH的开环功率控制方法,其特征在于,响应于所述DCI中指示有对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的开环功率参数集合中,通过该TRP方向上指示的SRI指示信息,在对应功率参数集合中相关联得到该TRP发送方向上的PUSCH发送功率提升参数。
  18. 根据权利要求16所述的上行PUSCH的开环功率控制方法,其特征在于,响应于所述DCI中不存在指示对应面向不同TRP发送的SRI指示信息,针对发送PUSCH的不同协作TRP,分别在所述第一指示域或所述第二指示域指示的功率参数集合中关联有该TRP发送方向的PUSCH发送功率提升参数。
  19. 根据权利要求15所述的上行PUSCH的开环功率控制方法,其特征在于,所述DCI中包括OLPC功率码点,所述OLPC功率码点与PUSCH发送关联的一个或多个TRP相对应,并与所述TRP对应的PUSCH功率集合相关联。
  20. 根据权利要求12所述的上行PUSCH的开环功率控制方法,其特征在于,所述接收第一指示信息,包括:
    基于扩展的发射功率控制(TPC)指示信息,接收第一指示信息。
  21. 根据权利要求20所述的上行PUSCH的开环功率控制方法,其特征在于,所述功率控制指示信息用于指示一个或多个TRP各自对应的功率调整值。
  22. 根据权利要求21所述的上行PUSCH的开环功率控制方法,其特征在于,所述上 行PUSCH的开环功率控制方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述扩展的发射功率控制(TPC)指示信息所指示的功率调整值是否使用累积计算。
  23. 一种上行PUSCH的开环功率控制装置,其特征在于,所述功率控制装置包括:
    处理单元,用于配置并确定终端所需的开环功率控制OLPC参数,所述OLPC参数中包括对应一个或多个TRP的功率提升参数;
    发送单元,用于发送第一指示信息,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应。
  24. 一种上行PUSCH的开环功率控制装置,其特征在于,所述功率控制装置包括:
    接收单元,用于在终端配置有开环功率控制OLPC参数情况下接收第一指示信息,所述OLPC参数中包括对应一个或多个发送接收点TRP的功率提升参数,所述第一指示信息用于指示多TRP协作发送PUSCH时所使用的功率提升参数,其中,发送PUSCH时所使用的功率提升参数与发送PUSCH的不同协作TRP相对应
    处理单元,被配置为基于所述第一指示信息,确定基于多TRP协作发送PUSCH时所使用的功率提升参数。
  25. 一种上行PUSCH的开环功率控制装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至11中任意一项所述的上行PUSCH的开环功率控制方法,或执行权利要求12至22中任意一项所述的上行PUSCH的开环功率控制方法。
  26. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得所述网络设备能够执行权利要求1至11中任意一项所述的上行PUSCH的开环功率控制方法,或当所述存储介质中的指令由终端的处理器执行时,使得所述终端执行权利要求12至22中任意一项所述的上行PUSCH的开环功率控制方法。
PCT/CN2021/084744 2021-03-31 2021-03-31 上行pusch的开环功率控制方法、装置及存储介质 WO2022205222A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/284,240 US20240163804A1 (en) 2021-03-31 2021-03-31 Open-loop power control method and apparatus for pusch, and storage medium
EP21933883.7A EP4319325A4 (en) 2021-03-31 2021-03-31 OPEN LOOP POWER CONTROL METHOD AND APPARATUS FOR PUSCH, AND RECORDING MEDIUM
PCT/CN2021/084744 WO2022205222A1 (zh) 2021-03-31 2021-03-31 上行pusch的开环功率控制方法、装置及存储介质
CN202180001073.0A CN115486144A (zh) 2021-03-31 2021-03-31 上行pusch的开环功率控制方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084744 WO2022205222A1 (zh) 2021-03-31 2021-03-31 上行pusch的开环功率控制方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022205222A1 true WO2022205222A1 (zh) 2022-10-06

Family

ID=83457697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084744 WO2022205222A1 (zh) 2021-03-31 2021-03-31 上行pusch的开环功率控制方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20240163804A1 (zh)
EP (1) EP4319325A4 (zh)
CN (1) CN115486144A (zh)
WO (1) WO2022205222A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097294A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control for multiple uplink transmissions
WO2020154264A1 (en) * 2019-01-21 2020-07-30 Qualcomm Incorporated Physical uplink shared channel (pusch) power scaling factor reporting
CN112534887A (zh) * 2018-08-03 2021-03-19 高通股份有限公司 物理上行链路共享信道功率缩放以增强用户设备处的功率利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383905B (zh) * 2017-05-05 2021-05-18 华为技术有限公司 上行链路传输的功率控制方法
BR112020020999A2 (pt) * 2018-05-08 2021-01-19 Panasonic Intellectual Property Corporation Of America Terminal e método de transmissão

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097294A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control for multiple uplink transmissions
CN112534887A (zh) * 2018-08-03 2021-03-19 高通股份有限公司 物理上行链路共享信道功率缩放以增强用户设备处的功率利用
WO2020154264A1 (en) * 2019-01-21 2020-07-30 Qualcomm Incorporated Physical uplink shared channel (pusch) power scaling factor reporting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4319325A4 *

Also Published As

Publication number Publication date
EP4319325A4 (en) 2024-05-22
CN115486144A (zh) 2022-12-16
EP4319325A1 (en) 2024-02-07
US20240163804A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US11785552B2 (en) Method and apparatus for adjusting uplink transmission power of terminal, and storage medium
WO2021051402A1 (zh) 传输配置状态激活方法、装置及存储介质
WO2022141405A1 (zh) 资源集合配置方法、装置及存储介质
WO2022193149A1 (zh) 波束确定方法、波束确定装置及存储介质
WO2021087786A1 (zh) 波束失败请求资源分配方法、装置及存储介质
WO2022205222A1 (zh) 上行pusch的开环功率控制方法、装置及存储介质
WO2023123121A1 (zh) 一种上报功率的方法、装置及存储介质
WO2022126555A1 (zh) 一种传输方法、传输装置及存储介质
WO2022067740A1 (zh) 信道传输方法及装置、存储介质
WO2022205213A1 (zh) 上行免调度pusch的开环功率控制方法、装置及存储介质
WO2023010465A1 (zh) 上行pusch的开环功率控制方法、装置及存储介质
WO2022205233A1 (zh) 用于pusch的通信方法、用于pusch的通信装置及存储介质
WO2022205229A1 (zh) 用于pusch的通信方法、装置及存储介质
WO2023272493A1 (zh) 上行免调度pusch的通信方法、装置及存储介质
WO2022217445A1 (zh) 多载波通信方法、装置及存储介质
WO2024130590A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
WO2021174465A1 (zh) 开环功率控制方法、装置及计算机可读存储介质
WO2023198026A1 (zh) 发射功率确定方法、装置、终端、网络侧设备及存储介质
WO2024020816A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024000196A1 (zh) 一种传输辅助信息的方法、装置以及可读存储介质
WO2021232308A1 (zh) 信息发送方法、信息发送装置及存储介质
WO2024092585A1 (zh) 一种通信方法、装置、设备及存储介质
WO2022061553A1 (zh) 一种信道状态信息csi上报方法、装置及存储介质
WO2024065231A1 (zh) 一种通信方法、装置及存储介质
WO2022133699A1 (zh) 功率控制方法及装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284240

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021933883

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021933883

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE