WO2019214713A1 - 链路恢复的方法和装置 - Google Patents

链路恢复的方法和装置 Download PDF

Info

Publication number
WO2019214713A1
WO2019214713A1 PCT/CN2019/086417 CN2019086417W WO2019214713A1 WO 2019214713 A1 WO2019214713 A1 WO 2019214713A1 CN 2019086417 W CN2019086417 W CN 2019086417W WO 2019214713 A1 WO2019214713 A1 WO 2019214713A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
control resource
reference signal
link failure
link
Prior art date
Application number
PCT/CN2019/086417
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
张荻
张旭
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19800444.2A priority Critical patent/EP3793291B1/en
Priority to BR112020022782-0A priority patent/BR112020022782A2/pt
Priority to KR1020207035743A priority patent/KR102546571B1/ko
Priority to JP2020563661A priority patent/JP7171761B2/ja
Publication of WO2019214713A1 publication Critical patent/WO2019214713A1/zh
Priority to US17/094,200 priority patent/US11546959B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for link recovery.
  • High frequency bands with larger available bandwidth are increasingly becoming candidate bands for next generation communication systems.
  • the high frequency band has a larger path loss than the low frequency band.
  • a signal transmission mechanism based on beamforming technology which compensates for path loss by generating a larger antenna gain in a particular direction.
  • a signal is transmitted based on a beamforming technique, since the signal has a large antenna gain only in a specific direction, once the receiving end moves (ie, beam misalignment) or a large transmission path occurs on the signal Obstacles (ie, the beam is blocked) cause the antenna gain of the signal to drop significantly, causing frequent interruptions in the signal at the receiving end.
  • the master information block master information block
  • MIB master information block
  • the present application provides a method and apparatus for link recovery, which is capable of restoring a communication link of a control resource set of an MIB configuration.
  • the first aspect provides a method for link recovery, including: determining a link failure of a first control resource set, where the first control resource set is a control resource set configured by a first MIB; and a link failure recovery request is sent.
  • the link failure recovery request is for requesting to restore the communication link of the first set of control resources.
  • the first control resource set may be a control resource set (CORESET) or a control region defined by a 5th-generation (5G) mobile communication system, or an enhanced physical downlink (enhanced physical downlink) a set of control channel (ePDCCH), which may also be a set of resources carrying a physical downlink control channel (PDCCH) defined by other mobile communication systems (for example, a sixth generation mobile communication system), when the terminal device detects When a link failure occurs to the communication link of the first control resource set, the terminal device may send a request message for requesting to restore the communication link of the first control resource set to the network device, that is, send a link failure recovery request, thereby The communication link of the control resource set of the MIB configuration can be quickly restored.
  • determining a link failure of the first control resource set includes: determining a search space set associated with the first control resource set (optional step); determining the first control according to the search space set associated with the first control resource set A link failure detection mode of the communication link of the resource set; determining a link failure of the communication link of the first control resource set according to the link failure detection mode.
  • the type of the search space set associated with the first control resource set may be different.
  • the search space associated with the first control resource set may be a broadcast search space or a non-broadcast search space, where the search space associated with the first control resource set is
  • the beam associated with the CORESET0 associated with the broadcast search space ie, the CORESET of the first MIB configuration
  • the base station repeatedly transmits the same broadcast information on CORESET0 corresponding to a plurality of synchronous signal/PBCH blocks (SSBs).
  • SSBs synchronous signal/PBCH blocks
  • the base station does not need to reconfigure its quasi co-location (QCL) information; when the search space associated with the first control resource set is a non-broadcast search space (for example, the terminal)
  • the search space associated with the first control resource set is a non-broadcast search space (for example, the terminal)
  • the base station does not correspond to all SSBs.
  • the same non-broadcast information is sent on the CORESET0, so the base station informs the user which SSB the SSB used by the device non-broadcast search space is, so that the user equipment detects whether the link failure of the CORESET0 associated with the non-broadcast search space occurs.
  • the foregoing method detects whether a link failure occurs in the communication link of the first control resource set according to the type of the search space associated with the first control resource set, and improves link recovery efficiency.
  • the CRC of the downlink control information (DCI) detected in the non-broadcast search space in the non-broadcast search space set is scrambled by using at least one of the following information:
  • Random access RNTI (RA-RNTI), temporary cell RNTI (TC-RANTI), cell RNTI (C-RNTI), interrupt RNTI (INT-RNTI), interrupt RNTI (interruption RNTI, INT-RNTI)
  • the slot format indication RNTI (SFI-RNTI), the uplink power control shared RNTI (TPC-PUSCH-RNTI), and the uplink power control RNTI (transmit power control physical uplink control channel) RNTI, TPC-PUCCH-RNTI), transmit power control sounding reference symbols RNTI (TPC-SRS-RNTI), configured scheduling RNTI (CS-RNTI), and semi-static channel state information RNTI (semi-persistent channel state information, SP-CSI-RNTI).
  • the above definition of the non-broadcast search space may have different trade-offs in other parts below, that is, in some embodiments below, the definition range of the non-broadcast search space may be reduced.
  • the reference signal resource set for link failure detection of the first control resource set includes a first reference signal and a second reference signal, wherein the first reference signal is used for control other than the first control resource set Link failure detection of the resource set, the second reference signal is used to indicate a receiving parameter associated with the first control resource set,
  • Determining the link failure of the first control resource set including:
  • the terminal device may determine whether the link of the first control resource set fails, so that the terminal device restores the communication chain of the first control resource set without determining the type of the search space associated with the first control resource set.
  • the complexity of the road may be determined whether the link of the first control resource set fails, so that the terminal device restores the communication chain of the first control resource set without determining the type of the search space associated with the first control resource set.
  • the reference signal resource set for link failure detection of the first control resource set includes only the second reference signal, where the second reference signal is used to indicate the receiving parameter associated with the first control resource set,
  • Determining the link failure of the first control resource set including:
  • the terminal device may determine whether the link of the first control resource set fails, so that the terminal device restores the communication chain of the first control resource set without determining the type of the search space associated with the first control resource set.
  • the complexity of the road may be determined whether the link of the first control resource set fails, so that the terminal device restores the communication chain of the first control resource set without determining the type of the search space associated with the first control resource set.
  • the reference signal resource set for link failure detection of the first control resource set includes a first reference signal and a second reference signal, where the first reference signal is used Link failure detection of a control resource set configured by non-MIB information (or the first reference signal is used for link failure detection of a control resource set other than the first control resource set), and the second reference signal is used to indicate the first control
  • the receiving parameter associated with the resource set (or the second reference signal and the DMRS of the first set of control resources satisfy the QCL relationship).
  • the non-broadcast search space set includes a common search space of type three.
  • the CRC of the DCI detected in the Type-3 PDCCH common search space is scrambled using at least one of the following information: INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC- PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, CS-RNTI, and SP-CSI-RNTI.
  • the CRC of the DCI detected in the non-broadcast search space set is scrambled by using at least one of the following information: INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC- SRS-RNTI, C-RNTI, CS-RNTI, and SP-CSI-RNTI.
  • the DCI format of the non-broadcast search space set configuration includes at least one of the following formats: DCI format 2-0, DCI format 2-1, DCI format 2-2, DCI format 2-3,
  • the terminal device monitors the DCI format 2_0 with the CRC scrambled by the SFI-RNTI (UE monitors the DCI format format 2_0 with CRC scrambled by SFI-RNTI);
  • the terminal device monitors the DCI format 2_1 with CRC scrambled by INT-RNTI by the INT-RNTI;
  • the terminal device monitors a DCI format 2_2 (UE monitors the DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI) that is scrambled by the TPC-PUSCH-RNTI or the TPC-PUCCH-RNTI;
  • the terminal device monitors the DCI format 2_3 (UE monitors the DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI) that is scrambled by the TPC-SRS-RNTI.
  • the first reference signal has a corresponding relationship with the control resource set configured by the non-MIB information (for example, RRC signaling) and/or the QCL hypothesis information of the control resource set, where the identifier value or the index value is larger.
  • the first reference signal corresponds to a control resource set configured by a non-MIB information having a larger identifier value or an index value, and/or a first reference signal having a larger identifier value or an index value and a non-MIB having a larger identifier value or an index value.
  • the QCL hypothesis information of the control resource set of the information configuration corresponds to; and/or the first reference signal with the smaller identifier value or the index value corresponds to the control resource set of the non-MIB information configuration with the smaller identifier value or the index value, and/or The first reference signal whose identifier value or index value is small corresponds to the QCL hypothesis information of the control resource set of the non-MIB information configuration whose identifier value or index value is small.
  • the meaning of the above “correspondence” is as follows: when the reference signal 1 corresponds to the control resource set 1, the reference signal 1 is used to control the link failure detection of the resource set 1, when the reference signal 1 corresponds to the QCL hypothesis information of the control resource set 1
  • the terminal device may receive the reference signal 1 using the QCL hypothesis information of the control resource set 1.
  • the foregoing correspondence does not limit one-to-one correspondence.
  • at least two reference signals in the first reference signal may correspond to one control resource set configured by the non-MIB information, or one reference signal in the first reference signal may correspond to at least two.
  • a collection of control resources for non-MIB information configuration is not limit one-to-one correspondence.
  • the first reference signal has a corresponding relationship with the control resource set configured by the non-MIB information and the QCL of the control resource set, wherein the reference signal in the first reference signal is in an order of increasing the identification value or the index value.
  • the control resource set in the control resource set configured with the non-MIB information corresponds to the identification value or the index value ascending order, and/or the reference signal in the first reference signal is in the order of the identification value or the index value.
  • the TCI corresponding to the control resource set configured by the MIB information that is, the reference signal in the first reference signal and the control resource set in the control resource set configured by the non-MIB information correspond to the incremental identification value or the index value), where “corresponding” The meaning is described in the previous "optionally" embodiment.
  • each of the first reference signals is in one-to-one correspondence with each of the control resource sets of the non-MIB information configuration and the QCL hypothesis information of the control resource set (ie, the first reference)
  • the number of reference signals in the signal is equal to the number of control resource sets in the control resource set configured by the non-MIB information, and/or the number of reference signals in the first reference signal is equal to the number of TCIs of the control resource set configured by the non-MIB information
  • the first reference signal having a larger identifier value or an index value corresponds to a control resource set configured by a non-MIB information having a larger identifier value or an index value, and/or a first reference signal having a larger identifier value or an index value Corresponding to QCL hypothesis information of a control resource set configured by a non-MIB information having a larger identification value or an index value; and/or a first reference signal having a smaller identification value or index value and a non-MIB having a smaller identification value or index value
  • each of the first reference signals corresponds to each control resource set in the non-MIB information configured control resource set and the QCL hypothesis information of the control resource set, wherein the first reference
  • the number of reference signals in the signal is equal to the number of control resource sets in the control resource set configured by the non-MIB information and/or the number of reference signals in the first reference signal is equal to the number of TCIs of the control resource set configured by the non-MIB information
  • the reference signal in the first reference signal is in one-to-one correspondence with the control resource set in the control resource set configured by the non-MIB information in an increasing order of the identifier value or the index value, in an order of increasing the identification value or the index value
  • the reference signal in the first reference signal is in one-to-one correspondence with the TCI of the control resource set configured by the non-MIB information in an increasing order of the identifier value or the index value (ie, the control of the reference signal and the non-MIB information configuration in the first reference signal)
  • identity refers to a reference signal or an absolute indication information of a control resource set
  • index refers to a reference signal or a relative indication information of a control resource set
  • the above method enables the control resource set configured by the non-MIB information to have a corresponding link failure detection signal, which can ensure that the link status of each control resource set can be monitored by the terminal device and restored in time to ensure the stability of the system.
  • a control resource set or a TCI corresponding to a link failure detection signal can effectively reduce the reference signal resource overhead and simplify the complexity of link detection, because if a control resource set or a TCI corresponds to multiple reference signals, The resource overhead is increased, and the complexity is increased when compared with the first threshold. For example, it may be necessary to average the channel quality of multiple RSs and compare it with the first threshold.
  • the first reference signal includes two reference signals whose reference signal identifiers or indexes (RS ID/index) are 1, 3, that is, RS1 and RS3, and the control resource set configured by the non-MIB information includes an identifier or an index of 3,
  • the QCL information of the reference signal in the first reference signal is the same as the QCL information of the control resource set corresponding to the reference signal.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails includes:
  • the first reference signal may be one or more reference signals, and the second reference signal may also be one or more reference signals.
  • the first reference signal is a pre-configured communication link of the network device for detecting the first control resource set.
  • a reference signal of a link failure occurs, and the second reference signal is, for example, a synchronization signal/PBCH block (SSB), and the terminal device can detect the signal quality of the first reference signal and the second reference signal (for example, signal to noise) Whether the ratio is less than or equal to the first threshold, when the signal quality of the first reference signal and the second reference signal are both less than or equal to the first threshold, determining that the communication link of the first control resource set fails to be connected, the foregoing
  • the signal quality of a reference signal and the second reference signal are both less than or equal to the first threshold" including: a signal quality of at least one or all of the first reference signals is less than or equal to a first threshold, and, in the second reference signal The signal quality of at least one or all of the reference signals is less than
  • the method does not need to select a specific reference signal for detection, and has the characteristics of simple implementation and better compatibility.
  • the above compatibility means that the method can directly multiplex the link failure recovery of other CORESET (CORESET other than CORESET0).
  • the process includes the process of multiplexing other CORESET transmit link failure recovery requests and receiving a link failure recovery request response.
  • the terminal device may further detect whether the signal quality (for example, the signal to noise ratio) of the second reference signal is less than or equal to the first threshold, and determine the first control resource set when the signal quality of the second reference signal is less than or equal to the first threshold.
  • a link failure occurs in the communication link and the “signal quality of the second reference signal is less than or equal to the first threshold” includes: the signal quality of at least one or all of the reference signals in the second reference signal is less than or equal to the first threshold, and Along with the first reference signal, it is determined whether a link failure occurs, and whether a link failure recovery request needs to be initiated, thereby reducing the complexity of the terminal device determining that the communication link of the first control resource set has failed.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails includes:
  • the reporting period is a period in which the physical (PHY) layer reports a link failure event to a media access control (MAC) layer.
  • PHY physical
  • MAC media access control
  • the above method can improve the reliability of determining the link failure of the first control resource set.
  • the search space set includes a non-broadcast search space (not limited to including only the non-broadcast search space, the broadcast search space may also be included)
  • the reference signal resource set for link failure detection of the first control resource set is only
  • a second reference signal is included, wherein the second reference signal is used to indicate a receiving parameter associated with the first set of control resources.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails includes:
  • the network device may configure the reference signal resource set for link failure detection of the first control resource set to include only the second reference signal, the second reference signal is one or more reference signals, and the terminal device detects the second reference signal ( For example, SSB), when the signal quality of the second reference signal is less than or equal to the first threshold, the link failure of the first control resource set may be determined, or when the signal quality of the second reference signal is less than or equal to the number of times a threshold, determining that the link of the first control resource set fails, and the “signal quality of the second reference signal is less than or equal to the first threshold” may be that the signal quality of the at least one reference signal in the second reference signal is less than or equal to the first a threshold may be that the signal quality of all the reference signals in the second reference signal is less than or equal to the first threshold, and the function of the statistical second reference signal whose signal quality is less than or equal to the first threshold consecutively may be at the terminal device.
  • the physical layer is implemented. Since the first set of control resources (eg, CORE
  • determining, according to the link failure detection manner, that the link of the first control resource set fails includes:
  • the above method can improve the reliability of determining the link failure of the first control resource set.
  • the MAC layer of the terminal device is used for the first control resource set and other The control resource set is separately counted.
  • the indication information that is, the link failure event
  • the physical layer needs to indicate the control resource set or the control resource set type corresponding to the link failure event (for example, MIB configuration or non-MIB information configuration). Control resource collection).
  • the MAC layer of the terminal device is configured for the first control resource and The other sets of control resources are separately counted, and the reporting period of the first set of control resources is determined only by the second reference signal (eg, SSB).
  • the second reference signal eg, SSB
  • the sending a link failure recovery request includes: determining, according to the third reference signal resource set, a third reference signal, where the third reference signal is that the signal quality in the third reference signal resource set is greater than or equal to the second a reference signal of the threshold, wherein the reference signal in the third reference signal resource set is a synchronization signal and/or a broadcast channel reference signal; the link failure recovery request is sent, and the link failure recovery request is used for the request Recovering the communication link of the first set of control resources according to the third reference signal.
  • the third reference signal resource set is, for example, an SSB set of RMSI configurations, and the SSB in the SSB set is, for example, a PSS, a PBCH, and a DMRS within a synchronous broadcast channel block.
  • the second threshold may be configured by the network device, or may be predefined. The value of the second threshold may be equal to or different from the value of the first threshold.
  • the terminal device may detect the SSB in the SSB set, and determine an SSB (ie, a third reference signal) whose signal quality is greater than or equal to the second threshold, so that the network device may be further requested to resume the first according to the second reference signal.
  • a communication link that controls the collection of resources. The above method directly determines the second reference signal, and there is no other intermediate link, thereby improving the link recovery efficiency of the first control resource set.
  • the sending a link failure recovery request includes: determining, according to the fourth reference signal associated with the second control resource set, the third reference signal, where the second control resource set is before determining that the link of the first control resource set fails
  • the reference signal corresponding to the second control resource set ie, the reference signal used for link failure detection
  • the fourth reference signal and the third reference signal satisfy a QCL hypothesis relationship, wherein the fourth reference signal is used to indicate a reception parameter associated with the second control resource set; the transmission link failure recovery request is used to request the third reference according to the third reference The signal recovers the communication link of the first set of control resources.
  • the fourth reference signal is, for example, a channel state information reference signal (CSI-RS), or may be another reference signal (for example, a tracking reference signal (TRS)), and the terminal device may be based on the CSI-
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • the RS and the QCL hypothesis relationship determine a third reference signal, and the third reference signal has a QCL hypothesis relationship with the CSI-RS.
  • the first threshold is, for example, a PDCCH hypothetical BLER
  • the second threshold is, for example, RSRP, the first threshold.
  • the examples of the second threshold and the second threshold are also applicable to the first threshold and the second threshold of other parts of the application.
  • the method does not need to re-measure the signal quality of the configured SSB, and directly determines the third reference signal by using a transmission configuration indicator (TCI) corresponding to the CORESET in which the link failure does not occur, thereby improving the chain of the first control resource set.
  • Road recovery efficiency improves the efficiency of identifying new links.
  • the sending link failure recovery request includes: sending a link failure recovery request, where the link failure recovery request is used to request to restore (or reconfigure) the communication link of the first control resource set according to the third reference signal.
  • the third reference signal is used to indicate a receiving parameter associated with the second control resource set
  • the second control resource set is one of a plurality of control resource sets configured to determine a link failure of the first control resource set, and second The quality of the reference signal corresponding to the control resource set (ie, the reference signal for link failure detection) is greater than or equal to the first threshold and/or the second threshold.
  • the third reference signal is, for example, an SSB for indicating a second control resource set association
  • the terminal device may request the network device to restore the communication link of the first control resource set according to the SSB, that is, the terminal device is configured to receive the receiving parameter of the SSB.
  • a method for determining downlink control information carried by a first control resource set, determining a third reference signal according to a method for determining a third reference signal according to a CSI-RS of the second control resource set, and determining a third reference signal according to an SSB of the second control resource set The complexity of determining the third reference signal is reduced.
  • the terminal device may determine the third reference signal in the following manner:
  • the reference signal associated with the second control resource set is an SSB, determining that the SSB is a third reference signal;
  • the reference signal associated with the second control resource set is a CSI-RS
  • the CSI-RS and the SSB have a QCL relationship
  • the SSB that determines the better channel quality in the three reference signal resource sets is the third reference signal.
  • the above method minimizes the burden on the terminal device to determine the third reference signal while ensuring that the communication link of the first set of control resources is restored (or reconfigured) according to the third reference signal.
  • the method further includes: receiving a link failure recovery request response on the third control resource set; and/or detecting a search space associated with the first control resource set on the third control resource set, where
  • the third control resource set is a control resource set associated with the third reference signal (including at least one of a broadcast search space and a non-broadcast search space), and the third control resource set is a control resource set configured by the second MIB.
  • the second MIB may be the same as or different from the first MIB.
  • the network device may directly send the link failure recovery request response through the third control resource set, or may not send the link failure recovery request response, but send the DCI through the third control resource set, when the terminal device is on the third control resource set.
  • the search space associated with the first control resource set is detected to obtain the DCI, it may be determined that the link failure recovery request response is received (the DCI is equivalent to the link failure recovery request response), or the network device may also send the link failure recovery request. After the response, the DCI is sent through the third control resource set.
  • the foregoing method implicitly indicates that the terminal device detects the parameter of the non-broadcast search space (ie, the receiving parameter indicated by the third reference signal) by using the link recovery request that includes the third reference signal, without the network device reconfiguring the first control resource set.
  • the non-broadcast search space reduces signaling overhead and improves link recovery efficiency of the first control resource set.
  • the method further includes: receiving a link failure recovery request response on the second control resource set; and/or detecting the non-broadcast search space associated with the first control resource set on the second control resource set The set, wherein the second control resource set is one of a plurality of control resource sets configured before the link failure of the first control resource set is determined, and the reference signal quality corresponding to the second control resource set is greater than or equal to the second threshold.
  • the second control resource set may be, for example, a set of control resources configured by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device may set the control resource in the RRC signaling configuration.
  • the non-broadcast search space is detected on the network, so that the network device does not need to re-allocate the non-broadcast search space of the first control resource set by using additional signaling, thereby reducing signaling overhead and improving link recovery efficiency of the first control resource set.
  • the network device may directly send the link failure recovery request response through the second control resource set, or may not send the link failure recovery request response, but send the DCI through the second control resource set, where the terminal device is in the second control resource.
  • the search space associated with the first control resource set is detected on the set to obtain the DCI, it may be determined that the link failure recovery request response is received (the DCI is equivalent to the link failure recovery request response), or the network device may also send the link failure. After the request response is restored, the DCI is sent through the second set of control resources.
  • the method further includes: receiving a link failure recovery request response on the fourth control resource set, and/or detecting a non-broadcast search space set associated with the first control resource set on the fourth control resource set;
  • the fourth control resource set is a control resource set dedicated to receiving a link failure recovery request response.
  • the fourth control resource set is a control resource set specially configured for restoring the communication link, that is, the fourth control resource set is a control resource set configured for link failure recovery configured before the link failure, and the terminal device can receive the information by receiving the information.
  • the set of control resources used or the set of associated search spaces distinguish whether the received information is a normal data schedule or a link failure recovery request response.
  • the network device After determining that the link of the first control resource set fails, the network device returns a communication failure recovery request response to the terminal device by using the fourth control resource set, and the DMRS and the link failure recovery request included in the fourth control resource set are used for recovery.
  • the reference signal of the link satisfies the QCL relationship.
  • the terminal device may detect the non-broadcast search space set associated with the first control resource set according to the control resource set configured by the network device (ie, the fourth control resource set), so as to receive important system messages during the link failure recovery process.
  • the terminal device can configure a new control resource set in the network device, detect the search space set associated with the first control resource set in advance, so as to receive related information, thereby improving the link recovery efficiency of the first control resource set. .
  • the DCI format configured by the non-broadcast search space set includes DCI format 2-0 and/or DCI format 2-1, or
  • the cyclic redundancy check (CRC) of the DCI detected in the non-broadcast search space set is indicated by a slot format indication radio network temporary identity (SFI-RNTI) scrambling and/or Or interrupting an interruption radio network temporary identity (INT-RNTI), wherein the CRC of the DCI is a CRC generated by information bits of the DCI.
  • SFI-RNTI slot format indication radio network temporary identity
  • INT-RNTI interrupting an interruption radio network temporary identity
  • the DCI of the DCI format 2-0 is scrambled by the SFI-RNTI, and is mainly used for transmitting the slot format.
  • the CRC of the DCI format 2-1 is scrambled by the INT-RNTI, and is mainly used to notify the terminal device of the rate matching position. (High-reliability and low latency communication (URLLC) puncturing position when transmitting data), this information is used for data demodulation, and reception or transmission of reference signals, so the corresponding corresponding in the fourth control resource
  • URLLC High-reliability and low latency communication
  • the method further includes: detecting, on the fifth control resource set, a non-broadcast search space set associated with the first control resource set (including all or a part of the non-broadcast search space set associated with the first control resource set), where And the fifth control resource set is a control resource set configured after determining that the link of the first control resource set fails.
  • the fifth control resource set is a newly configured control resource set after the first control resource set link fails, or the fifth control resource set is a first control resource set reconfigured with the QCL/TCI, according to the method, the network device may A downlink configuration with better channel quality is found in the multiple downlinks reported by the terminal device to the terminal device.
  • the terminal device may detect a set of search spaces associated with the first control resource set in a new control resource set with better network device configuration performance, and improve receiving performance.
  • the foregoing search space set associated with the first control resource set is detected on the fifth control resource set, where the search space set includes an SFI-RNTI and/or an INT-RNTI scrambled search space set.
  • the sending a link failure recovery request includes: sending a link failure recovery request by using a physical uplink control channel (PUCCH), where the PUCCH is used to carry channel quality information and/or scheduling request information.
  • PUCCH physical uplink control channel
  • the terminal device may multiplex a PUCCH transmission link failure recovery request that carries channel quality information and/or scheduling request information, for example, whether the transmitted information is a beam report or a link failure by a special status bit of a field of a beam reporting (beam reporting) field.
  • the recovery request is, for example, a reserved bit or a least significant bit or a highest bit in an absolute or referenced 7 bit bit.
  • the channel quality information refers to a reporting of beam management information including reference signal received power (RSRP) related information or a channel quality indicator for link adaptation ( Channel quality indicator, CQI) related information.
  • RSRP reference signal received power
  • CQI Channel quality indicator
  • the reference signal receiving power related information includes an RSRP, a reference signal resource index (such as a CSI-RS resource indicator (CRI), an SSB resource indicator (SSBRI), and a reference signal receiving quality ( At least one of reference signal receiving quality (RSRQ), the channel quality indicator related information includes a reference signal resource index (such as CRI), a precoding matrix indicator (PMI), a rank indicator (RI), and a channel quality. At least one of a channel quality indicator (CQI) and a layer indicator (LI).
  • RSRP reference signal resource index
  • CRI CSI-RS resource indicator
  • SSBRI SSB resource indicator
  • RSRQ reference signal receiving quality
  • the channel quality indicator related information includes a reference signal resource index (such as CRI), a precoding matrix indicator (PMI), a rank indicator (RI), and a channel quality.
  • CQI channel quality indicator
  • LI layer indicator
  • the scheduling request information includes the following two cases. One is to indicate whether there is data scheduling by one bit, that is, to indicate whether there are two states (two states of "0" and "1" of the one bit). Data scheduling; second, through the presence or absence of the sequence (on/off) indicates that there is no data scheduling, there is a data scheduling transmission sequence, no data scheduling does not send a sequence.
  • the sending a link failure recovery request includes: transmitting, by using a physical random access channel (PRACH), the link failure recovery request, where the PRACH is associated with the third reference signal, where The third reference signal is a reference signal required to recover the communication link of the first set of control resources.
  • PRACH physical random access channel
  • the foregoing association relationship refers to that the network device configures a third reference signal under the PRACH resource by using RRC signaling.
  • the terminal device may send a link failure recovery request by using a beam corresponding to the third reference signal.
  • the foregoing PRACH may be a PRACH configured in a contending random access scenario (ie, a contending PRACH resource), or may be a PRACH configured in a non-contention random access scenario (ie, a non-competitive PRACH resource) when using a competing PRACH resource. Since the contending PRACH resource is used for initial access, multiplexing the PRACH resource can save overhead. If a non-competitive PRACH resource is used, the network device separately configures the PRACH resource for the terminal device. Since there is no need to compete with other users, the time for sending the link failure recovery request can be saved.
  • a method for link recovery including: receiving a link failure recovery request, where the link failure recovery request is used to request to restore a communication link of the first control resource set, where the first control resource set is a control resource set configured by the first MIB; configured to configure a control resource set and/or a receive parameter according to the link failure recovery request, the control resource set being configured to detect a non-broadcast search space set associated with the first control resource set.
  • the foregoing first control resource set may be a CORESET or a control region or an ePDCCH set defined by the 5G mobile communication system, or may be a bearer PDCCH defined by other mobile communication systems (for example, the sixth generation mobile communication system).
  • the collection of resources when the network device receives the link failure of the communication link of the first control resource set, the network device may configure the control resource set and/or the receiving parameter, so that the communication chain of the control resource set configured by the MIB can be quickly restored. road.
  • control resource set is one of multiple control resource sets configured before receiving the link failure recovery request, and the reference signal quality corresponding to the control resource set is greater than or equal to the first threshold and/or the second threshold.
  • the foregoing control resource set may be, for example, a control resource set configured by RRC signaling.
  • the terminal device may detect the non-broadcast search space on the control resource set configured by the RRC signaling, such that the network The device does not need to re-allocate the non-broadcast search space of the first control resource set by using additional signaling, thereby reducing signaling overhead and improving link recovery efficiency of the first control resource set.
  • control resource set is a control resource set configured after receiving the link failure recovery request.
  • the control resource set is, for example, the fifth control resource set described in the first aspect, and the fifth control resource set is a newly configured control resource set after the first control resource set link fails, or the fifth control resource set is reconfigured.
  • the first control resource set of the QCL/TCI according to the method, the network device can find a downlink configuration with better channel quality to the terminal device in multiple downlinks reported by the terminal device.
  • the terminal device may detect a set of search spaces associated with the first control resource set in a new control resource set with better network device configuration performance, thereby improving system performance.
  • the receiving link failure recovery request includes: receiving a link failure recovery request including a third reference signal, where the third reference signal is a reference signal required to restore the communication link of the first control resource set; Configuring the control resource set and/or the receiving parameter according to the link failure reply request includes configuring a control resource set and/or a receiving parameter associated with the third reference signal according to the link failure recovery request.
  • the third reference signal is, for example, an SSB for indicating a second control resource set (ie, a control resource set that detects a non-broadcast search space set associated with the first control resource set), and the network device recovers the first according to the SSB.
  • the communication link of the control resource set does not require additional signaling to reconfigure the non-broadcast search space of the first control resource set, thereby reducing signaling overhead and improving link recovery efficiency of the first control resource set.
  • the receiving link failure recovery request includes: receiving, by using a PUCCH, the link failure recovery request, where the PUCCH is used to carry channel quality information and/or scheduling request information.
  • the network device may multiplex the PUCCH receiving link failure recovery request carrying the channel quality information and/or the scheduling request information, for example, distinguishing whether the transmitted information is a beam report or a link failure by a special status bit of a field of a beam reporting (beam reporting)
  • the recovery request is, for example, a reserved bit or a least significant bit or a highest bit in an absolute or referenced 7 bit bit.
  • the receiving link failure recovery request includes: receiving, by using a PRACH, the link failure recovery request, where the PRACH is associated with a third reference signal, and the third reference signal is A reference signal required by the communication link of the first control resource set.
  • the foregoing association relationship refers to that the network device configures a third reference signal under the PRACH resource by using RRC signaling.
  • the terminal device may use the beam corresponding to the third reference signal to send a link failure request.
  • the foregoing PRACH may be a PRACH configured in a contending random access scenario (ie, a contending PRACH resource), or may be a PRACH configured in a non-contention random access scenario (ie, a non-competitive PRACH resource) when using a competing PRACH resource. Since the contending PRACH resource is used for initial access, multiplexing the PRACH resource can save overhead. If a non-competitive PRACH resource is used, the network device separately configures the PRACH resource for the terminal device. Since there is no need to compete with other users, the time for sending the link failure recovery request can be saved.
  • the method further includes: sending a link failure recovery request response on the control resource set, and/or sending the non-broadcast associated with the first control resource set on the control resource set Search space collection.
  • the foregoing control resource set may be a second control resource set or a third control resource set.
  • the second control resource set may be, for example, a radio resource control (RRC) message.
  • RRC radio resource control
  • the terminal device may detect the non-broadcast search space on the control resource set configured by the RRC signaling, so that the network device does not need to re-allocate through additional signaling. A non-broadcast search space that controls the set of resources, thereby reducing signaling overhead and improving link recovery efficiency of the first set of control resources.
  • the network device may directly send the link failure recovery request response through the third control resource set, or may not send the link failure recovery request response, but pass the third control resource set.
  • Sending the DCI when the terminal device detects the search space associated with the first control resource set on the third control resource set to obtain the DCI, it may determine that the link failure recovery request response is received (the DCI is equivalent to the link failure recovery request response) Alternatively, the network device may also send a link failure recovery request response and then send the DCI through the third control resource set.
  • the foregoing method implicitly indicates that the terminal device detects the parameter of the non-broadcast search space (ie, the receiving parameter indicated by the third reference signal) by using the link recovery request that includes the third reference signal, without the network device reconfiguring the first control resource set.
  • the non-broadcast search space reduces signaling overhead and improves link recovery efficiency of the first control resource set.
  • the method further includes: sending a link failure recovery request response on the fourth control resource set, and/or transmitting the non-broadcast search space associated with the first control resource set on the fourth control resource set set;
  • the fourth control resource set is a control resource set dedicated to receiving a link failure recovery request response.
  • the fourth control resource set is a control resource set specifically configured by the network device to restore the communication link, that is, the fourth control resource set is a control resource set configured for link failure recovery configured before the link failure, and the terminal device can pass
  • the set of control resources used by the received information or the associated set of search spaces distinguish whether the received information is a normal data schedule or a link failure recovery request response.
  • the network device replies to the terminal device with a communication failure recovery request response by using the fourth control resource set.
  • the DMRS of the fourth control resource set and the reference signal for restoring the link included in the link failure recovery request satisfy the QCL relationship.
  • the terminal device may detect, according to the control resource set (ie, the fourth control resource set) reconfigured by the network device, the non-broadcast search space set associated with the first control resource set, according to the method, before the network device configures the new control resource set, the terminal The device may detect the set of search spaces associated with the first control resource set in advance, so as to receive related information, thereby improving the link recovery efficiency of the first control resource set. .
  • the control resource set ie, the fourth control resource set
  • the DCI format configured by the non-broadcast search space set includes DCI format 2-0 and/or DCI format 2-1, or
  • the cyclic redundancy check CRC of the DCI detected within the non-broadcast search space set indicates the radio network temporary identity SFI-RNTI scrambling and/or interrupts the radio network temporary identity INT-RNTI scrambling by the slot format.
  • the cyclic redundancy check (CRC) of the DCI detected in the non-broadcast search space set is indicated by a slot format indication radio network temporary identity (SFI-RNTI) scrambling and/or Or interrupting an interruption radio network temporary identity (INT-RNTI), wherein the CRC of the DCI is a CRC generated by information bits of the DCI.
  • SFI-RNTI slot format indication radio network temporary identity
  • INT-RNTI interrupting an interruption radio network temporary identity
  • the DCI of the DCI format 2-0 is scrambled by the SFI-RNTI, and is mainly used for transmitting the slot format.
  • the CRC of the DCI format 2-1 is scrambled by the INT-RNTI, and is mainly used to notify the terminal device of the rate matching position. (High-reliability and low latency communication (URLLC) puncturing position when transmitting data), this information is used for data demodulation, and reception or transmission of reference signals, so the corresponding corresponding in the fourth control resource
  • URLLC High-reliability and low latency communication
  • the method further includes: sending, on the fifth control resource set, the non-broadcast search space set associated with the first control resource set, where the fifth control resource set is the first Controls the set of control resources configured after the link of the resource collection fails.
  • the fifth control resource set is a newly configured control resource set after the first control resource set link fails, or the fifth control resource set is a first control resource set reconfigured with the QCL/TCI, according to the method, the network device may A downlink configuration with better channel quality is found in the multiple downlinks reported by the terminal device to the terminal device.
  • the terminal device may detect a set of search spaces associated with the first control resource set in a new control resource set with better network device configuration performance, and improve receiving performance.
  • the foregoing search space set associated with the first control resource set is detected on the fifth control resource set, where the search space set includes an SFI-RNTI and/or an INT-RNTI scrambled search space set.
  • the present application provides a link recovery device, which may be a communication device (eg, a terminal device) or a chip within the communication device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the communication device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the communication device to perform the method described in the first aspect above.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to cause the communication
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit located outside the chip in the communication device (for example, only Read memory, random access memory, etc.).
  • another link recovery device may be a communication device (eg, a network device) or a chip within the communication device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the communication device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the communication device to perform the method of the second aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to cause the communication
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit located outside the chip in the communication device (for example, read only) Memory, random access memory, etc.).
  • a network system comprising the link recovery device of the third aspect and the link recovery device of the fourth aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, causing the terminal device The method described in the first aspect is performed.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a network device, or a processor, causing the network device The method described in the second aspect is performed.
  • a computer storage medium for storing computer software instructions for use in the terminal device, comprising a program designed to perform the method of the first aspect.
  • a computer storage medium for storing computer software instructions for use in the network device described above, comprising a program designed to perform the method of the second aspect.
  • a chip in which instructions are stored which, when run on a terminal device, cause the chip to perform the method of the first aspect.
  • a chip in which instructions are stored that, when run on a network device, cause the chip to perform the method of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system to which the present application is applied;
  • FIG. 2 is a schematic diagram of a beam training process suitable for use in the present application
  • FIG. 3 is a schematic flowchart of a method for link recovery provided by the present application.
  • FIG. 5 is a method for determining a first control resource set link failure according to a reporting period according to the present application
  • FIG. 7 is a method for determining a first control resource set link failure according to a reporting period according to the present application.
  • FIG. 8 is a method for determining a first control resource set link failure according to a reporting period according to the present application.
  • FIG. 9 is a schematic flowchart of a method for detecting CORESET0 provided by the present application.
  • FIG. 10 is a schematic flowchart of another method for detecting CORESET0 provided by the present application.
  • FIG. 11 is a flowchart of a transmission link failure recovery request provided by the present application.
  • FIG. 13 is a flowchart of a method for detecting a non-broadcast search space provided by the present application
  • FIG. 14 is a flowchart of another method for detecting a non-broadcast search space provided by the present application.
  • FIG. 16 is a schematic structural diagram of a link recovery apparatus provided by the present application.
  • FIG. 17 is a schematic structural diagram of another link recovery apparatus provided by the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by the present application.
  • FIG. 19 is a schematic structural diagram of an access network device provided by the present application.
  • 20 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 1 illustrates a communication system 100 to which the present application is applied.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the network device 110 and the terminal device 120 communicate through a wireless network.
  • the wireless communication module can encode the information for transmission.
  • the wireless communication module can acquire a certain number of information bits to be transmitted over the channel to the network device 110, such as information bits generated by the processing module, received from other devices, or saved in the storage module.
  • the terminal device 120 When the transmission direction of the communication system 100 is the uplink transmission, the terminal device 120 is the transmitting end, and the network device 110 is the receiving end.
  • the transmission direction of the communication system 100 is the downlink transmission, the network device 110 is the transmitting end, and the terminal device 120 is the receiving end. end.
  • the technical solution provided by the present application can be applied to various communication systems, for example, a 5G mobile communication system, and the 5G mobile communication system described in the present application includes a non-standalone (NSA) 5G mobile communication system and/or Standalone (SA) 5G mobile communication system.
  • the technical solution provided by the present application can also be applied to a future communication system, such as a sixth generation mobile communication system.
  • a terminal device may be referred to as an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal can be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G communication system.
  • the network device may be a base transceiver station (BTS) in a code division multiple access (CDMA) system, or may be a base station in a wideband code division multiple access (WCDMA) system (
  • the node B, NB) may also be an evolved base station (eNB) in a long term evolution (LTE) system, or may be a base station (gNB) in a 5G mobile communication system, where the base station is only
  • the network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system to which the present application is applied is merely an example.
  • the communication system to which the present application is applied is not limited thereto.
  • the number of network devices and terminal devices included in the communication system may be other numbers.
  • the beam can be divided into a transmit beam and a receive beam of the network device, and a transmit beam and a receive beam of the terminal device.
  • the transmitting beam of the network device is used to describe the beam-forming information of the transmitting device of the network device
  • the receiving beam of the base station is used to describe the beam-forming information of the receiving device of the network device.
  • the transmitting beam of the terminal device is used to describe the beam-forming information of the transmitting device of the terminal device. Describe the beam-forming information of the receiving side of the terminal device. That is, the beam is used to describe beam-specific information.
  • the beam may correspond to a time resource and or a spatial resource and or a frequency domain resource.
  • the beam may also correspond to a reference signal resource (eg, a beamformed reference signal resource), or beam-specific information.
  • a reference signal resource eg, a beamformed reference signal resource
  • the beam may also correspond to information related to the reference signal resource of the network device, where the reference signal may be CSI-RS, SSB, DMRS, phase tracking reference signal (PTRS), tracking reference signal , TRS), etc.
  • the information associated with the reference signal resource may be a reference signal resource identifier, or QCL information, and the like.
  • the reference signal resource identifier corresponds to a transceiver beam pair previously established based on the reference signal resource measurement, and the terminal can infer the beam information by using the reference signal resource index.
  • FIG. 2 illustrates a beam training process suitable for use in the present application.
  • TRP is the abbreviation of transmission reference point.
  • Beam pair selection As shown in (a) and (b) of Figure 2, the beam training process first selects the optimal N beam pair (BPL) by beam scanning, and one BPL includes a base station to transmit. The beam and one terminal receive the beam, or one BPL includes a terminal transmit beam and a base station receive beam.
  • the network device-based beam scanning of the terminal device is used to implement selection of a base station transmit beam and/or a terminal receive beam, and the network device implements selection of a terminal transmit beam and/or a base station receive beam based on the terminal device's beam scan.
  • the transmit beam can be either a base station transmit beam or a terminal transmit beam.
  • the transmit beam is a base station transmit beam, as shown in (e) of FIG. 2
  • the base station transmits a reference signal to the UE through different transmit beams
  • the UE receives a reference signal transmitted by the base station through different transmit beams through one receive beam.
  • determining an optimal transmit beam of the base station based on the received signal, and then feeding back the optimal transmit beam of the base station to the base station, so that the base station updates the transmit beam.
  • the transmit beam is a terminal transmit beam, as shown in (d) of FIG.
  • the UE transmits a reference signal to the base station through different transmit beams, and the base station receives the reference transmitted by the UE through different transmit beams through the same receive beam. And determining an optimal transmit beam of the UE based on the received signal, and then feeding back the optimal transmit beam of the UE to the UE, so that the UE updates the transmit beam.
  • the process of transmitting the reference signal by using different transmit beams may be referred to as beam scanning, and the process of determining the optimal transmit beam based on the received signal may be referred to as beam matching.
  • the receiving beam is updated, and the receiving beam may be a base station receiving beam or a terminal receiving beam.
  • the receiving beam is a base station receiving beam, as shown in (f) of FIG. 2
  • the UE transmits a reference signal to the base station through the same transmitting beam, and the base station receives the reference signal sent by the UE by using different receiving beams, and then based on the received signal.
  • the optimal receive beam of the base station is determined to update the receive beam of the base station.
  • the receiving beam is the receiving beam of the UE, as shown in (c) of FIG. 2
  • the base station sends a reference signal to the UE through the same transmitting beam, and the UE receives the reference signal sent by the base station by using different receiving beams, and then receives the reference signal.
  • the signal determines the optimal receive beam of the UE to update the receive beam of the UE.
  • both the base station transmit beam and the terminal receive beam may dynamically change.
  • the optimal receive beam determined by the terminal device based on the received signal may include multiple.
  • the terminal device may The information of the multiple receive beams is fed back to the base station, and the base station can indicate the terminal receive beam to the terminal device by sending the beam indication information to the terminal device.
  • the terminal device adopts the beamforming of the analog domain, the terminal device can accurately determine the terminal receiving beam based on the beam indication information sent by the network device, thereby saving the beam scanning time of the terminal device and achieving the power saving effect.
  • the base station obtains N BPLs that are better than the UE, and the BPL is ⁇ Bx, B'x>, where Bx represents a transmit beam of the base station, and B'x represents a receive beam of the UE; or BPL is ⁇ By, B'y>, where By represents the transmit beam of the UE and B'y represents the receive beam of the base station.
  • the base station uses the N BPLs for data transmission during subsequent UE communication.
  • the diffraction capability under the high frequency channel is poor, and the current service beam is blocked, and the signal cannot continue to be transmitted.
  • the network device In order to detect the communication link and restore the communication link, the network device needs to configure the terminal with a link failure detection reference signal resource for link failure detection (ie, beam failure detection), and the link failure detection reference signal resource may be referred to as a beam.
  • the failure detection reference signal resource configuration Beam-Failure-Detection-RS-ResourceConfig
  • Beam-Failure-Detection-RS-ResourceConfig or the beam failure detection reference signal
  • Beam-Failure-Detection-RS the beam failure detection resource
  • the network device also needs to give
  • the terminal device is configured to recover a candidate reference signal resource of the communication link, and the candidate reference signal resource may be referred to as a candidate beam reference list or a candidate beam reference signal identifier (Beam-Failure-Candidate-Beam- Resource) or candidate beam identification reference signal (Candidate-Beam-Identification-RS) or candidate beam reference signal list (candidate beam RS List), or identify the reference signal resource of
  • the link failure detection reference signal resource and the candidate reference signal resource may also have other names, which are not specifically limited in this application.
  • the foregoing signal or signal set or resource may be configured in an explicit manner (at least one of dedicated signaling, such as RRC, MAC-CE, DCI), and the reference signal for detecting link failure may also be indicated in an implicit manner.
  • a reference signal associated with a transmission configuration indicator (TCI) indicating a PDCCH/CORESET is used as a reference signal for detecting a link failure, and the reference signal is aligned with a demodulation reference signal (DMRS) of the PDCCH.
  • TCI transmission configuration indicator
  • DMRS demodulation reference signal
  • the RS in the Beam-Failure-Detection-RS set and the DMRS of the PDCCH satisfy a quasi co-location (QCL) relationship or use the same TCI state as the PDCCH, when the set Channel quality information of some or all of the reference signals (such as reference signal received power RSRP, reference signal received quality RSRQ, block error ratio (BLER), signal to interference plus noise ratio (signal to interference plus noise ratio, If the SINR), the signal-to-noise ratio (SNR), and one or more of the channel quality indication CQIs are below the first threshold, then the communication link is determined to be faulty.
  • the reference signals such as reference signal received power RSRP, reference signal received quality RSRQ, block error ratio (BLER), signal to interference plus noise ratio (signal to interference plus noise ratio, If the SINR), the signal-to-noise ratio (SNR), and one or more of the channel quality indication CQIs are below the first threshold, then the communication link is determined to be faulty.
  • the lower than the predetermined threshold may be lower than the predetermined threshold for N consecutive times or less than the predetermined threshold for N times in a certain period of time.
  • the predetermined threshold may be the same as the radio link detection out of synchronization threshold (RLM OOS thresholdConfig/rlmInSyncOutOfSyncThreshold).
  • a link failure may also be referred to as a communication link failure, a communication link failure, a beam failure, a beam failure, a link failure, a communication failure, a communication failure, and the like.
  • these concepts have the same meaning.
  • the terminal needs to select channel quality information from the candidate reference signal resources (such as reference signal received power RSRP, reference signal received quality RSRQ, block error ratio BLER, signal to interference plus noise ratio SINR, signal to noise ratio SNR And a reference signal resource whose channel quality indicates one or more of CQI or the like, above a predetermined threshold, for restoring the link.
  • the predetermined threshold may be configured by a network device.
  • the recovery link may also be called recovery network device communication with the terminal device, link failure recovery, beam failure recovery, communication link failure recovery, link failure recovery, communication failure recovery or communication failure recovery, link recovery. , link reconfiguration, communication link recovery, beam failure recovery, communication failure recovery, etc.
  • FIG. 3 shows a schematic flow diagram of a method of restoring a communication link suitable for use in the present application.
  • the method 300 includes:
  • the terminal device measures a reference signal in a beam failure detection RS set, and if the N consecutive detection results are failures or the channel quality of all reference signals in the beam failure detection reference signal set (also referred to as If the "signal quality" is less than the preset threshold, the terminal device determines that the state of the current beam is a beam failure.
  • the terminal device detects that the signal quality of the downlink reference signal sent by the network device by using a certain transmit beam is deteriorated, that is, the communication link of the network device is faulty.
  • the transmit beam refers to a transmit beam used when the network device communicates with the terminal device.
  • the cause of the communication link failure of the transmission beam of the network device includes, but is not limited to, obstacle occlusion during the communication process, and the diffraction capability under the high frequency channel is poor, so that the current service beam is blocked and the signal cannot continue to be transmitted.
  • the signal quality deterioration may be that the channel quality information (such as RSPR, CQI, etc.) is lower than a predetermined threshold.
  • S310 can include the following embodiments.
  • the first control resource set is, for example, a CORESET or a control region or an ePDCCH set (set) associated with the common search space of the first MIB configuration.
  • the first control resource set is CORESET.
  • the provided link recovery method is described.
  • the first MIB is any MIB, which may be the same as the second MIB described below, or may be different from the second MIB described below.
  • the first MIB and the second MIB do not represent restrictions on the MIB, similarly,
  • a set of control resources also does not represent a definition of a set of control resources.
  • Determining the link failure of the first set of control resources may be understood as determining that the communication link of the first set of control resources is in a link failure state, or may be understood to determine that the communication link of the first set of control resources has occurred The link fails, or can be understood as other equivalent interpretations.
  • the identifier of the CORESET may be 0, that is, the first control resource set may be CORESET0, and the CORESET0 is mainly used to schedule remaining system information (RMSI) during initial access.
  • RMSI system information
  • CORESET0 can also be associated with the UE specific search space (USS). Otherwise, the common search space can be associated with other CORESETs.
  • An SSB is associated with a CORESET0, and the terminal device detects a common search space (CSS) on the SSO-associated CORESET0.
  • SCS common search space
  • the terminal device may send a request message for requesting to restore the first control resource set to the network device, that is, perform S330 described below, thereby The communication link of the control resource set of the MIB configuration can be quickly restored.
  • the execution time of the two steps is not limited. After the current step is executed, the latter step may be executed immediately, or may be executed after a period of time. There may be other steps between the steps. For example, after the link of the first control resource set fails, the terminal device may also find a new downlink, and then find the corresponding uplink resource, and then send the link failure recovery. request.
  • S311 includes:
  • the search space set associated with the foregoing first control resource set may be understood as: the PDCCH in the search space is composed of one or more control channel elements (CCEs), and the one or more CCEs are mapped to multiple On a resource element group (REG), the plurality of REGs are in the first control resource set.
  • CCEs control channel elements
  • REG resource element group
  • the association relationship between the first control resource set and the search space set is configured by the MIB or configured by RRC signaling or is a predefined relationship.
  • one CCE may correspond to multiple REGs, and the number of REGs corresponding to one CCE may be fixed, for example, 6.
  • An REG includes 12 consecutive subcarriers in the frequency domain, and occupies 1 orthogonal frequency division multiplexing (OFDM) symbol in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • the type of the search space associated with the first control resource set may be different.
  • the search space associated with the first control resource set may be a broadcast search space and/or a non-broadcast search space, where the search space associated with the first control resource set is When broadcasting the search space, since the beam associated with the CORESET0 associated with the broadcast search space (ie, the CORESET of the first MIB configuration) is a cell-specific beam, the base station broadcasts a channel block in multiple synchronization signals (synchronous). The same broadcast information is repeatedly transmitted on CORESET0 corresponding to signal/PBCH block, SSB). If the link fails, the terminal device can switch the SSB by itself, and the base station does not need to reconfigure its quasi co-location (QCL) information.
  • QCL quasi co-location
  • the user equipment does not need to detect the SSB of the broadcast search space; when the first control resource set is associated
  • the search space is a non-broadcast search space (for example, a dedicated search space of a terminal device)
  • the base station since the content transmitted by the non-broadcast search space is user-specific (UE specific) content or user equipment group sharing (UE group common) Content, therefore, the base station does not send the same non-broadcast information on all COSPs corresponding to the SSB, so the base station informs the user which SSB the SSB used by the device non-broadcast search space is, so that the user equipment detects the associated non-broadcast search space. Whether the link failure occurs in CORESET0.
  • the foregoing method detects whether a link failure occurs in the communication link of the first control resource set according to the type of the search space associated with the first control resource set, and improves link recovery efficiency.
  • the CRC of the downlink control information (DCI) detected in the non-broadcast search space in the non-broadcast search space set is scrambled by using at least one of the following information:
  • Random access RNTI (RA-RNTI), temporary cell RNTI (TC-RANTI), cell RNTI (C-RNTI), interrupt RNTI (INT-RNTI), interrupt RNTI (interruption RNTI, INT-RNTI)
  • the slot format indication RNTI (SFI-RNTI), the uplink power control shared RNTI (TPC-PUSCH-RNTI), and the uplink power control RNTI (transmit power control physical uplink control channel) RNTI, TPC-PUCCH-RNTI), transmit power control sounding reference symbols RNTI (TPC-SRS-RNTI), configured scheduling RNTI (CS-RNTI), and semi-static channel state information RNTI (semi-persistent channel state information, SP-CSI-RNTI).
  • the CRC of the non-broadcast search space set including the DCI detected in the common search space is scrambled by using at least one of the following information:
  • INT-RNTI SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, CS-RNTI(s), SP-CSI-RNTI, and/or
  • the CRC of the non-broadcast search space set including the DCI detected in the UE specific search space is scrambled using at least one of the following information:
  • C-RNTI C-RNTI
  • CS-RNTI(s) C-RNTI
  • SP-CSI-RNTI SP-CSI-RNTI
  • the reference signal resource set for link failure detection of the first control resource set includes a first reference signal and a second reference signal, where the first reference signal is used Link failure detection of the control resource set configured by the non-MIB information, and the second reference signal is used to indicate the reception parameter associated with the first control resource set.
  • the first reference signal is carried on the first reference signal resource, and the first reference signal includes one or more reference signals. Therefore, the first reference signal may also be referred to as a first reference signal resource set.
  • the second reference signal is carried on the second reference signal resource, and the second reference signal includes one or more reference signals. Therefore, the second reference signal may also be referred to as a second reference signal resource set.
  • the first reference signal is a reference signal set pre-configured by the network device for detecting whether a communication link of the first control resource set has a link failure
  • the second reference signal is, for example, a synchronization signal broadcast channel block (synchronization signal/PBCH block, SSB)
  • the terminal device may detect whether the signal quality (for example, the signal to noise ratio) of the first reference signal and the second reference signal is less than or equal to the first threshold, when the signal quality of the first reference signal and the second reference signal are both less than or When the first threshold is equal, the link failure of the communication link of the first control resource set is determined.
  • the signal quality for example, the signal to noise ratio
  • the signal quality of the first reference signal and the second reference signal are both less than or equal to the first threshold includes: the signal quality of at least one or all of the first reference signals is less than or equal to the first threshold, and the second The signal quality of at least one or all of the reference signals is less than or equal to the first threshold.
  • the method does not need to select a specific reference signal for detection, and has the characteristics of simple implementation and better compatibility.
  • the above compatibility means that the method can directly multiplex the link failure recovery of other CORESET (CORESET other than CORESET0).
  • the process includes the process of multiplexing other CORESET transmit link failure recovery requests and receiving a link failure recovery request response.
  • the terminal device may further detect whether the signal quality (for example, the signal to noise ratio) of the second reference signal is less than or equal to the first threshold, and determine the first control resource set when the signal quality of the second reference signal is less than or equal to the first threshold.
  • a link failure occurs in the communication link and the “signal quality of the second reference signal is less than or equal to the first threshold” includes: the signal quality of at least one or all of the reference signals in the second reference signal is less than or equal to the first threshold, and Along with the first reference signal, it is determined whether a link failure occurs, and whether a link failure recovery request needs to be initiated, thereby reducing the complexity of the terminal device determining that the communication link of the first control resource set has failed.
  • receiving parameter refers to a parameter required to receive a signal, and may be, for example, TCI, QCL, type D QCL, spatial Rx parameter, or other parameters.
  • the SSB may also be referred to as an SS/PBCH block, where the PBCH is an abbreviation of a physical broadcast channel.
  • the SSB includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a PBCH.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH PBCH
  • one SSB occupies four consecutive orthogonal frequency division multiplexing (OFDM) symbols, and one SSB burst set is a time window with a duration of 5 ms, at 5 ms. Up to L SSBs can be transmitted in the SSB time window. For different frequency bands, the value of L is as follows:
  • the SSB supports 15 kHz, 30 kHz, 120 kHz and 240 kHz subcarrier spacing. For different subcarrier spacings, in an SSB burst set, the SSB has a total of five different mapping patterns in the time domain configuration.
  • SSBs are merely illustrative, and the SSBs described herein may have other definitions.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails including:
  • the set of search spaces associated with the first set of control resources is a non-broadcast search space set, and when the signal quality of all reference signals in the first reference signal is less than or equal to the first threshold, and/or when the second reference signal Determining a link failure of the first control resource set when the signal quality is less than or equal to the first threshold; wherein the second reference signal is used to indicate a receiving parameter associated with the first control resource set, where A reference signal is used for link failure detection of a set of control resources other than the first set of control resources.
  • the first reference signal resource set is used for link failure detection of a control resource set configured for non-MIB information.
  • the search space set associated with the first control resource set is a non-broadcast search space set
  • the signal quality of all reference signals in the first reference signal is less than or equal to the first threshold
  • the second reference Determining a link failure of the first control resource set when the signal quality of the signal is less than or equal to the first threshold, where the second reference signal is used to indicate a receiving parameter associated with the first control resource set
  • the first reference signal is used for link failure detection of the control resource set of the RRC signaling configuration.
  • the first reference signal may also be referred to as a first reference signal resource set
  • the second reference signal may also be referred to as a second reference signal resource set.
  • the first reference signal may be one or more reference signals, and the second reference signal may also be one or more reference signals.
  • the first reference signal is a pre-configured communication link of the network device for detecting the first control resource set.
  • a reference signal of a link failure occurs, and the second reference signal is, for example, a synchronization signal/PBCH block (SSB), and the terminal device can detect the signal quality of the first reference signal and the second reference signal (for example, signal to noise) Whether the ratio is less than or equal to the first threshold, when the signal quality of the first reference signal and the second reference signal are both less than or equal to the first threshold, determining that the communication link of the first control resource set fails to be connected, the foregoing
  • the signal quality of the first reference signal and the second reference signal are both less than or equal to the first threshold includes: the signal quality of at least one or all of the first reference signals is less than or equal to the first threshold, and the second reference The signal quality of at least one or all of the reference signals is less than or equal to the first threshold
  • the method does not need to select a specific reference signal for detection, and has the characteristics of simple implementation and better compatibility.
  • the above compatibility means that the method can directly multiplex the link failure recovery of other CORESET (CORESET other than CORESET0).
  • the process includes the process of multiplexing other CORESET transmit link failure recovery requests and receiving a link failure recovery request response.
  • the terminal device may further detect whether the signal quality (for example, the signal to noise ratio) of the second reference signal is less than or equal to the first threshold, and determine the first control resource set when the signal quality of the second reference signal is less than or equal to the first threshold.
  • a link failure occurs in the communication link.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails including:
  • the reporting period is a period in which the physical (PHY) layer reports a link failure event to a media access control (MAC) layer.
  • PHY physical
  • MAC media access control
  • FIG. 5 shows a method for determining a first control resource set link failure according to a reporting period provided by the present application.
  • q0 is a reference signal resource set used for the first control resource set link failure detection, assuming that the reference signal in q0 includes CSI-RS1 (ie, the first reference signal, the period is 5 ms) and SSB1 (ie, the first The second reference signal, the period is 5 ms); the beam failure instance (BFI) indicates that the indication interval is equal to 5 ms.
  • the base station may configure a multiple occurrence (eg, 3 times) of beam failure events to determine that a communication link failure occurs in CORESET0 (ie, the first set of control resources), wherein the communication link failure of CORESET0 is caused by the physical layer (PHY) of the UE. Reported to the media access control (MAC) layer.
  • the terminal device determines according to the three BFIs.
  • the first control resource set link fails.
  • the symbol "X" in the figure indicates that the signal quality of the reference signal is lower than the first threshold.
  • FIG. 6 illustrates another method for determining a first control resource set link failure according to a reporting period provided by the present application.
  • q0 is a reference signal resource set used for the first control resource set link failure detection, assuming that the reference signal in q0 includes CSI-RS1 (ie, the first reference signal, the period is 5 ms) and SSB1 (ie, the first The second reference signal has a period of 10 ms); the BFI indicates that the interval is equal to 5 ms.
  • the base station may configure a multiple occurrence (eg, 3 times) of beam failure events to determine that a communication link failure occurs in CORESET0 (ie, the first set of control resources), wherein the communication link failure of CORESET0 is caused by the physical layer (PHY) of the UE. Reported to the MAC layer. It can be seen from FIG.
  • the terminal device determines according to the three BFIs.
  • the first control resource set link fails.
  • the symbol "X" in the figure indicates that the signal quality of the reference signal is lower than the first threshold.
  • FIG. 7 illustrates another method provided by the present application for determining a first control resource set link failure according to a reporting period.
  • q0 is a reference signal resource set used for the first control resource set link failure detection, assuming that the reference signal in q0 includes CSI-RS1 (ie, the first reference signal, the period is 5 ms) and SSB1 (ie, the first The second reference signal, the period is 5 ms); the beam failure instance (BFI) indicates that the indication interval is equal to 5 ms.
  • the base station may configure a multiple occurrence (eg, 3 times) of beam failure events to determine that a communication link failure occurs in CORESET0 (ie, the first set of control resources), wherein the communication link failure of CORESET0 is caused by the physical layer (PHY) of the UE. Reported to the media access control (MAC) layer.
  • the terminal device determines the third BFI according to the three times.
  • a control resource set link failed.
  • the symbol "X" in the figure indicates that the signal quality of the reference signal is lower than the first threshold.
  • the BFI of the physical layer of the terminal device in FIG. 7 determines whether to report the BFI according to the result of the last measurement of the SSB1, that is, the terminal device measures the signal quality of the SSB1 to be greater than the first threshold within 0ms to 5ms, and the terminal device The physical layer does not send the BFI in the reporting period of 5ms to 10ms.
  • the terminal device may also determine whether to report the BFI according to the result of the current measurement SSB1. For example, when the terminal device measures the signal quality of the SSB1 within 5ms to 10ms, the signal quality is less than The first threshold, the physical layer of the terminal device immediately reports the BFI.
  • FIG. 8 illustrates another method for determining a first control resource set link failure according to a reporting period provided by the present application.
  • q0 is a reference signal resource set used for the first control resource set link failure detection, assuming that the reference signal in q0 includes CSI-RS1 (ie, the first reference signal, the period is 5 ms) and SSB1 (ie, the first The second reference signal, the period is 10 ms); the beam failure instance (BFI) indicates that the indication interval is equal to 5 ms.
  • the base station may configure the SSB1 to have a beam failure event to determine that the CORESET0 (ie, the first control resource set) has a communication link failure, wherein the communication failure of the CORESET0 is reported by the physical layer (PHY) of the UE to the medium access control. (media access control, MAC) layer.
  • PHY physical layer
  • MAC medium access control
  • the terminal device determines the third BFI according to the third BFI.
  • a control resource set link failed.
  • the symbol "X" in the figure indicates that the signal quality of the reference signal is lower than the first threshold.
  • the foregoing method reduces the probability of misjudgment caused by an accidental event by counting the link failure event (ie, BFI) of the first control resource set by the MAC layer, thereby improving the reliability of determining the link failure of the first control resource set.
  • BFI link failure event
  • the search space set includes a non-broadcast search space (not limited to including only the non-broadcast search space, the broadcast search space may also be included)
  • the reference signal resource set for link failure detection of the first control resource set is only
  • a second reference signal is included, wherein the second reference signal is used to indicate a receiving parameter associated with the first set of control resources.
  • the search space set of the non-broadcast PDCCH includes a common search space of type one, wherein the common search space of type one is a DCI format scrambled by at least one of the following information: RA-RNTI TC-RNTI, C-RNTI on the primary cell (Type1-PDCCH common search space (CSS) for a DCI format with CRC scrambled by a RA-RNTI, or a TC-RNTI, or a C-RNTI on a primary cell ).
  • SCS common search space
  • the search space set of the non-broadcast PDCCH further includes a common search space of type three, wherein the common search space of type three is a DCI format scrambled by at least one of the following information: INT- RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, CS-RNTI, and SP-CSI-RNTI.
  • the search space set of the non-broadcast PDCCH further has the following feature: the DCI format of the non-broadcast PDCCH bearer includes DCI format 2-0 and/or DCI format 2-1 and/or DCI format 2-2. And / or DCI format 2-3,
  • the terminal device monitors a DCI format 2_0 (UE monitors the DCI format format 2_0 with CRC scrambled by SFI-RNTI) including a SFI-RNTI scrambled CRC;
  • the terminal device monitors a DCI format 2_1 (UE monitors the DCI format format 2_1 with CRC scrambled by INT-RNTI) including an INT-RNTI scrambled CRC;
  • the terminal device monitors a DCI format 2_2 including a TPC-PUSCH-RNTI or a TPC-PUCCH-RNTI scrambled CRC (UE monitors the DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI);
  • the terminal device monitors a DCI format 2_3 (UE monitors the DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI) including a TPC-SRS-RNTI scrambled CRC.
  • determining the link failure of the first control resource set according to the link failure detection manner includes: determining that the link of the first control resource set fails when the signal quality of the second reference signal is less than or equal to the first threshold.
  • the network device may configure the reference signal resource set for link failure detection of the first control resource set to include only the second reference signal, the second reference signal is one or more reference signals, and the terminal device detects the second reference signal ( For example, SSB), when the signal quality of the second reference signal is less than or equal to the first threshold, the link failure of the first control resource set may be determined, or when the signal quality of the second reference signal is less than or equal to the number of times a threshold, determining that the link of the first control resource set fails, and the “signal quality of the second reference signal is less than or equal to the first threshold” may be that the signal quality of the at least one reference signal in the second reference signal is less than or equal to the first a threshold may be that the signal quality of all the reference signals in the second reference signal is less than or equal to the first threshold, and the function of the statistical second reference signal whose signal quality is less than or equal to the first threshold consecutively may be at the terminal device.
  • the physical layer is implemented. Since the first set of control resources (eg, CORE
  • the configuration manners of the first reference signal and the second reference signal are as follows:
  • the first reference signal is configured by high layer signaling (for example, RRC or MAC control element (CE)), and the second reference signal is a reference in the TCI configured for the first control resource set. signal.
  • high layer signaling for example, RRC or MAC control element (CE)
  • CE MAC control element
  • the first reference signal is configured by high layer signaling (for example, RRC or MAC CE), and the second reference signal is the SSB associated with the first control resource set corresponding to the second message received in the initial access phase. Or, in the initial access phase, the SSB used by the fourth message or the SSB that was last reported by the BFR is received.
  • high layer signaling for example, RRC or MAC CE
  • the first reference signal is a reference signal in a TCI configured for a control resource set configured for non-MIB information
  • the second reference signal is a reference signal in a TCI configured for the first control resource set.
  • the first reference signal is a reference signal in a TCI configured for a control resource set configured for non-MIB information
  • the second reference signal is an SSB used by the terminal device to receive the second message, where the second message is carried in the a control resource set, the first control resource set is configured to send a random access response message
  • the second reference signal is an SSB used by the terminal device to receive the fourth message, where the fourth message is carried in the first control resource set, where
  • the first control resource set is configured to send a random access response message
  • the second reference signal is a reference signal that satisfies a QCL hypothesis relationship with the DMRS of the first control resource set, where the first control resource set is used to carry the second a message, the second message is a random access response message
  • the second reference signal is a reference signal that satisfies a QCL hypothesis relationship with a DMRS of the physical downlink shared channel PDSCH, where the PDSCH is used to carry a fourth message.
  • the fourth message is a contention resolution message sent by the network device to the terminal device; or the second reference signal is the SSB that the BFR reported last time; or the second reference signal is a control resource set with the transmission link failure recovery request response information.
  • the DMRS satisfies the reference signal of the QCL hypothesis relationship.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails including:
  • the foregoing method reduces the probability of misjudgment caused by an accidental event by counting the link failure event (ie, BFI) of the first control resource set by the MAC layer, thereby improving the reliability of determining the link failure of the first control resource set.
  • determining which one or which PRACH transmission link failure recovery requests are used by the MAC layer can improve air interface utilization.
  • determining, according to the link failure detection manner, that the link of the first control resource set fails including:
  • the search space is a non-broadcast search space
  • the signal quality of the second reference signal is less than or equal to the first threshold
  • the method directly detects whether the signal quality of the second reference signal (for example, SSB) is less than or equal to the first threshold, so as to determine whether a link failure of the communication link of the first control resource set occurs, and the first reference signal is no longer added.
  • the first reference signal set thereby improving the link recovery efficiency of the first control resource set.
  • FIG. 9 shows a schematic flow chart of a method for detecting CORESET0 provided by the present application.
  • the base station configures the CORESET0 and the corresponding search space for the UE, and is used for the reference signal resource set q0 of the link failure detection.
  • the configuration of the reference signal may be indicated by an explicit or implicit manner, and the explicit mode refers to the direct configuration q0;
  • the implicit mode refers to a reference signal indicating a TCI (for example, type D QCL) corresponding to CORESET as a reference signal in q0, where q0 corresponds to a chain for dividing the first control resource set described in the claims.
  • the UE determines that there is a non-broadcast search space set in the search space set configured by the CORESET0, and the UE adds the RS (ie, SSB) associated with the CORESET0 to the q0, and determines whether the link fails with other CORESETs;
  • the RS ie, SSB
  • the UE does not add the RS associated with CORESET0 to q0.
  • the UE measures whether the channel quality of the RS in q0 is less than a preset threshold, that is, q0 shown in FIG. 9 is less than or equal to the threshold 1.
  • the UE determines a link failure recovery process after the link failure of the communication link of CORESET0, including finding a new downlink and initiating a link reconfiguration process, using a PRACH to send a link recovery request, and receiving a link recovery request response message. .
  • FIG. 10 shows a schematic flow chart of another method for detecting CORESET0 provided by the present application.
  • the base station configures the CORESET0 and the corresponding search space for the UE, and is used for the reference signal resource set q0 of the link failure detection.
  • the configuration of the reference signal may be indicated by an explicit or implicit manner, and the explicit mode refers to the direct configuration q0;
  • the implicit mode refers to a reference signal indicating a TCI (for example, type D QCL) corresponding to CORESET as a reference signal in q0.
  • the UE determines that there is a non-broadcast search space in the search space configured by CORESET0, and the UE detects the channel quality of the RS (ie, SSB1) associated with CORESET0; otherwise, SSB1 is not detected.
  • RS ie, SSB1
  • the UE measures whether the channel quality of the RS in q0 is less than a preset threshold, that is, SSB1 ⁇ threshold 1 shown in FIG.
  • the UE determines a link failure recovery process after the link failure of the communication link of CORESET0, including finding a new downlink and initiating a link reconfiguration process, using a PRACH to send a link recovery request, and receiving a link recovery request response message. .
  • the UE determines that the channel quality of the SSB associated with CORESET0 is lower than the preset threshold (at the physical layer) for a consecutive K times, the UE transmits a link failure recovery request for CORESET 0 using the PUCCH.
  • the UE uses the PRACH to send a link failure recovery request of the CORESET other than CORESET0.
  • Method 300 also includes:
  • the UE measures the channel quality of the reference signal in the candidate beam identification RS set to obtain a new identified beam whose channel quality is greater than a preset threshold.
  • Determining a new link or a new beam as described in this application means that the terminal device needs to select channel quality information (such as RSPR, RSRQ, CQI, BLER, SINR, SNR, etc.) from the set of candidate reference signal resources to be higher than a predetermined threshold. Reference signal resource used to recover the communication link.
  • channel quality information such as RSPR, RSRQ, CQI, BLER, SINR, SNR, etc.
  • Reference signal resource used to recover the communication link is not limited, and the time when the terminal device performs the link failure detection may be earlier than the time when the terminal device performs the new beam identification. The time at which the terminal device performs the link failure detection may be later than the time when the terminal device performs the new beam identification. The time at which the terminal device performs the link failure detection may also be the same as the time at which the terminal device determines the new link.
  • a link failure recovery request which may also be called a beam failure recovery request transmission.
  • the UE sends the link failure recovery request information to the base station, where the link failure recovery request information is associated with the reference signal whose channel quality is greater than the preset threshold determined in S320, and the UE may newly or implicitly The identified beam or reference signal resource is notified to the base station.
  • the link failure recovery request sent by the terminal device to the network device is to initiate link reconfiguration, that is, the link failure recovery request is used to indicate that the link fails or the communication fails.
  • the terminal device identifies a good quality downlink beam, wherein the downlink beam includes a transmit beam of the base station and a receive beam of the terminal device.
  • the terminal device receiving beam has a corresponding relationship with the terminal device transmitting beam.
  • the terminal device may use the newly identified terminal device receiving beam to send the link reconfiguration request.
  • the terminal device needs to use other transmit beams to send the link reconfiguration request information.
  • each receive beam of the terminal device corresponds to one transmit beam of the terminal device.
  • the terminal device receiving beam corresponding to the terminal device transmitting beam means: having the same directivity.
  • the terminal device receive beam and its corresponding terminal device transmit beam may be the same beam, and the two may share the same transceiver device.
  • the antenna ports corresponding to the terminal device receiving beams and their corresponding terminal device transmitting beams may be quasi-co-location (QCL).
  • the quasi co-location means that at least one of the following parameters is the same or has a certain correspondence: an angle of arrival (AoA), a main incident angle (Dominant AoA), an average incident angle, and a power angle spectrum of the incident angle ( Power angular spectrum (PAS) of AoA), angle of departure (AoD), main exit angle, average exit angle, power angle spectrum of exit angle, terminal equipment transmit beamforming, terminal equipment receive beamforming, spatial channel correlation , base station transmit beamforming, base station receive beamforming, average channel gain, average channel delay, delay spread, Doppler spread, spatial Rx parameters, and the like.
  • S320 and S330 may include the following alternative embodiments.
  • S320 includes:
  • a third reference signal ie, a new candidate link described in S320
  • the third reference signal is The reference signal in the reference signal resource set of the link failure detection of the first control resource set is greater than or equal to a reference signal of the second threshold, where the link for the first control resource set fails
  • the reference signal in the set of detected reference signal resources is a synchronization signal and/or a broadcast channel reference signal.
  • S330 includes:
  • the link failure recovery request is for requesting to restore the communication link of the first control resource set according to the third reference signal.
  • the third reference signal set is, for example, an SSB set, and the SSB in the SSB set is, for example, a PSS, a PBCH, and a DMRS within a synchronous broadcast channel block.
  • the second threshold may be configured by the network device, or may be predefined. The second threshold may be equal to or different from the first threshold.
  • the terminal device may detect the SSB in the SSB set, and determine an SSB (ie, a third reference signal) whose signal quality is greater than or equal to the second threshold, so that the network device may be further requested to resume the first according to the second reference signal.
  • a communication link that controls the collection of resources. The above method directly determines the second reference signal, and there is no other intermediate link, thereby improving the link recovery efficiency of the first control resource set.
  • FIG. 11 is a flowchart of a transmission link failure recovery request provided by the present application.
  • the base station configures CORESET0 and the corresponding search space for the UE.
  • the CORESET0 corresponds to an SSB1.
  • the UE finds that the CORESET0 beam has failed, and finds an SSB2 greater than the preset threshold from the SSB configured by the base station (the base station is configured by the RMSI).
  • the base station is configured by the RMSI.
  • one SSB corresponds to one CORESET0
  • the CORESET0 corresponding to different SSBs may be the same or different.
  • the UE reports the information of the SSB2 to the base station:
  • a notification beam index that is, an index of SSB2
  • the PRACH reporting link failure recovery request associated with SSB2 is selected so that the network device knows which downlink is available.
  • the base station transmitting the link failure recovery request response and reconfiguring the CORESET of the non-broadcast search space may occur together.
  • the base station directly associates the non-broadcast search space with the CORESET0 corresponding to the SSB2.
  • the base station does not need to inform the UE of the event, because the UE has reported the information of the SSB2 to the base station, and the base station and the UE have reached an agreement.
  • the UE if the UE detects the DCI in the CORESET0 corresponding to the SSB2, the UE considers that the link failure recovery request response is received.
  • S320 includes:
  • the second control resource set is one of a plurality of control resource sets configured to determine a link failure of the first control resource set, and second The reference signal quality corresponding to the control resource set is greater than or equal to the second threshold, and the fourth reference signal and the third reference signal satisfy a QCL hypothesis relationship, wherein the fourth reference signal is used to indicate a receiving parameter associated with the second control resource set.
  • S330 includes:
  • the fourth reference signal is, for example, a channel state information reference signal (CSI-RS), or may be another reference signal (for example, TRS), and the terminal device may determine the third reference according to the CSI-RS and the QCL hypothesis relationship.
  • the signal, the third reference signal and the CSI-RS have a QCL hypothesis relationship, and the method does not need to detect the signal quality of the configured SSB, and directly determines the third reference signal by the TCI corresponding to the CORESET in which the link failure does not occur, thereby improving the first Control link recovery efficiency of resource collections.
  • FIG. 12 is a flowchart of a transmission link failure recovery request provided by the present application.
  • the base station configures CORESET0 and the corresponding search space for the UE.
  • the CORESET0 corresponds to an SSB1.
  • the UE finds that beam failure occurs in CORESET0, no beam failure occurs in CORESET3, and the TCI of CORESET3 indicates that it is associated with a CSI-RS (for example, RS of QCL type D), and the CSI-RS1 and one SSB2 satisfy the QCL relationship.
  • a CSI-RS for example, RS of QCL type D
  • the UE finds a beam failure of CORESET0, no beam failure occurs in CORESET3, and the TCI of CORESET3 indicates that it is associated with an SSB2 (for example, RS of QCL type D).
  • SSB2 for example, RS of QCL type D
  • the UE reports the information of the SSB2 to the base station, and the method for reporting the base station includes:
  • a beam index selected by the base station UE is an index of the SSB2;
  • the PRACH reporting link failure recovery request associated with SSB2 is selected, so that the UE knows which PRACH is available.
  • the steps of the base station transmitting the link failure recovery request response and reconfiguring the CORESET of the non-broadcast search space may occur together.
  • the base station directly associates the non-broadcast search space with the CORESET0 corresponding to the SSB2.
  • the base station does not need to inform the UE of the event, because the UE has reported the information of the SSB2 to the base station, and the base station and the UE have reached an agreement.
  • the UE if the UE detects the DCI in the CORESET0 corresponding to the SSB2, the UE considers that the link failure recovery request response is received.
  • S330 includes:
  • a link failure recovery request is sent through the PUCCH, where the PUCCH is used to carry channel quality information and/or scheduling request information.
  • the terminal device may multiplex a PUCCH transmission link failure recovery request that carries channel quality information and/or scheduling request information, for example, whether the transmitted information is a beam report or a link failure by a special status bit of a field of a beam reporting (beam reporting) field.
  • the recovery request, the special status bit is, for example, a reserved bit in the absolute or reference 7-bit bit, thereby improving the utilization of the air interface resource.
  • the link failure recovery request (the multiplex beam management BM, the PUCCH resource of the CSI) is sent on the PUCCH, and the special status bit of the channel quality information reported by the beam management information is used to distinguish the normal beam relationship information.
  • the report is still reported by the link failure recovery request of the CORESET0, or is determined by the sequence shift of the DMRS sequence of the PUCCH to distinguish whether the normal beam relationship information is reported or the link failure recovery request of the CORESET0 is reported.
  • the terminal device can also send a link failure recovery request in the following manner.
  • the link failure recovery request information is sent on the contending PRACH resource.
  • the link failure recovery request information is sent on the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the terminal device may multiplex a PUCCH transmission link failure recovery request that carries channel quality information and/or scheduling request information, for example, whether the transmitted information is a beam report or a link failure by a special status bit of a field of a beam reporting (beam reporting) field.
  • the recovery request is, for example, a reserved bit or a least significant bit or a highest bit in an absolute or referenced 7 bit bit.
  • the channel quality information refers to a reporting of beam management information including reference signal received power (RSRP) related information or a channel quality indicator for link adaptation ( Channel quality indicator, CQI) related information.
  • RSRP reference signal received power
  • CQI Channel quality indicator
  • the reference signal receiving power related information includes an RSRP, a reference signal resource index (such as a CSI-RS resource indicator (CRI), an SSB resource indicator (SSBRI), and a reference signal receiving quality ( At least one of reference signal receiving quality (RSRQ), the channel quality indicator related information includes a reference signal resource index (such as CRI), a precoding matrix indicator (PMI), a rank indicator (RI), and a channel quality. At least one of a channel quality indicator (CQI) and a layer indicator (LI).
  • RSRP reference signal resource index
  • CRI CSI-RS resource indicator
  • SSBRI SSB resource indicator
  • RSRQ reference signal receiving quality
  • the channel quality indicator related information includes a reference signal resource index (such as CRI), a precoding matrix indicator (PMI), a rank indicator (RI), and a channel quality.
  • CQI channel quality indicator
  • LI layer indicator
  • the scheduling request information includes the following two cases. One is to indicate whether there is data scheduling by one bit, that is, to indicate whether there are two states (two states of "0" and "1" of the one bit). Data scheduling; second, through the presence or absence of the sequence (on/off) indicates that there is no data scheduling, there is a data scheduling transmission sequence, no data scheduling does not send a sequence.
  • S330 includes:
  • the foregoing association relationship is that the network device uses the RRC signaling to configure the third reference signal under the PRACH resource.
  • the terminal device can use the beam corresponding to the third reference signal to send the link failure request.
  • the foregoing PRACH may be a PRACH configured in a contending random access scenario (ie, a contending PRACH resource), or may be a PRACH configured in a non-contention random access scenario (ie, a non-competitive PRACH resource) when using a competing PRACH resource. Since the contending PRACH resource is used for initial access, multiplexing the PRACH resource can save overhead. If a non-competitive PRACH resource is used, the network device separately configures the PRACH resource for the terminal device. Since there is no need to compete with other users, the time for sending the link failure recovery request can be saved.
  • the CRC of the downlink control information (DCI) detected in the non-broadcast search space in the non-broadcast search space set described in the present application is scrambled by using at least one of the following information:
  • Random access RNTI (RA-RNTI), temporary cell RNTI (TC-RANTI), cell RNTI (C-RNTI), interrupt RNTI (INT-RNTI), interrupt RNTI (interruption RNTI, INT-RNTI)
  • the slot format indication RNTI (SFI-RNTI), the uplink power control shared RNTI (TPC-PUSCH-RNTI), and the uplink power control RNTI (transmit power control physical uplink control channel) RNTI, TPC-PUCCH-RNTI), transmit power control sounding reference symbols RNTI (TPC-SRS-RNTI), configured scheduling RNTI (CS-RNTI), and semi-static channel state information RNTI (semi-persistent channel state information, SP-CSI-RNTI).
  • the UE may multiplex the PUCCH/PUSCH/PRACH to transmit the link failure recovery request information of CORESET0.
  • a PUCCH transmission link failure recovery request that multiplexes a beam reporting.
  • the status of the 7-bit reserved address of the absolute RSRP distinguishes whether the transmitted information is a beam report or a link failure recovery request of CORESET0.
  • all 7-bit reserved bits are set to indicate the reported information. It is a beam report.
  • the 7-bit reserved bits are all set to 0 to indicate the reported link failure recovery request of CORESET0.
  • Method 300 also includes:
  • the terminal device detects the CORESET and receives a UE monitors CORESET to receive gNB response for beam failure recovery request.
  • the beam failure recovery request response may also be referred to as a link failure recovery request response, or may have other names.
  • the foregoing CORESET is a dedicated CORESET configured by the base station for the UE, and is used to transmit a response to the link failure request sent by the base station after the UE sends the link failure request.
  • the UE monitoring the CORESET and the receiving beam failure recovery request may be performed simultaneously or sequentially, and the order of the two steps is not limited.
  • the link failure recovery request response information is received in the link failure recovery request response time window.
  • the beam failure request may also have other names, such as a beam failure recovery request, a link reconfiguration request, a communication link failure recovery request, a communication link failure recovery request, a beam failure recovery request, and a link failure recovery request. , communication failure recovery request, communication failure recovery request, reconfiguration request, link recovery request, link failure recovery request, communication link recovery request, and the like.
  • the terminal device monitoring the CORESET may include:
  • the non-broadcast search space set associated with the first control resource set (including all or part of the non-broadcast search space set associated with the first control resource set), where the fifth control resource set is determined to be the first Controls the set of control resources configured after the link of the resource collection fails.
  • the fifth control resource set is a newly configured control resource set after the first control resource set link fails, or the fifth control resource set is a first control resource set reconfigured with the QCL/TCI, according to the method, the network device may A downlink configuration with better channel quality is found in the multiple downlinks reported by the terminal device to the terminal device.
  • the terminal device may detect a set of search spaces associated with the first control resource set in a new control resource set with better network device configuration performance, and improve receiving performance.
  • the foregoing search space set associated with the first control resource set is detected on the fifth control resource set, where the search space set includes an SFI-RNTI and/or an INT-RNTI scrambled search space set.
  • the foregoing search space set associated with the first control resource set is detected on the fifth control resource set, where the search space set includes an SFI-RNTI and/or an INT-RNTI scrambled search space set.
  • the monitoring, by the terminal device, the CORESET may further include:
  • the third control resource set is a control resource set associated with the third reference signal
  • the third control resource set is a second MIB configuration control Resource collection.
  • the second MIB may be the same as or different from the first MIB.
  • the link recovery request including the third reference signal implicitly indicates that the terminal device detects the parameter of the non-broadcast search space (ie, the reception parameter indicated by the third reference signal), and does not need the network device to reconfigure the non-first control resource set.
  • the search space is broadcasted, thereby reducing the signaling overhead and improving the link recovery efficiency of the first control resource set.
  • the monitoring, by the terminal device, the CORESET may further include:
  • the second control resource set Detecting, in the second control resource set, the non-broadcast search space set associated with the first control resource set, where the second control resource set is used to determine a plurality of control resource sets configured before the link failure of the first control resource set
  • the quality of the reference signal corresponding to the second control resource set is greater than or equal to the second threshold.
  • the second control resource set may be, for example, a control resource set configured by RRC signaling.
  • the terminal device may detect the non-broadcast search space on the control resource set configured by the RRC signaling, so that The network device does not need to reconfigure the non-broadcast search space of the first control resource set by using additional signaling, thereby reducing signaling overhead and improving link recovery efficiency of the first control resource set.
  • FIG. 13 shows a flow chart of a method for detecting DCI in a non-broadcast search space provided by the present application.
  • the base station configures CORESET0 and the corresponding search space for the UE.
  • the CORESET0 corresponds to an SSB1.
  • the UE finds that a beam failure occurs in CORESET0, and no beam failure occurs in CORESET3.
  • the UE reports the failure of the CORESET0 to the base station.
  • the UE may also report the information available to the CORESET3 to the base station, such as reporting the index of the corresponding beam or TCI of the CORESET3, and notifying the base station through the explicit information (for example, PUCCH) through the uplink resource (for example, PUCCH).
  • PUCCH physical uplink resource
  • the two steps of the base station transmitting the link failure recovery request response and reconfiguring the non-broadcast search space to the CORESET3 may occur together.
  • the base station directly associates the non-broadcast search space to the CORESET3 where the beam failure does not occur.
  • the base station does not need to inform the UE of this matter because the UE has already indexed the beam or TCI corresponding to CORESET3. Reported to the base station, the base station and the UE have reached an agreement.
  • the UE if the UE detects the DCI corresponding to the non-broadcast search space in the CORESET3, the UE considers that the link failure recovery request response is received.
  • the UE monitoring the CORESET may further include:
  • the fourth control resource set is a control resource set specially configured for restoring the communication link, that is, the fourth control resource set is a control resource set configured for link failure recovery configured before the link failure, and the terminal device can receive the information by receiving the information.
  • the set of control resources used or the set of associated search spaces distinguish whether the received information is a normal data schedule or a link failure recovery request response.
  • the network device After determining that the link of the first control resource set fails, the network device returns a communication failure recovery request response to the terminal device by using the fourth control resource set, and the DMRS and the link failure recovery request included in the fourth control resource set are used for recovery.
  • the reference signal of the link satisfies the QCL relationship.
  • the terminal device may detect the non-broadcast search space set associated with the first control resource set according to the control resource set configured by the network device (ie, the fourth control resource set), so as to receive important system messages during the link failure recovery process.
  • the terminal device can configure a new control resource set in the network device, detect the search space set associated with the first control resource set in advance, so as to receive related information, thereby improving the link recovery efficiency of the first control resource set. .
  • FIG. 14 is a flow chart showing another method for detecting DCI in a non-broadcast search space provided by the present application.
  • the base station configures CORESET0 and the corresponding broadcast search space and non-broadcast search space for the UE.
  • CORESET0 corresponds to one SSB1.
  • the UE finds a beam failure of CORESET0, and finds a reference signal whose channel quality is greater than a preset threshold in the candidate beam list configured by the base station (for convenience of description, simply referred to as a new beam).
  • the UE reports the occurrence of the beam failure of the CORESET0 to the base station, for example, by using the explicit information of the PUCCH bearer to notify the CORESET0 of the failed beam index of the beam failure and/or the new beam index.
  • the two steps of the base station transmitting the link failure recovery request response and reconfiguring the non-broadcast search space to CORESET2 may occur together.
  • the UE detects the DCI corresponding to the non-broadcast search space in CORESET2.
  • the link recovery method provided by the present application is described above from the perspective of a terminal device.
  • the method for link recovery provided by the present application will be described from the perspective of a network device.
  • the present application further provides a method 1500 for link recovery, where the method 1500 can be performed by a network device, including:
  • S1510 Receive a link failure recovery request, where the link failure recovery request is used to request to restore a communication link of the first control resource set, where the first control resource set is a control resource set configured by the first MIB.
  • the foregoing first control resource set may be a CORESET or a control region or an ePDCCH set defined by the 5G mobile communication system, or may be a bearer PDCCH defined by other mobile communication systems (for example, the sixth generation mobile communication system).
  • the collection of resources when the network device receives the link failure of the communication link of the first control resource set, the network device may configure the control resource set and/or the receiving parameter, so that the communication chain of the control resource set configured by the MIB can be quickly restored. road.
  • both the network device and the terminal device can be identical to the network device and the terminal device in the method 300, and the actions of the network device and the terminal device in the method 1500 and the method 300 are The actions of the network device and the terminal device correspond to each other.
  • no further details are provided herein.
  • control resource set is one of multiple control resource sets configured before receiving the link failure recovery request, and the reference signal quality corresponding to the control resource set is greater than or equal to the first threshold and/or the second threshold.
  • the foregoing control resource set may be, for example, a control resource set configured by RRC signaling.
  • the terminal device may detect the non-broadcast search space on the control resource set configured by the RRC signaling, such that the network The device does not need to re-allocate the non-broadcast search space of the first control resource set by using additional signaling, thereby reducing signaling overhead and improving link recovery efficiency of the first control resource set.
  • control resource set is a control resource set configured after receiving the link failure recovery request.
  • the control resource set is, for example, the fifth control resource set described in the first aspect, and the fifth control resource set is a newly configured control resource set after the first control resource set link fails, or the fifth control resource set is reconfigured.
  • the first control resource set of the QCL/TCI according to the method, the network device can find a downlink configuration with better channel quality to the terminal device in multiple downlinks reported by the terminal device.
  • the terminal device may detect a set of search spaces associated with the first control resource set in a new control resource set with better network device configuration performance, thereby improving system performance.
  • S1510 includes:
  • the parameter includes: configuring a control resource set and/or a receiving parameter associated with the third reference signal according to the link failure recovery request.
  • the third reference signal is, for example, an SSB for indicating a second control resource set (ie, a control resource set that detects a non-broadcast search space set associated with the first control resource set), and the network device recovers the first according to the SSB.
  • the communication link of the control resource set does not require additional signaling to reconfigure the non-broadcast search space of the first control resource set, thereby reducing signaling overhead and improving link recovery efficiency of the first control resource set.
  • S1510 includes:
  • the link failure recovery request is received by a PUCCH, where the PUCCH is used to carry channel quality information and/or scheduling request information.
  • the network device may multiplex the PUCCH receiving link failure recovery request carrying the channel quality information and/or the scheduling request information, for example, distinguishing whether the transmitted information is a beam report or a link failure by a special status bit of a field of a beam reporting (beam reporting)
  • the recovery request is, for example, a reserved bit or a least significant bit or a highest bit in an absolute or referenced 7 bit bit.
  • S1510 includes:
  • the PRACH receives, by the PRACH, the link failure recovery request, wherein the PRACH has an association relationship with a third reference signal, where the third reference signal is a reference signal required for restoring the communication link of the first control resource set.
  • the foregoing association relationship refers to that the network device configures a third reference signal under the PRACH resource by using RRC signaling.
  • the terminal device may use the beam corresponding to the third reference signal to send a link failure request.
  • the foregoing PRACH may be a PRACH configured in a contending random access scenario (ie, a contending PRACH resource), or may be a PRACH configured in a non-contention random access scenario (ie, a non-competitive PRACH resource) when using a competing PRACH resource. Since the contending PRACH resource is used for initial access, multiplexing the PRACH resource can save overhead. If a non-competitive PRACH resource is used, the network device separately configures the PRACH resource for the terminal device. Since there is no need to compete with other users, the time for sending the link failure recovery request can be saved.
  • the method 1500 further includes:
  • the foregoing control resource set may be a second control resource set or a third control resource set.
  • the second control resource set may be, for example, a radio resource control (RRC) message.
  • RRC radio resource control
  • the terminal device may detect the non-broadcast search space on the control resource set configured by the RRC signaling, so that the network device does not need to re-allocate through additional signaling. A non-broadcast search space that controls the set of resources, thereby reducing signaling overhead and improving link recovery efficiency of the first set of control resources.
  • the network device may directly send the link failure recovery request response through the third control resource set, or may not send the link failure recovery request response, but pass the third control resource set.
  • Sending the DCI when the terminal device detects the search space associated with the first control resource set on the third control resource set to obtain the DCI, it may determine that the link failure recovery request response is received (the DCI is equivalent to the link failure recovery request response) Alternatively, the network device may also send a link failure recovery request response and then send the DCI through the third control resource set.
  • the foregoing method implicitly indicates that the terminal device detects the parameter of the non-broadcast search space (ie, the receiving parameter indicated by the third reference signal) by using the link recovery request that includes the third reference signal, without the network device reconfiguring the first control resource set.
  • the non-broadcast search space reduces signaling overhead and improves link recovery efficiency of the first control resource set.
  • the method 1500 further includes:
  • the fourth control resource set is a control resource set dedicated to receiving a link failure recovery request response.
  • the fourth control resource set is a control resource set specifically configured by the network device to restore the communication link, that is, the fourth control resource set is a control resource set configured for link failure recovery configured before the link failure, and the terminal device can pass
  • the set of control resources used by the received information or the associated set of search spaces distinguish whether the received information is a normal data schedule or a link failure recovery request response.
  • the network device replies to the terminal device with the communication failure recovery response information by using the fourth control resource set.
  • the DMRS of the fourth control resource set and the reference signal for restoring the link included in the link failure recovery request satisfy the QCL relationship.
  • the terminal device may detect, according to the control resource set (ie, the fourth control resource set) reconfigured by the network device, the non-broadcast search space set associated with the first control resource set, according to the method, before the network device configures the new control resource set, the terminal The device may detect the set of search spaces associated with the first control resource set in advance, so as to receive related information, thereby improving the link recovery efficiency of the first control resource set.
  • the control resource set ie, the fourth control resource set
  • the DCI format configured by the non-broadcast search space set includes DCI format 2-0 and/or DCI format 2-1, or
  • the cyclic redundancy check CRC of the DCI detected within the non-broadcast search space set indicates the radio network temporary identity SFI-RNTI scrambling and/or interrupts the radio network temporary identity INT-RNTI scrambling by the slot format.
  • the cyclic redundancy check (CRC) of the DCI detected in the non-broadcast search space set is indicated by a slot format indication radio network temporary identity (SFI-RNTI) scrambling and/or Or interrupting an interruption radio network temporary identity (INT-RNTI), wherein the CRC of the DCI is a CRC generated by information bits of the DCI.
  • SFI-RNTI slot format indication radio network temporary identity
  • INT-RNTI interrupting an interruption radio network temporary identity
  • the DCI of the DCI format 2-0 is scrambled by the SFI-RNTI, and is mainly used for transmitting the slot format.
  • the CRC of the DCI format 2-1 is scrambled by the INT-RNTI, and is mainly used to notify the terminal device of the rate matching position. (High-reliability and low latency communication (URLLC) puncturing position when transmitting data), this information is used for data demodulation, and reception or transmission of reference signals, so the corresponding corresponding in the fourth control resource
  • URLLC High-reliability and low latency communication
  • the method 1500 further includes:
  • the fifth control resource set is a newly configured control resource set after the first control resource set link fails, or the fifth control resource set is a first control resource set reconfigured with the QCL/TCI, according to the method, the network device may A downlink configuration with better channel quality is found in the multiple downlinks reported by the terminal device to the terminal device.
  • the terminal device may detect a set of search spaces associated with the first control resource set in a new control resource set with better network device configuration performance, and improve receiving performance.
  • the foregoing search space set associated with the first control resource set is detected on the fifth control resource set, where the search space set includes an SFI-RNTI and/or an INT-RNTI scrambled search space set.
  • the terminal device and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 16 is a schematic structural diagram of a link recovery apparatus provided by the present application.
  • the apparatus 1600 includes:
  • the processing unit 1610 is configured to determine a link failure of the first control resource set, where the first control resource set is a control resource set configured by the first MIB;
  • the sending unit 1620 is configured to send a link failure recovery request, where the link failure recovery request is used to request to restore the communication link of the first control resource set.
  • the device 1600 can be a communication device (eg, a terminal device) or a chip within the communication device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the communication device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the communication device to perform the method 300 described above.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to cause the communication
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit located outside the chip in the communication device (for example, only Read memory, random access memory, etc.)
  • the device 1600 is a terminal device
  • the steps performed by the device 1600 and the corresponding beneficial effects can be referred to the related description of the terminal device in the method 300.
  • no further details are provided herein.
  • FIG. 17 is a schematic structural diagram of another link recovery apparatus provided by the present application.
  • the apparatus 1700 includes:
  • the receiving unit 1710 is configured to receive a link failure recovery request, where the link failure recovery request is used to request to restore a communication link of the first control resource set, where the first control resource set is a first primary information block MIB configuration. Collection of control resources;
  • the processing unit 1720 is configured to configure, according to the link failure recovery request, a control resource set and/or a receiving parameter, where the control resource set is used to detect a non-broadcast search space set associated with the first control resource set.
  • the device 1700 can be a communication device (eg, a network device) or a chip within the communication device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the communication device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the communication device to perform the method of the second aspect.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to cause the communication
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit located outside the chip in the communication device (for example, read only) Memory, random access memory, etc.).
  • the steps performed by the device 1700 and the corresponding beneficial effects can refer to the related descriptions of the network device in the method 300 and the method 1500. For brevity, no longer Narration.
  • the link recovery device may be a chip, and the processing unit may be implemented by hardware or by software.
  • the processing unit may be a logic circuit, an integrated circuit, etc.; when implemented by software, the The processing unit may be a general purpose processor implemented by reading software code stored in the storage unit, which may be integrated in the processor or may exist independently of the processor.
  • the link recovery device provided by the present application is further described below by taking the link recovery device as a terminal device or a network device as an example.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device can be applied to the communication system shown in FIG. 1 to perform the function of the receiving end in the above method embodiment.
  • FIG. 18 shows only the main components of the terminal device.
  • the terminal device 180 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing method embodiments, such as Determining the receiving capability of the receiving end, determining N CB according to the receiving capability, and performing rate matching on the first code block according to the N CB .
  • the memory is mainly used to store software programs and data, such as storing the first transport block and the first code block described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 18 shows only one memory and one processor for ease of illustration. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and/or a central processing unit, and the baseband processor is mainly used to process a communication protocol and communication data, and the central processing unit is mainly used to control the entire terminal device. Execute software programs to process data from software programs.
  • the processor in FIG. 18 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 1801 of the terminal device 180, for example, for supporting the terminal device to perform the receiving function and the transmitting function as described in the method 400.
  • the processor having the processing function is regarded as the processing unit 1802 of the terminal device 180.
  • the terminal device 180 includes a transceiving unit 1801 and a processing unit 1802.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 1801 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1801 is regarded as a sending unit, that is, the transceiver unit 1801 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the transceiver unit 1801 may not include an antenna, but only includes a circuit portion such that the antenna is externally disposed to the transceiver unit.
  • the processor 1802 can be configured to execute instructions stored in the memory to control the transceiver unit 1801 to receive signals and/or transmit signals to perform the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 1801 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 1802 controls the transceiver unit 1801 to implement the reception. Therefore, the processor 1802 is a signal transceiving decision maker and initiates a data transceiving operation, and the transceiving unit 1801 is an executor of signal transceiving.
  • FIG. 19 is a schematic structural diagram of a network device provided by the present application, and the network device may be, for example, a base station.
  • the base station can be applied to the communication system shown in FIG. 1, and performs the function of the transmitting end in the foregoing method embodiment.
  • the base station 190 can include one or more radio frequency units, such as a remote radio unit (RRU) 1901 and one or more baseband units (BBUs) (also referred to as digital units (DUs)). ) 1902.
  • RRU 1901 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 19011 and a radio frequency unit 19012.
  • the RRU 1901 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the first code block in the foregoing method embodiment.
  • the BBU 1902 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 1901 and the BBU 1902 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 1902 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 1902 can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 1902 may be composed of one or more single boards, and multiple boards may jointly support a single access indication radio access network (such as a long term evolution (LTE) network). It is also possible to separately support radio access networks (such as LTE networks, 5G networks, or other networks) of different access systems.
  • the BBU 1902 also includes a memory 19021 and a processor 19022 for storing the necessary instructions and data.
  • the memory 19021 stores the first code block in the above method embodiment.
  • the processor 19022 is configured to control a base station to perform necessary actions, for example, to control a base station to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 19021 and the processor 19022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 20 shows a schematic structural diagram of a communication device 2000.
  • the device 2000 can be used to perform the steps of the method described in the foregoing method embodiments, and can be referred to the description in the above method embodiment.
  • the communication device 2000 can be a chip, a network device (such as a base station), a terminal device or other communication device, and the like.
  • the communication device 2000 includes one or more processors 2001.
  • the processor 2001 can be a general purpose processor or a dedicated processor or the like.
  • it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (e.g., base stations, terminals, or chips), execute software programs, and process data for software programs.
  • the communication device may include a transceiver unit for implementing input (reception) and output (transmission) of signals.
  • the communication device can be a chip, and the transceiver unit can be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for a terminal or base station or other communication device.
  • the communication device can be a terminal or a base station or other communication device, and the transceiver unit can be a transceiver, a radio frequency chip, or the like.
  • the communication device 2000 includes one or more of the processors 2001, which may implement the functions of the execution device of the method of the embodiment illustrated in Figures 3 and/or 4.
  • the communication device 2000 includes means for rate matching the first code block and means for transmitting the first code block.
  • the function of the rate matching component for the first code block may be implemented by one or more processors and transmitted by the transceiver, or the input/output circuit, or the interface of the chip.
  • the communication device 2000 includes means for de-rate matching the first code block, and means for receiving the first code block.
  • the function of the means for de-rate matching the first code block may be implemented by one or more processors and the first code block is received by a transceiver, or an input/output circuit, or an interface of the chip.
  • processor 2001 may implement other functions in addition to implementing the functions of the embodiments illustrated in FIGS. 3 and/or 4.
  • the processor 2001 can execute instructions such that the communication device 2000 performs the steps described in the above method embodiments.
  • the instructions may be stored in whole or in part in the processor, such as instruction 2003, or may be stored in whole or in part in memory 2002 coupled to the processor, such as instruction 2004, or may be co-instructed by instructions 2003 and 2004.
  • the communication device 2000 performs the steps described in the above method embodiments.
  • the communication device 2000 can also include circuitry that can implement the functionality of the network device or terminal device in the foregoing method embodiments.
  • the communication device 2000 can include one or more memories 2002 having instructions 2004 thereon that can be executed on the processor such that the communication device 2000 performs the above Method described in the method embodiments.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the one or more memories 2002 may store the corresponding relationships described in the above embodiments, or related parameters or tables or the like involved in the above embodiments.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 2000 may further include a transceiver unit 2005 and an antenna 2006.
  • the processor 2001 may also be referred to as a processing unit to control a communication device (terminal or base station).
  • the transceiver unit 2005 may be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 2006.
  • the application also provides a communication system comprising one or more of the aforementioned network devices, and one or more terminal devices.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the present application also provides a computer readable medium having stored thereon a computer program that, when executed by a computer, implements the functions of any of the method embodiments described above.
  • the application also provides a computer program product that, when executed by a computer, implements the functions of any of the method embodiments described above.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a high-density digital video disc (DVD)), or a semiconductor medium (eg, a solid state disk, SSD)) and so on.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • At least one of: or “at least one of”, as used herein, denotes all or any combination of the listed items, for example, “at least one of: A, B, and C", It can be said that there are A alone, B exists alone, C exists separately, A and B exist at the same time, B and C exist at the same time, and there are six cases of A, B and C.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc typically uses magnetism to replicate data, and The disc uses a laser to copy the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了提供了一种链路恢复的方法,包括:确定第一控制资源集合的链路失败,其中,第一控制资源集合为第一主信息块MIB配置的控制资源集合;发送链路失败恢复请求,该链路失败恢复请求用于请求恢复第一控制资源集合的通信链路。上述第一控制资源集合可以是5G移动通信系统定义的CORESET或控制区域(control region)或ePDCCH集合(set),当终端设备检测到第一控制资源集合的通信链路发生链路失败时,终端设备可以向网络设备发送用于请求恢复第一控制资源集合的通信链路的请求消息,即,发送链路失败恢复请求,从而可以快速恢复MIB配置的控制资源集合的通信链路。

Description

链路恢复的方法和装置
本申请要求于2018年05月11日提交中国专利局、申请号为201810451036.X、申请名称为“链路恢复的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种链路恢复的方法和装置。
背景技术
随着智能终端特别是视频业务的出现,当前的频谱资源已经难以满足用户对容量需求的爆炸式增长。具有更大的可用带宽的高频频段(例如,毫米波频段)日益成为下一代通信系统的候选频段。然而,高频频段相对于低频频段具有更大的路径损耗。
为克服高频频段的路径损耗,一种基于波束赋形技术的信号传输机制被采用,波束赋形技术通过在特定方向上产生较大的天线增益来补偿路径损耗。当信号基于波束赋形技术进行传输时,由于信号仅在特定的方向上具有较大的天线增益,因此,一旦接收端移动(即,波束未对准)或者信号的传输路径上出现较大的障碍物(即,波束被阻挡),就会使得信号的天线增益大幅下降,从而导致接收端的信号频繁中断。
为了减小通信时延,需要在波束未对准或者波束被阻挡的情况下及时调整波束,以便于快速恢复通信链路,在所有需要恢复的通信链路中,主信息块(master information block,MIB)配置的控制资源集合的通信链路尤其重要,因此,如何恢复MIB配置的控制资源集合的通信链路是当前亟需解决的问题。
发明内容
本申请提供了一种链路恢复的方法和装置,能够恢复MIB配置的控制资源集合的通信链路。
第一方面,提供了一种链路恢复的方法,包括:确定第一控制资源集合的链路失败,其中,第一控制资源集合为第一MIB配置的控制资源集合;发送链路失败恢复请求,该链路失败恢复请求用于请求恢复第一控制资源集合的通信链路。
上述第一控制资源集合可以是第五代(5th-generation,5G)移动通信系统定义的控制资源集合(control resource set,CORESET)或控制区域(control region)或增强物理下行控制信道(enhanced physical downlink control channel,ePDCCH)集合(set),也可以是其它移动通信系统(例如第六代移动通信系统)定义的承载物理下行控制信道(physical downlink control channel,PDCCH)的资源的集合,当终端设备检测到第一控制资源集合的通信链路发生链路失败时,终端设备可以向网络设备发送用于请求恢复第一控制资源集合的通信链路的请求消息,即,发送链路失败恢复请求,从而可以快速恢复MIB配置的 控制资源集合的通信链路。
可选地,确定第一控制资源集合的链路失败,包括:确定第一控制资源集合关联的搜索空间集合(可选的步骤);根据第一控制资源集合关联的搜索空间集合确定第一控制资源集合的通信链路的链路失败检测方式;根据链路失败检测方式确定第一控制资源集合的通信链路的链路失败。
第一控制资源集合关联的搜索空间集合的类型可能不同,例如,第一控制资源集合关联的搜索空间可能是广播搜索空间或非广播搜索空间,其中,当第一控制资源集合关联的搜索空间为广播搜索空间时,由于广播搜索空间关联的CORESET0(即,第一MIB配置的CORESET)关联的波束是小区专用(cell specific)的波束(本申请中,“波束”与“参考信号”等价,二者可以互换使用),因此,基站会在多个同步信号广播信道块(synchronous signal/PBCH block,SSB)对应的CORESET0上重复发送相同的广播信息。若发生链路失败终端设备可以自行切换SSB,不需要基站重新配置其准共址(quasi co-location,QCL)信息;当第一控制资源集合关联的搜索空间为非广播搜索空间(例如,终端设备的专用搜索空间)时,由于非广播搜索空间发送的内容是用户设备专用(UE specific)的内容或者是用户设备组共用(UE group common)的内容,因此,基站不会在所有的SSB对应的CORESET0上发送相同的非广播信息,所以基站会通知用户设备非广播搜索空间使用的SSB是哪个SSB,以便于用户设备检测关联非广播搜索空间的CORESET0是否发生链路失败,若链路失败,则用户设备需要告知基站重新配置非广播搜索空间对应的波束或者CORESET。上述方法根据第一控制资源集合关联的搜索空间的类型检测第一控制资源集合的通信链路是否发生链路失败,可以提高链路恢复的效率。
可选地,上述非广播搜索空间集合中的非广播搜索空间内检测的下行控制信息(downlink control information,DCI)的CRC使用下列信息中的至少一种信息加扰:
随机接入RNTI(random access RNTI,RA-RNTI)、小区临时RNTI(temporary cell RNTI,TC-RANTI)、小区RNTI(cell RNTI,C-RNTI)、中断RNTI(interruption RNTI,INT-RNTI)、时隙格式指示RNTI(slot format indication RNTI,SFI-RNTI)、上行数据功控RNTI(transmit power control physical uplink shared channel RNTI,TPC-PUSCH-RNTI)、上行控制功控RNTI(transmit power control physical uplink control channel RNTI,TPC-PUCCH-RNTI)、探测参考信号功控RNTI(transmit power control sounding reference symbols RNTI,TPC-SRS-RNTI)、配置调度RNTI(configured scheduling RNTI,CS-RNTI)和半静态信道状态信息RNTI(semi-persistent channel state information,SP-CSI-RNTI)。
需要说明的是,上述关于非广播搜索空间的定义范围在下文其它部分可能会有不同的取舍,即,在下文的某些实施方式中,非广播搜索空间的定义范围会有所缩小。
可选地,用于第一控制资源集合的链路失败检测的参考信号资源集合包括第一参考信号和第二参考信号,其中,该第一参考信号用于除第一控制资源集合以外的控制资源集合的链路失败检测,该第二参考信号用于指示第一控制资源集合关联的接收参数,
确定第一控制资源集合的链路失败,包括:
当第一参考信号和第二参考信号的信号质量低于第一门限时,确定第一控制资源集合的链路失败;或者,
当第二参考信号的信号质量低于第一门限时,确定第一控制资源集合的链路失败。
在该方法中,终端设备无需确定第一控制资源集合关联的搜索空间的类型,即可确定第一控制资源集合的链路是否失败,从而减小了终端设备恢复第一控制资源集合的通信链路的复杂度。
可选地,用于第一控制资源集合的链路失败检测的参考信号资源集合仅包括第二参考信号,其中,该第二参考信号用于指示第一控制资源集合关联的接收参数,
确定第一控制资源集合的链路失败,包括:
当第二参考信号的信号质量低于第一门限时,确定第一控制资源集合的链路失败。
在该方法中,终端设备无需确定第一控制资源集合关联的搜索空间的类型,即可确定第一控制资源集合的链路是否失败,从而减小了终端设备恢复第一控制资源集合的通信链路的复杂度。
可选地,当搜索空间为非广播搜索空间时,用于第一控制资源集合的链路失败检测的参考信号资源集合包括第一参考信号和第二参考信号,其中,第一参考信号用于非MIB信息配置的控制资源集合的链路失败检测(或者,第一参考信号用于除第一控制资源集合以外的控制资源集合的链路失败检测),第二参考信号用于指示第一控制资源集合关联的接收参数(或者,第二参考信号与第一控制资源集合的DMRS满足QCL关系)。
可选地,上述非广播搜索空间集合包括类型三的公共搜索空间。其中,类型三的公共搜索空间(Type3-PDCCH common search space)内检测的DCI的CRC使用下列信息中的至少一种信息加扰:INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、C-RNTI、CS-RNTI和SP-CSI-RNTI。(a Type3-PDCCH common search space for a DCI format with CRC scrambled by INT-RNTI,or SFI-RNTI,or TPC-PUSCH-RNTI,or TPC-PUCCH-RNTI,or TPC-SRS-RNTI,or C-RNTI,or CS-RNTI,or SP-CSI-RNTI)。
可选地,上述非广播搜索空间集合内检测的DCI的CRC使用下列信息中的至少一种信息加扰:INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、C-RNTI、CS-RNTI和SP-CSI-RNTI。
可选地,上述非广播搜索空间集合配置的DCI格式包括以下格式中的至少一种:DCI格式2-0,DCI格式2-1,DCI格式2-2,DCI格式2-3,
其中,终端设备监测由SFI-RNTI加扰CRC的DCI格式2_0(UE monitors the DCI format format 2_0 with CRC scrambled by SFI-RNTI);
终端设备监测由INT-RNTI加扰CRC的DCI格式2_1(UE monitors the DCI format format 2_1 with CRC scrambled by INT-RNTI);
终端设备监测由TPC-PUSCH-RNTI或TPC-PUCCH-RNTI加扰CRC的DCI格式2_2(UE monitors the DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI);
终端设备监测由TPC-SRS-RNTI加扰CRC的DCI格式2_3(UE monitors the DCI format2_3 with CRC scrambled by TPC-SRS-RNTI)。
可选地,第一参考信号与非MIB信息(例如,RRC信令)配置的控制资源集合和/或所述控制资源集合的QCL假设信息具有对应关系,其中,标识值或索引值较大的第一参考信号与标识值或索引值较大的非MIB信息配置的控制资源集合对应,和/或,标识值或索引值较大的第一参考信号与标识值或索引值较大的非MIB信息配置的控制资源集合 的QCL假设信息对应;和/或,标识值或索引值较小的第一参考信号与标识值或索引值较小的非MIB信息配置的控制资源集合对应,和/或,标识值或索引值较小的第一参考信号与标识值或索引值较小的非MIB信息配置的控制资源集合的QCL假设信息对应。上述“对应”的含义如下:当参考信号1与控制资源集合1对应时,参考信号1用于控制资源集合1的链路失败检测,当参考信号1与控制资源集合1的QCL假设信息对应时,终端设备可以使用控制资源集合1的QCL假设信息接收参考信号1。上述对应不限定一一对应,例如,可以是第一参考信号中的至少两个参考信号对应一个非MIB信息配置的控制资源集合,也可以是第一参考信号中的一个参考信号对应至少两个非MIB信息配置的控制资源集合。
可选地,第一参考信号与非MIB信息配置的控制资源集合和或所述控制资源集合的QCL具有对应关系,其中,第一参考信号中的参考信号以标识值或索引值增序的方式与非MIB信息配置的控制资源集合中的控制资源集合以标识值或索引值增序的方式对应,和/或,第一参考信号中的参考信号以标识值或索引值增序的方式与非MIB信息配置的控制资源集合的TCI对应(即,第一参考信号中参考信号与非MIB信息配置的控制资源集合中控制资源集合按照增序的标识值或索引值对应),其中“对应”的含义参见上一个“可选地”实施方式中的描述。
可选地,第一参考信号中的每一个参考信号与非MIB信息配置的控制资源集合中的每一个控制资源集合和或所述控制资源集合的QCL假设信息一一对应(即,第一参考信号中参考信号的数量与非MIB信息配置的控制资源集合中控制资源集合的数量相等,和/或,第一参考信号中参考信号的数量与非MIB信息配置的控制资源集合的TCI数量相等),其中,标识值或索引值较大的第一参考信号与标识值或索引值较大的非MIB信息配置的控制资源集合对应,和/或,标识值或索引值较大的第一参考信号与标识值或索引值较大的非MIB信息配置的控制资源集合的QCL假设信息对应;和/或,标识值或索引值较小的第一参考信号与标识值或索引值较小的非MIB信息配置的控制资源集合对应,和/或,标识值或索引值较小的第一参考信号与标识值或索引值较小的非MIB信息配置的控制资源集合的QCL假设信息对应。上述“对应”的含义参见上一个“可选地”实施方式。
可选地,第一参考信号中的每一个参考信号与非MIB信息配置的控制资源集合中的每一个控制资源集合和或所述控制资源集合的QCL假设信息一一对应,其中,第一参考信号中参考信号的数量与非MIB信息配置的控制资源集合中控制资源集合的数量相等和/或,第一参考信号中参考信号的数量与非MIB信息配置的控制资源集合的TCI数量相等,其中,第一参考信号中的参考信号以标识值或索引值增序的方式与非MIB信息配置的控制资源集合中的控制资源集合以标识值或索引值增序的方式一一对应,和/或,第一参考信号中的参考信号以标识值或索引值增序的方式与非MIB信息配置的控制资源集合的TCI一一对应(即,第一参考信号中参考信号与非MIB信息配置的控制资源集合中控制资源集合按照增序的标识值或索引值一一对应),其中“对应”的含义参见上一个“可选地”实施方式中的描述。
上述“标识”指的是参考信号或者控制资源集合的绝对的指示信息,上述“索引”指的是参考信号或者控制资源集合的相对的指示信息。
上述方法使得非MIB信息配置的控制资源集合都有对应的链路失败检测信号,能够 保证每一个控制资源集合的链路状况都能被终端设备监测,并及时恢复,保证系统的稳定性。此外,一个控制资源集合或一个TCI对应一个链路失败检测信号,能够有效降低参考信号资源开销,简化链路检测的复杂度,原因是:若一个控制资源集合或一个TCI对应多个参考信号会增加资源开销,此外与第一门限作比较时其复杂度增加,例如可能需要对多个RS的信道质量取平均值再与第一门限作比较。
例如,第一参考信号包括参考信号标识或索引(RS ID/index)为1、3的两个参考信号,即,RS1和RS3,非MIB信息配置的控制资源集合中包括标识或索引为3、6的两个控制资源集合,即,CORESET3和CORESET6,那么,RS1对应CORESET3,RS3对应CORESET6。也就是说,RS1用于CORESET3的链路失败检测,RS3用于CORESET6的链路失败检测。
可选地,第一参考信号中的参考信号的QCL信息和与该参考信号对应的控制资源集合的QCL信息相同。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败(或者,确定第一控制资源集合的链路失败),包括:
当第一参考信号的信号质量小于或等于第一门限时,并且,当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败;或者,
当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败。
第一参考信号可以是一个或多个参考信号,第二参考信号也可以是一个或多个参考信号,第一参考信号为网络设备预先配置的用于检测第一控制资源集合的通信链路是否发生链路失败的参考信号,第二参考信号例如是同步信号广播信道块(synchronization signal/PBCH block,SSB),终端设备可以检测第一参考信号和第二参考信号的信号质量(例如,信噪比)是否小于或等于第一门限,当第一参考信号和第二参考信号的信号质量均小于或等于第一门限时,确定第一控制资源集合的通信链路发生链路失败,上述“第一参考信号和第二参考信号的信号质量均小于或等于第一门限”包括:第一参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限,以及,第二参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限。该方法无需挑选特定的参考信号进行检测,具有简单易实施以及更好的兼容性的特点,上述兼容性指的是该方法可以直接复用其它CORESET(除CORESET0以外的CORESET)的链路失败恢复流程,包括复用其它CORESET发送链路失败恢复请求以及接收链路失败恢复请求响应的流程。
终端设备还可以仅检测第二参考信号的信号质量(例如,信噪比)是否小于或等于第一门限,当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的通信链路发生链路失败,上述“第二参考信号的信号质量小于或等于第一门限”包括:第二参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限,无需同第一参考信号一起确定是否发生链路失败,是否需要发起链路失败恢复请求,从而减小了终端设备确定第一控制资源集合的通信链路发生链路失败的复杂度。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败(或者,确定第一控制资源集合的链路失败),包括:
当上报周期内第一参考信号的信号质量小于或等于第一门限时,并且,当所述上报周 期内第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败;或者,
当上报周期内第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败;
其中,所述上报周期为物理(PHY)层向介质访问控制(media access control,MAC)层上报链路失败事件的周期。
为了提高确定第一控制资源集合的链路失败的可靠性,需要统计多次第一控制资源集合的链路失败事件,而统计多次第一控制资源集合的链路失败事件的功能位于MAC层,因此,上述方法可以提高确定第一控制资源集合的链路失败的可靠性。
可选地,当搜索空间集合包括非广播搜索空间时(不限定仅包括非广播搜索空间,还可以包括广播搜索空间),用于第一控制资源集合的链路失败检测的参考信号资源集合仅包括第二参考信号,其中,第二参考信号用于指示第一控制资源集合关联的接收参数。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败(或者,确定第一控制资源集合的链路失败),包括:
当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败。
网络设备可以将用于第一控制资源集合的链路失败检测的参考信号资源集合配置为仅包含第二参考信号,第二参考信号是一个或多个参考信号,终端设备检测第二参考信号(例如,SSB),当第二参考信号的信号质量小于或等于第一门限,即可确定第一控制资源集合的链路失败,或者,当第二参考信号的信号质量连续几次小于或等于第一门限,则确定第一控制资源集合的链路失败,上述“第二参考信号的信号质量小于或等于第一门限”可以是第二参考信号中的至少一个参考信号的信号质量小于或等于第一门限,也可以是第二参考信号中的全部参考信号的信号质量小于或等于第一门限,上述统计第二参考信号的信号质量连续几次小于或等于第一门限的功能可以是在终端设备的物理层实现。由于第一控制资源集合(例如CORESET0)用于接收系统消息,系统消息通常是重要的消息,因此,该方法在保持兼容性的同时可以快速恢复第一控制资源集合的通信链路。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败(或者,确定第一控制资源集合的链路失败),包括:
当上报周期内第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败,其中,所述上报周期为物理(PHY)层向MAC层上报链路失败事件的周期。
为了提高确定第一控制资源集合的链路失败的可靠性,需要统计多次第一控制资源集合的链路失败事件,而统计多次第一控制资源集合的链路失败事件的功能位于MAC层,因此,上述方法可以提高确定第一控制资源集合的链路失败的可靠性。
可选地,若第一控制资源集合的上报周期同其它控制资源集合(非MIB信息配置的控制资源集合)的链路失败检测周期相同,则终端设备的MAC层对于第一控制资源集合和其它控制资源集合分别计数,此时物理层发送的指示信息(即,链路失败事件)中需要指示链路失败事件对应的控制资源集合或者控制资源集合类型(例如:MIB配置或非MIB信息配置的控制资源集合)。
可选地,若第一控制资源集合的上报周期同其它控制资源集合(非MIB信息配置的控制资源集合)的链路失败检测周期相异,则终端设备的MAC层对于第一控制资源集合和其它控制资源集合分别计数,并且,第一控制资源集合的上报周期仅由第二参考信号(例如SSB)决定。
可选地,发送链路失败恢复请求,包括:根据第三参考信号资源集合确定第三参考信号,所述第三参考信号为所述第三参考信号资源集合中的信号质量大于或等于第二门限的一个参考信号,其中,所述第三参考信号资源集合中的参考信号为同步信号和/或广播信道参考信号;发送所述链路失败恢复请求,所述链路失败恢复请求用于请求根据所述第三参考信号恢复所述第一控制资源集合的通信链路。
第三参考信号资源集合例如是RMSI配置的SSB集合,该SSB集合中的SSB例如是一个同步广播信道块内的PSS、PBCH和DMRS。第二门限可以是网络设备配置的,也可以是预定义的,第二门限的值与第一门限的值可以相等,也可以不等。终端设备可以对该SSB集合中的SSB进行检测,从中确定一个信号质量大于或等于第二门限的一个SSB(即,第三参考信号),从而可以进一步请求网络设备根据第二参考信号恢复第一控制资源集合的通信链路。上述方法直接确定第二参考信号,不存在其它中间环节,从而提高了第一控制资源集合的链路恢复效率。
可选地,发送链路失败恢复请求,包括:根据第二控制资源集合关联的第四参考信号确定第三参考信号,其中,第二控制资源集合为确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,第二控制资源集合对应的参考信号(即,用于链路失败检测的参考信号)质量大于或等于第一门限和/或第二门限,第四参考信号与第三参考信号满足QCL假设关系,其中,第四参考信号用于指示第二控制资源集合关联的接收参数;发送链路失败恢复请求,该链路失败恢复请求用于请求根据第三参考信号恢复第一控制资源集合的通信链路。
第四参考信号例如是信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是其它参考信号(例如,追踪参考信号(tracking reference signal,TRS)),终端设备可以根据CSI-RS以及QCL假设关系确定第三参考信号,第三参考信号与CSI-RS具有QCL假设关系,上述第一门限例如是PDCCH假设的(hypothetical)BLER,上述第二门限例如是RSRP,该第一门限和第二门限的示例也适用于本申请其它部分的第一门限和第二门限。该方法无需重新测量已配置的SSB的信号质量,直接通过未发生链路失败的CORESET对应的传输配置指示(transmission configuration indicator,TCI)确定第三参考信号,从而提高了第一控制资源集合的链路恢复效率,提高了识别新链路的效率。其中,网络设备配置CORESET时,会配置一个TCI状态标识(TCI state ID),该TCI状态标识对应一个TCI状态,该TCI状态中包括了不同类型的QCL信息,该QCL信息中包括参考信号的资源索引,这样,终端设备就可以根据TCI确定第三参考信号了。
可选地,发送链路失败恢复请求,包括:发送链路失败恢复请求,该链路失败恢复请求用于请求根据第三参考信号恢复(或,重配)第一控制资源集合的通信链路,其中,第三参考信号用于指示第二控制资源集合关联的接收参数,第二控制资源集合是确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,第二控制资源集合对应的参考信号(即,用于链路失败检测的参考信号)质量大于或等于第一门限和/或第二门限。
第三参考信号例如是用于指示第二控制资源集合关联的SSB,终端设备可以请求网络设备根据该SSB恢复第一控制资源集合的通信链路,即,终端设备用于接收该SSB的接收参数可以用于检测第一控制资源集合承载的下行控制信息,相对于根据第二控制资源集合的CSI-RS确定第三参考信号的方法,根据第二控制资源集合的SSB确定第三参考信号的方法减小确定第三参考信号的复杂度。
可选地,终端设备可以按照以下方式确定第三参考信号:
当第二控制资源集合关联的参考信号是SSB时,确定该SSB为第三参考信号;
当第二控制资源集合关联的参考信号是CSI-RS,且该CSI-RS与SSB具有QCL关系时,确定该SSB为第三参考信号;
当第二控制资源集合关联的参考信号不是SSB和和CSI-RS时,或者,当第二控制资源集合关联的参考信号是CSI-RS且该CSI-RS与SSB不具有QCL关系时,从第三参考信号资源集合中确定信道质量较好的SSB为第三参考信号。
上述方法在确保根据第三参考信号恢复(或,重配)第一控制资源集合的通信链路的同时最大可能地减小了终端设备确定第三参考信号的负担。
可选地,所述方法还包括:在第三控制资源集合上接收链路失败恢复请求响应;和/或,在第三控制资源集合上检测第一控制资源集合关联的搜索空间,其中,第三控制资源集合为第三参考信号关联的控制资源集合(包括广播搜索空间和非广播搜索空间中的至少一个),并且,第三控制资源集合为第二MIB配置的控制资源集合。
第二MIB与第一MIB可以相同,也可以不同。网络设备可以直接通过第三控制资源集合发送链路失败恢复请求响应,也可以不发送链路失败恢复请求响应,而是通过第三控制资源集合发送DCI,当终端设备在第三控制资源集合上检测第一控制资源集合关联的搜索空间获得DCI时,即可确定接收到了链路失败恢复请求响应(该DCI相当于链路失败恢复请求响应),或者,网络设备也可以发送链路失败恢复请求响应后再通过第三控制资源集合发送DCI。上述方法通过包含第三参考信号的链路恢复请求隐式的指示了终端设备检测非广播搜索空间的参数(即,第三参考信号指示的接收参数),无需网络设备重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,所述方法还包括:在第二控制资源集合上接收链路失败恢复请求响应;和/或,在第二控制资源集合上检测第一控制资源集合关联的所述非广播搜索空间集合,其中,第二控制资源集合为确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,第二控制资源集合对应的参考信号质量大于或等于第二门限。
第二控制资源集合例如可以是无线资源控制(radio resource control,RRC)信令配置的控制资源集合,当RRC信令配置的控制资源集合可用时,终端设备可以在RRC信令配置的控制资源集合上检测非广播搜索空间,这样,无需网络设备通过额外信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
其中,网络设备可以直接通过第二控制资源集合发送链路失败恢复请求响应,也可以不发送链路失败恢复请求响应,而是通过第二控制资源集合发送DCI,当终端设备在第二控制资源集合上检测第一控制资源集合关联的搜索空间获得DCI时,即可确定接收到了链 路失败恢复请求响应(该DCI相当于链路失败恢复请求响应),或者,网络设备也可以发送链路失败恢复请求响应后再通过第二控制资源集合发送DCI。
可选地,所述方法还包括:在第四控制资源集合上接收链路失败恢复请求响应,和/或,在第四控制资源集合上检测第一控制资源集合关联的非广播搜索空间集合;其中,所述第四控制资源集合是专用于接收链路失败恢复请求响应的控制资源集合。
第四控制资源集合是为恢复通信链路专门配置的控制资源集合,即,第四控制资源集合是链路失败前配置好的专用于链路失败恢复的控制资源集合,终端设备可以通过接收信息使用的控制资源集合或关联的搜索空间集合区分接收到的信息是正常的数据调度还是链路失败恢复请求响应。网络设备在确定第一控制资源集合的链路失败后,通过第四控制资源集合向终端设备回复通信失败恢复请求响应,第四控制资源集合的DMRS与链路失败恢复请求中包含的用于恢复链路的参考信号满足QCL关系。终端设备可以根据网络设备配置的控制资源集合(即,第四控制资源集合)检测第一控制资源集合关联的非广播搜索空间集合,以便在链路失败恢复过程中也能接收到重要的系统消息。根据该方法,终端设备可以在网络设备配置新的控制资源集合,提前检测第一控制资源集合关联的搜索空间集合,以便于接收相关的信息,从而提高了第一控制资源集合的链路恢复效率。
可选地,所述非广播搜索空间集合配置的DCI格式包括DCI格式2-0和/或DCI格式2-1,或,
所述非广播搜索空间集合内检测的DCI的循环冗余校验(cyclic redundancy check,CRC)通过时隙格式指示无线网络临时标识(slot format indication radio network temporary identity,SFI-RNTI)加扰和/或中断无线网络临时标识(interruption radio network temporary identity,INT-RNTI)加扰,其中,所述DCI的CRC为由所述DCI的信息比特生成的CRC。
DCI格式2-0的CRC是由SFI-RNTI加扰的,主要用于发送时隙格式,DCI格式2-1的CRC是由INT-RNTI加扰的,主要用于通知终端设备速率匹配的位置(高可靠低时延(ultra reliable&low latency communication,URLLC)业务数据传输时的打孔位置),这些信息用于数据解调,以及参考信号的接收或发送,因此在第四控制资源中关联相应的搜索空间,可以保证在链路失败恢复过程中也能接收到这些重要的时隙格式信息或抢先(pre-emption)信息,以便正确接收数据和参考信号。
可选地,所述方法还包括:在第五控制资源集合上检测第一控制资源集合关联的非广播搜索空间集合(包括第一控制资源集合关联的全部或部分非广播搜索空间集合),其中,第五控制资源集合为确定第一控制资源集合的链路失败后配置的控制资源集合。
第五控制资源集合是第一控制资源集合链路失败后新配置的控制资源集合,或者,第五控制资源集合是重新配置了QCL/TCI的第一控制资源集合,根据该方法,网络设备可以在终端设备上报的多个下行链路中找到信道质量较好的下行链路配置给终端设备。终端设备可以在网络设备配置性能较好的新的控制资源集合检测第一控制资源集合关联的搜索空间集合,提高接收性能。可选地,上述在第五控制资源集合上检测第一控制资源集合关联的搜索空间集合中,所述搜索空间集合包括SFI-RNTI和/或INT-RNTI加扰的搜索空间集合。
可选地,发送链路失败恢复请求,包括:通过物理上行控制信道(physical uplink control channel,PUCCH)发送链路失败恢复请求,其中,该PUCCH用于承载信道质量信息和/ 或调度请求信息。
终端设备可以复用承载信道质量信息和/或调度请求信息的PUCCH发送链路失败恢复请求,例如,通过波束报告(beam reporting)的字段的特殊状态位区分发送的信息是波束报告还是链路失败恢复请求,该特殊状态位例如是绝对或参考的7比特(bit)位中的预留位或最低位或最高位。从而提高了空口资源利用率。
可选地,信道质量信息是指用于波束管理的上报信息(reporting of beam management information)包括参考信号接收功率(reference signal receiving power,RSRP)相关信息或用于链路自适应的信道质量指示(channel quality indicator,CQI)相关信息。
其中,参考信号接收功率相关信息包括RSRP、参考信号资源索引(如CSI-RS资源指示符(CSI-RS resource indicator,CRI)、SSB资源指示符(SSB resource indicator,SSBRI)和参考信号接收质量(reference signal receiving quality,RSRQ)中的至少一种,信道质量指示相关信息包括参考信号资源索引(如CRI)、预编码指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、层指示(the layer indicator,LI)中的至少一种。
调度请求信息包括下面两种情况,一是通过1个比特位表示是否有数据调度,即,通过2种状态(该1个比特位的“0”和“1”两种状态)表示有或者没有数据调度;二是通过序列的有无(on/off)表示有没有数据调度,有数据调度发送序列,没有数据调度不发序列。
可选地,发送链路失败恢复请求,包括:通过物理随机接入信道(physical random access channel,PRACH)发送所述链路失败恢复请求,其中,该PRACH与第三参考信号具有关联关系,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号。
上述关联关系指的是网络设备使用RRC信令在PRACH资源下面配置第三参考信号。当上下行波束具有互易性时,终端设备可以使用第三参考信号对应的波束去发送链路失败恢复请求。其中,上述PRACH可以是竞争随机接入场景中配置的PRACH(即,竞争PRACH资源),也可以是非竞争随机接入场景中配置的PRACH(即,非竞争PRACH资源),当使用竞争PRACH资源时,由于竞争PRACH资源用于初始接入,复用这个PRACH资源可以节省开销。若使用非竞争PRACH资源,那么网络设备就会单独为终端设备配置PRACH资源,由于不需要与其他用户竞争,可以节省发送链路失败恢复请求的时间。
第二方面,提供了另一种链路恢复的方法,包括:接收链路失败恢复请求,该链路失败恢复请求用于请求恢复第一控制资源集合的通信链路,第一控制资源集合为第一MIB配置的控制资源集合;根据链路失败恢复请求配置控制资源集合和/或接收参数,该控制资源集合用于检测第一控制资源集合关联的非广播搜索空间集合。
上述第一控制资源集合可以是5G移动通信系统定义的CORESET或控制区域(control region)或ePDCCH集合(set),也可以是其它移动通信系统(例如第六代移动通信系统)定义的承载PDCCH的资源的集合,当网络设备接收到第一控制资源集合的通信链路发生链路失败时,网络设备可以配置控制资源集合和/或接收参数,从而可以快速恢复MIB配置的控制资源集合的通信链路。
可选地,上述控制资源集合为接收链路失败恢复请求前配置的多个控制资源集合中的一个,所述控制资源集合对应的参考信号质量大于或等于第一门限和/或第二门限。
上述控制资源集合例如可以是RRC信令配置的控制资源集合,当RRC信令配置的控 制资源集合可用时,终端设备可以在RRC信令配置的控制资源集合上检测非广播搜索空间,这样,网络设备无需通过额外信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,上述控制资源集合为接收链路失败恢复请求后配置的控制资源集合。
该控制资源集合例如是第一方面所述的第五控制资源集合,第五控制资源集合是第一控制资源集合链路失败后新配置的控制资源集合,或者,第五控制资源集合是重新配置了QCL/TCI的第一控制资源集合,根据该方法,网络设备可以在终端设备上报的多个下行链路中找到信道质量较好的下行链路配置给终端设备。终端设备可以在网络设备配置性能较好的新的控制资源集合检测第一控制资源集合关联的搜索空间集合,提高系统性能。
可选地,所述接收链路失败恢复请求,包括:接收包括第三参考信号的链路失败恢复请求,第三参考信号为恢复第一控制资源集合的通信链路所需的参考信号;所述根据链路失败回复请求配置控制资源集合和/或接收参数,包括:根据链路失败恢复请求配置与第三参考信号关联的控制资源集合和/或接收参数。
第三参考信号例如是用于指示第二控制资源集合(即,检测第一控制资源集合关联的非广播搜索空间集合的控制资源集合)关联的接收参数的SSB,网络设备根据该SSB恢复第一控制资源集合的通信链路,无需额外的信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,所述接收链路失败恢复请求,包括:通过PUCCH接收所述链路失败恢复请求,其中,所述PUCCH用于承载信道质量信息和/或调度请求信息。
网络设备可以复用承载信道质量信息和/或调度请求信息的PUCCH接收链路失败恢复请求,例如,通过波束报告(beam reporting)的字段的特殊状态位区分发送的信息是波束报告还是链路失败恢复请求,该特殊状态位例如是绝对或参考的7比特(bit)位中的预留位或最低位或最高位。从而提高了空口资源利用率
可选地,所述接收链路失败恢复请求,包括:通过PRACH接收所述链路失败恢复请求,其中,所述PRACH与第三参考信号具有关联关系,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号。
上述关联关系指的是网络设备使用RRC信令在PRACH资源下面配置第三参考信号。当上下行波束具有互易性时,终端设备可以使用第三参考信号对应的波束去发送链路失败请求。其中,上述PRACH可以是竞争随机接入场景中配置的PRACH(即,竞争PRACH资源),也可以是非竞争随机接入场景中配置的PRACH(即,非竞争PRACH资源),当使用竞争PRACH资源时,由于竞争PRACH资源用于初始接入,复用这个PRACH资源可以节省开销。若使用非竞争PRACH资源,那么网络设备就会单独为终端设备配置PRACH资源,由于不需要与其他用户竞争,可以节省发送链路失败恢复请求的时间。
可选地,所述方法还包括:在所述控制资源集合上发送链路失败恢复请求响应,和/或,在所述控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合。
上述控制资源集合可以是第二控制资源集合或第三控制资源集合,当该控制资源集合为第二控制资源集合时,第二控制资源集合例如可以是无线资源控制(radio resource control,RRC)信令配置的控制资源集合,当RRC信令配置的控制资源集合可用时,终端设备可以在RRC信令配置的控制资源集合上检测非广播搜索空间,这样,无需网络设 备通过额外信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。当该控制资源集合为第三控制资源集合时,网络设备可以直接通过第三控制资源集合发送链路失败恢复请求响应,也可以不发送链路失败恢复请求响应,而是通过第三控制资源集合发送DCI,当终端设备在第三控制资源集合上检测第一控制资源集合关联的搜索空间获得DCI时,即可确定接收到了链路失败恢复请求响应(该DCI相当于链路失败恢复请求响应),或者,网络设备也可以发送链路失败恢复请求响应后再通过第三控制资源集合发送DCI。上述方法通过包含第三参考信号的链路恢复请求隐式的指示了终端设备检测非广播搜索空间的参数(即,第三参考信号指示的接收参数),无需网络设备重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,所述方法还包括:在第四控制资源集合上发送链路失败恢复请求响应,和/或,在第四控制资源集合上发送所述第一控制资源集合关联的非广播搜索空间集合;
其中,所述第四控制资源集合是专用于接收链路失败恢复请求响应的控制资源集合。
第四控制资源集合是网络设备为恢复通信链路专门配置的控制资源集合,即,第四控制资源集合是链路失败前配置好的专用于链路失败恢复的控制资源集合,终端设备可以通过接收信息使用的控制资源集合或关联的搜索空间集合区分接收到的信息是正常的数据调度还是链路失败恢复请求响应。网络设备在确定第一控制资源集合的链路失败后,通过第四控制资源集合向终端设备回复通信失败恢复请求响应。第四控制资源集合的DMRS与链路失败恢复请求中包含的用于恢复链路的参考信号满足QCL关系。终端设备可以根据网络设备重新配置的控制资源集合(即,第四控制资源集合)检测第一控制资源集合关联的非广播搜索空间集合,根据该方法,网络设备配置新的控制资源集合前,终端设备可以提前检测第一控制资源集合关联的搜索空间集合,以便于接收相关的信息,从而提高了第一控制资源集合的链路恢复效率。。
可选地,所述非广播搜索空间集合配置的DCI格式包括DCI格式2-0和/或DCI格式2-1,或,
所述非广播搜索空间集合内检测的DCI的循环冗余校验CRC通过时隙格式指示无线网络临时标识SFI-RNTI加扰和/或中断无线网络临时标识INT-RNTI加扰。
所述非广播搜索空间集合内检测的DCI的循环冗余校验(cyclic redundancy check,CRC)通过时隙格式指示无线网络临时标识(slot format indication radio network temporary identity,SFI-RNTI)加扰和/或中断无线网络临时标识(interruption radio network temporary identity,INT-RNTI)加扰,其中,所述DCI的CRC为由所述DCI的信息比特生成的CRC。
DCI格式2-0的CRC是由SFI-RNTI加扰的,主要用于发送时隙格式,DCI格式2-1的CRC是由INT-RNTI加扰的,主要用于通知终端设备速率匹配的位置(高可靠低时延(ultra reliable&low latency communication,URLLC)业务数据传输时的打孔位置),这些信息用于数据解调,以及参考信号的接收或发送,因此在第四控制资源中关联相应的搜索空间,可以保证在链路失败恢复过程中也能接收到这些重要的时隙格式信息或抢先(pre-emption)信息,以便正确接收数据和参考信号。
可选地,所述方法还包括:在第五控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合,其中,所述第五控制资源集合为所述确定第一控制资源集合的 链路失败后配置的控制资源集合。
第五控制资源集合是第一控制资源集合链路失败后新配置的控制资源集合,或者,第五控制资源集合是重新配置了QCL/TCI的第一控制资源集合,根据该方法,网络设备可以在终端设备上报的多个下行链路中找到信道质量较好的下行链路配置给终端设备。终端设备可以在网络设备配置性能较好的新的控制资源集合检测第一控制资源集合关联的搜索空间集合,提高接收性能。可选地,上述在第五控制资源集合上检测第一控制资源集合关联的搜索空间集合中,所述搜索空间集合包括SFI-RNTI和/或INT-RNTI加扰的搜索空间集合。
第三方面,本申请提供了一种链路恢复装置,该装置可以是通信设备(例如,终端设备),也可以是通信设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是通信设备时,该处理单元可以是处理器,该收发单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述第一方面所述的方法。当该装置是通信设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述第一方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供了另一种链路恢复装置,该装置可以是通信设备(例如,网络设备),也可以是通信设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是通信设备时,该处理单元可以是处理器,该收发单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行第二方面所述的方法。当该装置是通信设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行第二方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种网络系统,所述网络系统包括上述第三方面所述的链路恢复装置和第四方面所述的链路恢复装置。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得终端设备执行第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被网络设备的通信单元、处理单元或收发器、处理器运行时,使得网络设备执行第二方面所述的方法。
第八方面,提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行第一方面的方法所设计的程序。
第九方面,提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行第二方面的方法所设计的程序。
第十方面,提供了一种芯片,其中存储有指令,当其在终端设备上运行时,使得所述 芯片执行第一方面的方法。
第十一方面,提供了一种芯片,其中存储有指令,当其在网络设备上运行时,使得所述芯片执行第二方面的方法。
附图说明
图1是一种适用本申请的通信系统的示意图;
图2是一种适用于本申请的波束训练过程的示意图;
图3是本申请提供的一种链路恢复的方法的示意性流程图;
图4是本申请提供的另一种链路恢复方法的示意性流程图;
图5是本申请提供的一种根据上报周期确定第一控制资源集合链路失败的方法;
图6是本申请提供的另一种根据上报周期确定第一控制资源集合链路失败的方法;
图7是本申请提供的再一种根据上报周期确定第一控制资源集合链路失败的方法;
图8是本申请提供的再一种根据上报周期确定第一控制资源集合链路失败的方法;
图9是本申请提供的一种检测CORESET0的方法的示意性流程图;
图10是本申请提供的另一种检测CORESET0的方法的示意性流程图;
图11是本申请提供的一种发送链路失败恢复请求的流程图;
图12是本申请提供的一种发送链路失败恢复请求的流程图;
图13是本申请提供的一种检测非广播搜索空间的方法的流程图;
图14是本申请提供的另一种检测非广播搜索空间的方法的流程图。
图15是本申请提供的再一种链路恢复方法的示意性流程图;
图16是本申请提供的一种链路恢复装置的结构示意图;
图17是本申请提供的另一种链路恢复装置的结构示意图;
图18是本申请提供的一种终端设备的结构示意图;
图19是本申请提供的一种接入网设备的结构示意图;
图20是本申请提供的一种通信装置的结构示意图。
具体实施方式
图1示出了一种适用本申请的通信系统100。该通信系统100包括网络设备110和终端设备120,网络设备110与终端设备120通过无线网络进行通信,当终端设备120发送数据时,无线通信模块可对信息进行编码以用于传输,具体地,无线通信模块可获取要通过信道发送至网络设备110的一定数目的信息比特,这些信息比特例如是处理模块生成的、从其它设备接收的或者在存储模块中保存的信息比特。
当通信系统100的传输方向为上行传输时,终端设备120为发送端,网络设备110为接收端,当通信系统100的传输方向为下行传输时,网络设备110为发送端,终端设备120为接收端。
本申请提供的技术方案可以应用于各种通信系统,例如:5G移动通信系统,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。
在本申请中,终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G通信系统中的用户设备。
网络设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G移动通信系统中的基站(gNB),上述基站仅是举例说明,网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。
为了便于理解本申请,在介绍本申请提供的恢复链路的方法之前,首先对本申请涉及的概念做简要介绍。
本申请中,波束可以分为网络设备的发送波束和接收波束,与终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备发送侧波束赋性信息,基站接收波束用于描述网络设备接收侧波束赋性信息,终端设备的发送波束用于描述终端设备发送侧波束赋性信息,终端接收波束用于描述终端设备接收侧波束赋性信息。也即波束用于描述波束赋性信息。
本申请中,波束可以对应时间资源和或空间资源和或频域资源。
可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋性信息对应。
可选地,波束还可以与网络设备的参考信号资源关联的信息对应,其中参考信号可以为CSI-RS,SSB,DMRS,相位跟踪信号(phase tracking reference signal,PTRS),跟踪信号(tracking reference signal,TRS)等,参考信号资源关联的信息可以是参考信号资源标识,或者QCL信息等。
其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端可推断波束信息。
图2示出了适用于本申请的波束训练过程。图2中,TRP为传输参考点(transmission reference point)的英文缩写。
波束对的选择:如图2中的(a)和(b)所示,波束训练过程首先通过波束扫描选出最优的N个波束对(beam pair link,BPL),一个BPL包括一个基站发射波束和一个终端接收波束,或者,一个BPL包括一个终端发射波束和一个基站接收波束。用于终端设备基于网络设备的波束扫描实现对基站发射波束和/或终端接收波束的选择,以及,网络设备基于终端设备的波束扫描实现对终端发射波束和/或基站接收波束的选择。
发射波束的更新:该发射波束可以为基站发射波束,也可以为终端发射波束。当该发射波束为基站发射波束时,如图2中的(e)所示,基站通过不同的发射波束向UE发送参考信号,UE通过一个接收波束来接收基站通过不同的发射波束发送的参考信号,并基 于接收信号确定基站的最优发射波束,然后将基站的最优发射波束反馈给基站,以便于基站对发射波束进行更新。当该发射波束为终端发射波束时,如图2中的(d)所示,UE通过不同的发射波束向基站发送参考信号,基站通过同一个接收波束来接收UE通过不同的发射波束发送的参考信号,并基于接收信号确定UE的最优发射波束,然后将UE的最优发射波束反馈给UE,以便于UE对发射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
接收波束的更新,该接收波束可以为基站接收波束,也可以为终端接收波束。当该接收波束为基站接收波束时,如图2中的(f)所示,UE通过同一个发射波束向基站发送参考信号,基站采用不同的接收波束接收UE发送的参考信号,然后基于接收信号确定基站的最优接收波束,以对基站的接收波束进行更新。当该接收波束为UE的接收波束时,如图2中的(c)所示,基站通过同一个发射波束向UE发送参考信号,UE采用不同的接收波束接收基站发送的参考信号,然后基于接收信号确定UE的最优接收波束,以对UE的接收波束进行更新。
在下行信号的传输中,基站发射波束和终端接收波束均可能发生动态变化,终端设备基于接收信号确定的最优接收波束可能包括多个,为了使终端设备确定自身的接收波束,终端设备可以将多个接收波束的信息反馈给基站,基站可以通过向终端设备发送波束指示信息来向终端设备指示终端接收波束。当终端设备采用模拟域的波束赋形时,终端设备可以基于网络设备发送的波束指示信息来精确的确定终端接收波束,从而可以节省终端设备的波束扫描时间,达到省电的效果。
通过波束训练过程,基站获得和UE通信较优的N个BPL,所述BPL为<Bx,B’x>,其中Bx代表基站的发送波束,B’x代表UE的接收波束;或者,所述BPL为<By,B’y>,其中By代表UE的发送波束,B’y代表基站的接收波束。基站在后续和UE通信过程中会采用这N个BPL进行数据传输。但是由于在通信过程中存在遮挡,高频信道下的绕射能力差,导致当前服务的波束被阻挡,信号无法继续传输。为了防止在出现波束被阻挡的情况下,通信被突然中段,需要引入相应的机制对波束质量进行检测,并在发生阻挡的情况下快速恢复链路。
为了检测通信链路以及恢复通信链路,网络设备需要给终端配置用于链路失败检测(即波束失败检测)的链路失败检测参考信号资源,该链路失败检测参考信号资源可以称为波束失败检测参考信号资源配置(Beam-Failure-Detection-RS-ResourceConfig)或波束失败检测参考信号(Beam-Failure-Detection-RS)或波束失败检测资源(Failure-Detection-Resources),网络设备还需要给终端设备配置用于恢复通信链路的候选参考信号资源,该候选参考信号资源可以称为候选波束参考信号列表(candidate beam RS list)或候选波束参考信号标识资源(Beam-Failure-Candidate-Beam-Resource)或候选波束标识参考信号(Candidate-Beam-Identification-RS)或候选波束参考信号列表(candidate Beam RS List),或者识别新链路的参考信号资源。
在具体实现中,用于链路失败检测参考信号资源以及候选参考信号资源还可以有其它叫法,本申请对此不作具体限定。
上述信号或者信号集合或资源可以通过显式方式(专用信令,如RRC,MAC-CE,DCI 中的至少一种)配置,此外用于检测链路失败的参考信号还可以通过隐式方式指示,将指示PDCCH/CORESET的传输配置指示(transmission configuration indicator,TCI)关联的参考信号作为检测链路失败的参考信号,该参考信号是与PDCCH的解调参考信号(demodulation reference signal,DMRS)具有准共址假设关系的D型QCL中包含的参考信号(Type D QCLed with PDCCH DMRS),且为周期发送的参考信号。
例如,波束失败检测参考信号集合(Beam-Failure-Detection-RS set)中的RS与PDCCH的DMRS满足准共址(quasi co-location,QCL)关系或者与PDCCH使用相同的TCI状态,当该集合中的部分或者所有参考信号的信道质量信息(如参考信号接收功率RSRP、参考信号接收质量RSRQ、块差错比(block error ratio,BLER)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、信噪比(signal noise ratio,SNR)和信道质量指示CQI中的一个或多个)低于第一门限,则判定为通信链路故障。其中低于预定门限可以是连续N次低于预定门限或者一定时间段内N次低于预定门限。可选地,该预定门限可以和无线链路检测失步门限(RLM OOS thresholdConfig/rlmInSyncOutOfSyncThreshold)相同。
在本申请中,链路失败还可以称为通信链路失败、通信链路故障、波束故障、波束失败、链路故障、通信故障、通信失败等。在本文中,这些概念是相同的含义。链路失败发生后,终端需要从候选参考信号资源中选出信道质量信息(如参考信号接收功率RSRP、参考信号接收质量RSRQ、块差错比BLER、信号与干扰加噪声比SINR、信噪比SNR和信道质量指示CQI等中的一个或多个等)高于预定门限的参考信号资源,用于恢复链路。可选地,该预定门限可以由网络设备配置。在本申请中,恢复链路也可以叫做恢复网络设备与终端设备通信,链路失败恢复,波束失败恢复,通信链路失败恢复、链路故障恢复、通信故障恢复或通信失败恢复,链路恢复,链路重配,通信链路恢复,波束故障恢复,通信失败恢复等。
图3示出了适用于本申请的一种恢复通信链路方法的示意性流程图。该方法300包括:
S310,链路失败检测。例如,终端设备测量波束失败检测参考信号集合(beam failure detection RS set)中的参考信号,若连续N次检测结果为失败或波束失败检测参考信号集合中所有参考信号的信道质量(也可称为“信号质量”)小于预设门限,则终端设备判定当前波束的状态为波束失败。
需要说明的是,终端设备检测出网络设备采用某一发射波束发送的下行参考信号的信号质量变差,也即表明网络设备的该发射波束发生通信链路故障。这里,该发射波束是指网络设备与该终端设备进行通信时使用的发射波束。网络设备的发射波束发生通信链路故障的原因包括但不限于:在通信过程中存在障碍物遮挡,高频信道下的绕射能力差,导致当前服务的波束被阻挡,信号无法继续传输。其中,信号质量变差可以是信道质量信息(如RSPR、CQI等)低于预定门限。
S310可以包括下列实施方式。
S311,确定第一控制资源集合的链路失败,其中,第一控制资源集合为第一MIB配置的控制资源集合。
上述第一控制资源集合例如是第一MIB配置的公共搜索空间关联的CORESET或控制区域(control region)或ePDCCH集合(set),为了简洁,下面,以第一控制资源集合 为CORESET为例对本申请提供的链路恢复方法进行说明。第一MIB为任意一个MIB,可以与下文所述的第二MIB相同,也可以与下文所述的第二MIB相异,第一MIB和第二MIB不代表对MIB的限制,类似地,第一控制资源集合也不代表对控制资源集合的限定。
“确定第一控制资源集合的链路失败”可以被理解为确定第一控制资源集合的通信链路处于链路失败状态,或者,可以被理解为确定第一控制资源集合的通信链路发生了链路失败,或者,可以被理解为其它含义等同的解释。
当第一控制资源集合为CORESET时,该CORESET的标识可以为0,即,第一控制资源集合可以是CORESET0,CORESET0主要用于在初始接入时调度剩余系统信息(remaining system information,RMSI),其它系统信息(other system information,OSI),寻呼(Paging)消息,随机接入消息(包括:第二消息(Message2)或第四消息(Message4))中的一种或多种信息;初始接入后若CORESET0在激活部分带宽(active bandwidth part,active BWP)上,则网络设备还可以使用CORESET0调度这些数据,可选地,CORESET0还可以关联终端设备专属搜索空间(UE specific search space,USS)否则还可以将公共搜索空间关联到其它CORESET上。一个SSB关联一个CORESET0,终端设备在SSB关联的CORESET0上检测公共搜索空间(common search space,CSS)。
当终端设备检测到第一控制资源集合的通信链路发生链路失败时,终端设备可以向网络设备发送用于请求恢复第一控制资源集合的请求消息,即,执行下文所述的S330,从而可以快速恢复MIB配置的控制资源集合的通信链路。
需要说明的是,在本申请中,对前后两个步骤的执行时间不作限定,当前一个步骤被执行完毕后,后一个步骤可以立刻被执行,也可以间隔一段时间后被执行,此外,前后两个步骤之间还可以存在其它步骤,例如,在第一控制资源集合的链路失败后,终端设备还可以先找新的下行链路,再找对应的上行资源,然后再发送链路失败恢复请求。
可选地,S311包括:
确定第一控制资源集合关联的搜索空间集合(可选的步骤);
根据第一控制资源集合关联的搜索空间集合确定第一控制资源集合的通信链路的链路失败检测方式;
根据该链路失败检测方式确定第一控制资源集合的通信链路的链路失败。
上述第一控制资源集合关联的搜索空间集合可以被理解为:所述搜索空间内的PDCCH由一个或多个控制信道单元(control channel element,CCE)构成,所述一个或多个CCE映射到多个资源单元组(resource element group,REG)上,所述多个REG在所述第一控制资源集合内。
第一控制资源集合与搜索空间集合的关联关系由MIB配置或者由RRC信令配置或者为预定义的关系。
本申请中,一个CCE可对应包括多个REG,一个CCE对应的REG的数量可以是固定的,例如6。一个REG在频域上包含连续的12个子载波,时域上占用1个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
第一控制资源集合关联的搜索空间的类型可能不同,例如,第一控制资源集合关联的搜索空间可能是广播搜索空间和/或非广播搜索空间,其中,当第一控制资源集合关联的搜索空间为广播搜索空间时,由于广播搜索空间关联的CORESET0(即,第一MIB配置 的CORESET)关联的波束是小区专用(cell specific)的波束,因此,基站会在多个同步信号广播信道块(synchronous signal/PBCH block,SSB)对应的CORESET0上重复发送相同的广播信息。若发生链路失败终端设备可以自行切换SSB,不需要基站重新配置其准共址(quasi co-location,QCL)信息,因此,用户设备无需检测广播搜索空间的SSB;当第一控制资源集合关联的搜索空间为非广播搜索空间(例如,终端设备的专用搜索空间)时,由于非广播搜索空间发送的内容是用户设备专用(UE specific)的内容或者是用户设备组共用(UE group common)的内容,因此,基站不会在所有的SSB对应的CORESET0上发送相同的非广播信息,所以基站会通知用户设备非广播搜索空间使用的SSB是哪个SSB,以便于用户设备检测关联非广播搜索空间的CORESET0是否发生链路失败,若链路失败,则用户设备需要告知基站重新配置非广播搜索空间对应的波束或者CORESET。上述方法根据第一控制资源集合关联的搜索空间的类型检测第一控制资源集合的通信链路是否发生链路失败,可以提高链路恢复的效率。
可选地,上述非广播搜索空间集合中的非广播搜索空间内检测的下行控制信息(downlink control information,DCI)的CRC使用下列信息中的至少一种信息加扰:
随机接入RNTI(random access RNTI,RA-RNTI)、小区临时RNTI(temporary cell RNTI,TC-RANTI)、小区RNTI(cell RNTI,C-RNTI)、中断RNTI(interruption RNTI,INT-RNTI)、时隙格式指示RNTI(slot format indication RNTI,SFI-RNTI)、上行数据功控RNTI(transmit power control physical uplink shared channel RNTI,TPC-PUSCH-RNTI)、上行控制功控RNTI(transmit power control physical uplink control channel RNTI,TPC-PUCCH-RNTI)、探测参考信号功控RNTI(transmit power control sounding reference symbols RNTI,TPC-SRS-RNTI)、配置调度RNTI(configured scheduling RNTI,CS-RNTI)和半静态信道状态信息RNTI(semi-persistent channel state information,SP-CSI-RNTI)。
可选地,上述非广播搜索空间集合包括公共搜索空间(Common search space)内检测的DCI的CRC使用下列信息中的至少一种信息加扰:
INT-RNTI,SFI-RNTI,TPC-PUSCH-RNTI,TPC-PUCCH-RNTI,TPC-SRS-RNTI,C-RNTI,CS-RNTI(s),SP-CSI-RNTI,和或
上述非广播搜索空间集合包括终端专属搜索空间(UE specific search space)内检测的DCI的CRC使用下列信息中的至少一种信息加扰:
C-RNTI,CS-RNTI(s),SP-CSI-RNTI。
可选地,当搜索空间为非广播搜索空间时,用于第一控制资源集合的链路失败检测的参考信号资源集合包括第一参考信号和第二参考信号,其中,第一参考信号用于非MIB信息配置的控制资源集合的链路失败检测,第二参考信号用于指示第一控制资源集合关联的接收参数。
第一参考信号承载于第一参考信号资源上,第一参考信号包括一个或多个参考信号,因此,第一参考信号也可以称为第一参考信号资源集合。类似地,第二参考信号承载于第二参考信号资源上,第二参考信号包括一个或多个参考信号,因此,第二参考信号也可以称为第二参考信号资源集合。
第一参考信号为网络设备预先配置的用于检测第一控制资源集合的通信链路是否发生链路失败的参考信号集合,第二参考信号例如是同步信号广播信道块(synchronization  signal/PBCH block,SSB),终端设备可以检测第一参考信号和第二参考信号的信号质量(例如,信噪比)是否小于或等于第一门限,当第一参考信号和第二参考信号的信号质量均小于或等于第一门限时,确定第一控制资源集合的通信链路发生链路失败。上述“第一参考信号和第二参考信号的信号质量均小于或等于第一门限”包括:第一参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限,以及,第二参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限。该方法无需挑选特定的参考信号进行检测,具有简单易实施以及更好的兼容性的特点,上述兼容性指的是该方法可以直接复用其它CORESET(除CORESET0以外的CORESET)的链路失败恢复流程,包括复用其它CORESET发送链路失败恢复请求以及接收链路失败恢复请求响应的流程。
终端设备还可以仅检测第二参考信号的信号质量(例如,信噪比)是否小于或等于第一门限,当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的通信链路发生链路失败,上述“第二参考信号的信号质量小于或等于第一门限”包括:第二参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限,无需同第一参考信号一起确定是否发生链路失败,是否需要发起链路失败恢复请求,从而减小了终端设备确定第一控制资源集合的通信链路发生链路失败的复杂度。
在本申请中,“接收参数”指的是接收信号所需的参数,例如,可以是TCI,QCL,D型(type D)QCL,空间接收参数(spatial Rx parameter),还可以是其它参数。
在本申请中,SSB还可以称为SS/PBCH block,其中,PBCH为物理广播信道(physical broadcast channel)的缩写。SSB包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和PBCH中的至少一个。
作为一个可选的示例,一个SSB占用4个连续的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,一个SSB脉冲集(burst set)为一个时长为5ms的时间窗,在5ms的SSB时间窗内,最多可以传输L个SSB。对于不同的频段,L的取值如下:
(1)3GHz以下频段,L=4。
(2)3GHz至6GHz频段,L=8。
(3)6GHz至52.6GHz频段,L=64。
SSB支持15kHz,30kHz,120kHz以及240kHz子载波间隔。对于不同的子载波间隔,在一个SSB burst set中,SSB在时域配置共有5种不同的映射图样。
上述SSB的示例仅是举例说明,本申请所述的SSB还可以有其它定义。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败,包括:
当第一参考信号的信号质量小于或等于第一门限时,并且,当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败;或者,
当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败。
需要说明的是,上述方法与下面的几种描述方式是等价的。
描述方式一:
当第一控制资源集合关联的搜索空间集合为非广播搜索空间集合时,并且,当第一参考信号中全部参考信号的信号质量小于或等于第一门限时,和/或,当第二参考信号的信号 质量小于或等于第一门限时,确定所述第一控制资源集合的链路失败;其中,所述第二参考信号用于指示所述第一控制资源集合关联的接收参数,所述第一参考信号用于除所述第一控制资源集合以外的控制资源集合的链路失败检测。
描述方式二:
当第一控制资源集合关联的搜索空间集合为非广播搜索空间集合时,并且,当第一参考信号中全部参考信号的信号质量均小于或等于第一门限时,和/或,当第二参考信号的信号质量小于或等于第一门限时,确定所述第一控制资源集合的链路失败,其中,所述第二参考信号用于指示所述第一控制资源集合关联的接收参数,所述第一参考信号资源集合用于非MIB信息配置的控制资源集合的链路失败检测。
描述方式三:
当第一控制资源集合关联的搜索空间集合为非广播搜索空间集合时,并且,当第一参考信号中全部参考信号的信号质量均小于或等于第一门限时,和/或,当第二参考信号的信号质量小于或等于第一门限时,确定所述第一控制资源集合的链路失败,其中,所述第二参考信号用于指示所述第一控制资源集合关联的接收参数,所述第一参考信号用于RRC信令配置的控制资源集合的链路失败检测。
在本申请中,第一参考信号也可以称为第一参考信号资源集合,第二参考信号也可以称为第二参考信号资源集合。
第一参考信号可以是一个或多个参考信号,第二参考信号也可以是一个或多个参考信号,第一参考信号为网络设备预先配置的用于检测第一控制资源集合的通信链路是否发生链路失败的参考信号,第二参考信号例如是同步信号广播信道块(synchronization signal/PBCH block,SSB),终端设备可以检测第一参考信号和第二参考信号的信号质量(例如,信噪比)是否小于或等于第一门限,当第一参考信号和第二参考信号的信号质量均小于或等于第一门限时,确定第一控制资源集合的通信链路发生链路失败,上述“当第一参考信号和第二参考信号的信号质量均小于或等于第一门限时”包括:第一参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限,以及,第二参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限。该方法无需挑选特定的参考信号进行检测,具有简单易实施以及更好的兼容性的特点,上述兼容性指的是该方法可以直接复用其它CORESET(除CORESET0以外的CORESET)的链路失败恢复流程,包括复用其它CORESET发送链路失败恢复请求以及接收链路失败恢复请求响应的流程。
终端设备还可以仅检测第二参考信号的信号质量(例如,信噪比)是否小于或等于第一门限,当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的通信链路发生链路失败,上述“当第二参考信号的信号质量均小于或等于第一门限时”包括:第二参考信号中的至少一个或全部参考信号的信号质量小于或等于第一门限,无需检测第一参考信号,从而减小了终端设备确定第一控制资源集合的通信链路发生链路失败的负担。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败,包括:
当上报周期内第一参考信号的信号质量小于或等于第一门限时,并且,当所述上报周期内第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败;或者,
当上报周期内第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败;
其中,所述上报周期为物理(PHY)层向介质访问控制(media access control,MAC)层上报链路失败事件的周期。
图5示出了本申请提供的一种根据上报周期确定第一控制资源集合链路失败的方法。
图5中,q0即用于第一控制资源集合链路失败检测的参考信号资源集合,假设q0中参考信号包括CSI-RS1(即,第一参考信号,周期是5ms)和SSB1(即,第二参考信号,周期是5ms);波束失败事件(beam failure instance,BFI)指示间隔(indication interval)等于5ms。基站可以配置连续发生多次(例如,3次)波束失败事件则确定CORESET0(即,第一控制资源集合)发生通信链路失败,其中,CORESET0发生通信链路失败由UE的物理层(PHY)上报给介质接入控制(media access control,MAC)层。由图5可知,从10ms至25ms连续发生了3次BFI,每个BFI间隔内的第一参考信号和第二参考信号的信号质量均小于第一门限,因此,终端设备根据该3次BFI确定第一控制资源集合链路失败。图中标识“X”表示该参考信号的信号质量低于第一门限。
图6示出了本申请提供的另一种根据上报周期确定第一控制资源集合链路失败的方法。
图6中,q0即用于第一控制资源集合链路失败检测的参考信号资源集合,假设q0中参考信号包括CSI-RS1(即,第一参考信号,周期是5ms)和SSB1(即,第二参考信号,周期是10ms);BFI指示间隔等于5ms。基站可以配置连续发生多次(例如,3次)波束失败事件则确定CORESET0(即,第一控制资源集合)发生通信链路失败,其中,CORESET0发生通信链路失败由UE的物理层(PHY)上报给MAC层。由图6可知,从10ms至25ms连续发生了3次BFI,每个BFI间隔内的第一参考信号和第二参考信号的信号质量均小于第一门限,因此,终端设备根据该3次BFI确定第一控制资源集合链路失败。图中标识“X”表示该参考信号的信号质量低于第一门限。
图7示出了本申请提供的再一种根据上报周期确定第一控制资源集合链路失败的方法。
图7中,q0即用于第一控制资源集合链路失败检测的参考信号资源集合,假设q0中参考信号包括CSI-RS1(即,第一参考信号,周期是5ms)和SSB1(即,第二参考信号,周期是5ms);波束失败事件(beam failure instance,BFI)指示间隔(indication interval)等于5ms。基站可以配置连续发生多次(例如,3次)波束失败事件则确定CORESET0(即,第一控制资源集合)发生通信链路失败,其中,CORESET0发生通信链路失败由UE的物理层(PHY)上报给介质接入控制(media access control,MAC)层。由图7可知,从10ms至25ms发生了3次BFI,每个BFI间隔内的第一参考信号和第二参考信号的信号质量均小于第一门限,因此,终端设备根据该3次BFI确定第一控制资源集合链路失败。图中标识“X”表示该参考信号的信号质量低于第一门限。
需要说明的是,图7中终端设备的物理层上报BFI是根据上一次测量SSB1的结果确定是否上报BFI,即,终端设备在0ms到5ms内测量SSB1的信号质量大于第一门限,则终端设备的物理层在5ms至10ms的上报周期内不发送BFI,可选地,终端设备也可以根据当前测量SSB1的结果确定是否上报BFI,例如,当终端设备在5ms到10ms内测量SSB1 的信号质量小于第一门限,则终端设备的物理层立刻上报BFI。
图8示出了本申请提供的再一种根据上报周期确定第一控制资源集合链路失败的方法。
图8中,q0即用于第一控制资源集合链路失败检测的参考信号资源集合,假设q0中参考信号包括CSI-RS1(即,第一参考信号,周期是5ms)和SSB1(即,第二参考信号,周期是10ms);波束失败事件(beam failure instance,BFI)指示间隔(indication interval)等于5ms。基站可以配置SSB1发生1次波束失败事件则确定CORESET0(即,第一控制资源集合)发生通信链路失败,其中,CORESET0发生通信链路失败由UE的物理层(PHY)上报给介质接入控制(media access control,MAC)层。由图8可知,从10ms至25ms发生了3次BFI,每个BFI间隔内的第一参考信号和第二参考信号的信号质量均小于第一门限,因此,终端设备根据该3次BFI确定第一控制资源集合链路失败。图中标识“X”表示该参考信号的信号质量低于第一门限。
上述方法通过MAC层统计多次第一控制资源集合的链路失败事件(即BFI),减小了偶然事件导致误判的概率,从而提高确定第一控制资源集合的链路失败的可靠性,此外,通过MAC层来决定使用哪个或者哪几个PRACH发送链路失败恢复请求可以提高空口利用率。
可选地,当搜索空间集合包括非广播搜索空间时(不限定仅包括非广播搜索空间,还可以包括广播搜索空间),用于第一控制资源集合的链路失败检测的参考信号资源集合仅包括第二参考信号,其中,第二参考信号用于指示第一控制资源集合关联的接收参数。
可选地,在本申请中,非广播PDCCH的搜索空间集合包括类型一的公共搜索空间,其中,类型一的公共搜索空间为下列信息中的至少一种信息加扰的DCI格式:RA-RNTI、TC-RNTI、主小区上的C-RNTI(Type1-PDCCH common search space(CSS)for a DCI format with CRC scrambled by a RA-RNTI,or a TC-RNTI,or a C-RNTI on a primary cell)。
可选地,在本申请中,非广播PDCCH的搜索空间集合还包括类型三的公共搜索空间,其中,类型三的公共搜索空间为下列信息中的至少一种信息加扰的DCI格式:INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、C-RNTI、CS-RNTI和SP-CSI-RNTI。(a Type3-PDCCH common search space for a DCI format with CRC scrambled by INT-RNTI,or SFI-RNTI,or TPC-PUSCH-RNTI,or TPC-PUCCH-RNTI,or TPC-SRS-RNTI,or C-RNTI,or CS-RNTI,or SP-CSI-RNTI)。
可选地,在本申请中,非广播PDCCH的搜索空间集合还具有如下特征:非广播PDCCH承载的DCI格式包括DCI格式2-0和/或DCI格式2-1和/或DCI格式2-2和/或DCI格式2-3,
其中,终端设备监测包括SFI-RNTI加扰的CRC的DCI格式2_0(UE monitors the DCI format format 2_0 with CRC scrambled by SFI-RNTI);
终端设备监测包括INT-RNTI加扰的CRC的DCI格式2_1(UE monitors the DCI format format 2_1 with CRC scrambled by INT-RNTI);
终端设备监测包括TPC-PUSCH-RNTI或TPC-PUCCH-RNTI加扰的CRC的DCI格式2_2(UE monitors the DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI or TPC-PUCCH-RNTI);
终端设备监测包括TPC-SRS-RNTI加扰的CRC的DCI格式2_3(UE monitors the DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI)。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败,包括:当第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败。
网络设备可以将用于第一控制资源集合的链路失败检测的参考信号资源集合配置为仅包含第二参考信号,第二参考信号是一个或多个参考信号,终端设备检测第二参考信号(例如,SSB),当第二参考信号的信号质量小于或等于第一门限,即可确定第一控制资源集合的链路失败,或者,当第二参考信号的信号质量连续几次小于或等于第一门限,则确定第一控制资源集合的链路失败,上述“第二参考信号的信号质量小于或等于第一门限”可以是第二参考信号中的至少一个参考信号的信号质量小于或等于第一门限,也可以是第二参考信号中的全部参考信号的信号质量小于或等于第一门限,上述统计第二参考信号的信号质量连续几次小于或等于第一门限的功能可以是在终端设备的物理层实现。由于第一控制资源集合(例如CORESET0)用于接收系统消息,系统消息通常是重要的消息,因此,该方法在保持兼容性的同时可以快速恢复第一控制资源集合的通信链路。
本申请中,第一参考信号和第二参考信号的配置方式有以下4中可选的方式:
可选的方式1:第一参考信号是通过高层信令(例如,RRC或MAC控制元素(control element,CE))配置的,第二参考信号是为第一控制资源集合配置的TCI中的参考信号。
可选的方式2:第一参考信号是通过高层信令(例如,RRC或MAC CE)配置的,第二参考信号是在初始接入阶段接收第二消息对应的第一控制资源集合关联的SSB或者在初始接入阶段接收第四消息使用的SSB或者上一次发生BFR上报的SSB。
可选的方式3:第一参考信号是为非MIB信息配置的控制资源集合配置的TCI中的参考信号,第二参考信号是为第一控制资源集合配置的TCI中的参考信号。
可选的方式4:第一参考信号是为非MIB信息配置的控制资源集合配置的TCI中的参考信号,第二参考信号是终端设备接收第二消息使用的SSB,该第二消息承载于第一控制资源集合,该第一控制资源集合用于发送随机接入响应消息;或者,第二参考信号是终端设备接收第四消息使用的SSB,该第四消息承载于第一控制资源集合,该第一控制资源集合用于发送随机接入响应消息;或者,第二参考信号是与第一控制资源集合的DMRS满足QCL假设关系的参考信号,其中所述第一控制资源集合用于承载第二消息,所述第二消息是随机接入响应消息;或者,第二参考信号是与物理下行共享信道PDSCH的DMRS满足QCL假设关系的参考信号,其中所述PDSCH用于承载第四消息。第四消息是网络设备向终端设备发送的竞争解决消息;或者,第二参考信号是上一次发生BFR上报的SSB;或者,第二参考信号是与发送链路失败恢复请求响应信息的控制资源集合的DMRS满足QCL假设关系的参考信号。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败,包括:
当上报周期内第二参考信号的信号质量小于或等于第一门限时,确定第一控制资源集合的链路失败,其中,所述上报周期为物理(PHY)层向MAC层上报链路失败事件的周期。
上述方法通过MAC层统计多次第一控制资源集合的链路失败事件(即BFI),减小了偶然事件导致误判的概率,从而提高确定第一控制资源集合的链路失败的可靠性,此外, 通过MAC层来决定使用哪个或者哪几个PRACH发送链路失败恢复请求可以提高空口利用率。
可选地,根据链路失败检测方式确定第一控制资源集合的链路失败,包括:
当搜索空间为非广播搜索空间时,并且,当第二参考信号的信号质量小于或等于第一门限时,确定所述第一控制资源集合的链路失败,其中,所述第二参考信号用于指示第一控制资源集合关联的接收参数。
上述方法直接检测第二参考信号(例如,SSB)的信号质量是否小于或等于第一门限,以便于确定第一控制资源集合的通信链路是否发生链路失败,不再将第一参考信号加入第一参考信号集合,从而提高了第一控制资源集合的链路恢复效率。
图9示出了本申请提供的一种检测CORESET0的方法的示意性流程图。
首先基站为UE配置CORESET0及对应的搜索空间,用于链路失败检测的参考信号资源集合q0(这个参考信号的配置可以通过显式或隐式方式指示,显式方式指的是直接配置q0;隐式方式指的是将指示CORESET对应的TCI(例如type D QCL)的参考信号作为q0中的参考信号。其中,q0相当于权利要求中所述的用于除第一控制资源集合外的链路失败检测的参考信号资源集合。
UE确定CORESET0配置的搜索空间集合中有非广播搜索空间集合,UE将CORESET0关联的RS(即,SSB)加入到q0中,与其他CORESET一起判定链路是否失败;
若CORESET0配置的搜索空间集合中不包含非广播搜索空间集合,UE就不将CORESET0关联的RS加入q0。
UE测量q0中的RS的信道质量是否均小于预设门限,即,图9所示的q0小于或等于门限1。
UE确定CORESET0的通信链路发生链路失败后发起链路失败恢复流程,包括,寻找新的下行链路并发起链路重配过程,使用PRACH发送链路恢复请求,接收链路恢复请求响应消息。
图10示出了本申请提供的另一种检测CORESET0的方法的示意性流程图。
首先基站为UE配置CORESET0及对应的搜索空间,用于链路失败检测的参考信号资源集合q0(这个参考信号的配置可以通过显式或隐式方式指示,显式方式指的是直接配置q0;隐式方式指的是将指示CORESET对应的TCI(例如type D QCL)的参考信号作为q0中的参考信号。
UE确定CORESET0配置的搜索空间中有非广播搜索空间,UE检测CORESET0关联的RS(即,SSB1)的信道质量;否则不检测SSB1。
UE测量q0中的RS的信道质量是否均小于预设门限,即,图10所示的SSB1<门限1。
UE确定CORESET0的通信链路发生链路失败后发起链路失败恢复流程,包括,寻找新的下行链路并发起链路重配过程,使用PRACH发送链路恢复请求,接收链路恢复请求响应消息。
若UE判定CORESET0关联的SSB的信道质量连续K次低于预设门限(在物理层),则UE使用PUCCH发送对CORESET 0的链路失败恢复请求。
若UE判定q0的信道质量连续K次低于预设门限,则UE使用PRACH发送除CORESET0以外的CORESET的链路失败恢复请求。
方法300还包括:
S320,确定新的候选链路。例如,UE测量候选波束标识参考信号集合(candidate beam identification RS set)中参考信号的信道质量,得到信道质量大于预设门限的参考信号(new identified beam)。
本申请中所描述的确定新链路或新波束是指终端设备需要从候选参考信号资源集合中选出信道质量信息(如RSPR、RSRQ、CQI、BLER、SINR、SNR等)高于预定门限的参考信号资源,用于恢复通信链路。需要说明的是,终端设备进行链路失败检测以及终端设备确定新链路这两个步骤的执行顺序不进行限定,终端设备进行链路失败检测的时间可以早于终端设备进行新波束识别的时间,终端设备进行链路失败检测的时间也可以晚于终端设备进行新波束识别的时间,终端设备进行链路失败检测的时间还可以与终端设备确定新链路的时间相同。
S330,发送链路失败恢复请求,也可称为波束失败恢复请求(beam failure recovery request transmission)。例如,UE向基站发送链路失败恢复请求信息,其中链路失败恢复请求信息与S320中确定的信道质量大于预设门限的参考信号具有关联关系,UE可以通过显式或隐式的方式将新识别的波束或参考信号资源通知给基站。
终端设备向网络设备发送的链路失败恢复请求是为了发起链路重配,也即是链路失败恢复请求用于指示链路失败或者通信失败。
这里,终端设备识别出了质量好的下行波束,其中所述下行波束包括基站的发射波束和或终端设备的接收波束。
对于有波束互易性的场景,终端设备接收波束与终端设备发射波束有对应关系,此时终端设备可以采用新识别的终端设备接收波束来发送该链路重配请求。对于没有波束互易性的场景,终端设备需要使用其它的发射波束发送该链路重配请求信息。
对于有波束互易性的场景,终端设备的每一个接收波束均对应有终端设备的一个发射波束。这里,终端设备接收波束与终端设备发射波束对应是指:具有相同的指向性。可选的,终端设备接收波束和其对应的终端设备发射波束可以是相同的波束,二者可以共享相同收发装置。可选的,终端设备接收波束和其对应的终端设备发射波束各自对应的天线端口可以是准共址(QCL)的。可选的,准共址是指以下至少一个参数相同或者有确定的对应关系:入射角(angle of arrival,AoA)、主入射角(Dominant AoA)、平均入射角、入射角的功率角度谱(power angular spectrum(PAS)of AoA)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端设备发送波束成型、终端设备接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延、时延扩展(delay spread)、多普勒扩展(Doppler spread),空间接收参数(spatial Rx parameters)等。
S320和S330可以包括下列可选的实施方式。
可选地,S320包括:
根据用于所述第一控制资源集合的链路失败检测的参考信号资源集合确定第三参考信号(即,S320中所述的新的候选链路),所述第三参考信号为所述用于所述第一控制资源集合的链路失败检测的参考信号资源集合中的信号质量大于或等于第二门限的一个参考信号,其中,所述用于所述第一控制资源集合的链路失败检测的参考信号资源集合中 的参考信号为同步信号和/或广播信道参考信号。
可选地,S330包括:
发送链路失败恢复请求,所述链路失败恢复请求用于请求根据所述第三参考信号恢复所述第一控制资源集合的通信链路。
第三参考信号集合例如是SSB集合,该SSB集合中的SSB例如是一个同步广播信道块内的PSS、PBCH和DMRS。第二门限可以是网络设备配置的,也可以是预定义的,第二门限与第一门限可以相等,也可以不等。终端设备可以对该SSB集合中的SSB进行检测,从中确定一个信号质量大于或等于第二门限的一个SSB(即,第三参考信号),从而可以进一步请求网络设备根据第二参考信号恢复第一控制资源集合的通信链路。上述方法直接确定第二参考信号,不存在其它中间环节,从而提高了第一控制资源集合的链路恢复效率。
图11示出了本申请提供的一种发送链路失败恢复请求的流程图。
首先基站为UE配置CORESET0及对应的搜索空间。该CORESET0对应了一个SSB1。
UE发现CORESET0的波束失败了,并从基站配置的(基站通过RMSI配置的)SSB中找到一个大于预设门限的SSB2。其中,一个SSB对应了一个CORESET0,不同SSB对应的CORESET0可能相同可能不同。
UE将SSB2的信息报给基站:
通过显示通知波束索引(beam index),即SSB2的索引;
或者,选择与SSB2有关联关系的PRACH上报链路失败恢复请求,这样网络设备就知道哪个下行链路可用。
可选地,基站发送链路失败恢复请求响应和重配非广播搜索空间的CORESET可以是一起发生的。
基站把非广播搜索空间直接关联到SSB2对应的CORESET0上,可选地,基站不需要把这件事告知UE,原因是UE已经把SSB2的信息上报给基站,基站和UE已经达成一致。
可选地,若UE在SSB2对应的CORESET0中检测到DCI,则UE认为收到了链路失败恢复请求响应。
可选地,S320包括:
根据第二控制资源集合关联的第四参考信号确定第三参考信号,其中,第二控制资源集合为确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,第二控制资源集合对应的参考信号质量大于或等于第二门限,第四参考信号与第三参考信号满足QCL假设关系,其中,第四参考信号用于指示第二控制资源集合关联的接收参数。
可选地,S330包括:
发送链路失败恢复请求,该链路失败恢复请求用于请求根据第三参考信号恢复第一控制资源集合的通信链路。
第四参考信号例如是信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是其它参考信号(例如,TRS),终端设备可以根据CSI-RS以及QCL假设关系确定第三参考信号,第三参考信号与CSI-RS具有QCL假设关系,该方法无需检测已配置的SSB的信号质量,直接通过未发生链路失败的CORESET对应的TCI确定第三参考信号,从而提高了第一控制资源集合的链路恢复效率。
图12示出了本申请提供的一种发送链路失败恢复请求的流程图。
首先基站为UE配置CORESET0及对应的搜索空间。该CORESET0对应一个SSB1。
UE发现CORESET0发生波束失败,CORESET3没有发生波束失败,且CORESET3的TCI指示其关联一个CSI-RS(例如是QCL type D的RS),其该CSI-RS1与一个SSB2满足QCL关系。
或者,
UE发现CORESET0发生波束失败,CORESET3没有发生波束失败,且CORESET3的TCI指示其关联一个SSB2(例如是QCL type D的RS)。
UE将SSB2的信息报给基站,上报基站的方法包括:
通过显式信息(例如,PUCCH/PUSCH承载的信息)通知基站UE选择的波束索引(beam index),该波束索引即SSB2的索引;
或者选择与SSB2有关联关系的PRACH上报链路失败恢复请求,这样UE就知道哪个PRACH可用。
可选地,基站发送链路失败恢复请求响应和重配非广播搜索空间的CORESET的步骤可以是一起发生的。
基站把非广播搜索空间直接关联到SSB2对应的CORESET0上,可选地,基站不需要把这件事告知UE,原因是UE已经把SSB2的信息上报给基站,基站和UE已经达成一致。
可选地,若UE在SSB2对应的CORESET0中检测到DCI,则UE认为收到了链路失败恢复请求响应。
可选地,S330包括::
通过PUCCH发送链路失败恢复请求,其中,该PUCCH用于承载信道质量信息和/或调度请求信息。
终端设备可以复用承载信道质量信息和/或调度请求信息的PUCCH发送链路失败恢复请求,例如,通过波束报告(beam reporting)的字段的特殊状态位区分发送的信息是波束报告还是链路失败恢复请求,该特殊状态位例如是绝对或参考的7bit位中的预留位,从而提高了空口资源利用率。
例如,在PUCCH上发送链路失败恢复请求(复用波束管理BM,CSI的PUCCH资源),可选地,通过用于波束管理信息上报的信道质量信息的特殊状态位区分是正常的波束关系信息上报还是CORESET0的链路失败恢复请求的上报,或者,通过PUCCH的DMRS序列循环移位(Sequence shift)区分是正常的波束关系信息上报还是CORESET0的链路失败恢复请求的上报。
终端设备还可以通过以下方式发送链路失败恢复请求。
方式一,在竞争的PRACH资源上发送链路失败恢复请求信息。
方式二,在非竞争的PRACH资源上发送链路失败恢复请求信息。
方式三,在物理上行共享信道(physical uplink shared channel,PUSCH)上发送链路失败恢复请求信息。
终端设备可以复用承载信道质量信息和/或调度请求信息的PUCCH发送链路失败恢复请求,例如,通过波束报告(beam reporting)的字段的特殊状态位区分发送的信息是波束报告还是链路失败恢复请求,该特殊状态位例如是绝对或参考的7比特(bit)位中的预 留位或最低位或最高位。从而提高了空口资源利用率。
可选地,信道质量信息是指用于波束管理的上报信息(reporting of beam management information)包括参考信号接收功率(reference signal receiving power,RSRP)相关信息或用于链路自适应的信道质量指示(channel quality indicator,CQI)相关信息。
其中,参考信号接收功率相关信息包括RSRP、参考信号资源索引(如CSI-RS资源指示符(CSI-RS resource indicator,CRI)、SSB资源指示符(SSB resource indicator,SSBRI)和参考信号接收质量(reference signal receiving quality,RSRQ)中的至少一种,信道质量指示相关信息包括参考信号资源索引(如CRI)、预编码指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、层指示(the layer indicator,LI)中的至少一种。
调度请求信息包括下面两种情况,一是通过1个比特位表示是否有数据调度,即,通过2种状态(该1个比特位的“0”和“1”两种状态)表示有或者没有数据调度;二是通过序列的有无(on/off)表示有没有数据调度,有数据调度发送序列,没有数据调度不发序列。
可选地,S330包括::
通过PRACH发送所述链路失败恢复请求,其中,该PRACH与第三参考信号具有关联关系,所述第二参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号。
上述关联关系指的是网络设备使用RRC信令在PRACH资源下面配置第三参考信号,当上下行波束具有互易性时,终端设备可以使用第三参考信号对应的波束去发送链路失败请求。其中,上述PRACH可以是竞争随机接入场景中配置的PRACH(即,竞争PRACH资源),也可以是非竞争随机接入场景中配置的PRACH(即,非竞争PRACH资源),当使用竞争PRACH资源时,由于竞争PRACH资源用于初始接入,复用这个PRACH资源可以节省开销。若使用非竞争PRACH资源,那么网络设备就会单独为终端设备配置PRACH资源,由于不需要与其他用户竞争,可以节省发送链路失败恢复请求的时间。
可选地,本申请所述的非广播搜索空间集合中的非广播搜索空间内检测的下行控制信息(downlink control information,DCI)的CRC使用下列信息中的至少一种信息加扰:
随机接入RNTI(random access RNTI,RA-RNTI)、小区临时RNTI(temporary cell RNTI,TC-RANTI)、小区RNTI(cell RNTI,C-RNTI)、中断RNTI(interruption RNTI,INT-RNTI)、时隙格式指示RNTI(slot format indication RNTI,SFI-RNTI)、上行数据功控RNTI(transmit power control physical uplink shared channel RNTI,TPC-PUSCH-RNTI)、上行控制功控RNTI(transmit power control physical uplink control channel RNTI,TPC-PUCCH-RNTI)、探测参考信号功控RNTI(transmit power control sounding reference symbols RNTI,TPC-SRS-RNTI)、配置调度RNTI(configured scheduling RNTI,CS-RNTI)和半静态信道状态信息RNTI(semi-persistent channel state information,SP-CSI-RNTI)。
UE可以复用PUCCH/PUSCH/PRACH发送CORESET0的链路失败恢复请求信息。例如:复用发送波束报告(beam reporting)的PUCCH发送链路失败恢复请求。若非差分方式上报,通过绝对RSRP的7bit的预留位(reserve)的状态位区分发送的信息是波束报告还是CORESET0的链路失败恢复请求,例如,7bit的预留位全部置1表示上报的信息是波束报告,7bit的预留位全部置0表示上报的信息时CORESET0的链路失败恢复请求。
方法300还包括:
S340,终端设备检测CORESET并接收基站发送的波束失败恢复请求响应(UE monitors CORESET to receive gNB response for beam failure recovery request)。波束失败恢复请求响应也可以称为链路失败恢复请求响应,或者,还可以有其它的名字。可选地,上述CORESET是基站为UE配置的专用的CORESET,用于在UE发送链路失败请求后,传输基站发送的对链路失败请求的响应。UE监测CORESET与接收波束失败恢复请求可以同时进行,也可以先后进行,该两个步骤的先后顺序没有限定。可选地,发送链路失败请求的4个时隙后在链路失败恢复请求响应时间窗内接收链路失败恢复请求响应信息。
上述步骤中,波束失败请求还可以其它的名称,例如,波束失败恢复请求、链路重配请求、通信链路故障恢复请求、通信链路失败恢复请求、波束故障恢复请求、链路失败恢复请求、通信故障恢复请求、通信失败恢复请求、重配请求、链路恢复请求、链路故障恢复请求、通信链路恢复请求等。
S340中,终端设备监测CORESET可以包括:
在第五控制资源集合上检测第一控制资源集合关联的非广播搜索空间集合(包括第一控制资源集合关联的全部或部分非广播搜索空间集合),其中,第五控制资源集合为确定第一控制资源集合的链路失败后配置的控制资源集合。
第五控制资源集合是第一控制资源集合链路失败后新配置的控制资源集合,或者,第五控制资源集合是重新配置了QCL/TCI的第一控制资源集合,根据该方法,网络设备可以在终端设备上报的多个下行链路中找到信道质量较好的下行链路配置给终端设备。终端设备可以在网络设备配置性能较好的新的控制资源集合检测第一控制资源集合关联的搜索空间集合,提高接收性能。可选地,上述在第五控制资源集合上检测第一控制资源集合关联的搜索空间集合中,所述搜索空间集合包括SFI-RNTI和/或INT-RNTI加扰的搜索空间集合。
可选地,上述在第五控制资源集合上检测第一控制资源集合关联的搜索空间集合中,所述的搜索空间集合包括SFI-RNTI和/或INT-RNTI加扰的搜索空间集合。
可选地,终端设备监测CORESET还可以包括:
在第三控制资源集合上检测第一控制资源集合关联的搜索空间,其中,第三控制资源集合为第三参考信号关联的控制资源集合,并且,第三控制资源集合为第二MIB配置的控制资源集合。
第二MIB与第一MIB可以相同,也可以不同。通过包含第三参考信号的链路恢复请求隐式的指示了终端设备检测非广播搜索空间的参数(即,第三参考信号指示的接收参数),无需网络设备重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,终端设备监测CORESET还可以包括:
在第二控制资源集合上检测第一控制资源集合关联的所述非广播搜索空间集合,其中,第二控制资源集合为确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,第二控制资源集合对应的参考信号质量大于或等于第二门限。
第二控制资源集合例如可以是RRC信令配置的控制资源集合,当RRC信令配置的控制资源集合可用时,终端设备可以在RRC信令配置的控制资源集合上检测非广播搜索空间,这样,无需网络设备通过额外的信令重配第一控制资源集合的非广播搜索空间,从而 减小了信令开销,提高了第一控制资源集合的链路恢复效率。
图13示出了本申请提供的一种检测非广播搜索空间中的DCI的方法的流程图。
首先基站为UE配置CORESET0及对应的搜索空间。该CORESET0对应了一个SSB1。
UE发现CORESET0发生波束失败,且CORESET3没有发生波束失败。
UE将CORESET0的发生波束失败的情况上报给基站,此外,UE可能还将CORESET3可用的信息报给基站,如报告CORESET3对应波束或TCI的索引,通过上行资源(例如PUCCH)通过显式信息通知基站发生波束的失败波束索引(failed beam index);
可选地,基站发送链路失败恢复请求响应和重配非广播搜索空间到CORESET3这两个步骤可以是一起发生的。
如图13所示,基站把非广播搜索空间直接关联到没有发生波束失败的CORESET3上,可选地,基站不需要把这件事告知UE,原因是UE已经把CORESET3对应的波束或TCI的索引上报给基站,基站和UE已经达成一致。
可选地,若UE在CORESET3中检测到非广播搜索空间对应的DCI,则UE认为收到了链路失败恢复请求响应。
可选地,UE监测CORESET还可以包括:
在第四控制资源集合上接收链路失败恢复请求响应,和/或,在第四控制资源集合上检测第一控制资源集合关联的非广播搜索空间集合;其中,所述第四控制资源集合是专用于接收链路失败恢复请求响应的控制资源集合。
第四控制资源集合是为恢复通信链路专门配置的控制资源集合,即,第四控制资源集合是链路失败前配置好的专用于链路失败恢复的控制资源集合,终端设备可以通过接收信息使用的控制资源集合或关联的搜索空间集合区分接收到的信息是正常的数据调度还是链路失败恢复请求响应。网络设备在确定第一控制资源集合的链路失败后,通过第四控制资源集合向终端设备回复通信失败恢复请求响应,第四控制资源集合的DMRS与链路失败恢复请求中包含的用于恢复链路的参考信号满足QCL关系。终端设备可以根据网络设备配置的控制资源集合(即,第四控制资源集合)检测第一控制资源集合关联的非广播搜索空间集合,以便在链路失败恢复过程中也能接收到重要的系统消息。根据该方法,终端设备可以在网络设备配置新的控制资源集合,提前检测第一控制资源集合关联的搜索空间集合,以便于接收相关的信息,从而提高了第一控制资源集合的链路恢复效率。
图14示出了本申请提供的另一种检测非广播搜索空间中的DCI的方法的流程图。
首先基站为UE配置CORESET0及对应的广播搜索空间和非广播搜索空间。其中,CORESET0对应一个SSB1。
UE发现CORESET0发生波束失败,并在基站配置的候选波束列表(candidate beam list)中找信道质量大于预设门限的参考信号(为方便描述,简称新波束(new beam))。
UE将CORESET0的发生波束失败的情况上报给基站,例如通过PUCCH承载的显式信息通知CORESET0的发生波束失败的波束索引(failed beam index)和/或新波束的索引(new beam index)。
基站发送链路失败恢复请求响应和重配非广播搜索空间到CORESET2这两个步骤可以是一起发生的。
UE在CORESET2中检测非广播搜索空间对应的DCI。
上文从终端设备的角度描述了本申请提供的链路恢复方法,下面,将从网络设备的角度描述本申请提供的链路恢复的方法。
如图15所示,本申请还提供了一种链路恢复的方法1500,方法1500可以由网络设备执行,包括:
S1510,接收链路失败恢复请求,该链路失败恢复请求用于请求恢复第一控制资源集合的通信链路,第一控制资源集合为第一MIB配置的控制资源集合。
S1520,根据链路失败恢复请求配置控制资源集合和/或接收参数,该控制资源集合用于检测第一控制资源集合关联的非广播搜索空间集合。
上述第一控制资源集合可以是5G移动通信系统定义的CORESET或控制区域(control region)或ePDCCH集合(set),也可以是其它移动通信系统(例如第六代移动通信系统)定义的承载PDCCH的资源的集合,当网络设备接收到第一控制资源集合的通信链路发生链路失败时,网络设备可以配置控制资源集合和/或接收参数,从而可以快速恢复MIB配置的控制资源集合的通信链路。
本领域技术人员可以清楚地了解到:在方法1500中,网络设备和终端设备均可等同于方法300中的网络设备和终端设备,且方法1500中网络设备和终端设备的动作与方法300中的网络设备和终端设备的动作相对应,为了简洁,在此不再赘述。
可选地,上述控制资源集合为接收链路失败恢复请求前配置的多个控制资源集合中的一个,所述控制资源集合对应的参考信号质量大于或等于第一门限和/或第二门限。
上述控制资源集合例如可以是RRC信令配置的控制资源集合,当RRC信令配置的控制资源集合可用时,终端设备可以在RRC信令配置的控制资源集合上检测非广播搜索空间,这样,网络设备无需通过额外信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,上述控制资源集合为接收链路失败恢复请求后配置的控制资源集合。
该控制资源集合例如是第一方面所述的第五控制资源集合,第五控制资源集合是第一控制资源集合链路失败后新配置的控制资源集合,或者,第五控制资源集合是重新配置了QCL/TCI的第一控制资源集合,根据该方法,网络设备可以在终端设备上报的多个下行链路中找到信道质量较好的下行链路配置给终端设备。终端设备可以在网络设备配置性能较好的新的控制资源集合检测第一控制资源集合关联的搜索空间集合,提高系统性能。
可选地,S1510包括:
接收包括第三参考信号的链路失败恢复请求,第三参考信号为恢复第一控制资源集合的通信链路所需的参考信号;所述根据链路失败回复请求配置控制资源集合和/或接收参数,包括:根据链路失败恢复请求配置与第三参考信号关联的控制资源集合和/或接收参数。
第三参考信号例如是用于指示第二控制资源集合(即,检测第一控制资源集合关联的非广播搜索空间集合的控制资源集合)关联的接收参数的SSB,网络设备根据该SSB恢复第一控制资源集合的通信链路,无需额外的信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,S1510包括:
通过PUCCH接收所述链路失败恢复请求,其中,所述PUCCH用于承载信道质量信 息和/或调度请求信息。
网络设备可以复用承载信道质量信息和/或调度请求信息的PUCCH接收链路失败恢复请求,例如,通过波束报告(beam reporting)的字段的特殊状态位区分发送的信息是波束报告还是链路失败恢复请求,该特殊状态位例如是绝对或参考的7比特(bit)位中的预留位或最低位或最高位。从而提高了空口资源利用率
可选地,S1510包括:
通过PRACH接收所述链路失败恢复请求,其中,所述PRACH与第三参考信号具有关联关系,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号。
上述关联关系指的是网络设备使用RRC信令在PRACH资源下面配置第三参考信号。当上下行波束具有互易性时,终端设备可以使用第三参考信号对应的波束去发送链路失败请求。其中,上述PRACH可以是竞争随机接入场景中配置的PRACH(即,竞争PRACH资源),也可以是非竞争随机接入场景中配置的PRACH(即,非竞争PRACH资源),当使用竞争PRACH资源时,由于竞争PRACH资源用于初始接入,复用这个PRACH资源可以节省开销。若使用非竞争PRACH资源,那么网络设备就会单独为终端设备配置PRACH资源,由于不需要与其他用户竞争,可以节省发送链路失败恢复请求的时间。
可选地,方法1500还包括:
在所述控制资源集合上发送链路失败恢复请求响应,和/或,在所述控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合。
上述控制资源集合可以是第二控制资源集合或第三控制资源集合,当该控制资源集合为第二控制资源集合时,第二控制资源集合例如可以是无线资源控制(radio resource control,RRC)信令配置的控制资源集合,当RRC信令配置的控制资源集合可用时,终端设备可以在RRC信令配置的控制资源集合上检测非广播搜索空间,这样,无需网络设备通过额外信令重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。当该控制资源集合为第三控制资源集合时,网络设备可以直接通过第三控制资源集合发送链路失败恢复请求响应,也可以不发送链路失败恢复请求响应,而是通过第三控制资源集合发送DCI,当终端设备在第三控制资源集合上检测第一控制资源集合关联的搜索空间获得DCI时,即可确定接收到了链路失败恢复请求响应(该DCI相当于链路失败恢复请求响应),或者,网络设备也可以发送链路失败恢复请求响应后再通过第三控制资源集合发送DCI。上述方法通过包含第三参考信号的链路恢复请求隐式的指示了终端设备检测非广播搜索空间的参数(即,第三参考信号指示的接收参数),无需网络设备重配第一控制资源集合的非广播搜索空间,从而减小了信令开销,提高了第一控制资源集合的链路恢复效率。
可选地,方法1500还包括:
在第四控制资源集合上发送链路失败恢复请求响应,和/或,在第四控制资源集合上发送所述第一控制资源集合关联的非广播搜索空间集合;
其中,所述第四控制资源集合是专用于接收链路失败恢复请求响应的控制资源集合。
第四控制资源集合是网络设备为恢复通信链路专门配置的控制资源集合,即,第四控制资源集合是链路失败前配置好的专用于链路失败恢复的控制资源集合,终端设备可以通过接收信息使用的控制资源集合或关联的搜索空间集合区分接收到的信息是正常的数据 调度还是链路失败恢复请求响应。网络设备在确定第一控制资源集合的链路失败后,通过第四控制资源集合向终端设备回复通信失败恢复响应信息。第四控制资源集合的DMRS与链路失败恢复请求中包含的用于恢复链路的参考信号满足QCL关系。终端设备可以根据网络设备重新配置的控制资源集合(即,第四控制资源集合)检测第一控制资源集合关联的非广播搜索空间集合,根据该方法,网络设备配置新的控制资源集合前,终端设备可以提前检测第一控制资源集合关联的搜索空间集合,以便于接收相关的信息,从而提高了第一控制资源集合的链路恢复效率。
可选地,所述非广播搜索空间集合配置的DCI格式包括DCI格式2-0和/或DCI格式2-1,或,
所述非广播搜索空间集合内检测的DCI的循环冗余校验CRC通过时隙格式指示无线网络临时标识SFI-RNTI加扰和/或中断无线网络临时标识INT-RNTI加扰。
所述非广播搜索空间集合内检测的DCI的循环冗余校验(cyclic redundancy check,CRC)通过时隙格式指示无线网络临时标识(slot format indication radio network temporary identity,SFI-RNTI)加扰和/或中断无线网络临时标识(interruption radio network temporary identity,INT-RNTI)加扰,其中,所述DCI的CRC为由所述DCI的信息比特生成的CRC。
DCI格式2-0的CRC是由SFI-RNTI加扰的,主要用于发送时隙格式,DCI格式2-1的CRC是由INT-RNTI加扰的,主要用于通知终端设备速率匹配的位置(高可靠低时延(ultra reliable&low latency communication,URLLC)业务数据传输时的打孔位置),这些信息用于数据解调,以及参考信号的接收或发送,因此在第四控制资源中关联相应的搜索空间,可以保证在链路失败恢复过程中也能接收到这些重要的时隙格式信息或抢先(pre-emption)信息,以便正确接收数据和参考信号。
可选地,方法1500还包括:
在第五控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合,其中,所述第五控制资源集合为所述确定第一控制资源集合的链路失败后配置的控制资源集合。
第五控制资源集合是第一控制资源集合链路失败后新配置的控制资源集合,或者,第五控制资源集合是重新配置了QCL/TCI的第一控制资源集合,根据该方法,网络设备可以在终端设备上报的多个下行链路中找到信道质量较好的下行链路配置给终端设备。终端设备可以在网络设备配置性能较好的新的控制资源集合检测第一控制资源集合关联的搜索空间集合,提高接收性能。可选地,上述在第五控制资源集合上检测第一控制资源集合关联的搜索空间集合中,所述搜索空间集合包括SFI-RNTI和/或INT-RNTI加扰的搜索空间集合。
上文详细介绍了本申请提供的链路恢复的方法示例。可以理解的是,终端设备和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图16示出了本申请提供的链路恢复装置的结构示意图,该装置1600包括:
处理单元1610,用于确定第一控制资源集合的链路失败,其中,所述第一控制资源集合为第一MIB配置的控制资源集合;
发送单元1620,用于发送链路失败恢复请求,所述链路失败恢复请求用于请求恢复所述第一控制资源集合的通信链路。
装置1600可以是可以是通信设备(例如,终端设备),也可以是通信设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是通信设备时,该处理单元可以是处理器,该收发单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述方法300。当该装置是通信设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述第一方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)
本领域技术人员可以清楚地了解到,当装置1600为终端设备时,装置1600所执行的步骤以及相应的有益效果可以参考方法300中终端设备的相关描述,为了简洁,在此不再赘述。
图17示出了本申请提供的另一种链路恢复装置的结构示意图,该装置1700包括:
接收单元1710,用于,接收链路失败恢复请求,所述链路失败恢复请求用于请求恢复第一控制资源集合的通信链路,所述第一控制资源集合为第一主信息块MIB配置的控制资源集合;
处理单元1720,用于根据所述链路失败恢复请求配置控制资源集合和/或接收参数,所述控制资源集合用于检测所述第一控制资源集合关联的非广播搜索空间集合。
装置1700可以是通信设备(例如,网络设备),也可以是通信设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是通信设备时,该处理单元可以是处理器,该收发单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行第二方面所述的方法。当该装置是通信设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行第二方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
本领域技术人员可以清楚地了解到,当装置1700为网络设备时,装置1700所执行的步骤以及相应的有益效果可以参考方法300以及方法1500中网络设备的相关描述,为了简洁,在此不再赘述。
应理解,上述各个单元的划分仅仅是功能上的划分,实际实现时可能会有其它的划分方法。
本领域的技术人员可以清楚地了解到,上述描述的装置和单元的具体工作过程以及执行步骤所产生的技术效果,可以参考前述对应的方法实施例中的描述,为了简洁,在此不 再赘述。
上述链路恢复装置可以是一个芯片,处理单元可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于所述处理器之外,独立存在。
下面以链路恢复装置为终端设备或网络设备为例对本申请提供的链路恢复装置做进一步描述。
图18是本申请提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的通信系统中,执行上述方法实施例中接收端的功能。为了便于说明,图18仅示出了终端设备的主要部件。如图18所示,终端设备180包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,确定接收端的接收能力,根据接收能力确定N CB,根据N CB对第一码块进行速率匹配等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的第一传输块和第一码块等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图18仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图18中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备180的收发单元1801,例如,用于支持终端设备执行如方法400所述的接收功能和发送功能。将具 有处理功能的处理器视为终端设备180的处理单元1802。如图18所示,终端设备180包括收发单元1801和处理单元1802。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1801中用于实现接收功能的器件视为接收单元,将收发单元1801中用于实现发送功能的器件视为发送单元,即收发单元1801包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。示例性的,收发单元1801可以不包括天线,而仅包括电路部分,使得天线外置于所述收发单元。
处理器1802可用于执行该存储器存储的指令,以控制收发单元1801接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元1801的功能可以考虑通过收发电路或者收发的专用芯片实现。在执行各类信号的收发时,如接收第一码块,则处理器1802控制收发单元1801实现所述接收。因此处理器1802是信号收发决定者,并发起数据收发操作,收发单元1801是信号收发的执行者。
图19是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图19所示,该基站可应用于如图1所示的通信系统中,执行上述方法实施例中发送端的功能。基站190可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1901和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))1902。所述RRU 1901可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线19011和射频单元19012。所述RRU 1901部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于发送上述方法实施例中第一码块。所述BBU1902部分主要用于进行基带处理,对基站进行控制等。所述RRU 1901与BBU 1902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1902为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1902可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,所述BBU 1902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。所述BBU 1902还包括存储器19021和处理器19022,所述存储器19021用于存储必要的指令和数据。例如存储器19021存储上述方法实施例中的第一码块。所述处理器19022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器19021和处理器19022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图20给出了一种通信装置2000的结构示意图。装置2000可用于执行上述方法实施例所描述的方法的步骤,可以参见上述方法实施例中的说明。所述通信装置2000可以是芯片,网络设备(如基站),终端设备或者其它通信设备等。
所述通信装置2000包括一个或多个处理器2001。所述处理器2001可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯 片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他通信设备。又如,通信装置可以为终端或基站或其它通信设备,所述收发单元可以为收发器,射频芯片等。
所述通信装置2000包括一个或多个所述处理器2001,所述一个或多个处理器2001可实现图3和/或图4所示的实施例中方法的执行设备的功能。
在一种可能的设计中,所述通信装置2000包括用于对第一码块进行速率匹配的部件,以及用于发送第一码块的部件。可以通过一个或多个处理器来实现对第一码块进行速率匹配部件的功能,并通过收发器、或输入/输出电路、或芯片的接口发送所述第一码块。对第一码块进行速率匹配的方法可以参见上述方法实施例中的相关描述。
在另一种可能的设计中,所述通信装置2000包括用于对第一码块进行解速率匹配的部件,以及用于接收第一码块的部件。可以通过一个或多个处理器来实现所述对第一码块进行解速率匹配的部件的功能,并且通过收发器、或输入/输出电路、或芯片的接口接收第一码块。对第一码块进行解速率匹配的方法可以参见上述方法实施例中的相关描述。
可选地,处理器2001除了实现图3和/或图4所示的实施例的功能,还可以实现其它功能。
可选的,一种设计中,处理器2001可以执行指令,使得所述通信装置2000执行上述方法实施例中描述的步骤。所述指令可以全部或部分存储在所述处理器内,如指令2003,也可以全部或部分存储在与所述处理器耦合的存储器2002中,如指令2004,也可以通过指令2003和2004共同使得通信装置2000执行上述方法实施例中描述的步骤。
在又一种可能的设计中,通信装置2000也可以包括电路,所述电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中,通信装置2000中可以包括一个或多个存储器2002,其上存有指令2004,所述指令可在所述处理器上被运行,使得所述通信装置2000执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有数据。可选地,处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器2002可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置2000还可以包括收发单元2005以及天线2006。所述处理器2001也可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元2005可以称为收发机、收发电路、或者收发器等,用于通过天线2006实现通信装置的收发功能。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可 编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请各实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实 施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常使用磁性来复制数据,而碟则使用激光来复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在 本申请的保护范围之内。

Claims (44)

  1. 一种链路恢复的方法,其特征在于,包括:
    确定第一控制资源集合的链路失败,其中,所述第一控制资源集合为第一主信息块MIB配置的控制资源集合;
    发送链路失败恢复请求,所述链路失败恢复请求用于请求恢复所述第一控制资源集合的通信链路。
  2. 根据权利要求1所述的方法,其特征在于,所述确定第一控制资源集合的链路失败,包括:
    根据所述第一控制资源集合关联的搜索空间集合确定所述第一控制资源集合的链路失败检测方式;
    根据所述链路失败检测方式确定所述第一控制资源集合的链路失败。
  3. 根据权利要求2所述的方法,其特征在于,
    当所述搜索空间集合包括非广播搜索空间集合时,用于所述第一控制资源集合的链路失败检测的参考信号资源集合包括第一参考信号和第二参考信号,其中,所述第一参考信号用于非MIB信息配置的控制资源集合的链路失败检测,所述第二参考信号用于指示所述第一控制资源集合关联的接收参数。
  4. 根据权利要求2所述的方法,其特征在于,
    当所述搜索空间集合包括非广播搜索空间集合时,用于所述第一控制资源集合的链路失败检测的参考信号资源集合仅包括第二参考信号,所述第二参考信号用于指示所述第一控制资源集合关联的接收参数。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述链路失败检测方式确定所述第一控制资源集合的链路失败,包括:
    当所述第一参考信号的信号质量小于或等于第一门限时,并且,当所述第二参考信号的信号质量小于或等于所述第一门限时,确定所述第一控制资源集合的链路失败,或者,
    当所述第二参考信号的信号质量小于或等于所述第一门限时,确定所述第一控制资源集合的链路失败。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述链路失败检测方式确定所述第一控制资源集合的链路失败,包括:
    当所述第二参考信号的信号质量小于或等于第一门限时,确定所述第一控制资源集合的链路失败。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述发送链路失败恢复请求,包括:
    根据第三参考信号资源集合确定第三参考信号,所述第三参考信号为所述第三参考信号资源集合中的信号质量大于或等于第二门限的一个参考信号,其中,所述第三参考信号资源集合中的参考信号为同步信号和/或广播信道参考信号;
    发送所述链路失败恢复请求,所述链路失败恢复请求用于请求根据所述第三参考信号恢复所述第一控制资源集合的通信链路。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述发送链路失败恢复请求,包括:
    根据第二控制资源集合关联的第四参考信号确定第三参考信号,其中,所述第二控制资源集合为所述确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,所述第二控制资源集合对应的参考信号质量大于或等于第一门限和/或第二门限,所述第四参考信号与所述第三参考信号满足准共址QCL假设关系,其中,所述第四参考信号用于指示所述第二控制资源集合关联的接收参数;
    发送所述链路失败恢复请求,所述链路失败恢复请求用于请求根据所述第三参考信号恢复所述第一控制资源集合的通信链路。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,所述发送链路失败恢复请求,包括:
    发送所述链路失败恢复请求,所述链路失败恢复请求用于请求根据第三参考信号恢复所述第一控制资源集合的通信链路,
    其中,所述第三参考信号用于指示第二控制资源集合关联的接收参数,所述第二控制资源集合是所述确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,所述第二控制资源集合对应的参考信号质量大于或等于第一门限和/或第二门限。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    在第三控制资源集合上接收链路失败恢复请求响应,和/或,
    在第三控制资源集合上检测所述第一控制资源集合关联的搜索空间集合内的下行控制信息DCI,所述DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰;
    其中,所述第三控制资源集合为所述第三参考信号关联的控制资源集合,并且,所述第三控制资源集合为第二MIB配置的控制资源集合。
  11. 根据权利要求10所述的方法,其特征在于,所述第三参考信号用于指示所述第三控制资源集合的QCL。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    接收到所述链路失败恢复请求响应后,根据所述第三参考信号接收所述第三控制资源集合。
  13. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    在第二控制资源集合上接收链路失败恢复请求响应,和/或,
    在第二控制资源集合上检测所述第一控制资源集合关联的所述非广播搜索空间集合;
    其中,所述第二控制资源集合是所述确定第一控制资源集合的链路失败前配置的多个控制资源集合中的一个,所述第二控制资源集合对应的参考信号质量大于或等于第一门限和/或第二门限。
  14. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    在第四控制资源集合上接收链路失败恢复请求响应,和/或,
    在第四控制资源集合上检测所述第一控制资源集合关联的所述非广播搜索空间集合;
    其中,所述第四控制资源集合是专用于接收链路失败恢复请求响应的控制资源集合。
  15. 根据权利要求14所述的方法,其特征在于,
    所述非广播搜索空间集合配置的下行控制信息DCI格式包括DCI格式2-0和/或DCI 格式2-1,或,
    所述非广播搜索空间集合内检测的DCI的循环冗余校验CRC通过时隙格式指示无线网络临时标识SFI-RNTI加扰和/或中断无线网络临时标识INT-RNTI加扰。
  16. 根据权利要求1至9和15中任一项所述的方法,其特征在于,所述方法还包括:
    在第五控制资源集合上检测所述第一控制资源集合关联的所述非广播搜索空间集合,其中,所述第五控制资源集合为所述确定第一控制资源集合的链路失败后配置的控制资源集合。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述发送链路失败恢复请求,包括:
    通过物理上行控制信道PUCCH发送所述链路失败恢复请求,其中,所述PUCCH用于承载信道质量信息和/或调度请求信息。
  18. 根据权利要求1至16中任一项所述的方法,其特征在于,所述发送链路失败恢复请求,包括:
    通过物理随机接入信道PRACH发送所述链路失败恢复请求,其中,所述PRACH与第三参考信号具有关联关系,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号。
  19. 一种链路恢复的方法,其特征在于,包括:
    接收链路失败恢复请求,所述链路失败恢复请求用于请求恢复第一控制资源集合的通信链路,所述第一控制资源集合为第一主信息块MIB配置的控制资源集合;
    根据所述链路失败恢复请求配置控制资源集合和/或接收参数,所述控制资源集合用于检测所述第一控制资源集合关联的非广播搜索空间集合。
  20. 根据权利要求19所述的方法,其特征在于,所述控制资源集合为所述接收链路失败恢复请求前配置的多个控制资源集合中的一个,所述控制资源集合对应的参考信号质量大于或等于第一门限和/或第二门限。
  21. 根据权利要求19所述的方法,其特征在于,所述控制资源集合为所述接收链路失败恢复请求后配置的控制资源集合。
  22. 根据权利要求19所述的方法,其特征在于,
    所述接收链路失败恢复请求,包括:
    接收包括第三参考信号的链路失败恢复请求,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号;
    所述根据所述链路失败回复请求配置控制资源集合和/或接收参数,包括:
    根据所述链路失败恢复请求配置与所述第三参考信号关联的所述控制资源集合和/或所述接收参数。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述接收链路失败恢复请求,包括:
    通过物理上行控制信道PUCCH接收所述链路失败恢复请求,其中,所述PUCCH用于承载信道质量信息和/或调度请求信息。
  24. 根据权利要求19至22中任一项所述的方法,其特征在于,所述接收链路失败恢复请求,包括:
    通过物理随机接入信道PRACH接收所述链路失败恢复请求,其中,所述PRACH与第三参考信号具有关联关系,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号。
  25. 根据权利要求19至24中任一项所述的方法,其特征在于,所述方法还包括:
    在所述控制资源集合上发送链路失败恢复请求响应,和/或,
    在所述控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合内的下行控制信息DCI,所述DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰;
    其中,所述控制资源集合为第三控制资源集合,所述第三控制资源集合为所述第三参考信号关联的控制资源集合,并且,所述第三控制资源集合为第二MIB配置的控制资源集合。
  26. 根据权利要求25所述的方法,其特征在于,所述第三参考信号用于指示所述第三控制资源集合的QCL。
  27. 根据权利要求25或26所述的方法,其特征在于,所述方法还包括:
    发送所述链路失败恢复请求响应后,根据所述第三参考信号发送所述第三控制资源集合。
  28. 根据权利要求19至24中任一项所述的方法,其特征在于,所述方法还包括:
    在第四控制资源集合上发送链路失败恢复请求响应,和/或,
    在第四控制资源集合上发送所述第一控制资源集合关联的非广播搜索空间集合;
    其中,所述第四控制资源集合是专用于接收链路失败恢复请求响应的控制资源集合。
  29. 根据权利要求28所述的方法,其特征在于,
    所述非广播搜索空间集合配置的下行控制信息DCI格式包括DCI格式2-0和/或DCI格式2-1,或,
    所述非广播搜索空间集合内检测的DCI的循环冗余校验CRC通过时隙格式指示无线网络临时标识SFI-RNTI加扰和/或中断无线网络临时标识INT-RNTI加扰。
  30. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    在第五控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合,其中,所述第五控制资源集合为所述确定第一控制资源集合的链路失败后配置的控制资源集合。
  31. 一种链路恢复的装置,其特征在于,包括:
    处理单元,被配置为确定第一控制资源集合的链路失败,其中,所述第一控制资源集合为第一主信息块MIB配置的控制资源集合;
    发送单元,被配置为发送链路失败恢复请求,所述链路失败恢复请求用于请求恢复所述第一控制资源集合的通信链路。
  32. 根据权利要求31所述的装置,其特征在于,所述处理单元还被配置为:
    根据第三参考信号资源集合确定第三参考信号,所述第三参考信号为所述第三参考信号资源集合中的信号质量大于或等于第二门限的一个参考信号,其中,所述第三参考信号资源集合中的参考信号为同步信号和/或广播信道参考信号;
    所述发送单元还被配置为:
    发送所述链路失败恢复请求,所述链路失败恢复请求用于请求根据所述第三参考信号恢复所述第一控制资源集合的通信链路。
  33. 根据权利要求31或32所述的装置,其特征在于,所述装置还包括:
    接收单元,被配置为:在第三控制资源集合上接收链路失败恢复请求响应,和/或,
    在第三控制资源集合上检测所述第一控制资源集合关联的搜索空间集合内的下行控制信息DCI,所述DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰;
    其中,所述第三控制资源集合为所述第三参考信号关联的控制资源集合,并且,所述第三控制资源集合为第二MIB配置的控制资源集合。
  34. 根据权利要求33所述的装置,其特征在于,所述第三参考信号用于指示所述第三控制资源集合的QCL。
  35. 根据权利要求33或34所述的装置,其特征在于,所述接收单元还被配置为:
    接收到所述链路失败恢复请求响应后,根据所述第三参考信号接收所述第三控制资源集合。
  36. 一种链路恢复的装置,其特征在于,包括:
    接收单元,被配置为接收链路失败恢复请求,所述链路失败恢复请求用于请求恢复第一控制资源集合的通信链路,所述第一控制资源集合为第一主信息块MIB配置的控制资源集合;
    处理单元,被配置为根据所述链路失败恢复请求配置控制资源集合和/或接收参数,所述控制资源集合用于检测所述第一控制资源集合关联的非广播搜索空间集合。
  37. 根据权利要求36所述的装置,其特征在于,所述接收单元还被配置为:
    接收包括第三参考信号的链路失败恢复请求,所述第三参考信号为恢复所述第一控制资源集合的通信链路所需的参考信号;
    所述处理单元还被配置为:
    根据所述链路失败恢复请求配置与所述第三参考信号关联的所述控制资源集合和/或所述接收参数。
  38. 根据权利要求36或37所述的装置,其特征在于,所述装置还包括:
    发送单元,被配置为在所述控制资源集合上发送链路失败恢复请求响应,和/或,
    在所述控制资源集合上发送所述第一控制资源集合关联的所述非广播搜索空间集合内的下行控制信息DCI,所述DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰;
    其中,所述控制资源集合为第三控制资源集合,所述第三控制资源集合为所述第三参考信号关联的控制资源集合,并且,所述第三控制资源集合为第二MIB配置的控制资源集合。
  39. 根据权利要求38所述的装置,其特征在于,所述第三参考信号用于指示所述第三控制资源集合的QCL。
  40. 根据权利要求38或39所述的装置,其特征在于,所述发送单元还被配置为:
    发送所述链路失败恢复请求响应后,根据所述第三参考信号发送所述第三控制资源集合。
  41. 一种通信装置,其特征在于,包括用于执行所述权利要求1至30中任一项所述 方法的各个步骤的单元。
  42. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行根据权利要求1至30中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备执行权利要求1至30中任一项所述的方法。
  44. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行所述权利要求1至30中任一项所述的方法的步骤。
PCT/CN2019/086417 2018-05-11 2019-05-10 链路恢复的方法和装置 WO2019214713A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19800444.2A EP3793291B1 (en) 2018-05-11 2019-05-10 Link recovery method and device
BR112020022782-0A BR112020022782A2 (pt) 2018-05-11 2019-05-10 método e aparelho de recuperação de enlace e mídia de armazenamento legível por computador
KR1020207035743A KR102546571B1 (ko) 2018-05-11 2019-05-10 링크 복구 방법 및 장치
JP2020563661A JP7171761B2 (ja) 2018-05-11 2019-05-10 リンク回復方法および装置
US17/094,200 US11546959B2 (en) 2018-05-11 2020-11-10 Link recovery method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810451036.X 2018-05-11
CN201810451036.XA CN110475353B (zh) 2018-05-11 2018-05-11 链路恢复的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,200 Continuation US11546959B2 (en) 2018-05-11 2020-11-10 Link recovery method and apparatus

Publications (1)

Publication Number Publication Date
WO2019214713A1 true WO2019214713A1 (zh) 2019-11-14

Family

ID=68467777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086417 WO2019214713A1 (zh) 2018-05-11 2019-05-10 链路恢复的方法和装置

Country Status (7)

Country Link
US (1) US11546959B2 (zh)
EP (1) EP3793291B1 (zh)
JP (1) JP7171761B2 (zh)
KR (1) KR102546571B1 (zh)
CN (2) CN110475353B (zh)
BR (1) BR112020022782A2 (zh)
WO (1) WO2019214713A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866576A (zh) * 2020-06-28 2020-10-30 泰康保险集团股份有限公司 线上问题处理系统及方法
CN113259071A (zh) * 2020-02-07 2021-08-13 大唐移动通信设备有限公司 信号传输方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062842A1 (en) 2016-09-27 2018-04-05 Samsung Electronics Co., Ltd. Method and apparatus for receiving downlink reference signal in wireless communication system
CN107872305B (zh) * 2016-09-27 2021-11-05 北京三星通信技术研究有限公司 接收下行参考信号的方法及设备
US10979273B2 (en) * 2018-03-23 2021-04-13 Qualcomm Incorporated Quasi co-location assumption during bandwidth part switching
CN110519815B (zh) * 2018-05-22 2021-09-17 华为技术有限公司 通信方法及装置
JP7179857B2 (ja) * 2018-08-09 2022-11-29 株式会社Nttドコモ 端末、基地局、通信方法及び通信システム
US11419021B2 (en) * 2018-08-31 2022-08-16 Industrial Technology Research Institute Connection re-direction method for UE and remote access node, UE using the same and remote access node using the same
US11438775B2 (en) * 2019-05-02 2022-09-06 Ofinno, Llc Radio link monitoring in new radio
US11108459B2 (en) * 2019-06-19 2021-08-31 Qualcomm Incorporated Millimeter wave relay link discovery
EP3968538A1 (en) * 2020-09-11 2022-03-16 ASUSTek Computer Inc. Method and apparatus for beam failure detection regarding multiple transmission/reception points in a wireless communication system
CN117063508A (zh) * 2021-05-11 2023-11-14 中兴通讯股份有限公司 用于波束故障恢复的方法、设备和系统
US11743914B2 (en) * 2021-07-26 2023-08-29 Qualcomm Incorporated Control resource set configuration for reduced bandwidth user equipments
WO2023010478A1 (zh) * 2021-08-05 2023-02-09 富士通株式会社 信号发送方法、装置和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置
CN109391405A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院 波束失败的恢复方法、装置、终端及网络设备

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754552B1 (ko) * 2001-12-28 2007-09-05 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서고속 공통 제어 채널 송수신 장치 및 방법
KR100547882B1 (ko) * 2002-02-26 2006-02-01 삼성전자주식회사 안테나 선택 다이버시티를 지원하는 이동통신시스템에서순방향 채널 상태 정보를 송수신하는 방법 및 장치
JP4172207B2 (ja) * 2002-05-29 2008-10-29 日本電気株式会社 無線アクセスネットワーク装置及びそれを用いた移動通信システム
JP2009112007A (ja) * 2007-10-30 2009-05-21 Asustek Computer Inc ランダムアクセスプロセス障害を処理する方法及び関連通信装置
EP2225904A2 (en) * 2007-11-27 2010-09-08 Koninklijke Philips Electronics N.V. Network entry and device discovery for cognitive radio networks
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
JP4355749B2 (ja) * 2008-04-03 2009-11-04 株式会社エヌ・ティ・ティ・ドコモ 移動局、移動交換局及び移動通信方法
US8175628B2 (en) * 2008-07-15 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for reducing push-to-talk (PTT) latency in a WCDMA network
US8982750B2 (en) * 2009-01-16 2015-03-17 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
WO2011135392A1 (en) * 2010-04-29 2011-11-03 Nokia Corporation Carrier allocation in wireless network
WO2013010301A1 (zh) * 2011-07-15 2013-01-24 富士通株式会社 一种下行控制信令的传输方法、搜索方法和装置
KR101850549B1 (ko) * 2011-10-04 2018-04-20 삼성전자주식회사 무선 통신 시스템에서 무선 링크 모니터링 장치 및 방법
CN103532688B (zh) * 2012-07-04 2016-11-02 电信科学技术研究院 一种跨频带载波聚合下的dci传输方法及装置
US9734513B1 (en) * 2012-10-16 2017-08-15 Alexander F. Mehr System and method for advertising applications to users without requiring the applications to be installed
US9642106B2 (en) * 2013-03-21 2017-05-02 Spidercloud Wireless, Inc. Dynamic primary scrambling code disambiguation
JP6396445B2 (ja) * 2013-10-31 2018-09-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線通信方法、eNodeBおよびユーザ機器
US10075309B2 (en) * 2014-04-25 2018-09-11 Qualcomm Incorporated Modulation coding scheme (MCS) indication in LTE uplink
US9843629B2 (en) * 2014-09-26 2017-12-12 Oracle International Corporation System and method for protocol support in a multitenant application server environment
RU2668071C1 (ru) * 2015-02-06 2018-09-26 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство оптимизации сигнализации
US10560838B2 (en) * 2015-07-03 2020-02-11 Lg Electronics Inc. Method and apparatus for deleting UE information by single base station
US10813031B2 (en) * 2015-07-24 2020-10-20 Vox Pte Ltd System and method for relaying information
US9867226B2 (en) * 2015-12-14 2018-01-09 Qualcomm Incorporated Radio link failure (RLF) failover in a multi-connectivity environment
US10602382B2 (en) * 2016-01-19 2020-03-24 Samsung Electronics Co., Ltd. Radio link failure processing method and apparatus therefor
WO2017135696A1 (ko) * 2016-02-02 2017-08-10 엘지전자(주) 무선 통신 시스템에서의 단말의 데이터 수신 방법
CN107666693B (zh) * 2016-07-29 2019-09-17 电信科学技术研究院 终端路径转移、控制终端状态转换的方法、终端及基站
US10425139B2 (en) * 2016-09-21 2019-09-24 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
KR20180081669A (ko) * 2017-01-06 2018-07-17 주식회사 케이티 차세대 무선 액세스망을 위한 공용 제어 정보 전송 방법 및 장치
US11012974B2 (en) * 2017-02-02 2021-05-18 Convida Wireless, Llc Apparatuses for transmission of paging blocks in swept downlink beams
US10772113B2 (en) * 2017-02-06 2020-09-08 Qualcomm Incorporated Autonomous uplink transmission techniques using shared radio frequency spectrum
CN106658758A (zh) * 2017-02-10 2017-05-10 北京小米移动软件有限公司 状态转换方法、状态保持方法、装置及用户设备
US10757581B2 (en) * 2017-03-22 2020-08-25 Mediatek Inc. Physical downlink control channel design for NR systems
WO2018175553A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Prioritized messaging and resource selection in vehicle-to-vehicle (v2v) sidelink communication
GB2560770A (en) * 2017-03-24 2018-09-26 Nec Corp Communication system
CN116112141A (zh) * 2017-04-03 2023-05-12 三星电子株式会社 通信系统中的用户设备、基站及其方法
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
US20180309560A1 (en) * 2017-04-21 2018-10-25 Htc Corporation Device and Method for Handling Common Search Spaces
US10200934B2 (en) * 2017-05-22 2019-02-05 Cisco Technology, Inc. Data traffic reduction for suspended data service
JP7088934B2 (ja) * 2017-08-09 2022-06-21 株式会社Nttドコモ 端末、無線通信方法及びシステム
US20200252180A1 (en) * 2017-08-10 2020-08-06 Ntt Docomo, Inc. User terminal and radio communication method
WO2019138499A1 (ja) * 2018-01-11 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11297626B2 (en) * 2018-01-26 2022-04-05 Beijing Xiaomi Mobile Software Co., Ltd. Information indication method and apparatus, base station and user equipment
US11601181B2 (en) * 2018-03-16 2023-03-07 Lenovo (Beijing) Limited Beam failure recovery
JP2021519552A (ja) * 2018-04-04 2021-08-10 日本電気株式会社 端末デバイス及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure
CN109391405A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院 波束失败的恢复方法、装置、终端及网络设备
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Remaining Issues for Beam Failure Recovery Procedure", 3GPP TSG RAN WG1 MEETING #92 R1-1802071, 2 March 2018 (2018-03-02), XP051396738 *
AT &T: "On Beam Recovery for Partial and Full Control Channel Failure", 3GPP TSG RAN WGI MEETING NR#3 R1-1716169, 21 September 2017 (2017-09-21), XP051339627 *
SPREADTRUM COMMUNICATIONS: "Remaining Issues on Beam Failure Recovery Mechanism", 3GPP TSG RAN WG1 MEETING 91 RL-1719695, 1 December 2017 (2017-12-01), XP051368853 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259071A (zh) * 2020-02-07 2021-08-13 大唐移动通信设备有限公司 信号传输方法及装置
CN113259071B (zh) * 2020-02-07 2022-12-13 大唐移动通信设备有限公司 信号传输方法及装置
CN111866576A (zh) * 2020-06-28 2020-10-30 泰康保险集团股份有限公司 线上问题处理系统及方法

Also Published As

Publication number Publication date
US11546959B2 (en) 2023-01-03
EP3793291A1 (en) 2021-03-17
CN110475353A (zh) 2019-11-19
KR20210008088A (ko) 2021-01-20
EP3793291A4 (en) 2022-03-02
BR112020022782A2 (pt) 2021-02-02
EP3793291B1 (en) 2023-09-13
CN115190626A (zh) 2022-10-14
JP2021523640A (ja) 2021-09-02
KR102546571B1 (ko) 2023-06-23
CN110475353B (zh) 2022-06-28
US20210068191A1 (en) 2021-03-04
JP7171761B2 (ja) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2019214713A1 (zh) 链路恢复的方法和装置
US12010707B2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
US11569949B2 (en) Communication method and communications apparatus
US12003340B2 (en) Method for sending hybrid automatic repeat request acknowledgment information, method for receiving hybrid automatic repeat request acknowledgment information, and communications apparatus
US10893566B2 (en) Method for receiving beam recovery request and network device
US9887820B2 (en) Method for transmitting sounding reference signal and method and device for indicating configuration
US10797825B2 (en) Data transmission method and apparatus, and data reception method and apparatus
US20190053209A1 (en) Method and Apparatus for Sending and Receiving Downlink Control Information
US11855740B2 (en) Link failure recovery method and related device
US11956794B2 (en) Data sending and receiving method and communication apparatus
WO2020228589A1 (zh) 通信方法和通信装置
US11395312B2 (en) Method, terminal, and non-transitory computer readable medium for downlink data transmission based on scheduling of physical downlink shared channels (PDSCHs)
WO2020207333A1 (zh) 链路失败恢复的方法和装置
CN111479326B (zh) 一种信息发送、检测方法及装置
JP7388437B2 (ja) 上りリンク制御情報の送受信方法及び装置
WO2020143743A1 (zh) 接收数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022782

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207035743

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019800444

Country of ref document: EP

Effective date: 20201211

ENP Entry into the national phase

Ref document number: 112020022782

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201109