WO2019214710A1 - 双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法 - Google Patents

双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法 Download PDF

Info

Publication number
WO2019214710A1
WO2019214710A1 PCT/CN2019/086399 CN2019086399W WO2019214710A1 WO 2019214710 A1 WO2019214710 A1 WO 2019214710A1 CN 2019086399 W CN2019086399 W CN 2019086399W WO 2019214710 A1 WO2019214710 A1 WO 2019214710A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
anode
sector
shaped
target
Prior art date
Application number
PCT/CN2019/086399
Other languages
English (en)
French (fr)
Inventor
吴万龙
丁富华
罗希雷
曹硕
蔡斌峰
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810445632.7A external-priority patent/CN108447757A/zh
Priority claimed from CN201810445507.6A external-priority patent/CN108776148A/zh
Priority claimed from CN201810445465.6A external-priority patent/CN108459354A/zh
Priority claimed from CN201810447365.7A external-priority patent/CN108414546A/zh
Priority claimed from CN201810445416.2A external-priority patent/CN108461369B/zh
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2019214710A1 publication Critical patent/WO2019214710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Definitions

  • Embodiments of the present disclosure relate to the field of radiation generation technologies, and in particular, to a dual beam scanning X-ray generator, a transmission inspection apparatus, a human perspective composite inspection system, and an inspection method.
  • Backscatter imaging technology has been widely used in the safety inspection of human bodies, goods and vehicles due to its low radiation dose, good safety and sensitivity to lightweight materials.
  • Backscatter imaging technology uses a spot beam scanning method, so it is necessary to modulate a fan beam or a cone beam generated by a conventional X-ray generator into a pencil beam.
  • the conventional pencil beam scanning device includes an X-ray tube assembly, a high-voltage power source, a pen beam scanning and a driving mechanism thereof, and the components are large and relatively dispersed, and a single high-voltage source is generally applied to realize a single-energy pen-shaped X-ray pencil beam. . This has limited its use in small or portable products.
  • an embodiment of the present disclosure provides a dual beam scanning X-ray generator comprising: a housing; an anode disposed within the housing, the anode including two opposing first and second ends, Wherein the first end surface is not perpendicular to the length of the anode, and the second end end is not perpendicular to the length of the anode; wherein the dual beam scanning X-ray generator comprises a first radiation source and a second radiation source,
  • the first radiation source includes a first target and a first cathode, the first target being disposed at a first end end surface of the anode, the first cathode being configured to face the first target and capable of emitting electrons to the first target To emit X-rays;
  • the second radiation source includes a second target and a second cathode, the second target being disposed at the second end face of the anode, the second cathode being configured to face and capable of emitting electrons to the second target
  • the X-rays are
  • a transmission inspection apparatus comprising two inspection channels and a dual beam scanning X-ray generator as described above disposed between the two inspection channels, wherein the dual beam scanning X-ray generator is Constructed to generate two fan-shaped X-ray beams that are independent of each other, emit one fan-shaped X-ray beam into one inspection channel, and emit another fan-shaped X-ray beam into another inspection channel to separately perform the two inspections
  • the object under test in the channel is subjected to transmission scanning; and the angular center lines of the two sector X-ray beams form an angle such that the transmission scans in the two inspection channels do not interfere with each other.
  • a method of inspecting an object to be inspected using the above-described transmission inspection apparatus comprising: cascading two or more transmission inspection apparatuses or using them in combination, thereby forming a plurality of inspection channels .
  • a transmission inspection apparatus comprising: the above-described dual beam scanning X-ray generator for emitting a parallel or coplanar first sector X-ray beam having an opening angle of ⁇ and an opening angle of ⁇ to the same side thereof a second fan-shaped X-ray beam, the first sector X-ray beam and the second fan-shaped X-ray beam are used for transmitting scanning the object to be measured, and the projections in a plane parallel to the two are combined into a fan shape with an opening angle of ⁇ + ⁇ And a detector disposed on an exit side of the first sector X-ray beam and the second sector X-ray beam of the dual beam scanning X-ray generator, receiving the first sector X-ray beam and the second sector X-ray beam .
  • a human body fluoroscopy composite inspection system comprising: the dual beam scanning X-ray generator described above, the dual beam scanning X-ray generator configured to generate two fan-shaped X-ray beams independent of each other; and double-slit collimation
  • the double-slit collimator includes two collimating slits for collimating the two fan-shaped X-ray beams, respectively, wherein the two fan-shaped X-ray beams that are collimated are time-divisionally or simultaneously The examiner performs a perspective scan.
  • FIG. 1 shows a schematic cross-sectional view of a dual beam scanning X-ray generator of one embodiment of the present disclosure
  • Figure 2 illustrates the structure of a sealed joint of one embodiment of the present disclosure
  • FIG. 3 shows a partial cross-sectional view of a first end of an anode of a dual beam scanning X-ray generator of an embodiment of the present disclosure
  • FIG. 4 illustrates a sector X-ray beam emitted from a first target and a second target at both ends of an anode of a dual beam scanning X-ray generator of an embodiment of the present disclosure
  • FIG. 5 illustrates a sector X-ray beam emitted from a first target and a second target at both ends of an anode of a dual beam scanning X-ray generator of an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing a sector X-ray beam scanning range at both ends of an anode of a dual beam scanning X-ray generator of an embodiment of the present disclosure.
  • Figure 7 shows a schematic cross-sectional view of a dual beam scanning X-ray generator of an embodiment of the present disclosure
  • Figure 8 illustrates the structure of a sealed joint of one embodiment of the present disclosure
  • FIG. 9 is a cross-sectional view showing a first collimator of an anode first end of a dual beam X-ray generator of an embodiment of the present disclosure
  • FIG. 10 illustrates a sector X-ray beam emitted from a first target and a second target at both ends of a dual beam X-ray generator of an embodiment of the present disclosure
  • Figure 11 is a schematic view showing the fan-shaped X-ray beam opening angle at both ends of the dual beam X-ray generator of the embodiment of the present disclosure.
  • Figure 12 is a view showing the configuration of a transmission inspection apparatus of an embodiment of the present disclosure.
  • Figure 13 is a view showing the configuration of a transmission inspection apparatus of an embodiment of the present disclosure.
  • Figure 14 shows a structural view of a transmission inspection apparatus of an embodiment of the present disclosure
  • Figure 15 is a view showing the configuration of a transmission inspection apparatus of an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a see-through scanning device in the related art of the present disclosure.
  • Figure 17 is a view showing the configuration of a transmission inspection apparatus of an embodiment of the present disclosure.
  • Figure 18 is a schematic illustration of a fan-shaped X-ray beam produced by a dual beam X-ray generator of an embodiment of the present disclosure
  • Figure 19 is a schematic view of the double-slit collimator of Figure 17 in the A direction;
  • Figure 20 is a schematic view of the detector in the A direction of view of Figure 17.
  • 21 is a schematic diagram of an overall configuration of a human body fluoroscopic composite inspection system and a method of using the same according to the disclosed embodiment
  • Part (a) of Fig. 22 is a schematic view of the collimator according to the first embodiment of the present disclosure as viewed in the direction indicated by the arrow A in Fig. 21, and part (b) of Fig. 22 is along A schematic view of a detector module according to an embodiment of the present disclosure observed in the direction indicated by arrow B in FIG.
  • Part (a) of Fig. 23 is a schematic view of the collimator according to the second embodiment of the present disclosure as viewed in the direction indicated by the arrow A in Fig. 21, and part (b) of Fig. 23 is along A schematic view of a detector module according to an embodiment of the present disclosure observed in the direction indicated by arrow B in FIG.
  • Part (a) of Fig. 24 is a schematic view of the collimator according to the third embodiment of the present disclosure as viewed in the direction indicated by the arrow A in Fig. 21, and part (b) of Fig. 24 is along A schematic view of a detector module according to an embodiment of the present disclosure observed in the direction indicated by arrow B in FIG.
  • top side and bottom side are orientations of the upper side and the lower side of the object which are normal with respect to the normal case.
  • a dual beam scanning X-ray generator of one embodiment of the present disclosure comprising: a housing; an anode disposed within the housing, the anode including two opposing first and second ends; a first target and a second target, the first target is disposed at a first end end surface of the anode, the second target is disposed at the second end end surface of the anode; the first cathode and the second cathode, the first cathode is configured to The first target is oriented and electrons can be emitted to the first target to emit X-rays, the second cathode being configured to face the second target and capable of emitting electrons to the second target to emit X-rays.
  • the first target and the second target are configured to simultaneously emit X-rays.
  • the first high voltage power source is out of sync with the second high voltage power source output, and the first target and the second target may be configured to emit X-rays asynchronously.
  • the dual beam scanning X-ray generator is configured such that a voltage applied between the first cathode and the first end of the anode is equal to a voltage applied between the second cathode and the second end of the anode, thereby producing X
  • the ray energy is the same, and may be configured such that the voltage applied between the first cathode and the first end of the anode is not equal to the voltage applied between the second cathode and the second end of the anode, thereby producing different X-ray energies.
  • the dual beam scanning X-ray generator includes a housing 6 with other components of the dual beam scanning X-ray generator disposed within the housing 6.
  • the dual beam scanning X-ray generator also includes anodes 22, 42 in which the anode is integral or, in other words, a single piece, such as the anode being an anode rod.
  • Figure 1 illustrates the anode in two parts, namely the anode first end 22 on the left and the anode second end 42 on the right.
  • the anode may also be the left anode first portion 22 and the right anode second portion 42, the anode being comprised of the anode first portion 22 and the anode second portion 42.
  • the anode can be an integral anode rod or a combination of two anode rods.
  • the first end 22 of the anode has a first end end face, and the first target 23 is disposed on the first end end face.
  • the second end 42 of the anode has a second end face, and the second target 43 is disposed on the end face of the second end.
  • the end surface of the first end is not perpendicular to the length of the anode, and the end surface of the second end is not perpendicular to the length of the anode. It is advantageous to arrange the first target 23 on the first end end surface of the anode, and the second target 43 to be disposed on the second end surface of the anode.
  • the anode is favorable for heat conduction and can help the first target 23 and the second target 43 to dissipate heat.
  • the surface of the first target 23 is on the same plane as the end surface of the first end, and the surface of the second target 43 and the end surface of the second end are on the same plane. It is to be noted that, in the present disclosure and the claims, the orientation of the first end face is meant to mean the orientation of the surface of the first target 23, and the orientation of the second end face is meant to mean the surface of the second target 43. orientation.
  • the dual beam scanning X-ray generator further includes a first cathode 10 and a second cathode 30.
  • the first cathode 10 includes a first filament 11, a first focus mask 12 and a first filament lead 13;
  • the second cathode 30 includes a second filament 31, a second focus mask 32 and a Two filament leads 33.
  • the first filament lead 13 and the second filament lead 33 are used for externally connecting the filament power supply and the negative pole of the high voltage power supply.
  • the first focus cover 12 and the second focus cover 32 are used to focus the electrons and serve as a support.
  • the configuration of the cathode is a common structure in the art, and may be other configurations, which are not described herein.
  • one end of the outer casing 6 is welded to the first focus cover 12, and the other end is welded to the second focus cover 32, preferably made of hard glass, corrugated ceramic or cermet.
  • the portion of the outer casing 6 that transmits X-rays can be embedded in the window.
  • the centers of the first filament 11, the second filament 31, the first target 23, and the second target 43 are on the same horizontal line (ie, coaxial).
  • This embodiment illustrates a dual beam scanning X-ray generator having a structure in which two cathodes and one anode (two anode portions) are packaged, and after connecting a high voltage power source, two orientations are generated by the two targets.
  • X-ray pencil beam with the same or different energy can also produce a large angle X-ray pencil beam; suitable for dual-energy, dual-channel or large-angle X-ray backscatter imaging inspection equipment, especially for small or Portable equipment.
  • the dual beam scanning X-ray generator further includes a first protective drum 211 and a second protective drum 411, wherein the first protective drum 211 surrounds at least the first end 22 of the anode, And allowing electrons emitted by the first cathode 10 to reach the first target 23, shielding the scattered electrons and X-rays generated by the first target 23; the second guard cylinder 411 surrounding at least the second end 42 of the anode, and allowing the second The electrons emitted from the cathode 30 reach the second target 43, shielding the scattered electrons and the X-rays generated by the second target 43.
  • an electron inlet is provided to the first cathode 10 on the first protective drum 211 for electron bombardment onto the first target 23.
  • an electron inlet is provided on the second protective drum 411 to the second cathode 30 for electron bombardment onto the second target 43.
  • the first target 23 When the electrons of the first cathode 10 are bombarded onto the first target 23, the first target 23 will generate X-rays, and the first collimator disposed in front of the first target 23 can limit the X-rays emitted by the first target 23 to a certain range.
  • Figure 1 shows the first end face facing downwards, meaning that the X-rays will exit downwards.
  • FIG. 1 does not show a first collimator disposed in front of the first target 23 to limit the X-ray exit range.
  • the X-rays emitted by the first target 23 may be fan-shaped X-rays after passing through the first collimator.
  • the second cathode 30 and the second target 43 the situation is similar.
  • Providing the second collimator in front of the second target 43 can limit the X-rays emitted by the second target 43 to a certain range, and the second end face faces downward. , meaning that the X-ray will exit downwards.
  • Figure 1 does not show a second collimator disposed in front of the second target 43 to limit the X-ray exit range.
  • the opening angle of the collimator determines the opening angle of the face beam of the fan-shaped X-ray emitted from the collimator.
  • the first protective drum 211 is provided with at least one first hole 212 for modulating X-rays generated by the first target 23, forming at least one first pencil-shaped X-ray beam
  • a second protective drum 411 is provided with at least one second hole 412 for modulating X-rays generated by the second target 43 to form at least one second pencil-shaped X-ray beam.
  • the fan-shaped X-rays emitted from the first target 23 are shielded from the first protective drum 211, and the fan-shaped X-rays can only be emitted through the first holes 212, thereby forming a pen-shaped X-ray beam.
  • the fan-shaped X-rays generated by the second target 43 are shielded from being blocked by the second protective drum 411, and the fan-shaped X-rays can only be emitted through the second holes 412, thereby forming a second pencil-shaped X-ray beam.
  • the plurality of first apertures 212 will form a plurality of first pencil-shaped X-ray beams
  • the plurality of second apertures 412 will form a plurality of second pencil-shaped X-ray beams.
  • the first protective bowl 211 is configured to be rotatable about the first end 22 of the anode such that the first pencil-shaped X-ray beam formed by the first aperture 212 is scanned over a range of angles;
  • the drum 411 is configured to be rotatable about the anode second end 42 such that the second pencil-shaped X-ray beam formed by the second aperture 412 is scanned over a range of angles.
  • the first end face is not perpendicular to the rotation axis of the first guard cylinder 211, or in other words, the first end face is not perpendicular to the length extension direction of the anode mentioned above, and the second end face is It is not perpendicular to the rotation axis of the second protection drum 411 or the length extension direction of the anode.
  • the anode includes an anode shank 5 that is sealingly coupled to the outer casing 6 such that the anodes 22, 42 are secured within the outer casing 6 by the anode shank 5.
  • a wiring duct 51 is disposed in the anode handle 5 for arranging the wiring.
  • the anode shank 5 is generally located at the center of the anode and it should be understood that the anode shank 5 is not required to be strictly in the middle of the anode. The position of the anode shank 5 does not affect the fixing of the anode and the wiring duct 51 inside the anode shank 5.
  • the dual beam scanning X-ray generator further includes a first armature core 215 disposed on the anode adjacent the first end 22 of the anode and a first electric current surrounding the first armature core 215 a pivot winding 214, and a plurality of first permanent magnets 213 corresponding to the armature core disposed on the inner wall of the first protective drum 211, so that the first armature winding 214 is more than when the first armature winding 214 forms a varying magnetic field
  • the first permanent magnets 213 interact to drive the first protective drum 211 to rotate.
  • the dual beam scanning X-ray generator further includes a second armature core 415 disposed adjacent the second end 42 of the anode and a second armature winding 414 surrounding the second armature core 415, and corresponding
  • the second armature core 415 is disposed on the second permanent magnet 412 on the inner wall of the second protective drum 411 so that the second armature winding 414 and the plurality of second permanents are formed when the second armature winding 414 forms a varying magnetic field.
  • the magnets 412 interact to drive the second guard drum 411 to rotate.
  • a wiring duct 51 is disposed in the anode shank 5 for arranging wires for connecting the first armature winding and the second armature winding to the external power source, respectively.
  • the dual beam scanning X-ray generator further includes a first driver 217 that is coupled to the external power source and that provides a varying current to the first armature winding 214; and, the second driver 47,
  • the two drivers 47 are connected to an external power source and provide varying current to the second armature winding 414.
  • a first driver is disposed adjacent the first end 22 of the anode and a second driver is disposed adjacent the second end 42 of the anode.
  • FIG. 2 shows the structure of the sealing joint 52 for sealing the outlet of the wiring duct 51 in the anode shank 5.
  • the sealing joint 52 is composed of a glass stem 521 and a conductive pin 522 sintered therein.
  • the glass stem 521 is melted into a closed whole body with the anode handle 5 by a process such as sintering;
  • the conductive pin 522 has one end connected to the inner wire of the first spot beam module 21 and the second spot beam module 41, and the other end is connected to the outside of the X-ray tube. .
  • This lead method ensures that the inside of the X-ray tube is in a vacuum state.
  • other sealing and fixing patterns such as flange extrusion O-ring seals, are also available.
  • FIG. 3 shows the left side of the X-ray tube of the double-spot beam X-ray generator. It should be understood that the internal structure of the X-ray tube of the double-spot beam X-ray generator is a bilaterally symmetric manner, and the right side structure and The left side is similar. Here, the left side is taken as an example (indicated in FIG. 3).
  • a plurality of armature windings 214 are wound on the first armature core 215.
  • the first end 22 of the anode can be regarded as a mounting shaft, and the first armature core 215 is mounted near the first end 22 of the anode, the first protective drum 211 is mounted adjacent the first end 22 of the anode by a bearing 220 such that the first guard drum 211 can rotate about the first end 22 of the anode.
  • the inner wall of the first protective drum 211 is fastened with a plurality of permanent magnets 213 and is evenly distributed.
  • One end of the first protective drum 211 is fitted to the outer wall of the bearing 220.
  • the first protective drum-case 221 is mounted to the first end 22 of the anode and is mounted to the inner wall of the bearing 220.
  • the inner ring of the bearing 220 is limited by the upper shoulder of the first protective sleeve 221 and the inner top ring 222, and the outer ring is limited by the convex edge of the first protective drum 211 and the outer top ring 223.
  • Driver 217 is placed on one side of armature core 215 and is secured to first end 22 of the anode by collar 216.
  • the specific connection between the first protective reel 211 and the anode and the associated specific components have been described above, and it should be understood that the first shroud 211 can be rotatably mounted on the anode by other means.
  • the portion of the first end 22 of the anode remote from the first target 23 is provided with a trace conduit 51, one end of the driver 217 is connected to the field winding 214 via a cable 218, and the cable 219 at the other end is routed through the trace.
  • the duct 51 is connected to the inner side of the sealing joint 52.
  • the first armature winding 214 is continuously commutated to form a rotating magnetic field, interacting with the magnetic field generated by the plurality of first permanent magnets 213 to push the first protective drum 211 to the center of the first end 22 of the anode.
  • the line makes a circular motion for the axis.
  • the sector X-ray beam is thus modulated by the rotational motion of the first aperture 212 into an X-ray pencil beam in a scanned state.
  • the first protective drum 211 and the outer top ring 223 are preferably tungsten or tungsten alloy materials, which can effectively achieve X-ray radiation protection.
  • the first protective drum 211 includes an outer top ring 223.
  • the first end 22 of the anode, the first shroud sleeve 221 and the inner top ring 222 are preferably copper or copper alloy materials that facilitate heat dissipation while having a certain X-ray radiation protection capability.
  • the first shroud 211, the first shroud sleeve 221, the outer top ring 223, and the first end 22 of the anode form a nearly closed, well-performing X-ray shielded chamber.
  • the number of the first holes 212 on the first protective drum 211 is at least one or plural.
  • the distribution pattern of the plurality of first holes can be arbitrarily configured as needed.
  • the driver 217 may be disposed inside the outer casing 6, or may be disposed outside the outer casing 6, and the driving mode may be a fixed speed mode or a speed adjustable mode.
  • the fastening link of the dual beam scanning X-ray generator can take various forms such as screw fastening, riveting, bonding or welding.
  • the mounting position of the upper rotating member and other members of the first end portion of the anode should not be limited.
  • the rotating member may be placed closer to the end face of the first end of the anode than that shown in FIG. , or other location.
  • the principles and structures of the present disclosure are illustrated with a reflective X-ray generator as an example, but should not be limited thereto.
  • a transmission type X-ray generator can also be used, and the spot beam turntable and its driving mechanism are preferably designed in the direction of the target exit.
  • Other types of X-ray generators can also be used with a suitable scanning structure.
  • the first end end surface is configured such that the X-ray faces the first side of the rotation axis of the first protection drum 211
  • the second end end surface is configured such that the X-ray faces the second protection drum 411 The same first side of the axis of rotation.
  • the target surface of the first target 23 of the first end 22 of the anode and the target surface of the second target 43 of the second end 42 of the anode face downward, as shown in FIG. 4, the first target 23 and the The fan-shaped X-ray beam emitted from the two targets 43 faces downward.
  • the vertical direction can be obtained.
  • Two fan-shaped X-ray beams that are parallel to the direction of the rotation axis and have the same exit direction.
  • the exit directions of the two sector X-ray beams are parallel, both facing downward, and the two fan-shaped X-ray beam opening angles may be the same or different.
  • the pencil-shaped X-ray beams at both ends of the double-beam scanning X-ray generator as shown in FIG. 4 may be used independently of each other, and the scanning angles of the pen-shaped X-ray beams emitted at both ends may be the same or different.
  • the X-rays emitted by the first target 23 and the second target 43 at both ends of the dual beam scanning X-ray generator can be individually controlled. For example, only the first target 23 is bombarded by electrons to emit X-rays; or, only the second target 43 is bombarded with electrons to emit X-rays; the energy of the first target 23 and the second target 43 to emit X-rays may also be different.
  • first protective drum 211 and the second protective drum 411 at both ends of the double beam scanning X-ray generator can be individually controlled.
  • the rotation of the first protective drum 211 and the rotation of the second protective drum 411 are not synchronized, whereby the pen-shaped X-ray beam emitted from the first hole on the first protective drum 211 and the second protective drum 411
  • the pen-shaped X-ray beam scanning emitted by the second hole is not synchronized.
  • the pencil-shaped X-ray beams emitted from both ends of the double-beam scanning X-ray generator are thereby individually controlled.
  • the first end face is parallel to the second end face (however, it should be understood that the first end face may not be parallel to the second end face), and the first end face is configured such that X-rays a first side facing the rotation axis of the first protective drum 211, the second end end face being configured such that the X-ray faces the second side of the rotation axis of the second protection drum 411, the first side being different from the second side side.
  • the target faces of the first end 22 of the anode and the second end 42 of the anode face in opposite directions. Unlike the case shown in FIG. 4, the target end of the first end 22 of the anode faces upward, and the second end 42 of the anode.
  • the target face down.
  • the fan-shaped X-ray beam generated by the first target 23 is upward
  • the fan-shaped X-ray beam generated by the second target 43 is downward.
  • the orientations of the two sector X-ray beams are opposite
  • the exit directions are parallel and opposite in the vertical direction
  • the angular extents of the two sector X-ray beams may be the same or different.
  • the target end of the first end 22 of the anode and the second end 42 of the anode are oriented at a certain angle, and the first target 23 and the second target 43 are in the first protective reel 211 and the second protective turn.
  • the cylinder 411 has a certain physical spacing in the direction of the axis of rotation, but the centers of the two are still on the axis of rotation, and the fan-shaped X-ray beam is emitted in a direction perpendicular to the axis of rotation, as shown schematically in Figure 6a. An angle X-ray beam. In FIG.
  • the anode first end 22 and the anode second end 42 are generally oriented to the right along the paper surface, however, the collimator in front of the first target 23 and the collimator in front of the second target 43 are adjusted such that the first The fan-shaped X-ray beam emitted from the target 23 and the fan-shaped X-ray beam emitted from the second target 43 are misaligned by a certain angle about the axis of rotation.
  • Fig. 6b shows a case where the fan-shaped X-ray beams emitted from the first target 23 and the second target 43 are partially overlapped or misaligned as seen in the direction of the rotation axis. It is assumed that the opening angle of the fan-shaped X-ray beam generated by the first target 23 is ⁇ 1 , the fan-shaped X-ray beam opening angle generated by the second target 43 is ⁇ 2 , and the angle of the overlapping portion of the two X-ray beams is ⁇ 3 , as shown in FIG. 6b. Shown.
  • the effective X-ray beam opening angle ⁇ in the specific embodiment is not less than ⁇ 1 or ⁇ 2 , and the corresponding relationship is
  • the fan-shaped X-ray beams emitted from both ends of the X-ray generator are not coincident or misaligned, which can enlarge the effective opening angle of the fan-shaped X-ray beam, and the overlapping portion enhances the X-ray output dose, and increases the scanning range while ensuring the target to be inspected. Image quality.
  • the adjacent corner boundaries of the X-ray beams produced by the two targets coincide exactly, and the X-ray beam effective opening angle is the sum of the opening angles of the foregoing two.
  • the fan-shaped X-ray beam produced by the first target 23 and the fan-shaped X-ray beam produced by the second target 43 do not overlap at all and (in the vertical plane as shown) are staggered by an angle, ie two
  • the fan-shaped X-ray beam does not have a symmetrical relationship.
  • the fan-shaped X-ray beam generated by the first target 23 and the fan-shaped X-ray beam (in the vertical plane as shown) generated by the second target 43 may be staggered by 180°, ie, two fan-shaped X-rays.
  • the beam is symmetric.
  • the angular angle of the fan-shaped X-ray beam produced by the first target 23 may be any angle less than 180°, such as greater than 60°, or greater than 69°, or greater than ⁇ 1 . 70°.
  • the angular angle of the fan-shaped X-ray beam produced by the second target 43 may be any angle less than 180°, such as greater than 60°, or greater than 69°, or greater than ⁇ 1 . 70°.
  • the first target 23, the second target 43, the first filament 13 and the second filament 33 may be arranged in any space other than a four-point line (ie different axes), so that two X-ray beam of angular characteristics.
  • an X-ray pencil beam having a characteristic corresponding thereto can be formed.
  • the dual beam scanning X-ray generator of the present disclosure may have the orientation of the target at both ends of the anode fixed in a direction perpendicular to the axis of rotation to a certain interlaced angle, or may be designed as the first of the two ends of the anode.
  • the protective drum 211 and the second protective drum 411 can each be freely rotated about the axis of rotation, so that the angle between the scanning of the two X-ray beams in a plane perpendicular to the direction of the axis of rotation can be adjusted in real time as needed.
  • the components of the dual beam scanning X-ray generator of the above-described embodiments of the present disclosure are packaged in a unitary outer casing 6.
  • the outer casing of the two-point scanning X-ray generator of the present disclosure may comprise two portions, ie the outer casing is configured to be separated into two outer casing portions in the middle portion of the anode shank 5, the two outer casing portions It is sealingly connected to both ends of the anode handle 5.
  • the dual beam scanning X-ray generator of the present disclosure may further comprise a high voltage power supply connected to the anode and cathode of the dual beam scanning X-ray generator via a high voltage cable.
  • the dual spot beam scanning beam X-ray generator of the present disclosure can generate two X-ray pencil beams of the same energy through the same high voltage power source.
  • the output parameters of a high voltage power supply can be controlled and the high voltage power supply can produce an X-ray pencil beam of two different energies in sequence.
  • two high-voltage power supplies of the same or different parameters may be applied to generate two X-ray pencil beams of the same or different energies, respectively; a large angular X-ray pencil beam may be generated.
  • the first hole 212 on the first protective drum 211 corresponding to the first target 23 is configured to modulate the sector X-ray emitted by the first target 23 into a first stroke of the X-ray beam
  • the second aperture 412 on the second guard cylinder 411 corresponding to the second target 43 is configured to modulate the fan-shaped X-ray emitted by the second target 43 into a second pencil-shaped X-ray bundle.
  • the first hole causes the first pencil-shaped X-ray beam to scan in a plane perpendicular to the rotation axis of the first protection drum 211 by the rotation of the first protection drum 211 and the second protection drum 411
  • second The aperture causes the second pencil-shaped X-ray beam to scan in a plane perpendicular to the axis of rotation of the first protective drum 211.
  • the angular range of the first pencil-shaped X-ray beam scanned in a plane perpendicular to the rotation axis of the first protective drum 211 and the second pencil-shaped X-ray beam are in the first protection
  • the angular extents of the plane scan perpendicular to the axis of rotation of the drum 211 are completely overlapping, or partially overlapping or not overlapping.
  • the first target point 23, the second target point 43, the first filament 13 and the second filament 33 may be arranged in any space other than a four-point line (ie, different axes), so that Two X-ray beams with various angular properties.
  • the plane in which the first pencil-shaped X-ray beam is scanned and the plane in which the second pencil-shaped X-ray beam is scanned may not be parallel.
  • the first protective drum 211 includes a plurality of first holes.
  • a plurality of first holes are advantageous, so that the plurality of pen-shaped X-ray beams are emitted from the first protective drum 211 every one rotation and the object to be inspected is scanned once, which can improve the detection efficiency.
  • the case where each of the plurality of first holes is scanned is similar to the case of scanning with a first hole as above, and the description thereof will not be repeated here.
  • FIG. 7 illustrates a dual beam scanning X-ray generator according to an embodiment of the present disclosure, comprising: a casing; an anode, wherein the first end and the second end are opposite ends of the anode; a beam-shaped radiation source disposed at the first end of the anode, configured to emit a first fan-shaped X-ray beam, wherein the first fan beam radiation source includes a first cathode, and the first cathode is configured to be in the first fan beam Ejecting electrons within the radiation source; a second fan beam radiation source disposed at the second end of the anode, configured to emit a second fan-shaped X-ray beam, wherein the second fan beam radiation source includes a second cathode, the second cathode configuration Emission of electrons within the second fan beam source.
  • the dual beam scanning X-ray generator can emit two X-rays to realize simultaneous irradiation of two objects by a single X-ray tube, which can save space compared to the prior art, which requires two sets of X-ray generating devices. It is especially beneficial for some places where the venue is limited.
  • first fan beam radiation source 2-1 and the second fan beam radiation source 2-2 can operate independently.
  • the first fan beam radiation source 2-1 and the second fan beam radiation source 2-2 may be operated simultaneously, or may be operated according to a certain timing, or may respectively emit X-ray beams of the same energy or X of different energies.
  • the beam configuration which will make the use of the dual beam scanning X-ray generator more flexible and adapt to different needs, truly realize the function of two conventional X-ray generating devices through a dual beam scanning X-ray generator.
  • first high voltage power source is applied between the first cathode 2-10 and the first end of the anode
  • second high voltage power source is applied between the second cathode 2-30 and the second end of the anode
  • first cathode 2-10 and second cathode 2-30 are disposed within said outer casing 2-6 of said dual beam scanning X-ray generator.
  • the first cathode 2-10 and the second cathode 30 are disposed in the outer casing 2-6, and the first cathode 2-10 is regarded as a part of the first fan beam radiation source 2-1, and the second cathode 2-30 is considered to be part of the second fan beam source 2-2.
  • the first cathode 2-10 includes a first filament 2-11, a first focus mask 2-12 and a first filament lead 2-13;
  • the second cathode 2-30 includes a second filament 2-31, a second focus mask 2 32 and second filament lead 2-33.
  • the first filament lead 2-13 and the second filament lead 2-33 are used for the external filament power supply and the negative pole of the high voltage power supply.
  • the first filament 2-11 is coupled to a negative and filament power supply of a high voltage power supply for emitting electrons
  • the second filament 2-31 is coupled to a negative and filament power supply of the same high voltage power supply for emitting electrons.
  • the first filament 2-11 is connected to a negative and filament power supply of a high voltage power supply for emitting electrons
  • the second filament 2-31 is connected to a negative and filament power supply of another high voltage power supply for emitting electrons.
  • the first focus mask 2-12 and the second focus mask 2-32 can focus on electrons and also serve as a supporting cathode.
  • the first focus mask 2-12 is provided with an opening for electron emission, the other portions are sealed, electrons are not scattered into the environment, and the second focus mask 2-32 is similar.
  • the centers of the first filament 2-11, the second filament 2-31, the first target 2-23, and the second target 2-43 are on the same horizontal line.
  • one end of the outer casing 2-6 is welded to the first focus cover 2-12, and the other end of the outer casing 2-6 is welded to the second focus cover 2-32.
  • the outer casing 2-6 may be made of hard glass, corrugated ceramic or cermet.
  • the portion of the outer casing 2-6 for transmitting X-rays may be embedded in the window.
  • the first fan beam radiation source 2-1 and the second fan beam radiation source 2-2 may operate independently, wherein the first cathode 2-10 and the corresponding anode first end 2-20 and the second The cathodes 2-30 and the corresponding anode second ends 2-40 can be individually controlled, whereby the energy of the two fan-shaped X-ray beams emitted by the dual beam scanning X-ray generator can be individually controlled.
  • the voltage applied between the first cathode 2-10 and the first end 2-20 of the anode is equal to the voltage applied between the second cathode 2-30 and the second end 2-40 of the anode, whereby, the X-ray energy generated by the first fan beam source 2-1 and the second fan beam source 2-2, respectively, is the same.
  • the dual beam scanning X-ray generator is configured such that a voltage applied between the first cathode 2-10 and the first end 2-20 of the anode is not equal to that applied to the first cathode 2-10 and the anode The voltage between one end 2-20, so that the first fan beam source 2-1 and the second fan beam source 2-2 respectively generate different X-ray energies.
  • the dual-beam scanning X-ray generator of the embodiment can simultaneously emit two different energy X-rays to irradiate two different objects. Detection, which not only improves detection efficiency, but also saves energy.
  • the energy of the X-ray beam emerging from the first fan beam source 2-1 and the second fan beam source 2-2 is independently controllable. For example, increasing the voltage applied between the first cathode 2-10 and the first end 2-20 of the anode such that the energy of the generated X-ray beam is high, so that transmissive detection of a larger object can be performed; at the second cathode A small voltage is applied between 2-30 and the second end of the anode 2-40, producing a less energetic X-ray beam, enabling transmissive detection of smaller objects.
  • a dual beam scanning X-ray generator according to the present embodiment can perform detection on two objects with large differences at the same time, which greatly improves the application range of the device.
  • the first fan beam radiation source 2-1 includes a first target 2-23 disposed at an end face of the first end 2-20 of the anode, and the first target 2-23 is subjected to electron bombardment to emit X-rays;
  • the fan beam radiation source 2-2 includes a second target 2-43 disposed at the end of the second end 2-40 of the anode, and the second target 2-43 is subjected to electron bombardment to emit X-rays.
  • the end surface of the first end is not perpendicular to the extending direction of the length of the anode, and the end surface of the second end is not perpendicular to the extending direction of the length of the anode.
  • the first fan beam radiation source 2-1 and the second fan beam radiation source 2-2 can be operated independently such that the first target 2-23 and the second target 2-43 can be synchronized or not synchronized. X-rays are emitted.
  • the dual beam scanning X-ray generator provided in this embodiment can simultaneously emit two X-ray beams, and the two X-ray beams can be synchronously used for detection, for example, simultaneous detection of two detected objects to improve efficiency. For example, when there is only one detecting object and only one X-ray beam is required, the dual beam scanning X-ray generator of the present embodiment can emit only one X-ray beam, thereby saving energy.
  • the first fan beam radiation source 2-1 includes a first collimator 2-21 configured to modulate X-rays emitted by the first target 2-23 into a first fan-shaped X-ray beam; correspondingly,
  • the second fan beam radiation source 2-2 includes a second collimator 2-41 configured to modulate X-rays emitted by the second target 2-43 into a second fan-shaped X-ray beam.
  • the first collimator 2-21 surrounds the first end 2-20 of the anode and allows electrons to pass through the end face of the first collimator 2-21, such as an end face opening or hole, bombarding the first target 2-23, and limiting
  • the X-rays emitted by the first target 2-23 are such that the X-rays emitted by the first target 2-23 can only be emitted from the first collimator exit 2-211 to form a first fan-shaped X-ray beam; the second collimator 2 -41 surrounding the second end 2-40 of the anode, allowing electrons to bombard the second target 2-43 through the second collimator 2-41 and limiting the X-rays emitted by the second target 2-43 such that the second target 2
  • the X-rays emitted by the 43 can only be emitted from the second collimator exits 2-411 to form a second fan-shaped X-ray beam.
  • the first collimator 2-21 and the second collimator 2-41 are identical in construction, and FIG. 9 shows a cross-sectional view of one of the first collimators 2-21, for example.
  • the first collimator 2-21 has a fan-shaped opening, that is, a first collimator outlet 2-211.
  • the shape of the first collimator outlet 2-211 determines the contour of the emitted X-ray beam.
  • the end faces of the first collimators 2-21 are further provided with openings or holes for allowing electrons to enter the first collimator 2-21, and electrons are incident from openings or holes in the end faces of the first collimators 2-21.
  • the first target 2-23 surrounded by the first collimator 2-21 is bombarded to generate X-rays.
  • the first collimator 2-21 can have other shapes.
  • the first collimator 2-21 needs to shield the scattered electrons and the generated X-rays, and is also used to generate a desired X-ray beam while preventing damage to the surrounding environment by electrons and rays.
  • the first collimator 2-21 can be made of a tungsten or tungsten alloy material, which can effectively achieve X-ray protection.
  • the structure of the second collimator 2-41 is similar to that of the first collimator 2-21, and may be made of the same material, and will not be described herein.
  • the first collimator 2-21 and the second collimator 2-41 may respectively modulate X-rays emitted from the first target 2-23 and the second target 2-43, including modulation.
  • the first collimator 2-21 and the second collimator 2-41 control the shape and direction of the X-ray beam, and the energy of the X-ray beam is controlled by a high voltage power source disposed between the anode and the cathode.
  • the electron energy bombarded onto the first target 2-23 is high, the X-ray energy emitted by the first target 2-23 is high.
  • two of the dual beam scanning X-ray generators can be respectively
  • the desired two fan X-ray beams are obtained by the first fan beam source 2-1 and the second fan beam source 2-2, respectively.
  • the first sector X-ray beam emitted by the first collimator exit 2-211 and the second sector X-ray beam emitted by the second collimator exit 2-411 are respectively located in two parallel planes.
  • the fan-shaped X-ray beams emitted by the anode first end 2-20 and the anode second end 2-40 are downward and are located in two parallel faces.
  • FIG. 10 is for illustration only, the fan-shaped X-ray beams emitted by the anode first end 2-20 and the anode second end 2-40 may be simultaneously upward, in two parallel faces.
  • the collimator before the first target 2-23 and the second target 2-43 is omitted in FIG.
  • the fan-shaped X-ray beam emitted by the first end 2-20 of the anode is upward, and the fan-shaped X-ray beam emitted by the second end 2-40 of the anode is downward.
  • the end faces of the first end 2-20 of the anode and the end faces of the second end of the anode 2-40 are opposite (refer to FIG. 5), the left end face faces obliquely upward, and the right end face faces obliquely downward.
  • the coverage of the first sector X-ray beam emitted by the first collimator outlet 2-211 and the second sector shape emitted by the second collimator outlet 2-411 when viewed along the length of the anode may not overlap, partially overlap or completely coincide.
  • Figure 11 depicts the coverage of the first sector X-ray beam emitted by the first collimator exit 2-211 and the second sector X emitted by the second collimator exit 2-411 when viewed along the length of the anode. The overlapping relationship of the coverage of the beam.
  • Figure 11 is only a schematic representation of the configuration of the X-ray beam at both ends of the dual beam scanning X-ray generator, simplifying other components such as the first and second collimators in the view.
  • the opening angle of the first sector X-ray beam emitted by the first collimator outlet 2-211 corresponding to the first target 2-23 is ⁇ 1
  • the second target 2-43 corresponds to
  • the angle of the second sector X-ray beam emitted by the second collimator exit 2-411 is ⁇ 2
  • the angle of the overlapping portion of the two X-ray beams is ⁇ 3 , as shown in FIG. 11 b.
  • the effective X-ray beam opening angle ⁇ in the specific embodiment is not less than ⁇ 1 or ⁇ 2 , and the corresponding relationship is:
  • the fan-shaped X-ray beams emitted from both ends of the dual-beam scanning X-ray generator are not coincident or misaligned, which can enlarge the effective opening angle of the fan-shaped X-ray beam, and the overlapping portion enhances the X-ray output dose, and the scanning range is also ensured.
  • the X-ray output dose can be enhanced when the fan-shaped X-ray beams emitted from both ends of the double-beam scanning X-ray generator are coincident, the detection signal is enhanced, and the detection precision is improved.
  • the adjacent corners of the fan-shaped X-ray beams emitted from both ends of the dual-beam scanning X-ray generator coincide exactly, and the effective opening angle of the X-ray beam is the sum of the opening angles of the two, so that the double beam The opening angle of the fan-shaped X-ray beam emitted by the scanning X-ray generator is enlarged.
  • the opening angle ⁇ 1 of the first sector X-ray beam emitted by the first collimator outlet 2-211 and the opening angle of the second sector X-ray beam emitted by the second collimator outlet 2-411 ⁇ 2 is the same.
  • the first collimator outlet 2-211 and the second collimator outlet 2-411 are different, and the opening angle ⁇ 1 of the first sector X-ray beam emitted by the first collimator 2-21 is The opening angle ⁇ 2 of the second sector X-ray beam emitted by the second collimator exit 2-411 is different.
  • the anode of the dual beam scanning X-ray generator includes an anode shank 2-5 coupled to the outer casing 2-6 for securing the anode to the outer casing 2 - 6 internal.
  • the anode shank 2-5 can also be configured for connection to a high voltage power supply, i.e., the anode of the high voltage power supply can be directly electrically connected to the anode shank 2-5, and in particular, can be directly grounded for a negative high voltage power supply.
  • the anode shank 5 can be part of the anode, in other words the anode is a one-piece piece.
  • the anode shank 2-5 can be a component that is coupled to the anode.
  • FIG. 8 A cross-sectional view of the anode shank 5 in the B-B direction is shown in Fig. 8.
  • the cooling heat sink can be externally connected through the cooling joint 2-52, and a combination of "insulating oil + oil pump + laminar heat sink" can be selected.
  • the outer end faces of the anode shanks 2-5 may be provided with a conductive heat sink, preferably a heat pipe heat sink or a semiconductor cooling fin. The combination of these two methods can enhance the heat dissipation and improve the stability and reliability of the X-ray tube.
  • the anode shank 2-5 may include a cooling passage 2-51 configured to flow through the cooling medium, as shown in Figure 8, it being understood that the cooling passage 2-51 may have other forms, Figure 8 only It is not shown in detail for the sake of brevity.
  • the cooling channels 2-51 may flow through the cooling medium, which can help reduce the temperature of the anode shanks 2-5 and the anode.
  • the oil pump is used to circulate the insulating oil, and the insulating oil flows in the passage inside the anode shank 2-5 to remove the heat of the anode shank 2-5, so that the heat of the anode and the anode shank 2-5 is quickly Pull away.
  • the insulating oil leaves the cooling passage 2-51 of the anode shank 2-5, it can be dissipated by the laminar heat sink to lower the temperature and circulate again into the anode shank 2-5.
  • the outer end face of the anode shank 2-5 can be fitted with a conductive heat sink.
  • the anode shank 2-5 is also coupled to a heat pipe heat sink or semiconductor cooling fin for heat dissipation. The combination of the cooling of the cooling medium and the arrangement of the heat sink on the anode shank 2-5 enhances the heat dissipation and improves the stability and reliability of the X-ray tube.
  • Cooling joints 2-52 may be provided at both ends of the cooling passages 2-51, however, cooling joints 2-52 are not necessary.
  • the anode and anode shanks 2-5 may be made of copper or a copper alloy. This is advantageous for conducting electricity and reducing electrical resistance; moreover, it is advantageous for heat dissipation; in addition, it has certain X-ray radiation protection capability.
  • the anode is comprised of an anode first end 2-20 and an anode second end 2-40, and the anode first end 2-20 and the anode second end 2-40 are rotatable relative to each other.
  • the first collimator outlet 2-211 and the second collimator outlet 2-411 are oriented at an angle relative to the original by the anode first end 20 and the anode second end 2-40. Set the wrong angle to a certain angle.
  • the first sector beam X-ray emitted by the first fan beam source 2-1 of the anode first end 2-20 and the second fan beam source 2-2 of the anode second end 2-40 respectively
  • the beam and the second sector X-ray beam are respectively located in two parallel planes, and the first and second sector X-ray beams are coincident in the direction along the central axis of the anode; by rotating the anode first end 2-20 and the anode second
  • the ends 2-40 may be such that the first sector X-ray beam and the second sector X-ray beam are offset by an angle in the direction along the central axis of the anode, whereby the effective opening angle of the fan-shaped X-ray beam can be adjusted.
  • the effective opening angle of the fan-shaped X-ray beam of the dual-beam scanning X-ray generator can be changed according to actual needs, so that the double-beam scanning X-ray is made.
  • the generator is more convenient to use.
  • FIG. 12 schematically illustrates a dual channel transmission inspection apparatus and method of use thereof, in accordance with one embodiment of the present disclosure.
  • the dual channel transmission inspection apparatus in this embodiment mainly includes the aforementioned dual beam scanning X-ray generator 3-31, the first inspection channel 3-10, and the second inspection channel 3-20.
  • a dual beam scanning X-ray generator 3-31 as a core component is placed on top of the device.
  • the dual beam scanning X-ray generator 3-31 is capable of generating two sector X-ray beams with corresponding orientations according to the requirements of the system.
  • the first inspection channel 3-10 includes a first detector 3-11 and a first conveyor 3-13. When the first baggage 3-12 is inspected, the first baggage 3-12 is placed on the first conveyor 3-13.
  • the second inspection channel 3-20 includes a second detector 3-21 and a second conveyor 3-23.
  • the baffle 3-32 is used to separate the first inspection channel 3-10 and the second inspection channel 3-20.
  • the dual channel transmission inspection device in this embodiment further includes a data acquisition and processing module 3-43, an electronic control module 3-42, and an external interface 3-41.
  • the dual beam scanning X-ray generator 3-31 produces two fan-shaped X-ray beams whose center lines are at an angle.
  • a sector X-ray beam can scan the first bag 3-12 (i.e., the object being inspected) within the first inspection channel 3-10.
  • another fan-shaped X-ray beam can scan the second baggage 3-22 (i.e., the object to be inspected) in the second inspection channel 3-20.
  • the first detectors 3-11 in the first inspection channel 3-10 are respectively disposed opposite the opposite sides of the dual beam scanning X-ray generator 3-31 and the first conveyor 3-13, and thus are generally L-shaped to Increase the effective detection area.
  • the first baggage 3-12 moves forward with the first conveyor 3-13 after being placed on the first conveyor 3-13.
  • the double beam scanning X-ray generator 3-31 emits a fan-shaped X-ray beam.
  • the first detector 3-11 senses a signal after the sector X-ray beam penetrates the cross section of the first baggage 3-12. As the first baggage 3-12 moves, the entire transmission scan of the first bag 3-12 is completed column by column.
  • the second inspection channel 3-20 is similar to the operation of the first inspection channel 3-10.
  • the second detector 3-21 is also generally L-shaped, and the entire transmission scan of the second baggage 3-22 is also completed column by column as the second baggage 3-22 moves.
  • the boundaries of the above two sector X-ray beams are different by an angle and are physically blocked by the baffle 3-32. Therefore, the transmission scanning process in the first inspection channel 3-10 and the transmission scanning process in the second inspection channel 3-20 are cross-talk free of each other.
  • the data acquisition and processing module 3-43 performs data acquisition and analysis operations on the signals sensed by the two detectors 3-11 and 3-21, and passes through the electronic control module 3-42 and the external interface 3-41 and the external console. Communication (not shown) is performed to finally form a transmission image of the two objects to be inspected (i.e., the first baggage 3-12 and the second baggage 3-22).
  • the dual beam scanning X-ray generator 3-31, the first inspection channel 3-10 and the second inspection channel 3-20 may be independent devices or may be assembled in the same cover plate.
  • the first inspection channel 3-10 and the second inspection channel 3-20 may be located on the same horizontal plane or may be arranged in other spatial positional relationships.
  • the dual beam scanning X-ray generator 3-31 and the L-shaped detectors 3-11 and 3-21 on both sides thereof are respectively fixed and on the same horizontal plane.
  • the receiving faces of the two detectors 3-11 and 3-21 are aligned with the exit face of the X-rays (i.e., the exit face).
  • the two inspected objects 3-12 and 3-22 are translated in a direction perpendicular to the exit surface, and the two inspected targets are completed one by one according to a certain step. 3-12 and 3-22 transmission scans of a series of sections.
  • the first detector 3-11 receives the transmission signal of the fan beam on the left side of the double beam scanning X-ray generator 3-31.
  • the second detector 3-21 receives the transmission signal of the fan beam on the right side of the dual beam scanning X-ray generator 3-31.
  • the intermediate baffle 3-32 can be made of a heavy metal material to serve as a support for fixation and radiation protection.
  • the circumferences and the entrances and exits of the two inspection channels 3-10 and 3-20 are each provided with a corresponding X-ray shielding structure, thereby forming a relatively closed inspection channel.
  • the electronic control module 3-42 detects the position information of the first baggage 3-12 and the second baggage 3-22, respectively controls the motion modes of the two transmitting devices 3-13 and 3-23, and allows and prohibits in a timely manner.
  • Two fan-shaped X-ray beams are emitted.
  • the two inspection channels 3-10 and 3-20 are relatively independent, and can be used separately or in combination for two channels.
  • the exit port of the dual beam scanning X-ray generator 3-31 is defined as a sector slit.
  • a front end collimator may not be needed.
  • the external console simultaneously displays the transmitted image of the inspection target within the two inspection channels 3-10 and 3-20.
  • the generated transmission image can be manually viewed or automatically identified by software to distinguish the presence or absence of dangerous goods and to properly identify and alarm.
  • FIG. 13 schematically illustrates a dual channel transmission inspection apparatus and method of use thereof, in accordance with another embodiment of the present disclosure.
  • the two-channel transmission inspection apparatus of Fig. 13 is different from the two-channel transmission inspection apparatus shown in Fig. 12 in that a double-beam scanning X-ray generator 3-31' is provided at the bottom of the apparatus. Accordingly, the positions of the first detector 3-11' and the second detector 3-21' are also adjusted accordingly.
  • the first detector 3-11' and the second detector 3-21' are located on the top and sides of the device, respectively.
  • the structure shown in Figure 13 is mainly used for the safety inspection of luggage items.
  • FIG. 14 schematically illustrates a dual channel transmission inspection apparatus and method of use thereof, in accordance with another embodiment of the present disclosure.
  • the two-channel transmission inspection apparatus shown in Fig. 14 is a human and physical inspection dual-channel transmission inspection apparatus.
  • the human and object dual-channel transmission inspection apparatus in this embodiment mainly includes a dual-beam scanning X-ray generator 3-71, an inspection channel 3-50, and a sample channel 3-60.
  • the dual beam scanning X-ray generator 3-71 produces two fan-shaped X-ray beams.
  • One fan-shaped X-ray beam is emitted toward the examiner channel 3-50, and the other fan-shaped X-ray beam is emitted toward the sample channel 3-60.
  • the angular centerlines of the two sector X-ray beams form a certain angle.
  • the two exit ports of the dual beam scanning X-ray generator 3-71 are preferably externally connected to the examiner collimator 3-72 and the sample collimator 3-73, respectively.
  • the inspector detectors 3-51 are respectively located opposite the exit port on the left side of the dual beam scanning X-ray generator 3-71 and below the inspector transfer device 3-53, generally L-shaped, and are shared with the fan-shaped X-ray beam. surface.
  • the sample detectors 3-61 are respectively located opposite the exit port on the right side of the double-beam scanning X-ray generator 3-71 and below the sample transport device 3-63, and are also generally L-shaped.
  • the baffle 3-74 is used to separate the two inspection channels 3-50 and 3-60.
  • the human and physical inspection dual-channel transmission inspection device in this embodiment further includes a data acquisition and processing module 3-83, an electronic control module 3-82, an external interface 3-81, and a necessary X-ray shielding structure.
  • two inspection channels 3-50 and 3-60 can be independently controlled and used.
  • FIG. 15 schematically illustrates a dual channel transmission inspection apparatus and method of use thereof, according to another embodiment of the present disclosure.
  • the dual channel transmission inspection apparatus shown in Fig. 15 is a human body two-channel transmission inspection apparatus.
  • the two-channel transmission inspection apparatus shown in Fig. 15 is different from the two-channel transmission inspection apparatus shown in Fig. 14 in that the sample passage 3-60 is replaced with the inspection passage 3-60'.
  • the inspector channel 3-60' mainly includes a dual beam scanning X-ray generator 3-71', a collimator collimator 3-73', a human detector 3-61' and a human body transport device 3-63' .
  • the dual beam scanning X-ray generator 3-71' in this embodiment integrates two fan beam sources at the X-ray emission point.
  • the dual-channel composite inspection apparatus of the present disclosure may be open or closed, and is not limited by auxiliary members such as a casing, a backboard or a top cover.
  • the position of the double-beam scanning X-ray generator, the opening angle of the fan-shaped X-ray beam, and the energy are not particularly limited, but may be appropriately set according to actual application conditions. set.
  • the detector may also be in the shape of an I or any other shape.
  • the object to be inspected of the two-channel transmission inspection apparatus of the present disclosure is preferentially the object and the object, the person and the object, or the person and the person.
  • the object to be inspected is not limited to the above-mentioned objects, and may be other objects to be inspected such as animals, goods or vehicles.
  • Embodiments of the present disclosure have been described by taking a dual channel composite inspection apparatus as an example.
  • the composite inspection apparatus of the present disclosure is not limited thereto.
  • a plurality of two-channel composite inspection apparatuses may be cascaded, thereby forming a plurality of inspection passages.
  • two fan-shaped X-ray beams of different energies are simultaneously entered into the same inspection channel, thereby enabling dual-energy transmission imaging.
  • the present disclosure utilizes a dual beam scanning X-ray generator to generate two independent fan-shaped X-ray beams, thereby enabling simultaneous scanning of the object to be inspected within the dual channel. Save at least one X-ray machine and its peripheral components compared to traditional modular dual-channel transmission inspection devices. Therefore, the technical solution of the present disclosure can simplify the system design, reduce the occupation, reduce the cost, and facilitate the disassembly and transportation and use.
  • 16 is a schematic structural view of a transmission inspection apparatus according to the related art of the present disclosure.
  • the structure of the human body transmission inspection apparatus in the related art is as shown in FIG. 16, and mainly includes a fixedly mounted X-ray source 4-1 and a detector 4-2.
  • the inspector 4-3 stands on the transmission mechanism 4-4.
  • the X-ray source 4-1 is usually placed in the lower right corner of the device, and the X-ray beam is directed horizontally to the sole of the foot, and the direction of the X-ray is upward.
  • the detector 4-2 is generally in the shape of a dome, and the upper lateral portion is used for head inspection.
  • the examinee 4-3 performs a pan-tilt scan and imaging line by column with the transmission mechanism 4-4.
  • the human body transmission inspection device places the X-ray source at the bottom, and looks at the sole of the foot through the fan-shaped X-ray beam. Although the requirement for the beam opening angle is lowered, the X-ray beam increases the incident angle and the penetration thickness of the subject, and the spatial resolution of the upper portion of the image is low. In addition, it is also difficult to find contraband that is placed at a special angle on the foot.
  • the X-ray source 4-1 is moved up to the middle position in the height direction of the device, and the distance from the channel in the horizontal direction remains unchanged, as shown by the dotted line portion of FIG. Shown.
  • the opening angle of the X-ray source 4-1 is increased to ⁇ ', the bottom of the detector 4-2 is extended, or is designed to be C-shaped. If you want to keep the X-ray source 4-1 angle unchanged as ⁇ , you need to move it to the right by a distance, which will increase the width of the device.
  • the X-ray source In the human body transmission inspection device, if the X-ray source is kept at the intermediate position of the height of the device, the X-ray source is placed at an intermediate position of the height of the device, and the beam opening angle is large enough to cover the entire body. . If the X-shaped beam angle exceeds a certain range, the output dose rate is uneven and the boundary dose rate is significantly attenuated, which leads to image quality degradation, especially peripheral distortion. If the X-ray source continues to move away from the detector in the horizontal direction at this time, it is theoretically possible to reduce the opening angle, but the energy required is larger, and the device width and floor space are increased.
  • the present disclosure provides a transmission inspection apparatus comprising a dual beam scanning X-ray generator and a detector for emitting parallel or coplanar sheets to the same side thereof a first sector X-ray beam of angle ⁇ and a second sector X-ray beam of angle ⁇ , the first sector X-ray beam and the second sector X-ray beam are used for transmission scanning of the object to be measured, in parallel with the two
  • the projections in the plane are combined into a fan shape with an opening angle of ⁇ + ⁇ ; the detector is disposed on the exit side of the first sector X-ray beam and the second sector X-ray beam of the dual beam scanning X-ray generator to receive the first sector X-ray A bundle and a second sector X-ray beam.
  • the X-ray source can be placed in the middle position of the height of the device, and the incident angle and the penetration thickness of the X-ray beam to the detected human body are not excessively large, thereby ensuring the image quality, and the two angles are used.
  • the small fan-shaped X-ray beam is spliced into a large angle X-ray beam, and when the distance between the X-ray source and the measured human body is kept relatively small, the body of the detected human body can be covered, so that the width and the area of the device are made. Smaller.
  • the angle of the single fan-shaped X-ray beam is small, which avoids problems such as uneven output dose rate and significant attenuation of the boundary dose rate, thereby ensuring image quality.
  • the transmissive scanning device disclosed in the present disclosure can detect a plurality of measured objects, such as human bodies, animals, articles, and the like.
  • the object to be measured is taken as an example for the human body.
  • FIG. 17 is a schematic structural diagram of a transmission inspection apparatus according to an embodiment of the present disclosure. As shown in FIG. 17, an embodiment of the present disclosure provides a transmission inspection apparatus 4-10, which mainly includes a dual beam scan X. Radiation generator 4-11 and detector 4-13.
  • the dual beam scanning X-ray generator 4-11 emits a parallel or coplanar first sector X-ray beam having an opening angle ⁇ and a second sector X-ray beam having an opening angle ⁇ to the same side thereof, the first sector X
  • the beam of rays and the second fan-shaped X-ray beam are used for transmission scanning of the object to be measured, and the projections in a plane parallel to the two are combined into a fan shape having an opening angle of ⁇ + ⁇ .
  • Detectors 4-13 such as line detectors, are disposed on the exit side of the first sector X-ray beam and the second sector X-ray beam of the dual beam scanning X-ray generator 4-11, receiving the first sector X-ray beam and The second sector X-ray beam.
  • the opening angle ⁇ of the first sector X-ray beam may be equal to the opening angle ⁇ of the second sector X-ray beam
  • the dual beam scanning X-ray generator 4-11 is basically The intermediate position alignment is set at the height of the detector 4-13, that is, the double beam scanning X-ray generator 4-11 is disposed at an intermediate position of the height of the transmission inspection device, and the double beam scanning X-ray generator 4-11 produces a small opening angle.
  • the two fan-shaped X-ray beams have stable output dose rate and high efficiency, which is beneficial to improve image quality.
  • the detector 4-13 is divided into a first detecting portion 4-13a and a second detecting portion 4-13b by an intermediate position in the height direction, wherein the first detecting portion 4-13a located at the upper portion receives the first sector X-ray beam, located at The lower second detecting portion 4-13b receives the second sector X-ray beam.
  • the first detecting portion 4-13a and the second detecting portion 4-13b may each be a line array detector, and the two are spliced into the detectors 4-13.
  • the cross section of the first detecting portion 4-13a parallel to the first sector X-ray beam and the second sector X-ray beam is " ⁇ ", and the second detecting portion 4-13b is parallel to the first sector.
  • the X-ray beam and the second sector X-ray beam have an "L" shape in cross section, whereby the detector 4-13 has a "[" shape as a whole, the upper lateral portion is used for the head examination of the human body to be tested, and the lower lateral portion is used for the lower portion.
  • the foot examination of the tested human body can effectively reduce the height of the equipment, and can also check the head and foot.
  • the transmission inspection apparatus 4-10 further includes carrier devices 4-15 for carrying the human body 4-14 to be tested.
  • a carrier device 4-15 is disposed between the dual beam scanning X-ray generator and the detector, and is capable of perpendicular to the first sector shape with respect to the dual beam scanning X-ray generator 4-11 and the detector 4-13 The in-plane movement of the X-ray beam and the second sector X-ray beam.
  • the transmission inspection apparatus 4-10 further includes a driving motor 4-18 and a guide rail 4-17 disposed perpendicular to the plane of the first sector X-ray beam and the second sector X-ray beam, at the driving motor 4-18 Under the driving, the carrying device 4-15 can carry the measured human body to slide on the guide rail 4-17, so that the first sector X-ray beam and the second sector X-ray beam complete the whole body perspective scan of the tested human body 4-14 column by column. As shown in FIG.
  • the first sector X-ray beam is transmitted through the upper half of the human body, is received and detected by the first detecting portion 4-13a, and the second sector X-ray beam is transmitted through the lower half of the human body, by the second The detecting portion 4-13b receives and detects.
  • the carrying device 4-15 is designed with an armrest for the inspected person 4-14 to grasp, eliminating the safety hazard caused by the falling movement caused by the translational movement.
  • the carrier device 4-15 can carry the body movement in a manner of a conveyor belt.
  • the transmission inspection apparatus 4-10 further includes a double slit collimator 4-12 on which the first collimation slit 4-12a and the second collimation are disposed.
  • the slit 4-12b, the first collimating slit 4-12a allows the first fan-shaped X-ray beam to pass and collimate the first fan-shaped X-ray beam; the second collimating slit 4-12b allows the second fan-shaped X-ray beam to pass And collimate the second sector X-ray beam.
  • the widths of the first collimating slit 4-12a and the second collimating slit 4-12b may be rationally designed to be narrowed by the first collimating slit 4-12a and the second collimating, respectively.
  • the thickness of the first sector X-ray beam and the second sector X-ray beam of the slit 4-12b is such that the thickness of the beam passing through the first collimating slit 4-12a and the second collimating slit 4-12b is better.
  • the thickness of the test beam is used to facilitate subsequent detection imaging.
  • the transmission inspection apparatus 4-10 further includes an electronically controlled display assembly 4-16 including drive means 4-16a, a number collection means 4-16b, a control processing means 4-16c, Interface components 4-16d and display devices 4-16e.
  • an electronically controlled display assembly 4-16 including drive means 4-16a, a number collection means 4-16b, a control processing means 4-16c, Interface components 4-16d and display devices 4-16e.
  • the driving device 4-16a is for controlling the driving motor 4-18, and the bearing device 15 carrying the measured human body is perpendicular to the first with respect to the double beam scanning X-ray generator 4-11 and the detector 4-13
  • a sector X-ray beam and a second sector X-ray beam move in the plane along the guide rails 4-17. Further, the first sector X-ray beam and the second sector X-ray beam are implemented to complete scanning of the human body.
  • the data acquisition device 4-16b performs data acquisition on the signals detected by the detectors and transmits them to the control processing devices 4-16c.
  • control processing means 4-16c processes and images the acquired data, and in some embodiments, the control processing means 4-16c can also control the opening and closing of the dual beam scanning X-ray generator.
  • the formed image is transmitted to the display device 4-16e via the interface unit 4-16d for display, and is observed and judged by the manager.
  • the double slit collimator 4-12 in the transmission inspection apparatus 4-10 adopts the structure as shown in FIG.
  • Figure 19 is a view showing the A-direction viewing angle of the double-slit collimator of Figure 17, as shown in Figure 19, the first collimating slit 4-12a and the second collimating slit 4-12b are equally spaced in the C direction.
  • the predetermined distance d is such that the first collimating slit 4-12a allows the first fan-shaped X-ray beam to pass and collimate the first fan-shaped X-ray beam; the second collimating slit 4-12b allows the second fan-shaped X-ray beam to pass through Collimate the second sector X-ray beam.
  • the double slit collimator 4-12 may be made of a radiation shielding material such that the first sector X-ray beam and the second, respectively, emitted by the first collimating slit 4-12a and the second collimating slit 4-12b The fan-shaped X-ray beams do not interfere with each other.
  • the detector 4-13 in the transmission inspection apparatus 4-10 adopts a structure as shown in FIG. 20, and FIG. 20 is a schematic view of the detector in the A direction of FIG. 17, as shown in FIG. 20, the first detecting portion 4-13a
  • the second detecting portion 4-13b is also spaced apart by a predetermined distance d in the C direction, the first detecting portion 4-13a at the upper portion receives the first sector X-ray beam, and the second detecting portion 4-13b at the lower portion receives the second sector shape.
  • X-ray beam X-ray beam.
  • two conventional small-angle X-ray sources may be used instead of the dual-beam scanning X-ray generator to splicing the large opening angle for fluoroscopy.
  • the transmission inspection device of the present disclosure adopts a modular design, and is mainly divided into an X-ray source module, a detector module, a transmission module, and an electronic control display module.
  • the structure is compact, the footprint is small, and the disassembly and assembly is more favorable. Transportation and security maintenance.
  • the transmission inspection device of the present disclosure adopts an open channel, and the tested human body 4-14 only needs to stand up and securely, and can quickly complete the non-contact inspection of the body and the body surface without taking off the clothes and taking off the shoes, and is convenient and safe to use. reliable. Closed channels or other styles may also be employed, without being limited by auxiliary devices such as inorganic shells, back sheets or caps.
  • 21 is a schematic diagram of an overall configuration of a human body fluoroscopy composite inspection system and a method of using the same according to a first embodiment of the present disclosure.
  • the human body fluoroscopy composite inspection system mainly includes: a dual beam scanning X-ray generator 5-11, a double-slit collimator 5-12, a detector module 5-13, The transmitting device 5-15 and the electronically controlled display module 5-16 and the like.
  • the transfer device 5-15 is disposed between the bottom of the device, the double-slit collimator 5-12 and the detector module 5-13 for the subject 5-14 to stand.
  • the dual beam scanning X-ray generator 5-11 is capable of generating two fan-shaped X-ray beams, one of which is adapted to cover the entire body of the subject 5-14, and the other of the fan-shaped X-ray beams is adapted to cover the subject 5 Part of -14.
  • the two fan-shaped X-ray beams are projected to the subject 5-14 after being modulated by the double-slit collimator 5-12, and the X-rays attenuated by the subject 5-14 are respectively detected by the detector module 5-13. Sensed and converted into a digital signal. Then, the whole body and partial fluoroscopy of the examinee 5-14 are completed column by column by the translational movement of the transporting device 5-15, and the information is exchanged with the user through the electronically controlled display module 5-16.
  • the double-beam scanning X-ray generator 5-11 as a core component is disposed at an intermediate position of the height of the apparatus, substantially at the height of the abdomen of the subject 14.
  • the double-slit collimator 5-12 is provided with a full-body collimating slit 5-12a and a local collimating slit 5-12b for respectively modulating the above two sector X-ray beams. It is a fan-shaped X-ray beam (wide beam) with a large opening angle and a fan-shaped X-ray beam (narrow beam) with a small opening angle.
  • the above two fan-shaped X-ray beams are transmitted through the subject 5-14, and the attenuated X-rays are sensed by the whole body detector 5-13a and the local detector 5-13b, respectively, and converted into digital signals.
  • the inspected persons 5-14 stand on the manned slides 5-15a of the conveyor 5-15, and perform translational movement along the slide rails 5-15c by means of the ball screws and the motor drive 5-15b, so as to be completed column by column.
  • the whole body collimating slit 5-12a and the local collimating slit 5-12b further constrain the two sector X-ray beams collimated by the first collimator 5-101 and the second collimator 5-201 to satisfy the width.
  • a radiation protection material is disposed between the two collimating slits 5-12a, 5-12b and around to prevent the formed fan-shaped X-ray beams from interfering with each other.
  • the configuration of the whole body detector 5-13a is generally C-shaped, and the upper end of the whole body detector 5-13a receives the information of the head of the examinee 5-14, The lower end of the whole body detector 5-13a receives the foot information of the subject 5-14. In this way, the height of the device can be effectively reduced, and the foot inspection of the inspected person 5-14 can be taken into consideration.
  • the configuration of the local detectors 5-13b is generally I-shaped.
  • the whole body detector 5-13a and the local detector 5-13b are preferably line array detectors, which are maintained at respective distances according to the geometrical characteristics of the aforementioned two X-ray fan-shaped narrow beams and arranged side by side.
  • the imaging resolution of the local detectors 5-13b is higher than that of the whole body detectors 5-13a, and the width of the local collimating slits 5-12b is smaller than the width of the whole body collimating slits 5-12a (see (a in Fig. 22) Part)) to reduce the artifact area.
  • the partial perspective X-ray beam can have a higher energy density in order to increase the spatial resolution of the system imaging.
  • the dual beam scanning X-ray generator 5-11 is disposed at a substantially intermediate position of the height of the apparatus such that the first target point 5-102 is sandwiched between the head and the foot of the subject 5-14 in the horizontal direction.
  • the angles are approximately equal.
  • the thickness of the X-ray passing through the human body and the effective area projected onto the whole body detector 5-13a are not much different, which is advantageous for improving the image resolution and reducing the image of the head and the foot of the subject 5-14. Distortion.
  • the sector X-ray beam emitted by the second target point 5-202 is used as a sector X-ray beam for local detection. Therefore, the fan-shaped X-ray beam emitted from the second target point 5-202 has a smaller opening angle and better imaging effect than the fan-shaped X-ray beam emitted by the first target point 5-102.
  • a dual beam scanning X-ray generator 5-11 can be used instead of two conventional X-ray sources.
  • the size and weight of the device are greatly reduced, the use is more convenient, and the design and application of the detection system becomes simpler.
  • the human body see-through composite inspection system since the human body see-through composite inspection system according to the present embodiment has utilized the first collimator 5-101 and the second collimator 5-201 inside the double-beam scanning X-ray generator 5-11 Primary alignment and radiation protection are carried out to minimize X-ray leakage, thus simplifying the system's radiation protection design and better ensuring the safety of operators, inspectors and the public.
  • the X-ray source for transmitting the whole body of the subject uses a relatively low voltage (the absolute value of the voltage is still high enough to excite X-rays), thereby reducing the absorbed dose of the human body;
  • the local X-ray source that transmits the subject uses a relatively high voltage and is equipped with a narrower collimating slit (for example, a collimating slit 5-12b), thereby improving the imaging effect.
  • This can be achieved by the simultaneous output of different high voltage parameters by the same high voltage circuit, or by using two different high voltage circuits, but the two high voltage circuits are still integrated in the same module.
  • the whole body fluoroscopy and the partial fluoroscopy may be performed simultaneously or independently as needed.
  • the high voltage parameters of the high voltage circuit described above are adjustable to allow for flexible adjustments depending on the requirements of the field.
  • the electronic control display module 5-16 includes: an electrical module 5-16a, a data acquisition module 5-16b, a server 5-16c, an external interface 5-16d, and a client terminal 5-16e.
  • the server 5-16c is configured to perform data analysis and processing on the detection signal and image, and transmit it to the client terminal 5-16e in real time through a wired interface or a wireless transmission (e.g., WiFi).
  • a wireless transmission e.g., WiFi
  • two monitors can be used to respectively display the whole body image and the partial image of the examinee, and both the whole body image and the partial image of the examinee can be simultaneously displayed on the same display. In this way, the shape of the contraband and the location of the concealment can be visually and accurately viewed.
  • the manned skateboard 5-15a is provided with an armrest for the subject to be gripped 5-14, thereby eliminating the safety hazard such as a fall caused by the translational movement.
  • the ball screw and motor drive 5-15b can reciprocate.
  • the manned skateboard 5-15a can return to the starting position in time to prepare for the next inspection operation.
  • belt transport or other transmission methods can also be used.
  • the dual beam scanning X-ray generator 5-11 can be realized/obtained by applying a front end collimator to each of the two conventional X-ray tubes.
  • the human body perspective composite inspection system of the present disclosure adopts a modular design and is mainly divided into an X-ray source module, a detector module, a transmission module, and an electronically controlled display module.
  • the structure is compact, the footprint is small, and it is more conducive to disassembly and transportation and maintenance.
  • the human body perspective composite inspection system of the present disclosure adopts an open channel, and the inspected person 5-14 only needs to stand up and secure the handrail, and can quickly complete the non-contact inspection of the body and the body surface without taking off the clothes and taking off the shoes. . Easy to use, safe and reliable. It should be understood that the human body see-through composite inspection system of the present disclosure may also employ a closed channel or other style that is not limited by an auxiliary device such as an inorganic casing, a backing plate or a top cover.
  • the aforementioned human body fluoroscopy composite inspection system uses a single energy X-ray for the whole body and partial scan of the subject 5-14, although it has a good highlight effect on the metal banned products with higher atomic number, but for the human body
  • the organic matter such as drugs and explosives with a small atomic number of the group organization is only recognized from the grayscale and contour of the image, and the effect is not obvious enough. If the whole body or part can be scanned by dual-energy X-rays, the distinction between organic matter, inorganic matter and mixture is clearer. The color of the image is richer and the layering is stronger. It is easier to identify the suspect and greatly reduce the leakage. Check rate.
  • another embodiment of the present disclosure provides a full body dual energy perspective composite inspection system.
  • the whole body dual energy perspective composite inspection system according to an embodiment of the present disclosure is generally the same as the configuration of the human body perspective composite inspection system according to the above-described embodiment of the present disclosure, except that the double seam alignment shown in FIG. 22 is The straightener 5-12 and the detector module 5-13 are replaced with the whole body dual energy collimator 5-12' and the whole body dual energy detector module 5-13' shown in Fig. 23, respectively.
  • the whole body dual energy collimator 5-12' includes a high energy collimating slit 12a' and a low energy collimating slit 5-12b', both of which are sized (e.g., length and width) and the whole body shown in Fig. 23.
  • the dimensions of the collimating slits 5-12a are the same, that is, they can satisfy the requirements of covering the whole body of the examinee 5-14.
  • the whole body dual energy detector module 5-13' includes a high energy detector 5-13a' and a low energy detector 5-13b'.
  • the dimensions and parameters of the high energy detector 5-13a' and the low energy detector 5-13b' are the same as those of the whole body detector 5-13a.
  • the dual-beam scanning X-ray generator 5-11 can apply different high-voltage parameters by using the same high-voltage circuit, or by using two high-voltage circuits with different parameters, it is possible to emit two sectors parallel, the same angle and cover inspection.
  • Two fan-shaped X-ray beams of the whole body of humans 5-14 one of which is a high-energy fan-shaped X-ray beam and the other of which is a low-energy fan-shaped X-ray beam. In this way, a full-body dual-energy perspective scan can be achieved.
  • Another embodiment of the present disclosure provides a local dual energy perspective composite inspection system.
  • the local dual-energy see-through composite inspection system is generally the same as the configuration of the human perspective composite inspection system according to the above-described embodiment of the present disclosure, except that the double slit shown in FIG. 22 is The collimator 5-12 and the detector module 5-13 are replaced with the local dual energy collimator 5-12" and the local dual energy detector module 5-13" shown in Fig. 24, respectively.
  • the local dual energy collimator 5-12 includes a high energy collimating slit 5-12a" and a low energy collimating slit 5-12b", both of which are sized (e.g., length and width) as shown in FIG.
  • the local collimating slits 5-12b are of the same size, that is, only for satisfying the abdomen covering the subject 5-14.
  • the local dual-energy detector module 5-13" includes the high-energy detector 5-13a" and Low energy detector 5-13b". The dimensions and parameters of the high energy detector 5-13a" and the low energy detector 5-13b" are the same as those of the local detector 5-13b.
  • the dual-beam scanning X-ray generator 5-11 can apply different high-voltage parameters by using the same high-voltage circuit, or by using two high-voltage circuits with different parameters, it is possible to emit two sectors parallel, the same angle and cover inspection.
  • Two fan-shaped X-ray beams of the abdomen of human 5-14 one of the fan-shaped X-ray beams is a high-energy fan-shaped X-ray beam, and the other fan-shaped X-ray beam is a low-energy fan-shaped X-ray beam. In this way, local dual energy perspective scanning can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Abstract

本公开的实施例公开了双束扫描X射线发生器、透射检查设备、人体透视复合检查系统以及检查方法。双束扫描X射线发生器包括:外壳;阳极,设置在外壳内;其中,所述双束扫描X射线发生器包括第一辐射源和第二辐射源,第一辐射源包括第一靶和第一阴极,第一靶设置在所述阳极的第一端端面;第二辐射源包括第二靶和第二阴极,第二靶设置在所述阳极第二端端面,其中,第一辐射源和第二辐射源能够独立操作。

Description

双束扫描X射线发生器、透射检查设备、人体透视复合检查系统以及检查方法 技术领域
本公开的实施例涉及射线发生技术领域,特别涉及双束扫描X射线发生器、透射检查设备、人体透视复合检查系统以及检查方法。
背景技术
背散射成像技术因其辐射量剂量低、安全性好和对轻质材料敏感等优点,已被广泛应用于人体、货物和车辆的安全检查领域。背散射成像技术采用点束扫描方式,因此需要将常规X射线发生器所产生的扇形束或者锥形束调制成笔形束。
在背散射技术应用领域,为了提高检查效率和成像效果,需要采取增加检查通道或扫描视角的方式;特别地,有些场合还需要双能和大张角的X射线笔形束。一般采用多套笔状束扫描装置满足上述要求,从而X射线源、笔状束扫描及其驱动机构等也要对应地增加数量。
然而,常规的笔状束扫描装置包括X射线管组件、高压电源、笔状束扫描及其驱动机构等,部件较大且比较分散,一般施加单一高压源,实现单能量的笔形X射线笔形束。这使得其在小型或便携产品方面的应用受到了限制。
发明内容
根据本公开的一方面,本公开的实施例提供一种双束扫描X射线发生器,包括:外壳;阳极,设置在外壳内,所述阳极包括两个相对的第一端和第二端,其中,第一端端面与阳极的长度延伸方向不垂直,第二端端面与阳极的长度延伸方向不垂直;其中,所述双束扫描X射线发生器包括第一辐射源和第二辐射源,第一辐射源包括第一靶和第一阴极,第一靶设置在所述阳极的第一端端面,所述第一阴极配置成朝向所述第一靶并且能够发射电子到所述第一靶以发射X射线;第二辐射源包括第二靶和第二阴极,第二靶设置在所述阳极第二端端面,所述第二阴极配置成朝向并且能 够发射电子到所述第二靶以发射X射线其中,第一辐射源和第二辐射源能够独立操作。
一方面,提供一种透射检查设备,包括两个检查通道以及设置在所述两个检查通道之间的如上述的双束扫描X射线发生器,其中,所述双束扫描X射线发生器被构造成产生相互独立的两个扇形X射线束,将一个扇形X射线束向一个检查通道内发射,并且将另一个扇形X射线束向另一个检查通道内发射,以便分别对所述两个检查通道内的被检目标进行透射扫描;并且所述两个扇形X射线束的张角中心线形成一夹角,使得所述两个检查通道内的透射扫描互不干扰。
一方面,提供一种利用上述透射检查设备对被检目标进行检查的方法,所述方法包括:将两台或更多台透射检查设备级联起来或者组合起来使用,由此形成多个检查通道。
一方面,提供一种透射检查设备,包括:上述双束扫描X射线发生器,用于向其同侧发射平行或共面的张角为α的第一扇形X射线束和张角为β的第二扇形X射线束,所述第一扇形X射线束和第二扇形X射线束用于透射扫描被测目标,在与两者平行的平面内的投影拼合为张角为α+β的扇形;以及探测器,设置在双束扫描X射线发生器的所述第一扇形X射线束和第二扇形X射线束的出射侧,接收所述第一扇形X射线束和第二扇形X射线束。
一方面,提供一种人体透视复合检查系统,包括:上述双束扫描X射线发生器,所述双束扫描X射线发生器构造成产生两个彼此独立的扇形X射线束;以及双缝准直器,所述双缝准直器包括两个准直缝,分别用于对所述两个扇形X射线束进行准直,其中,经过准直的两个扇形X射线束分时或同时对被检人进行透视扫描。
附图说明
图1示出本公开的一个实施例的双束扫描X射线发生器的截面示意图;
图2示出本公开的一个实施例的密封接头的结构;
图3示出本公开的实施例的双束扫描X射线发生器的阳极第一端的部分截面图;
图4示出本公开的实施例的双束扫描X射线发生器的阳极的两端处第一靶和第二靶射出的扇形X射线束;
图5示出本公开的实施例的双束扫描X射线发生器的阳极的两端处第一靶和第二靶射出的扇形X射线束;
图6示出本公开的实施例的双束扫描X射线发生器的阳极的两端处扇形X射线束扫描范围示意图。
图7示出本公开的实施例的双束扫描X射线发生器的截面示意图;
图8示出本公开的一个实施例的密封接头的结构;
图9示出本公开的实施例的双束X射线发生器的阳极第一端的第一准直器的截面示意图;
图10示出本公开的实施例的双束X射线发生器的两端处第一靶和第二靶射出的扇形X射线束;
图11示出本公开的实施例的双束X射线发生器的两端处扇形X射线束张角示意图。
图12示出本公开的实施例的透射检查设备的结构视图;
图13示出本公开的实施例的透射检查设备的结构视图;
图14示出本公开的实施例的透射检查设备的结构视图;
图15示出本公开的实施例的透射检查设备的结构视图;
图16为本公开的相关技术中的透视扫描设备的结构示意图;
图17示出本公开的实施例的透射检查设备的结构视图;
图18示出本公开的实施例的双束X射线发生器产生的扇形X射线束的示意图;
图19为图17中双狭缝准直器的A方向视角的示意图;
图20为图17中探测器的A方向视角的示意图。
图21是根据公开的实施例的人体透视复合检查系统的总体构造及其使用方法的示意图;
图22中的(a)部分是沿着图21中的箭头A所示的方向观察到的根 据本公开的第一实施例的准直器的示意图,图22中的(b)部分是沿着图21中的箭头B所示的方向观察到的根据本公开的实施例的探测器模块的示意图。
图23中的(a)部分是沿着图21中的箭头A所示的方向观察到的根据本公开的第二实施例的准直器的示意图,图23中的(b)部分是沿着图21中的箭头B所示的方向观察到的根据本公开的实施例的探测器模块的示意图。
图24中的(a)部分是沿着图21中的箭头A所示的方向观察到的根据本公开的第三实施例的准直器的示意图,图24中的(b)部分是沿着图21中的箭头B所示的方向观察到的根据本公开的实施例的探测器模块的示意图。
具体实施方式
尽管本公开的容许各种修改和可替换的形式,但是它的具体的实施例通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本公开的限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本公开的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
在本说明书中使用了“上”、“下”等术语,并不是为了限定元件的绝对方位,而是为了描述元件在视图中的相对位置,帮助理解。本说明书中“顶侧”和“底侧”是相对于一般情况下,物体正立的上侧和下侧的方位。
下面参照附图描述根据本公开的多个实施例。
参看图1,图1示出本公开的一个实施例的双束扫描X射线发生器,包括:外壳;阳极,设置在外壳内,所述阳极包括两个相对的第一端和第二端;第一靶和第二靶,第一靶设置在所述阳极的第一端端面,第二靶设置在所述阳极第二端端面;第一阴极和第二阴极,所述第一阴极配置成朝向所述第一靶并且能够发射电子到所述第一靶以发射X射线,所述第二阴极配置成朝向第二靶并且能够发射电子到所述第二靶以发射X射线。
在一个实施例中,例如通过施加于第一阴极和第一阳极的第一端之间的第一高压电源与施加于第二阴极和阳极的第二端之间的第二高压电源的同步输出,或者,采用同一个高压电源,第一靶和第二靶配置成同步地发射X射线。在一个实施例中,第一高压电源与第二高压电源输出不同步,第一靶和第二靶可以配置成不同步地发射X射线。
在一个实施例中,双束扫描X射线发生器配置成使得施加在第一阴极和阳极第一端之间的电压等于施加在第二阴极和阳极第二端之间的电压,从而产生的X射线能量相同,也可以配置成使得施加在第一阴极和阳极第一端之间的电压不等于施加在第二阴极和阳极第二端之间的电压,从而产生的X射线能量不相同。
参见图1,双束扫描X射线发生器包括外壳6,双束扫描X射线发生器的其他元件设置在外壳6的内部。
双束扫描X射线发生器还包括阳极22、42,图中阳极是一体的,或者说,是一个单件,例如阳极是阳极棒。为了图示清楚,图1将阳极分成两部分进行标识,即左边的阳极第一端22,右边的阳极第二端42。在其他实施例中,阳极也可以左边的阳极第一部分22和右边的阳极第二部分42,阳极由阳极第一部分22和阳极第二部分42组成。综上,阳极可以是一根整体的阳极棒,也可以是两个阳极棒拼接构成。
阳极的第一端22具有第一端端面,第一靶23设置在第一端端面上。阳极第二端42具有第二端端面,第二靶43设置在第二端端面上。第一端端面与阳极的长度延伸方向不垂直,第二端端面与阳极的长度延伸方向不垂直。将第一靶23设置在阳极的第一端端面上,第二靶43设置在阳极第二端端面上是有利的,阳极有利于导热,可以帮助第一靶23、第二靶43散热。
图1中,第一靶23的表面与第一端端面在同一平面上,第二靶43的表面和第二端端面在同一平面上。需要说明的是,在本公开以及权利要求中,描述第一端端面的取向时,意味着第一靶23的表面的取向,描述第二端端面的取向时,意味着第二靶43的表面的取向。
双束扫描X射线发生器还包括第一阴极10和第二阴极30。在如图2 所示的实施例中,第一阴极10包括第一灯丝11、第一聚焦罩12和第一灯丝引线13;第二阴极30包括第二灯丝31、第二聚焦罩32和第二灯丝引线33。第一灯丝引线13和第二灯丝引线33用于外接灯丝电源及高压电源的负极。第一聚焦罩12和第二聚焦罩32用于聚焦电子,兼起支撑作用。阴极的构造是本领域中常见的构造,可以是其他构造,此处不赘述。
参照图1,外壳6的一端与第一聚焦罩12焊接,另一端与第二聚焦罩32焊接,优选硬质玻璃、波纹陶瓷或金属陶瓷等材质。为了降低X射线笔形束的损耗,提高其输出效率和剂量性能,外壳6透过X射线的部分可以嵌装铍窗。在一个实施例中,第一灯丝11、第二灯丝31、第一靶23和第二靶43的中心位于同一条水平直线上(即同轴)。
本实施例说明了一种双束扫描X射线发生器,X射线发生器封装有两个阴极和一个阳极(两个阳极部分)的结构,连接高压电源后,通过两个靶产生两个朝向和能量相同或者不同的X射线笔形束,也可以产生大张角的X射线笔形束;适用于双能、双通道或者大张角的X射线背散射成像类检查设备,特别地,适用于小型或便携类设备。
在本公开的一个实施例中,双束扫描X射线发生器还包括第一防护转筒211和第二防护转筒411,其中第一防护转筒211包围所述阳极的至少第一端22,并且允许第一阴极10发射的电子到达第一靶23,屏蔽散射的电子和第一靶23产生的X射线;第二防护转筒411包围所述阳极的至少第二端42,并且允许第二阴极30发射的电子到达第二靶43,屏蔽散射的电子和第二靶43产生的X射线。
在如图1所示的实施例中,第一防护转筒211上面对第一阴极10处设置有电子入口,以便电子轰击到第一靶23上。同样,第二防护转筒411上面对第二阴极30处设置有电子入口,以便电子轰击到第二靶43上。
第一阴极10的电子轰击到第一靶23上时,第一靶23将生成X射线,在第一靶23前设置第一准直器可以将第一靶23发出的X射线限制在一定范围内。图1将第一端端面朝向下方,意味着X射线将向下出射。为了清楚,图1没有示出设置在第一靶23前的用以限制X射线出射范围的第一准直器。然而,应该知道,第一靶23出射的X射线经过第一准直器后可 以是扇形X射线。对于第二阴极30和第二靶43来说,情况类似,在第二靶43前设置第二准直器可以将第二靶43发出的X射线限制在一定范围内,第二端端面朝向下方,意味着X射线将向下出射。图1没有示出设置在第二靶43前的用以限制X射线出射范围的第二准直器。准直器的张角决定了从准直器出射的扇形X射线的面束的张角。
本公开的一个实施例中,第一防护转筒211设置有至少一个第一孔212用以调制第一靶23产生的X射线,形成至少一个第一笔状X射线束,第二防护转筒411设置至少一个第二孔412用以调制第二靶43产生的X射线,形成至少一个第二笔状X射线束。第一靶23射出的扇形X射线被第一防护转筒211屏蔽遮挡,扇形X射线只能够通过第一孔212射出,因而形成了笔状X射线束。同理,第二靶43产生的扇形X射线被第二防护转筒411屏蔽遮挡,扇形X射线只能够通过第二孔412射出,因而形成了第二笔状X射线束。多个第一孔212将形成多个第一笔状X射线束,多个第二孔412将形成多个第二笔状X射线束。
在一个实施例中,第一防护转筒211配置成能够围绕所述阳极第一端22旋转,从而通过第一孔212形成的第一笔状X射线束在一定角度范围内扫描;第二防护转筒411配置成能够围绕所述阳极第二端42旋转,从而通过第二孔412形成的第二笔状X射线束在一定角度范围内扫描。
在图1中,第一端端面与所述第一防护转筒211的旋转轴线不垂直,或换句话说,第一端端面与前文提到的阳极的长度延伸方向不垂直,第二端端面与所述第二防护转筒411的旋转轴线或阳极的长度延伸方向不垂直。如上文所述,这是表示,第一靶23和第二靶43的朝向,也就是发射X射线的朝向不是沿旋转轴线方向,而是如图1朝下,或者可以朝上。
在一个实施例中,所述阳极包括阳极柄5,阳极柄5与所述外壳6密封连接,从而通过阳极柄5将阳极22、42固定在所述外壳6内部。所述阳极柄5内设置走线管道51用以布置走线。阳极柄5大体位于阳极的中央位置处,应该知道,并不要求阳极柄5严格位于阳极的中间。阳极柄5的位置不会影响阳极的固定以及阳极柄5内部的走线管道51。
在一个实施例中,双束扫描X射线发生器还包括设置在所述阳极上靠 近阳极第一端22的第一电枢铁芯215和围绕在第一电枢铁芯215上的第一电枢绕组214,以及对应电枢铁芯设置在第一防护转筒211内壁上的多个第一永磁体213,以便在第一电枢绕组214形成变化的磁场时第一电枢绕组214与多个第一永磁体213相互作用而驱动第一防护转筒211转动。双束扫描X射线发生器还包括设置在所述阳极的靠近第二端42的第二电枢铁芯415和围绕在第二电枢铁芯415上的第二电枢绕组414,以及对应第二电枢铁芯415设置在第二防护转筒411内壁上的多个第二永磁体412,以便在第二电枢绕组414形成变化的磁场时第二电枢绕组414与多个第二永磁体412相互作用而驱动第二防护转筒411转动。所述阳极柄5内设置走线管道51用以布置分别将第一电枢绕组和第二电枢绕组连接至外电源的导线。
在一个实施例中,双束扫描X射线发生器还包括第一驱动器217,所述第一驱动器217连接外电源,并且提供变化的电流至第一电枢绕组214;和,第二驱动器47,所述二驱动器47连接外电源,并且提供变化的电流至第二电枢绕组414。第一驱动器布置在所述阳极的第一端22附近,第二驱动器布置在所述阳极第二端42附近。
图2示出了密封接头52的结构,用于密封阳极柄5中的走线管道51的出口。密封接头52由玻璃芯柱521和烧结密封于其中的导电引针522组成。玻璃芯柱521通过烧结等工艺与阳极柄5融为一个封闭的整体;导电引针522一端连接第一点束模块21和第二点束模块41的内部导线,另一端连接到X射线管外部。这种引线方式保证了X射线管内部为真空状态。此外,也可为其它密封与固定样式,如法兰盘挤压O形圈密封等。
如图3所示,图3示出双点束X射线发生器的X射线管的左侧,应该知道,双点束X射线发生器的X射线管内部结构为左右对称方式,右侧结构与左侧类似。此处以左侧为例(图3所标示)加以说明。第一电枢铁芯215上绕制若干个电枢绕组214,阳极第一端22可以视为安装轴,第一电枢铁芯215安装在阳极的第一端22附近,第一防护转筒211通过轴承220安装在阳极的第一端22附近,以便第一防护转筒211可以围绕阳极的第一端22旋转。第一防护转筒211的内壁紧固若干个永磁体213并 且呈均匀分布状态,第一防护转筒211的一端套装于轴承220的外壁。第一防护转筒-套221装于阳极的第一端22,嵌装于轴承220的内壁。轴承220的内环通过第一防护转筒套221的上肩和内顶环222限位,外环通过第一防护转筒211的凸沿和外顶环223限位。驱动器217置于电枢铁芯215的一侧,通过套环216固定在阳极的第一端22上。以上描述了具体的连接第一防护转筒211与阳极的连接关系和相关的具体部件,应该知道,可以通过其他形式将第一防护转筒211可旋转地安装在阳极上。
在一个实施例中,阳极的第一端22的远离第一靶23的部分开有走线管道51,驱动器217的一端通过线缆218与励磁绕组214连接,另一端的线缆219通过走线管道51与密封接头52的内侧连接。通电后,第一电枢绕组214不断地换相通电并形成旋转磁场,与多个第一永磁体213所产生的磁场相互作用,推动第一防护转筒211以阳极的第一端22的中心线为轴线做圆周运动。如此通过第一孔212的旋转运动将扇形X射线束调制成扫描状态的X射线笔形束。
在一个实施例中,第一防护转筒211和外顶环223优选钨或钨合金材料,可以有效地实现X射线辐射防护。在一个实施例中,第一防护转筒211包括外顶环223。在一个实施例中,阳极的第一端22、第一防护转筒套221和内顶环222优选紫铜或者铜合金材料,有利于散热,同时兼具一定的X射线辐射防护能力。在一个实施例中,第一防护转筒211、第一防护转筒套221、外顶环223和阳极的第一端22组成一个近乎封闭的性能良好的X射线屏蔽室。
在一个实施例中,第一防护转筒211上的第一孔212数量至少为一个,也可以为多个。多个第一孔的分布方式可以按照需求任意配置。
在一个实施例中,驱动器217可以布置于外壳6的内部,也可以布置在外壳6的外部,其驱动模式可以为定速模式,也可以为速度可调模式。在一个实施例中,双束扫描X射线发生器的紧固环节可以采取螺丝紧固、铆接、粘接或者焊接等多种形式。
阳极的第一端部分的以上旋转部件以及其他部件的安装位置不应受到局限,在一个实施例中,比如上述旋转部件也可以置于比图3示出的更 靠近阳极第一端端面的位置,或者其他位置。
在一个实施例中,本公开的原理和结构以反射型X射线发生器为例进行了说明,但不应局限于此。比如也可以采用透射型X射线发生器,优选在靶出射方向设计点束转盘及其驱动机构。也可以采用其他类型X射线发生器,并选用合适的扫描结构。
下面对于双束扫描X射线发生器内部所产生扇形X射线束的特性予以说明。
在一个实施例中,第一端端面配置成使得X射线朝向所述第一防护转筒211的旋转轴线的第一侧,第二端端面配置成使得X射线朝向所述第二防护转筒411的旋转轴线的相同的第一侧。在一个实施例中,阳极的第一端22的第一靶23的靶面和阳极第二端42的第二靶43的靶面均朝向下方,如图4所示,第一靶23和第二靶43射出的扇形X射线束朝向下。
在一个实施例中,还可以参照图4,在第一阴极10和阳极第一端22,以及第二阴极30和阳极第二端42,分别施加相同或者不同的电压后,则可以得到沿垂直于旋转轴线的方向平行、出射方向一致的两个扇形X射线束。在本实施例中,两个扇形X射线束的出射方向平行,均朝向下方,两个扇形X射线束张角可以相同或者不同。
此外,如图4所示的双束扫描X射线发生器两端的笔形X射线束可以相互独立地使用,两端发射的笔形X射线束扫描的张角可以相同,也可以不相同。应该理解,双束扫描X射线发生器两端的第一靶23和第二靶43发射X射线是可以单独控制的。例如,仅第一靶23被电子轰击而发射X射线;或者,仅第二靶43被电子轰击发射X射线;第一靶23和第二靶43发射X射线的能量也可以不相同。进一步,双束扫描X射线发生器两端的第一防护转筒211和第二防护转筒411可以单独控制。例如第一防护转筒211的旋转和第二防护转筒411的旋转不同步,由此,第一防护转筒211上的第一孔射出的笔形X射线束和第二防护转筒411上的第二孔射出的笔形X射线束扫描不同步。双束扫描X射线发生器的两端射出的笔形X射线束由此被单独控制。
在一个实施例中,例如参照图5,第一端端面平行于第二端端面(然 而,应该知道第一端端面可以不平行于第二端端面),并且第一端端面配置成使得X射线朝向所述第一防护转筒211的旋转轴线的第一侧,第二端端面配置成使得X射线朝向所述第二防护转筒411的旋转轴线的第二侧,第一侧不同于第二侧。如图5所示,阳极的第一端22和阳极第二端42的靶面朝向相反,与图4示出的情况不同,阳极的第一端22的靶面朝上,阳极第二端42的靶面朝下。对应地,第一靶23产生的扇形X射线束向上,第二靶43产生的扇形X射线束向下。在图5所示的实施例中,两个扇形X射线束的朝向相反,出射方向沿竖直方向平行且反向,两个扇形X射线束的张角大小可以相同或者不同。
在另一实施例中,阳极的第一端22和阳极第二端42的靶面朝向错位一定的角度,且第一靶23和第二靶43在第一防护转筒211、第二防护转筒411的旋转轴线的方向上有一定的物理间隔,但二者的中心仍然位于该旋转轴线上,且扇形X射线束沿与该旋转轴线垂直的方向射出,如图6a示意示出的大张角X射线束。在图6a中,阳极第一端22和阳极第二端42沿纸面大体朝向右侧,然而,第一靶23前的准直器和第二靶43前的准直器调整为使得第一靶23发射成的扇形X射线束和第二靶43发出的扇形X射线束围绕旋转轴线方向错位一定的角度。
图6b示出沿旋转轴线方向看时,第一靶23和第二靶43发出的扇形X射线束部分重叠或错位的情形。假设第一靶23产生的扇形X射线束的张角为α 1,第二靶43产生的扇形X射线束张角为α 2,两个X射线束重叠部分的角度为α 3,如图6b所示。则该具体实施例中的有效X射线束张角α不小于α 1或α 2,其对应关系为
α=α 123
X射线发生器两端发射的扇形X射线束不重合或错位可以扩大扇形X射线束的有效张角,并且重合部分增强了X射线输出剂量,在增大扫描范围的同时也保证了被检目标的图像质量。
在一个实施例中,两个靶所产生X射线束的张角相邻边界恰好重合,则X射线束有效张角为前述二者的张角之和。
在一个实施例中,第一靶23产生的扇形X射线束和第二靶43产生的 扇形X射线束完全不重叠并且(在如图所示的竖直平面内)交错一角度,即两个扇形X射线束不呈对称关系。
在一个实施例中,第一靶23产生的扇形X射线束和第二靶43产生的扇形X射线束(在如图所示的竖直平面内)可以交错180°,即两个扇形X射线束呈对称关系。
在一个实施例中,为了实现大张角扫描,第一靶23产生的扇形X射线束的张角为α 1可以在小于180°的任意角度,例如大于60°,或大于69°,或者大于70°。
在一个实施例中,为了实现大张角扫描,第二靶43产生的扇形X射线束的张角为α 1可以在小于180°的任意角度,例如大于60°,或大于69°,或者大于70°。
在一个实施例中,第一靶23、第二靶43、第一灯丝13和第二灯丝33可以非四点一线(即不同轴)的任意空间布置,如此可以产生两个具有各种角度特性的X射线束。上述扇形X射线束通过第一防护转筒211或第二防护转筒411的调制后,可以形成特性对应的X射线笔形束。
在一个实施例中,本公开的双束扫描X射线发生器,其阳极两端的靶的朝向可以沿垂直于旋转轴线的方向预先固定为某个交错角度,也可以设计为阳极的两端的第一防护转筒211和第二防护转筒411可以各自围绕旋转轴线自由地旋转,从而实现两个X射线束在垂直于旋转轴线方向的平面内的扫描的夹角可以按需实时调节。
本公开上述实施例的双束扫描X射线发生器的部件封装于一个整体的外壳6内。在另一实施例中,本公开的双点扫描X射线发生器的外壳可以包括两个部分,即外壳配置成在阳极柄5的中间部分分隔开为两个外壳部分,这两个外壳部分与阳极柄5的两端密封连接。
在一个实施例中,本公开的双束扫描X射线发生器还可以包括高压电源,高压电源通过高压电缆与双束扫描X射线发生器的阳极和阴极相连。
在一个实施例中,本公开的双点束扫描束X射线发生器可以通过同一个高压电源产生两个相同能量的X射线笔形束。在另一个实施例中,可以控制一个高压电源的输出参数并使得该高压电源能时序地产生两个不同 能量的X射线笔形束。在另一个实施例中,可以施加两个参数相同或者不同的高压电源分别产生两个相同或不同能量的X射线笔形束;可以产生一个大张角X射线笔形束。
在第一靶23和第二靶43形成扇形X射线束后,与第一靶23对应的第一防护转筒211上的第一孔212配置成将第一靶23发射的扇形X射线调制为第一笔状X射线束,相应地,与第二靶43对应的第二防护转筒411上的第二孔412配置成将第二靶43发射的扇形X射线调制成第二笔状X射线束。进一步,通过第一防护转筒211和第二防护转筒411的旋转,第一孔使得第一笔状X射线束在与所述第一防护转筒211的旋转轴线垂直的平面扫描,第二孔使得第二笔状X射线束在与所述第一防护转筒211的旋转轴线垂直的平面扫描。
在本公开的实施例中,第一笔状X射线束在与所述第一防护转筒211的旋转轴线垂直的平面扫描的角度范围与第二笔状X射线束在与所述第一防护转筒211的旋转轴线垂直的平面扫描的角度范围完全重叠、或部分重叠或不重叠。
在本公开的实施例中,第一靶点23、第二靶点43、第一灯丝13和第二灯丝33可以为非四点一线(即不同轴)的任意空间布置,如此可以产生两个具有各种角度特性的X射线束。换句话说,第一笔状X射线束扫描所在的平面和第二笔状X射线束扫描所在的平面可以不平行。
在本公开的其他实施例,第一防护转筒211包括多个第一孔。多个第一孔是有利的,这样第一防护转筒211每旋转一周有多个笔状X射线束射出并各自扫描一次被检物体,可以提高检测效率。多个第一孔的每一个第一孔扫描的情形与以上以一个第一孔扫描的情形类似,此处不再重复描述。
参看图7,图7示出本公开的一个实施例的一种双束扫描X射线发生器,包括:外壳;阳极,其中第一端和第二端是所述阳极的相对的两端;第一扇形束辐射源,设置在所述阳极第一端,配置用以发射第一扇形X射线束,其中第一扇形束辐射源包括第一阴极,所述第一阴极配置成在第一扇形束辐射源内发射电子;第二扇形束辐射源,设置在所述阳极第二端, 配置用以发射第二扇形X射线束,其中第二扇形束辐射源包括第二阴极,所述第二阴极配置成在第二扇形束辐射源内发射电子。在本实施例中,双束扫描X射线发生器可以发射两束X射线,实现单个X射线管实施两个物体的同时辐照,相对于现有技术需要使用两套X射线发生装置可以节省空间,对于一些场地有限的场合尤为有利。
进一步,第一扇形束辐射源2-1和第二扇形束辐射源2-2可以独立操作。例如,第一扇形束辐射源2-1和第二扇形束辐射源2-2可以同时操作,也可以按照一定时序操作,还可以分别发射相同能量的X射线束,也可以发射不同能量的X射线束,这些配置方式将使得双束扫描X射线发生器的使用更加灵活,适应不同的需求,真正通过一个双束扫描X射线发生器实现两个常规的X射线发生装置的功能。
在本实施例中,在第一阴极2-10和阳极第一端之间施加第一高压电源,在第二阴极2-30和阳极第二端之间施加第二高压电源,第一高压电源和第二高压电源可以分别控制。在一个实施例中,第一阴极2-10和第二阴极2-30设置在所述双束扫描X射线发生器的所述外壳2-6内。
在本实施例中,第一阴极2-10和第二阴极30设置在所述外壳2-6内,第一阴极2-10看作第一扇形束辐射源2-1的一部分,第二阴极2-30看作第二扇形束辐射源2-2的一部分。第一阴极2-10包括第一灯丝2-11、第一聚焦罩2-12和第一灯丝引线2-13;第二阴极2-30包括第二灯丝2-31、第二聚焦罩2-32和第二灯丝引线2-33。第一灯丝引线2-13和第二灯丝引线2-33用于外接灯丝电源及高压电源的负极。在一个实施例中,第一灯丝2-11连接一个高压电源的负极和灯丝电源,用于发射电子,第二灯丝2-31连接同一个高压电源的负极和灯丝电源,用于发射电子。在另一实施例中,第一灯丝2-11连接一个高压电源的负极和灯丝电源,用于发射电子,第二灯丝2-31连接另外一个高压电源的负极和灯丝电源,用于发射电子,从而第一灯丝2-11和第二灯丝2-31的电压可以单独控制,进而实现前述的第一、第二扇形束辐射源2-2的独立工作。第一聚焦罩2-12和第二聚焦罩2-32可以聚焦电子,兼用作支撑阴极。第一聚焦罩2-12设置电子出射的开口,其他部分是密封的,电子不会散射到环境中,第二聚焦罩2-32类似。 在一个实施例中,第一灯丝2-11、第二灯丝2-31、第一靶点2-23和第二靶点2-43的中心位于同一条水平直线上。
如图7所示,外壳2-6的一端与第一聚焦罩2-12焊接,外壳2-6的另一端与第二聚焦罩2-32焊接。外壳2-6可以是硬质玻璃、波纹陶瓷或金属陶瓷等材质。在一个实施例中,为了降低X射线束的损耗,提高其输出效率和剂量性能,外壳2-6的用于透过X射线的部分可以嵌装铍窗。
根据本公开的实施例,第一扇形束辐射源2-1和第二扇形束辐射源2-2可以独立操作,其中第一阴极2-10和对应的阳极第一端2-20以及第二阴极2-30和对应的阳极第二端2-40可以单独控制,由此,双束扫描X射线发生器的发出的两个扇形X射线束的能量可以单独控制。
例如,在一个实施例中,施加在第一阴极2-10和阳极第一端2-20之间的电压等于施加在第二阴极2-30和阳极第二端2-40之间的电压,从而第一扇形束辐射源2-1和第二扇形束辐射源2-2分别产生的X射线能量相同。
在另一个实施例中,双束扫描X射线发生器配置成使得施加在第一阴极2-10和阳极第一端2-20之间的电压不等于施加在第一阴极2-10和阳极第一端2-20之间的电压,从而第一扇形束辐射源2-1和第二扇形束辐射源2-2分别产生的X射线能量不相同。在实际应用中,对于两个不同的物体,如果需要不同能量的X射线照射,本实施例的双束扫描X射线发生器能够同时出射两束不同能量的X射线对两个不同的物体照射实施检测,这不但提高了检测效率,而且节省了能源。
有利地,第一扇形束辐射源2-1和第二扇形束辐射源2-2出射的X射线束的能量是独立可控的。例如,加大施加在第一阴极2-10和阳极第一端2-20之间的电压使得产生的X射线束的能量高,从而可以实施对较大型物体的透射型检测;在第二阴极2-30和阳极第二端2-40之间施加较小的电压,产生较小能量的X射线束,从而可以实施对较小型物体的透射型检测。由此,根据本实施例的一个双束扫描X射线发生器可以同时进行对两个差异较大的物体实施检测,这大大提高了设备的应用范围。
在本实施例中,第一扇形束辐射源2-1包括第一靶2-23,设置在阳极 第一端2-20端面,第一靶2-23受到电子轰击后发射X射线;第二扇形束辐射源2-2包括第二靶2-43,设置在阳极第二端2-40端面,第二靶2-43受到电子轰击后发射X射线。在本实施例中,第一端端面与阳极的长度延伸方向不垂直,第二端端面与阳极的长度延伸方向不垂直。在本实施例中,第一扇形束辐射源2-1和第二扇形束辐射源2-2可以独立操作,从而使得第一靶2-23和第二靶2-43可以同步地或不同步地发射X射线。
本实施例提供的双束扫描X射线发生器可以同时出射两个X射线束,并且两个X射线束可以同步用于检测,例如,同时对两个被检测物体实施检测,提高效率。例如,当仅有一个检测物体并且仅需要一个X射线束时,本实施例的双束扫描X射线发生器可以仅发射一束X射线束,从而节约了能源。
在一个实施例中,第一扇形束辐射源2-1包括第一准直器2-21,配置成将第一靶2-23发射的X射线调制成第一扇形X射线束;对应地,第二扇形束辐射源2-2包括第二准直器2-41,配置成将第二靶2-43发射的X射线调制成第二扇形X射线束。第一准直器2-21包围阳极第一端2-20,并允许电子穿过第一准直器2-21的端面,例如端面设置开口或孔,轰击第一靶2-23,并限制第一靶2-23发射的X射线,使得第一靶2-23发射的X射线仅能够从第一准直器出口2-211射出,形成第一扇形X射线束;第二准直器2-41包围阳极第二端2-40,允许电子穿过第二准直器2-41轰击第二靶2-43,并限制第二靶2-43发射的X射线,使得第二靶2-43发射的X射线仅能够从第二准直器出口2-411射出,形成第二扇形X射线束。
第一准直器2-21和第二准直器2-41结构相同,图9示出其中一个例如第一准直器2-21的截面图。如图9所示,第一准直器2-21具有扇形的开口,即第一准直器出口2-211。第一准直器出口2-211的形状决定射出的X射线束的轮廓。第一准直器2-21的端面还设有允许电子射入第一准直器2-21内的开口或孔,电子从第一准直器2-21的端面上的开口或孔射入,轰击被第一准直器2-21包围的第一靶2-23,从而产生X射线。第一准直器2-21可以具有其他形状。第一准直器2-21需要屏蔽散射电子和生成的X射线,在防止电子和射线对周围环境的损伤的同时,还用于生成想 要的X射线束。第一准直器2-21可以由钨或钨合金材料制成,可以有效实现X射线的防护。
第二准直器2-41的结构与第一准直器2-21类似,并且可以用相同材料制成,此处不再赘述。
根据本公开的实施例,第一准直器2-21和第二准直器2-41可以分别调制从第一靶2-23和第二靶2-43发射的X射线,包括调制所形成的扇形X射线束的张角、发射方向等特征。应该知道,第一准直器2-21和第二准直器2-41控制的是X射线束的形状和方向,而X射线束的能量由配置在阳极和阴极之间的高压电源来控制,当轰击到第一靶2-23上的电子能量高,则第一靶2-23射出的X射线能量高。由此,通过控制阳极和阴极之间的电压和电流、设置第一准直器2-21和第二准直器2-41的结构和朝向,可以分别在双束扫描X射线发生器的两端,即分别通过第一扇形束辐射源2-1和第二扇形束辐射源2-2获得想要的两个扇形X射线束。
在一个实施例中,第一准直器出口2-211射出的第一扇形X射线束和第二准直器出口2-411射出的第二扇形X射线束分别位于两个平行的平面内。如图10所示,阳极第一端2-20和阳极第二端2-40发射的扇形X射线束向下,并且位于两个平行的面内。应该知道,图10仅是为了图示说明,阳极第一端2-20和阳极第二端2-40发射的扇形X射线束可以同时向上,位于两个平行的面内。此外,图10中省略了第一靶2-23和第二靶2-43前的准直器。
阳极第一端2-20发射的扇形X射线束向上,阳极第二端2-40发射的扇形X射线束向下。在本实施例中,阳极第一端2-20端面和阳极第二端2-40端面的朝向相反(借鉴图5),左端端面朝向斜上方,右端端面朝向斜下方。
在一个实施例中,在沿阳极长度方向上看时,第一准直器出口2-211射出的第一扇形X射线束的覆盖范围和第二准直器出口2-411射出的第二扇形X射线束的覆盖范围可以不重叠、部分重叠或完全重合。图11描述了,在沿阳极长度方向上看时,第一准直器出口2-211射出的第一扇形X射线束的覆盖范围和第二准直器出口2-411射出的第二扇形X射线束的覆 盖范围的重叠关系。图11仅为了示意地表示双束扫描X射线发生器两端的X射线束的配置,简化了视图中例如第一、第二准直器等其他部件。
如图11中的a图所示,假设第一靶2-23对应的第一准直器出口2-211射出的第一扇形X射线束的张角为α 1,第二靶2-43对应的第二准直器出口2-411射出的第二扇形X射线束的张角为α 2,两个X射线束重叠部分的角度为α 3,如图11中b图所示。则该具体实施例中的有效X射线束张角α不小于α 1或α 2,其对应关系为:
α=α 123
双束扫描X射线发生器两端发射的扇形X射线束不重合或错位可以扩大扇形X射线束的有效张角,并且重合部分增强了X射线输出剂量,在增大扫描范围的同时也保证了被检目标的图像质量。
在满足要求的张角的情况下,双束扫描X射线发生器两端发射的扇形X射线束重合时可以增强X射线输出剂量,增强检测信号,提高检测精度。
在一个实施例中,双束扫描X射线发生器两端发射的扇形X射线束的张角相邻边界恰好重合,则X射线束有效张角为前述二者的张角之和,从而双束扫描X射线发生器发射的扇形X射线束的张角得以扩大。
在上面的实施例中,第一准直器出口2-211射出的第一扇形X射线束的张角α 1与第二准直器出口2-411射出的第二扇形X射线束的张角α 2相同。在另一个实施例中,第一准直器出口2-211和第二准直器出口2-411不同,第一准直器2-21射出的第一扇形X射线束的张角α 1与第二准直器出口2-411射出的第二扇形X射线束的张角α 2不相同。
在一个实施例中,双束扫描X射线发生器的阳极包括阳极柄2-5,所述阳极柄2-5与所述外壳2-6连接用于将所述阳极固定在所述外壳2-6内部。阳极柄2-5还可以设置成用于连接高压电源,即,高压电源的阳极可以直接电连接阳极柄2-5,特别地,对于负高压电源可直接接地。阳极柄5可以是阳极的一部分,换句话说,阳极是一体件。在另一实施例中,阳极柄2-5可以是连接至阳极的部件。
阳极柄5的B-B方向剖视图如图8所示,通过冷却接头2-52可以外接冷却液介质的循环散热装置,可选用“绝缘油+油泵+层流散热器”组合 的方式。另外,阳极柄2-5的外端面可以安装传导式散热器,优选热管散热器或半导体制冷片。这两种方式结合使用可以增强散热效果,提高X射线管的稳定性和可靠性。
在一个实施例中,阳极柄2-5可以包括冷却通道2-51,配置成用以流过冷却介质,如图8所示,应该知道,冷却通道2-51可以具有其他形式,图8仅为了简明没有详细示出。冷却通道2-51流过冷却介质是有利的,这可以帮助降低阳极柄2-5以及阳极的温度。例如,使用绝缘油作为冷却介质,使用油泵循环绝缘油,绝缘油在阳极柄2-5内部的通道中流动带走阳极柄2-5的热量,使得阳极和阳极柄2-5的热量被快速抽离。绝缘油离开阳极柄2-5的冷却通道2-51后,可以通过层流散热器散热,降低温度,再次循环到阳极柄2-5中。
在另一实施例中,阳极柄2-5的外端面可以安装传导式散热器。在一个实施例中,阳极柄2-5还与热管散热器或半导体制冷片连接,以便散热。将冷却介质的循环冷却与在阳极柄2-5上设置散热器这两种方式结合使用可以增强散热效果,提高X射线管的稳定性和可靠性。冷却通道2-51的两端可以设置冷却接头2-52,然而,冷却接头2-52并不是必须的。
阳极和阳极柄2-5可以由紫铜或铜合金制成。这有利于导电,减小电阻;而且,有利于散热;此外,还具有一定的X射线辐射防护能力。
在本公开的一个实施例中,阳极由阳极第一端2-20和阳极第二端2-40构成,阳极第一端2-20和阳极第二端2-40可以相对于彼此转动。在本实施例中,通过阳极第一端20和阳极第二端2-40之间转动一定角度,使得第一准直器出口2-211和第二准直器出口2-411方向相对于原始设置错位一定角度。例如,在初始状态下,阳极第一端2-20的第一扇形束辐射源2-1和阳极第二端2-40的第二扇形束辐射源2-2分别发射的第一扇形X射线束、第二扇形X射线束分别位于两个平行的面内,且第一、第二扇形X射线束在沿阳极中心轴线方向上重合;通过相对转动阳极第一端2-20和阳极第二端2-40可以使得第一扇形X射线束、第二扇形X射线束在沿阳极中心轴线方向上错开一定角度,由此可以调节扇形X射线束的有效张角。应该知道,通过相对转动阳极第一端2-20和阳极第二端2-40可以随时根 据实际需要改变双束扫描X射线发生器的扇形X射线束的有效张角,使得双束扫描X射线发生器使用更加方便。
图12示意性地示出根据本公开的一个实施例的双通道透射检查设备及其使用方法。本实施例中的双通道透射检查设备主要包括前述的双束扫描X射线发生器3-31、第一检查通道3-10和第二检查通道3-20。作为核心部件的双束扫描X射线发生器3-31被设置在设备的顶部。双束扫描X射线发生器3-31能够根据系统的要求来产生具有相应的朝向的两个扇形X射线束。第一检查通道3-10包括第一探测器3-11和第一传送装置3-13。在对第一行李3-12进行检查时,将第一行李3-12放置在第一传送装置3-13上。第二检查通道3-20包括第二探测器3-21和第二传送装置3-23。在对第二行李3-22进行检查时,将第二行李3-22放置在第二传送装置3-23上。挡板3-32用于隔开第一检查通道3-10和第二检查通道3-20。本实施例中的双通道透射检查设备还包括数采与处理模块3-43、电控模块3-42和对外接口3-41等。
如图12所示,双束扫描X射线发生器3-31产生两个扇形X射线束,这两个扇形X射线束的中心线呈一定的夹角。一个扇形X射线束可以扫描第一检查通道3-10内的第一行李3-12(即,被检目标)。同时,另一个扇形X射线束可以扫描第二检查通道3-20内的第二行李3-22(即,被检目标)。
第一检查通道3-10内的第一探测器3-11分别布置在双束扫描X射线发生器3-31的对面和第一传送装置3-13的下方,因而总体上呈L形,以增大有效检测面积。第一行李3-12在被放置到第一传送装置3-13上之后随着第一传送装置3-13向前移动。当第一行李12到达双束扫描X射线发生器3-31的出束口位置时,双束扫描X射线发生器3-31发出扇形X射线束。第一探测器3-11感测扇形X射线束穿透第一行李3-12的截面后的信号。随着第一行李3-12的移动,逐列完成对第一行李3-12的全部透射扫描。
第二检查通道3-20与第一检查通道3-10的工作过程类似。第二探测器3-21总体上也呈L形,也随着第二行李3-22的移动而逐列完成对第二 行李3-22的全部透射扫描。
如图12所示,上述两个扇形X射线束的边界(例如下边界)相差一定角度,并且被挡板3-32物理地阻隔。因此,第一检查通道3-10内的透射扫描过程和第二检查通道3-20内的透射扫描过程互无串扰。
数采与处理模块3-43对两个探测器3-11和3-21所感测到的信号进行数据采集和分析运算,并通过电控模块3-42和对外接口3-41与外部控制台(未示出)进行通信,最终形成两个被检目标(即,第一行李3-12和第二行李3-22)的透射图像。
进一步地,双束扫描X射线发生器3-31、第一检查通道3-10和第二检查通道3-20可以是相互独立的装置,也可以被组装在同一个罩板内。第一检查通道3-10和第二检查通道3-20可以位于同一个水平面上,也可以布置成其它的空间位置关系。
进一步地,双束扫描X射线发生器3-31及其两侧的L形探测器3-11和3-21分别固定并且处于同一个水平面上。两个探测器3-11和3-21的接收面对准X射线的出射面(即,出束面)。利用两个传送装置3-13和3-23分别带动两个被检目标3-12和3-22沿着垂直于出束面的方向平移,按照一定的步长逐个完成对两个被检目标3-12和3-22一系列截面的透射扫描。
如图12所示,第一探测器3-11接收双束扫描X射线发生器3-31左侧的扇形束的透射信号。第二探测器3-21接收双束扫描X射线发生器3-31右侧的扇形束的透射信号。
中间挡板3-32可以由重金属材料制成,以便起到支撑固定和辐射防护的作用。两个检查通道3-10和3-20的四周及出入口均设置有相应的X射线屏蔽结构,由此形成相对封闭的检查通道。
进一步地,电控模块3-42检测第一行李3-12和第二行李3-22的位置信息,分别控制两个传送装置3-13和3-23的运动模式,并且适时地允许和禁止发出两个扇形X射线束。特别地,两个检查通道3-10和3-20相对独立,既可以分别单独使用,又可以双通道同时使用。
进一步地,双束扫描X射线发生器3-31的出束口被限定为扇形狭缝。 在这种情况下,可以不需要前端准直器。当然,也可以外接前端准直器。
进一步地,外部控制台同时显示两个检查通道3-10和3-20内的被检目标透射图像。可以对所生成的透射图像进行人工查视或者借助软件进行自动识别,以分辨有无危险品并且适当地进行标识和报警。
图13示意性地示出根据本公开的另一个实施例的双通道透射检查设备及其使用方法。与图12所示的双通道透射检查设备相比,图13中的双通道透射检查设备的不同之处在于双束扫描X射线发生器3-31’被设置于设备的底部。相应地,第一探测器3-11’和第二探测器3-21’的位置也做了相应的调整。第一探测器3-11’和第二探测器3-21’分别位于设备的顶部和两侧。图13所示的结构主要用于行李物品的安全检查。
另外,随着安全形势的日益严峻,对于特殊人群的特检变得越来越有必要。
图14示意性地示出根据本公开的另一个实施例的双通道透射检查设备及其使用方法。图14所示的双通道透射检查设备是人、物同检双通道透射检查设备。本实施例中的人、物同检双通道透射检查设备主要包括双束扫描X射线发生器3-71、检人通道3-50和检物通道3-60。
具体地说,双束扫描X射线发生器3-71产生两个扇形X射线束。一个扇形X射线束朝向检人通道3-50发射,另一个扇形X射线束朝向检物通道3-60发射。这两个扇形X射线束的张角中心线形成一定的夹角。此外,为了进一步提高图像精度,双束扫描X射线发生器3-71的两个出束口优选地可以分别外接检人准直器3-72和检物准直器3-73。
检人探测器3-51分别位于双束扫描X射线发生器3-71左边的出束口的对面和检人传送装置3-53的下方,总体上呈L形,并且与扇形X射线束共面。检物探测器3-61分别位于双束扫描X射线发生器3-71右边的出束口的对面和检物传送装置3-63的下方,总体上也呈L形。挡板3-74用于隔开两个检查通道3-50和3-60。本实施例中的人、物同检双通道透射检查设备还包括数采与处理模块3-83、电控模块3-82、对外接口3-81以及必要的X射线屏蔽结构。
这样,实现了对人3-52和物3-62的同步分检。另外,也可以分别独 立控制和使用两个检查通道3-50和3-60。
图15示意性地示出根据本公开的另一个实施例的双通道透射检查设备及其使用方法。图15所示的双通道透射检查设备是人体双通道透射检查设备。与图14所示的双通道透射检查设备相比,图15所示的双通道透射检查设备的不同之处在于以检人通道3-60’代替了检物通道3-60。相应地,检人通道3-60’主要包括双束扫描X射线发生器3-71’、检人准直器3-73’、检人探测器3-61’和人体传送装置3-63’。
进一步地,本实施例中的双束扫描X射线发生器3-71’在X射线发射点上集成了两个扇束光源。
进一步地,本公开的双通道复合检查设备可以是开放式的或封闭式的,不受机壳、背板或顶盖等辅助构件的限制。
进一步地,在本公开的双通道复合检查设备中,双束扫描X射线发生器的位置、扇形X射线束的张角和能量等没有特殊的限制,而是可以根据实际应用情况来适当地设定。
进一步地,探测器也可以呈I形或者其它任意形状。
以上描述的是双通道透射检查设备固定而被检目标3-12和3-22随着各自的传送机构移动的模式。可以理解的是,也可以采用其它相对运动的模式。
本公开的双通道透射检查设备的被检目标优先地是物和物、人和物或者人和人。当然,被检目标不局限于以上提及的这些对象,也可以是动物、货物或车辆等其它被检目标。
本公开的实施例仅以双通道复合检查设备为例进行了说明。然而,本公开的复合检查设备不局限于此。作为另一个实施例,可以将多台双通道复合检查设备进行级联,由此形成多个检查通道。特别地,通过施加不同的高压电源,使能量不同的两个扇形X射线束同时进入同一个检查通道中,由此可以实现双能透射成像。
进一步地,本公开利用一个双束扫描X射线发生器产生两个独立的扇形X射线束,由此可以实现同时对双通道内的被检目标进行扫描。与传统的拼装式双通道透射检查装置相比,至少节省一套X光机及其外围 配件。因此,本公开的技术方案能够简化系统设计,缩减占地,降低成本,更便于拆装运输和使用。
申请人发现相关技术中的人体透射扫描设备存在占地空间较大、分辨率低等问题。图16为本公开相关技术中的透射检查设备的结构示意图,相关技术中的人体透射检查设备结构如图16所示,主要包括固定安装的X射线源4-1和探测器4-2,被检人4-3站立于传动机构4-4上。为了降低对X射线源4-1出射张角γ的要求并减小设备宽度,通常将X射线源4-1置于设备右下角,X射线束的水平方向直射脚底,向上沿X射线出射方向形成对人体仰视的角度。为了降低设备高度,探测器4-2一般呈Γ形,上部横向部分用于头部检查。被检人4-3随着传动机构4-4做平移运动,逐列完成全身透视扫描与成像,该种人体透射检查设备将X射线源置于底部,通过扇形X射线束平视脚底,仰视头顶,虽然降低了对束流张角的要求,但是X射线束对被检人的入射角度和穿透厚度增加,图像上部的空间分辨率低。另外,也很难发现脚部特殊角度摆放的违禁品。
在另一种相关技术中的人体透射检查设备结构中,将X射线源4-1上移到设备高度方向的中间位置,在水平方向上与通道的距离保持不变,如图1的虚线部分所示。为了保证能有同样的检测高度,X射线源4-1的张角要增加到γ’,探测器4-2底部延长,或者设计为C形。如果想保持X射线源4-1张角保持为γ不变,则需将其右移一段距离方可,如此会导致设备宽度增加。
该种人体透射检查设备中,若保持X射线源靶点到与被检人的横向距离不变,将X射线源置于设备高度的中间位置,则束流张角要足够大才能覆盖人体全身。X扇形束张角超过一定范围就会带来输出剂量率不均匀和边界剂量率明显衰减等问题,从而导致图像质量下降,特别是外围失真。如果此时将X射线源继续沿水平方向远离探测器,理论上可以减小张角,但所需能量更大,且导致设备宽度和占地面积增加。
为了克服上述申请人发现的问题,本公开提供了一种透射检查设备,包括双束扫描X射线发生器和探测器,双束扫描X射线发生器用于向其同侧发射平行或共面的张角为α的第一扇形X射线束和张角为β的第二扇 形X射线束,第一扇形X射线束和第二扇形X射线束用于透射扫描被测目标,在与两者平行的平面内的投影拼合为张角为α+β的扇形;探测器设置在双束扫描X射线发生器的第一扇形X射线束和第二扇形X射线束的出射侧,接收第一扇形X射线束和第二扇形X射线束。
采用本公开提供的透射扫描设备,可以将X射线源置于设备高度的中间位置,X射线束对被检测人体的入射角和穿透厚度不会过大,保障成像质量,采用两张角较小的扇形X射线束拼接成一较大张角的X射线束,在保持X射线源与被测人体之间距离相对较小的情况下,可以覆盖被检测人体全身,使得设备宽度和占地面积较小。且单个扇形X射线束的张角较小,避免了输出剂量率不均匀和边界剂量率明显衰减等问题,保障了图像质量。
本领域技术人员可以理解,本公开公开的透射扫描设备可以检测多种被测目标,例如人体、动物、物品等。为了方便说明,以下对实施例的详细说明书中以被测目标为人体为例进行说明。
图17为本公开一实施例中透射检查设备的结构示意图,如图17所示,本公开一实施例提供一种透射检查设备4-10,该透射检查设备4-10主要包括双束扫描X射线发生器4-11和探测器4-13。
双束扫描X射线发生器4-11向其同侧发射平行或共面的张角为α的第一扇形X射线束和张角为β的第二扇形X射线束,所述第一扇形X射线束和第二扇形X射线束用于透射扫描被测目标,在与两者平行的平面内的投影拼合为张角为α+β的扇形。
探测器4-13,例如为线阵探测器设置在双束扫描X射线发生器4-11的第一扇形X射线束和第二扇形X射线束的出射侧,接收第一扇形X射线束和第二扇形X射线束。
在一些实施例中,第一扇形X射线束的张角α可以与第二扇形X射线束的张角β相等,此时如图16所示,双束扫描X射线发生器4-11基本上设置在探测器4-13高度上的中间位置对齐,即双束扫描X射线发生器4-11设置在透射检查设备高度的中间位置,双束扫描X射线发生器4-11产生较小张角的两个扇形X射线束,输出剂量率稳定均匀且效率高,有利 于提升成像质量。
探测器4-13在高度方向上由中间位置分隔为第一探测部分4-13a和第二探测部分4-13b,其中位于上部的第一探测部分4-13a接收第一扇形X射线束,位于下部的第二探测部分4-13b接收第二扇形X射线束。第一探测部分4-13a和第二探测部分4-13b可以分别为一个线阵探测器,两者拼接成探测器4-13。
在一实施例中,第一探测部分4-13a的平行于第一扇形X射线束和第二扇形X射线束的截面呈“Γ”型,第二探测部分4-13b的平行于第一扇形X射线束和第二扇形X射线束的截面呈“L”型,由此探测器4-13整体上呈“[”型,上部横向部分用于被测人体头部检查,下部横向部分用于被测人体脚部检查,可以有效地降低设备高度,又可以兼顾头部和脚部的检查。
如图17所示,透射检查设备4-10还包括承载装置4-15,承载装置4-15用于承载被测人体4-14。承载装置4-15设置在所述双束扫描X射线发生器和探测器之间,并且能够相对于双束扫描X射线发生器4-11和探测器4-13沿垂直于所述第一扇形X射线束和第二扇形X射线束的平面内移动。具体地,透射检查设备4-10还包括驱动电机4-18和垂直于所述第一扇形X射线束和第二扇形X射线束的平面设置的导轨4-17,在驱动电机4-18的驱动下,承载装置4-15可以承载着被测人体在导轨4-17上滑动,使得第一扇形X射线束和第二扇形X射线束逐列完成对被测人体4-14的全身透视扫描,如图17所示,第一扇形X射线束透射通过人体的上半部分,由第一探测部分4-13a接收并探测,第二扇形X射线束透射通过人体的下半部分,由第二探测部分4-13b接收并探测。
在一些实施例中,承载装置4-15上设计有扶手,供被检人4-14抓握,消除平移运动带来的摔跌等安全隐患。
在一些实施例中,承载装置4-15可以采用传输带的方式承载人体移动。
如图17所示,透射检查设备4-10还包括双狭缝准直器4-12,双狭缝准直器4-12上设置有第一准直狭缝4-12a和第二准直狭缝4-12b,第一准 直狭缝4-12a允许第一扇形X射线束通过并准直第一扇形X射线束;第二准直狭缝4-12b允许第二扇形X射线束通过并准直第二扇形X射线束。
在一实施例中,可以合理设计第一准直狭缝4-12a和第二准直狭缝4-12b的宽度,来缩限通过分别第一准直狭缝4-12a和第二准直狭缝4-12b的第一扇形X射线束和第二扇形X射线束的厚度,使得通过第一准直狭缝4-12a和第二准直狭缝4-12b的射线束厚度满足较佳的检测用射线束厚度,利于后续的检测成像。
如图17所示,透射检查设备4-10还包括电控显示组件4-16,电控显示组件4-16包括驱动装置4-16a,数采装置4-16b、控制处理装置4-16c、接口部件4-16d及显示装置4-16e。
驱动装置4-16a用于控制驱动电机4-18,控制承载由被测人体的承载装置15相对于所述双束扫描X射线发生器4-11和探测器4-13沿垂直于所述第一扇形X射线束和第二扇形X射线束的平面内沿导轨4-17移动。进而实现第一扇形X射线束和第二扇形X射线束完成对人体的扫描。
数采装置4-16b对所述探测器探测到的信号进行数据采集,并传输至控制处理装置4-16c。
控制处理装置4-16c对采集的数据进行处理并成像,在一些实施例中,控制处理装置4-16c还可以控制双束扫描X射线发生器的启闭。
形成的图像经接口部件4-16d传送至显示装置4-16e来进行显示,由管理者来进行观察判断。
以下具体介绍透射检查设备4-10中双束扫描X射线发生器结构4-11及工作方式。
在本公开的实施例中,采用上述结构的双束扫描X射线发生器4-11时,透射检查设备4-10中的双狭缝准直器4-12采用如图19所示的结构,图19为图17中双狭缝准直器的A方向视角的示意图,如图19所示,第一准直狭缝4-12a和第二准直狭缝4-12b在C方向上同样间隔预定距离d,使得第一准直狭缝4-12a允许第一扇形X射线束通过并准直第一扇形X射线束;第二准直狭缝4-12b允许第二扇形X射线束通过并准直第二扇形X射线束。双狭缝准直器4-12可以采用辐射防护材料制成,使得分别由第一 准直狭缝4-12a和第二准直狭缝4-12b出射的第一扇形X射线束和第二扇形X射线束互不干扰。
透射检查设备4-10中的探测器4-13采用如图20所示的结构,图20为图17中探测器的A方向视角的示意图,如图20所示,第一探测部分4-13a和第二探测部分4-13b在C方向上同样间隔预定距离d,位于上部的第一探测部分4-13a接收第一扇形X射线束,位于下部的第二探测部分4-13b接收第二扇形X射线束。
在一实施例中,可以采用两个常规的小张角X射线源来代替双束扫描X射线发生器来拼接成交大张角进行透视检测。
在一实施例中,本公开的透射检查设备采用模块化设计,主要分为X射线源模块、探测器模块、传送模块和电控显示模块,结构精巧,占地小,且更有利于拆装运输和安调维修。
进一步地,本公开的透射检查设备采用开放式通道,被测人体4-14只需站稳扶好,无需脱衣脱鞋,即可快速完成体内以及体表的非接触式查验,使用便捷,安全可靠。也可采用封闭式通道或者其他样式,不受有无机壳、背板或者顶盖等辅助装置的限制。
应注意,附图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。
图21是根据本公开的第一实施例的人体透视复合检查系统的总体构造及其使用方法的示意图。
如图21所示,根据本公开的第一实施例的人体透视复合检查系统主要包括:双束扫描X射线发生器5-11、双缝准直器5-12、探测器模块5-13、传送装置5-15和电控显示模块5-16等。传送装置5-15设置在设备的底部、双缝准直器5-12与探测器模块5-13之间,以供被检人5-14站立。
双束扫描X射线发生器5-11能够产生两个扇形X射线束,其中一个扇形X射线束适于覆盖被检人5-14的全身,另一个扇形X射线束适于覆盖被检人5-14的局部。这两个扇形X射线束在经过双缝准直器5-12调制后投射到被检人5-14,穿过被检人5-14而衰减后的X射线分别被探测器模块5-13感测到并转化成数字信号。然后,通过传送装置5-15的平移运 动而逐列地完成被检人5-14的全身和局部透视检查,再通过电控显示模块5-16与用户交互信息。
根据本实施例,作为核心部件的双束扫描X射线发生器5-11设置在设备的高度的中间位置,大致位于被检人14的腹部高度处。
如图22中的(a)部分所示,双缝准直器5-12开设有全身准直缝5-12a和局部准直缝5-12b,用以分别将上述两个扇形X射线束调制为张角较大的一个扇形X射线束(宽束)和张角较小的一个扇形X射线束(窄束)。上述两个扇形X射线束透射穿过被检人5-14,衰减后的X射线分别被全身探测器5-13a和局部探测器5-13b感测到并且转换为数字信号。被检人5-14站立在传送装置5-15的载人滑板5-15a上,并且借助滚珠丝杠和电机驱动装置5-15b沿着滑轨5-15c做平移运动,以便逐列地完成对被检人5-14的全身透视扫描,并且通过电控显示模块5-16生成人体透视图像。
这样,全身准直缝5-12a和局部准直缝5-12b将经过第一准直器5-101和第二准直器5-201准直的两个扇形X射线束进一步约束为满足宽度要求的扇形X射线束。在这两个准直缝5-12a、5-12b之间以及四周设置辐射防护材料,以避免所形成的扇形X射线束相互干扰。
如图21以及图22中的(b)部分所示,全身探测器5-13a的构造总体上呈C形,全身探测器5-13a的上端接收被检人5-14的头部的信息,全身探测器5-13a的下端接收被检人5-14的脚部信息。这样,既可以有效地降低设备的高度,又可以兼顾被检人5-14的脚部检查。另外,局部探测器5-13b的构造总体上呈I形。全身探测器5-13a和局部探测器5-13b优选地是线阵探测器,二者根据前述两个X射线扇形窄束的几何特性保持相应的距离并且并排地布置。
进一步地,局部探测器5-13b的成像分辨率高于全身探测器5-13a,并且局部准直缝5-12b的宽度小于全身准直缝5-12a的宽度(参见图22中的(a)部分),以减小伪影面积。这样,局部透视X射线束可以具有较高的能量密度,以便提高系统成像的空间分辨率。
进一步地,双束扫描X射线发生器5-11布置在设备的高度的大致中间位置,使得第一靶点5-102沿着水平方向与被检人5-14的头部和脚部 的夹角近似相等。这样,X射线穿过人体的厚度和投射到全身探测器5-13a上的有效面积均相差不大,有利于提高图像分辨率,并且减少被检人5-14的头部和脚部的图像的失真。
在本实施例中,将由第二靶点5-202发射的扇形X射线束用作进行局部检测的扇形X射线束。因此,与由第一靶点5-102发射的扇形X射线束相比,由第二靶点5-202发射的扇形X射线束张角更小,成像效果更好。
进一步地,可以使用一个双束扫描X射线发生器5-11来代替两个常规X射线源。结果,设备的体积和重量都大幅减少,使用更为便捷,检测系统的设计和应用变得更加简单。
另外,如前文所述,由于根据本实施例的人体透视复合检查系统在双束扫描X射线发生器5-11的内部已经利用第一准直器5-101和第二准直器5-201进行了初级准直和辐射防护,以便尽量减少X射线的泄漏,所以简化了系统辐射防护设计,更好地保证了操作人员、被检人员和公众的安全。
进一步地,用于透射被检人的全身的X射线源采用相对较低的电压(该电压的绝对值仍然足够高,以便激发出X射线),由此可以减少人体吸收剂量;同时,用于透射被检人的局部的X射线源采用相对较高的电压,并且配备较窄的准直缝(例如准直缝5-12b),由此能够提升成像效果。这可以通过同一个高压电路分时输出不同的高压参数来实现,也可以通过采用两个不同的高压电路来实现,但这两个高压电路仍然集成在同一个模块内。
另外,全身透视检查和局部透视检查可以同时进行,也可以根据需要而分别独立地进行。特别地,上述高压电路的高压参数是可调的,以便根据现场的需求来灵活地进行调节。
进一步地,如图21所示,电控显示模块5-16包括:电气模块5-16a、数据采集模块5-16b、服务器5-16c、对外接口5-16d和客户终端5-16e。具体地说,服务器5-16c用于对检测信号进行数据分析和处理并且成像,通过有线接口或者无线传输(例如WiFi)等传输方式实时地传送给客户 终端5-16e。然后,既可以使用两个显示器来分别显示被检人的全身图像和局部图像,也可以在同一个显示器上同时显示被检人的全身图像和局部图像两者。这样,能够直观且准确地查看出违禁品的形状及其藏匿的位置。
进一步地,载人滑板5-15a上设置有扶手,以供被检人5-14抓握,从而消除了平移运动带来的跌倒等安全隐患。
特别地,滚珠丝杠及电机驱动装置5-15b可以往复运动。这样,当被检人5-14完成一次检查后,载人滑板5-15a能够及时地返回到起始位置以便准备执行下一次检查操作。特别地,也可以采用皮带传送或者其它的传动方式。
进一步地,可以通过对两个常规X射线管分别外加前端准直器来实现/获得双束扫描X射线发生器5-11。
进一步地,本公开的人体透视复合检查系统采用模块化设计,主要分为X射线源模块、探测器模块、传送模块和电控显示模块。这样,结构精巧,占地小,并且更有利于拆装运输和安调维修。
进一步地,本公开的人体透视复合检查系统采用开放式通道,被检人5-14只需站稳扶好扶手,而无需脱衣脱鞋,就可以快速地完成体内以及体表的非接触式查验。使用便捷,安全可靠。应该理解的是,本公开的人体透视复合检查系统也可以采用封闭式通道或者其它样式,不受有无机壳、背板或者顶盖等辅助装置的限制。
前述人体透视复合检查系统对于被检人5-14的全身和局部的扫描各自采用单一能量的X射线,虽然它对于原子序数较高的金属类违禁品有较好的凸显效果,但对于与人体组组织的原子序数相差不大的毒品、炸药之类有机物仅从图像灰度和轮廓方面进行辨识有时效果不够明显。如果能对全身或局部采用双能X射线进行透射扫描,则对有机物、无机物和混合物的区分更为清晰,图像的颜色更丰富、层次感更强,更易于辨识出嫌疑物,大大降低漏检率。
为此,本公开的另一个实施例提供了一种全身双能透视复合检查系统。
具体地说,根据本公开的实施例的全身双能透视复合检查系统总体上与根据本公开的上述实施例的人体透视复合检查系统的构造相同,不同之处在于将图22所示双缝准直器5-12和探测器模块5-13分别替换为图23所示的全身双能准直器5-12′和全身双能探测器模块5-13′。
如图23所示,全身双能准直器5-12′包括高能准直缝12a′和低能准直缝5-12b′,二者的尺寸(例如长度和宽度)与图23所示的全身准直缝5-12a的尺寸相同,也就是都能满足覆盖被检人5-14的全身的要求。此外,全身双能探测器模块5-13′包括高能探测器5-13a′和低能探测器5-13b′。高能探测器5-13a′和低能探测器5-13b′的尺寸及参数均和全身探测器5-13a的尺寸及参数相同。
双束扫描X射线发生器5-11通过采用同一个高压电路分时施加不同的高压参数,或者通过采用两个不同参数的高压电路,能够发射出两个扇面平行、张角相同并且覆盖被检人5-14的全身的两个扇形X射线束,其中一个扇形X射线束是高能扇形X射线束,另一个扇形X射线束是低能扇形X射线束。这样,能够实现全身双能透视扫描。
另外,本公开的另一实施例提供了一种局部双能透视复合检查系统。
具体地说,根据本公开的实施例的局部双能透视复合检查系统总体上与根据本公开的上述实施例的人体透视复合检查系统的构造相同,不同之处在于将图22所示的双缝准直器5-12和探测器模块5-13分别替换为图24所示的局部双能准直器5-12″和局部双能探测器模块5-13″。
如图24所示,局部双能准直器5-12″包括高能准直缝5-12a″和低能准直缝5-12b″,二者的尺寸(例如长度和宽度)与图22所示的局部准直缝5-12b的尺寸相同,也就是仅供满足覆盖被检人5-14的腹部的要求。此外,局部双能探测器模块5-13″包括高能探测器5-13a″和低能探测器5-13b″。高能探测器5-13a″和低能探测器5-13b″的尺寸及参数均和局部探测器5-13b的尺寸及参数相同。
双束扫描X射线发生器5-11通过采用同一个高压电路分时施加不同的高压参数,或者通过采用两个不同参数的高压电路,能够发射出两个扇面平行、张角相同并且覆盖被检人5-14的腹部的两个扇形X射线束, 其中一个扇形X射线束是高能扇形X射线束,另一个扇形X射线束是低能扇形X射线束。这样,能够实现局部双能透视扫描。
虽然本总体专利构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体专利构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (45)

  1. 一种双束扫描X射线发生器,包括:
    外壳;
    阳极,设置在外壳内,所述阳极包括两个相对的第一端和第二端,其中,第一端端面与阳极的长度延伸方向不垂直,第二端端面与阳极的长度延伸方向不垂直;
    其中,所述双束扫描X射线发生器包括第一辐射源和第二辐射源,第一辐射源包括第一靶和第一阴极,第一靶设置在所述阳极的第一端端面,所述第一阴极配置成朝向所述第一靶并且能够发射电子到所述第一靶以发射X射线;
    第二辐射源包括第二靶和第二阴极,第二靶设置在所述阳极第二端端面,所述第二阴极配置成朝向并且能够发射电子到所述第二靶以发射X射线其中,第一辐射源和第二辐射源能够独立操作。
  2. 如权利要求1所述的双束扫描X射线发生器,双束扫描X射线发生器,其中,
    第一辐射源包括第一防护转筒,其中第一防护转筒包围所述阳极的至少第一端,并且允许第一阴极发射的电子到达第一靶,屏蔽散射的电子和第一靶产生的X射线,其中第一防护转筒设置有至少一个第一孔用以调制第一靶产生的X射线,形成至少一个第一笔状X射线束;
    第二辐射源包括第二防护转筒,其中第二防护转筒包围所述阳极的至少第二端,并且允许第二阴极发射的电子到达第二靶,屏蔽散射的电子和第二靶产生的X射线,第二防护转筒设置至少一个第二孔用以调制第二靶产生的X射线,形成至少一个第二笔状X射线束。
  3. 如权利要求1所述的双束扫描X射线发生器,其中双束扫描X射线发生器配置成使得第一靶和第二靶能够同步地或不同步地发射X射线。
  4. 如权利要求1所述的双束扫描X射线发生器,其中双束扫描X射线发生器配置成施加在第一阴极和阳极第一端之间的电压等于施加在第二阴极和阳极第二端之间的电压,从而产生的X射线能量相同;或者配置成施加在第一阴极和阳极第一端之间的电压不等于施加在第二阴极和阳 极第二端之间的电压,从而产生的X射线能量不相同。
  5. 如权利要求2所述的双束扫描X射线发生器,其中第一防护转筒配置成能够围绕所述阳极旋转,从而通过至少一个第一孔形成的至少一个第一笔状X射线束能够在一定角度范围内扫描;第二防护转筒配置成能够围绕所述阳极旋转,从而通过至少一个第二孔形成的至少一个第二笔状X射线束能够在一定角度范围内扫描;
    其中,第一防护转筒和第二防护转筒的旋转是同步的或不同步的。
  6. 如权利要求2所述的双束扫描X射线发生器,还包括设置在所述阳极上靠近第一端的第一电枢铁芯和围绕在第一电枢铁芯上的第一电枢绕组,以及对应第一电枢铁芯设置在第一防护转筒内壁上的多个第一永磁体,以便在第一电枢绕组形成变化的磁场时第一电枢绕组与多个第一永磁体相互作用而驱动第一防护转筒转动;设置在所述阳极的靠近第二端的第二电枢铁芯和围绕在第二电枢铁芯上的第二电枢绕组,以及对应第二电枢铁芯设置在第二防护转筒内壁上的多个第二永磁体,以便在第二电枢绕组形成变化的磁场时第二电枢绕组与多个第二永磁体相互作用而驱动第二防护转筒转动。
  7. 如权利要求6所述的双束扫描X射线发生器,其中所述阳极包括阳极柄,阳极柄与所述外壳密封连接,从而通过阳极柄将阳极固定在所述外壳内部;并且所述阳极柄内设置走线管道用以布置分别将第一电枢绕组和第二电枢绕组连接至外电源的导线以及其他信号线。
  8. 如权利要求6所述的双束扫描X射线发生器,还包括第一驱动器,布置在所述阳极的第一端附近,所述第一驱动器连接外电源,并且提供变化的电流至第一电枢绕组;和,第二驱动器,布置在所述阳极第二端附近,所述第二驱动器连接外电源,并且提供变化的电流至第二电枢绕组。
  9. 如权利要求5所述的双束扫描X射线发生器,其中所述阳极的第一端端面配置成使得X射线朝向所述第一防护转筒的旋转轴线的第一侧,所述阳极的第二端端面配置成使得X射线朝向所述第二防护转筒的旋转轴线的相同的第一侧,或者所述阳极的第二端端面配置成使得X射线朝向所述第二防护转筒的旋转轴线的第二侧,第一侧不同于第二侧。
  10. 如权利要求5所述的双束扫描X射线发生器,其中通过第一防护转筒的旋转,至少一个第一孔使得第一笔状X射线束在与所述第一防护转筒的旋转轴线垂直的平面扫描,通过第二防护转筒的旋转,至少一个第二孔使得第二笔状X射线束在与所述第一防护转筒的旋转轴线垂直的平面扫描。
  11. 如权利要求10所述的双束扫描X射线发生器,其中至少一个第一笔状X射线束在与所述第一防护转筒的旋转轴线垂直的平面扫描的角度范围与至少一个第二笔状X射线束在与所述第二防护转筒的旋转轴线垂直的平面扫描的角度范围完全重叠、或部分重叠或不重叠。
  12. 如权利要求5所述的双束扫描X射线发生器,其中通过第一防护转筒的旋转,至少一个第一孔使得至少一个第一笔状X射线束在与所述第一防护转筒的旋转轴线成第一角度的平面扫描,通过第二防护转筒的旋转,至少一个第二孔使得至少一个第二笔状X射线束在与所述第二防护转筒的旋转轴线成第二角度的平面扫描,其中第一角度和第二角度不相等。
  13. 如权利要求1所述的双束扫描X射线发生器,其中,第一辐射源为第一扇形束辐射源,包括第一准直器,配置成将第一靶发射的X射线调制成第一扇形X射线束;并且,第二辐射源为第二扇形束辐射源,包括第二准直器,配置成将第二靶发射的X射线调制成第二扇形X射线束。
  14. 如权利要求13所述的双束扫描X射线发生器,其中,第一准直器包围阳极第一端,允许电子穿过第一准直器轰击第一靶,并限制第一靶发射的X射线,使得第一靶发射的X射线仅能够从第一准直器出口射出,形成第一扇形X射线束;和,第二准直器包围阳极第二端,允许电子穿过第二准直器轰击第二靶,并限制第二靶发射的X射线,使得第二靶发射的X射线仅能够从第二准直器出口射出,形成第二扇形X射线束。
  15. 如权利要求14所述的双束扫描X射线发生器,其中,第一准直器出口射出的第一扇形X射线束和第二准直器出口射出的第二扇形X射线束分别位于两个平行的平面内。
  16. 如权利要求14所述的双束扫描X射线发生器,其中,第一准直器出口射出的第一扇形X射线束的覆盖范围和第二准直器出口射出的第 二扇形X射线束的覆盖范围在沿阳极长度方向上看时不重叠、部分重叠或完全重合。
  17. 如权利要求14所述的双束扫描X射线发生器,其中,第一准直器出口射出的第一扇形X射线束的张角与第二准直器出口射出的第二扇形X射线束的张角相同或不相同。
  18. 如权利要求1所述的双束扫描X射线发生器,其中,所述阳极包括阳极柄,所述阳极柄与所述外壳连接用于将所述阳极固定在所述外壳内部,其中,所述阳极柄包括冷却通道,配置成用以流过冷却介质。
  19. 如权利要求1所述的双束扫描X射线发生器,其中阳极设置成阳极第一端和阳极第二端可以相对彼此转动。
  20. 一种透射检查设备,包括两个检查通道以及设置在所述两个检查通道之间的如权利要求13所述的双束扫描X射线发生器,
    其中,所述双束扫描X射线发生器被构造成产生相互独立的两个扇形X射线束,将一个扇形X射线束向一个检查通道内发射,并且将另一个扇形X射线束向另一个检查通道内发射,以便分别对所述两个检查通道内的被检目标进行透射扫描;并且
    所述两个扇形X射线束的张角中心线形成一夹角,使得所述两个检查通道内的透射扫描互不干扰。
  21. 根据权利要求20所述的透射检查设备,其中,
    所述双束扫描X射线发生器设置在所述透射检查设备的顶部或底部,所述两个扇形X射线束的张角是相互独立地设定的,并且所述两个扇形X射线束的能量是相互独立地设定的。
  22. 根据权利要求21所述的透射检查设备,其中,
    每一个检查通道中设置有一个透射探测器;
    当所述双束扫描X射线发生器设置在所述透射检查设备的顶部时,所述透射探测器位于相应的检查通道的与所述双束扫描X射线发生器对置的侧部以及所述检查通道的底部,使得所述透射探测器的总体结构呈L形;并且
    当所述双束扫描X射线发生器设置在所述透射检查设备的底部时, 所述透射探测器位于相应的检查通道的与所述双束扫描X射线发生器对置的侧部以及所述检查通道的顶部,使得所述透射探测器的总体结构呈L形。
  23. 根据权利要求20所述的透射检查设备,其中,
    所述两个检查通道位于同一个水平面上。
  24. 根据权利要求20所述的透射检查设备,其中,
    所述透射检查设备是开放式的;或者
    在每一个检查通道的四周及出入口处均设置相应的X射线屏蔽结构,由此形成封闭式检查通道。
  25. 根据权利要求20所述的透射检查设备,其中,
    每一个扇形X射线束的张角的中心线处于水平面中,或者相对于水平面偏向上或偏向下倾斜,并且
    所述两个扇形X射线束沿着扇形的径向或轴向的具有不同的角度特性。
  26. 根据权利要求20所述的透射检查设备,其中,
    所述双束扫描X射线发生器的第一辐射源和第二辐射源分别配备有相应的前端准直器。
  27. 一种透射检查设备,包括至少一个检查通道以及如权利要求1所述的双束扫描X射线发生器,其中,
    所述双束扫描X射线发生器被构造成使能量不同的两个X射线束同时进入同一个检查通道中,以实现双能透射成像。
  28. 根据权利要求27所述的透射检查设备,其中,
    所述两个X射线束是扇形束,并且所述两个X射线束的张角中心线形成一夹角,使得利用所述两个X射线束执行的透射扫描互不干扰。
  29. 一种利用如权利要求20至28中的任何一项权利要求所述的透射检查设备对被检目标进行检查的方法,所述方法包括:
    将两台或更多台透射检查设备级联起来或者组合起来使用,由此形成多个检查通道。
  30. 一种透射检查设备,包括:
    如权利要求13所述的双束扫描X射线发生器,用于向其同侧发射平行或共面的张角为α的第一扇形X射线束和张角为β的第二扇形X射线束,所述第一扇形X射线束和第二扇形X射线束用于透射扫描被测目标,在与两者平行的平面内的投影拼合为张角为α+β的扇形;以及
    探测器,设置在双束扫描X射线发生器的所述第一扇形X射线束和第二扇形X射线束的出射侧,接收所述第一扇形X射线束和第二扇形X射线束。
  31. 根据权利要求30所述的透射检查设备,其中,所述双束扫描X射线发生器与所述探测器的中间位置基本对齐。
  32. 根据权利要求31所述的透射检查设备,其中,所述探测器由中间位置分为第一探测部分和第二探测部分,第一探测部分接收所述第一扇形X射线束,第二探测部分接收所述第二扇形X射线束,且α=β。
  33. 根据权利要求32所述的透射检查设备,其中,所述第一探测部分的平行于第一扇形X射线束和第二扇形X射线束的截面呈
    Figure PCTCN2019086399-appb-100001
    型,所述第二探测部分的平行于第一扇形X射线束和第二扇形X射线束的截面呈“L”型。
  34. 根据权利要求32中所述的透射检查设备,还包括双狭缝准直器,所述双狭缝准直器包括:
    第一准直狭缝,用于通过并准直第一扇形X射线束;以及
    第二准直狭缝,用于通过并准直第二扇形X射线束。
  35. 根据权利要求34中所述的透射检查设备,其中,所述第一准直狭缝缩限第一扇形X射线束的厚度,所述第二准直狭缝缩限第二扇形X射线束的厚度。
  36. 根据权利要求30所述的透射检查设备,其中,还包括:
    承载装置用于承载被测目标,其设置在所述双束扫描X射线发生器和探测器之间,并且能够相对于所述双束扫描X射线发生器和探测器沿垂直于所述第一扇形X射线束和第二扇形X射线束的平面内移动。
  37. 根据权利要求36所述的透射检查设备,其中,所述第一扇形X射线束穿透所述被测目标的第一部分,所述第二扇形X射线束穿透所述被 测目标的第二部分。
  38. 根据权利要求30所述的透射检查设备,其中还包括:
    驱动装置,用于控制承载装置相对于所述双束扫描X射线发生器和探测器沿垂直于所述第一扇形X射线束和第二扇形X射线束的平面内移动;
    数采装置,对所述探测器探测到的信号进行数据采集;
    控制处理装置,用于对所述双束扫描X射线发生器进行控制及对采集的数据进行处理并成像;以及
    显示装置,用于对所成的图像进行显示。
  39. 一种人体透视复合检查系统,包括:
    如权利要求13所述的双束扫描X射线发生器,所述双束扫描X射线发生器构造成产生两个彼此独立的扇形X射线束;以及
    双缝准直器,所述双缝准直器包括两个准直缝,分别用于对所述两个扇形X射线束进行准直,
    其中,经过准直的两个扇形X射线束分时或同时对被检人进行透视扫描。
  40. 根据权利要求39所述的人体透视复合检查系统,其中,所述两个扇形X射线束中的一个扇形X射线束适于覆盖被检人的全身,另一个扇形X射线束适于覆盖被检人的局部;或
    所述两个扇形X射线束都适于覆盖被检人的全身;或
    所述两个扇形X射线束都适于覆盖被检人的局部。
  41. 根据权利要求39所述的人体透视复合检查系统,其中,所述双束扫描X射线发生器布置在所述人体透视复合检查系统的高度上的中部,以便与站立的被检人的腹部对齐。
  42. 根据权利要求40所述的人体透视复合检查系统,其中,用于对适于覆盖被检人的局部的扇形X射线束进行准直的准直缝的宽度比用于对适于覆盖被检人的全身的扇形X射线束进行准直的准直缝的宽度小。
  43. 根据权利要求39所述的人体透视复合检查系统,其中,所述人体透视复合检查系统包括探测器,用以感测透射穿过被检人的X射线,所述探测器的总体结构呈C形。
  44. 根据权利要求43所述的人体透视复合检查系统,其中,所述探测器包括局部探测器和全身探测器,所述局部探测器的成像分辨率高于所述全身探测器的成像分辨率,并且
    适于覆盖被检人的局部的扇形X射线束的能量比适于覆盖被检人的全身的扇形X射线束的能量高。
  45. 根据权利要求39所述的人体透视复合检查系统,其中,所述人体透视复合检查系统包括开放式检查通道或封闭式检查通道。
PCT/CN2019/086399 2018-05-10 2019-05-10 双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法 WO2019214710A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201810445632.7A CN108447757A (zh) 2018-05-10 2018-05-10 双扇形束x射线发生器
CN201810445507.6A CN108776148A (zh) 2018-05-10 2018-05-10 人体透视复合检查系统
CN201810447365.7 2018-05-10
CN201810445632.7 2018-05-10
CN201810445465.6A CN108459354A (zh) 2018-05-10 2018-05-10 透视扫描设备
CN201810445507.6 2018-05-10
CN201810447365.7A CN108414546A (zh) 2018-05-10 2018-05-10 透射检查设备和检查方法
CN201810445416.2 2018-05-10
CN201810445416.2A CN108461369B (zh) 2018-05-10 2018-05-10 双点束扫描x射线发生器
CN201810445465.6 2018-05-10

Publications (1)

Publication Number Publication Date
WO2019214710A1 true WO2019214710A1 (zh) 2019-11-14

Family

ID=68467803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086399 WO2019214710A1 (zh) 2018-05-10 2019-05-10 双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法

Country Status (1)

Country Link
WO (1) WO2019214710A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795826B (zh) * 2020-07-03 2023-03-11 日商歐姆龍股份有限公司 X射線檢查裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188747B1 (en) * 1998-01-24 2001-02-13 Heimann Systems Gmbh X-ray generator
CN101965623A (zh) * 2008-03-11 2011-02-02 皇家飞利浦电子股份有限公司 圆形层析摄影合成x射线管
CN103235346A (zh) * 2013-04-18 2013-08-07 深圳黎明镒清图像技术有限公司 可进行局部扫描的x射线人体透视安检系统
CN108414546A (zh) * 2018-05-10 2018-08-17 同方威视技术股份有限公司 透射检查设备和检查方法
CN108447757A (zh) * 2018-05-10 2018-08-24 同方威视技术股份有限公司 双扇形束x射线发生器
CN108459354A (zh) * 2018-05-10 2018-08-28 同方威视技术股份有限公司 透视扫描设备
CN108461369A (zh) * 2018-05-10 2018-08-28 同方威视技术股份有限公司 双点束扫描x射线发生器
CN108776148A (zh) * 2018-05-10 2018-11-09 同方威视技术股份有限公司 人体透视复合检查系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188747B1 (en) * 1998-01-24 2001-02-13 Heimann Systems Gmbh X-ray generator
CN101965623A (zh) * 2008-03-11 2011-02-02 皇家飞利浦电子股份有限公司 圆形层析摄影合成x射线管
CN103235346A (zh) * 2013-04-18 2013-08-07 深圳黎明镒清图像技术有限公司 可进行局部扫描的x射线人体透视安检系统
CN108414546A (zh) * 2018-05-10 2018-08-17 同方威视技术股份有限公司 透射检查设备和检查方法
CN108447757A (zh) * 2018-05-10 2018-08-24 同方威视技术股份有限公司 双扇形束x射线发生器
CN108459354A (zh) * 2018-05-10 2018-08-28 同方威视技术股份有限公司 透视扫描设备
CN108461369A (zh) * 2018-05-10 2018-08-28 同方威视技术股份有限公司 双点束扫描x射线发生器
CN108776148A (zh) * 2018-05-10 2018-11-09 同方威视技术股份有限公司 人体透视复合检查系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795826B (zh) * 2020-07-03 2023-03-11 日商歐姆龍股份有限公司 X射線檢查裝置

Similar Documents

Publication Publication Date Title
US9285325B2 (en) Personnel screening system
US9291741B2 (en) Personnel screening system
US9442213B2 (en) Method of electron beam transport in an X-ray scanner
US7476023B1 (en) Multiple energy x-ray source assembly
US7505562B2 (en) X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams
US8953746B2 (en) Multi-cathode X-ray tubes with staggered focal spots, and systems and methods using same
WO2015196857A1 (zh) 探测器装置、双能ct系统和使用该系统的检测方法
US20030031295A1 (en) Arrangement for measuring the pulse transmission spectrum of x-ray quanta elastically scattered in a scanning area for containers
AU2011227507A1 (en) Personnel screening system
CN108318512A (zh) 用于人体的透射-背散射组合检测设备和检测方法
CN106996939A (zh) 断层扫描检查装置
WO2019214710A1 (zh) 双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法
US7424094B2 (en) Gamma radiation imaging system for non-destructive inspection of the luggage
US8284901B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled x-ray tube
CN106645232B (zh) 安全检查系统
US8284900B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
CN106596601B (zh) 安全检查系统
CN208607167U (zh) 用于人体的检查设备
US11467105B2 (en) Combined scanning x-ray generator, composite inspection apparatus, and inspection method for hybrid
WO2014182685A1 (en) Electron beam transport in an x-ray scanner
CN211086641U (zh) 一种x射线透射和背散射一体化检测装置
US8385507B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
CN108461369A (zh) 双点束扫描x射线发生器
WO2019214674A1 (zh) 笔形束x射线管、双飞点x射线管、背散射检测设备和系统
CN114518606B (zh) 多通道射线检查设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800866

Country of ref document: EP

Kind code of ref document: A1