WO2018184580A1 - 断层扫描检查装置 - Google Patents

断层扫描检查装置 Download PDF

Info

Publication number
WO2018184580A1
WO2018184580A1 PCT/CN2018/081998 CN2018081998W WO2018184580A1 WO 2018184580 A1 WO2018184580 A1 WO 2018184580A1 CN 2018081998 W CN2018081998 W CN 2018081998W WO 2018184580 A1 WO2018184580 A1 WO 2018184580A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
radiation
opening
source
tomographic
Prior art date
Application number
PCT/CN2018/081998
Other languages
English (en)
French (fr)
Inventor
张颜民
丛鹏
向新程
裘伟东
刘金汇
黄毅斌
童建民
郭肖静
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018184580A1 publication Critical patent/WO2018184580A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1013Different kinds of radiation or particles electromagnetic radiation gamma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Definitions

  • the invention belongs to the technical field of safety inspection, and in particular relates to a tomographic inspection device.
  • the container inspection system can check the suspicious objects in the container by means of radiation imaging, and can be used for security inspections by customs and other units.
  • Existing container radiation imaging detection systems can only give one or two projection images in a fixed direction, and the direction cannot be changed; when two directions are required, two sets of radiation sources and detectors are needed, resulting in a significant increase in cost.
  • the container CT (Computed Tomography) inspection device can give three-dimensional images and can perform material identification, which can greatly reduce the false detection rate.
  • the current container CT (Computed Tomography) inspection device has a problem of large volume and quality.
  • Embodiments of the present invention provide a tomography inspection apparatus that can have a small volume.
  • a tomographic inspection apparatus for performing a safety inspection on a container, comprising: a fixing bracket for use as a mounting base, comprising a fixing portion; a rotating bracket having a transparent detecting passage, the rotating bracket being rotatable a rotating portion disposed on the fixed bracket, the rotating shaft of the rotating bracket is coaxial with the detecting channel; the radiation source device is disposed on the rotating bracket for providing the detecting radiation having a scanning range of 90 degrees to 135 degrees; the detector array includes multiple a detector, a plurality of detectors are arranged annularly on the rotating bracket centering on a rotating shaft of the rotating bracket, and a radiation receiving window of each of the plurality of detectors is aligned with a radiation center of the radiation source device; a driving mechanism, It is used to drive the rotary bracket to rotate on the fixed bracket.
  • the detector array is arranged on the swivel bracket to be greater than or equal to one-half of the circumference of the swivel bracket.
  • the driving mechanism is a direct drive motor, including an inner stator and an outer rotor, and the inner stator includes a transparent inner cavity, and the inner cavity is coaxial with the detecting passage of the rotary bracket
  • the inner stator is fixed to the fixed bracket, the outer rotor is rotatable around the inner stator, and the rotary bracket is coaxially connected to the outer rotor.
  • the inner stator is connected to the fixing portion of the fixing bracket through the end surface, and/or the rotating bracket is connected to the end surface of the outer rotor.
  • the fixing portion of the fixing bracket is annular and has the same diameter as the inner stator.
  • the ray source device comprises: a ray source for providing the detecting ray; a shielding body having a chamber and an opening communicating with the chamber, the ray source being accommodated in the cavity a chamber for the passage of radiation from the source; a source of radiation for driving the source of radiation to move between the first position and the second position within the chamber; wherein the source is aligned with the opening when the source is in the first position When in the second position, it is offset from the opening.
  • the shielding body further includes a shielding door capable of closing the opening.
  • the opening is slit-shaped such that the radiation radiated through the opening forms a scanning surface.
  • the opening angle of the opening is between 90 degrees and 135 degrees.
  • the ray source is an isotope ray source.
  • the ray source is one of 60Co, 137Cs, 192Ir, and 75Se.
  • the radiation source device has a large ray opening angle, so that the scanning range of the ray can be increased, so that the diameter of the slewing bracket can be reduced.
  • FIG. 1 is a perspective view of a tomographic inspection apparatus according to an embodiment of the present invention.
  • Figure 2 is a front elevational view of the tomography inspection apparatus shown in Figure 1;
  • Fig. 3 is a left side view of the tomographic inspection apparatus shown in Fig. 2;
  • Figure 4 is a front elevational view of the radiation source device of Figure 1;
  • Figure 5 is a plan view of the radiation source device of Figure 4.
  • Fig. 6 is a cross-sectional view taken along line A-A of Fig. 4;
  • the embodiment of the invention provides a tomographic scanning inspection device, which uses a radiation imaging technology to perform tomographic imaging on a container, and can be used for security inspection operations in customs and other places.
  • FIG. 1 is a perspective view of a tomographic inspection apparatus according to an embodiment of the present invention
  • FIG. 2 is a front view of the tomographic inspection apparatus shown in FIG. 1
  • FIG. The left side view of the tomography inspection device is also shown in Fig. 1 .
  • a transfer device for transporting an object to be detected.
  • the tomographic inspection apparatus includes a fixed bracket 100, a swing bracket 200, a radiation source device 300, a detector array 400, and a drive mechanism.
  • the fixing bracket 100 is used as a mounting base, and includes a fixing portion 110.
  • the slewing bracket 200 has a transparent detecting passage 210.
  • the slewing bracket 200 is rotatably disposed on the fixing portion 110 of the fixing bracket 100.
  • the rotating shaft of the slewing bracket 200 is coaxial with the detecting passage 210.
  • the ray source device 300 is disposed on the slewing bracket 200 for providing a detection ray having a scanning range of 90 degrees to 135 degrees.
  • the detector array 400 includes a plurality of detectors, such as a detector 410, a detector 420, and a detector 430.
  • the plurality of detectors are annularly arranged on the rotary bracket 200 centering on the rotation axis of the rotary bracket 200, and are included in the plurality of detectors.
  • the radiation receiving window of each detector is aligned with the radiation center of the source device 300.
  • the drive mechanism is used to drive the swivel bracket 200 to rotate on the fixed bracket 100.
  • the detector array 400 is for receiving radiation emitted by the radiation source device 300, and the radiation source device 300 has a large radiation angle. Therefore, when the radiation source device 300 is disposed on the ring of the rotary bracket 200, the radiation can cover the detection channel 210. Most of the cross-section does not require biasing the source device 300 to the outside of the swivel mount 200, which can reduce the space occupied by the device.
  • the radiation source device 300 has a large radiation angle, when the swing bracket 200 is provided with a small diameter, the radiation can cover most of the cross section of the detecting passage 210, so that the diameter of the entire swing bracket 200 can be small, thereby bringing The weight reduction and the reduction of the required driving force.
  • the fixing bracket 100 includes two parts of a base and a fixing portion 110.
  • the base is used to form a stable support, and the fixing portion 110 is used to connect and fix other structures in the tomographic inspection apparatus.
  • the fixing portion 110 is an annular structure, and an outer peripheral surface of the annular structure is connected to the base, and a space in the ring is used for the object to be detected to pass.
  • the annular structure of the fixed portion 110 lies in a vertical plane, i.e., the axis of the annular structure is parallel to the horizontal plane.
  • the drive mechanism is a direct drive motor 500.
  • the direct drive motor 500 includes an inner stator and an outer rotor, and the outer rotor is sleeved on the outer circumferential surface of the inner stator to be rotatable around the inner stator.
  • the inner stator includes a transparent inner cavity that is coaxial with the detection passage of the swivel bracket.
  • the inner cavity diameter of the inner stator is equivalent to the inner diameter of the annular structure of the fixed portion 110, and is equivalent to the inner diameter of the detecting passage 210 of the rotary bracket 200 for the object to be detected to pass through.
  • the direct drive motor 500 is not only a component that supplies power, but also serves as a transmission component to connect and drive the rotary bracket 200 to rotate.
  • the inner stator is fixed to the fixing portion 110 of the fixing bracket 100 through its end surface, and the swing bracket 200 is fixed to the end surface of the outer rotor of the direct drive motor 500.
  • the rotary bracket 200 is directly driven to rotate as the outer rotor rotates around the inner stator.
  • the direct drive motor 500 does not require an additional transmission to drive the swivel bracket 200, which itself provides a large and stable torque.
  • the rotary bracket 200 has a ring structure, and the ring cavity is used for the object to be detected, one end surface is fixed on the end surface of the outer rotor of the direct drive motor 500, and the other end surface is used for mounting the fixed detector array. 400.
  • the diameter of the rotary bracket 200 is three meters.
  • the detector array 400 includes a plurality of detectors for receiving radiation from the source device 300.
  • the detector array 400 includes a plurality of detectors.
  • the array of the detector array 400 on the swing bracket 200 is greater than or equal to one-half of the circumference of the swing bracket 200, so that the radiation range can substantially enclose the swing bracket. Inner section of the ring.
  • the detector is a single-layer or multi-layer high-pressure gas-filled ionization chamber detector, a scintillation array detector or a semiconductor array detector or an area array detector.
  • the position of the detector unit is centered on the center of rotation of the rotary bracket, and the detector receives the radiation.
  • the window is oriented towards the center of the source, ie the detector window is perpendicular to the ray.
  • the radiation receiving window 431 in the detector 430 is perpendicular to the radiation emitted by the source device 300.
  • the source device 300 is furthest from the detector 420 at the intermediate position of the array of detector arrays 400, and is slightly larger in size than the diameter of the annular support, while the remaining detector units are closer to the source and the detectors at the edges are closest to the source.
  • the ray intensity is inversely proportional to the square of the distance, so that the reduction in the distance between the ray source device 300 and the detector array 400 causes the detector signal to increase.
  • FIG. 4 is a front view of the radiation source device of FIG. 1
  • FIG. 5 is a plan view of the radiation source device of FIG. 4
  • FIG. 6 is a cross-sectional view taken along line A-A of FIG.
  • the radiation irradiation device includes a shield 310 and a radiation source 320 disposed in a chamber inside the shield 310.
  • the shield 310 has an opening 311 communicating with the chamber, the radiation radiated through the opening 311 forms a scanning surface, and the radiation irradiation device
  • the radiation source 320 is moved relative to the opening 311 by a moving mechanism such that the radiation irradiation device is configured to align or deviate from the opening 311 by the radiation source 320 to effect opening or closing of the radiation irradiation device shutter (ie, outward emission of the detection radiation) Or stop emitting detection rays).
  • the shield 310 is made of a material having a shielding property, which has a better shielding effect and a higher strength.
  • it can be made of high-density metals or alloys such as lead, tungsten, lead alloy or tungsten alloy, uranium 238.
  • the main body has an elliptical spherical structure, and can be mounted on the radiation irradiation device mounting seat of the detecting channel, and has a chamber for accommodating the radiation source 320 therein, and the opening 311 provided on the shielding body 310 can be selected to be circular according to the actual irradiation requirement.
  • the opening is 311.
  • the opening 311 can be directly formed on the main body of the shielding body 310.
  • the position of the opening 311 can be determined according to the position of the radiation source 320 in the chamber. It suffices that the radiation source 320 has a first position that can be aligned with the opening 311 or a second position that is offset from the opening 311.
  • the opening 311 of the embodiment of the present invention is formed on the elliptical spherical structure, when the opening 311 is in the shape of a slit, it can maximize the angle of the opening on the shield 310.
  • the radiation illuminating device can have a larger opening angle while ensuring a good shielding effect, that is, exhibiting a wider radiation area. Therefore, it can be arranged as close as possible to the detection object, reducing the space occupied by the entire inspection device.
  • the opening 311 when the opening 311 is slit-shaped and because of its own sufficient thickness, the opening 311 can also be used as a collimator of the radiation irradiation device for extracting the detection beam and shaping and sizing the radiation.
  • the ray is collimated to a larger fan-shaped area with the ray source 320 as the apex, which can involve the entire detecting object, so that not only the ray provided by the ray source 320 is not repeated, not leaking and no dead angle,
  • the detection ray can be strictly aligned with the corresponding detector (not shown), the detection efficiency and the quality of the detected image are improved, so that the object to be measured can be detected more accurately.
  • the shield 310 can prevent radiation emitted in the chamber from leaking from other portions than the opening 311, providing a good shielding space for the chamber to prevent radiation leakage.
  • the structure of the shielding body 310 is not limited thereto.
  • the shielding body 310 in this embodiment adopts an elliptical spherical structure, and in other embodiments, it may also be a square or a cylinder. Or other housing structure as long as its thickness can meet the shielding needs.
  • the radiation source 320 is mounted in the chamber through the mounting portion, and thus the chamber inside the shield body 310 is correspondingly disposed according to the shape of the mounting portion of the radiation source 320.
  • the first position and the second position are formed according to the mating state of the radiation source 320 and the opening 311 with each other.
  • the moving mechanism can move the radiation source 320 relative to the opening 311 between the first position and the second position.
  • the present invention is not limited to the type of the radiation source 320.
  • the radiation source 320 may be, for example, an X-ray source or a gamma-ray source.
  • the X-ray source includes an X-ray machine and an electron accelerator;
  • the ⁇ -ray source includes an isotope ray source, and specifically, may include: 60 Co, 137 Cs, 192 Ir, 75 Se, preferably 60 Co, which has high energy and can be matched with the opening.
  • the larger opening angle provided by 311 is to form a strong fan-shaped scanning surface, and the object to be tested is more accurately scanned and detected.
  • the shield further includes a screen door that is capable of closing the opening.
  • the screen door may have a plate body that matches the contour shape of the shield body so as to be slidable on the surface of the shield body to cover the opening.
  • the partial shield on one side of the opening may be provided in a split type and movable in the width direction of the slit of the opening, thereby achieving closure and opening of the slit.
  • the moving mechanism is coupled to a source 320 that drives the source 320 to reciprocate linearly to achieve its relative opening in a first or second position.
  • the chamber of the shielding body is a cylindrical through hole disposed perpendicular to the opening 311, and the radiation source 320 is connected through both ends.
  • the mounting rod 321 is slidably mounted in the chamber, and the mounting rod 321 is made of a shielding material in order to ensure that the radiation does not leak from the through hole.
  • the radiation source 320 can of course be engaged with the mounting rod 321 by other connection means.
  • the moving mechanism is a cylinder 330.
  • the cylinder 330 is connected to the mounting rod 321 or is indirectly coupled with the mounting rod 321 through a connecting rod.
  • the present invention does not limit the connection between the cylinder 330 and the mounting rod 321 as long as it can be realized.
  • a detachable fixed connection between each other is sufficient.
  • the control cylinder 330 is activated to drive the mounting rod 321 to reciprocate linearly in its axial direction in the chamber, so that the radiation source 320 can be moved to switch between the first position and the second position.
  • the cross-section of the mounting rod 321 may also be square, rectangular or other shape, as long as it can cooperate with the chamber to achieve linear reciprocating motion.
  • the moving mechanism can also be a hydraulic cylinder or an electric push rod or an electromagnet.
  • the driving form of the mounting rod 321 of the radiation source 320 by the hydraulic cylinder and the electric push rod is similar to that of the cylinder 330, and therefore will not be described again.
  • the present invention is not limited to the above-mentioned moving mechanism, as long as the driving force can be provided to drive the mounting rod 321 to perform linear reciprocating motion, so that the radiation source 320 can be aligned or deviated from the opening.
  • other motor-driven mechanisms may also be employed as the driving mechanism of the radiation source 320.
  • an indirect driving manner may also be employed.
  • the motor and the rack structure may be used to provide linear motion to the mounting rod 321 by the motor.
  • the driving force is that the rack is connected to the mounting rod 321 and the motor is rotated by the driving gear to realize a linear reciprocating motion of the rack meshing with the gear, thereby driving the mounting rod 321 to perform linear reciprocating motion.
  • the driving mechanism can also use the motor to drive the screw nut to move, so that the mounting rod 321 connected thereto can drive the radiation source 320 to linearly reciprocate.
  • the driving force is not necessarily provided by the motor.
  • other power-providing mechanisms may be selected or replaced by manual operations, wherein the motor may be directly driven or connected to the speed reducer for driving.
  • the radiation irradiation device of the present invention can effectively increase the opening and closing speed of the shutter by setting a separate shutter opening or closing structure outside the device as compared with the conventional radiation irradiation device, while avoiding the conventional shutter opening or closing structure to the device.
  • the impact force brought by itself thus prolonging the service life of the radiation irradiating device.
  • the opening speed of the shutter is fast, the radiation opening angle can be controlled.
  • the driver can quickly control the shutter opening when the vehicle is driven into the detection channel, and the vehicle is removed from the outside of the driving room. After the body and carrying items are quickly illuminated, the vehicle can be driven away from the detection channel, which can save the drag system, simplify the structure of the safety detection device and save costs.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种断层扫描检查装置,用于对集装箱进行安全检查,包括:固定支架(100),用于作为安装基体,包括固定部(110);回转支架(200),具有通透的检测通道,回转支架(200)可自转地设置于固定支架(100)的固定部(100),回转支架(200)的旋转轴与检测通道同轴;射线源装置(300),设置于回转支架(200),用于提供具有90度至135度扫描范围的检测射线;探测器阵列(400),包括多个探测器,多个探测器以回转支架(200)的旋转轴为中心环形排布于回转支架(200),且多个探测器中的每个探测器的射线接收窗口均对准射线源装置(300)的放射中心;驱动机构,用于驱动回转支架(200)在固定支架(100)上自转。

Description

断层扫描检查装置 技术领域
本发明属于安全检查技术领域,尤其涉及一种断层扫描检查装置。
背景技术
集装箱检查系统能够通过辐射成像的方式检查集装箱内的可疑物,可用于海关等单位的安全检查。现有集装箱辐射成像检测系统都只能给出一到两个固定方向的投影图像,且方向不能改变;当需要两个方向投影,就需要两套射线源和探测器,导致成本的大大增加。而集装箱CT(Computed Tomography)检查装置能够给出三维图像,并能进行物质识别,从而可以大大降低误检率。但目前的集装箱CT(Computed Tomography)检查装置存在体积和质量巨大的问题。
发明内容
本发明实施例提供一种断层扫描检查装置,可具有较小的体积。
第一方面,提供一种断层扫描检查装置,用于对集装箱进行安全检查,包括:固定支架,用于作为安装基体,包括固定部;回转支架,具有通透的检测通道,回转支架可自转地设置于固定支架的固定部,回转支架的旋转轴与检测通道同轴;射线源装置,设置于回转支架,用于提供具有90度至135度扫描范围的检测射线;探测器阵列,包括多个探测器,多个探测器以回转支架的旋转轴为中心环形排布于回转支架,且多个探测器中的每个探测器的射线接收窗口均对准射线源装置的放射中心;驱动机构,用于驱动回转支架在固定支架上自转。
在第一种可能的实现方式中,探测器阵列在回转支架上的排布范围大于等于回转支架的二分之一圆周。
结合上述可能的实现方式,在第二种可能的实现方式中,驱动机构为直驱电机,包括内定子和外转子,内定子包括通透的内腔,内腔与回转支架的检测通道同轴,内定子固定于固定支架,外转子能够绕内定子转动,回转支架同轴地连接于外转子。
结合上述可能的实现方式,在第三种可能的实现方式中,内定子通过端面连接于固定支架的固定部,并且/或者,回转支架连接于外转子的端面。
结合上述可能的实现方式,在第四种可能的实现方式中,固定支架的固定部为环状,直径与内定子的直径相同。
结合上述可能的实现方式,在第五种可能的实现方式中,射线源装置包括:射线源,用于提供检测射线;屏蔽体,具有腔室以及与腔室连通的开口,射线源容纳于腔室,开口用于供射线源的射线通过;射线源驱动,用于驱动射线源在腔室内的第一位置和第二位置之间移动;其中,射线源位于第一位置时可对准开口,位于第二位置时偏离开口。
结合上述可能的实现方式,在第六种可能的实现方式中,屏蔽体还包括屏蔽门,该屏蔽门能够关闭开口。
结合上述可能的实现方式,在第七种可能的实现方式中,开口呈狭缝状,以使通过开口辐射的射线形成扫描面。
结合上述可能的实现方式,在第八种可能的实现方式中,开口的张角在90度至135度之间。
结合上述可能的实现方式,在第九种可能的实现方式中,射线源为同位素射线源。
结合上述可能的实现方式,在第十种可能的实现方式中,射线源为60Co、137Cs、192Ir、75Se中的其中一种。
本发明实施例提供的断层扫描检查装置,射线源装置具有较大的射线张角,因此可以增大射线的扫描范围,使得回转支架的直径得以减小。
使用直驱式外转子电机,省去了传动机构,进一步降低的断层扫描检查装置的质量和体积。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明一个实施例提供的断层扫描检查装置的轴测图;
图2为图1所示的断层扫描检查装置的主视图;
图3为图2所示的断层扫描检查装置的左视图。
图4为图1中射线源装置的主视图;
图5为图4中射线源装置的俯视图;
图6为图4的A-A剖视图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本发明实施例提供了一种断层扫描检查装置,利用辐射成像技术对集装箱进行断层扫描成像,可用于海关等场所的安检作业。
参考图1至图3,图1为根据本发明一个实施例提供的断层扫描检查装置的轴测图,图2为图1所示的断层扫描检查装置的主视图,图3为图2所示的断层扫描检查装置的左视图。图1中还示出了用于传送待检测物的传送装置。
如图1至图3所示,断层扫描检查装置包括固定支架100、回转支架200、射线源装置300、探测器阵列400和驱动机构。固定支架100用于作为安装基体,包括固定部110。回转支架200具有通透的检测通道210,回转支架200可自转地设置于固定支架100的固定部110,回转支架200的旋转轴与检测通道210同轴。射线源装置300设置于回转支架200,用于提供具有90度至135度扫描范围的检测射线。探测器阵列400包括探测器410、探测器420和探测器430等多个探测器,多个探测器以回转支架200的旋转轴为中心环形排布于回转支架200,且多个探测器中的每个探测器的射线接收窗口均对准射线源装置300的放射中心。驱动机构用于驱动回转支架200在固定支架100上自转。探测器阵列400用于接收由放射源装置300发出的射线,放射源装置300具有较大的辐射角度,因此当放射源装置300设置在回转支架200的环上时,射线即可覆盖检测通道210的大部分截面,不需要将放射源装置300偏置至回转支架200的外部,可以减小装置占用的空间。
另外,由于放射源装置300具有较大的辐射角度,回转支架200设置较小的直径时也能使射线覆盖检测通道210的大部分截面,使得整个回转支架200的直径可以较小,从而带来重量的减轻,以及所需驱动力的减小。
固定支架100包括底座和固定部110两部分。底座用于形成稳定的支撑,固定部110用于连接和固定断层扫描检查装置中的其他结构。本实施例中,固定部110为环状结构,环状结构的外周面连接于底座上,环内的空间用于供待检测物通过。当断层扫描检查装置位于工作位置时,固定部110的环状结构位于竖直平面内,即,环状结构的轴线平行于水平面。
本实施例中,驱动机构为直驱电机500。直驱电机500包括内定子和外转子,外转子套设于内定子外圆周面上,能够绕内定子转动。内定子包括通透的内腔,内腔与回转支架的检测通道同轴。内定子的内腔直径与固定部110的环状结构的内径相当,同时与回转支架200的检测通道210内径相当,供待检测物穿过。
本实施例中,直驱电机500不仅仅是提供动力的部件,同时还作为传动部件连接和驱动回转支架200转动。具体地,内定子通过其端面固定于 固定支架100的固定部110上,回转支架200则固定在直驱电机500的外转子的端面上。当外转子环绕内定子转动时直接驱动回转支架200转动。
直驱电机500不需要额外的传动机构来驱动回转支架200,电机本身可提供较大并且稳定的转矩。
本实施例中,回转支架200为圆环结构,其环内腔用于供待检测物通过,一个端面固定在直驱电机500的外转子的端面上,另一个端面用于安装固定探测器阵列400。本实施例中,回转支架200的直径为三米。
探测器阵列400包括多个探测器,用于接收放射源装置300的射线。本实施例中,探测器阵列400包括多个探测器,探测器阵列400在回转支架200上的排布范围大于等于回转支架200的二分之一圆周,使得射线范围能够基本包络回转支架的环内截面。
探测器为单层或多层的高压充气电离室探测器、闪烁阵列探测器或半导体阵列探测器或面阵探测器,探测器单元位置以回转支架的回转中心为中心布置,探测器的射线接收窗口朝向射线源的中心位置,即探测器窗口垂直于射线。如,探测器430中射线接收窗口431与放射源装置300发出的射线垂直。射线源装置300与探测器阵列400的阵列中间位置的探测器420距离最远,大小略大于环形支架的直径,而其余探测器单元与源距离越来越近,边缘的探测器距离源最近。
射线强度与距离平方成反比,因此射线源装置300、探测器阵列400之间距离的缩小带来探测器信号增大。例如,一种设计,射线源装置到探测器的距离均为3500,而根据本发明实施例,探测器420与放射源装置300之间的距离是3000;探测器410和探测器430与放射源装置300的距离更小。因此,与上述的一种设计相比,采用同样的射线源,射线强度之比为3500×3500/3000×3000=1.44,增大44%。而探测器410和探测器430与放射源装置300的距离为1830,射线强度之比为3500×3500/1830×1830=3.87,射线强度则为原设计的3.87倍。
图4为图1中射线源装置的主视图,图5为图4中射线源装置的俯视图,图6为图4的A-A剖视图。
射线照射装置包括屏蔽体310和设置于屏蔽体310内部的腔室中的射 线源320,屏蔽体310上具有与腔室连通的开口311,通过开口311辐射的射线形成扫描面,并且射线照射装置通过移动机构使射线源320相对于该开口311运动,使得所述射线照射装置被构造成为:通过射线源320对准或者偏离开口311实现射线照射装置快门的开启或者关闭(即向外发射检测射线或者停止发射检测射线)。
根据本发明的一个实施例,具体地,屏蔽体310采用具有屏蔽性能的材料制成,其具有较好的屏蔽效果和较高的强度。例如:可以通过铅、钨、铅合金或钨合金、铀238等高密度金属或者合金制成。其主体呈椭圆形球体结构,可安装于检测通道的射线照射装置安装座上,内部具有容纳射线源320的腔室,并且屏蔽体310上设置的开口311根据实际照射需要可以选择开设为圆形孔或者呈狭缝状开口,示例性地,如图1或图2所示,可以在屏蔽体310主体上直接开设开口311,当然开口311的位置可以根据腔室中射线源320的位置确定,只要能够满足射线源320具有可对准开口311的第一位置或者偏离开口311的第二位置即可。
由于本发明实施例的开口311开设于椭圆形球体结构上,当开口311为狭缝状时,其在屏蔽体310上可最大化地选择开设角度。使得射线照射装置在保证良好的屏蔽效果的同时可具有较大的张角,即呈现较宽的辐射面积。因此可以布置得尽可能靠近检测物体,减小整个检测设备所占的空间。在一些实施例中,当开口311为狭缝状,又因其本身具有足够厚度,还可以使用开口311作为射线照射装置的准直器,用于引出检测射线并对检测射线进行形状和大小的约束,使射线被准直成以射线源320为顶点的、能够涉及到整个检测物体的较大的扇形面积,这样不仅能够保证射线源320提供的射线不重复、不漏空并且无死角,又能使检测射线与对应的探测器(图未示)严格对准,提高检测效率以及呈现的检测图像质量,从而能够更准确地对待测物体进行检测。
屏蔽体310可以防止腔室中发射的射线从除开口311之外的其他部分泄露,为腔室提供良好的屏蔽空间防止发生射线泄露。当然,上述屏蔽体310的结构并不限于此,为保证其厚度均匀分布并便于安装,本实施例中的屏蔽体310采用椭圆球体形结构,在其它实施例中其还可以为正方体、 圆柱体或者其它壳体结构,只要其厚度能够满足屏蔽需要即可。
根据本发明的实施例,射线源320通过安装部安装于腔室中,因此上述屏蔽体310内部的腔室根据射线源320安装部的形状被相应地设置。根据射线源320和开口311彼此的配合状态形成第一位置和第二位置。而上述移动机构则可以使射线源320相对于开口311在第一位置和第二位置之间进行运动。
当然,本发明对于射线源320的类型不做限制,根据本发明的实施例,射线源320例如可以为:X射线源或者γ射线源。其中X射线源包括X光机和电子加速器;γ射线源包括同位素射线源,具体地,可以包括: 60Co、 137Cs、 192Ir、 75Se,优选采用 60Co,其能量高,可配合开口311提供的较大张角以形成较强的扇形扫描面,对待测物体进行更为精准的扫描检测。
在可选实施例中,屏蔽体还包括屏蔽门,该屏蔽门能够关闭开口。屏蔽门可以为具有与屏蔽体轮廓形状相匹配的板体,从而可以在屏蔽体表面滑动以覆盖开口。或者将开口一侧的部分屏蔽体设置为分体式并且可在开口的缝隙的宽度方向上移动,从而实现缝隙的闭合和打开。
为更好地理解本发明的射线源照射装置如何实现快门的开启和关闭,以下将根据图6示例性地对本发明实施例中的几种射线照射装置进行说明。
请参见图6,根据本发明的一个实施例,具体地,移动机构与射线源320连接,驱动射线源320进行直线往复运动,以实现其相对开口处于第一位置或者第二位置。具体地,如图所示,为保证射线源320在直线往复运动中的平稳性以及安全性,屏蔽体的腔室为垂直于开口311设置的圆柱形通孔,射线源320通过两端连接的安装杆321可滑动安装于腔室中,并且为保证射线不会从通孔中泄漏,安装杆321采用屏蔽材料制成。示例性地,通过在射线源320包壳两端设置凹接部与安装杆321的凸接部配合连接,当然射线源320还可以通过其他连接方式与安装杆321配合。
上述移动机构为气缸330,气缸330与安装杆321连接传动,或者通过连接杆与安装杆321间接配合传动,当然本发明对气缸330与安装杆321之间的连接方式不做限制,只要能够实现彼此之间可拆卸的固定连接即可。控制气缸330启动,驱动安装杆321在腔室中沿其轴向方向进行直 线往复运动,即可实现射线源320移动,在第一位置和第二位置之间切换。在一些实施例中,安装杆321的横截面还可以为正方形、长方形或者其他形状,其只要与腔室配合可以实现直线往复运动即可。
并且移动机构还可以为液压缸或者电动推杆或者电磁铁,当然液压缸和电动推杆对射线源320安装杆321的驱动形式与气缸330类似,故不再赘述。当然本发明对于上述移动机构不做限制,只要能够提供驱动力驱动安装杆321进行直线往复运动,实现射线源320可以对准或者偏离开口即可。在其他的实施例中,还可以采用其他电动机构作为射线源320的驱动机构,例如还可以采用非直接驱动方式,示例性地,可以通过电机带动齿轮和齿条结构为安装杆321提供直线运动的驱动力,其中,齿条与安装杆321连接,电机通过驱动齿轮转动,实现与齿轮啮合的齿条进行直线往复运动,从而带动安装杆321进行直线往复运动。再例如,驱动机构还可以采用电机驱动丝杠螺母运动,从而实现与其连接的安装杆321带动射线源320进行直线往复运动。当然上述驱动机构中不一定要由电机提供驱动力,在其他实施例中还可以选择其他可提供动力的机构或者由人工操作替代,其中,电机可以直接驱动也可以连接减速器进行驱动。
通过射线源320在腔室中的直线往复运动,实现在第一位置对准开口311或者在第二位置偏离开口311控制快门的开启和关闭,由于射线源320以及安装杆321的体积小、质量轻,使本发明的射线照射装置相比以往射线照射装置中通过在装置外部设置单独的快门开启或者关闭结构,可以有效提高快门的开启和关闭速度,同时避免以往的快门开启或者关闭结构给装置本身带来的冲击力,从而延长射线照射装置的使用寿命。并且由于快门的开启速度快,辐射张角可以控制,因此示例性地,在对车辆进行检测时,可以在驾乘人员驾驶车辆进入检测通道时,快速控制快门开启,在对除驾驶室外的车体以及携带物品进行快速照射后,即可使车辆驶离检测通道,能够省去拖动系统,简化安全检测设备的结构并节省成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可 轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种断层扫描检查装置,用于对集装箱进行安全检查,其特征在于,包括:
    固定支架,用于作为安装基体,包括固定部;
    回转支架,具有通透的检测通道,所述回转支架可自转地设置于所述固定支架的固定部,所述回转支架的旋转轴与所述检测通道同轴;
    射线源装置,设置于所述回转支架,用于提供具有90度至135度扫描范围的检测射线;
    探测器阵列,包括多个探测器,所述多个探测器以所述回转支架的旋转轴为中心环形排布于所述回转支架,且所述多个探测器中的每个探测器的射线接收窗口均对准所述射线源装置的放射中心;
    驱动机构,用于驱动所述回转支架在所述固定支架上自转。
  2. 根据权利要求1所述的断层扫描检查装置,其特征在于,所述探测器阵列在所述回转支架上的排布范围大于等于所述回转支架的二分之一圆周。
  3. 根据权利要求1或2所述的断层扫描检查装置,其特征在于,所述驱动机构为直驱电机,包括内定子和外转子,所述内定子包括通透的内腔,所述内腔与所述回转支架的检测通道同轴,所述内定子固定于所述固定支架,所述外转子能够绕所述内定子转动,所述回转支架同轴地连接于所述外转子。
  4. 根据权利要求3所述的断层扫描检查装置,其特征在于,所述内定子通过端面连接于所述固定支架的固定部,并且/或者,所述回转支架连接于所述外转子的端面。
  5. 根据权利要求3所述的断层扫描检查装置,其特征在于,所述固定支架的固定部为环状,直径与所述内定子的直径相同。
  6. 根据权利要求1-5任一所述的断层扫描检查装置,其特征在于,所述射线源装置包括:
    射线源,用于提供检测射线;
    屏蔽体,具有腔室以及与所述腔室连通的开口,所述射线源容纳于所述腔室,所述开口用于供所述射线源的射线通过;
    射线源驱动,用于驱动所述射线源在所述腔室内的第一位置和第二位置之间移动;
    其中,所述射线源位于所述第一位置时可对准所述开口,位于所述第二位置时偏离所述开口。
  7. 根据权利要求8所述的断层扫描检查装置,其特征在于,所述屏蔽体还包括屏蔽门,该屏蔽门能够关闭所述开口。
  8. 根据权利要求7所述的断层扫描检查装置,其特征在于,所述开口呈狭缝状,以使通过所述开口辐射的射线形成扫描面。
  9. 根据权利要求6至8中任一项所述的断层扫描检查装置,其特征在于,所述开口的张角在90度至135度之间。
  10. 根据权利要求6至8中任一项所述的断层扫描检查装置,其特征在于,所述射线源为同位素射线源。
  11. 根据权利要求6至8中任一项所述的断层扫描检查装置,其特征在于,所述射线源为60Co、137Cs、192Ir、75Se中的其中一种。
PCT/CN2018/081998 2017-04-07 2018-04-04 断层扫描检查装置 WO2018184580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710224645.7 2017-04-07
CN201710224645.7A CN106996939A (zh) 2017-04-07 2017-04-07 断层扫描检查装置

Publications (1)

Publication Number Publication Date
WO2018184580A1 true WO2018184580A1 (zh) 2018-10-11

Family

ID=59434124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081998 WO2018184580A1 (zh) 2017-04-07 2018-04-04 断层扫描检查装置

Country Status (2)

Country Link
CN (1) CN106996939A (zh)
WO (1) WO2018184580A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996939A (zh) * 2017-04-07 2017-08-01 清华大学 断层扫描检查装置
CN108181330A (zh) * 2018-03-07 2018-06-19 中国科学院高能物理研究所 一种用于汽车定损的检测装置
CN108549112A (zh) * 2018-04-24 2018-09-18 貊大卫 一种高速实时x射线计算机断层扫描安检系统
CN109407135A (zh) * 2018-12-05 2019-03-01 北京航星机器制造有限公司 一种ct探测器和ct类安检设备
CN109759738A (zh) * 2019-02-26 2019-05-17 淇淩智能科技(上海)有限公司 一种在线整体焊接质量检测装置及其方法
CN115097535A (zh) * 2021-07-07 2022-09-23 清华大学 检查系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161671A (ja) * 1999-12-06 2001-06-19 Hitachi Medical Corp 医用x線装置
CN201419069Y (zh) * 2008-12-31 2010-03-10 陈宏乔 一种空气净化机
CN102175699A (zh) * 2007-10-30 2011-09-07 清华大学 检查系统、检查方法、ct装置以及探测装置
CN202794067U (zh) * 2012-09-19 2013-03-13 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN105891898A (zh) * 2016-05-30 2016-08-24 清华大学 射线照射装置以及安全检测设备
CN106996939A (zh) * 2017-04-07 2017-08-01 清华大学 断层扫描检查装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779446B (zh) * 2004-11-26 2010-05-05 同方威视技术股份有限公司 一种具有ct断层扫描功能的集装箱检查系统的回转装置
CN207336403U (zh) * 2017-04-07 2018-05-08 清华大学 断层扫描检查装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161671A (ja) * 1999-12-06 2001-06-19 Hitachi Medical Corp 医用x線装置
CN102175699A (zh) * 2007-10-30 2011-09-07 清华大学 检查系统、检查方法、ct装置以及探测装置
CN201419069Y (zh) * 2008-12-31 2010-03-10 陈宏乔 一种空气净化机
CN202794067U (zh) * 2012-09-19 2013-03-13 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN105891898A (zh) * 2016-05-30 2016-08-24 清华大学 射线照射装置以及安全检测设备
CN106996939A (zh) * 2017-04-07 2017-08-01 清华大学 断层扫描检查装置

Also Published As

Publication number Publication date
CN106996939A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2018184580A1 (zh) 断层扫描检查装置
US9086497B2 (en) Multi-view cargo scanner
JP4753602B2 (ja) 静止型コンピュータ断層撮影システム及び方法
US7027554B2 (en) Reduced-size apparatus for non-intrusively inspecting an object
WO2008031313A1 (fr) Dispositif de détection dr/ct multiple pour conteneurs
CN105784737B (zh) 集装箱ct检查系统
US20040218716A1 (en) Portable imaging system method and apparatus
KR101824812B1 (ko) 방사선 조사 장치 및 안전 검사 기기
CN101813642A (zh) 具有三自由度运动控制的显微ct成像设备及其校准方法
US7424094B2 (en) Gamma radiation imaging system for non-destructive inspection of the luggage
EP3041002B1 (en) Ray filter and dual-energy x-ray inspection system
WO2019037488A1 (zh) 射线照射装置以及安全检测设备
CN207336403U (zh) 断层扫描检查装置
CN205809324U (zh) 射线照射装置以及安全检测设备
CN108535294B (zh) 一种用于x射线背散射成像系统的扫描装置
US11467105B2 (en) Combined scanning x-ray generator, composite inspection apparatus, and inspection method for hybrid
CN201602783U (zh) 具有三自由度运动控制的显微ct成像设备
JP6697518B2 (ja) X線円管及び該x線円管を含むx線機器
CN109031441B (zh) 一种x射线背散射扫描仪及扫描方法
CN208189522U (zh) 组合扫描x射线发生器
CN108594317B (zh) 双通道背散射检测设备
WO2019214674A1 (zh) 笔形束x射线管、双飞点x射线管、背散射检测设备和系统
CN108426899B (zh) 复合检查设备和复合检查方法
CN208189521U (zh) 双点束扫描x射线发生器
WO2019214710A1 (zh) 双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780782

Country of ref document: EP

Kind code of ref document: A1