WO2019214674A1 - 笔形束x射线管、双飞点x射线管、背散射检测设备和系统 - Google Patents

笔形束x射线管、双飞点x射线管、背散射检测设备和系统 Download PDF

Info

Publication number
WO2019214674A1
WO2019214674A1 PCT/CN2019/086168 CN2019086168W WO2019214674A1 WO 2019214674 A1 WO2019214674 A1 WO 2019214674A1 CN 2019086168 W CN2019086168 W CN 2019086168W WO 2019214674 A1 WO2019214674 A1 WO 2019214674A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
pencil
anode
ray tube
target
Prior art date
Application number
PCT/CN2019/086168
Other languages
English (en)
French (fr)
Inventor
丁富华
吴万龙
金颖康
唐乐
曹硕
蔡斌峰
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810447363.8A external-priority patent/CN108400079A/zh
Priority claimed from CN201810445509.5A external-priority patent/CN108594317A/zh
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2019214674A1 publication Critical patent/WO2019214674A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof

Definitions

  • Embodiments of the present disclosure relate to the field of radiation generation techniques, and more particularly to a pencil beam X-ray tube, a dual flying spot X-ray tube, a backscatter detection device, and a backscatter detection system.
  • Backscatter imaging technology has been widely used in the safety inspection of human bodies, goods and vehicles due to its low radiation dose, good safety and sensitivity to lightweight materials.
  • the backscatter imaging technique uses a pencil beam scanning method, so it is necessary to modulate a fan beam or a cone beam generated by a conventional X-ray tube into a pencil beam.
  • the conventional pencil beam scanning device includes an X-ray tube assembly, a high voltage power source, a pencil beam scanning, a driving mechanism thereof, and the like, and the components are large and relatively dispersed. This has limited its use in small or portable products.
  • a pencil beam X-ray tube comprising:
  • An anode at least one end of the anode is disposed in the outer casing, and an end surface of the at least one end is not perpendicular to a length extension direction of the anode;
  • a cathode configured to face the target and capable of emitting electrons to the target
  • a pencil beam assembly is disposed adjacent the at least one end of the anode for modulating X-rays generated by the target into a pencil-shaped X-ray beam from a pencil beam X-ray tube.
  • a backscatter detecting apparatus including the above-described pencil beam X-ray tube is provided.
  • a dual flying spot X-ray tube comprising:
  • a first flying point source and a second flying point source respectively disposed at both ends of the inner portion of the envelope for emitting the first pencil-shaped X-ray beam and the second pencil-shaped X-ray beam;
  • An anode shank, a first flying point source and a second flying point source are disposed at opposite ends of the anode shank, the anode shank providing an anode potential for the first flying point source and the second flying point source.
  • a dual channel backscatter detecting apparatus including:
  • the above-mentioned double flying point X-ray tube is configured to respectively emit a first pen-shaped X-ray beam and a second pen-shaped X-ray beam to both sides thereof;
  • a first channel and a second channel respectively disposed on both sides of the double-flying X-ray tube for respectively placing the first object to be inspected and the second object to be inspected;
  • first detector is disposed between the first channel and the dual-flypoint X-ray tube for detecting the first pencil-shaped X-ray beam through the first a first scatter signal scattered by the object under test; and the second detector is disposed between the second channel and the dual-flypoint X-ray tube for detecting the second pencil-shaped X-ray beam passing through the second A second scatter signal that is scattered by the target is detected.
  • a backscatter detecting system comprising two or more of the above two-channel backscatter detecting devices, wherein any two adjacent two-channel backscatter detecting devices share a channel, and the channel is disposed at Between the two flying-point X-ray tubes of the adjacent two-channel backscatter detecting device, the two sides of the object to be inspected in the channel are simultaneously located at the first pen shape X of the double flying point X-ray tube on both sides of the object to be inspected The beam and the second pencil X-ray beam are scanned.
  • FIG. 1 shows a schematic cross-sectional view of a pencil beam X-ray tube of one embodiment of the present disclosure
  • FIG. 2 shows a schematic cross-sectional view of a pencil beam X-ray tube of one embodiment of the present disclosure
  • Figure 3 illustrates the structure of a sealed joint of one embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a pencil-shaped X-ray beam scan of one embodiment of the present disclosure.
  • Figure 5 is a block diagram showing the structure of a dual flying spot X-ray tube according to an embodiment of the present disclosure
  • Figure 6 is a schematic view showing the formation of two X-ray fan beams by the double flying point X-ray tube of Figure 5;
  • FIG. 7 is a schematic structural diagram of a dual channel backscatter detecting apparatus according to an embodiment of the present disclosure.
  • the pencil beam X-ray tube includes: an outer casing; an anode, at least one end of the anode being disposed in the outer casing, and an end surface of the at least one end is not perpendicular to a length extension direction of the anode.
  • the pencil beam X-ray tube further includes a target disposed at an end surface of at least one end of the anode; a cathode configured to face the target and capable of emitting electrons to the target; and a pencil beam assembly disposed at the anode
  • the X-ray generated near the at least one end is used to modulate the X-ray generated by the target into a pencil-shaped X-ray beam from the pencil beam X-ray tube.
  • FIG. 1 a majority of the anode 5 is shown placed within the outer casing 6 of the pencil beam X-ray tube.
  • the end face of the left end of the anode 5 is not in the vertical direction but is oriented obliquely downward.
  • the cathode 4 may include a filament 41, a focus cover 42 and a filament lead 43.
  • the filament lead 43 is connected to the negative electrode of the high voltage power supply and the filament power source for emitting electrons.
  • the focus cover 42 is used to focus the electrons and also serves as a support.
  • the focus cover 42 is provided with an electron exit hole 44 to emit electrons toward the position of the target 53.
  • the target 53 generates X-rays under the bombardment of electrons emitted from the cathode 4.
  • a pen beam assembly is disposed inside the outer casing 6 of the pencil beam X-ray tube, and the pencil beam assembly is capable of modulating X-rays generated by the target 53 on the end face of one end of the anode 5 into a pen-shaped X-ray beam, thereby pen-shaped
  • the beam X-ray tube is capable of directly emitting a pencil-shaped X-ray beam, which makes the pencil beam X-ray tube according to the present embodiment have a compact structure and volume.
  • the electron beam entrance hole 526 is provided at a position of the pencil beam assembly 51 toward the target 53, so that electrons incident from the cathode 4 can be bombarded on the target 53 through the electron incidence hole 526, thereby generating X-rays.
  • the pencil beam assembly 51 includes a protective drum 511, wherein the protective drum 511 surrounds at least one end of the anode 5 and allows electrons emitted from the cathode 4 to reach the target 53, shielding the scattered electrons and the X-rays generated by the target 53.
  • the above-mentioned electron incident hole 526 may be disposed on the protective drum 511 as shown in FIG.
  • the protective drum 511 is provided with at least one radiation exit hole 512 for modulating the X-rays generated by the target 53, forming at least one pencil X-ray.
  • the protective drum 511 can be made of a tungsten or tungsten alloy material, and can effectively protect the X-ray radiation from the source. Part of the electrons entering the protective drum 511 from the electron entrance hole 526 are scattered by the target 53, and the scattered electrons are shielded, blocked or absorbed by the protective drum 511, and are not scattered to the outside of the protective drum 511. The X-rays generated by the target 53 are emitted radially from the target 53, and the protective drum 511 blocks and shields the X-rays, and the X-rays do not leak out of the protective drum 511. The at least one radiation exit aperture 512 provided by the protective drum 511 allows X-rays to be emitted, thereby forming at least one pencil X-ray.
  • the protective reticle 511 can include a plurality of ray exit apertures 512 that can be arranged as desired, for example, at intervals It is disposed on the protective drum 511; it can also be discretely disposed on the protective drum 511.
  • the protective drum 511 is configured to be rotatable about the anode 5 such that at least one of the pencil-shaped X-ray beams formed by the at least one radiation exit aperture 512 can be scanned at least over a range of angles. This is advantageous in that when the protective drum 511 is rotated, the pen-shaped X-rays emitted from the protective drum 511 will be scanned as the protective drum 511 rotates.
  • the provision of a collimator in front of the target 53 can more accurately limit the X-ray opening angle emitted by the target 53 to a certain range. For clarity, Figures 1 and 2 do not show a collimator disposed in front of the target 53 to limit the range of X-ray exit.
  • the opening angle of the front collimator determines the opening angle of the fan beam of the outgoing sector X-ray, which also determines the angular range of the pen-shaped X-ray scanning.
  • the protective drum 511 can be further set to rotate only within a set angular range such that the pencil-shaped X-ray beam scans a sector of the sector.
  • FIG. 2 shows a schematic cross-sectional view of a pencil beam assembly 51 of one embodiment of the present disclosure.
  • the pencil beam assembly 51 includes an armature core 515 disposed on the anode 5 near at least one end and an armature winding 514 surrounding the armature core 515, and a corresponding armature iron
  • the core 515 is disposed on a plurality of permanent magnets on the inner wall of the protective drum 511 such that the armature winding 514 interacts with the plurality of permanent magnets 513 to drive the protective drum 511 to rotate when the armature winding 514 forms a varying magnetic field.
  • the armature core 515 is fixed to the anode 5.
  • the armature cores 515 are generally disposed in pairs on the anode 5, and a pair of armature cores 515 are disposed on the upper and lower sides of the anode 5, for example, as shown in the cross-sectional view of FIG.
  • a plurality of armature windings 514 are wound on the armature core 515.
  • the inner wall of the protective drum 511 is fastened with a plurality of permanent magnets 513.
  • the permanent magnets 513 are evenly distributed on the inner wall of the protective drum 511.
  • the pencil beam assembly 51 further includes a bearing 520 mounted on an anode 5 that supports the protective drum 511 to allow the protective drum 511 to rotate about the anode 5.
  • the inner ring of the bearing 520 is constrained by the upper shoulder of the sleeve 521 and the inner top ring 522, and the outer ring is limited by the flange of the protective drum 511 and the outer top ring 523.
  • the sleeve 521 is fitted to the anode 52 and is fitted to the inner wall of the bearing 520.
  • the bearing 520 is fixed to the anode 5
  • the protective drum 511 is supported and fixed by the bearing 520, and the protective drum 511 can thus be rotated around the anode 5, at which time the anode 5 can be regarded as a mounting shaft or a rotating shaft.
  • the protective drum 511, the sleeve 521, the outer top ring 523 and the anode 5 form a nearly closed X-ray shielding room with good performance, and the radiation protection is carried out from the source, which can reduce the radiation protection pressure of the whole equipment, and is more used. For convenience, X-rays can be effectively shielded at the same time.
  • the pencil beam assembly 51 can also include a driver 517 that is coupled to an external power source and that provides varying current to the armature winding 514.
  • the driver 517 is placed on one side of the armature core 515, and may be fixed to the anode 52, for example, by a collar 516.
  • the right or right end of the anode 52 is provided with a routing duct 524 which is electrically connected to the external power supply line and signal line.
  • a sealing joint 525 is provided at the entrance of the wiring duct 524.
  • One end of the driver 517 is connected to the field winding 514 via a cable 518, and the cable 519 at the other end is connected to the inside of the sealing joint 525 through the wiring duct 524, and can be taken out to the outside of the pen-shaped X-ray tube by means of an external plug connector.
  • the armature winding 514 is continuously commutated to form a rotating magnetic field, interacting with the magnetic field generated by the permanent magnet 513, and pushing the protective drum 511 to rotate about the center line of the anode 52.
  • the pen-shaped X-ray beam thus modulated by the radiation exit hole 512 is scanned by the rotational movement of the protective drum 511 to realize the scanning of the pencil-shaped X-ray beam.
  • the structure of the sealing joint 525 is as shown in Fig. 3, and is composed of a glass stem 527 and a conductive pin 528 sintered and sealed therein.
  • the glass stem 527 is fused with the anode rod 52 into a closed whole by a process such as sintering; the conductive pin 528 has one end connected to the wire 519 and the other end connected to the outside of the X-ray tube.
  • This lead method ensures that the inside of the X-ray tube is in a vacuum state.
  • other sealing and fixing patterns such as flange extrusion O-ring seals, are also available.
  • the pencil-shaped X-ray beam emerging from the pencil beam assembly 51 extends perpendicular to the length of the anode 5. In another embodiment, the pencil-shaped X-ray beam emerging from the pencil beam assembly 51 is at an angle to the length extension of the anode 5.
  • the pen-shaped X-ray beam is schematically shown to be emitted downward.
  • the pen-shaped X-ray scans a sector area.
  • the direction in which the pen-shaped X-ray beam is generated can be set by setting the position of the radiation exit hole 512 on the protective drum 511 of the pencil beam assembly 51, or by arranging the radiation exit hole 512 on the protective drum 511 of the pencil beam assembly 51.
  • the position of the pen-shaped X-ray beam and the length of the anode 5 can be set.
  • the position of the radiation exit hole 512 on the protective drum 511 of the pencil beam assembly 51 can be set.
  • the angle at which the pencil-shaped X-ray beam deviates from the vertical line is perpendicular to the length of the anode 5, that is, the angle between the pen-shaped X-ray beam and the length of the anode 5 is 90 degrees. In another embodiment, the pen-shaped X-ray beam is not perpendicular to the length of the anode 5, that is, the angle between the pen-shaped X-ray beam and the length of the anode 5 is less than 90 degrees.
  • the protective reel 511 includes a plurality of ray exit apertures 512.
  • the plurality of ray exit holes 512 are advantageous such that a plurality of pen-shaped X-ray beams are emitted every one rotation of the protective drum 511 and the object to be inspected is scanned once, respectively, to increase the detection speed.
  • the arrangement of the ray exit holes 512 may be different such that the outgoing pencil-shaped X-ray beam has a different angle from the length extension direction of the anode 5.
  • the case where each of the plurality of ray exit holes 512 is scanned by the ray exit hole 512 is similar to the case of scanning with a ray exit hole 512, and the description thereof will not be repeated here.
  • Embodiments of the present disclosure also provide a backscatter detecting apparatus including the above-described pencil beam X-ray tube.
  • the embodiment of the present disclosure further provides a dual flying point X-ray tube, and the structural schematic diagram thereof is shown in FIG. 5.
  • the dual flying point X-ray tube 100 includes a tube casing 30, a first flying point source 10 and a second flying point source 20, and an anode shank 40.
  • a high-voltage power source can be provided for the dual-flypoint X-ray tube to emit X-rays, and the number of high-voltage power sources can be one or two.
  • the X-ray tube or the dual flying spot ray tube may include a high voltage power source, and may also include a high voltage power source.
  • the tube shell 30 is a substantially symmetrical long cylindrical shell, and the first flying point source 10 and the second flying point source 20 are respectively disposed at both ends of the inner portion of the shell for emitting the first pencil-shaped X-ray beam and A second pen-shaped X-ray beam.
  • the anode shank 40 is configured to allow the first flying point source 10 and the second flying point source 20 to be disposed at opposite ends of the anode shank, the anode shank having an inverted "T" configuration to connect the anodes of the two high voltage power supplies, A flying point source 10 and a second flying point source 20 provide an anode potential.
  • the anode shank 40 is made of a metal material such as copper or copper alloy. In one embodiment, the anode shank 40 can have a "T" configuration.
  • the anode shank 40 can include a first portion 41 and a second portion 42.
  • the anode shank 40 can also include an intermediate end disposed perpendicular to the first portion 41 and the second portion 42.
  • the anode shank 40 has a unitary structure, formed using the same material, in which case it can be considered that the first flying point source and the second flying point source share one anode, and the anode shank can be regarded as an anode.
  • the first flying point source 10 mainly includes a first target 12, a first cathode 11, and a first anode.
  • the first flying point source can also be the first protective drum 13.
  • the first cathode 11 includes a first filament, and the first cathode 11 is connected to the cathode of the first high voltage power source and the first filament power source.
  • the first anode includes an anode stem 40 that faces a first portion 41 of the first filament, and a first target 12 that is disposed at the first portion toward the first filament end.
  • the first protective drum 13 has a cylindrical structure, and is sleeved on the first portion 41 of the anode handle and rotatable around the first portion, and the first protective turn 13 is disposed facing the bottom surface of the first filament.
  • the first radiation exit hole 131 is provided on the side wall of the first protective drum 13 such that the first X-ray fan beam is modulated into a first pencil-shaped X-ray beam for scanning of the object to be inspected.
  • the first protective drum 13 is equivalent to an outer rotor structure.
  • the first armature core 14 is wound with a plurality of first armature windings 15 and is fitted on the first portion 41 of the anode shank 40, and a plurality of first armatures.
  • the windings 15 may be evenly distributed or unevenly distributed in the circumferential direction of the first portion 41.
  • the inner wall of the first protective drum 13 is fastened with a plurality of first permanent magnets 16 on the inner wall of the first protective drum 13 The circumferential direction is evenly distributed or unevenly distributed.
  • the inner wall of the first shroud 13 away from the end of the first filament is rotatably coupled to the first portion 41 of the anode shank 40 by a first bearing 17.
  • the plurality of first armature windings 15 are continuously commutated during driving and form a rotating magnetic field, interacting with the magnetic fields generated by the plurality of first permanent magnets 16, pushing the first protective drum 13 to perform a circular motion.
  • the X-ray fan beam is modulated into a dynamically continuous pencil beam by the rotational movement of the first ray exit aperture 131 on the side wall of the first guard drum 13 in this manner.
  • the first armature core 14 and the plurality of first armature windings 15 may be disposed on the inner wall of the first protective drum 13, and the plurality of first permanent magnets 16 are disposed on the anode handle 40. Part of 41.
  • the second flying point source 20 mainly includes a second target 22, a second cathode 21, and a second anode.
  • the second flying point source 20 may also include a second protective drum 23.
  • the second cathode 21 includes a second filament, and the second cathode 21 is connected to the cathode of the second high voltage power source and the second filament power source.
  • the second anode includes an anode shank 40 that faces the second portion 42 of the first filament.
  • a second target 22 is disposed at the second portion toward the end of the second filament.
  • the second protective drum 23 has a cylindrical structure, and is sleeved on the second portion 42 of the anode handle and rotatable around the second portion, and the second guard ring 23 is disposed toward the bottom surface of the second filament.
  • a second electron entrance aperture through which electrons emitted by the second filament excite the second target 22 to produce a second X-ray fan beam.
  • a second radiation exit aperture 231 is disposed on the sidewall of the second protective drum 23 such that the second X-ray fan beam is modulated into a second pencil-shaped X-ray beam for scanning of the object being inspected.
  • the second protective drum 23 is equivalent to an outer rotor structure, and the second armature core 24 is wound with a plurality of second armature windings 25, which are set on the second portion 42 of the anode handle 40, and a plurality of second electric
  • the pivot windings 25 may be evenly distributed or unevenly distributed in the circumferential direction of the second portion 42.
  • the inner wall of the second protective drum 23 is fastened with a plurality of second permanent magnets 26, and the plurality of second permanent magnets 26 are at the second protective drum 13
  • the inner wall of the inner wall is evenly distributed or unevenly distributed.
  • the inner wall of the second shroud 23 remote from the end of the second filament is rotatably coupled to the second portion 42 of the anode shank 40 by a second bearing 27.
  • a plurality of second armature windings 25 are continuously commutated during driving and form a rotating magnetic field that interacts with the magnetic fields generated by the plurality of second permanent magnets 26 to urge the second protective drum 23 to perform a circular motion.
  • the X-ray fan beam is modulated into a dynamically continuous pencil beam by the rotational movement of the second ray exit aperture 231 on the side wall of the second guard drum 23.
  • the second armature core 24 and the plurality of second armature windings 25 may be disposed on the inner wall of the second protective drum 23, and the plurality of second permanent magnets 26 are disposed on the anode handle 40.
  • the second part is 41.
  • the intermediate end portion may be hollow for providing a trace for driving the first armature winding 15 and the second armature winding 25, and the intermediate end portion is provided with a sealing joint.
  • At least one of the first protective drum 13 and the second protective drum 23 may be made of tungsten or tungsten alloy to provide radiation protection.
  • the double-flying X-ray tube with the above design can greatly reduce the space occupied by the flying spot X-ray machine itself and the whole device, and is beneficial to the development of the X-ray backscattering device in the direction of miniaturization, intelligence and integration.
  • the first filament of the first cathode 11, the first target 12, the second filament of the second cathode 21, and the second target 22 are disposed in parallel with the first portion 41 and the first portion of the anode stem 40.
  • the two parts 42 are on the same line.
  • the first target surface of the first target 12 and the second target surface of the second target 21 are disposed substantially in parallel (eg, as shown in FIG.
  • the straight line has a predetermined angle, such as the same predetermined angle, such that the first X-ray fan beam exits in parallel with the second X-ray fan beam and is staggered by another predetermined angle in the radial direction of the anode shank, for example Can be 180°.
  • FIG. 6 shows a schematic diagram of a dual flying spot X-ray tube forming two X-ray fan beams according to an embodiment of the present disclosure.
  • the first target 12 is excited to generate a first portion 41 and a second perpendicular to the anode handle 40. a portion 42 axis and upwardly directed first X-ray fan beam, the second target 22 being excited to produce a second X-ray fan beam perpendicular to the axis of the first portion 41 and the second portion 42 of the anode shank 40, the first X-ray sector
  • the bundle and the second X-ray fan beam are parallel to the radial direction of the first portion 41 and the second portion 42 of the anode shank 40, and the exit directions are opposite.
  • a pencil-shaped X-ray beam having a phase difference of 180° can be obtained.
  • the high voltage power supply described above may be a negative high voltage power supply
  • the two flying point sources of the dual flying point X-ray tube 71 may share the same negative high voltage power supply, or may be connected to different negative high voltage power sources, that is, two.
  • the cathode of the flying point source can be connected to the same negative high voltage potential, and can be respectively connected to different negative high voltage potentials, and the anode handle 40 can be directly grounded.
  • the energy of the first pen-shaped X-ray beam and the second pen-shaped X-ray beam are the same or different.
  • the relative phase difference between the first ray exit aperture 131 and the second ray exit aperture 231 on the dual flying point X-ray tube 100 during the rotation may be controlled to 180°, or may be controlled to other suitable angles.
  • the number of the first ray exit holes 131 and the second ray exit holes 231 may also be one or more.
  • the two pen-shaped X-ray beams generated by the dual-flypoint X-ray tube 100 are independent of each other and can be separately controlled and used flexibly according to system requirements.
  • the two pencil X-ray beams can also be implemented by applying a flying spot scanning mechanism to each of the two conventional X-ray tubes.
  • the double flying point X-ray tube in this embodiment can be understood as a radiation source having a structure as shown in FIGS. 1-3 at both ends of the anode handle, which has the compact structure of the radiation source of FIGS. 1-3;
  • the dual-flypoint X-ray tube in the embodiment uses only one anode handle to configure two radiation sources, and has a common anode design, so that the X-ray tube has a compact structure and can emit two beams at the same time.
  • the embodiment of the present disclosure generates two kinds of co-directional or backward pen-shaped X-ray beams by a single double-flying X-ray tube, and can simultaneously scan the objects to be inspected on both sides of the double-flying X-ray tube, thereby greatly reducing the occupation of the equipment. space.
  • the inspection apparatus using the dual flying spot X-ray tube of the present disclosure may be open or closed, and is not limited by an auxiliary device such as an inorganic shell, a back sheet or a top cover.
  • the dual-channel backscatter inspection apparatus of the present disclosure is not limited by the position, opening angle, and energy of the double-flying X-ray tube, and can be arbitrarily set.
  • the object to be inspected of the present disclosure may be arbitrarily a human body, a cargo, a vehicle, or the like.
  • An embodiment of the present disclosure further provides a dual-channel backscatter detecting apparatus, comprising: the foregoing dual-flypoint X-ray tube for respectively emitting a first pen-shaped X-ray beam and a second pen-shaped X-ray beam to both sides thereof; a channel and a second channel respectively disposed on both sides of the double-flying X-ray tube for respectively placing the first object to be inspected and the second object to be inspected; and a first detector and a second detector, the a detector disposed between the first channel and the dual flying point X-ray tube for detecting a first scattered signal of the first pencil-shaped X-ray beam scattered by the first object to be inspected, the second detecting The device is disposed between the second channel and the dual-flypoint X-ray tube for detecting a second scattered signal of the second pen-shaped X-ray beam scattered by the second object to be inspected.
  • the dual-channel backscatter detecting device generates two substantially opposite pen-shaped X-ray beams through a double-flying X-ray tube, and one-way scanning can complete one-side scanning of two objects in the two channels.
  • the space occupied by the traditional two-channel inspection equipment is greatly reduced, making the equipment more compact.
  • FIG. 7 is a schematic structural diagram of a dual-channel backscatter detecting apparatus according to an embodiment of the present disclosure. As shown in FIG. 7 , an embodiment of the present disclosure provides a dual-channel backscatter detecting apparatus 1000.
  • the dual-channel backscatter detecting apparatus 1000 is mainly The dual flying point X-ray tube 100, the first channel 210, the second channel 220, and the first detector 310 and the second detector 320 are included.
  • the double flying point X-ray tube 100 respectively emits a first pen-shaped X-ray beam and a second pen-shaped X-ray beam to both sides thereof, and the first channel 210 and the second channel 220 are respectively disposed on both sides of the double flying point X-ray tube 100, respectively
  • the first object to be tested 211 and the second object to be inspected 221 are respectively disposed, and the first channel 210 and the second channel 220 respectively include a first base 212 and a second base 222.
  • the first base 212 and the second base 222 respectively The first object to be inspected 211 and the second object to be inspected 221 accommodated or placed in the first and second channels 210 and 220 are supported.
  • the first stroke X-ray beam and the second pencil X-ray beam may be scanned as in the form of a sector as shown, for example, in Figures 6-7.
  • the first detector 310 is disposed between the first channel 210 and the dual-flying X-ray tube 100, and detects a first scattered signal that the first pen-shaped X-ray beam is scattered by the first object to be inspected 211, and a second The detector 320 is disposed between the second channel 220 and the dual-flying X-ray tube 100 for detecting a second scattered signal of the second pencil-shaped X-ray beam scattered by the second object to be inspected 221 .
  • the dual-channel backscatter detection device 1000 further includes a transmission device 400.
  • the first object to be inspected 211 and the second channel 220 are accommodated in the first channel 210.
  • the dual-detection target 212 is fixed, and the dual-flying X-ray tube 100, the first detector 310 and the second detector 320 are fixedly disposed on the transmission device 400.
  • the transmission device 400 can drive the double-flying point X-ray tube 100 and the first detection.
  • the device 310 and the second detector 320 move in a direction in which the first pen-shaped X-ray beam and the second pen-shaped X-ray beam are simultaneously cut (ie, the longitudinal length directions of the first channel 210 and the second channel 220), that is, The first object to be inspected and the second object to be inspected are moved relative to the double-flying X-ray tube such that the first object to be inspected and the second object to be inspected are respectively scanned by the first pen-shaped X-ray beam and the second pen shape X-ray beam scanning.
  • the transmission 400 can be designed in the form of a slide rail, a wheel rail, or the like.
  • the first pencil-shaped X-ray beam and the second pencil-shaped X-ray beam scan scan the sector in a vertical plane.
  • the dual flying spot X-ray tube 100 produces two first pencil-shaped X-ray beams and a second pencil-shaped X-ray beam that are emitted toward both sides thereof, and two inspected objects in the two channels can be simultaneously scanned.
  • the phase difference between the first stroke X-ray beam and the second pencil X-ray beam on the circumference of the rotation may be 180°, and when the first pencil-shaped X-ray beam is scanned from the top to the bottom along the first object to be inspected 211, When the first stroke X-ray beam is scanned clockwise or counterclockwise on the ray scanning surface, the second pencil-shaped X-ray beam opposite thereto is simultaneously scanned from the bottom to the top along the second object to be inspected 221, that is, the second pen shape The X-ray beam is scanned counterclockwise or clockwise on its ray scanning surface so that the two scanning operations do not have signal crosstalk between each other.
  • one scan period of the double flying point X-ray tube 100 can complete one column of interlaced scanning for both objects to be inspected.
  • the transmission device 400 driving the translational movement of the double-flying X-ray tube 100, one-side scanning of the two objects to be inspected can be completed simultaneously by column.
  • the dual flying point X-ray tube 100 and the first detector 310 and the second detector 320 may be fixed, and the transmission drives the first object to be inspected 211 and the second object to be inspected 221 relative to the double flying point X.
  • the translating movement of the ray tube 100 for example, the transmission device is disposed in the first channel 210 and the second channel 220, respectively, and drives the first object to be inspected 211 and the second object to be inspected 221 along the first channel 210 and the second channel 220, respectively.
  • the longitudinal direction of the first passage 210 and the second passage 220 is moved to be scanned by the first pencil-shaped X-ray beam and the second pencil-shaped X-ray beam.
  • the dual channel backscatter detecting apparatus 1000 further includes a control device 500, a data mining device 600, and a processing device 700.
  • the control device 500 controls the movement of the dual-flypoint X-ray tube 100 with respect to the first object to be inspected 211 and the second object to be inspected 221, and controls the double-point X-ray tube 100 to emit a first pen shape.
  • the control device 500 can also control the starting position, the direction of rotation, and the scanning period of the two pencil-shaped X-ray beams.
  • the data acquisition device 600 performs data acquisition on the scattered signals detected by the first detector 210 and the second detector 220, and the first detector 210 and the second detector 220 respectively detect the first object to be inspected 211 and
  • the scatter signal returned by the second object to be inspected 221 is converted into an electrical signal and transmitted to the data acquisition device 600.
  • the processing device 700 performs data analysis and processing on the data collected by the data acquisition device 600, and then displays backscattered images of the two objects to be inspected.
  • the image can be manually viewed to distinguish whether there is a dangerous product, or it can be automatically identified and identified and alarmed by software.
  • the dual-channel backscatter detecting apparatus 1000 performs scanning on one side of the two objects to be inspected in a single scan. If two-side scanning is required, the object to be inspected needs to be flipped by 180° and then scanned again.
  • the object to be inspected can be flipped actively, or can be turned over by means of an electromechanical device, or can be realized by means of a mobile device that circulates around the circumference.
  • An embodiment of the present disclosure further provides a backscatter detection system, including two or more dual channel backscatter detection devices, wherein any adjacent two dual channel backscatter detection devices share a channel, and the channel is disposed in the adjacent Between the two-point X-ray tubes of the two-channel backscattering detection device, the two sides of the object to be inspected in the channel are simultaneously positioned by the first pen-shaped X-ray beam and the first point of the double-flying X-ray tube on both sides of the object to be inspected Two-stroke X-ray beam scanning.
  • multiple dual-channel backscatter detection devices can be cascaded to form multiple inspection channels, except that the inspected targets of the outermost two channels need to be scanned twice, and the other targets of the internal channels can be completed in one time. Scan and image for fast detection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Abstract

本公开提供笔形束X射线管、双飞点X射线管、背散射检测设备以及背散射检测系统。笔形束X射线管包括:外壳;阳极,所述阳极的至少一端设置在所述外壳内,所述至少一端的端面与阳极的长度延伸方向不垂直;靶,设置在所述阳极的至少一端端面;阴极,所述阴极配置成朝向所述靶并且能够发射电子到所述靶;以及笔形束组件,配置于所述阳极的所述至少一端附近用以将所述靶产生的X射线调制成笔形X射线束从笔形束X射线管射出。

Description

笔形束X射线管、双飞点X射线管、背散射检测设备和系统 技术领域
本公开的实施例涉及射线发生技术领域,特别涉及笔形束X射线管、双飞点X射线管、背散射检测设备和背散射检测系统。
背景技术
背散射成像技术因其辐射量剂量低、安全性好和对轻质材料敏感等优点,已被广泛应用于人体、货物和车辆的安全检查领域。背散射成像技术采用笔形束扫描方式,因此需要将常规X射线管所产生的扇形束或者锥形束调制成笔形束。
然而,常规的笔形束扫描装置包括X射线管组件、高压电源、笔形束扫描及其驱动机构等,部件较大且比较分散。这使得其在小型或便携产品方面的应用受到了限制。
发明内容
根据本公开的一方面,提供一种笔形束X射线管,包括:
外壳;
阳极,所述阳极的至少一端设置在所述外壳内,所述至少一端的端面与阳极的长度延伸方向不垂直;
靶,设置在所述阳极的至少一端端面;
阴极,所述阴极配置成朝向所述靶并且能够发射电子到所述靶;以及
笔形束组件,配置于所述阳极的所述至少一端附近用以将所述靶产生的X射线调制成笔形X射线束从笔形束X射线管射出。
根据本公开的一方面,提供一种背散射检测设备,包括上述笔形束X射线管。
根据本公开的一方面,提供一种双飞点X射线管,包括:
管壳;
第一飞点源和第二飞点源,分别设置的管壳内部的两端部,用于发射第一笔形X射线束和第二笔形X射线束;
阳极柄,第一飞点源和第二飞点源设置在阳极柄的相对端,阳极柄为所述第一飞点源和第二飞点源提供阳极电位。
根据本公开的一方面,提供一种双通道背散射检测设备,包括:
上述的双飞点X射线管,用于分别向其两侧发射第一笔形X射线束和第二笔形X射线束;
第一通道和第二通道,分别设置在所述双飞点X射线管两侧,分别用于放置第一被检目标和第二被检目标;以及
第一探测器和第二探测器,其中,所述第一探测器设置在所述第一通道和所述双飞点X射线管之间,用于探测所述第一笔形X射线束经第一被检目标散射的第一散射信号;并且所述第二探测器设置在所述第二通道和所述双飞点X射线管之间,用于探测所述第二笔形X射线束经第二被检目标散射的第二散射信号。
根据本公开的一方面,提供一种背散射检测系统,包括两个以上的上述的双通道背散射检测设备,其中任意相邻两双通道背散射检测设备共用一通道,所述通道设置在所述相邻两双通道背散射检测设备的双飞点X射线管之间,所述通道中的被检目标的两侧同时位于所述被检目标的两侧双飞点X射线管的第一笔形X射线束和第二笔形X射线束扫描。
附图说明
图1示出本公开的一个实施例的笔形束X射线管的截面示意图;
图2示出本公开的一个实施例的笔形束X射线管的截面示意图;
图3示出本公开的一个实施例的密封接头的结构;
图4示出本公开的一个实施例的笔形X射线束扫描示意图。
图5示出本公开的一个实施例的双飞点X射线管的结构示意图;
图6是图5中双飞点X射线管形成两X射线扇形束的示意图;
图7为本公开一实施例中双通道背散射检测设备的结构示意图。
具体实施方式
尽管本公开的容许各种修改和可替换的形式,但是它的具体的实施例 通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本公开的限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本公开的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
下面参照附图描述根据本公开的多个实施例。
参看图1,示出本公开的一个实施例提供的笔形束X射线管的截面图。笔形束X射线管包括:外壳;阳极,所述阳极的至少一端设置在所述外壳内,所述至少一端的端面与阳极的长度延伸方向不垂直。笔形束X射线管还包括靶,设置在所述阳极的至少一端端面;阴极,所述阴极配置成朝向所述靶并且能够发射电子到所述靶;以及,笔形束组件,配置于所述阳极的所述至少一端附近用以将所述靶产生的X射线调制成笔形X射线束从笔形束X射线管射出。
在图1中,示出的阳极5的大部分被置于笔形束X射线管的外壳6内。阳极5的左端的端面不是沿竖直方向,而是朝向斜向下。
阴极4可以包括灯丝41、聚焦罩42和灯丝引线43。灯丝引线43连接高压电源的负极和灯丝电源,用于发射电子。聚焦罩42用于聚焦电子,兼起支撑作用。聚焦罩42设置有电子出射孔44,以便朝向靶53的位置发射电子。靶53在阴极4发射的电子的轰击下产生X射线。
在本公开的实施例中,笔形束X射线管的外壳6内部设置笔形束组件,笔形束组件能够将阳极5的一端的端面上的靶53产生的X射线调制成笔形X射线束,从而笔形束X射线管能够直接射出笔形X射线束,这使得根据本实施例的笔形束X射线管具有紧凑的结构和体积。
笔形束组件51朝向靶53的位置设有电子入射孔526,这样从阴极4射入的电子可以穿过电子入射孔526轰击在靶53上,从而产生X射线。
笔形束组件51包括防护转筒511,其中防护转筒511包围所述阳极5的至少一端,并且允许阴极4发射的电子到达靶53,屏蔽散射的电子和靶53产生的X射线。上述电子入射孔526可以设置在防护转筒511上,如图1所示。防护转筒511设置有至少一个射线出射孔512用以调制靶53 产生的X射线,形成至少一个笔形X射线。
防护转筒511可以由钨或钨合金材料制成,可以有效地实现从源头处对X射线辐射防护。由电子入射孔526进入防护转筒511的部分电子被靶53散射,散射电子将被防护转筒511屏蔽、阻挡或吸收,不会散射到防护转筒511的外部。靶53生成的X射线呈放射状从靶53射出,防护转筒511将阻挡、屏蔽X射线,X射线不会泄漏到防护转筒511之外。防护转筒511设置的至少一个射线出射孔512允许X射线射出,因而形成至少一个笔形X射线。图1中仅示出一个射线出射孔512,然而,在其他实施例中,防护转筒511可以包括多个射线出射孔512,这些射线出射孔512的布置可以根据需要设置,例如,以一定间隔设置在防护转筒511上;也可以离散地设置在防护转筒511上。
在本实施例中,当在阳极5和阴极4之间施加适当的电压时,电子轰击阳极5的一端端面上的靶53,靶53发射出X射线,从而笔形束X射线管的笔形束组件51,或者说从防护转筒511的一个射线出射孔512或多个射线出射孔512射出一个或多个笔形X射线束。
在本公开的一个实施例中,防护转筒511配置成能够围绕所述阳极5旋转,从而通过至少一个射线出射孔512形成的至少一个笔形X射线束能够至少在一定角度范围内扫描。这是有利的,当防护转筒511旋转时,从防护转筒511射出的笔形X射线将会随着防护转筒511的旋转而扫描。在一个实施例中,在靶53前设置准直器可以将靶53发出的X射线张角更准确地限制在一定范围内。为了清楚,图1和图2并没有示出设置在靶53前的用以限制X射线出射范围的准直器。前置的准直器的张角决定了出射的扇形X射线的面束的张角,也决定了笔形X射线扫描的角度范围。在一个实施例中,可以进一步设定防护转筒511仅在一个设定的角度范围内旋转,从而笔形X射线束扫描一个扇形的区域。
图2示出本公开的一个实施例的笔形束组件51的截面示意图。
在本公开的一个实施例中,笔形束组件51包括设置在所述阳极5上靠近至少一端的电枢铁芯515和围绕在电枢铁芯515上的电枢绕组514,以及对应电枢铁芯515设置在防护转筒511内壁上的多个永磁体,以便在 电枢绕组514形成变化的磁场时电枢绕组514与多个永磁体513相互作用而驱动防护转筒511转动。如图2所示,电枢铁芯515固定在阳极5上。为了平衡,一般电枢铁芯515成对设置在阳极5上,例如如图2的截面图所示,一对电枢铁芯515设置在阳极5的上侧和下侧。电枢铁芯515上绕制若干个电枢绕组514。与若干个电枢绕组514对应,防护转筒511的内壁紧固若干个永磁体513。永磁体513均匀地分布在防护转筒511的内壁。在电枢绕组514形成变化的磁场时电枢绕组514与多个永磁体513相互作用产生的力将可以驱动防护转筒511转动。笔形束组件51还包括轴承520,轴承520安装在阳极5上,所述轴承520支撑所述防护转筒511以允许防护转筒511围绕所述阳极5转动。在一个实施例中,轴承520的内环通过套筒521的上肩和内顶环522限位,外环通过防护转筒511的凸沿和外顶环523限位。套筒521套装于阳极52,嵌装于轴承520的内壁。由此,轴承520固定在阳极5上,防护转筒511通过轴承520支撑并固定,防护转筒511因而可以围绕阳极5旋转,此时,阳极5可以看作安装轴或者旋转轴。防护转筒511、套筒521、外顶环523和阳极5组成一个近乎封闭的性能良好的X射线屏蔽室,从源头处即进行了辐射防护,可以减轻整机设备的辐射防护压力,使用更为便捷,同时可以有效地屏蔽X射线。
在一个实施例中,笔形束组件51还可以包括驱动器517,所述驱动器517连接外电源,并且提供变化的电流至电枢绕组514。驱动器517置于电枢铁芯515的一侧,例如可以通过套环516固定在阳极52上。在图2中,阳极52的右侧或右端开有走线管道524,布置将所述笔形束组件51电连接至外部的电源线和信号线。走线管道524的入口处设有密封接头525。驱动器517的一端通过线缆518与励磁绕组514连接,另一端的线缆519通过走线管道524与密封接头525的内侧连接,并可利用外接插接头引出到笔形X射线管外部。通电后,电枢绕组514不断地换相通电并形成旋转磁场,与永磁体513所产生的磁场相互作用,推动防护转筒511以阳极52的中心线为轴线旋转。如此通过射线出射孔512调制的笔形X射线束通过防护转筒511的旋转运动而实现笔形X射线束的扫描。
密封接头525的结构如图3所示,由玻璃芯柱527和烧结密封于其中 的导电引针528组成。玻璃芯柱527通过烧结等工艺与阳极棒52融为一个封闭的整体;导电引针528的一端连接导线519,另一端连接到X射线管外部。这种引线方式保证了X射线管内部为真空状态。此外,也可为其他密封与固定样式,如法兰盘挤压O形圈密封等。
在本公开的一个实施例中,从所述笔形束组件51出射的笔形X射线束垂直于所述阳极5的长度延伸方向。在另一实施例中,从所述笔形束组件51出射的笔形X射线束与所述阳极5的长度延伸方向成一角度。
如图4所示,示意地示出笔形X射线束朝向下发射。当笔形束组件51旋转时,笔形X射线扫描一个扇形区域。通过设置笔形束组件51的防护转筒511上的射线出射孔512的位置可以设定笔形X射线束的发生方向,或者说,通过设置笔形束组件51的防护转筒511上的射线出射孔512的位置可以设定笔形X射线束与阳极5的长度延伸方向的夹角,或者说,在图4中,通过设置笔形束组件51的防护转筒511上的射线出射孔512的位置可以设定笔形X射线束偏离竖直线的角度。在一个实施例中,笔形X射线束与阳极5的长度延伸方向垂直,也就是,笔形X射线束与阳极5的长度延伸方向的夹角为90度。在另一实施例中,笔形X射线束与阳极5的长度延伸方向不垂直,也就是,笔形X射线束与阳极5的长度延伸方向的夹角小于90度。
在本公开的其他实施例,防护转筒511包括多个射线出射孔512。多个射线出射孔512是有利的,这样防护转筒511每旋转一周有多个笔状X射线束射出并各自扫描一次被检物体,提高检测速度。进一步,这些射线出射孔512的设置可以不同,使得出射的笔形X射线束与阳极5的长度延伸方向成不同的夹角。多个射线出射孔512的每一个射线出射孔512扫描的情形与以上以一个射线出射孔512扫描的情形类似,此处不再重复描述。
本公开的实施例还提供一种背散射检测设备,包括上述的笔形束X射线管。
本公开实施例还提供一种双飞点X射线管,其结构示意图如图5所示。双飞点X射线管100包括:管壳30、第一飞点源10和第二飞点源20以及阳极柄40。在使用时,可以为双飞点X射线管提供高压电源,从而发 射X射线,高压电源的数量可以一个或两个。然而,应该知道,X射线管或双飞点射线管可以包括高压电源,也可以包括高压电源。在本实施例中,与前述实施例中类似的部件使用不同的名称和附图标记仅是为了区分和识别,本领域技术人员应该理解,不同的名称可以具有不同的结构,也可以具有类似的结构,具体应该参照附图以及说明书的描述。
管壳30为一基本上对称的长筒形管壳,第一飞点源10和第二飞点源20,分别设置的管壳内部的两端部,用于发射第一笔形X射线束和第二笔形X射线束。
阳极柄40配置成允许将第一飞点源10和第二飞点源20设置在阳极柄的相对端,阳极柄具有倒“T”型结构,可连接两高压电源的阳极,为所述第一飞点源10和第二飞点源20提供阳极电位。阳极柄40采用金属材料制作,例如采用紫铜或铜合金。在一个实施例中,阳极柄40可以具有“T”型结构。
在一实施例中,阳极柄40可以包括第一部分41和第二部分42。阳极柄40还可以包括垂直于第一部分41和第二部分42设置的中间端部。
在一个实施例中,阳极柄40具有整体结构,使用相同的材料形成,在这种情况下,可以认为第一飞点源和第二飞点源共用一个阳极,阳极柄可以看作阳极,其包括如图5所示的左端部、右端部以及中间的中间端部,这是有利的,可以简化制造工艺,提高可靠性。
第一飞点源10主要包括第一靶12、第一阴极11、第一阳极。第一飞点源还可以第一防护转筒13。第一阴极11包括第一灯丝,第一阴极11连接第一高压电源的阴极及第一灯丝电源。第一阳极包括阳极柄40朝向第一灯丝的第一部分41,第一靶12设置在所述第一部分朝向第一灯丝端部。第一防护转筒13呈筒状结构,其套设于所述阳极柄的所述第一部分41上并可绕所述第一部分旋转,第一防护转13筒朝向第一灯丝的底面设置有第一电子入射孔,第一灯丝发射的电子穿过所述第一电子入射孔激发所述第一靶12来产生第一X射线扇形束。第一防护转筒13的侧壁上设置有第一射线出射孔131,使得第一X射线扇形束调制成第一笔形X射线束,用于被检查目标的扫描。
第一防护转筒13等效为一个外转子结构,第一电枢铁芯14上绕制若干个第一电枢绕组15,套装于阳极柄40的第一部分41上,若干个第一电枢绕组15可以在第一部分41周向上均匀分布或不均匀分布,第一防护转筒13的内壁紧固若干个第一永磁体16,若干个第一永磁体16在第一防护转筒13的内壁的周向上均匀分布或不均匀分布。第一防护转筒13远离第一灯丝的一端的内壁通过第一轴承17与阳极柄40的第一部分41可旋转的连接。若干第一电枢绕组15被驱动期间不断地换相通电并形成旋转磁场,与若干第一永磁体16所产生的磁场相互作用,推动第一防护转筒13做圆周运动。如此通过第一防护转筒13侧壁上的第一射线出射孔131旋转运动将X射线扇形束调制成动态连续的笔形束。
在一些实施例中,第一电枢铁芯14和若干个第一电枢绕组15可以设置在第一防护转筒13的内壁上,而若干个第一永磁体16设置在阳极柄40的第一部分41上。
第二飞点源20主要包括第二靶22、第二阴极21、第二阳极。第二飞点源20还可以包括第二防护转筒23。第二阴极21包括第二灯丝,第二阴极21连接第二高压电源的阴极及第二灯丝电源。第二阳极包括阳极柄40朝向第一灯丝的第二部分42。第二靶22设置在所述第二部分朝向第二灯丝端部的。第二防护转筒23呈筒状结构,其套设于所述阳极柄的所述第二部分42上并可绕所述第二部分旋转,第二防护转23筒朝向第二灯丝的底面设置有第二电子入射孔,第二灯丝发射的电子穿过所述第二电子入射孔激发所述第二靶22来产生第二X射线扇形束。第二防护转筒23的侧壁上设置有第二射线出射孔231,使得第二X射线扇形束调制成第二笔形X射线束,用于被检查目标的扫描。
第二防护转筒23等效为一个外转子结构,第二电枢铁芯24上绕制若干个第二电枢绕组25,套装于阳极柄40的第二部分42上,若干个第二电枢绕组25可以在第二部分42周向上均匀分布或不均匀分布,第二防护转筒23的内壁紧固若干个第二永磁体26,若干个第二永磁体26在第二防护转筒13的内壁的周向上均匀分布或不均匀分布。第二防护转筒23远离第二灯丝的一端的内壁通过第二轴承27与阳极柄40的第二部分42可旋转 的连接。若干第二电枢绕组25被驱动期间不断地换相通电并形成旋转磁场,与若干第二永磁体26所产生的磁场相互作用,推动第二防护转筒23做圆周运动。如此通过第二防护转筒23侧壁上的第二射线出射孔231旋转运动将X射线扇形束调制成动态连续的笔形束。
在一些实施例中,第二电枢铁芯24和若干个第二电枢绕组25可以设置在第二防护转筒23的内壁上,而若干个第二永磁体26设置在阳极柄40的第二部分41上。
在一实施例中,中间端部可以为中空,用于设置驱动第一电枢绕组15和第二电枢绕组25的走线,中间端部顶部装密封接头。
在一实施例中,第一防护转筒13和第二防护转筒23中的至少一个可以采用钨或钨合金材质,起到了辐射防护作用。
采用上述设计的双飞点X射线管可以大幅减小飞点X光机自身和整个设备的占地空间,有利于X射线背散射类设备向小型化、智能化和集成化的方向发展。
在一实施例中,所述第一阴极11的第一灯丝、第一靶12、第二阴极21的第二灯丝以及第二靶22设置在平行于所述阳极柄40的第一部分41和第二部分42的同一直线上。第一靶12的第一靶面和所述第二靶21的第二靶面基本平行设置(例如如图6所示),朝向相反,所述第一靶面和第二靶面与所述直线具有预定夹角,例如相同的预定夹角,使得所述第一X射线扇形束与所述第二X射线扇形束平行出射且在所述阳极柄的径向上错开另一预定夹角,例如可以为180°。
图6示出了本公开一实施例双飞点X射线管形成两个X射线扇形束的示意图,如图6所示,第一靶12受激发产生垂直于阳极柄40的第一部分41和第二部分42轴线并且向上的第一X射线扇形束,第二靶22受激发产生垂直于阳极柄40的第一部分41和第二部分42轴线向下的第二X射线扇形束,第一X射线扇形束与第二X射线扇形束沿阳极柄40的第一部分41和第二部分42的径向平行,且出射方向相反。通过控制第一防护转筒13和第二防护转筒23的旋转,分别经第一防护转筒13上的第一射线出射孔131和第二防护转筒23的第二射线出射孔231的调制,可以获 得相位差180°的笔形X射线束。
在一些实施例中,前文所述的高压电源可以采用负高压电源,双飞点X射线管71的两个飞点源可以共用同一个负高压电源,也可以分别连接不同的负高压电源,即两飞点源的阴极可以连接至同一负高压电位,可以分别连接至不同的负高压电位,阳极柄40可以直接接地。所述第一笔形X射线束和第二笔形X射线束的能量相同或不同。
在一些实施例中,双飞点X射线管100上的第一射线出射孔131和第二射线出射孔231在转动过程中的相对相位差可以控制为180°,也可以控制为其他合适的角度,第一射线出射孔131和第二射线出射孔231数量也可以为1个或更多个。
在一些实施例中,双飞点X射线管100所产生的两个笔形X射线束各自独立,可以分别控制,按照系统需求灵活使用。
在一些实施例中,两个笔形X射线束也可以通过两个常规X射线管分别外加飞点扫描机构来实现。
本实施例中双飞点X射线管可以理解为在阳极柄的两端分别设置如图1-3所示结构的射线源,其具有图1-3的射线源的结构紧凑的特点;并且,本实施例中的双飞点X射线管仅使用一个阳极柄配置两个射线源,具有公用阳极的设计,使得X射线管具有紧凑的结构,能够同时发射两束射线。
本公开的实施例通过单个双飞点X射线管产生两种同向的或背向的笔形X射线束,可以同时扫描位于双飞点X射线管两侧的被检目标,大大减小了设备所占空间。进一步,使用本公开的双飞点X射线管的检查设备可以为开放式或者封闭式,不受有无机壳、背板或者顶盖等辅助装置的限制。
本公开的双通道背散射检查设备不受双飞点X射线管位置、张角和能量的限制,可以任意设置。本公开的被检目标可以任意为人体、货物或者车辆等。
本公开的实施例还提供了一种双通道背散射检测设备,包括:前述的双飞点X射线管,用于分别向其两侧发射第一笔形X射线束和第二笔形X 射线束;第一通道和第二通道,分别设置在所述双飞点X射线管两侧,分别用于放置第一被检目标和第二被检目标;以及第一探测器和第二探测器,所述第一探测器设置在所述第一通道和所述双飞点X射线管之间,用于探测所述第一笔形X射线束经第一被检目标散射的第一散射信号,所述第二探测器设置在所述第二通道和所述双飞点X射线管之间,用于探测所述第二笔形X射线束经第二被检目标散射的第二散射信号。根据本公开提供的双通道背散射检测设备通过一个双飞点X射线管产生两个方向基本相反的笔形X射线束,一个单向行程即可完成双通道内两个被检目标的单侧扫描,大大减小了传统的双通道检查设备所占空间,使得设备更加紧凑。
图7为本公开一实施例中双通道背散射检测设备的结构示意图,如图7所示,本公开一实施例提供一种双通道背散射检测设备1000,该双通道背散射检测设备1000主要包括双飞点X射线管100、第一通道210、第二通道220以及第一探测器310和第二探测器320。
双飞点X射线管100分别向其两侧发射第一笔形X射线束和第二笔形X射线束,第一通道210和第二通道220分别设置在双飞点X射线管100两侧,分别用于容置或放置第一被检目标211和第二被检目标221,且第一通道210、第二通道220分别包括第一底座212和第二底座222,第一底座212和第二底座222分别支撑容置或放置在第一通道210和第二通道220内的第一被检目标211和第二被检目标221。第一笔形X射线束和第二笔形X射线束可以如例如如图6-7所示的扇形的形式扫描。
第一探测器310设置在所述第一通道210和所述双飞点X射线管100之间,探测所述第一笔形X射线束经第一被检目标211散射的第一散射信号,第二探测器320设置在所述第二通道220和所述双飞点X射线管100之间,用于探测所述第二笔形X射线束经第二被检目标221散射的第二散射信号。
如图7所示,双通道背散射检测设1000还包括传动装置400,在一实施例中,容置在第一通道210中的第一被检目标211和容置在第二通道220中第二被检目标212固定不动,双飞点X射线管100、第一探测器310和第二探测器320固定设置在传动装置400上,传动装置400可以带动双飞 点X射线管100、第一探测器310和第二探测器320沿同时切过第一笔形X射线束和第二笔形X射线束的方向(即第一通道210和第二通道220的纵向长度方向)移动,也就是说,使得所述第一被检目标和第二被检目标相对于所述双飞点X射线管移动以便所述第一被检目标和第二被检目标分别被第一笔形X射线束扫描和第二笔形X射线束扫描。传动装置400可以采用滑轨、轮轨等形式设计。在一个实施例中,第一笔形X射线束和第二笔形X射线束扫描在竖直平面内扫描扇形区域。
在一实施例中,双飞点X射线管100产生两个朝向其两侧发射的第一笔形X射线束和第二笔形X射线束,可以同时扫描两个通道内的两个被检目标。第一笔形X射线束和第二笔形X射线束在旋转圆周上的相位差可以为180°,此时当第一笔形X射线束沿着第一被检目标211从上往下扫描一列,即第一笔形X射线束在其射线扫描面上顺时针或逆时针扫描时,与其反向的第二笔形X射线束同时沿着第二被检目标221从下往上扫描一列,即第二笔形X射线束在其射线扫描面上逆时针或顺时针扫描,如此两个扫描操作没有相互之间的信号串扰。通过控制,双飞点X射线管100的一个扫描周期可以对两个被检目标均完成一列交错扫描。配合传动装置400带动双飞点X射线管100的平移运动,可以实现逐列同时完成对两个被检目标的单侧扫描。
在一些实施例中,双飞点X射线管100及第一探测器310和第二探测器320可以固定不动,传动装置带动第一被检目标211和第二被检目标221相对于双飞点X射线管100平移运动,例如分别在第一通道210和第二通道220内设置传动装置,带动第一被检目标211和第二被检目标221分别沿第一通道210和第二通道220(即第一通道210和第二通道220的纵向长度方向)移动,以便被第一笔形X射线束和第二笔形X射线束扫描。
在一实施例中,双通道背散射检测设备1000还包括控制装置500、数采装置600以及处理装置700。如图7所示,控制装置500控制所述双飞点X射线管100相对于所述第一被检目标211和第二被检目标221的移动,并控制双飞点X射线管100发出第一笔形X射线束和/或第二笔形X射线束,以及控制第一笔形X射线束和第二笔形X射线束能量大小,扫描速 度等。控制装置500还可以控制两个笔形X射线束的起始位置、旋转方向和扫描周期。数采装置600对所述第一探测器210和第二探测器220探测到的散射信号进行数据采集,第一探测器210和第二探测器220分别探测到由述第一被检目标211和第二被检目标221返回的散射信号,并转换为电信号传输给数采装置600。处理装置700对数采装置600采集的数据进行数据分析与处理,然后显示出两个被检目标的背散射图像。可以人工查视图像来分辨有无危险品,也可以通过软件自动识别并予以标识和报警。
在一实施例中,双通道背散射检测设备1000单次扫描完成两个被检目标一侧的扫描,如需双侧扫描,则需要被检目标翻转180°后再扫描一次。被检目标可以主动翻转,也可以借助机电装置翻转,也可以借助沿圆周循环的移动装置实现。
本公开一实施例还提供一种背散射检测系统,包括两个以上所述的双通道背散射检测设备,其中任意相邻两双通道背散射检测设备共用一通道,通道设置在所述相邻两双通道背散射检测设备的双飞点X射线管之间,通道中的被检目标的两侧同时被位于所述被检目标的两侧双飞点X射线管的第一笔形X射线束和第二笔形X射线束扫描。即多个双通道背散射检测设备可以级联使用,形成多个检查通道,除了最外侧两个通道的被检目标需要扫描两次,其他内部通道的被检目标只需一次即可完成双侧扫描和成像,实现快速检测。
应注意,附图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。
实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外, 上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (27)

  1. 一种笔形束X射线管,包括:
    外壳;
    阳极,所述阳极的至少一端设置在所述外壳内,所述至少一端的端面与阳极的长度延伸方向不垂直;
    靶,设置在所述阳极的至少一端端面;
    阴极,所述阴极配置成朝向所述靶并且能够发射电子到所述靶;以及
    笔形束组件,配置于所述阳极的所述至少一端附近用以将所述靶产生的X射线调制成笔形X射线束以便从笔形束X射线管射出。
  2. 如权利要求1所述的笔形束X射线管,其中笔形束组件包括防护转筒,其中防护转筒包围所述阳极的至少一端,并且允许阴极发射的电子到达靶,同时屏蔽散射的电子和靶产生的X射线。
  3. 如权利要求2所述的笔形束X射线管,其中防护转筒设置有至少一个射线出射孔用以调制靶产生的X射线,形成至少一个笔形X射线。
  4. 如权利要求3所述的笔形束X射线管,其中防护转筒配置成能够围绕所述阳极旋转,从而通过至少一个射线出射孔形成的至少一个笔形X射线束能够在一定角度范围内扫描。
  5. 如权利要求4所述的笔形束X射线管,其中笔形束组件包括设置在所述阳极上靠近至少一端的电枢铁芯和围绕在电枢铁芯上的电枢绕组,以及对应电枢铁芯设置在防护转筒内壁上的多个永磁体,以便在电枢绕组形成变化的磁场时电枢绕组与多个永磁体相互作用而驱动防护转筒转动。
  6. 如权利要求5所述的笔形束X射线管,其中笔形束组件还包括驱动器,所述驱动器连接外电源,并且提供变化的电流至电枢绕组。
  7. 如权利要求4所述的笔形束X射线管,其中笔形束组件包括设置在阳极上的轴承,所述轴承支撑所述防护转筒以允许防护转筒围绕所述阳极转动。
  8. 如权利要求1所述的笔形束X射线管,其中所述阳极包括走线管道用以布置将所述笔形束组件电连接至外部的电源线和信号线。
  9. 如权利要求1所述的笔形束X射线管,其中从所述笔形束组件出 射的笔形X射线束垂直于所述阳极的长度延伸方向。
  10. 如权利要求1所述的笔形束X射线管,其中从所述笔形束组件出射的笔形X射线束与所述阳极的长度延伸方向成一角度。
  11. 如权利要求1所述的笔形束X射线管,其中防护转筒由钨或钨合金材料制成。
  12. 一种背散射检测设备,包括如权利要求1~11中任一项所述的笔形束X射线管。
  13. 一种双飞点X射线管,包括:
    管壳;
    第一飞点源和第二飞点源,分别设置的管壳内部的两端部,用于发射第一笔形X射线束和第二笔形X射线束;
    阳极柄,第一飞点源和第二飞点源设置在阳极柄的相对端,阳极柄为所述第一飞点源和第二飞点源提供阳极电位。
  14. 根据权利要求13所述的双飞点X射线管,其中,
    所述第一飞点源包括:
    第一靶;
    第一阴极,包括第一灯丝,配置成朝向第一靶发射电子;
    第一阳极,包括阳极柄的朝向第一阴极的第一部分,第一靶设置在所述第一阳极的第一部分的朝向第一灯丝的端部;
    所述第二飞点源包括:
    第二靶;
    第二阴极,包括第二灯丝,配置成朝向第二靶发射电子;
    第二阳极,包括阳极柄的朝向第二阴极的第二部分,第二靶设置在所述第二阳极的第二部分朝向第二灯丝的端部;
    其中所述第一靶和第二靶被激发分别产生第一X射线扇形束和第二X射线扇形束。
  15. 根据权利要求14所述的双飞点X射线管,其中,
    所述第一飞点源还包括:
    第一防护转筒,套设于所述阳极柄的所述第一部分上并可绕所述第一 部分旋转,所述防护转筒朝向第一灯丝的底面设置有第一电子入射孔,使得第一灯丝发射的光穿过所述第一电子入射孔激发所述第一靶,所述第一防护转筒的侧壁上设置有第一射线出射孔,使得所述第一X射线扇形束调制成所述第一笔形X射线束;
    所述第二飞点源还包括:
    第二防护转筒,套设于所述阳极柄的所述第二部分上并可绕所述第二部分旋转,所述防护转筒朝向第二灯丝的底面设置有第二电子入射孔,使得第二灯丝发射的光穿过所述第二电子入射孔激发所述第二靶,所述第二防护转筒的侧壁上设置有第二射线出射孔,使得所述第二X射线扇形束调制成所述第二笔形X射线束。
  16. 根据权利要求15所述的双飞点X射线管,其中,所述第一射线出射孔的数量为一个或更多个,所述第二射线出射孔的数量为一个或更多个。
  17. 根据权利要求14或11所述的双飞点X射线管,其中,所述第一阴极的第一灯丝、第一靶、第二阴极的第二灯丝以及第二靶设置在平行于所述阳极柄的第一部分和第二部分的同一直线上。
  18. 根据权利要求17述的双飞点X射线管,其中,所述第一靶的第一靶面和所述第二靶的第二靶面基本平行设置,所述第一靶面和第二靶面与平行于所述阳极柄的第一部分和第二部分的直线具有预定夹角,使得所述第一X射线扇形束与所述第二X射线扇形束平行出射且在所述阳极柄的径向上错开另一预定夹角。
  19. 根据权利要求18所述的双飞点X射线管,其中,所述另一预定夹角为180°。
  20. 一种双通道背散射检测设备,包括:
    根据权利要求13-19中任一项所述的双飞点X射线管,用于分别向其两侧发射第一笔形X射线束和第二笔形X射线束;
    第一通道和第二通道,分别设置在所述双飞点X射线管两侧,分别用于放置第一被检目标和第二被检目标;以及
    第一探测器和第二探测器,其中,所述第一探测器设置在所述第一通 道和所述双飞点X射线管之间,用于探测所述第一笔形X射线束经第一被检目标散射的第一散射信号;并且所述第二探测器设置在所述第二通道和所述双飞点X射线管之间,用于探测所述第二笔形X射线束经第二被检目标散射的第二散射信号。
  21. 根据权利要求20所述的双通道背散射检测设备,还包括:
    传动装置,其带动所述双飞点X射线管移动或所述第一被检目标和第二被检目标移动,使得所述第一被检目标和第二被检目标相对于所述双飞点X射线管移动以便所述第一被检目标和第二被检目标分别被第一笔形X射线束扫描和第二笔形X射线束扫描。
  22. 根据权利要求21所述的双通道背散射检测设备,其中,所述传动装置与所述双飞点X射线管、第一探测器和第二探测器固定连接设置,所述双飞点X射线管、第一探测器和第二探测器在所述传动装置的带动下可以沿所述第一通道和第二通道的纵向长度方向移动。
  23. 根据权利要求21所述的双通道背散射检测设备,其中,所述第一笔形X射线束和第二笔形X射线束之间呈第一预定角度。
  24. 根据权利要求23所述的双通道背散射检测设备,其中,所述第一预定角度为180°,所述第一笔形X射线束在垂直于第一被检目标相对于所述双飞点X射线管移动方向的平面上沿顺时针或逆时针扫描所述第一被检目标,所述第二笔形X射线束在在垂直于第二被检目标相对于所述双飞点X射线管移动方向的平面上沿逆时针或顺时针扫描所述第二被检目标。
  25. 根据权利要求20所述的双通道背散射检测设备,其中,所述第一笔形X射线束和第二笔形X射线束的能量相同或不同。
  26. 根据权利要求20所述的双通道背散射检测设备,其中还包括:
    控制装置,用于控制所述双飞点X射线管相对于所述第一被检目标和第二被检目标的移动;
    数采装置,对所述第一探测器和第二探测器探测到的散射信号进行数据采集;以及
    处理装置,用于对所述双通道背散射检测设备进行控制及对采集的数 据进行图像处理。
  27. 一种背散射检测系统,包括两个以上根据权利要求20所述的双通道背散射检测设备,其中任意相邻两双通道背散射检测设备共用一个通道,所述通道设置在所述相邻两双通道背散射检测设备的双飞点X射线管之间,所述通道中的被检目标的两侧同时位于所述被检目标的两侧双飞点X射线管的第一笔形X射线束和第二笔形X射线束扫描。
PCT/CN2019/086168 2018-05-10 2019-05-09 笔形束x射线管、双飞点x射线管、背散射检测设备和系统 WO2019214674A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810447363.8A CN108400079A (zh) 2018-05-10 2018-05-10 笔形束x射线管和背散射检测设备
CN201810445509.5 2018-05-10
CN201810447363.8 2018-05-10
CN201810445509.5A CN108594317A (zh) 2018-05-10 2018-05-10 双通道背散射检测设备

Publications (1)

Publication Number Publication Date
WO2019214674A1 true WO2019214674A1 (zh) 2019-11-14

Family

ID=68467822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086168 WO2019214674A1 (zh) 2018-05-10 2019-05-09 笔形束x射线管、双飞点x射线管、背散射检测设备和系统

Country Status (1)

Country Link
WO (1) WO2019214674A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257653B2 (en) * 2020-03-27 2022-02-22 The Boeing Company Integrated aperture shield for x-ray tubes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188747B1 (en) * 1998-01-24 2001-02-13 Heimann Systems Gmbh X-ray generator
CN105261542A (zh) * 2014-07-09 2016-01-20 株式会社东芝 固定阳极型x射线管
CN106165053A (zh) * 2014-01-29 2016-11-23 株式会社岛津制作所 金属电极、使用有所述金属电极的电子枪、电子管及x射线管
US20170301505A1 (en) * 2016-03-31 2017-10-19 Nanox Imaging Plc X-ray tube and a conditioning method thereof
CN108400079A (zh) * 2018-05-10 2018-08-14 同方威视技术股份有限公司 笔形束x射线管和背散射检测设备
CN108594317A (zh) * 2018-05-10 2018-09-28 同方威视技术股份有限公司 双通道背散射检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188747B1 (en) * 1998-01-24 2001-02-13 Heimann Systems Gmbh X-ray generator
CN106165053A (zh) * 2014-01-29 2016-11-23 株式会社岛津制作所 金属电极、使用有所述金属电极的电子枪、电子管及x射线管
CN105261542A (zh) * 2014-07-09 2016-01-20 株式会社东芝 固定阳极型x射线管
US20170301505A1 (en) * 2016-03-31 2017-10-19 Nanox Imaging Plc X-ray tube and a conditioning method thereof
CN108400079A (zh) * 2018-05-10 2018-08-14 同方威视技术股份有限公司 笔形束x射线管和背散射检测设备
CN108594317A (zh) * 2018-05-10 2018-09-28 同方威视技术股份有限公司 双通道背散射检测设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257653B2 (en) * 2020-03-27 2022-02-22 The Boeing Company Integrated aperture shield for x-ray tubes

Similar Documents

Publication Publication Date Title
US11300703B2 (en) Hand-held portable backscatter inspection system
JP4753602B2 (ja) 静止型コンピュータ断層撮影システム及び方法
JP5426089B2 (ja) X線管及びx線ct装置
CN108318512A (zh) 用于人体的透射-背散射组合检测设备和检测方法
US8477908B2 (en) System and method for beam focusing and control in an indirectly heated cathode
GB2293686A (en) X-ray tube with annular vacuum housing
JPH07265297A (ja) X線ct装置
US9271689B2 (en) Apparatus for wide coverage computed tomography and method of constructing same
WO2018184580A1 (zh) 断层扫描检查装置
US4229657A (en) γ-Ray irradiation head for panoramic irradiation
US8280007B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
WO2019214674A1 (zh) 笔形束x射线管、双飞点x射线管、背散射检测设备和系统
US8284901B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled x-ray tube
US8284900B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
CN108461369B (zh) 双点束扫描x射线发生器
CN208607167U (zh) 用于人体的检查设备
CN108400079A (zh) 笔形束x射线管和背散射检测设备
CN208189522U (zh) 组合扫描x射线发生器
US11467105B2 (en) Combined scanning x-ray generator, composite inspection apparatus, and inspection method for hybrid
CN108389768B (zh) 组合扫描x射线发生器
CN208189523U (zh) 笔形束x射线管和背散射检测设备
CN208189521U (zh) 双点束扫描x射线发生器
KR20180046958A (ko) 가변형 타겟을 구비하는 엑스선관
WO2019214710A1 (zh) 双束扫描x射线发生器、透射检查设备、人体透视复合检查系统以及检查方法
CN108594317A (zh) 双通道背散射检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800367

Country of ref document: EP

Kind code of ref document: A1