WO2019214638A1 - 双腹板h型钢及其与混凝土预制板的连接节点 - Google Patents

双腹板h型钢及其与混凝土预制板的连接节点 Download PDF

Info

Publication number
WO2019214638A1
WO2019214638A1 PCT/CN2019/085991 CN2019085991W WO2019214638A1 WO 2019214638 A1 WO2019214638 A1 WO 2019214638A1 CN 2019085991 W CN2019085991 W CN 2019085991W WO 2019214638 A1 WO2019214638 A1 WO 2019214638A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped steel
double web
web
prefabricated
reinforcing
Prior art date
Application number
PCT/CN2019/085991
Other languages
English (en)
French (fr)
Inventor
李藏柱
Original Assignee
Li Cangzhu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810439517.9A external-priority patent/CN108442534B/zh
Priority claimed from CN201810439494.1A external-priority patent/CN108412122A/zh
Application filed by Li Cangzhu filed Critical Li Cangzhu
Publication of WO2019214638A1 publication Critical patent/WO2019214638A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders

Definitions

  • the present invention relates to a profile steel in a building, and more particularly to a double web H-beam and its connection to a concrete precast panel.
  • H-beams are often used as steel columns and steel beams in steel-structured buildings, but H-beams are often used to increase the cross-sectional dimensions to meet the force performance.
  • H-beam when H-beam is used as a steel beam, it is necessary to increase the thickness of the bottom flange plate and the height of the web to enhance its bending resistance and increase the thickness of the web to enhance its resistance to shear and torsion.
  • this measure of increasing the section and increasing the thickness will increase the weight of the H-beam itself.
  • Another object of the present invention is to provide a joint node of a double web H-shaped steel and a concrete precast panel, which is firmly connected and has good earthquake resistance.
  • a double web H-shaped steel comprising two flange plates and two webs, the two flange plates being parallel to each other, the two webs being parallel to each other, the web being vertically fixed to two wings Between the edges of the plate; two webs and two flange plates form a cavity.
  • the double web has better torsional resistance than the H-shaped steel of the single web in the prior art, and the overall rigidity is better; the total thickness of the double-layer web and the single-layer web The same bending resistance can be achieved with the same thickness, and the double web setting can reduce the height of the web under the same conditions, thus reducing the amount of steel.
  • At least one of the flange plates is provided with a plurality of through holes, the through holes being located within the cavity.
  • the concrete when concrete is poured in the construction site, the concrete can enter the cavity of the H-shaped steel of the double web synchronously, and the connection of the H-shaped steel of the double web and the external concrete is improved, so that the overall structure is more firm.
  • the first reinforcing connecting rod is further included;
  • the two flange plates are a first flange plate and a second flange plate;
  • the first reinforcing connecting rod passes through the through hole of the first flange plate, the first reinforcement
  • One end of the connecting rod is fixed perpendicularly to the second flange plate, and the other end exposes the first flange plate.
  • connection of the double web H-beam and the outer concrete is further enhanced.
  • the web is a corrugated web, i.e., the web is sinusoidal along the length of the H-beam.
  • the cavity is filled with concrete.
  • a prestressed steel bar or a prestressed steel strand having the same length direction as the double web H-shaped steel is disposed in the cavity near the flange plate.
  • a second reinforcing connecting rod is further included, and the second reinforcing connecting rod is located in the cavity and is vertically fixed to the inner surface of the flange plate.
  • a third reinforcing connecting rod is further included, and the third reinforcing connecting rod is vertically fixed to the outer surface of the flange plate.
  • connection of the double web H-shaped steel and the externally poured concrete is further improved.
  • a joint node of a double web H-shaped steel and a concrete precast slab comprising two prefabricated slabs and a double web H-shaped steel as claimed in the claims; the two prefabricated slabs are located at the first flange of the double web H-beam a first post-casting strip is formed between the two prefabricated slabs on the same side of the panel, and the first post-casting strip is poured with concrete; the end surface of the prefabricated slab adjacent to the first post-casting strip is provided with lateral connecting ribs, and the lateral connecting ribs are partially It is embedded in the prefabricated slab, and a part of the prefabricated slab is extended; the lateral connecting ribs of the two prefabricated slabs and the first reinforcing connecting rods of the double web H-shaped steel are connected to each other.
  • connection node has better integrity and shock resistance.
  • the ends of the lateral connecting ribs are provided with an enlarged head, and the lateral connecting ribs of the two prefabricated slabs are connected by a sleeve.
  • connection strength between the two prefabricated floors is enhanced.
  • the barrel wall of the sleeve is provided with a peg hole, and the first reinforcing connecting rod is connected to the double web H-shaped steel after passing through the peg hole.
  • the first reinforcing connecting rod and the lateral connecting ribs are integrally connected through the sleeve, thereby improving the seismic performance of the joint.
  • one end of one of the flange plates is bent outward to form a snap plate, and the double web H-shaped steel is disposed on the top surface of the prefabricated wall panel, and the two snap plates are stuck to the prefabricated wall panel.
  • the structure strengthens the connection between the double web H-shaped steel and the prefabricated wall panel, and the overall structure of the prefabricated wall panel, the H-shaped steel and the prefabricated floor slab is more firm.
  • the outer side surfaces of the two flange plates or one of the flange plates are fixed with connecting steel bars; the double web H-shaped steel is disposed above the prefabricated wall panels; the top surface of the prefabricated wall panels and the bottom surface of the double web H-shaped steel A second post-casting strip is arranged between the top; the top of the prefabricated wallboard is provided with pre-embedded steel bars, and the part of the pre-formed steel bar extending from the prefabricated wall panel is fixed with the connecting reinforcing bar; the upper and lower flange plates of the double web H-shaped steel are all opened. There is a through hole; the concrete in the cavity is connected to the second post-cast concrete through the through hole.
  • the second post-casting belt strengthens the connection between the H-shaped steel and the prefabricated wallboard.
  • the end portion to which the reinforcing bar is attached is provided with an enlarged head, and the pre-embedded reinforcing bar is connected to the sleeve for connecting the reinforcing bars.
  • the sleeve connection not only reduces the welding operation in the field, but also makes the connection more reliable.
  • the present invention has the following beneficial effects:
  • Double-web H-shaped steel has less steel, light weight and high rigidity
  • the concrete is poured into the cavity, which further improves the rigidity and fireproof performance of the double web H-shaped steel, saves the steel, and solves the anti-corrosion problem of the steel surface in the cavity;
  • the first reinforcing connecting rod and the through hole of the flange plate are arranged to strengthen the connection between the concrete in the cavity and the external concrete;
  • Prestressed steel bars or prestressed steel strands will greatly improve the tensile strength, and further save the amount of steel and steel, and reduce the weight;
  • the double-layer corrugated plate is set to improve the bending, torsion resistance and buckling resistance of the double web H-beam;
  • connection between the H-shaped steel and the concrete precast slabs makes the connection between the prefabricated slab and the steel structure and the prefabricated wallboard stronger, so that the overall building structure has better earthquake resistance.
  • Figure 1 is a schematic view of a double web H-shaped steel
  • Figure 2 is a cross-sectional view of a double web H-shaped steel filled with concrete in a cavity
  • Figure 3 is a schematic view of a double web H-shaped steel structure provided with a first reinforcing connecting rod and a prestressed reinforcing bar;
  • Figure 4 is a schematic view of a double web H-shaped steel structure provided with a second reinforcing connecting rod and a third reinforcing connecting rod;
  • Figure 5 is a schematic structural view (partially cut away) of a double-abdominal corrugated plate H-shaped steel
  • Figure 6 is a schematic view of the joint of the double web H-shaped steel and the concrete precast slab
  • Figure 7 is a cross-sectional view of the joint node after pouring concrete
  • Figure 8 is a schematic view of a connection node provided with a sleeve
  • Figure 9 is a schematic structural view of a double web H-shaped steel provided with a snap plate
  • Figure 10 is a schematic view showing the structure of the double web H-shaped steel and the prefabricated wall panel
  • Figure 11 is a schematic view showing the connection node of the double web H-shaped steel and the prefabricated wall panel and the prefabricated floor slab;
  • Figure 12 is a schematic view showing the structure of a double web H-shaped steel provided with connecting steel bars;
  • Figure 13 is a schematic view showing the connection structure of the double web H-shaped steel and the prefabricated wall panel through the second post-casting strip;
  • Figure 14 is a schematic view showing a connection node for providing a reinforcing connecting rib
  • Figure 15 is a schematic view of a node connecting the reinforcing bars and the pre-embedded reinforcing bars in the second post-casting strip;
  • Figure 16 is a schematic overall view of the connection node of the double web H-shaped steel provided with the second post-casting strip and the prefabricated wall panel and the prefabricated floor slab;
  • 17 is a schematic structural view of a square tube having a through hole
  • Figure 18 is a schematic structural view of a cylinder in a shrink-type reinforcing steel connecting sleeve
  • Figure 19 is a schematic view of the end face of the neck
  • Figure 20 is a schematic view of the fit of the sleeve and the connecting bar
  • Figure 21 is a schematic view showing the connection relationship between the shrinkage type steel connecting sleeve and the prefabricated column;
  • Figure 22 is a schematic view showing the structure of the sleeve connected to the two reinforcing bars in the vertical state
  • Figure 23 is a schematic structural view of the outer sleeve member
  • Figure 24 is an assembled view of the outer sleeve and the connecting bar.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a double web H-shaped steel comprises two flange plates 1 and two webs 2, two flange plates 1 are parallel to each other, two webs 2 are parallel to each other, and the web 2 is vertically fixed. Connected between two flange plates 1; two webs 2 and two flange plates 1 form a cavity 3.
  • the two flange plates 1 are a first flange plate 11 and a second flange plate 12.
  • the double web 2 has better torsion resistance and better overall rigidity.
  • the total thickness of the double web 2 is the same as the thickness of the single web 2, the same bending resistance can be achieved, and the arrangement of the double web 2 can reduce the web 2 under the same conditions. Height, thus reducing the amount of steel used.
  • the double web H-shaped steel have the performance of the concrete filled steel tube, which not only improves the bending and torsion resistance of the double web H-shaped steel, but also solves the anti-corrosion problem of the steel surface in the cavity 3.
  • the double web H-shaped steel filled with concrete has better fire resistance than the existing H-shaped steel and prolongs the fire resistance time.
  • the double web H-beam is directly machined in the factory.
  • the concrete in the cavity 3 can be directly poured in the factory or it can be poured at the construction site.
  • the double web H-beam is used as a steel beam or a steel column, concrete is often poured on the side of one of the flange plates 1 or concrete is poured around it, so that concrete can be simultaneously entered in order to facilitate pouring concrete on the construction site.
  • the double web is formed in the cavity 3 of the H-shaped steel. Therefore, as shown in FIG. 1, a plurality of through holes 13 are formed in at least one of the flange plates 1, and the through holes 13 are located in the range of the cavity 3.
  • the arrangement of the through holes 13 makes the concrete in the cavity 3 of the double web H-shaped steel integrally connected with the concrete outside thereof, further improving the connection between the double web H-shaped steel and the external concrete, so that the overall structure is more firm.
  • a first reinforcing connecting rod 41 may be further disposed; the first reinforcing connecting rod 41 passes through the through hole 13 in the first flange plate 11, One end of the first reinforcing connecting rod 41 is vertically fixed to the second flange plate 12, and the other end exposes the first flange plate 11.
  • the first reinforcing connecting rod 41 may be an ordinary steel bar or a stud.
  • the first reinforcing connecting rod 41 is preferably machined integrally with the double web H-beam in the factory.
  • a prestressed steel bar 5 or a prestressing force in the same length direction as the double web H-shaped steel may be disposed in the cavity 3 near the flange plate 1.
  • Prestressed steel bars 5 or prestressed steel strands are also machined in the factory with double web H-beams.
  • the anchorage of prestressed steel bars 5 or steel strands is divided into the following two cases:
  • a tip plate may be provided at both ends of the double web H-shaped steel, and the pre-stressed steel bar 5 or the pre-stressed steel strand is anchored on the end plate.
  • the double-web H-beam is filled with concrete before the factory, then the two ends of the pre-stressed steel bar 5 or steel strand are pulled first in the factory, and then the concrete is poured, until the concrete strength meets the requirements. The tensioning device at both ends is released, so that the prestressed steel bar 5 or the steel strand is integrated with the concrete in the cavity 3.
  • a second reinforcing connecting rod 42 is disposed in the cavity 3, and the second reinforcing connecting rod 42 may be vertically welded to the inner surface of the flange plate 1. Pegs.
  • the third reinforcing connecting rod 43 is vertically welded on the outer surface of the flange plate 1, and the third reinforcing connecting rod 43 may be a steel bar or a stud. .
  • the web 2 may be a corrugated web 8, i.e., the web 2 has a sinusoidal shape along the length of the H-shaped steel, and the two corrugated webs 8 may be symmetrically disposed. This arrangement can further improve the bending, torsion resistance and buckling resistance of the double web H-beam.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a joint node of a double web H-shaped steel and a concrete precast board includes two prefabricated floor slabs 9 and double web H-shaped steel; double web H-shaped steel includes a through hole 13 and a first reinforcement Connecting rods 41; two prefabricated floors 9 are located on the same side of the first flange plate 11 of the double web H-shaped steel, and a first post-casting strip 104 is formed between the two precast slabs 9, and the first post-casting strip 104 is poured into the concrete.
  • the front end of the prefabricated floor slab 9 adjacent to the first post-casting strip 104 is provided with lateral connecting ribs 91, a part of which is embedded in the prefabricated floor slab 9 and a part of which protrudes from the prefabricated slab 9; two prefabricated slabs 9
  • the lateral connecting ribs 91 and the first reinforcing connecting rods 41 of the double web H-shaped steel are connected to each other.
  • connection joint between the prefabricated plate and the steel structure is generally bolted or partially welded, and has the disadvantages of weak connection, poor earthquake resistance and poor integrity.
  • the joint connection between the prefabricated floor slab 9 and the lateral connection ribs 91 is connected with the post-cast concrete, and the first reinforcing connecting rod 41 and the post-cast concrete are connected between the precast slab 9 and the double web H-shaped steel, thereby effectively improving the integrity and shock resistance of the joint.
  • the ends of the lateral connecting ribs 91 of the two prefabricated floor slabs 9 are provided with an expanding head 103 (not shown), and the lateral connecting ribs 91 are connected by a sleeve 101.
  • a through-bolt hole 67 is formed in the wall of the sleeve 101.
  • connection node is not limited to the technical measures mentioned in the above part of the embodiment, and the prestressed steel bar 5, the second reinforcing connecting rod 42 and the third reinforcing connecting rod 43 in the first embodiment can also be used. For comprehensive use.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a double web H-shaped steel differs from the first embodiment in that both ends of one of the flange plates 1 are bent outward to form a snap-in plate 14.
  • a joint node of a double web H-shaped steel and a concrete precast panel includes a prefabricated wall panel 7 and a double web H-shaped steel as described in this embodiment.
  • the double web H-section steel is placed on the top surface of the prefabricated wall panel 7, and the two snap panels 14 are engaged with the prefabricated wall panel 7.
  • the structure strengthens the connection between the double web H-shaped steel and the prefabricated wall panel 7, and the structure is more firm.
  • the two structures in the second embodiment and the embodiment can also be combined to form a connection node of the prefabricated wall panel 7, the double web H-shaped steel and the prefabricated floor panel 9, so that the building is more firm. Better shock resistance.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the snap plate 14 is not provided at the bottom of the steel beam, but the connecting bar 15 is vertically disposed.
  • a second post-casting strip 105 is disposed between the top surface of the prefabricated wall panel 7 and the bottom surface of the double web H-shaped steel; the top of the prefabricated wall panel 7 is provided with a pre-embedded reinforcing bar 71, and the pre-embedded reinforcing bar 71 extends out of the prefabricated wall.
  • the portion of the plate 7 is fixed to the connecting bar 15 and may be welded.
  • the upper and lower flange plates 1 of the double web H-shaped steel are respectively provided with through holes 13 through which the concrete in the cavity and the second post-casting strip 105 pass through the through holes 13 connection.
  • the upper and lower through holes 13 are vertically provided with reinforcing connecting ribs 16, and the reinforcing connecting ribs 16 may be studs or ordinary steel bars.
  • the pre-embedded rebar 71 extends from the end of the prefabricated wall panel 7 and is provided with an enlarged head 103.
  • the end of the connecting rebar 15 is provided with an enlarged head 103 (not shown), and the pre-reinforcing rebar 71 and the connecting rebar are connected. 15 is connected by a sleeve 101. (The structure and connection of the enlarged head 103 and the sleeve 101 are described in the last paragraph of the article)
  • the two structures in the second embodiment and the embodiment are combined to form a joint node of the prefabricated wall panel 7, the double web H-shaped steel and the prefabricated floor panel 9, so that the building is firmer. , better earthquake resistance.
  • the double web H-shaped steel described above can be replaced by a square steel pipe, and the corresponding effect can also be achieved.
  • the two vertical pipe walls of the square steel pipe can be used as two webs 2 .
  • the sleeve 101 can be a shrink-type reinforcing steel sleeve and an outer protruding card sleeve.
  • the connecting ribs 102 represent the above two types of reinforcing bars.
  • the members on both sides of the sleeve 101 are prefabricated as the example. Description
  • the necked rebar sleeve comprises a cylinder body 6 and a constriction 61 integrally connected to the two ends of the cylinder body 6.
  • the cylinder body 6 is provided with a plurality of evenly distributed grouting holes 62 for facilitating the flow of the cement slurry into the cylinder.
  • the necking 61 is a round mouth, the inner wall of the necking 61 is a conical surface, and the larger end of the conical surface faces the inside of the cylinder 6; in conjunction with FIG. 20, the connecting structure of the shrink-type reinforcing steel sleeve
  • the connecting rib 102 and the cylindrical body 6 are formed.
  • One end of the connecting rib 102 is pre-buried and fixedly connected inside the prefabricated wall panel 7, and the other end is exposed outside the prefabricated wall panel 7 and an enlarged head is integrally connected at an end portion away from the prefabricated wall panel 7. 103.
  • the radial dimension of the outer wall of the enlarged head 103 is larger than the radial dimension of the outer wall of the connecting rib 102 and smaller than the radial dimension of the inner wall of the recess 61.
  • the enlarged head 103 can protrude from the constriction 61 into the interior of the cylinder 6.
  • the enlarged head 103 can be fixed inside the cylindrical body 6, and the connecting ribs 102 at both ends of the cylindrical body 6 can be restricted from moving away from each other.
  • the cylinder 6 is pulled out in the direction of movement, thereby connecting the prefabricated wall panels 7 at both ends (the schematic diagram of the rectangular block structure of the connecting rib 102 away from the end of the cylinder 6 in FIG. 21 as the prefabricated wall panel 7), and the two prefabricated wall panels are improved.
  • One end of the enlarged head 103 near the connecting rib 102 has a truncated cone shape, and one end of the enlarged head 103 near the prefabricated wall panel 7 is smaller than the other end; for convenience of description, the conical surface of the constriction 61 is defined as a transitional conical surface 611, a constriction 61 and a cylinder The ends of the body 6 are integrally connected by the transitional conical surface 611.
  • the reaction force generated by the transitional conical surface 611 has a radial component force to the expansion head 103, and the expansion head 103 is pressed in the radial direction. Therefore, the transitional conical surface The 611 can cause the cylinder 6 and the concrete inside to carry a larger load, and improve the strength of the connection between the connecting rib 102 and the enlarged head 103 and the cylinder 6.
  • the sleeve does not require a separate grouting operation, but when the concrete is poured, the concrete slurry enters the cylinder 6 to complete the connection of the connecting ribs 102, which is more convenient and does not require special grouting material. ,save costs.
  • the connection is more reliable than the grouting sleeve relies on the bond between the grout and the reinforcing bar.
  • the shape of the constriction 61 may be a circular shape, or may be a plurality of shapes such as a square shape, an elongated shape, and an elliptical shape, and the cross section of the enlarged head 103 is adapted to the shape of the constricted portion 61.
  • the size of the constricted portion 61 may be larger than the size of the enlarged head 103 by 1 to 5 mm, preferably 2 to 3 mm.
  • the cylinder body 6 is provided with a peg hole 67 for the first reinforcing connecting rod 41 to pass through; (back to FIG. 8) the first reinforcing connecting rod 41 is vertically penetrated and the double web H-shaped steel welding.
  • the central portion of the inner wall of the cylinder 6 is fixed with a baffle member 64 that prevents the enlarged head 103 from penetrating the sleeve 101.
  • the baffle element 64 can be an intermediate wafer plate located in the barrel 6. Further, in order to allow the cement slurry to freely flow in the cylinder 6, the baffle member 64 is provided in a hollow annular shape, and the inner diameter of the ring is smaller than the diameter of the enlarged head 103. Alternatively, the baffle element 64 may also be a rod disposed in the radial direction of the barrel 6.
  • the outer sleeve member includes a cylinder body 6, a latching block 65, and an elastic piece 66.
  • the two ends of the cylinder body 6 are provided with a snap hole for inserting the latching block 65.
  • the barrel 6 is provided with a grouting hole 62.
  • One end of the elastic piece 66 is fixedly connected to the outer side surface of the cylindrical body 6, and the other end of the elastic piece 66 is fixedly connected to one end of the engaging block 65 located outside the cylindrical body 6.
  • One end of the connecting rib 102 is fixedly coupled to the enlarged head 103.
  • the radial dimension of the enlarged head 103 is larger than the radial dimension of the connecting rib 102, and the enlarged head 103 can be inserted into the inside of the cylindrical body 6 from the port of the cylindrical body 6.
  • the expanding head 103 pushes the engaging block 65 to move away from the central axis of the cylindrical body 6 to elastically deform the elastic piece 66.
  • the elastic piece 66 gradually recovers and deforms into the cylindrical body 6 The reset restricts the expansion head 103 to pull out the cylinder 6.
  • the cement slurry can flow from the two ports of the cylinder 6 and the grouting hole 62 into the inside of the cylinder body 6, and the solidified concrete is formed after the cement slurry solidifies, so that the connecting rib 102 is fixed to the cylinder body. 6 internal, thereby achieving the connection of the two connecting ribs 102.
  • the cylinder body 6 is provided with a peg hole 67 for the first reinforcing connecting rod 41 to pass through; (back to FIG. 8) the first reinforcing connecting rod 41 is vertically penetrated and the double web H-shaped steel welding.
  • the sleeve can adopt the four sleeve-related utility model patents submitted by the applicant on April 8, 2018, and the application numbers are 201810306670.4, 201810307419.X, 201810307420.2 and 201810307967.2, respectively.

Abstract

一种双腹板H型钢及其与混凝土预制板的连接节点,其中,双腹板H型钢包括两块翼缘板(1)和两块腹板(2),两块翼缘板(1)相互平行,两块腹板(2)相互平行,腹板(2)垂直固接于两块翼缘板(1)之间;两块腹板(2)与两块翼缘板(1)组成了空腔。双腹板H型钢整体性好,刚度大,便于双腹板H型钢与混混凝土预制板之间的连接。

Description

双腹板H型钢及其与混凝土预制板的连接节点 技术领域
本发明涉及建筑中的一种型钢,特别涉及一种双腹板H型钢及其与混凝土预制板的连接节点。
背景技术
现阶段,我国建筑行业处于转型发展时期,装配式建筑是未来建筑业的发展趋势。目前,H型钢经常作为钢柱和钢梁在钢结构装配式建筑中使用,但是H型钢用于长大跨度时往往是通过增大截面尺寸以满足受力性能。特别是H型钢用作钢梁使用时,需要增加底部翼缘板的厚度和腹板的高度以增强其抗弯能力,增加腹板厚度以增强其抗剪、抗扭的能力。但是这种增大截面、增强厚度的措施会造成H型钢自身重量的增加,计算受力时,需要将其自重考虑进去,从而需要进一步对截面进行加大,最终设计出的H型钢尺寸用于建筑中时,钢材的利用率低,造成材料的浪费;此外,腹板高度的增加会引起H型钢抗稳性的下降,而且对于高度较高的H型钢,在安装过程中,还需要进行防止倾覆的临时加固,降低了施工效率,增加了安全风险。
发明内容
本发明的一个目的是提供一种双腹板H型钢,该H型钢能够减少材料用量,整体性好。
本发明的另一个目的是提供一种双腹板H型钢与混凝土预制板的连接节点,该节点连接牢固、抗震性好。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种双腹板H型钢,包括两块翼缘板和两块腹板,所述两块翼缘板相互平行,所述两块腹板相互平行,所述腹板垂直固接于两块翼缘板之间;两块腹板与两块翼缘板组成了空腔。
通过采用上述技术方案,双腹板相比现有技术中单腹板的H型钢,具有更好的抗扭能力,整体的刚性更好;在双层腹板的总厚度与单层腹板的厚度相同的情况下,也可实现相同的抗弯性能,而且双层腹板的设置可以在同等条件下减小腹板的高度,从而减少钢材用量。
作为优选地,至少一块翼缘板上开设有若干通孔,所述通孔位于空腔范围内。
通过采用上述技术方案,方便在施工现场浇注混凝土时,混凝土能够同步进入双腹板H型钢的空腔内,提高了双腹板H型钢和外部混凝土的连接,使整体结构更加牢固。
作为优选地,还包括第一加强连接杆;两块翼缘板为第一翼缘板和第二翼缘板;第 一加强连接杆穿过第一翼缘板上的通孔,第一加强连接杆的一端与第二翼缘板垂直固接,另一端露出第一翼缘板。
通过采用上述技术方案,进一步加强了双腹板H型钢和外部混凝土的连接。
作为优选地,所述腹板为波形腹板,即腹板沿H型钢的长度方向为正弦曲线形状。
通过采用上述技术方案,提高双腹板H型钢的抗弯、抗扭性能和抗屈曲能力。
作为优选地,空腔内灌注有混凝土。
通过采用上述技术方案,提高了双腹板H型钢的抗弯、抗扭和防火性能,解决了空腔内钢材表面的防腐问题。
作为优选地,空腔内靠近翼缘板处设置有与双腹板H型钢长度方向相同的预应力钢筋或预应力钢绞线。
通过采用上述技术方案,加强双腹板H型钢的抗弯性能,节约了钢板材料的投入。
作为优选地,还包括第二加强连接杆,第二加强连接杆位于空腔内,垂直固接于翼缘板的内表面。
通过采用上述技术方案,提高了空腔内混凝土的抗剪能力。
作为优选地,还包括第三加强连接杆,第三加强连接杆垂直固接于翼缘板的外表面。
通过采用上述技术方案,进一步提高了双腹板H型钢与外部灌注混凝土的连接。
一种双腹板H型钢与混凝土预制板的连接节点,包括两块预制楼板和如权利要求中所述的双腹板H型钢;两块预制楼板位于双腹板H型钢的其第一翼缘板的同一侧面,两块预制楼板之间形成第一后浇带,第一后浇带浇筑混凝土;预制楼板靠近第一后浇带的端面设置有侧向连接筋,所述侧向连接筋一部分预埋在预制楼板内,一部分伸出预制楼板;两块预制楼板的侧向连接筋以及双腹板H型钢的第一加强连接杆相互连接。
通过采用上述技术方案,该连接节点的整体性和抗震性更好。
作为优选地,侧向连接筋的端头设置有扩大头,两块预制楼板的侧向连接筋用套筒连接。
通过采用上述技术方案,加强了两块预制楼板之间连接强度。
作为优选地,套筒的筒壁上开设有栓钉孔,第一加强连接杆穿过栓钉孔后与双腹板H型钢连接。
通过采用上述技术方案,使第一加强连接杆和侧向连接筋通过套筒连接成整体,提高了节点的抗震性能。
作为优选地,其中一块翼缘板的两端向外弯折形成卡接板,双腹板H型钢设置在预制墙板的顶面,两块卡接板卡住预制墙板。
通过采用上述技术方案,该结构加强了双腹板H型钢与预制墙板的连接,使预制墙板、H型钢和预制楼板的整体结构更加牢固。
作为优选地,两块翼缘板或其中一块翼缘板的外侧面固接有连接钢筋;双腹板H型钢设置在预制墙板的上方;预制墙板的顶面与双腹板H型钢底面之间设置第二后浇带;预制墙板顶部设置有预埋钢筋,预埋钢筋伸出预制墙板的部分与连接钢筋固接;双腹板H型钢的上下两块翼缘板上均开设有通孔;空腔内混凝土与第二后浇带混凝土通过通孔连接。
通过采用上述技术方案,第二后浇带加强了H型钢与预制墙板的连接。
作为优选地,连接钢筋的端部设置有扩大头,预埋钢筋与连接钢筋用套筒连接。
通过采用上述技术方案,套筒连接不仅减少了现场的焊接操作,而且使连接更加可靠。
综上所述,本发明具有以下有益效果:
1、双腹板H型钢用钢量少,自重轻,刚度大;
2、空腔内灌注混凝土,进一步提高了双腹板H型钢的刚度和防火性能,节约了钢材,而且解决了空腔内钢材表面防腐问题;
3、第一加强连接杆与翼缘板上通孔的设置,加强了空腔内混凝土与外部混凝土的连接;
4、预应力钢筋或预应力钢绞线将抗拉能力大大提高,而且进一步节约型钢钢材用量,减轻自重;
5、双层波腹板的设置,提高了双腹板H型钢的抗弯、抗扭性能和抗屈曲能力;
6、双腹板H型钢与混凝土预制板的连接节点使预制楼板与钢结构以及预制墙板之间的连接更加牢固,使整体建筑结构具有更好的抗震性。
附图说明
图1是双腹板H型钢整体示意图;
图2是空腔内填充有混凝土的双腹板H型钢截面图;
图3是设置有第一加强连接杆和预应力钢筋的双腹板H型钢结构示意图;
图4是设置有第二加强连接杆和第三加强连接杆的双腹板H型钢结构示意图;
图5是双腹波纹板H型钢的结构示意图(局部剖开);
图6是双腹板H型钢与混凝土预制板的连接节点的整体示意图;
图7是浇注混凝土后的连接节点截面图;
图8是设置有套筒的连接节点示意图;
图9是设置有卡接板的双腹板H型钢的结构示意图;
图10是双腹板H型钢与预制墙板卡接的结构示意图;
图11是双腹板H型钢与预制墙板及预制楼板的连接节点示意图;
图12是设置有连接钢筋的双腹板H型钢的结构示意图;
图13是双腹板H型钢与预制墙板通过第二后浇带连接结构示意图;
图14是设置加强连接筋的连接节点示意图;
图15是第二后浇带中连接钢筋与预埋钢筋用套筒连接的节点示意图;
图16是设置有第二后浇带的双腹板H型钢与预制墙板及预制楼板的连接节点整体示意图;
图17是开设有通孔的方管的结构示意图;
图18是缩口式钢筋连接套筒中筒体的结构示意图;
图19是缩口的端面示意图;
图20是套筒和连接钢筋的配合示意图;
图21是缩口式钢筋连接套筒与预制柱的连接关系示意图;
图22是套筒与竖直状态的两根钢筋相连的结构示意图;
图23是外伸入卡件式套筒的结构示意图;
图24是外伸入卡件式套筒与连接钢筋的装配示意图。
图中,1、翼缘板;11、第一翼缘板;12、第二翼缘板;13、通孔;14、卡接板;15、连接钢筋;16、加强连接筋;2、腹板;3、空腔;41、第一加强连接杆;42、第二加强连接杆;43、第三加强连接杆;5、预应力钢筋;6、筒体;61、缩口;611、过渡圆锥面;62、注浆孔;64、隔挡元件;65、卡接块;651、卡接孔;66、弹片;67、栓钉孔;7、预制墙板;71、预埋钢筋;8、波形腹板;9、预制楼板;91、侧向连接筋;101、套筒;102、连接筋;103、扩大头;104、第一后浇带;105、第二后浇带。
具体实施方式
以下结合附图对本发明作进一步详细说明。其中相同的零部件用相同的附图标记表示。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”、“下”、“底面”和“顶面”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
实施例一:
如图1所示,一种双腹板H型钢,包括两块翼缘板1和两块腹板2,两块翼缘板1相互平 行,两块腹板2相互平行,腹板2垂直固接于两块翼缘板1之间;两块腹板2与两块翼缘板1组成了空腔3。两块翼缘板1为第一翼缘板11和第二翼缘板12。双腹板2相比现有技术中单腹板2的H型钢,具有更好的抗扭能力,整体的刚性更好。在双层腹板2的总厚度与单层腹板2的厚度相同的情况下,也可实现相同的抗弯性能,而且双层腹板2的设置可以在同等条件下减小腹板2的高度,从而减少钢材用量。
如图2所示,进一步地,在空腔3内灌注有混凝土。空腔3内灌注的混凝土使得双腹板H型钢具有了钢管混凝土的性能,不仅提高了双腹板H型钢的抗弯、抗扭性能,而且解决了空腔3内钢材表面的防腐问题。此外,灌注有混凝土的双腹板H型钢相比现有的H型钢具有更好的防火性能,延长了耐火时间。
双腹板H型钢在工厂直接加工而成,空腔3内的混凝土可以是在工厂内直接灌注,也可以是在施工现场进行灌注。
因为双腹板H型钢作为钢梁或钢柱使用时,经常会在其一个翼缘板1的侧面浇注混凝土,或者在其四周浇注混凝土,所以为了方便在施工现场浇注混凝土时,混凝土能够同步进入双腹板H型钢的空腔3内,所以,如图1所示,在至少一块翼缘板1上开设有若干通孔13,通孔13位于空腔3范围内。
通孔13的设置使双腹板H型钢的空腔3内的混凝土与其外部的混凝土连接成整体,进一步提高了双腹板H型钢和外部混凝土的连接,使整体结构更加牢固。
如图3所示,为了进一步加强双腹板H型钢和外部混凝土的连接,还可以设置第一加强连接杆41;第一加强连接杆41穿过第一翼缘板11上的通孔13,第一加强连接杆41的一端与第二翼缘板12垂直固接,另一端露出第一翼缘板11。第一加强连接杆41可以是普通的钢筋,也可以是栓钉。第一加强连接杆41最好是在工厂中与双腹板H型钢加工成一体。
如图3所示,为了进一步加强双腹板H型钢的抗弯性能,可以在空腔3内靠近翼缘板1处设置有与双腹板H型钢长度方向相同的预应力钢筋5或预应力钢绞线。预应力钢筋5或预应力钢绞线也是在工厂内与双腹板H型钢加工成一体。预应力钢筋5或钢绞线的锚固分以下两种情况:
如果双腹板H型钢出厂前,空腔3内没有灌注混凝土,可以在双腹板H型钢的两端设置端头板,预应力钢筋5或预应力钢绞线锚固在端头板上。
如果是双腹板H型钢出厂前,空腔3内已经灌注有混凝土,那么在工厂内对预应力钢筋5或钢绞线的两端先行张拉,然后再灌注混凝土,待混凝土强度达到要求时,解除两端 的张拉装置,使预应力钢筋5或钢绞线与空腔3内混凝土形成整体。
如图4所示,为了提高空腔3内混凝土的抗剪能力,在空腔3内设置第二加强连接杆42,第二加强连接杆42可以是垂直焊接于翼缘板1的内表面的栓钉。
如图4所示,为了提高双腹板H型钢与外部灌注混凝土的连接,在翼缘板1的外表面垂直焊接第三加强连接杆43,第三加强连接杆43可以是钢筋或栓钉等。
如图5所示,较佳地,腹板2可以是波形腹板8,即腹板2沿H型钢的长度方向为正弦曲线形状,两块波形腹板8可以是对称设置。该设置能够进一步提高双腹板H型钢的抗弯、抗扭性能和抗屈曲能力。
实施例二:
如图6与图7所示,一种双腹板H型钢与混凝土预制板的连接节点,包括两块预制楼板9和双腹板H型钢;双腹板H型钢包括通孔13和第一加强连接杆41;两块预制楼板9位于双腹板H型钢的其第一翼缘板11的同一侧面,两块预制楼板9之间形成第一后浇带104,第一后浇带104浇筑混凝土;预制楼板9靠近第一后浇带104的端面设置有侧向连接筋91,所述侧向连接筋91一部分预埋在预制楼板9内,一部分伸出预制楼板9;两块预制楼板9的侧向连接筋91以及双腹板H型钢的第一加强连接杆41相互连接。
现有的装配式建筑中预制板与钢结构的连接节点一般采用螺栓连接或局部焊接,存在连接不牢固、抗震性差以及整体性差等缺点,该连接节点中预制楼板9之间通过侧向连接筋91和后浇混凝土进行连接,预制楼板9与双腹板H型钢之间利用第一加强连接杆41和后浇混凝土进行连接,有效提高了连接节点的整体性和抗震性。
进一步地,如图8所示,两块预制楼板9的侧向连接筋91的端头设置扩大头103(图中未画出),侧向连接筋91采用套筒101进行连接。套筒101的筒壁上开设有贯穿的栓钉孔67。第一加强连接杆41竖向穿过栓钉孔67后,插入双腹板H型钢内,与第二翼缘板12垂直固接。(扩大头103和套筒101的结构及连接方式在文章最后段落进行介绍)
需要指出的是该连接节点,不限于该实施例中以上部分提到的技术措施,也可以将实施例一中的预应力钢筋5、第二加强连接杆42和第三加强连接杆43等措施进行综合使用。
实施例三:
如图9所示,一种双腹板H型钢,与实施例一不同之处在于,其中一块翼缘板1的两端向外弯折形成卡接板14。
如图10所示,一种双腹板H型钢与混凝土预制板的连接节点,包括预制墙板7和该实施例中所述的双腹板H型钢。双腹板H型钢设置在预制墙板7的顶面,两块卡接板14卡 住预制墙板7。
该结构加强了双腹板H型钢与预制墙板7的连接,结构更加牢固。
如图11所示,也可以将实施例二和该实施例中的两个结构进行组合,形成预制墙板7、双腹板H型钢与预制楼板9三者的连接节点,使建筑更加牢固,抗震性更好。
实施例四:
与实施例三不同之处在于,如图12所示,型钢梁底部不设置卡接板14,而是垂直设置有连接钢筋15。如图13所示,预制墙板7的顶面与双腹板H型钢底面之间设置第二后浇带105;预制墙板7顶部设置有预埋钢筋71,预埋钢筋71伸出预制墙板7的部分与连接钢筋15固接,可以是焊接。为了方便对第二后浇带105进行混凝土灌注,双腹板H型钢的上下两块翼缘板1上均开设有通孔13,空腔内混凝土与第二后浇带105混凝土通过通孔13连接。
进一步地,如图14所示,上下通孔13内竖直贯穿设置有加强连接筋16,加强连接筋16可以是栓钉或普通钢筋。
如图15所示,预埋钢筋71伸出预制墙板7的端头设置有扩大头103,连接钢筋15的端头设置扩大头103(图中未画出),预埋钢筋71与连接钢筋15用套筒101连接。(扩大头103和套筒101的结构及连接方式在文章最后段落进行介绍)
同样的,如图16所示,将实施例二和该实施例中的两个结构进行组合,形成预制墙板7、双腹板H型钢与预制楼板9三者的连接节点,使建筑更加牢固,抗震性更好。
此外,如图17所示,以上所述的双腹板H型钢可以用方钢管进行替换,同样可以起到相应的效果,方钢管的竖向的两个管壁即可作为两个腹板2。
套筒结构及其连接方法介绍:
套筒101可以采用缩口式钢筋套筒和外伸入卡件式套筒。
(由于上文中的连接钢筋15、预埋钢筋71均设置有扩大头103,所以下文中的连接筋102代表以上两种钢筋进行说明。套筒101两侧的构件以预制墙板7为例进行说明)
缩口式钢筋套筒:
如图18所示,缩口式钢筋套筒包括筒体6和一体连接于筒体6两端的缩口61,筒体6上开设有若干个均匀分布的注浆孔62,便于水泥浆流入筒体6内部;结合图19,缩口61为圆口,缩口61内壁为圆锥面状,圆锥面较大的一端朝向筒体6的内部;结合图20,缩口式钢筋套筒的连接结构由连接筋102和筒体6组成,连接筋102一端预埋固定连接在预制墙板7内部,另一端露在预制墙板7外面且在远离预制墙板7的一端端部一体连接有扩大头103, 扩大头103的外壁径向尺寸大于连接筋102的外壁径向尺寸且小于缩口61的内壁径向尺寸,扩大头103可从缩口61伸入筒体6内部。
如图21所示,水泥浆从注浆孔62流入筒体6内部并且凝固形成混凝土之后,扩大头103可以被固定在筒体6内部,可以限制筒体6两端的连接筋102朝相互远离的方向运动拔出筒体6,从而对两端的预制墙板7(图21中连接筋102远离筒体6一端的矩形块状结构为预制墙板7的示意图)进行连接,提高两个预制墙板7之间的连接强度。扩大头103靠近连接筋102的一端为圆台面状,扩大头103靠近预制墙板7的一端小于另一端;为便于叙述,缩口61的圆锥面定义为过渡圆锥面611,缩口61与筒体6端部之间通过过渡圆锥面611一体连接,在连接筋102受到拔出筒体6方向的作用力之后,圆台面挤混凝土,混凝土将挤压作用力(如图21中F箭头所指的方向为作用力方向的示意图)传递给过渡圆锥面611,过渡圆锥面611产生的反作用力对扩大头103具有沿径向的分力,沿径向压紧扩大头103,因此,过渡圆锥面611可以使筒体6和内部的混凝土承载更大的载荷,提高连接筋102以及扩大头103与筒体6之间的连接强度。
与现有灌浆套筒相比,该套筒不需要单独的灌浆操作,而是在浇筑混凝土时,混凝土浆液进入筒体6即完成连接筋102的连接,操作更加方便而且不需要专门的灌浆材料,节约成本。此外,由于该方案是靠压力传递,相比灌浆套筒依靠灌浆料与钢筋之间的黏结咬合,连接更加可靠。
缩口61的形状可以是圆形,也可以是方形、长条形和椭圆形等多种形状,扩大头103的截面与缩口61的形状相适配。为了使扩大头103的压力通过混凝土有效传递至筒体6上,缩口61的尺寸比扩大头103的尺寸大1~5mm即可,优选2~3mm。
如图20所示,筒体6上设置有栓钉孔67,可供第一加强连接杆41穿过;(回看图8)第一加强连接杆41垂直穿入后与双腹板H型钢焊接。
如图22所示,当连接的是竖直状态的两根钢筋时,为了将套筒101在浇筑混凝土前能够更方便地临时固定在两根连接筋102的对接位置,不至于滑落。所以,筒体6内壁中部位置固接有阻止扩大头103贯穿套筒101的隔挡元件64。隔挡元件64可以是位于筒体6中间圆片板。进一步地,为了使水泥浆可以在筒体6内自由流动,隔挡元件64设置成中空的圆环状,圆环内径小于扩大头103的直径。或者,隔挡元件64也可以是沿筒体6的径向设置的一根杆件。
外伸入卡件式套筒:
如图23与图24所示,外伸入卡件式套筒包括筒体6、卡接块65、弹片66,筒体6的两端 均开设有供卡接块65插接的卡接孔651,筒体6上开设有注浆孔62。弹片66一端与筒体6的外侧面相固定连接,弹片66的另一端与卡接块65位于筒体6外侧的一端相固定连接。
连接筋102一端固定连接有扩大头103,扩大头103的径向尺寸大于连接筋102的径向尺寸,扩大头103可从筒体6的端口插入筒体6内部。插入过程中,扩大头103推动卡接块65朝远离筒体6中心轴线的方向运动时带动弹片66发生弹性变形,在扩大头103越过卡接块65之后,弹片66逐渐恢复形变插入筒体6复位,限制扩大头103拔出筒体6。
当筒体6周围的后浇带浇筑混凝土时,水泥浆可从筒体6的两端口和注浆孔62流入筒体6内部,水泥浆凝固之后形成固态混凝土,使连接筋102固定在筒体6内部,从而实现两根连接筋102的连接。
如图23所示,筒体6上设置有栓钉孔67,可供第一加强连接杆41穿过;(回看图8)第一加强连接杆41垂直穿入后与双腹板H型钢焊接。
此外,需要指出的是,套筒可以采用本申请人于2018年4月8号提交的4个套筒相关的实用新型专利,申请号分别为201810306670.4、201810307419.X、201810307420.2和201810307967.2。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (17)

  1. 一种双腹板H型钢,其特征在于:
    包括两块翼缘板(1)和两块腹板(2),所述两块翼缘板(1)相互平行,所述两块腹板(2)相互平行,所述腹板(2)垂直固接于两块翼缘板(1)之间;
    两块腹板(2)与两块翼缘板(1)组成了空腔(3)。
  2. 根据权利要求1所述的一种双腹板H型钢,其特征在于:至少一块翼缘板(1)上开设有若干通孔(13),所述通孔(13)位于空腔(3)范围内。
  3. 根据权利要求2所述的一种双腹板H型钢,其特征在于:还包括第一加强连接杆(41);两块翼缘板(1)为第一翼缘板(11)和第二翼缘板(12);第一加强连接杆(41)穿过第一翼缘板(11)上的通孔(13),第一加强连接杆(41)的一端与第二翼缘板(12)垂直固接,另一端露出第一翼缘板(11)。
  4. 根据权利要求1所述的一种双腹板H型钢,其特征在于:所述腹板(2)为波形腹板(8),即腹板(2)沿H型钢的长度方向为正弦曲线形状。
  5. 根据权利要求1所述的一种双腹板H型钢,其特征在于:空腔(3)内灌注有混凝土。
  6. 根据权利要求1所述的一种双腹板H型钢,其特征在于:空腔(3)内靠近翼缘板(1)处设置有与双腹板H型钢长度方向相同的预应力钢筋(5)或预应力钢绞线。
  7. 根据权利要求1所述的一种双腹板H型钢,其特征在于:还包括第二加强连接杆(42),第二加强连接杆(42)位于空腔(3)内,垂直固接于翼缘板(1)的内表面。
  8. 根据权利要求1所述的一种双腹板H型钢,其特征在于:还包括第三加强连接杆(43),第三加强连接杆(43)垂直固接于翼缘板(1)的外表面。
  9. 根据权利要求1所述的一种双腹板H型钢,其特征在于:其中一块翼缘板(1)的两端向外弯折形成卡接板(14)。
  10. 根据权利要求1所述的一种双腹板H型钢,其特征在于:两块翼缘板(1)或其中一块翼缘板(1)的外侧面固接有连接钢筋(15)。
  11. 根据权利要求10所述的一种双腹板H型钢,其特征在于:连接钢筋(15)的端部设置有扩大头(103)。
  12. 一种双腹板H型钢与混凝土预制板的连接节点,其特征在于:
    包括两块预制楼板(9)和如权利要求3中所述的双腹板H型钢;
    两块预制楼板(9)位于双腹板H型钢的其第一翼缘板(11)的同一侧面,两块预制楼板(9)之间形成第一后浇带(104),第一后浇带(104)浇筑混凝土;预制楼板(9)靠近第一后浇带(104)的端面设置有侧向连接筋(91),所述侧向连接筋(91)一部分预埋在预制 楼板(9)内,一部分伸出预制楼板(9);
    两块预制楼板(9)的侧向连接筋(91)以及双腹板H型钢的第一加强连接杆(41)相互连接。
  13. 根据权利要求12所述的双腹板H型钢与混凝土预制板的连接节点,其特征在于:侧向连接筋(91)的端头设置有扩大头(103),两块预制楼板(9)的侧向连接筋(91)用套筒(101)连接。
  14. 根据权利要求13所述的双腹板H型钢与混凝土预制板的连接节点,其特征在于:套筒(101)的筒壁上开设有栓钉孔(67),第一加强连接杆(41)穿过栓钉孔(67)后与双腹板H型钢连接。
  15. 一种双腹板H型钢与混凝土预制板的连接节点,其特征在于:包括预制墙板(7)和如权利要求9所述的双腹板H型钢,双腹板H型钢设置在预制墙板(7)的顶面,两块卡接板(14)卡住预制墙板(7)。
  16. 一种双腹板H型钢与混凝土预制板的连接节点,其特征在于:包括预制墙板(7)和如权利要求10所述的双腹板H型钢,双腹板H型钢设置在预制墙板(7)的上方;预制墙板(7)的顶面与双腹板H型钢底面之间设置第二后浇带(105);预制墙板(7)顶部设置有预埋钢筋(71),预埋钢筋(71)伸出预制墙板的部分与连接钢筋(15)固接;双腹板H型钢的上下两块翼缘板(1)上均开设有通孔(13);空腔(3)内混凝土与第二后浇带(105)混凝土通过通孔(13)连接。
  17. 根据权利要求16所述的双腹板H型钢与混凝土预制板的连接节点,其特征在于:预埋钢筋(71)伸出预制墙板(7)的端头设置有扩大头(103),连接钢筋的端头设置扩大头(103),预埋钢筋(71)与连接钢筋(15)用套筒(101)连接。
PCT/CN2019/085991 2018-05-09 2019-05-08 双腹板h型钢及其与混凝土预制板的连接节点 WO2019214638A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810439494.1 2018-05-09
CN201810439517.9A CN108442534B (zh) 2018-05-09 2018-05-09 一种钢柱/梁与预制板的连接节点及其施工方法
CN201810439494.1A CN108412122A (zh) 2018-05-09 2018-05-09 双腹板h型钢及其与混凝土预制板的连接节点
CN201810439517.9 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214638A1 true WO2019214638A1 (zh) 2019-11-14

Family

ID=68467783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085991 WO2019214638A1 (zh) 2018-05-09 2019-05-08 双腹板h型钢及其与混凝土预制板的连接节点

Country Status (1)

Country Link
WO (1) WO2019214638A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247298A (ja) * 2002-02-25 2003-09-05 Maeda Corp 穴付き形鋼
CN203569795U (zh) * 2013-11-08 2014-04-30 湖北弘毅钢结构工程有限公司 一种大跨度预应力箱型钢骨混凝土叠合梁
CN203640159U (zh) * 2013-11-08 2014-06-11 湖北弘毅建设有限公司 一种预应力箱型钢骨混凝土叠合梁
CN104406777A (zh) * 2014-11-04 2015-03-11 西安理工大学 一种三维空间变角度加载装置
CN207195100U (zh) * 2017-07-14 2018-04-06 南京风电科技有限公司 一种风力发电机组的后机舱底座
CN107938857A (zh) * 2017-12-18 2018-04-20 上海建工五建集团有限公司 混凝土结构与型钢的连接节点
CN108412122A (zh) * 2018-05-09 2018-08-17 李藏柱 双腹板h型钢及其与混凝土预制板的连接节点
CN108442534A (zh) * 2018-05-09 2018-08-24 李藏柱 一种钢柱/梁与预制板的连接节点及其施工方法
CN208363287U (zh) * 2018-05-09 2019-01-11 李藏柱 一种钢柱/梁与预制板的连接节点
CN208618654U (zh) * 2018-05-09 2019-03-19 李藏柱 双腹板h型钢及其与混凝土预制板的连接节点

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247298A (ja) * 2002-02-25 2003-09-05 Maeda Corp 穴付き形鋼
CN203569795U (zh) * 2013-11-08 2014-04-30 湖北弘毅钢结构工程有限公司 一种大跨度预应力箱型钢骨混凝土叠合梁
CN203640159U (zh) * 2013-11-08 2014-06-11 湖北弘毅建设有限公司 一种预应力箱型钢骨混凝土叠合梁
CN104406777A (zh) * 2014-11-04 2015-03-11 西安理工大学 一种三维空间变角度加载装置
CN207195100U (zh) * 2017-07-14 2018-04-06 南京风电科技有限公司 一种风力发电机组的后机舱底座
CN107938857A (zh) * 2017-12-18 2018-04-20 上海建工五建集团有限公司 混凝土结构与型钢的连接节点
CN108412122A (zh) * 2018-05-09 2018-08-17 李藏柱 双腹板h型钢及其与混凝土预制板的连接节点
CN108442534A (zh) * 2018-05-09 2018-08-24 李藏柱 一种钢柱/梁与预制板的连接节点及其施工方法
CN208363287U (zh) * 2018-05-09 2019-01-11 李藏柱 一种钢柱/梁与预制板的连接节点
CN208618654U (zh) * 2018-05-09 2019-03-19 李藏柱 双腹板h型钢及其与混凝土预制板的连接节点

Similar Documents

Publication Publication Date Title
KR101062928B1 (ko) 콘크리트 충전 강관기둥
WO2019206193A1 (zh) 一种预制墙板及其连接结构及其施工方法
KR101464866B1 (ko) 반채움 pc 타이앵커 합성보
KR102079008B1 (ko) 단부모멘트 및 휨 저항력이 보강된 보와 기둥의 이-지(ez) 결합구조
CN108412122A (zh) 双腹板h型钢及其与混凝土预制板的连接节点
CN110847447B (zh) 双皮墙连接结构
CN110670720A (zh) 一种预制柱与叠合梁的连接结构及其施工方法
CN203769116U (zh) 预制通孔装配式钢筋混凝土剪力墙
CN208618654U (zh) 双腹板h型钢及其与混凝土预制板的连接节点
WO2019206192A1 (zh) 一种预制柱/梁及其连接结构及其施工方法
CN115653098B (zh) 一种装配式钢筋混凝土梁-柱连接结构及其施工方法
WO2006088987A2 (en) Lintel
WO2019214638A1 (zh) 双腹板h型钢及其与混凝土预制板的连接节点
CN209163210U (zh) 一种型钢及包括该型钢的建筑结构
CN110984383A (zh) 一种大截面型钢混凝土柱与梁节点处施工结构及方法
KR101373262B1 (ko) 연결판 교차식 콘크리트 충전 강관기둥
CN108412120A (zh) 一种型钢及包括该型钢的建筑结构
CN211774531U (zh) 一种预制柱与叠合梁的连接结构
CN212405468U (zh) 一种劲性混凝土结构梁柱核心区结构
CN210238769U (zh) 一种装配式混凝土框架节点
JP2004300902A (ja) Cfh、cfh梁及びcfh柱
CN218757915U (zh) 一种梁钢筋骨架与钢筋混凝土柱的连接结构
CN111364680A (zh) 一种预留钢筋预制柱
CN219794306U (zh) 波纹管通孔剪力墙
CN218843486U (zh) 一种快连式变刚度预制楼板及其体系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800232

Country of ref document: EP

Kind code of ref document: A1