WO2019214596A1 - 参数确定的方法、监控方法、通信装置 - Google Patents

参数确定的方法、监控方法、通信装置 Download PDF

Info

Publication number
WO2019214596A1
WO2019214596A1 PCT/CN2019/085794 CN2019085794W WO2019214596A1 WO 2019214596 A1 WO2019214596 A1 WO 2019214596A1 CN 2019085794 W CN2019085794 W CN 2019085794W WO 2019214596 A1 WO2019214596 A1 WO 2019214596A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
carrier
maximum
serving cell
candidate pdcchs
Prior art date
Application number
PCT/CN2019/085794
Other languages
English (en)
French (fr)
Inventor
肖洁华
彭金磷
王婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19799816.4A priority Critical patent/EP3780468A4/en
Priority to CA3098949A priority patent/CA3098949C/en
Publication of WO2019214596A1 publication Critical patent/WO2019214596A1/zh
Priority to US17/094,573 priority patent/US11528090B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation

Definitions

  • the present application relates to the field of communications and, more particularly, to a method of parameter determination, a monitoring method, and a communication device.
  • the network device usually sends Downlink Control Information (DCI) to the terminal by using a Physical Downlink Control Channel (PDCCH) to schedule data transmission between the network device and the terminal.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the DCI has many formats. Before receiving the DCI belonging to the terminal, the terminal does not determine which format of the DCI is received, and is not sure which candidate PDCCH is expected to be transmitted by the DCI that it expects to receive. Therefore, the terminal performs a PDCCH blind check.
  • the terminal has limited blind detection capability for the PDCCH, it is necessary to define the number of maximum candidate PDCCHs in a time unit in the serving cell, thereby guiding the network.
  • the device configures the search space to ensure that the relevant configuration does not exceed the upper limit of the blind detection capability of the terminal.
  • the number of the maximum candidate PDCCHs in one time unit is determined as the product of the number of candidate PDCCHs corresponding to one carrier and the number of aggregated carriers. The above does not consider the case where there are different configuration parameters between carriers.
  • the present application provides a method for determining a parameter, a monitoring method, and a communication device, which are capable of determining the maximum number of candidate PDCCHs monitored by a terminal in one time unit when the subcarrier spacing corresponding to each carrier in the carrier aggregation is different.
  • a method for parameter determination comprising: configuring, by a network device, a plurality of serving cells for a terminal, wherein a subcarrier spacing of at least two of the plurality of serving cells is different; Determining, according to at least one of the subcarrier spacings of the multiple serving cells, a number of maximum candidate physical downlink control channels PDCCH monitored by the terminal within a unit duration.
  • the terminal when carriers in multiple serving cells (for example, the activated bandwidth portion BWP) perform carrier aggregation, and at least two subcarriers are included in different carriers, the terminal may be determined to be multiple in unit time duration.
  • the number of the maximum candidate physical downlink control channel PDCCHs that can be monitored by the multiple serving cells may be different or may be the same. For example, a maximum value is selected as the number of candidate physical downlink control channel PDCCHs that the terminal can monitor.
  • the flexibility and efficiency of communication can also be improved.
  • the unit duration includes a first duration or a predefined duration, where the first duration is any one of the multiple serving cells The length of the slot corresponding to the subcarrier spacing.
  • the unit duration may be the duration corresponding to any carrier in the carrier aggregation, or may be a predefined duration.
  • the network device determines, according to at least one of the subcarrier spacings of the multiple serving cells, a maximum candidate physical downlink control monitored in the terminal unit duration
  • the number of the channel PDCCHs includes: determining, by the network device, the number of candidate PDCCHs corresponding to the unit time interval of the first serving cell and the number of serving cells in the plurality of serving cells The number of the maximum candidate PDCCHs monitored in the terminal unit duration, where the first serving cell is any one of the multiple serving cells; or the network device is separated according to the subcarriers of the second serving cell Determining, according to the number of candidate PDCCHs in the unit duration and the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the unit duration, determining the maximum number of candidate PDCCHs monitored in the terminal unit duration, The second serving cell and the third serving cell are any two of the multiple serving cells, and The subcarrier spacing of the second serving cell is different from the subcarrier spacing
  • the network device may determine the maximum number of candidate PDCCHs according to the number of any one of the multiple serving cells and the carrier aggregation.
  • the number of candidate PDCCHs in the unit duration of each carrier of the carrier aggregation may be comprehensively considered, and the number of the maximum candidate PDCCHs may be further determined.
  • the number of the maximum candidate PDCCHs of the multiple serving cells may be further determined according to a reference serving cell (for example, when the unit duration is a predefined duration).
  • the number of candidate PDCCHs corresponding to the unit duration and the multiple serving cells is: the first service a subcarrier spacing of the cell is a product of a number of corresponding candidate PDCCHs within the unit duration and a number of serving cells in the plurality of serving cells; or when the network device is spaced apart from a subcarrier of the second serving cell Determining the number of candidate PDCCHs in the unit duration and the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the unit duration, determining the number of maximum candidate PDCCHs monitored in the terminal unit duration The number of the maximum candidate PDCCHs monitored in the terminal unit duration determined by the network device is: a sub-carrier of the second serving cell And a sum
  • the network device may determine that the number of the maximum candidate PDCCH is a product of the number of any one of the multiple serving cells and the number of carrier aggregations.
  • the number of the maximum candidate PDCCHs may be determined as the sum of the number of candidate PDCCHs in the unit duration of each carrier of the carrier aggregation. With the embodiment of the present application, the number of maximum candidate PDCCHs can be determined simply and quickly.
  • the unit duration is the first duration
  • the first duration is a slot length corresponding to a subcarrier spacing of the second serving cell
  • the number of the maximum candidate PDCCHs that are monitored in the terminal unit duration determined by the network device is: the number of candidate PDCCHs corresponding to the subcarrier spacing of the second serving cell in the unit duration and the number of When the subcarrier spacing of the three serving cells is the sum of the number of corresponding candidate PDCCHs in the unit duration, the network device determines that the number of the maximum candidate PDCCHs monitored in the terminal unit duration is: the second serving cell a sum of a number of candidate PDCCHs corresponding to the first time duration and a number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell within the first duration of time, where The number of candidate PDCCHs corresponding to the first carrier duration of the third serving cell is corresponding to the first duration, the second duration, and the fifth serving cell in the second duration.
  • the second duration is determined by the number of candidate PDCCHs, and the second duration is the length of the slot corresponding to the subcarrier spacing of the third serving cell.
  • each carrier in the carrier aggregation may be processed first, for example, according to the unit duration and the respective carriers.
  • the duration, and the number of candidate PDCCHs within respective corresponding durations determine the number of candidate PDCCHs for each carrier within a unit duration, and further determine the number of maximum candidate PDCCHs.
  • the unit duration is the predefined duration
  • the network device determines that the maximum number of candidate PDCCHs monitored in the terminal unit duration is:
  • the sum of the number of candidate PDCCHs corresponding to the subcarrier spacing of each serving cell in the unit time length of the multiple serving cells includes: the number of the maximum candidate physical downlink control channel PDCCH monitored in the terminal unit duration is a sum of the number of candidate PDCCHs in the plurality of serving cells within a duration corresponding to each of the serving cells in the respective serving cells; or the number of maximum candidate physical downlink control channels PDCCH monitored in the terminal unit duration And a sum of the number of candidate PDCCHs in the multiple serving cells that are within the predefined duration of each serving cell, where each of the multiple serving cells is within the predefined duration
  • the number of candidate PDCCHs is based on the duration of each of the plurality of serving cells corresponding to each serving cell in each of the serving cells The number of PDCCH candidates within the predefined length of time duration
  • each carrier in the carrier aggregation may be processed first. For example, each carrier is determined according to the duration of each carrier and the number of candidate PDCCHs in the respective durations. The number of candidate PDCCHs within the duration, which in turn determines the number of maximum candidate PDCCHs.
  • the method further includes: the network device receiving the first information reported by the terminal, where the first information is used to indicate that the terminal can support a first parameter related to the number of the maximum candidate PDCCHs; the network device determining, according to at least one of the subcarrier spacings of the multiple serving cells, the number of the maximum candidate physical downlink control channel PDCCH monitored by the terminal within a unit duration, The network device determines, according to the first parameter and at least one of a plurality of subcarrier intervals of the multiple serving cells, a maximum number of candidate PDCCHs monitored in the terminal unit duration.
  • the network device may also receive information sent by the terminal, for example, when the number of carrier aggregations is greater than 4.
  • the number of maximum candidate PDCCHs monitored by the terminal in a plurality of serving cells per unit time may be further determined according to the information used to indicate parameters related to the number of maximum candidate PDCCHs that the terminal can support.
  • the method further includes: the network device receiving second information reported by the terminal, the second information being used to indicate N parameters,
  • the N parameters are parameters related to the number of maximum candidate PDCCHs that the terminal can support, where N is less than or equal to the number of serving cells in the multiple serving cells; the network device is according to the multiple serving cells Determining, by at least one of the subcarrier spacings, the number of the maximum candidate physical downlink control channel PDCCHs monitored in the terminal unit duration, including: the network device according to the N parameters and subcarriers of the multiple serving cells At least one of the intervals determines a number of maximum candidate PDCCHs monitored within the terminal unit duration.
  • the network device may also receive information sent by the terminal, for example, when the number of carrier aggregations is greater than 4.
  • the parameter is used to indicate a plurality of parameters related to the number of maximum candidate PDCCHs that the terminal can support, for example, one parameter is reported separately for carriers of different subcarrier intervals.
  • the number of the maximum candidate PDCCHs includes: a number of candidate PDCCHs corresponding to different sizes of downlink control information DCI formats, and the method further includes:
  • the total number of different size DCI formats is less than or equal to M times the number of different size DCI formats corresponding to any one of the multiple serving cells, where M is a service in the multiple serving cells
  • M is a service in the multiple serving cells
  • the number of cells; and/or the number of different size DCI formats corresponding to the fourth serving cell is less than or equal to K times the number of DCI formats of different sizes corresponding to one serving cell, where the fourth serving cell is A cell that performs cross-carrier scheduling in a plurality of serving cells, where K is a number of serving cells scheduled by the fourth serving cell across carriers.
  • a monitoring method includes: acquiring, by a terminal, a maximum number of candidate physical downlink control channels, PDCCH, monitored within a unit time; the terminal monitoring, according to the maximum number of candidate PDCCHs, the PDCCH;
  • the terminal is configured with multiple serving cells, and the subcarrier spacing of at least two of the multiple serving cells is different, and the maximum candidate PDCCH number is determined according to at least one of subcarrier spacings of the multiple serving cells. of.
  • the unit duration includes a first duration or a predefined duration, where the first duration is related to a serving cell in the multiple serving cells The length of the slot corresponding to the subcarrier spacing.
  • the maximum candidate PDCCH number is determined according to at least one of a subcarrier spacing of the multiple serving cells, including:
  • the maximum number of candidate PDCCHs is determined according to a number of candidate PDCCHs corresponding to the subcarrier spacing of the first serving cell and the number of the plurality of serving cells, wherein the first serving cell belongs to The plurality of serving cells; or
  • the maximum number of candidate PDCCHs is based on the number of candidate PDCCHs corresponding to the unit time interval of the second serving cell and the candidate PDCCH corresponding to the subcarrier spacing of the third serving cell within the unit time length. The number is determined, wherein the second serving cell and the third serving cell belong to the multiple serving cells, and a subcarrier spacing of the second serving cell and a subcarrier spacing of the third serving cell are different ;or,
  • the maximum number of candidate PDCCHs is determined according to a number of candidate PDCCHs corresponding to the subcarrier spacing of each of the plurality of serving cells within the unit duration.
  • the number of candidate PDCCHs monitored in the terminal unit duration is: the number of candidate PDCCHs corresponding to the subcarrier spacing of the first serving cell within the unit duration and the number The product of the number of serving cells in multiple serving cells; or,
  • the maximum number of candidate PDCCHs is a candidate PDCCH corresponding to the unit time duration corresponding to the subcarrier spacing of the second serving cell and the candidate PDCCH corresponding to the subcarrier spacing of the third serving cell
  • the number of the maximum candidate PDCCHs monitored by the terminal within the unit duration is determined by the number of candidate PDCCHs corresponding to the subcarrier spacing of the second serving cell within the unit duration and the number of the PDCCHs The sum of the number of candidate PDCCHs corresponding to the subcarrier spacing of the three serving cells within the unit duration; or
  • the maximum monitored by the terminal in the unit duration is a sum of the number of candidate PDCCHs corresponding to the subcarrier spacing of the serving cells of the multiple serving cells within the unit duration.
  • the monitoring method further includes:
  • the terminal Transmitting, by the terminal, the first information to the base station, where the first information is used to indicate a first parameter related to a maximum number of candidate PDCCHs that the terminal can support; and the maximum candidate physics that the terminal monitors in a unit time period
  • the number of downlink control channel PDCCHs is also determined according to the first parameter.
  • the method further includes:
  • the second information is used to indicate N parameters, where the N parameters are parameters related to the number of maximum candidate PDCCHs that the terminal can support, and respectively
  • the different subcarrier spacings of the serving cells are corresponding, where N is a positive integer, and N is less than or equal to the number of serving cells in the multiple serving cells; the maximum candidate physics monitored by the terminal within a unit time period
  • the number of downlink control channel PDCCHs is also determined according to the N parameters.
  • the number of the maximum candidate PDCCHs includes: a number of candidate PDCCHs corresponding to different sizes of downlink control information DCI formats;
  • the total number of different size DCI formats is less than or equal to M times the number of different size DCI formats corresponding to any one of the multiple serving cells, where M is a service in the multiple serving cells.
  • M is a service in the multiple serving cells.
  • the number of different size DCI formats corresponding to the fourth serving cell is less than or equal to K times the number of DCI formats of different sizes corresponding to one serving cell, where the fourth serving cell performs cross-over among the multiple serving cells
  • a method for parameter determination includes: determining, by the network device, a cumulative count downlink allocation indication C according to a serving cell of the terminal, a physical downlink control channel PDCCH monitoring occasion, and a parameter in the PDCCH monitoring timing.
  • the parameters may be comprehensively counted according to the PDCCH monitoring timing and the PDCCH monitoring timing, and then each feedback information (eg, HARQ-ACK) may be completely fed back to avoid missing codes. This information.
  • each feedback information eg, HARQ-ACK
  • the parameter in the PDCCH monitoring timing includes one or more of the following:
  • the serial number ID value of the control resource set CORESET is associated with the search space associated with the PDCCH.
  • the location information of the data scheduled by the PDCCH includes an index of a location of data scheduled by the PDCCH, and an order of an index of the location of the data scheduled by the PDCCH is a first frequency. Domain after time domain.
  • a fourth aspect provides a method for parameter determination, the method comprising: receiving, by a terminal, downlink control information DCI, which is sent by a network device, including a cumulative count downlink allocation indication C-DAI and/or a sum count downlink allocation indication T-DAI, where The C-DAI and/or the T-DAI are determined according to a serving cell of the terminal, a physical downlink control channel PDCCH monitoring occasion, and parameters in the PDCCH monitoring timing.
  • DCI downlink control information
  • T-DAI sum count downlink allocation indication
  • the terminal generates feedback information according to the C-DAI and/or the T-DAI.
  • the parameters may be comprehensively counted according to the PDCCH monitoring timing and the PDCCH monitoring timing, and then each feedback information (eg, HARQ-ACK) may be completely fed back to avoid missing codes. This information.
  • each feedback information eg, HARQ-ACK
  • the parameter in the PDCCH monitoring timing includes one or more of the following:
  • the serial number ID value of the control resource set CORESET is associated with the search space associated with the PDCCH.
  • the location information of the data scheduled by the PDCCH includes an index of a location of data scheduled by the PDCCH, and an order of an index of the location of the data scheduled by the PDCCH is a prior frequency. Domain after time domain.
  • a fifth aspect provides a method for parameter determination, the method comprising: determining, by a network device, a start time of a search space associated with a physical downlink control channel PDCCH monitoring occasion and information related to the PDCCH monitoring opportunity; The network device sorts the PDCCH monitoring timing according to the start time of the search space associated with the PDCCH monitoring opportunity and the information related to the PDCCH monitoring timing.
  • the start time of the search space associated with the PDCCH monitoring opportunity and the information related to the PDCCH monitoring timing are simultaneously sorted for multiple PDCCH monitoring occasions. It can be avoided that when the monitoring timings of a plurality of PDCCHs have the same starting time, an indistinguishable problem occurs.
  • the information related to the PDCCH monitoring timing includes one or more of the following:
  • the index value of the search space associated with the PDCCH is the index value of the search space associated with the PDCCH.
  • the index value of the control resource set CORSET associated with the search space associated with the PDCCH is the index value of the control resource set CORSET associated with the search space associated with the PDCCH.
  • the network device monitors according to the PDCCH.
  • the start time of the search space associated with the timing and the information related to the PDCCH monitoring opportunity are sorted by the PDCCH monitoring timing, including:
  • the network device monitors the timing of the PDCCH according to the following formula:
  • T is the number of the PDCCH monitoring opportunity.
  • A represents the number of symbols included in each slot
  • L represents the duration of the PDCCH monitoring timing
  • S represents the start time of the search space associated with the PDCCH monitoring opportunity.
  • a sixth aspect provides a method for parameter determination, the method comprising: determining, by a terminal, a start time of a search space associated with a physical downlink control channel PDCCH monitoring occasion and information related to the PDCCH monitoring opportunity; And sorting the PDCCH monitoring timing according to the start time of the search space associated with the PDCCH monitoring occasion and the information related to the PDCCH monitoring timing.
  • the start time of the search space associated with the PDCCH monitoring opportunity and the information related to the PDCCH monitoring timing are simultaneously sorted for multiple PDCCH monitoring occasions. It can be avoided that when the monitoring timings of a plurality of PDCCHs have the same starting time, an indistinguishable problem occurs.
  • the information related to the PDCCH monitoring opportunity includes one or more of the following:
  • the index value of the search space associated with the PDCCH is the index value of the search space associated with the PDCCH.
  • the index value of the control resource set CORSET associated with the search space associated with the PDCCH is the index value of the control resource set CORSET associated with the search space associated with the PDCCH.
  • the network device monitors according to the PDCCH.
  • the start time of the search space associated with the timing and the information related to the PDCCH monitoring opportunity are sorted by the PDCCH monitoring timing, including:
  • the network device monitors the timing of the PDCCH according to the following formula:
  • T is the number of the PDCCH monitoring opportunity.
  • A represents the number of symbols included in each slot
  • L represents the duration of the PDCCH monitoring timing
  • S represents the start time of the search space associated with the PDCCH monitoring opportunity.
  • a network device having the function of implementing the network device in the method design of the first aspect, the third aspect, or the fifth aspect.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a terminal device having the function of implementing the terminal device in the method design of the second aspect, the fourth aspect, or the sixth aspect.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the network device performs the first aspect, the third aspect, or the fifth aspect described above And the method of any one of the first aspect, the third aspect, or the fifth aspect.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver transceiver signal for storing a computer program for calling and running the computer program from the memory, such that the terminal device performs the second aspect, the fourth aspect, or the sixth aspect described above And a method in any one of the possible implementations of the second aspect, the fourth aspect, or the sixth aspect.
  • a communication device which may be a network device in the above method design or a chip disposed in a network device.
  • the means for determining the parameter comprises: a processor coupled to the memory, operative to execute instructions in the memory to implement the first, third, or fifth aspects, and the first, third, or fifth aspects above A method performed by a network device in any of the possible implementations.
  • the communication device further comprises a memory.
  • the communication device further includes a communication interface, the processor being coupled to the communication interface.
  • a communication device which may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a processor coupled to the memory and operative to execute instructions in the memory to implement the second, fourth, or sixth aspect, and the second, fourth, or sixth aspects described above The method performed by the terminal device in any of the possible implementations.
  • the communication device further comprises a memory.
  • the communication device further includes a communication interface, the processor being coupled to the communication interface.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the method of the above aspects.
  • a computer readable medium storing program code for causing a computer to perform the method of the above aspects when the computer program code is run on a computer.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing data involved in the above method And / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system comprising a processor for supporting a terminal device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing data involved in the above method And / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic architectural diagram of a system suitable for parameter determination of an embodiment of the present application
  • FIG. 2 is a schematic diagram of carrier aggregation applicable to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of unconfigured cross-carrier scheduling applicable to an embodiment of the present application.
  • FIG. 5 is still another schematic diagram of configuration cross-carrier scheduling applicable to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for parameter determination according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a BWP suitable for use in an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a method for parameter determination according to an embodiment of the present application.
  • FIG. 9 is still another schematic diagram of a method for parameter determination according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a method for parameter determination according to another embodiment of the present application.
  • FIG. 11 is another schematic diagram of a method for parameter determination according to another embodiment of the present application.
  • FIG. 12 is still another schematic diagram of a method for parameter determination according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a method for parameter determination according to still another embodiment of the present application.
  • 15 is a schematic diagram of a PDCCH monitoring opportunity applicable to an embodiment of the present application.
  • 16 is another schematic diagram of one way of calculating a dynamic codebook
  • 17 is a schematic diagram of a calculation dynamic codebook applicable to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of sorting PDCCH monitoring timings suitable for the embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the wireless communication system 100 can include one or more network devices, such as network device #1 111, network device #2 112, network device #3 113 shown in FIG. 1; the wireless communication system 100 One or more terminal devices may also be included, such as the terminal device 121 shown in FIG.
  • the wireless communication system 100 can support CoMP transmission, that is, multiple cells or multiple network devices can cooperatively participate in data transmission of one terminal device or jointly receive data transmitted by one terminal device, or cooperate with multiple cells or multiple network devices. Scheduling or cooperative beamforming.
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instructions, and the like.
  • the network device in the wireless communication system may be any device having a wireless transceiver function or a chip that can be disposed on the device, including but not limited to: an evolved Node B (eNB), Radio Network Controller (RNC), Node B (NB), Base Station Controller (BSC), Base Transceiver Station (BTS), and home base station (for example, Home evolved) NodeB, or Home Node B, HNB), BaseBand Unit (BBU), Access Point (AP), Wireless Relay Node, Wireless Backhaul Node in Wireless Fidelity (WIFI) System , transmission point (TP) or transmission and reception point (TRP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), 5G system One or a group of base stations (including multiple antenna panels), or a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (dist Rimped unit, DU), etc.
  • eNB
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( A wireless terminal in a transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • one of the network device #1 to the network device #3 may be a service network device, and the service network device may refer to a wireless air interface protocol.
  • the terminal device provides a network device of at least one of an RRC connection, a non-access stratum (NAS) mobility management, and a security input.
  • network device #2 and network device #3 may be cooperative network devices.
  • the serving network device may send control signaling to the terminal device, and the cooperative network device may send data to the terminal device; or the serving network device may send control signaling to the terminal device, where the serving network device and the cooperative network device may send data to the terminal device; Alternatively, both the serving network device and the cooperative network device may send control signaling to the terminal device, and both the serving network device and the cooperative network device may send data to the terminal device; or the cooperative network device may send control signaling to the terminal device, the service At least one of the network device and the cooperative network device may transmit data to the terminal device; or the cooperative network device may transmit control signaling and data to the terminal device.
  • This embodiment of the present application is not particularly limited.
  • each of the network device #1 to the network device #3 may be a serving network device.
  • the network device #1 to the network device #3 and the terminal device are schematically illustrated in FIG. 1 for convenience of understanding, but this should not constitute any limitation to the present application, and the wireless communication system may further include more Or a smaller number of network devices, and may also include a larger number of terminal devices.
  • Network devices that communicate with different terminal devices may be the same network device, or may be different network devices, and networks that communicate with different terminal devices. The number of devices may be the same or different, and this application does not limit this.
  • the Physical Downlink Control Channel may be used to send downlink scheduling information (DL Assignment) to the terminal, so that the terminal receives a Physical Downlink Shared Channel (PDSCH).
  • the PDCCH may be further configured to: send uplink scheduling information (UL Grant) to the terminal, so that the terminal sends a Physical Uplink Shared Channel (PUSCH).
  • the PDCCH may be further configured to: send a non-periodic channel quality indicator (CQI) report request.
  • the PDCCH may also be used to notify a Multicast Control Channel (MCCH) change.
  • the PDCCH can also be used to: send an uplink power control command.
  • the PDCCH can also be used to: Hybrid Automatic Repeat ReQuest (HARQ) related information.
  • the PDCCH can also be used to carry a Radio Network Temporary Identifier (RNTI), and the information is implicitly included in a Cyclic Redundancy Check (CRC) and the like.
  • RNTI Radio Network Temporary Identifier
  • CRC
  • One PDCCH is transmitted on a Control Channel Element (CCE), and each CCE is composed of a certain number of Resource-element Groups (REGs).
  • CCE index of the first CCE occupied by the PDCCH is called n CCE .
  • the information carried in the PDCCH is called Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the downlink DCI can be used to send downlink scheduling allocation information or uplink scheduling information.
  • the DCI has multiple formats. The various DCI formats and the specific information they carry vary according to the functions of each DCI format. For example, format 0 in the LTE system or format 0_0/format 0_1 in the NR system may be used to transmit PUSCH scheduling grant information; for example, format 0 or format 0_1 in the format 1 or NR system in the LTE system may be used to transmit the PDSCH.
  • Single codeword scheduling authorization information may be used to transmit the PDSCH.
  • the DCI may indicate cell level information, and may use a System Information Radio Network Temporary Identifier (SI-RNTI) or a Paging Radio Network Temporary Identifier (P-RNTI).
  • SI-RNTI System Information Radio Network Temporary Identifier
  • P-RNTI Paging Radio Network Temporary Identifier
  • RA-RNTI random access radio network Temporary Identifier
  • C- RNTI Cell Radio Network Temporary Identifier
  • a PDCCH can only carry a DCI of a certain format.
  • a cell can simultaneously schedule multiple terminals in the uplink and downlink, that is, one cell can send multiple scheduling information in each scheduling time unit.
  • Each scheduling information is transmitted on an independent PDCCH, that is, one cell can simultaneously transmit multiple PDCCHs in one scheduling time unit.
  • the PDCCH has different aggregation levels (AL), and AL includes ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the aggregation level indicates the number of consecutive CCEs occupied by one PDCCH.
  • the base station determines the aggregation level used by a certain PDCCH according to factors such as channel quality. For example, if the PDCCH is sent to a terminal with good downlink channel quality (for example, the terminal is located at the cell center), it may be sufficient to use 1 CCE to transmit the PDCCH; if the PDCCH is sent to a downlink channel quality A very poor terminal (eg, the terminal is located at the cell edge) may need to use 8 CCEs or even 16 CCEs to transmit the PDCCH to achieve sufficient robustness.
  • the power of the PDCCH may also be adjusted according to channel conditions, and the base station may save the PDCCH transmit power of the channel with better channel quality to be allocated to the terminal with poor channel quality.
  • Carrier Aggregation is to aggregate two or more Carrier Carriers (CCs) to support a larger transmission bandwidth.
  • existing LTE and NR usually correspond to one independent cell per carrier unit. At this time, one carrier unit can be equated to one cell.
  • carrier aggregation supports aggregation between different carrier units. As shown in FIG. 2, carrier aggregation may include: intra-band or inter-band carrier unit aggregation, contiguous or non-contiguous carrier unit aggregation within the same frequency band, and the like.
  • the PDCCH of some carrier units is transmitted on other carrier units with better channel quality by using cross-carrier scheduling, which can improve the decoding efficiency of the PDCCH.
  • Cross-carrier scheduling based on Carrier Indicator Field allows one PDCCH of a serving cell to schedule radio resources on another serving cell. That is, control information is transmitted on one carrier unit, and corresponding data is transmitted on another carrier unit.
  • the CIF may be used to specify which cell's PDSCH/PUSCH resource the PDCCH corresponds to.
  • cross-carrier scheduling there are some limitations.
  • the cross-carrier scheduling is not applicable to the primary cell (PCell), and may be applied to the secondary cell (SCell).
  • the PCell may be a cell that performs initial connection establishment for the terminal, or a cell that performs Radio Resource Control (RRC) connection reestablishment, or a primary cell that is designated in a handover process.
  • RRC Radio Resource Control
  • the PCell is always scheduled through its own PDCCH.
  • the SCell is added during RRC reconfiguration to provide additional radio resources.
  • a SCell is configured with a PDCCH
  • cross-carrier scheduling does not apply to the SCell.
  • the cross-carrier scheduling of the SCell is always scheduled by the PDCCH of another serving cell.
  • Figure 3 shows a schematic diagram of unconfigured cross-carrier scheduling.
  • the terminal does not configure cross-carrier scheduling
  • the PDCCH corresponding to each serving cell is transmitted on the carrier of the local cell.
  • the PDCCH transmitted by each cell does not carry a CIF field.
  • Figure 4 shows another schematic diagram of configuring cross-carrier scheduling. Assume that the terminal is configured for cross-carrier scheduling.
  • the PCell schedules resources of the own cell and schedules resources of the SCell1 across carriers.
  • SCell1 neither schedules resources of the own cell nor schedules resources of other cells, and its resources are scheduled on the PCell.
  • SCell2 schedules resources of the own cell, but does not schedule resources of other cells.
  • FIG. 5 shows another schematic diagram of configuring cross-carrier scheduling. Assume that the terminal is configured for cross-carrier scheduling.
  • the PCell schedules resources of the own cell, but does not schedule resources of other cells.
  • SCell1 neither schedules resources of the own cell nor schedules resources of other cells, and its resources are scheduled on SCell2.
  • SCell2 schedules resources of the own cell and schedules resources of SCell1 across carriers.
  • Non-carrier aggregation that is, a scenario where the terminal has only one serving cell.
  • the terminal monitors the candidate PDCCH (PDCCH candidates) set within the PDCCH monitoring opportunity, which means that the terminal needs to attempt to decode each PDCCH in the set according to the DCI format to be monitored. This collection is called the search space of the terminal.
  • the search space is divided into a common search space and a UE-specific search space.
  • the common search space is used for transmitting control information (cell level common information) related to paging (Paging), random access response (RA Response), and broadcast control channel (BCCH). Information is the same for all terminals.
  • the terminal-specific search space is used to transmit control information (terminal level information) related to a downlink shared channel (DL-SCH), an uplink shared channel (UL-SCH), and the like. However, when the terminal-specific search space does not have enough available resources, the common search space can also be used to transmit control information belonging to a particular terminal.
  • the common search space and the terminal-specific search space may overlap, and the terminal-specific search spaces belonging to different terminals may overlap. If the overlapping areas are occupied by one terminal, then other terminals will no longer be able to use these CCE resources.
  • the base station selects an available PDCCH candidate from the corresponding search space for each terminal to be scheduled. If it can be assigned to the CCE, it will be scheduled, otherwise it will not be scheduled.
  • the PDCCHs sent to different terminals may have different aggregation levels.
  • the terminal monitors the search space of all activated serving cells within each PDCCH monitoring time.
  • the base station knows which serving cell the PDCCH corresponds to, and also knows the PDCCH candidate set of the PDCCH.
  • the terminal does not determine what the CIF value carried in the PDCCH is, that is, it is not determined which serving cell will send the PDCCH to the terminal.
  • the terminal only knows the set of CIFs that may be carried on the PDCCH sent by the specific serving cell to the terminal. Therefore, the UE tries all possible CIF values on the serving cell to blindly detect the PDCCH.
  • the DCI has multiple formats, but the terminal does not know in advance which format the DCI is carried in the received PDCCH, and does not know which PDCCH candidate the DCI uses for transmission. Therefore, the terminal must perform PDCCH blind detection to receive the corresponding DCI.
  • the terminal does not know in advance which format the DCI is to be received by the PDCCH, and does not know which PDCCH candidate is used for the DCI to transmit, the terminal knows which state it is in and the DCI information that is expected to be received in the state. .
  • the terminal in the idle (IDLE) state, the terminal expects to receive the paging; after the random access (Random Access) is initiated, the terminal expects a random access response (RAR); when there is uplink data to be sent The terminal expects an uplink grant (Uplink Grant) and the like.
  • RAR random access response
  • the terminal knows its own search space and therefore knows which CCEs the DCI may be distributed on. For different expected information, the terminal attempts to use a corresponding RNTI, a possible DCI format, and a possible aggregation level to perform a Cyclic Redundancy Check (CRC) with the CCEs in its own search space. If the CRC check is successful, the terminal knows that the information is needed by itself, and also knows the corresponding DCI format, thereby further solving the DCI content.
  • CRC Cyclic Redundancy Check
  • the terminal When the terminal performs blind detection in the search space, it only needs to try to decode the DCI format that may appear, and does not need to match all DCI formats.
  • the data or the information may be carried by a time-frequency resource, where the time-frequency resource may include a resource in a time domain and a resource in a frequency domain.
  • the time domain resource may include one or more time units (or may also be referred to as a time domain unit).
  • a time unit (also referred to as a time domain unit) may be a symbol, or a mini-slot, or a slot, or a subframe, where one sub-frame is The duration in the time domain may be 1 millisecond (ms), one slot consists of 7 or 14 symbols, and one minislot may include at least one symbol (eg, 2 symbols or 7 symbols or 14 symbols, Or any number of symbols less than or equal to 14 symbols).
  • Numerology can be used to refer to a set of parameters, including subcarrier spacing (SCS), symbol length, time slot length, Cyclic Prefix (CP) length, and so on.
  • SCS subcarrier spacing
  • CP Cyclic Prefix
  • NR a new feature is multiple Numerology, which can be mixed and used simultaneously. Numerology is defined by SCS and CP. Table 1 shows the various Numerology that can currently be supported in NR.
  • ⁇ ⁇ f 2 ⁇ *15(KHz) CP 0 15 Normal 1 30 Normal 2 60 Normal, extended 3 120 Normal 4 240 Normal
  • the number of maximum candidate PDCCHs that can be supported per slot is different.
  • Table 2 shows that in a non-carrier aggregation scenario (ie, a single serving cell scenario), the terminal is in different parameter sets, each time slot. The number of maximum candidate PDCCHs that can be supported.
  • the candidate PDCCH is all locations where the PDCCH may occur, including a set of various candidate PDCCHs of different aggregation levels on all search spaces configured by the network device. Due to the limitation of the processing capability of the terminal, there is a maximum number of PDCCH blind detections that can be supported in the unit duration, which is equivalent to the maximum number of candidate PDCCHs that the terminal can support in the present application.
  • the number of maximum candidate PDCCHs and “the number of maximum candidate PDCCHs that the terminal can support” are often used interchangeably, but those skilled in the art can understand the meaning thereof.
  • the "number of maximum candidate PDCCHs” substantially refers to the number of maximum candidate PDCCHs that the terminal can support. Therefore, in the embodiments of the present application, the meanings to be expressed are consistent when the distinction is not emphasized.
  • the number of non-overlapping CCEs in the NR affects the complexity and power consumption of the channel estimation by the terminal. Considering the limitation of the terminal processing capability, the terminal has a maximum number of non-overlapping CCEs that can be supported in the unit duration.
  • the number of maximum non-overlapping CCEs that can be supported per slot is different.
  • Table 3 shows that in a non-carrier aggregation scenario (ie, a single serving cell scenario), the terminal is in different parameter sets. The number of maximum non-overlapping CCEs that the time slot can support.
  • the number of maximum candidate PDCCHs that can be supported in each slot of the terminal under different carriers can be determined according to Table 2.
  • specific considerations are required.
  • One way is to determine the maximum number of candidate PDCCHs that the terminal can support in each slot according to Table 2 when all the aggregated carriers have the same Numerology.
  • the number of maximum candidate PDCCHs that the terminal can support per slot is equal to X*M.
  • the terminal When the number of aggregated carriers X supported by the terminal is greater than 4, the terminal needs to report to the base station a parameter y related to the number of maximum candidate PDCCHs that can be supported per slot, where y is in ⁇ 4, ..., 16 ⁇ An integer.
  • the number of maximum non-overlapping CCEs that can be supported in each slot of the terminal under different carriers can be determined according to Table 3.
  • specific considerations are required.
  • One way is to determine the maximum number of non-overlapping CCEs that the terminal can support in each time slot according to Table 3 when all aggregated carriers have the same Numerology.
  • the number of maximum non-overlapping CCEs that the terminal can support per slot is equal to X*N.
  • N ⁇ 56, 56, 48, 32 ⁇
  • the terminal When the number of aggregated carriers X supported by the terminal is greater than 4, the terminal needs to report the parameter y to the base station, where y is an integer in ⁇ 4, . . . , 16 ⁇ .
  • the above determines the number of the maximum candidate PDCCHs or the number of the maximum non-overlapping CCEs, considering the case where the Numerology corresponding to the component carriers in the carrier aggregation is the same, and does not consider the case where the SCSs of the component carriers are different.
  • the embodiment of the present application provides a method for parameter determination, which is capable of determining the maximum number of candidate PDCCHs or the maximum number of non-overlapping CCEs that the terminal can support per slot in a case where the Numerology corresponding to the component carriers in the carrier aggregation is different.
  • pre-definition may be implemented by pre-storing corresponding codes, tables, or other manners that can be used to indicate related information in a device (for example, including a terminal device and/or a network device).
  • a device for example, including a terminal device and/or a network device.
  • pre-definition can be defined in the protocol.
  • the “storage” involved in the embodiment of the present application may be stored in one or more memories.
  • the one or more memories may be separate settings or integrated in an encoder or decoder, processor, or parameter determining device.
  • the one or more memories may also be partially provided separately, and a part of the memory may be integrated in a decoder, a processor, or a parameter determining device.
  • the type of the memory may be any form of storage medium, which is not limited herein.
  • the “protocol” may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols used in a communication system in the future, which is not limited in this application.
  • “at least one” may mean “one or more”.
  • mode A, mode B, and mode C which may be implemented by mode A, or by mode B, or by mode C; or may be represented by mode A and mode B.
  • Implemented, or implemented by mode B and mode C, or by mode A and mode C; can also be expressed as: can be implemented by mode A and mode B and mode C.
  • "at least two" may mean "two or more.”
  • first, second, third, etc. are merely for facilitating the distinction between different objects, and should not be construed as limiting the application. For example, distinguish between different carrier units or serving cells, and the like.
  • “and/or” describes the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, A and B exist simultaneously, and B exists separately. These three situations.
  • the character “/” generally indicates that the contextual object is an “or” relationship, but does not exclude the possibility of indicating that the contextual object is a “and/or” relationship, which can be determined based on the context.
  • At least one means one or more; “at least one of A and B", similar to "A and/or B", describing the association of associated objects, indicating that there may be three relationships, for example, A and B.
  • At least one of the following may indicate that A exists separately, A and B exist at the same time, and B exists separately, wherein the number of A is not limited, and may be one or more than one, and the number of B is also Not limited, it can be one or more than one.
  • the technical solution of the present application can be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1, the communication system may include at least one network device and at least one terminal device, and the network device and the terminal device may pass Wireless air interface communication.
  • the network device in the communication system may correspond to the network device 111 or the network device 113 shown in FIG. 1
  • the terminal device may correspond to the terminal device 121 shown in FIG. 1.
  • FIG. 6 is a schematic diagram of a method for parameter determination provided by an embodiment of the present application.
  • the method 100 includes steps 110-120:
  • the network device configures, by the network, multiple serving cells, where at least two serving cells of the multiple serving cells have different subcarrier spacings.
  • the network device determines, according to at least one of a subcarrier spacing of the multiple serving cells, a number of maximum candidate physical downlink control channel PDCCHs monitored by the terminal within a unit duration.
  • the bandwidth of one carrier of the base station in the NR is wider than that of the LTE carrier.
  • the carrier bandwidth of the NR may be 100M, and the radio frequency capability of different terminals is different, and the maximum bandwidth that can be supported is different, so the bandwidth part is introduced.
  • the concept of BWP shows a schematic diagram of a BWP.
  • the BWP is a set of consecutive RB resources on the carrier. Different BWPs may occupy frequency domain resources that are partially overlapping but have different bandwidths, or may be bandwidth resources with different numerologies, and the frequency domains may not overlap each other.
  • a service cell in NR Rel-15 can be configured with up to four BWPs.
  • Each serving cell can only activate one BWP at a time, and the terminal transmits and receives data on the activated BWP.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • each BWP can be configured with a different numorolgy.
  • the PDCCH can only be sent on the activated BWP. Therefore, it can be understood that the subcarrier spacing of the serving cell mentioned in the embodiment of the present application may refer to the subcarrier spacing of the activated BWP in the serving cell.
  • the network device determines the maximum number of candidate PDCCHs monitored in the terminal unit duration according to at least one of the plurality of subcarrier intervals of the multiple serving cells, where multiple serving cells correspond to multiple subcarrier spacings. And determining, according to at least one subcarrier spacing of the multiple subcarrier intervals, a maximum number of candidate PDCCHs monitored within a terminal unit duration.
  • the network device configures multiple serving cells for the terminal. It can be understood that the network device configures one PCell and one or more SCells for the terminal.
  • the subcarrier spacing of at least two of the multiple serving cells is different, and it can be understood that the subcarrier spacing of the activated BWPs in at least two of the plurality of serving cells is different.
  • the network device configures the serving cell #1, the serving cell #2, and the serving cell #3 for the terminal.
  • the serving cell #1 includes BWP1, BWP2, BWP3, and BWP4;
  • the serving cell #2 includes BWP5, BWP6, BWP7, and BWP8;
  • the serving cell #3 includes BWP9, BWP10, BWP11, and BWP12.
  • BWP1 to BWP12 are only a name identifier for configuring BWP for each cell, and do not indicate the number information of BWP in each cell.
  • the BWP activated in the serving cell #1 is BWP1
  • the BWP activated in the serving cell #2 is BWP5
  • the BWP activated in the serving cell #3 is BWP9.
  • the subcarrier spacings of the BWP1 and the BWP5 are different, and the subcarrier spacings of the remaining BWPs are the same.
  • the sub-carrier spacing of the BWP1 and the BWP9 may be different, and the sub-carrier spacing of the remaining BWPs is the same.
  • the sub-carrier spacing of the BWP 5 and the BWP 9 may be different, and the sub-carrier spacing of the remaining BWPs is the same.
  • the subcarrier spacings of the BWP1, the BWP5, and the BWP9 are different, and the subcarrier spacings of the remaining BWPs are the same.
  • the main concern of the embodiment of the present application is how to determine the maximum number of candidate PDCCHs for a terminal when multiple carriers are aggregated.
  • the number of the maximum candidate PDCCHs monitored in the terminal unit duration is determined. It can be understood that a unified value is determined as the total number of candidate PDCCHs supported by all the aggregated carriers. Or, it can be understood that the number of the maximum candidate PDCCHs in the unit duration of each serving cell is determined by the terminal, that is, the number of the maximum candidate PDCCHs of the terminal in each serving cell may be the same or different, and the terminal does not have any aggregated carriers.
  • a uniform value is simply a combination of the maximum number of candidate PDCCHs on each serving cell.
  • determining the number of the maximum candidate PDCCHs of the terminal in each serving cell obtaining a plurality of values, and using the maximum value or the minimum value of the plurality of values as the maximum number of candidate PDCCHs of the terminal in each serving cell.
  • carrier aggregation is the aggregation of two or more carrier units to support a larger transmission bandwidth.
  • each carrier unit corresponds to an independent cell, and usually one carrier unit is equated to one cell.
  • at least one of the plurality of subcarrier intervals of the plurality of serving cells may be understood as a subcarrier spacing of a plurality of carriers (eg, a plurality of activated BWPs).
  • the number of aggregated carriers is limited, and may be two or more carrier aggregations.
  • X carrier aggregation will be described as an example.
  • X carriers are respectively referred to as carrier #1, carrier #2, ..., carrier #X.
  • the aggregated carrier may include two or more carriers.
  • the embodiment of the present application is only exemplified by merging two carriers, but this does not limit the scope of protection of the present application.
  • the main consideration is the Numerology corresponding to the aggregated carrier, which is partially different or all different.
  • carrier #1 and carrier #2 correspond to different Numerologies.
  • the carrier #1 corresponds to ⁇ 0 and the carrier #2 corresponds to ⁇ 1 as an example.
  • the subcarrier spacing corresponding to carrier #1 is 15 kHz
  • the subcarrier spacing corresponding to carrier #2 is 30 kHz.
  • the number of maximum candidate PDCCHs that the terminal can support in the slot 1 corresponding to the subcarrier interval is 44.
  • the terminal is in the slot 2 corresponding to the subcarrier spacing.
  • the number of maximum candidate PDCCHs that can be supported within is 36.
  • the terminal can also obtain the maximum number of candidate PDCCHs that it can support by querying the table 2, and monitor the PDCCH according to the number of the largest candidate PDCCHs that are queried.
  • multiple serving cells mentioned in the embodiments of the present application may refer to multiple carriers in carrier aggregation.
  • the serving cell 1 and the serving cell 2 may mean that carrier #1 in the serving cell 1 and carrier #2 in the serving cell perform carrier aggregation.
  • an example in which an aggregated carrier represents multiple serving cells is taken as an example.
  • the carrier #1 corresponds to ⁇ 0 and the carrier #2 corresponds to ⁇ 1, which is merely exemplary.
  • the embodiment of the present application is not limited thereto.
  • the subcarrier spacing corresponding to carrier #1 and carrier #2 is divided into SCS1 and SCS2, and the time units are denoted as slot1 and slot2, respectively.
  • the number of maximum candidate PDCCHs that can be supported in each slot 1 is denoted as A1;
  • the number of maximum candidate PDCCHs that can be supported in each slot 2 is denoted as A2.
  • Determining the number of maximum candidate PDCCHs may be determining the number of maximum candidate PDCCHs that the terminal can support within one time unit of the serving cell.
  • the number of maximum candidate PDCCHs in the reference time unit (that is, an example of the unit duration) is determined without loss of generality. It should be understood that here, the reference time unit may be a time unit.
  • reference time unit mentioned in the embodiment of the present application represents the unit duration mentioned in the present application.
  • the embodiment of the present application is described by taking a reference time unit as an example.
  • the network device determines, according to at least one of the subcarrier spacings of the multiple serving cells, the number of the maximum candidate PDCCHs that are monitored in the terminal reference time unit, including: the network device according to the first The subcarrier spacing of the serving cell is determined by the number of corresponding candidate PDCCHs in the reference time unit and the number of serving cells in the multiple serving cells, and determining the maximum number of candidate PDCCHs monitored in the terminal reference time unit, where The first serving cell is any one of the multiple serving cells; or the number of candidate PDCCHs in the reference time unit according to the subcarrier spacing of the second serving cell And determining, according to the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the reference time unit, the number of maximum candidate PDCCHs monitored in the terminal reference time unit, where the second serving cell and the The third serving cell is any two of the multiple serving cells, and the subcarriers of the second serving cell And the subcarrier spacing of the third serving cell is different; or, the network device according to
  • the carrier corresponding to the carrier in the carrier aggregation is not all the same, meaning that the corresponding time units are not all the same.
  • the reference time unit includes a first duration or a predefined duration, where the first duration is a slot length corresponding to a subcarrier spacing of any one of the multiple serving cells.
  • the reference time unit is a time unit corresponding to any one of the aggregated carriers.
  • the carrier #1 and the carrier #2 are aggregated, and the reference time unit may be: a size of a time unit corresponding to the carrier #1, or a size of a time unit corresponding to the carrier #2.
  • the reference time unit may be the slot length slot 1 corresponding to the carrier #1 subcarrier spacing or the slot length slot 2 corresponding to the carrier #2 subcarrier spacing.
  • the reference time unit is a predefined time unit.
  • a predefined time unit such as 1 millisecond (ms), 0.5 ms, etc., or a predefined time unit is a time unit configured according to a protocol.
  • the number of maximum candidate PDCCHs there are two schemes for determining the number of maximum candidate PDCCHs.
  • One scheme is to determine the maximum number of candidate PDCCHs per carrier, or the other scheme is to determine the total number of unified maximum candidate PDCCHs as a whole. .
  • the maximum number of candidate PDCCHs that can be supported on each carrier is converted according to the carrier scheduling configuration on the number of serving cells by the determined unified value. The details are described below.
  • Scheme 1 X carrier aggregation, each carrier determining the number of maximum candidate PDCCHs.
  • T represents a reference time unit
  • Ai represents the number of maximum candidate PDCCHs that can be supported per sloti on the carrier corresponding to ⁇ i;
  • Ti represents the converted value of the carrier corresponding to ⁇ i
  • the number of maximum candidate PDCCHs that can be supported by each terminal in carrier #1 is 44.
  • the number of maximum candidate PDCCHs that can be supported in slot 2 is 36;
  • the number of the largest candidate PDCCHs that can be supported by the terminal on carrier #3 is 22 in each slot 3.
  • the number of maximum candidate PDCCHs that can be supported in each slot 4 is 20.
  • Case 1 When each carrier is self-scheduling, there are two implementations, and the maximum number of candidate PDCCHs can be determined.
  • the number of the maximum candidate PDCCHs that the terminal can support on each carrier is the same as that of the single carrier.
  • carrier #1 and carrier #2 are aggregated.
  • the number of maximum candidate PDCCHs that carrier #1 can support in its own slot time (slot1) is 44; the maximum candidate PDCCH that carrier #2 can support in its own slot time (slot2) The number is 36. Therefore, when carrier #1 and carrier #2 are aggregated, the terminal is on carrier #1, the number of maximum candidate PDCCHs that can be supported per reference time unit (slot1) is 44, and the terminal is on carrier #2, each reference time unit (slot2) The number of maximum candidate PDCCHs that can be supported is 36.
  • carrier #1, carrier #2, and carrier #3 are aggregated.
  • the number of maximum candidate PDCCHs that carrier #1 can support in its own slot time (slot1) is 44; the maximum candidate PDCCH that carrier #2 can support in its own slot time (slot2)
  • the number of carriers is 36; carrier #3 has a maximum number of candidate PDCCHs that can be supported within its own slot time (slot 3). Therefore, when carrier #1, carrier #2, and carrier #3 are aggregated, the number of maximum candidate PDCCHs that can be supported by the reference unit (slot1) on the carrier #1 is 44; the terminal is on the carrier #2, each reference The number of maximum candidate PDCCHs that the time unit (slot 2) can support is 36; on the carrier #3, the number of maximum candidate PDCCHs that can be supported per reference time unit (slot 3) is 22.
  • the number of finally determined maximum candidate PDCCHs on each carrier is the product of the number of the largest candidate PDCCHs on the original carriers and the converted value, and the converted value is The converted value of each carrier time slot and reference time.
  • the number of maximum candidate PDCCHs can be expressed by the following formula:
  • Ni is the number of maximum candidate PDCCHs that the terminal can support in each reference time unit on carrier #i;
  • Ai represents the number of maximum candidate PDCCHs that the terminal can support per sloti on carrier #i;
  • Ti represents the converted value of carrier #i.
  • Case 2 Partial carriers are configured with cross-carrier scheduling, some carriers are self-scheduling, and some carriers are scheduled by other carriers.
  • subcarrier spacing of the scheduled carrier is less than or equal to the subcarrier spacing of the scheduled carrier:
  • the number of scheduled carriers configured by the scheduling carrier is K
  • a (scheduling carrier) represents the number of maximum candidate PDCCHs of the scheduling carrier within the reference time unit.
  • the first A (scheduling carrier) indicates the number of maximum candidate PDCCHs when the carrier schedules itself, and the second A (scheduling carrier) indicates the number of maximum candidate PDCCHs required when the carrier schedules another carrier.
  • the number of the maximum candidate PDCCHs on the carrier may be equal to A (scheduling carrier) + A (scheduled carrier) * 2 ⁇ (scheduled carrier) - ⁇ (scheduling) Carrier) .
  • the first A (scheduling carrier) indicates the maximum number of candidate PDCCHs when the carrier schedules itself
  • the second A (scheduled carrier) indicates the maximum number of candidate PDCCHs required for the scheduled carrier, when the configured scheduling carrier
  • the general formula is:
  • N A (scheduling carrier) + ⁇ ⁇ A (scheduled carrier) * 2 ⁇ (scheduled carrier) - ⁇ (scheduling carrier) ⁇ .
  • N the number of maximum candidate PDCCHs
  • a (scheduling carrier) indicates the number of maximum candidate PDCCHs of the scheduling carrier within the reference time unit
  • ⁇ ⁇ A (scheduled carriers) * 2 ⁇ (scheduled carriers) - [mu] (scheduled carriers) - [mu] ⁇ represents a (carrier scheduling) multiplying all scheduled carriers with 2 ⁇ (scheduled carriers), and The result of the multiplication is summed.
  • the subcarrier spacing of the scheduled carrier is greater than the subcarrier spacing of the scheduled carrier:
  • the number is K
  • the number of maximum candidate PDCCHs on the carrier may be equal to A (scheduling carrier) + A (scheduled carrier) / 2 ⁇ (scheduling carrier) - ⁇ (scheduled carrier) , where the first A (scheduling carrier) indicates the number of maximum candidate PDCCHs when the carrier schedules itself, and the second A (scheduled carrier) indicates the number of maximum candidate PDCCHs required for the scheduled carrier
  • the configured number of scheduled carriers is K
  • N A (scheduling carrier) + ⁇ ⁇ A (scheduled carrier) / 2 ⁇ (scheduling carrier) - ⁇ (scheduled carrier) ⁇ .
  • N the number of maximum candidate PDCCHs
  • a (scheduling carrier) indicates the number of maximum candidate PDCCHs of the scheduling carrier within the reference time unit
  • ⁇ ⁇ A (scheduled carrier) / 2 ⁇ (scheduled carriers) - [mu] (scheduled carriers) ⁇ represents all scheduled carriers with 2 ⁇ (scheduled carriers) - [mu] (scheduled carrier) division, and The result of the division is summed.
  • each carrier is self-scheduling, and is not described here.
  • determining the number of maximum candidate PDCCHs of the self-scheduled carrier may be in accordance with implementation manner #1, that is, when the reference time units on each carrier are respective slot times, the terminal is on each carrier, every time.
  • the maximum number of candidate PDCCHs that the slot can support is the same as in the case of a single carrier.
  • the number of candidate PDCCHs is the product of the number of the largest candidate PDCCHs on the original carriers and the converted value, which is the converted value of each carrier slot and reference time.
  • Scenario 2 X carrier aggregation, which determines the total number of unified maximum candidate PDCCHs.
  • Case A Uniform according to a reference subcarrier interval, eg, regardless of the subcarrier spacing of the serving cell,
  • N X*44.
  • N is the number of unified maximum candidate PDCCHs
  • X is the number of carrier aggregations
  • N the number of candidate PDCCHs corresponding to the minimum subcarrier spacing in the serving cell*the number of carriers.
  • N the number of candidate PDCCHs corresponding to the maximum subcarrier spacing in the serving cell*the number of carriers.
  • N the sum of the number of candidate PDCCHs corresponding to each subcarrier spacing in the serving cell.
  • the network device receives a parameter y reported by the terminal related to the number of maximum candidate PDCCHs that the terminal can support, where y is an integer in ⁇ 4, . . . , 16 ⁇ .
  • N the number of candidate PDCCHs corresponding to the minimum subcarrier spacing in the serving cell*y.
  • FIG. 11 shows a case where the number of carriers X is larger than 4.
  • carrier #1, carrier #2, carrier #3, carrier #4, and carrier #5 are aggregated.
  • N the number of candidate PDCCHs corresponding to the maximum subcarrier spacing in the serving cell*y.
  • FIG. 11 shows a case where the number of carriers X is larger than 4.
  • carrier #1, carrier #2, carrier #3, carrier #4, and carrier #5 are aggregated.
  • the reference time unit on each carrier is a unified reference time
  • the reference time unit may be a slot with the smallest subcarrier spacing as a reference time unit, or a slot with the largest subcarrier spacing as a reference time unit. Described separately below.
  • a possible implementation method is to use a slot with the smallest subcarrier spacing as a reference time unit, perform conversion, and obtain a unified value.
  • the subcarrier spacing of carrier #1 is 15 kHz
  • the corresponding slot is slot 1
  • the subcarrier spacing of carrier #2 is 30 kHz, corresponding to The time slot is slot 2.
  • T the number of maximum candidate PDCCHs on carrier #2
  • a possible implementation method is to use a slot with the largest subcarrier spacing as a reference time unit, perform conversion, and obtain a unified value.
  • the subcarrier spacing of carrier #1 is 15 kHz, the corresponding slot is slot1; the carrier spacing of carrier #2 is 30 kHz, and the corresponding slot is slot 2.
  • T is slot 2.
  • a new definition of the parameter reported by the terminal may be performed.
  • the network side needs to consider the number of scheduled carriers on the scheduling to perform conversion.
  • the maximum number of candidate PDCCHs configured on carrier 1 is equal to the unified value N*2/5, because carrier 1 has a scheduled carrier in addition to self-scheduling, which is equivalent to the share of 2 carriers.
  • the number of candidate PDCCHs configured on the other carrier is equal to the uniform value N/5.
  • a possible implementation manner is: defining a reference time unit with a small SCS Numerology; then, the number of maximum candidate PDCCHs that the terminal can support in the reference time unit is:
  • N y*(X1/X)*A0+y*(X2/X)*A1*2 ⁇ 1- ⁇ 0
  • ⁇ 1 corresponds to a large ⁇ value of SCS
  • ⁇ 2 corresponds to a small value of SCS
  • Another possible implementation is to define the unit duration by the large numerology of SCS;
  • the number of maximum candidate PDCCHs that the terminal can support in the reference time unit is:
  • y is divided into two parts: y1 and y2 (corresponding to the capability parameters of different Numerology, it is necessary to specify which ⁇ value corresponds to y1 and y2 respectively), and y1 and y2 are used instead of y*(X1/X) and y in the above formula. *(X2/X).
  • Y1 y*(X1/X)
  • y2 y*(X2/X).
  • the number N of the largest candidate PDCCHs that the terminal can support can be:
  • N y1*A1+y2*A2*2 ⁇ 1- ⁇ 0 , or,
  • N y1*A1+y2*A2, or,
  • N y1*(A1/2 ⁇ 1- ⁇ 0 )+y2*A2.
  • the network device may determine the maximum number of candidate PDCCHs according to the number of any serving cell and carrier aggregation in multiple serving cells.
  • the number of candidate PDCCHs in the unit duration of each carrier of the carrier aggregation may be comprehensively considered, and the number of the maximum candidate PDCCHs may be further determined.
  • the number of the maximum candidate PDCCHs of the multiple serving cells may be further determined according to a reference serving cell (for example, when the unit duration is a predefined duration).
  • FIG. 13 is a schematic diagram of a method for parameter determination provided by an embodiment of the present application.
  • Method 200 includes steps 210-220:
  • the network device configures multiple serving cells for the terminal, where at least two serving cells of the multiple serving cells have different subcarrier spacings.
  • the network device determines, according to at least one of a subcarrier spacing of the multiple serving cells, a number of maximum non-overlapping CCEs monitored by the terminal in a unit time.
  • determining the maximum number of non-overlapping CCEs monitored in the terminal unit duration may be understood as determining a uniform value as the maximum number of non-overlapping CCEs of each aggregated carrier.
  • the number of the maximum non-overlapping CCEs of the terminal unit duration in each serving cell is determined separately, that is, the number of the maximum non-overlapping CCEs of the terminal in each serving cell may be the same or different.
  • determining the number of the maximum non-overlapping CCEs of the terminal in each serving cell obtaining a plurality of values, and using the maximum value or the minimum value of the plurality of values as the maximum number of non-overlapping CCEs of the terminal in each serving cell.
  • Determining the maximum number of non-overlapping CCEs may be determining the number of maximum non-overlapping CCEs that the terminal can support within a time unit of the serving cell.
  • the number of maximum non-overlapping CCEs in the reference time unit (that is, an example of the unit duration) is determined without loss of generality. It should be understood that here, the reference time unit may be a time unit.
  • reference time unit mentioned in the embodiment of the present application represents the unit duration mentioned in the present application.
  • the embodiment of the present application is described by taking a reference time unit as an example.
  • the reference time unit includes a first duration or a predefined duration, where the first duration is a slot length corresponding to a subcarrier spacing of any one of the multiple serving cells.
  • the reference time unit is a time unit corresponding to any one of the aggregated carriers.
  • the carrier #1 and the carrier #2 are aggregated, and the reference time unit may be: a size of a time unit corresponding to the carrier #1, or a size of a time unit corresponding to the carrier #2.
  • it may be the slot length slot 1 corresponding to the carrier #1 subcarrier spacing or the slot length slot 2 corresponding to the carrier #2 subcarrier spacing.
  • the terminal can also obtain the maximum number of non-overlapping CCEs that it can support by querying the table 3, and monitor the PDCCH according to the number of the largest non-overlapping CCEs that are queried.
  • the reference time unit is a predefined time unit.
  • a predefined time unit such as 1 millisecond (ms), 0.5 ms, etc., or a predefined time unit is a time unit configured according to a protocol.
  • the maximum number of non-overlapping CCEs there are two schemes for determining the maximum number of non-overlapping CCEs.
  • One scheme is to determine the maximum number of non-overlapping CCEs for each carrier, or the other scheme is to determine a uniform maximum non-overlap.
  • the number of CCEs After determining the number of unified maximum non-overlapping CCEs, the maximum number of non-overlapping CCEs that can be supported on each carrier is converted according to the carrier scheduling configuration on the number of serving cells by the determined unified value. The details are described below.
  • Scheme 1 X carrier aggregation, each carrier determining the number of maximum non-overlapping CCEs.
  • T represents a reference time unit
  • Bi represents the number of maximum non-overlapping CCEs that can be supported per sloti on the carrier corresponding to ⁇ i;
  • Ti represents the converted value of the carrier corresponding to ⁇ i
  • the number of maximum non-overlapping CCEs that can be supported by each terminal in carrier #1 is 56; the number of maximum candidate PDCCHs that the terminal can support in slot #2 per slot2
  • Case 1 When each carrier is self-scheduling, there are two implementations to determine the maximum number of non-overlapping CCEs.
  • the number of maximum non-overlapping CCEs that each terminal can support on each carrier is the same as in the case of a single carrier.
  • carrier #1 and carrier #2 are aggregated.
  • the number of maximum non-overlapping CCEs that carrier #1 can support in its own slot time (slot1) is 56; the maximum non-supported carrier #2 in its own slot time (slot2) The number of overlapping CCEs is 56. Therefore, when carrier #1 and carrier #2 are aggregated, the number of the maximum non-overlapping CCEs that can be supported by the terminal per carrier unit (slot 1) on carrier #1 is 56, and the terminal is on carrier #2, every reference time unit ( Slot 2) The maximum number of non-overlapping CCEs that can be supported is 56.
  • FIG. 9 it is assumed that carrier #1, carrier #2, and carrier #3 are aggregated.
  • the number of maximum non-overlapping CCEs that carrier #1 can support in its own slot time is 56; the maximum non-supported carrier #2 in its own slot time (slot2) The number of overlapping CCEs is 56; the number of maximum non-overlapping CCEs that carrier #3 can support in its own slot time (slot 3) is 48.
  • the number of the largest non-overlapping CCEs that the terminal can support on each carrier unit is 56 on the carrier #1; the terminal is on carrier #2, The number of maximum non-overlapping CCEs that the reference time unit (slot 2) can support is 56; on the carrier #3, the number of maximum non-overlapping CCEs that can be supported per reference time unit (slot 3) is 48.
  • the number of finally determined maximum non-overlapping CCEs on each carrier is the product of the maximum number of non-overlapping CCEs on the original carriers and the converted value, the conversion The value is a discounted value for each carrier time slot and reference time.
  • the maximum number of non-overlapping CCEs can be expressed by the following formula:
  • Ni is the number of maximum non-overlapping CCEs that the terminal can support per reference time unit on carrier #i;
  • Bi represents the number of maximum non-overlapping CCEs that the terminal can support per sloti on carrier #i;
  • Ti represents the converted value of carrier #i.
  • Case 2 Partial carriers are configured with cross-carrier scheduling, some carriers are self-scheduling, and some carriers are scheduled by other carriers.
  • subcarrier spacing of the scheduled carrier is less than or equal to the subcarrier spacing of the scheduled carrier:
  • the number of scheduled carriers configured by the scheduling carrier is K
  • B (scheduling carrier) represents the number of maximum non-overlapping CCEs of the scheduling carrier within the reference time unit.
  • the first B (scheduling carrier) indicates the maximum number of non-overlapping CCEs when the carrier schedules itself, and the second B (scheduling carrier) indicates the maximum number of non-overlapping CCEs required when the carrier schedules another carrier.
  • the number of maximum non-overlapping CCEs on the carrier may be equal to B (scheduling carrier) + B (scheduled carrier) * 2 ⁇ (scheduled carrier) - ⁇ ( Scheduling carrier) .
  • the first B (scheduling carrier) indicates the maximum number of non-overlapping CCEs when the carrier schedules itself
  • the second B (scheduled carrier) indicates the maximum number of non-overlapping CCEs required by the scheduled carrier.
  • N B (scheduling carrier) + ⁇ ⁇ B (scheduled carrier) * 2 ⁇ (scheduled carrier) - ⁇ (scheduling carrier) ⁇ .
  • N the number of maximum non-overlapping CCEs
  • B (scheduling carrier) represents the number of maximum non-overlapping CCEs of the scheduling carrier within the reference time unit
  • ⁇ ⁇ B (scheduled carriers) * 2 ⁇ (scheduled carriers) - [mu] (scheduled carriers) - [mu] ⁇ represents a (carrier scheduling) multiplying all scheduled carriers with 2 ⁇ (scheduled carriers), and The result of the multiplication is summed.
  • the subcarrier spacing of the scheduled carrier is greater than the subcarrier spacing of the scheduled carrier:
  • B (scheduling carrier) + K * B (scheduling carrier) (K + 1) * B (scheduling carrier), and the added portion is a multiple of K.
  • the number of maximum non-overlapping CCEs on the carrier may be equal to B (scheduling carrier) + B (scheduled carrier) / 2 ⁇ (scheduling carrier) - ⁇ (scheduled carrier) , where the first B (scheduling carrier) indicates the maximum number of non-overlapping CCEs when the carrier schedules itself, and the second B (scheduled carrier) indicates the maximum non-overlap required for the scheduled carrier
  • the first B (scheduling carrier) indicates the maximum number of non-overlapping CCEs when the carrier schedules itself
  • the second B (scheduled carrier) indicates the maximum non-overlap required for the scheduled carrier
  • N B (scheduling carrier) + ⁇ ⁇ B (scheduled carrier) / 2 ⁇ (scheduling carrier) - ⁇ (scheduled carrier) ⁇ .
  • N the number of maximum non-overlapping CCEs
  • B (scheduling carrier) represents the number of maximum non-overlapping CCEs of the scheduling carrier within the reference time unit
  • ⁇ ⁇ B (scheduled carrier) / 2 ⁇ (scheduled carriers) - [mu] (scheduled carriers) ⁇ represents all scheduled division carrier and 2 ⁇ (scheduled carriers) - [mu] (scheduled carrier), and The result of the division is summed.
  • each carrier is self-scheduling, and is not described here.
  • determining the number of maximum non-overlapping CCEs of the self-scheduled carrier may be in accordance with implementation #1, that is, when the reference time units on each carrier are respective slot times, the terminal is on each carrier, each The maximum non-overlapping CCE that a slot can support is the same as for a single carrier.
  • determining the maximum number of non-overlapping CCEs of the self-scheduled carrier may also be determined according to implementation manner #2, that is, when the reference time unit on each carrier is a unified reference time, the finalized on each carrier.
  • the number of maximum non-overlapping CCEs is the product of the number of largest non-overlapping CCEs on the original carriers and the discounted value, which is the discounted value of each carrier time slot and reference time.
  • Option 2 X carrier aggregation, which determines the total number of uniform maximum non-overlapping CCEs.
  • Case A Uniform according to a reference subcarrier interval, eg, regardless of the subcarrier spacing of the serving cell,
  • N X*56.
  • N is the number of unified maximum candidate PDCCHs
  • X is the number of carrier aggregations
  • N the number of non-overlapping CCEs corresponding to the minimum subcarrier spacing in the serving cell*the number of carriers.
  • N the number of non-overlapping CCEs corresponding to the maximum subcarrier spacing in the serving cell*the number of carriers.
  • N the sum of the number of non-overlapping CCEs corresponding to each subcarrier spacing in the serving cell.
  • the network device receives a parameter y reported by the terminal related to the number of maximum non-overlapping CCEs that the terminal can support, where y is an integer in ⁇ 4, . . . , 16 ⁇ . .
  • N the number of non-overlapping CCEs corresponding to the minimum subcarrier spacing in the serving cell*y.
  • FIG. 11 shows a case where the number of carriers X is larger than 4.
  • carrier #1, carrier #2, carrier #3, carrier #4, and carrier #5 are aggregated.
  • N the number of non-overlapping CCEs corresponding to the maximum subcarrier spacing in the serving cell*y.
  • FIG. 11 shows a case where the number of carriers X is larger than 4.
  • carrier #1, carrier #2, carrier #3, carrier #4, and carrier #5 are aggregated.
  • the reference time unit on each carrier is a unified reference time
  • the reference time unit may be a slot with the smallest subcarrier spacing as a reference time unit, or a slot with the largest subcarrier spacing as a reference time unit. Described separately below.
  • a possible implementation method the slot with the smallest subcarrier spacing is used as the reference time unit, and the conversion is performed, and a value is obtained.
  • the subcarrier spacing of carrier #1 is 15 kHz
  • the corresponding slot is slot 1
  • the subcarrier spacing of carrier #2 is 30 kHz, corresponding to The time slot is slot2.
  • T the number of maximum non-overlapping CCEs on carrier #2
  • B2 the number of maximum non-overlapping CCEs on carrier #2
  • a possible implementation method is to use a slot with the largest subcarrier spacing as a reference time unit, perform conversion, and obtain a unified value.
  • the subcarrier spacing of carrier #1 is 15 kHz, the corresponding slot is slot1; the carrier spacing of carrier #2 is 30 kHz, and the corresponding slot is slot 2.
  • T is slot 2.
  • a new definition of the parameter reported by the terminal may be performed.
  • the network side needs to consider the number of scheduled carriers on the scheduling to perform conversion.
  • the maximum number of non-overlapping CCEs on carrier 1 is equal to the uniform value N*2/5, because carrier 1 has a scheduled carrier in addition to self-scheduling, which is equivalent to the share of 2 carriers.
  • the maximum number of non-overlapping CCEs configured on other carriers is equal to the uniform value N/5.
  • a possible implementation manner is: defining a reference time unit with a small SCS Numerology; then, the number of maximum non-overlapping CCEs that the terminal can support in the reference time unit is:
  • N y*(X1/X)*B0+y*(X2/X)*B1*2 ⁇ 1- ⁇ 0
  • Another possible implementation is to define the unit duration by the large numerology of SCS;
  • the number of maximum non-overlapping CCEs that the terminal can support in the reference time unit is:
  • ⁇ 1 corresponds to a large ⁇ value of SCS
  • ⁇ 2 corresponds to a small value of SCS
  • y is divided into two parts: y1 and y2 (corresponding to the capability parameters of different Numerology, it is necessary to specify which ⁇ value corresponds to y1 and y2 respectively), and y1 and y2 are used instead of y*(X1/X) and y in the above formula. *(X2/X).
  • Y1 y*(X1/X)
  • y2 y*(X2/X).
  • the number N of the largest non-overlapping CCEs that the terminal can support can be:
  • N y1*B1+y2*B2*2 ⁇ 1- ⁇ 0 , or,
  • N y1*B1+y2*B2, or,
  • N y1*(B1/2 ⁇ 1- ⁇ 0 )+y2*B2.
  • carrier #1, carrier #2, carrier #3, carrier #4, and carrier #5 are aggregated, and the aggregated carrier is configured for cross-carrier scheduling.
  • carrier #1 is a scheduling carrier
  • carrier #2 is a scheduled carrier.
  • the network device may determine the maximum number of non-overlapping CCEs according to the number of any serving cell and carrier aggregation in multiple serving cells.
  • the number of non-overlapping CCEs in the unit duration of each carrier of the carrier aggregation may be comprehensively considered to further determine the maximum number of non-overlapping CCEs.
  • the number of the largest non-overlapping CCEs of the multiple serving cells may be further determined according to a reference serving cell (for example, when the unit duration is a predefined duration).
  • the above describes how to determine the maximum number of candidate PDCCHs and the maximum number of non-overlapping CCEs when multiple carrier aggregations are combined with FIG. 6 to FIG. 13 .
  • the number of maximum candidate PDCCHs is analyzed in combination with the size of DCI.
  • the number of the maximum candidate PDCCHs includes: a number of candidate PDCCHs corresponding to different sizes of downlink control information DCI formats, and the method further includes: the total number of the different size DCI formats is less than or equal to the number M times the number of DCI formats of different sizes corresponding to any one of the plurality of serving cells, where M is the number of serving cells in the plurality of serving cells; and/or corresponding to the fourth serving cell
  • the number of DCI formats of different sizes is less than or equal to K times the number of DCI formats of different sizes corresponding to one serving cell, where the fourth serving cell is a cell that performs cross-carrier scheduling in the multiple serving cells.
  • K is the number of serving cells scheduled by the fourth serving cell across carriers.
  • DCI format is used to define the location of the control information field (Field) in the DCI.
  • Field control information field
  • the downlink control information size can be understood as the number of information bits included in the downlink control information. If the DCI includes W information bits, the downlink control information size is W. Alternatively, the downlink control information size may be understood as a sum of the number of information bits included in the DCI and the length of the cyclic redundancy check code; for example, the DCI includes W information bits, and the cyclic redundancy check code length is L, and the DCI size is equal to W. The value of +L.
  • the number of DCI sizes directly affects the number of candidate PDCCHs, and the PDCCH with the same DCI size in the same search space is regarded as a PDCCH candidate. At present, the NR conference discussion only limits the situation of single carrier.
  • the terminal supports PDCCH monitoring of up to 4 different DCI sizes per slot, that is, the total DCI size detected by the terminal cannot exceed 4 One. Moreover, the DCI size of the C-RNTI scrambled on the cyclic redundancy check code detected by the terminal cannot exceed three.
  • the network device controls the number of candidate PDCCHs monitored by the terminal, it is necessary to simultaneously consider the monitoring configuration of the terminal for different DCI sizes.
  • the following is described in conjunction with Table 5, from the case where the aggregate carrier is not configured for cross-carrier scheduling and the aggregate carrier configuration is configured for cross-carrier scheduling.
  • Aggregated carrier is not configured for cross-carrier scheduling
  • the DCI budget on PCell needs to meet the DCI budget requirements for single carrier, such as:
  • the SCIC does not need to monitor the DCI format that only appears on the PCell, such as 1_0 (scrambled with SI-RNTI/RA-RNTI/T-CRNTI/P-RNTI), 0_0 (T-CRNTI for Type1-PDCCH) C-RNTI scrambling), so the DCI size corresponding to the fourth row, the sixth row, the tenth row, and the eleventh row of the second column in Table 5 can be counted as SCell when considering the DCI budget.
  • the DCI size of 2-2 and 2-3 is mapped to other columns, so the DCI budget example for SCell can be as follows:
  • the DCI size for self-scheduling and scheduling other carriers may be the same and may be different. For example, if you can map to the same size, then blind detection will be reduced.
  • each scheduling may have a different size, that is, other sizes of DCI formats may be configured in the scheduling cell, so the number of blind detections is increased compared to a single carrier.
  • DCI budget assumes that the number of aggregated carriers is X.
  • the DCI budget of each carrier is the same as that of a single carrier, and the maximum number of different DCI sizes detected by the terminal on all carrier-aggregated carriers may be less than or equal to a single carrier scenario.
  • the maximum number of different DCI sizes detected by the terminal on carriers aggregated by multiple carriers may be equal to the total number in a single carrier scenario.
  • the maximum number of different DCI sizes detected by the terminal on the carrier of the multiple carrier aggregation may be less than or equal to X times of the single carrier scenario.
  • the maximum number of different DCI sizes detected by the terminal on the scheduling carrier may be less than or equal to M times of the single carrier scenario, where M is the number of scheduled carriers configured. The terminal may not detect the DCI on the scheduled cell.
  • the number of the maximum candidate PDCCH and the maximum number of non-overlapping CCEs are determined in the above, and the number of candidate PDCCHs is analyzed from the perspective of the DCI format in combination with Table 4 and Table 5.
  • the following describes a method for parameter determination related to the downlink data dynamic codebook generation mode, which is applicable to another embodiment of the present application. Before starting to describe the embodiment of the present application, the following describes the generation method of the downlink data dynamic codebook.
  • the Hybrid Automatic Repeat ReQuest (HARQ) feedback information of the PDSCH and the downlink semi-persistent scheduling (SPS) release message is generated in static and dynamic modes.
  • the HARQ feedback information is represented here by HARQ-Acknowledgement (ACK).
  • the dynamic codebook generation method is implemented by a cumulative count (counter DAI, C-DAI) and/or a total count (total DAI, T-DAI) included in the DCI.
  • the C-DAI is included in the DCI format 1_0 or the DCI format 1_1, indicating that there is a PDSCH scheduled by DCI format 1_0 or DCI format 1_1 or a ⁇ Serving Cell, PDCCH monitoring opportunity ⁇ of DCI format 1_0 indicating downlink SPS release.
  • the cumulative order is first performed according to the serving cell index and then according to the PDCCH monitoring opportunity index.
  • the T-DAI is included in the DCI format 1_1, indicating that there is a PDSCH scheduled by DCI format1_0 or DCI format 1_1 or a ⁇ Serving Cell, PDCCH monitoring opportunity ⁇ -pair for DCI format 1_0 indicating downlink SPS release, only to the current PDCCH.
  • the total number of monitoring opportunities which can be updated at each PDCCH monitoring time.
  • FIG. 14 is one way of calculating a dynamic codebook.
  • the generation of the dynamic HARQ codebook is performed based on the cumulative count and the sum count of ⁇ Serving cell, PDCCH monitoring opportunity ⁇ -pair.
  • the order of counting is based on the starting time point of the PDCCH monitoring timing, and the sequence of the first Serving cell is used, and the order of the PDCCH monitoring timing is used as a criterion.
  • the PDCCH monitoring occasion is a time unit for monitoring the PDCCH, and related parameters are given in the configuration of the search space and the control-resource set (CORESET).
  • the PDCCH monitoring occasion is determined according to the RRC monitoring period configured by the RRC, and the PDCCH monitoring offset and the PDCCH monitoring mode are jointly determined. As shown in FIG. 15, the PDCCH monitoring period is 2 slots, and the offset value is 1, corresponding to the slot position of the black portion in the figure. Further, the location of the PDCCH monitoring opportunity in one time slot is indicated by the PDCCH monitoring mode.
  • the PDCCH monitoring mode uses a 14-bit bitmap to indicate the position of the symbol to be monitored.
  • the 14-bit indication in the figure is a binary number (00001100001100), each bit represents the position of one symbol, and 1 indicates that monitoring is required. , 0 means no monitoring is required. This means that it is necessary to monitor the four symbols 4, 5, 10, and 11 in the time slot corresponding to the black in the figure.
  • This 14-bit bitmap can also be used to indicate that the PDCCH monitoring opportunity corresponds to the position of the first symbol of the CORESET in one slot.
  • the 14-bit indication in the figure is a binary number (00001100001100) indicating the position of the first possible symbol of 4 possible CORESETs in one slot. The length of time corresponding to the PDCCH monitoring timing is determined by the duration of the CORESET associated with the search space corresponding to the PDCCH monitoring timing.
  • a PDCCH monitoring occasion may include multiple DCIs.
  • a PDCCH occasion includes multiple DCIs during cross-carrier scheduling.
  • a PDCCH monitoring opportunity includes multiple DCIs.
  • HARQ information that needs feedback
  • HARQ-ACK information such as HARQ-ACK information.
  • a total of six PDSCH data are scheduled in the figure. However, since there are only three PDCCH monitoring occasions, only the HARQ-ACK information of the three PDSCHs can be fed back, and the HARQ-ACK information of the remaining three PDSCHs is missed.
  • the two numbers in parentheses in the figure represent the values of C-DAI and T-DAI, respectively (C-DAI, T-DAI).
  • the embodiment of the present application proposes a method for parameter determination, which can avoid missing the HARQ-ACK information that needs to be fed back.
  • the method includes: determining, by the network device, a cumulative count downlink allocation indication C-DAI and/or a sum count downlink allocation indication T-DAI according to a serving cell of the terminal, a physical downlink control channel PDCCH monitoring timing, and a parameter in the PDCCH monitoring timing;
  • the network device sends downlink control information DCI including the C-DAI and/or the T-DAI to the terminal.
  • the parameters in the PDCCH monitoring timing include one or more of the following:
  • the serial number ID value of the control resource set CORESET is associated with the search space associated with the PDCCH.
  • the location information of the data scheduled by the PDCCH includes an index of a location of data scheduled by the PDCCH, and an order of an index of the location of the data scheduled by the PDCCH is a pre-frequency domain followed by a time domain. Alternatively, you can also use the time domain after the frequency domain.
  • C-DAI and T-DAI counting may be performed in the CCE index order corresponding to the PDCCH of each DCI.
  • the two numbers in parentheses in the figure represent the values of C-DAI and T-DAI, respectively (C-DAI, T-DAI).
  • C-DAI, T-DAI the values of C-DAI and T-DAI, respectively (C-DAI, T-DAI).
  • FIG. 17 it can be seen that according to the CCE starting address sequence of three PDCCHs in the first PDCCH monitoring occasion, three (C-DAI, T-DAI) values can be obtained, which are (1, 3), (2, 3). ) and (3,3).
  • the principle of counting (C-DAI, T-DAI) values in the subsequent PDCCH monitoring timing is the same as that in the first PDCCH monitoring timing, and will not be described here.
  • One possible way, as shown in FIG. 18, can be determined by using the location of the PDSCH data scheduled by each DCI.
  • the order of the positions can be counted in C-DAI and T-DAI in the order of the time domain and the time domain.
  • C-DAI and T-DAI are counted according to the order of the PDSCH position in the first PDCCH monitoring time according to the PDSCH position of the first DCI, and the C-DAI and T-DAI are obtained.
  • the values are, in order, (1, 3), (3, 3) and (2, 3).
  • the principle of counting (C-DAI, T-DAI) values in the subsequent PDCCH monitoring timing is the same as that in the first PDCCH monitoring timing, and will not be described here.
  • the location of the data can also be counted in C-DAI and T-DAI in the order of the time domain and then the frequency domain.
  • One possible way is to perform C-DAI and T-DAI counting using the CORESET ID associated with the search space associated with the PDCCH. For example, sort in the order in which the CORESET ID is increased.
  • the sequence number ID value of the CORESET associated with the search space corresponding to the first PDCCH is 2
  • the sequence ID value of the CORESET associated with the search space corresponding to the second PDCCH is 1
  • the C-DAI corresponding to the first PDCCH is 2
  • the C-DAI corresponding to the second PDCCH is 1, and the values of both T-DAIs are 2.
  • a CORESET is a time-frequency resource in the control area.
  • the configuration of each search space or search space group is associated with a CORESET configuration.
  • the CORESET configuration contains a CORESET ID and a duration.
  • the search space described in the embodiment of the present application may also be represented as a search space set, and no distinction is made here.
  • the process of receiving downlink control information by the terminal is as follows.
  • the network device configures a CORESET or multiple CORESETs for the terminal, and each CORESET has its own ID, which is recorded as CORESET_ID;
  • Each BWP can be configured with up to 3 CORESETs; 4 BWPs can be configured with up to 12 CORESETs;
  • the network device configures a search space for monitoring the PDCCH for each downlink BWP, and configures a search space set at a time.
  • Each search space set has its own ID, which is recorded as a search space set index.
  • Each BWP can be configured with up to 10 search space sets, each search space set corresponds to one CORESET, and multiple search space sets can correspond to the same CORESET.
  • the terminal monitors a set of candidate PDCCHs according to the configuration of the search spaces in one or more CORESETs on the BWP activated by each serving cell.
  • the ordering of the PDCCH monitoring occasions in the description of the existing protocol only indicates that the PDCCH monitoring occasions are sorted according to the starting time of the associated search space.
  • the PDCCH monitoring occasions cannot be performed only according to the starting time. Sorting, as shown in FIG. 19, PDCCH monitoring occasion 1 and PDCCH monitoring timing 2 have the same starting time, and PDCCH monitoring timing 3 and PDCCH monitoring timing 4 have the same starting time. Therefore, it is necessary to solve the problem of different PDCCH monitoring timing scheduling in which the monitoring timing associated search space has the same starting time.
  • start time of the PDCCH monitoring opportunity and the start time of the PDCCH monitoring timing associated with the search space are the same meaning and may be interchanged.
  • the duration of the PDCCH monitoring opportunity and the duration of the PDCCH monitoring timing associated with the CORESET have the same meaning and can be interchanged.
  • the embodiment of the present application provides a method for parameter determination, which can distinguish PDCCH monitoring occasions with the same starting time, thereby clearing the order of PDCCH monitoring timings with the same starting time, and performing C-DAI and T-DAI counting normally.
  • the method includes:
  • the information related to the PDCCH monitoring opportunity includes one or more of the following:
  • the index value of the search space associated with the PDCCH is the index value of the search space associated with the PDCCH.
  • the index value of the control resource set CORSET associated with the search space associated with the PDCCH is the index value of the control resource set CORSET associated with the search space associated with the PDCCH.
  • the duration may be the duration of the CORESET associated with the PDCCH corresponding to the search space.
  • the end time on the time unit corresponding to the PDCCH monitoring opportunity may be the end symbol position, or the start time plus the duration.
  • the end time of the PDCCH monitoring timing 1 is slot 1
  • the end timing of the PDCCH monitoring timing 2 is slot 2. Then, the PDCCH monitoring timing 1 is ranked in front of the PDCCH monitoring timing 2 in ascending order according to the ending timing. .
  • the network device when the information related to the PDCCH monitoring occasion is the duration of the PDCCH monitoring occasion, the network device is configured according to the starting time and the search space associated with the PDCCH monitoring occasion.
  • the PDCCH monitoring timing information is sorted by the PDCCH monitoring timing, and the network device is configured to monitor the PDCCH timing number according to the following formula:
  • T is the number of the PDCCH monitoring opportunity.
  • A represents the number of symbols included in each slot
  • L represents the duration of the PDCCH monitoring timing
  • S represents the start time of the search space associated with the PDCCH monitoring opportunity.
  • the PDCCH monitoring timings of different starting moments and different lengths may be numbered.
  • the numbering principle is that S indicates the position of the starting symbol, the value range is (0 to 13), and L indicates the length of the continuous symbol, (1 to 3), then the PDCCH monitoring
  • Sorting can be done in ascending or descending order of numbers.
  • the start time of the PDCCH monitoring opportunity and the index value of the search space corresponding to the PDCCH monitoring timing are used, when the start times of the PDCCH monitoring timings are different, the starting times of the PDCCH monitoring timings are directly sorted, and the starting time is in the previous PDCCH monitoring timing. In the front, of course, it can be returned, and the PDCCH monitoring timing at the beginning according to the start time is ranked first.
  • the start times of the PDCCH monitoring occasions are the same, the PDCCH monitoring timing is sorted according to the size of the index value of the PDCCH corresponding search space, the search space index is small, and the index is large. Of course, vice versa, the search space index is ranked first, and the index is small.
  • the PDCCH monitoring timing is directly sorted according to the start time of the PDCCH monitoring timing when the start timing of the PDCCH monitoring timing is different, and the start time is in the previous PDCCH monitoring.
  • the timing is in the front, and of course it can be returned.
  • the timing of the PDCCH monitoring at the beginning is followed by the timing.
  • the PDCCH monitoring timing is sorted according to the size of the index value of the PDCCH corresponding to the CORESET, and the CORESET index is small and the index is large. Of course, vice versa, the CORESET index is ranked first, and the index is small.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present application.
  • the process constitutes any limitation.
  • FIG. 20 is a schematic diagram of an apparatus 20 for parameter determination according to an embodiment of the present application.
  • the apparatus 20 may include a processing unit 21 and a transceiver unit 22.
  • the device 20 can be a network device or a chip configured in a network device.
  • the processing unit 21 configures a plurality of serving cells for the terminal, and the subcarrier spacing of at least two of the multiple serving cells is different; according to the subcarrier spacing of the multiple serving cells At least one determines a number of maximum candidate physical downlink control channel PDCCHs monitored by the terminal within a unit time period.
  • the unit duration includes a first duration or a predefined duration, where the first duration is a slot length corresponding to a subcarrier spacing of any one of the multiple serving cells.
  • the processing unit 21 is configured to determine, according to the number of candidate PDCCHs corresponding to the unit time interval of the first serving cell and the number of serving cells in the multiple serving cells, a number of maximum candidate PDCCHs monitored within a terminal unit duration, wherein the first serving cell is any one of the plurality of serving cells; or, according to a subcarrier spacing with the second serving cell, the unit Determining, by the number of candidate PDCCHs in the duration, and the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the unit duration, determining the number of maximum candidate PDCCHs monitored in the terminal unit duration, where The second serving cell and the third serving cell are any two of the multiple serving cells, and the subcarrier spacing of the second serving cell and the subcarrier spacing of the third serving cell are different; Or determining, according to the number of candidate PDCCHs corresponding to the subcarrier spacing of each serving cell in the serving cell, the terminal unit Determine the maximum number of candidate PDCCHs for each serving cell in the
  • the unit duration is the first duration
  • the processing unit 21 is specifically configured to: when the number of candidate PDCCHs corresponding to the unit duration is different according to a subcarrier spacing with the first serving cell,
  • the number of the serving cell in the serving cell determines the number of the maximum candidate PDCCHs monitored in the terminal unit duration, and determines the number of the maximum candidate PDCCHs monitored in the terminal unit duration is: a subcarrier spacing product of a number of corresponding candidate PDCCHs within the unit duration and a number of serving cells in the plurality of serving cells; or, when the subcarrier spacing with the second serving cell is within the unit duration Determining the number of the candidate PDCCHs and the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the unit duration, determining the number of the maximum candidate PDCCHs monitored in the terminal unit duration
  • the number of the maximum candidate PDCCHs monitored in the unit duration is: a candidate corresponding to the subcarrier spacing of the second serving cell within the unit duration
  • the unit duration is the first duration
  • the first duration is a slot length corresponding to a subcarrier spacing of the second serving cell
  • the processing unit 21 is specifically configured to:
  • the number of the maximum candidate PDCCHs monitored in the terminal unit duration determined by the base station is: the number of candidate PDCCHs corresponding to the subcarrier spacing of the second serving cell within the unit duration and the third
  • the base station determines that the number of the maximum candidate PDCCHs monitored in the terminal unit duration is: a sum of a number of candidate PDCCHs corresponding to the carrier duration in the first duration and a number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the first duration, wherein, the third
  • the number of candidate PDCCHs corresponding to the sub-carrier spacing of the serving cell in the first duration is according to the first duration, the second duration, and the candidate PDCCH corresponding to the fifth serving cell in the second duration.
  • the number of times is determined, and the second duration is a slot length corresponding to a subcarrier spacing of the third serving cell.
  • the unit duration is the predefined duration
  • the processor 31 is specifically configured to determine: when the network device determines that the maximum number of candidate PDCCHs monitored in the terminal unit duration is: the When the subcarrier spacing of each of the plurality of serving cells is the sum of the number of candidate PDCCHs in the unit duration, the number of the maximum candidate PDCCHs monitored in the terminal unit duration is: a sum of the number of candidate PDCCHs in each of the plurality of serving cells in a duration corresponding to each of the serving cells; or the number of the maximum candidate physical downlink control channel PDCCH monitored in the terminal unit duration is: a sum of a number of candidate PDCCHs in each of the plurality of serving cells within the predefined duration, wherein a candidate PDCCH is within the predefined duration of each of the plurality of serving cells The number is based on a duration corresponding to each of the plurality of serving cells in each of the serving cells, the predefined duration, And determining, by the number of candidate PDCCHs within respective durations of
  • the transceiver unit 22 is configured to: receive the first information reported by the terminal, where the first information is used to indicate a first parameter related to a maximum number of candidate PDCCHs that the terminal can support; and the processing unit 21 is configured to: Determining, according to at least one of the first parameter and a subcarrier spacing of the multiple serving cells, a number of maximum candidate PDCCHs monitored within the terminal unit duration.
  • the transceiver unit 22 is configured to: receive second information reported by the terminal, where the second information is used to indicate N parameters, where the N parameters are the maximum number of candidate PDCCHs that can be supported by the terminal. a related parameter, where N is less than or equal to the number of serving cells in the multiple serving cells; and the processing unit 21 is configured to: according to the N parameters and at least one of multiple subcarrier spacings of the multiple serving cells One subcarrier spacing determines the number of maximum candidate PDCCHs monitored within the terminal unit duration.
  • the number of the maximum candidate PDCCHs includes: a number of candidate PDCCHs corresponding to different sizes of downlink control information DCI formats, and the method further includes: the total number of the different size DCI formats is less than or equal to the number M times the number of DCI formats of different sizes corresponding to any one of the plurality of serving cells, where M is the number of serving cells in the plurality of serving cells; and/or corresponding to the fourth serving cell
  • the number of DCI formats of different sizes is less than or equal to K times the number of DCI formats of different sizes corresponding to one serving cell, where the fourth serving cell is a cell that performs cross-carrier scheduling in the multiple serving cells.
  • K is the number of serving cells scheduled by the fourth serving cell across carriers.
  • the functions and actions of the modules or units in the device 20 listed above are merely exemplary.
  • the modules or units in the device 20 may be used to perform various actions or processes performed by the network device in the above method. Avoid the details and omit the detailed description.
  • the processing unit 21 may be configured to determine a cumulative count downlink allocation indication C-DAI and/or a sum according to a serving cell of the terminal, a physical downlink control channel PDCCH monitoring occasion, and parameters in the PDCCH monitoring timing. Counting the downlink allocation indication T-DAI; transmitting downlink control information DCI including the C-DAI and/or the T-DAI to the terminal.
  • the parameters in the PDCCH monitoring timing include one or more of the following:
  • the serial number ID value of the control resource set CORESET is associated with the search space associated with the PDCCH.
  • the location information of the data scheduled by the PDCCH includes an index of a location of data scheduled by the PDCCH, and an order of an index of the location of the data scheduled by the PDCCH is a pre-frequency domain followed by a time domain.
  • modules or units in the device 20 listed above are merely exemplary.
  • the modules or units in the device 20 may be used to perform the actions or processes performed by the network device in the foregoing FIG. 14 to FIG. Here, in order to avoid redundancy, a detailed description thereof will be omitted.
  • the processing unit 21 may be configured to determine a start time of a search space associated with a physical downlink control channel PDCCH monitoring occasion and information related to the PDCCH monitoring opportunity; and monitor timing according to the PDCCH.
  • the start time of the associated search space and the information related to the PDCCH monitoring opportunity are sorted by the PDCCH monitoring timing.
  • the information related to the PDCCH monitoring opportunity includes one or more of the following:
  • the index value of the search space associated with the PDCCH is the index value of the search space associated with the PDCCH.
  • the index value of the control resource set CORSET associated with the search space associated with the PDCCH is the index value of the control resource set CORSET associated with the search space associated with the PDCCH.
  • the information related to the PDCCH monitoring occasion is the duration of the PDCCH monitoring occasion, the start time of the search space associated with the PDCCH monitoring occasion and the PDCCH monitoring Timing related information, sorting the timing of the PDCCH monitoring, including:
  • the processing unit 21 is configured to monitor the timing of the PDCCH according to the following formula:
  • T is the number of the PDCCH monitoring opportunity.
  • A represents the number of symbols included in each slot
  • L represents the duration of the PDCCH monitoring timing
  • S represents a start time on a duration unit corresponding to the PDCCH monitoring occasion.
  • the functions and actions of the modules or units in the device 20 are only exemplified.
  • the modules or units in the device 20 can be used to perform the operations or processes performed by the network device in FIG. 19, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • FIG. 21 is a schematic diagram of an apparatus 30 for parameter determination according to an embodiment of the present disclosure.
  • the apparatus 30 may be a network device (for example, the foregoing network device), or may be a chip or a circuit, such as a configurable device. A chip or circuit within a network device.
  • the network device corresponds to the network device (for example, the network device) in the foregoing method.
  • the apparatus 30 can include a processor 31 (ie, an example of a processing unit) and a memory 32.
  • the memory 32 is for storing instructions for executing the instructions stored by the memory 32 to cause the apparatus 30 to perform the steps performed by a network device (e.g., a network device) in the aforementioned method.
  • a network device e.g., a network device
  • the device 30 may further include an input port 33 (ie, an example of a communication unit) and an output port 33 (ie, another example of the processing unit).
  • an input port 33 ie, an example of a communication unit
  • an output port 33 ie, another example of the processing unit.
  • processor 31, memory 32, input port 33, and output port 34 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 31, the input port 33, and the output port 34 is stored in a memory, and the general purpose processor implements the functions of the processor 31, the input port 33, and the output port 34 by executing code in the memory.
  • This memory 32 is used to store computer programs.
  • the processor 31 may be configured to call and run the computing program from the memory 32, and configure a plurality of serving cells for the terminal, where the multiple serving cells The subcarrier spacings of the at least two serving cells are different; determining, according to at least one of the subcarrier spacings of the multiple serving cells, the number of the maximum candidate physical downlink control channel PDCCHs monitored by the terminal within a unit duration.
  • the unit duration includes a first duration or a predefined duration, where the first duration is a slot length corresponding to a subcarrier spacing of any one of the multiple serving cells.
  • the processor 31 is configured to determine, according to the number of candidate PDCCHs corresponding to the unit time interval of the first serving cell and the number of serving cells in the multiple serving cells, a number of maximum candidate PDCCHs monitored within a terminal unit duration, wherein the first serving cell is any one of the plurality of serving cells; or, according to a subcarrier spacing with the second serving cell, the unit Determining, by the number of candidate PDCCHs in the duration, and the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the unit duration, determining the number of maximum candidate PDCCHs monitored in the terminal unit duration, where The second serving cell and the third serving cell are any two of the multiple serving cells, and the subcarrier spacing of the second serving cell and the subcarrier spacing of the third serving cell are different; Or determining the terminal unit according to the number of candidate PDCCHs corresponding to the subcarrier spacing of each serving cell in the serving cell within the unit duration Determining the maximum number of candidate PDCCHs in each of
  • the unit duration is the first duration
  • the processor 31 is specifically configured to: when the number of candidate PDCCHs corresponding to the unit duration is different according to a subcarrier spacing with the first serving cell,
  • the number of the serving cell in the serving cell determines the number of the maximum candidate PDCCHs monitored in the terminal unit duration, and determines the number of the maximum candidate PDCCHs monitored in the terminal unit duration is: a subcarrier spacing product of a number of corresponding candidate PDCCHs within the unit duration and a number of serving cells in the plurality of serving cells; or, when the subcarrier spacing with the second serving cell is within the unit duration Determining the number of the candidate PDCCHs and the number of candidate PDCCHs corresponding to the subcarrier spacing of the third serving cell in the unit duration, determining the number of the maximum candidate PDCCHs monitored in the terminal unit duration
  • the number of the maximum candidate PDCCHs monitored in the unit duration is: the candidate PDCC corresponding to the subcarrier spacing of the second serving cell within the unit duration
  • the unit duration is the predefined duration
  • the processor 31 is specifically configured to determine: when the network device determines that the maximum number of candidate PDCCHs monitored in the terminal unit duration is: the When the subcarrier spacing of each of the plurality of serving cells is the sum of the number of candidate PDCCHs in the unit duration, the number of the maximum candidate PDCCHs monitored in the terminal unit duration is: a sum of the number of candidate PDCCHs in each of the plurality of serving cells in a duration corresponding to each of the serving cells; or the number of the maximum candidate physical downlink control channel PDCCH monitored in the terminal unit duration is: a sum of a number of candidate PDCCHs in each of the plurality of serving cells within the predefined duration, wherein a candidate PDCCH is within the predefined duration of each of the plurality of serving cells The number is based on a duration corresponding to each of the plurality of serving cells in each of the serving cells, the predefined duration, And determining, by the number of candidate PDCCHs within respective durations of
  • the input port 30 is configured to: receive the first information reported by the terminal, where the first information is used to indicate a first parameter related to a maximum number of candidate PDCCHs that the terminal can support; the processor 31 is configured to: Determining, according to the first parameter and at least one of a plurality of subcarrier intervals of the plurality of serving cells, a maximum number of candidate PDCCHs monitored within the terminal unit duration.
  • the input port 30 is configured to: receive second information reported by the terminal, where the second information is used to indicate N parameters, where the N parameters are the maximum number of candidate PDCCHs that can be supported by the terminal. a related parameter, where N is less than or equal to the number of serving cells in the multiple serving cells; and the processor 31 is configured to: according to the N parameters and at least one of multiple subcarrier spacings of the multiple serving cells One subcarrier spacing determines the number of maximum candidate PDCCHs monitored within the terminal unit duration.
  • the number of the maximum candidate PDCCHs includes: a number of candidate PDCCHs corresponding to different sizes of downlink control information DCI formats, and the method further includes: the total number of the different size DCI formats is less than or equal to the number M times the number of DCI formats of different sizes corresponding to any one of the plurality of serving cells, where M is the number of serving cells in the plurality of serving cells; and/or corresponding to the fourth serving cell
  • the number of DCI formats of different sizes is less than or equal to K times the number of DCI formats of different sizes corresponding to one serving cell, where the fourth serving cell is a cell that performs cross-carrier scheduling in the multiple serving cells.
  • K is the number of serving cells scheduled by the fourth serving cell across carriers.
  • modules or units in the device 30 listed above are merely exemplary.
  • the modules or units in the device 30 may be used to perform various actions or processes performed by the network device in the above method. The details are omitted.
  • the processor 31 may be configured to determine a cumulative count downlink allocation indication C-DAI and/or a sum according to a serving cell of the terminal, a physical downlink control channel PDCCH monitoring occasion, and parameters in the PDCCH monitoring timing. Counting the downlink allocation indication T-DAI; transmitting downlink control information DCI including the C-DAI and/or the T-DAI to the terminal.
  • the parameters in the PDCCH monitoring timing include one or more of the following:
  • the serial number ID value of the control resource set CORESET is associated with the search space associated with the PDCCH.
  • the location information of the data scheduled by the PDCCH includes an index of a location of data scheduled by the PDCCH, and an order of an index of the location of the data scheduled by the PDCCH is a pre-frequency domain followed by a time domain.
  • modules or units in the device 30 listed above are merely exemplary.
  • the modules or units in the device 30 may be used to perform the actions or processes performed by the network device in the foregoing FIG. 14 to FIG. Here, in order to avoid redundancy, a detailed description thereof will be omitted.
  • the processor 31 may be configured to determine a start time of a search space associated with a physical downlink control channel PDCCH monitoring occasion and information related to the PDCCH monitoring timing; and monitor timing according to the PDCCH.
  • the start time of the associated search space and the information related to the PDCCH monitoring opportunity are sorted by the PDCCH monitoring timing.
  • the information related to the PDCCH monitoring opportunity includes one or more of the following:
  • the index value of the search space associated with the PDCCH is the index value of the search space associated with the PDCCH.
  • the index value of the control resource set CORSET associated with the search space associated with the PDCCH is the index value of the control resource set CORSET associated with the search space associated with the PDCCH.
  • the information related to the PDCCH monitoring occasion is the duration of the PDCCH monitoring occasion, the start time of the search space associated with the PDCCH monitoring occasion and the PDCCH monitoring Timing related information, sorting the timing of the PDCCH monitoring, including:
  • the processor 31 is configured to monitor the timing of the PDCCH according to the following formula:
  • T is the number of the PDCCH monitoring opportunity.
  • A represents the number of symbols included in each slot
  • L represents the duration of the PDCCH monitoring timing
  • S represents a start time on a duration unit corresponding to the PDCCH monitoring occasion.
  • the functions and actions of the modules or units in the device 30 are only exemplified.
  • the modules or units in the device 30 can be used to perform the operations or processes performed by the network device in FIG. 19, where In order to avoid redundancy, a detailed description thereof will be omitted.
  • FIG. 22 is a schematic structural diagram of a network device 40 according to an embodiment of the present disclosure, which may be used to implement the functions of a network device (for example, a network device) in the foregoing method.
  • the network device 40 includes one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBUs) (also referred to as digital units, DUs). 402.
  • RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
  • the RRU 401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 402 portion is mainly used for performing baseband processing, controlling network devices, and the like.
  • the RRU 401 and the BBU 402 may be physically disposed together or physically separated, that is, distributed network devices.
  • the BBU 402 is a control center of a network device, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 402 can be used to control the network device 40 to perform the operational flow of the network device in the foregoing method embodiment.
  • the BBU 402 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or a 5G system), or may support different ones. Access to the standard wireless access network.
  • the BBU 402 also includes a memory 4021 and a processor 4022.
  • the memory 4021 is used to store necessary instructions and data.
  • the memory 4021 stores the codebook or the like in the above embodiment.
  • the processor 4022 is configured to control a network device to perform necessary actions, for example, to control a network device to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC System-on-chip
  • all or part of the functions of the 402 part and the 401 part may be implemented by the SoC technology, for example, by a network device function.
  • the chip realizes that the network device function chip integrates a processor, a memory, an antenna interface and the like, and the program of the network device related function is stored in the memory, and the processor executes the program to implement the related function of the network device.
  • the network device function chip can also read the memory external to the chip to implement related functions of the network device.
  • FIG. 22 It should be understood that the structure of the network device illustrated in FIG. 22 is only one possible form, and should not be construed as limiting the embodiments of the present application. This application does not preclude the possibility of other forms of network device architecture that may arise in the future.
  • the embodiment of the present application further provides a system for parameter determination, which includes the foregoing network device and one or more terminal devices.
  • FIG. 23 is a schematic structural diagram of a terminal device 50 according to an embodiment of the present application.
  • the terminal device 50 includes a processor 51 and a transceiver 52.
  • the terminal device 50 further includes a memory 53.
  • the processor 51, the transceiver 52 and the memory 53 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 53 is used for storing a computer program, and the processor 51 is configured to be called from the memory 53.
  • the computer program is run to control the transceiver 52 to send and receive signals.
  • the processor 51 and the memory 53 described above can synthesize a processing device for executing the program code stored in the memory 53 to implement the above functions.
  • the memory 53 can also be integrated in the processor 51 or independent of the processor 51.
  • the terminal device may further include an antenna 54 configured to send downlink data or downlink control signaling output by the transceiver 52 by using a wireless signal.
  • the terminal device 50 may correspond to a terminal device in a method for parameter determination according to an embodiment of the present application, and the terminal device 50 may include a module for performing a method performed by the terminal device in the above method embodiment.
  • the memory 53 is configured to store the program code, so that when the program code is executed, the processor 51 executes the method performed by the terminal device in the foregoing method embodiment, and the specific process of each module performing the foregoing steps has been described in detail, Concise, no longer repeat here.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参数确定的方法、监控方法、通信装置,该方法包括:网络设备为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目。通过本申请,能够在载波聚合中的各个载波对应的子载波间隔不同时,确定终端在一个时间单元内监控的最大候选PDCCH的数目。

Description

参数确定的方法、监控方法、通信装置
本申请要求于2018年05月11日提交中国专利局、申请号为201810450877.9、申请名称为“参数确定的方法、监控方法、通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及参数确定的方法、监控方法、通信装置。
背景技术
网络设备通常使用物理下行控制信道(Physical Downlink Control Channel,PDCCH)向终端发送下行控制信息(Downlink Control Information,DCI),以调度网络设备和终端间的数据传输。DCI有很多格式,在接收属于终端的DCI之前,该终端并不确定接收到的是哪种格式的DCI,也不确定其期待收到的DCI使用哪个候选PDCCH进行传输。因此,该终端会进行PDCCH盲检。
在新无线(New Radio,NR)Rel-15的讨论中,考虑到终端对PDCCH的盲检能力有限,因此需要定义服务小区内,一个时间单元内的最大候选PDCCH的个数,以此指导网络设备对搜索空间进行配置,保证相关配置不超过终端盲检能力的上限。
目前,载波聚合场景下,确定一个时间单元内的最大候选PDCCH的个数为一个载波对应的候选PDCCH的个数与聚合的载波的数目的乘积。以上并未考虑载波间具有不同配置参数的情况。
发明内容
本申请提供一种参数确定的方法、监控方法、通信装置,能够在载波聚合中的各个载波对应的子载波间隔不同时,确定终端在一个时间单元内监控的最大候选PDCCH的数目。
第一方面,提供了一种参数确定的方法,该方法包括:网络设备为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目。
基于上述技术方案,当多个服务小区中的载波(如,激活的带宽部分BWP)进行载波聚合时,且多个载波中包括至少两个子载波间隔不同,也可以确定终端在单位时长内在多个服务小区能够监控的最大候选物理下行控制信道PDCCH的数目。其中,在多个服务小区能够监控的最大候选物理下行控制信道PDCCH的数目可以不同,也可以相同,如,选择一个最大值作为终端能够监控的候选物理下行控制信道PDCCH的数目。进而,也可以提高通信的灵活性和效率。
结合第一方面,在第一方面的某些实现方式中,所述单位时长包括第一时长或预定义 的时长,其中,所述第一时长为所述多个服务小区中的任一服务小区的子载波间隔所对应的时隙长度。
基于上述技术方案,单位时长可以是载波聚合中的任一载波所对应的时长,或者,也可以是一个预定义的时长。
结合第一方面,在第一方面的某些实现方式中,所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目,包括:所述网络设备根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第一服务小区为所述多个服务小区中的任一服务小区;或,所述网络设备根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第二服务小区和所述第三服务小区为所述多个服务小区中的任意两个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,所述网络设备根据与所述服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的各个服务小区的最大候选PDCCH的数目。
基于上述技术方案,网络设备可以根据多个服务小区中的任一服务小区和载波聚合的个数确定最大候选PDCCH的数目。或者,也可以综合考虑载波聚合的各个载波在单位时长内的候选PDCCH的数目,进一步确定最大候选PDCCH的数目。或者,也可以根据一个参考的服务小区(例如,当单位时长为预定义的时长时),进一步确定该多个服务小区的最大候选PDCCH的数目。
结合第一方面,在第一方面的某些实现方式中,当所述网络设备根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,所述网络设备确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目的乘积;或,当所述网络设备根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,所述网络设备确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和;或,当所述网络设备根据所述服务小区中与各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的各个服务小区的最大候选PDCCH的数目时,所述网络设备确定所述终端单位时长内监控的最大候选PDCCH的数目为:与所述多个服务小区中的各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和。
基于上述技术方案,网络设备可以确定最大候选PDCCH的数目为:多个服务小区中的任一服务小区和载波聚合的个数的乘积。或者,也可以确定最大候选PDCCH的数目为:载波聚合的各个载波在单位时长内的候选PDCCH的数目之和。通过本申请实施例,可以 简单快速地确定最大候选PDCCH的数目。
结合第一方面,在第一方面的某些实现方式中,所述单位时长为所述第一时长,所述第一时长为所述第二服务小区的子载波间隔对应的时隙长度,以及
当所述网络设备确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和时,所述网络设备确定所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述第一时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述第一时长内对应的候选PDCCH的数目之和,其中,与所述第三服务小区的子载波间隔在所述第一时长内对应的候选PDCCH的数目是根据所述第一时长、第二时长、以及与所述第五服务小区在所述第二时长内对应的候选PDCCH的数目确定的,所述第二时长为所述第三服务小区的子载波间隔对应的时隙长度。
基于上述技术方案,当单位时长为多个服务小区中任一服务小区的子载波间隔对应的时长时,可以先对载波聚合中的各个载波进行处理,如,根据单位时长、各个载波各自对应的时长,以及在各自对应的时长内的候选PDCCH的数目,确定各个载波在单位时长内的候选PDCCH的数目,进而确定最大候选PDCCH的数目。
结合第一方面,在第一方面的某些实现方式中,所述单位时长为所述预定义的时长,以及,所述网络设备确定所述终端单位时长内监控的最大候选PDCCH的数目为:所述多个服务小区中的与各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和包括:所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目为:所述多个服务小区中与各个服务小区在所述各个服务小区各自对应的时长内的候选PDCCH的数目的和;或,所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目为:所述多个服务小区中与各个服务小区在所述预定义的时长内的候选PDCCH的数目的和,其中,所述多个服务小区中与各个服务小区在所述预定义的时长内的候选PDCCH的数目是根据所述多个服务小区中与各个服务小区在所述各个服务小区各自对应的时长、所述预定义的时长、以及所述多个服务小区中与各个服务小区在所述各个服务小区各自对应的时长内的候选PDCCH的数目确定的。
基于上述技术方案,确定单位时长后,可以先对载波聚合中的各个载波进行处理,如,根据各个载波各自对应的时长,以及在各自对应的时长内的候选PDCCH的数目,确定各个载波在单位时长内的候选PDCCH的数目,进而确定最大候选PDCCH的数目。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端上报的第一信息,所述第一信息用于指示所述终端能够支持的最大候选PDCCH的数目相关的第一参数;所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定单位时长内所述终端监控的最大候选物理下行控制信道PDCCH的数目,包括:所述网络设备根据所述第一参数和所述多个服务小区的多个子载波间隔中的至少一个子载波间隔,确定所述终端单位时长内监控的最大候选PDCCH的数目。
基于上述技术方案,网络设备也可以接收终端发送的信息,例如,当载波聚合的个数大于4的时候。根据该信息用于指示与终端能够支持的最大候选PDCCH的数目相关的参数,可以进一步确定终端在单位时间内在多个服务小区监控的最大候选PDCCH的数目。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端上报的第二信息,所述第二信息用于指示N个参数,所述N个参数为与所述终端能够支持的最大候选PDCCH的数目相关的参数,其中,N小于或等于所述多个服务小区中的服务小区的数目;所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目,包括:所述网络设备根据所述N个参数和所述多个服务小区的子载波间隔中的至少一个,确定所述终端单位时长内监控的最大候选PDCCH的数目。
基于上述技术方案,网络设备也可以接收终端发送的信息,例如,当载波聚合的个数大于4的时候。根据该信息用于指示多个与终端能够支持的最大候选PDCCH的数目相关的参数,例如,针对不同子载波间隔的载波,分别上报一个参数。从而可以进一步确定终端在单位时间内在多个服务小区监控的最大候选PDCCH的数目。
结合第一方面,在第一方面的某些实现方式中,所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目,以及,所述方法还包括:
所述不同大小的DCI格式的总数小于或等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或,第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
第二方面,提供了一种监控方法,该监控方法包括:终端获取单位时长内监控的最大候选物理下行控制信道PDCCH的数目;所述终端根据所述最大候选PDCCH数目监控PDCCH;其中,所述终端配置有多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同,所述最大候选PDCCH数目是根据所述多个服务小区的子载波间隔的至少一种确定的。
结合第二方面,在第二方面的某些实现方式中,所述单位时长包括第一时长或预定义的时长,其中,所述第一时长为与所述多个服务小区中的服务小区的子载波间隔对应的时隙长度。
结合第二方面,在第二方面的某些实现方式中,所述最大候选PDCCH数目是根据所述多个服务小区的子载波间隔的至少一种确定的,包括:
所述最大候选PDCCH数目是根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区的数目确定的,其中,所述第一服务小区属于所述多个服务小区;或,
所述最大候选PDCCH数目是根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的,其中,所述第二服务小区和所述第三服务小区属于所述多个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,
所述最大候选PDCCH数目是根据与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的。
结合第二方面,在第二方面的某些实现方式中,当所述最大候选PDCCH数目是根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服 务小区的数目确定的时,所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目的乘积;或,
当所述最大候选PDCCH数目是根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的时,所述终端在单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和;或者,
当所述最大候选PDCCH数目是根据与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的时,所述终端在单位时长内监控的最大候选PDCCH的数目为:与所述多个服务小区中个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和。
结合第二方面,在第二方面的某些实现方式中,所述监控方法还包括:
所述终端向基站上报第一信息,所述第一信息用于指示与所述终端能够支持的最大候选PDCCH的数目相关的第一参数;所述所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目还根据所述第一参数确定。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述终端向基站上报第二信息,所述第二信息用于指示N个参数,所述N个参数为与所述终端能够支持的最大候选PDCCH的数目相关的参数,且分别与所述多个服务小区的不同子载波间隔相对应,其中,N为正整数,且N小于或等于所述多个服务小区中的服务小区的数目;所述所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目还根据所述N个参数确定。
结合第二方面,在第二方面的某些实现方式中,所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目;
所述不同大小的DCI格式的总数小于或等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或
第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
第三方面,提供了一种参数确定的方法,该方法包括:网络设备根据终端的服务小区、物理下行控制信道PDCCH监控时机、以及所述PDCCH监控时机内的参数确定累积计数下行分配指示C-DAI和/或总和计数下行分配指示T-DAI;所述网络设备向所述终端发送包括所述C-DAI和/或所述T-DAI的下行控制信息DCI。
基于上述技术,当一个PDCCH监控时机中包括多个DCI时,可以根据PDCCH监控时机和PDCCH监控时机内的参数综合计数,进而可以完整反馈每个反馈信息(如,HARQ-ACK),避免遗漏码本信息。
结合第三方面,在第三方面的某些实现方式中,所述PDCCH监控时机内的参数包括以下一项或多项:
所述PDCCH监控时机内,PDCCH所对应的起始控制信道单元CCE索引;
所述PDCCH监控时机内,PDCCH所调度数据的位置信息;和
所述PDCCH监控时机内,与PDCCH所关联的搜索空间相关联控制资源集CORESET的序列号ID值。
结合第三方面,在第三方面的某些实现方式中,所述PDCCH所调度数据的位置信息包括PDCCH所调度数据的位置的索引,所述PDCCH所调度数据的位置的索引的顺序为先频域后时域。
第四方面,提供了一种参数确定的方法,该方法包括:终端接收网络设备发送的包括累积计数下行分配指示C-DAI和/或总和计数下行分配指示T-DAI的下行控制信息DCI,其中,所述C-DAI和/或T-DAI是根据所述终端的服务小区、物理下行控制信道PDCCH监控时机、以及所述PDCCH监控时机内的参数确定的。
所述终端根据所述C-DAI和/或所述T-DAI,生成反馈信息。
基于上述技术,当一个PDCCH监控时机中包括多个DCI时,可以根据PDCCH监控时机和PDCCH监控时机内的参数综合计数,进而可以完整反馈每个反馈信息(如,HARQ-ACK),避免遗漏码本信息。
结合第四方面,在第四方面的某些实现方式中,所述PDCCH监控时机内的参数包括以下一项或多项:
所述PDCCH监控时机内,PDCCH所对应的起始控制信道单元CCE索引;
所述PDCCH监控时机内,PDCCH所调度数据的位置信息;和
所述PDCCH监控时机内,与PDCCH所关联的搜索空间相关联控制资源集CORESET的序列号ID值。
结合第四方面,在第四方面的某些实现方式中,所述PDCCH所调度数据的位置信息包括PDCCH所调度数据的位置的索引,所述PDCCH所调度数据的位置的索引的顺序为先频域后时域。
第五方面,提供了一种参数确定的方法,该方法包括:网络设备确定与物理下行控制信道PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息;所述网络设备根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序。
基于上述技术方案,同时基于PDCCH监控时机所关联的搜索空间的起始时刻和与PDCCH监控时机相关的信息为多个PDCCH监控时机排序。可以避免当多个PDCCH的监控时机具有相同的开始时刻时,出现不易区分的问题。
结合第五方面,在第五方面的某些实现方式中,所述与所述PDCCH监控时机相关的信息包括以下中的一项或者多项:
PDCCH监控时机对应的持续时长;
PDCCH监控时机所关联的搜索空间的结束时刻;
PDCCH所关联的搜索空间的索引值;和,
与PDCCH所关联的搜索空间相关联的控制资源集CORSET的索引值。
结合第五方面,在第五方面的某些实现方式中,当所述与所述PDCCH监控时机相关的信息为所述PDCCH监控时机对应的持续时长时,所述网络设备根据所述与PDCCH监 控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序,包括:
所述网络设备根据如下公式,为所述PDCCH监控时机编号:
T=A*(L-1)+S
其中,T表示PDCCH监控时机的编号,
A表示每时隙包括的符号数,
L表示所述PDCCH监控时机对应的持续时长,
S表示所述PDCCH监控时机所关联的搜索空间的起始时刻。
第六方面,提供了一种参数确定的方法,该方法包括:终端确定与物理下行控制信道PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息;所述终端根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序。
基于上述技术方案,同时基于PDCCH监控时机所关联的搜索空间的起始时刻和与PDCCH监控时机相关的信息为多个PDCCH监控时机排序。可以避免当多个PDCCH的监控时机具有相同的开始时刻时,出现不易区分的问题。
结合第六方面,在第六方面的某些实现方式中,所述与所述PDCCH监控时机相关的信息包括以下中的一项或者多项:
PDCCH监控时机对应的持续时长;
PDCCH监控时机所关联的搜索空间的结束时刻;
PDCCH所关联的搜索空间的索引值;和,
与PDCCH所关联的搜索空间相关联的控制资源集CORSET的索引值。
结合第六方面,在第六方面的某些实现方式中,当所述与所述PDCCH监控时机相关的信息为所述PDCCH监控时机对应的持续时长时,所述网络设备根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序,包括:
所述网络设备根据如下公式,为所述PDCCH监控时机编号:
T=A*(L-1)+S
其中,T表示PDCCH监控时机的编号,
A表示每时隙包括的符号数,
L表示所述PDCCH监控时机对应的持续时长,
S表示所述PDCCH监控时机所关联的搜索空间的起始时刻。
第七方面,提供了一种网络设备,所述网络设备具有实现上述第一方面、第三方面、或第五方面的方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第八方面,提供了一种终端设备,所述终端设备具有实现上述第二方面、第四方面、或第六方面的方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第九方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该 计算机程序,使得该网络设备执行上述第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面中任意一种可能的实现方式中的方法。
第十方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面中任意一种可能的实现方式中的方法。
第十一方面,提供了一种通信装置,该通信装置可以为上述是方法设计中的网络设备,或者为设置在网络设备中的芯片。该参数确定的装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面中的任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第十二方面,提供了一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面中的任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十四方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十五方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第十六方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是适用于本申请实施例的参数确定的系统的示意性架构图;
图2是适用于本申请实施例的载波聚合的示意图;
图3是适用于本申请实施例的未配置跨载波调度的一示意图;
图4是适用于本申请实施例的配置跨载波调度的另一示意图;
图5是适用于本申请实施例的配置跨载波调度的再一示意图;
图6是本申请一实施例的参数确定的方法的示意图;
图7是适用于本申请实施例的BWP的示意图;
图8是本申请一实施例的参数确定的方法的另一示意图;
图9是本申请一实施例的参数确定的方法的又一示意图;
图10是本申请另一实施例的参数确定的方法的示意图;
图11是本申请另一实施例的参数确定的方法的另一示意图;
图12是本申请另一实施例的参数确定的方法的又一示意图;
图13是本申请又一实施例的参数确定的方法的示意图;
图14是计算动态码本的一种方式的一示意图;
图15是适用于本申请实施例的PDCCH监控时机的示意图;
图16是计算动态码本的一种方式的另一示意图;
图17是适用于本申请实施例的计算动态码本的一示意图;
图18是适用于本申请实施例的计算动态码本的另一示意图;
图19是是适用于本申请实施例的对PDCCH监控时机进行排序的一示意图;
图20是本申请实施例提供的通信装置的示意性框图;
图21是本申请实施例提供的通信装置的结构示意图;
图22是本申请实施例提供的网络设备的结构示意图;
图23是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备#1 111、网络设备#2 112、网络设备#3 113;该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备121。该无线通信系统100可支持CoMP传输,即,多个小区或多个网络设备可以协同参与一个终端设备的数据传输或者联合接收一个终端设备发送的数据,或者多个小区或多个网络设备进行协作调度或者协作波束成型。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制 器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
可选地,图1示出的通信系统100中,网络设备#1至网络设备#3中的一个(例如网络设备#1)可以为服务网络设备,服务网络设备可以是指通过无线空口协议为终端设备提供RRC连接、非接入层(non-access stratum,NAS)移动性管理和安全性输入中至少一项服务的网络设备。可选地,网络设备#2和网络设备#3可以为协作网络设备。服务网络设备可以向终端设备发送控制信令,协作网络设备可以向终端设备发送数据;或者,服务网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备可以向终端设备发送数据;或者,服务网络设备和协作网络设备均可以向终端设备发送控制信令,并且服务网络设备和协作网络设备均可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备中的至少一个可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令和数据。本申请实施例对此并未特别限定。
可选地,图1示出的通信系统100中,网络设备#1至网络设备#3均可以为服务网络 设备。
应理解,图1中仅为便于理解,示意性地示出了网络设备#1至网络设备#3和终端设备,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的网络设备,也可以包括更多数量的终端设备,与不同的终端设备通信的网络设备可以是相同的网络设备,也可以是不同的网络设备,与不同的终端设备通信的网络设备的数量可以相同,也可以不同,本申请对此不做限定。
为便于理解本申请实施例,在开始介绍本申请实施例之前,先对本申请涉及到的几个名词或术语进行简单介绍。
1、物理下行控制信道
物理下行控制信道(Physical Downlink Control Channel,PDCCH)可以用于:向终端发送下行调度信息(DL Assignment),以便终端接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。PDCCH还可以用于:向终端发送上行调度信息(UL Grant),以便终端发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。PDCCH还可以用于:发送非周期性信道质量指示(Channel Quality Indicator,CQI)上报请求。PDCCH还可以用于:通知多播控制信道(Multicast Control Channel,MCCH)变化。PDCCH还可以用于:发送上行功控命令。PDCCH还可以用于:混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)相关信息。PDCCH还可以用于:携带无线网络临时标识(Radio Network Temporary Identifier,RNTI),该信息隐式包含在循环冗余校验(Cyclic Redundancy Check,CRC)中等等。
一个PDCCH在控制信道单元(Control Channel Element,CCE)上传输,每个CCE由一定数量的资源单元组(Resource-element group,REG)组成。PDCCH所占的第一个CCE的CCE索引称为n CCE
2、下行控制信息
PDCCH携带的信息称为下行控制信息(Downlink Control Information,DCI)。下行DCI可以用于发送下行调度分配信息或上行调度信息。DCI有多种格式(format),各种DCI format及其携带的具体信息根据各DCI format的功能不同而不同。例如,LTE系统中的format 0或NR系统中format 0_0/format 0_1的可以用于传输PUSCH调度授权信息;又如,LTE系统中的format 1或NR系统中format 0_0/format 0_1可以用于传输PDSCH单码字调度授权信息。
其中,DCI可能指示小区级的信息,可以使用系统信息无线网络临时标识符(System Information Radio Network Temporary Identifier,SI-RNTI)、寻呼无线网络临时标识符(Paging Radio Network Temporary Identifier,P-RNTI)、随机接入无线网络临时标识符(Radom Access Radio Network Temporary Identifier,RA-RNTI)等加扰;也可能指示终端级的信息,可以使用小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI)加扰。
一个PDCCH只能携带一个某种format的DCI。一个小区可以在上行和下行同时调度多个终端,即一个小区可以在每个调度时间单位发送多个调度信息。每个调度信息在独立的PDCCH上传输,也就是说,一个小区可以在一个调度时间单位上同时发送多个PDCCH。
3、聚合等级
PDCCH有不同的聚合等级(Aggregation Level,AL),AL包括{1,2,4,8,16}。聚合等级表示一个PDCCH占用的连续的CCE个数。基站会根据信道质量等因素来决定某个PDCCH使用的聚合等级。例如:如果PDCCH是发给某个下行信道质量很好的终端(例如,该终端位于小区中心),则使用1个CCE来发送该PDCCH可能就足够了;如果PDCCH是发给某个下行信道质量很差的终端(例如,该终端位于小区边缘),则可能需要使用8个CCE甚至16个CCE来发送该PDCCH以达到足够的健壮性。
此外,PDCCH的功率也可以根据信道条件进行调整,基站可以将信道质量较好终端的PDCCH发射功率节省下来以分配给信道质量较差的终端。
4、载波聚合
载波聚合(Carrier Aggregation,CA)是将2个或2个以上的载波单元(Component Carrier,CC)聚合在一起以支持更大的传输带宽。实际上,现有LTE和NR通常情况下每个载波单元对应一个独立的小区。此时可以将1个载波单元等同于1个小区。为了高效地利用零碎的频谱,载波聚合支持不同载波单元之间的聚合。如图2所示,载波聚合可以包括:频带内或频带间载波单元聚合、同一频带内邻接或非邻接的载波单元聚合,等等。
5、跨载波调度
使用跨载波调度(Cross-carrier scheduling),将某些载波单元的PDCCH在信道质量较好的其它载波单元上发送,能提高PDCCH的解码效率。
基于载波指示域(Carrier Indicator Field,CIF)的跨载波调度允许一个服务小区(serving cell)的PDCCH调度另一个服务小区上的无线资源。即控制信息在一个载波单元上传输,而对应的数据在另一个载波单元上传输。其中,CIF可以用于指定该PDCCH对应哪个小区的PDSCH/PUSCH资源。
关于跨载波调度,包括一些限制。如,跨载波调度不适用于主小区(Primary Cell,PCell),可以适用于辅小区(Secondary Cell,SCell)。
其中,PCell可以为终端进行初始连接建立的小区,或进行无线资源控制(Radio Resource Control,RRC)连接重建的小区,或是在切换(handover)过程中指定的主小区。PCell总是通过它自身的PDCCH进行调度。
SCell是在RRC重配置时添加的,用于提供额外的无线资源。当某个SCell配置了PDCCH,则跨载波调度不适用于该SCell。当某个SCell没有配置PDCCH时,则该SCell的跨载波调度总是通过另一个serving cell的PDCCH进行调度。
图3示出了未配置跨载波调度的一示意图。如图3所示,假设终端不配置跨载波调度,则对应每个serving cell的PDCCH都在本小区的载波上发送。此时每个小区发送的PDCCH都不带CIF字段。
图4示出了配置跨载波调度的另一示意图。假设终端配置了跨载波调度。PCell既调度本小区的资源,又跨载波调度SCell1的资源。
SCell1既不调度本小区的资源,也不调度其它小区的资源,其资源在PCell上调度。
SCell2调度本小区的资源,但不调度其它小区的资源。
图5示出了配置跨载波调度的又一示意图。假设终端配置了跨载波调度。PCell调度本小区的资源,但不调度其它小区的资源。
SCell1既不调度本小区的资源,也不调度其它小区的资源,其资源在SCell2上调度。
SCell2既调度本小区的资源,又跨载波调度SCell1的资源。
6、搜索空间
下面从非载波聚合的场景和载波聚合的场景下分别描述。
非载波聚合场景
非载波聚合,即终端只有一个serving cell的场景。终端会在PDCCH监控时机内监控候选PDCCH(PDCCH candidates)集合,这意味着终端需要根据所要监控的DCI format来尝试解码该集合中的每一个PDCCH。该集合被称为该终端的搜索空间(Search Space)。
搜索空间分为公共搜索空间(Common search space)和终端特定的搜索空间(UE-specific search space)。公共搜索空间用于传输与寻呼(Paging)、随机接入响应(Random Access Response,RA Response)、广播控制信道(Broadcast Control Channel,BCCH)等相关的控制信息(小区级别的公共信息),该信息对所有终端来说都是一样的。终端特定的搜索空间用于传输与下行共享信道(Downlink Shared Channel,DL-SCH)、上行共享信道(Uplink Shared Channel,UL-SCH)等相关的控制信息(终端级别的信息)。但是当终端特定的搜索空间没有足够的可用资源时,公共搜索空间也可以用于传输属于某个特定终端的控制信息。
公共搜索空间和终端特定的搜索空间可能重叠,属于不同终端的终端特定的搜索空间也可能重叠。如果重叠的区域被一个终端占用,那么其它终端将不能再使用这些CCE资源。
基站在调度时,会针对每个待调度的终端,从对应的搜索空间中选择一个可用的PDCCH candidate。如果能分配到CCE就调度,否则就不调度。发给不同终端的PDCCH可以有不同的聚合等级。
载波聚合的场景
如果终端配置了载波聚合,则终端会在每个PDCCH监控时机内对所有激活的serving cell的搜索空间进行监控。此时对于每个serving cell的搜索空间内的某个PDCCH candidate,基站在发送带CIF的PDCCH时,知道该PDCCH对应哪个serving cell,也知道该PDCCH可选的PDCCH candidate集合;对于终端来说,终端并不确定PDCCH中携带的CIF值是什么,即不确定哪个serving cell会给该终端发送PDCCH。终端只知道每个特定的serving cell给该终端发送的PDCCH上可能携带的CIF的集合,因此UE会在该serving cell上尝试所有可能的CIF值去盲检PDCCH。
7、PDCCH盲检
DCI有多种格式,但终端事先并不知道接收到的PDCCH携带的是哪种格式的DCI,也不知道该DCI使用哪个PDCCH candidate进行传输,所以终端必须进行PDCCH盲检以接收对应的DCI。
虽然终端事先并不知道要接收的PDCCH携带的是哪种格式的DCI,也不知道该DCI使用哪个PDCCH candidate进行传输,但终端知道自己处于何种状态以及在该状态下期待收到的DCI信息。
例如在空闲(IDLE)态时,终端期待收到寻呼;在发起随机接入(Random Access)后,终端期待的是随机接入响应(Random Access Response,RAR);在有上行数据待发 送时,终端期待上行授权(Uplink Grant)等。
此外,终端知道自己的搜索空间,因此知道DCI可能分布在哪些CCE上。对于不同的期望信息,终端尝试使用相应的RNTI、可能的DCI format、可能的聚合等级,去与属于自己的搜索空间内的CCE做循环冗余校验(Cyclic Redundancy Check,CRC)。如果CRC校验成功,那么终端就知道这个信息是自己需要的,也就知道相应的DCI format,从而进一步解出DCI内容。
终端不知道要收到的PDCCH使用哪种聚合等级,所以终端会把所有可能性都尝试一遍。例如:对于公共搜索空间,终端需要分别按AL=4和AL=8来搜索。当按AL=4盲检时,16个CCE需要盲检4次,即有4个PDCCH candidate;当按AL=8盲检时,16个CCE需要盲检2次,也就是有2个PDCCH candidates;那么对于公共空间来说,一共有4+2=6个PDCCH candidates。而对于终端特定的搜索空间,终端需要分别按AL=1、2、4、8来盲检一遍,此时一共有6+6+2+2=16个PDCCH candidates。
终端在搜索空间进行盲检时,只需对可能出现的DCI format进行尝试解码,并不需要对所有的DCI format进行匹配。
8、时间单位
在本申请实施例中,数据或信息可以通过时频资源来承载,该时频资源可以包括时域上的资源和频域上的资源。其中,时域资源可以包括一个或多个时间单位(或者,也可以称为时域单位)。
一个时间单位(也可称为时域单元)可以是一个符号,或者一个迷你时隙(Mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时长可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
9、参数集(Numerology)
Numerology,可以用于指一套参数,包括子载波间隔(subcarrier spacing,SCS),符号长度,时隙长度,循环前缀(Cyclic Prefix,CP)长度等等。在NR中,一个新特点是多个Numerology,其可混合和同时使用。Numerology由SCS和CP定义。表1给出了NR中目前可以支持的多种Numerology。
表1
μ △f=2 μ*15(KHz) CP
0 15 常规(Normal)
1 30 Normal
2 60 Normal,扩展(Extended)
3 120 Normal
4 240 Normal
具体地,从表1中可以看出,μ可以用来表示不同的Numerology。从表1可以看出,至少包括μ=0、μ=1、μ=2、μ=3、μ=4这四种不同的Numerology。在本申请实施例中,为区分,将μ分别记为μ0、μ1、μ2、μ3、μ4。其中,μ=0时,SCS=2 μ*15=2 0*15=15KHz;μ=1时,SCS=2 μ*15=2 1*15=30KHz;μ=2时,SCS=2 μ*15=2 2*15=60KHz;μ=3时, SCS=2 μ*15=2 3*15=120KHz;μ=4时,SCS=2 μ*15=2 4*15=240KHz。
终端在不同Numerology情况下,每时隙可支持的最大候选PDCCH的数目不同,表2示出了在非载波聚合场景(即单服务小区场景)下,终端在不同参数集情况下,每时隙可支持的最大候选PDCCH的数目。
表2
μ 每时隙、每服务小区内,终端能够支持的最大候选PDCCH的数目
0 44
1 36
2 22
3 20
具体地,如表2所示,在μ=μ0=0时,SCS=15KHz,其对应的时隙单元为slot1,在slot1内,终端所能支持的最大候选PDCCH的数目为44。同理,在μ=μ1=1时,SCS=30KHz,其对应的时隙单元为slot2,在slot2内,终端所能支持的最大候选PDCCH的数目为36。同理,在μ=μ2=2时,SCS=60KHz,其对应的时隙单元为slot3,在slot3内,终端所能支持的最大候选PDCCH的数目为22。同理,在μ=μ3=3时,SCS=120KHz,其对应的时隙单元为slot4,在slot4内,终端所能支持的最大候选PDCCH的数目为20。
10、候选PDCCH
应理解,在本申请实施例中,候选PDCCH是可能出现PDCCH的所有位置,包括网络设备配置的所有搜索空间上不同聚合级别的各种候选PDCCH的集合。由于终端处理能力的限制,在单位时长内有一个最大可支持的PDCCH盲检测的个数,等价于本申请中终端可支持的最大候选PDCCH的数目。
需要说明的是,在本申请实施例中,“最大候选PDCCH的数目”和“终端能够支持的最大候选PDCCH的数目”经常交替使用,但本领域的技术人员可以理解其含义。对于终端设备来说,“最大候选PDCCH的数目”实质上就是指终端所能支持的最大候选PDCCH的数目。因此,在本申请实施例中,在不强调其区别时,其所要表达的含义是一致的。
11、非重叠CCE的数目
在NR中非重叠CCE的个数会影响到终端进行信道估计的复杂度和功耗,考虑到终端处理能力的限制,终端在单位时长内有一个最大可支持的非重叠CCE的数目。
终端在不同Numerology情况下,每时隙可支持的最大非重叠CCE的数目也不同,表3示出了在非载波聚合场景(即单服务小区场景)下,终端在不同参数集情况下,每时隙可支持的最大非重叠CCE的数目。
表3
μ 每时隙、每服务小区内,终端能够支持的最大非重叠CCE的数目
0 56
1 56
2 48
3 32
具体地,如表3所示,在μ=μ0=0时,SCS=15KHz,其对应的时隙单元为slot1,在slot1内,终端所能支持的最大非重叠CCE的数目为56。同理,在μ=μ1=1时,SCS=30KHz, 其对应的时隙单元为slot2,在slot2内,终端所能支持的最大非重叠CCE的数目为56。同理,在μ=μ2=2时,SCS=60KHz,其对应的时隙单元为slot3,在slot3内,终端所能支持的最大非重叠CCE的数目为48。同理,在μ=μ3=3时,SCS=120KHz,其对应的时隙单元为slot4,在slot4内,终端所能支持的最大非重叠CCE的数目为32。
在NR Rel-15的讨论中,考虑到一个slot内对PDCCH的盲检次数能力有限,需要定义服务小区内一个slot最大候选PDCCH的数目,以此来指导基站对搜索空间进行配置。
非载波聚合(即单服务小区场景)时,可以根据表2确定,在不同的载波下,终端每时隙内所能支持的最大候选PDCCH的数目。在载波聚合时,需要具体考虑。
一种方式是,当所有聚合的载波具有相同Numerology时,依然根据表2来确定终端在每时隙内能够支持的最大候选PDCCH的数目。
具体地,当终端支持的聚合载波个数X小于或等于4时,终端每时隙能够支持的最大候选PDCCH的数目等于X*M。其中,M={44,36,22,20},其中,44对应SCS=15KHz的载波上最大候选PDCCH的数目,36对应SCS=30KHz的载波,22对应SCS=60KHz的载波上最大候选PDCCH的数目,20对应SCS=120KHz的载波上最大候选PDCCH的数目。例如,对于SCS=15KHz的载波时,如果终端支持聚合的载波数为2,那么该终端每时隙在两个聚合载波上总共能够支持的最大候选PDCCH的数目等于2*44=88。
当终端支持的聚合载波个数X大于4时,终端需要向基站上报与其每时隙所能支持的最大候选PDCCH的数目相关的参数y,其中,y为{4,……,16}中的一个整数。终端每时隙在所有聚合载波上总共能够支持的最大候选PDCCH的数目等于y*M。例如,对于所聚合载波的SCS=15KHz时,如果终端上报的y值等于5,则该终端每时隙在所有聚合载波上总共能够支持的最大候选PDCCH的数目等于5*44=220。
类似地,非载波聚合时,可以根据表3确定,在不同的载波下,终端每时隙内所能支持的最大非重叠CCE的数目。在载波聚合时,需要具体考虑。
一种方式是,当所有聚合的载波具有相同Numerology时,依然根据表3来确定终端在每时隙内能够支持的最大非重叠CCE的数目。
具体地,当终端支持的聚合载波个数X小于或等于4时,终端每时隙能够支持的最大非重叠CCE的数目等于X*N。其中,N={56,56,48,32},其中,{56,56,48,32}对应子载波间隔为SCS={15KHz,30KHz,60KHz,120KHz}的载波上所支持的最大非重叠CCE的数目。例如,对于SCS=15KHz的载波时,如果终端支持聚合的载波数为2,那么该终端每时隙在两个聚合载波上总共能够支持的最大非重叠CCE的数目等于2*56=112。
当终端支持的聚合载波个数X大于4时,终端需要向基站上报参数y,其中,y为{4,……,16}中的一个整数。终端每时隙在所有聚合载波上总共能够支持的最大非重叠CCE的数目等于y*N。例如,对于所聚合载波的SCS=15KHz时,如果终端上报的y值等于5,则该终端每时隙在所有聚合载波上总共能够支持的最大非重叠CCE的数目等于5*56=280。
上述确定最大候选PDCCH的数目、或最大非重叠CCE的数目,考虑的是载波聚合中的成员载波对应的Numerology相同的情况,没有考虑成员载波的SCS不同时的情况。
鉴于此,本申请实施例提出一种参数确定的方法,能够在载波聚合中的成员载波对应的Numerology不同时,确定终端每时隙可支持的最大候选PDCCH的数目或最大非重叠 CCE的数目。
下面结合附图详细说明本申请实施例。
需要说明的是,本申请实施例中,“预先定义”可以通过在设备(例如,包括终端设备和/或网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或参数确定的装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或参数确定的装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还需要说明的是,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,在本申请实施例中,“至少一个”可表示“一个或多个”。例如,通方式A、方式B、方式C中的至少一个方式实现,表示:可以通过方式A实现、或通过方式B实现、或通过方式C实现;也可以表示为:可以通过方式A和方式B实现、或通过方式B和方式C实现、或通过方式A和方式C实现;也可以表示为:可以通过方式A和方式B和方式C实现。与此类似地,“至少两个”可表示“两个或更多个”。
还需要说明的是,在下文示出的实施例中,第一、第二、第三等仅为便于区分不同对象,而不应对本申请构成任何限定。例如,区分对应不同的载波单元或服务小区等。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系,但也不排除表示前后关联对象是“和/或”的关系的可能,具体可依据前后文确定。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中,A的数量并不限定,可以为一个,也可以为多于一个,B的数量也不限定,可以为一个,也可以为多于一个。
下面将结合附图详细说明本申请提供的技术方案。
应理解,本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100,该通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备可以通过无线空口通信。例如,该通信系统中的网络设备可以对应于图1中所示的网络设备111或网络设备113,终端设备可以对应于图1中所示的终端设备121。
图6是本申请实施例提供的参数确定的方法的一示意图。方法100包括步骤110-120:
110,网络设备为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;
120,所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目。
NR中基站一个载波的带宽相较于LTE载波带宽更宽,例如,NR的载波带宽可以为100M,而不同终端的射频能力不同,所能支持的最大带宽不同,因此引入带宽部分(bandwidth part,BWP)的概念。图7示出了BWP的一示意图。BWP是载波上一组连续的RB资源。不同的BWP可以占用部分重叠但带宽不同的频域资源,也可以是具有不同numerology的带宽资源,频域上可以互不重叠。NR Rel-15中一个服务小区最多可以配置4个BWP,如,频分双工(Frequency Division Duplexing,FDD)下上下行各4个BWP,时分双工(Time Division Duplexing,TDD)下上下行共4个BWP对。每个服务小区同时只能激活一个BWP,终端在激活的BWP上进行数据的收发。
虽然一个服务小区最多可以配置4个BWP,每个BWP可以配置为不同的numorolgy。但是由于每个服务小区同时只能激活一个BWP,且PDCCH只能在激活的BWP上进行发送。因此可以理解,本申请实施例提及的服务小区的子载波间隔,可以是指服务小区中激活的BWP的子载波间隔。
还应理解,网络设备根据多个服务小区的多个子载波间隔中的至少一个子载波间隔,确定终端单位时长内监控的最大候选PDCCH的数目,表示的是,多个服务小区对应多个子载波间隔,根据该多个子载波间隔中的至少一个子载波间隔,可以确定终端单位时长内监控的最大候选PDCCH的数目。
网络设备为终端配置多个服务小区,可以理解为,网络设备为终端配置一个PCell和一个或多个SCell。多个服务小区中的至少两个服务小区的子载波间隔不同,可以理解为多个服务小区中至少两个服务小区中激活的BWP的子载波间隔不同。
例如,网络设备为终端配置服务小区#1、服务小区#2、服务小区#3。服务小区#1包括BWP1、BWP2、BWP3、BWP4;服务小区#2包括BWP5、BWP6、BWP7、BWP8;服务小区#3包括BWP9、BWP10、BWP11、BWP12。需要注意的是这里的BWP1~BWP12只是对各小区配置BWP的一个名称标识,并不表示各小区中BWP的编号信息。假设服务小区#1中激活的BWP为BWP1,服务小区#2中激活的BWP为BWP5,服务小区#3中激活的BWP为BWP9。那么可以是BWP1和BWP5的子载波间隔不同,其余的BWP的子载波间隔是否相同,本申请实施例并不限定。或者,也可以是BWP1和BWP9的子载波间隔不同,其余的BWP的子载波间隔是否相同,本申请实施例并不限定。或者,也可以是BWP5和BWP9的子载波间隔不同,其余的BWP的子载波间隔是否相同,本申请实施例并不限定。或者,也可以是BWP1、BWP5和BWP9的子载波间隔都不同,其余的BWP的子载波间隔是否相同,本申请实施例并不限定。
本申请实施例主要关心的是,在多个载波聚合时,如何为终端确定最大候选PDCCH的数目。在本申请实施例中确定终端单位时长内监控的最大候选PDCCH的数目,可以理解为,确定一个统一的数值,作为所有聚合载波总共支持的最大候选PDCCH的数目。或者,也可以理解为:分别确定终端在各个服务小区的单位时长上最大候选PDCCH的数目,即,终端在各个服务小区的最大候选PDCCH的数目可以相同也可以不同,终端在所有聚合载波上没有一个统一的数值,只是各个服务小区上最大候选PDCCH的数目的组合。或者,确定终端在各个服务小区的最大候选PDCCH的数目,得到多个数值,将多个数值中 的最大值或最小值作为终端在各个服务小区的最大候选PDCCH的数目。
如前所述,载波聚合是将2个或2个以上的载波单元聚合在一起以支持更大的传输带宽。实际上,每一个载波单元对应一个独立的小区,通常将一个载波单元等同于一个小区。此处多个服务小区的多个子载波间隔中的至少一个子载波间隔可以理解为多个载波(如,多个激活的BWP)的子载波间隔。
在本申请实施例中,对聚合的载波的数目限定,可以是2个或2个以上的载波聚合。以下,为便于理解,以X个载波聚合为例进行说明。以下,为简单描述,且不失一般性,将X个载波分别记为载波#1、载波#2、……、载波#X。
应理解,聚合的载波可以包括2个或2个以上的载波,本申请实施例仅以聚合两个载波为例进行示例性说明,但这并不对本申请的保护范围造成限定。
在本申请实施例中,主要考虑的是聚合的载波对应的Numerology,部分不同或者全都不同的情况。例如,载波#1、载波#2分别对应不同的Numerology。结合表1,以载波#1对应μ0、载波#2对应μ1为例进行说明。从表1可以看出,载波#1对应的子载波间隔为15KHz,载波#2对应的子载波间隔为30KHz。从表2可以看出,在载波#1,终端在对应子载波间隔的时隙slot1内能够支持的最大候选PDCCH的数目为44,在载波#2上,终端在对应子载波间隔的时隙slot2内能够支持的最大候选PDCCH的数目为36。终端通过查询表2也可以获取其能够支持的最大候选PDCCH的数目,并根据查询到的最大候选PDCCH的数目监控PDCCH。
应理解,本申请实施例提及的多个服务小区,可以是指载波聚合中的多个载波。如,服务小区1和服务小区2,可以是指,服务小区1中的载波#1与服务小区中的载波#2进行载波聚合。在本申请实施例中,为便于理解,以聚合的载波代表多个服务小区为例进行说明。
还应理解,上述载波#1对应μ0、载波#2对应μ1,仅为示例性说明,本申请实施例并未限定于此。以下,为不失一般性,将载波#1、载波#2对应的子载波间隔分为记为SCS1、SCS2,时间单元分别记为slot1、slot2。终端在载波#1上,每slot1内能够支持的最大候选PDCCH的数目记为A1;终端在载波#2上,每slot2内能够支持的最大候选PDCCH的数目记为A2。
下面介绍如何确定最大候选PDCCH的数目。确定最大候选PDCCH的数目,可以是确定服务小区的一个时间单元内,终端能够支持的最大候选PDCCH的数目。在本申请实施例中,为不失一般性,以确定参考时间单元(即,单位时长的一例)内的最大候选PDCCH的数目为例进行说明。应理解,此处,参考时间单元可以是一个时间单元。
需要说明的是,本申请实施例提及的参考时间单元表示的是本申请提及的单位时长。为便于理解,本申请实施例以参考时间单元为例进行说明。
可选地,所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端参考时间单元内监控的最大候选PDCCH的数目,包括:所述网络设备根据与第一服务小区的子载波间隔在所述参考时间单元内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端参考时间单元内监控的最大候选PDCCH的数目,其中,所述第一服务小区为所述多个服务小区中的任一服务小区;或,所述网络设备根据与第二服务小区的子载波间隔在所述参考时间单元内对应的候选PDCCH的数目和与第三 服务小区的子载波间隔在所述参考时间单元内对应的候选PDCCH的数目,确定所述终端参考时间单元内监控的最大候选PDCCH的数目,其中,所述第二服务小区和所述第三服务小区为所述多个服务小区中的任意两个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,所述网络设备根据与所述服务小区中各个服务小区的子载波间隔在所述参考时间单元内对应的候选PDCCH的数目,确定所述终端参考时间单元内监控的各个服务小区的最大候选PDCCH的数目。
载波聚合中的载波对应的Numerology不全相同,意味着对应的时间单元也不全相同。如以表2为例,μ=μ0=0时,其对应的时隙单元为slot1,在slot1内,终端所能支持的最大候选PDCCH的数目为44。在μ=μ1=1时,其对应的时隙单元为slot2,在slot2内,终端所能支持的最大候选PDCCH的数目为36。因此,在确定最大候选PDCCH的数目之前,可以先确定参考时间单元(即,单位时长的一例)。换句话说,确定在何种时间范围内衡量终端所能支持的最大的候选PDCCH的数目。
可选地,所述参考时间单元包括第一时长或预定义的时长,其中,所述第一时长为与所述多个服务小区中的任一服务小区的子载波间隔对应的时隙长度。
具体地,一种可能的方式,参考时间单元为聚合的载波中任一载波对应的时间单元。如,载波#1、载波#2聚合,参考时间单元可以为:载波#1对应的时间单元的大小,或者,载波#2对应的时间单元的大小。具体的可以是载波#1子载波间隔对应的时隙长度slot 1,或者是载波#2子载波间隔对应的时隙长度slot 2。
一种可能的方式,参考时间单元为预定义的时间单元。预定义的时间单元,如,1毫秒(ms)、0.5ms等,或者,预定义的时间单元为根据协议配置的时间单元。
假设X个载波聚合,那么确定最大候选PDCCH的数目有两种方案,一种方案是每个载波各自确定最大候选PDCCH的数目,或者,另一种方案是整体确定一个统一的最大候选PDCCH的数目。确定了统一的最大候选PDCCH的数目后,各个载波上分别最大可支持的候选PDCCH的数目是通过已经确定的统一值在服务小区个数上根据载波调度配置情况的折算。下面具体说明。
方案1:X个载波聚合,每个载波各自确定最大候选PDCCH的数目。
在本申请实施例中,为便于理解,结合表1和表2对一些参数进行定义。
T表示参考时间单元;
sloti表示对应μi的时隙时间;
Ai表示终端在μi对应的载波上,每sloti内能够支持的最大候选PDCCH的数目;
ti表示对应μi的载波的折算值;
其中,i={1,2,3,4},μ1=0,μ2=1,μ3=2,μ4=3。
假设载波#i对应μi,那么终端在载波#1上,每slot1内,能够支持的最大候选PDCCH的数目为44;终端在载波#2上,每slot2内,能够支持的最大候选PDCCH的数目为36;终端在载波#3上,每slot3内,能够支持的最大候选PDCCH的数目为22;终端在载波#4上,每slot4内,能够支持的最大候选PDCCH的数目为20。
情况1:当每个载波都是自调度时,有以下两种实现方式,可以确定最大候选PDCCH的数目。
实现方式#1
每个载波上的参考时间单元都是各自的时隙时间时,终端在每个载波上,每时隙能够支持的最大候选PDCCH的数目和单载波的情况一样。对应μi的载波,当μi={0,1,2,3}时最大候选PDCCH的数目对应为Ai={44,36,22,20}。
具体地,如图8所示,假设载波#1和载波#2聚合。如前所述,载波#1在自己的时隙时间(slot1)内,能够支持的最大候选PDCCH的数目为44;载波#2在自己的时隙时间(slot2)内,能够支持的最大候选PDCCH的数目为36。因此,载波#1和载波#2聚合时,终端在载波#1上,每参考时间单元(slot1)能够支持的最大候选PDCCH的数目为44,终端在载波#2上,每参考时间单元(slot2)能够支持的最大候选PDCCH的数目为36。或者,如图9所示,假设载波#1、载波#2、载波#3聚合。如前所述,载波#1在自己的时隙时间(slot1)内,能够支持的最大候选PDCCH的数目为44;载波#2在自己的时隙时间(slot2)内,能够支持的最大候选PDCCH的数目为36;载波#3在自己的时隙时间(slot3)内,能够支持的最大候选PDCCH的数目为22。因此,载波#1、载波#2、载波#3聚合时,终端在载波#1上,每参考时间单元(slot1)能够支持的最大候选PDCCH的数目为44;终端在载波#2上,每参考时间单元(slot2)能够支持的最大候选PDCCH的数目为36;终端在载波#3上,每参考时间单元(slot3)能够支持的最大候选PDCCH的数目为22。
实现方式#2
当每个载波上的参考时间单元为一个统一的参考时间时,各个载波上的最终确定的最大候选PDCCH的数目就是原始各载波上的最大候选PDCCH的数目和折算值的乘积,该折算值是各载波时隙和参考时间的折算值。
具体地,假设,T是slot1的2倍时,载波#1的折算值t1=T/slot1=2,那么终端在该载波#1上,每参考时间单元内能够支持的最大候选PDCCH的数目为:44*t1=88。类似,载波#2的折算值t2=T/slot2=T/(slot1/2)=T/slot1*2=4,那么终端在该载波#2上,每参考时间单元内能够支持的最大候选PDCCH的数目为:36*t2=36*4=144。以此类推,可以得到终端在载波#3和载波#4上,每参考时间单元内能够支持的最大候选PDCCH的数目。
因此,当每个载波上的参考时间单元为一个统一的参考时间时,最大候选PDCCH的数目可以用下面公式表示:
Ni=Ai*(T/ti)
其中,
Ni为终端在载波#i上,每参考时间单元内能够支持的最大候选PDCCH的数目;
Ai表示终端在载波#i上,每sloti内能够支持的最大候选PDCCH的数目;
ti表示载波#i的折算值。
情况2:部分载波配置了跨载波调度,部分载波是自调度,还有部分载波是被别的载波调度。
1)配置了跨载波调度的载波
假设调度载波的子载波间隔小于或等于被调度载波的子载波间隔:
一种可能的方式,当该调度载波配置的被调度载波个数为K时,该调度载波上最大候选PDCCH的数目为:A(调度载波)+K*A(调度载波)=(K+1)*A(调度载波),增加的部分是K的倍数。其中,A(调度载波)表示调度载波在参考时间单元内的最大候选PDCCH的数目。
具体地,如图10所示,图10中的(1)中,K=1,那么调度载波上的最大候选PDCCH的数目可以等于A(调度载波)+A(调度载波)=A(调度载波)*2。第一个A(调度载波)表示该载波调度自己时的最大候选PDCCH的数目,第二个A(调度载波)表示该载波调度另一个载波时所需要的最大候选PDCCH的数目。图10中的(1)中表示的具体计算是:A(调度载波)+A(调度载波)=44+44=44*2=88。图10中的(2)中,K=2,那么调度载波上的最大候选PDCCH的数目可以等于A(调度载波)+A(调度载波)*2。具体计算是:44+2*44=132。
或者,另一种可能的方式,如图10所示,该载波上的最大候选PDCCH的数目可以等于A(调度载波)+A(被调度载波)*2 μ(被调度载波)-μ(调度载波)。其中,第一个A(调度载波)表示该载波调度自己时的最大候选PDCCH的数目,第二个A(被调度载波)表示被调度载波所需要的最大候选PDCCH的数目,当配置的调度载波个数为K时,通用公式为:
N=A(调度载波)+Σ{A(被调度载波)*2 μ(被调度载波)-μ(调度载波)}。
其中,
N表示最大候选PDCCH的数目;
A(调度载波)表示调度载波在参考时间单元内的最大候选PDCCH的数目;
Σ{A(被调度载波)*2 μ(被调度载波)-μ(调度载波)}表示对所有被调度的载波与2 μ(被调度载波)-μ(调度载 波)相乘,并将相乘的结果求和。
具体地,如图10所示,图10中的(1)中,载波#1(调度载波)上的最大候选PDCCH的数目为:44+36*2=116。图10中的(2)中,载波#1上的最大候选PDCCH的数目为:44+36*2+36*2=188。
调度载波的子载波间隔大于被调度载波的子载波间隔:
一种可能的方式,如图10中的(2)中,该载波上的最大候选PDCCH的数目可以等于A(调度载波)+A(调度载波)=A(调度载波)*2,其中第一个A(调度载波)表示该载波调度自己时的最大候选PDCCH的数目,第二个A(调度载波)表示该载波调度另一个载波时所需要的最大候选PDCCH的数目,当配置的调度载波个数为K时,通用公式为:A(调度载波)+K*A(调度载波)=(K+1)*A(调度载波),增加的部分是K的倍数。
具体地,如图10中的(3)中表示的具体计算是:36+36*2=36*3=108。
或者,另一种可能的方式,如图10中的(2)中,该载波上的最大候选PDCCH的数目可以等于A(调度载波)+A(被调度载波)/2 μ(调度载波)-μ(被调度载波),其中第一个A(调度载波)表示该载波调度自己时的最大候选PDCCH的数目,第二个A(被调度载波)表示被调度载波所需要的最大候选PDCCH的数目,当配置的调度载波个数为K时,通用公式为:
N=A(调度载波)+Σ{A(被调度载波)/2 μ(调度载波)-μ(被调度载波)}。
其中,
N表示最大候选PDCCH的数目;
A(调度载波)表示调度载波在参考时间单元内的最大候选PDCCH的数目;
Σ{A(被调度载波)/2 μ(调度载波)-μ(被调度载波)}表示对所有被调度的载波与2 μ(调度载波)-μ(被调度载 波)相除,并将相除的结果求和。
具体地,具体地,如图10所示,图10中的(3)中,载波#1(调度载波)上的最大候选PDCCH的数目为:36+44/2=58。图10中的(4)中,载波#1上的最大候选PDCCH的数目为:36+44/2+36=94。
2)自调度的载波
对于自调度的载波的最大候选PDCCH的数目,同上述情况1中,每个载波都是自调度时的情况类似,此处为简洁,不再赘述。
如,确定自调度的载波的最大候选PDCCH的数目,可以是按照实现方式#1,即,每个载波上的参考时间单元都是各自的时隙时间时,终端在每个载波上,每时隙能够支持的最大候选PDCCH个数和单载波的情况一样。
或者,确定自调度的载波的最大候选PDCCH的数目,也可以是按照实现方式#2,即,当每个载波上的参考时间单元为一个统一的参考时间时,各个载波上的最终确定的最大候选PDCCH的数目就是原始各载波上的最大候选PDCCH的数目和折算值的乘积,该折算值是各载波时隙和参考时间的折算值。
3)被其他载波调度的载波:不用进行PDCCH盲检,即PDCCH个数为0。
方案2:X个载波聚合,整体确定一个统一的最大候选PDCCH的数目。
情况A:按照一个参考子载波间隔进行统一,如,不管服务小区的子载波间隔是多少,
均按照15kHz的子载波间隔进行计算,统一值:N=X*44。
其中,N为统一的最大候选PDCCH的数目,X为载波聚合数。
当X>4时,如图11所示,网络设备接收终端上报的与终端能够支持的最大候选PDCCH的数目相关的参数y,其中,y为{4,……,16}中的一个整数。此时,N=y*44。
情况B:
一种实现方式:N=服务小区中最小子载波间隔对应的候选PDCCH数目*载波个数。
具体地,结合图8具体说明。如图8所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。那么N=载波#1对应的候选PDCCH数目*载波个数=44*2=88。
一种实现方式:N=服务小区中最大子载波间隔对应的候选PDCCH数目*载波个数。
具体地,结合图8具体说明。如图8所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。那么N=载波#2对应的候选PDCCH数目*载波个数=36*2=72。
一种实现方式:N=服务小区中各个子载波间隔对应的候选PDCCH数目之和。
具体地,结合图8具体说明。如图8所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。那么N=载波#1对应的候选PDCCH数目+载波#2对应的候选PDCCH数目=44+36=80。
或,
当X>4时,如图11所示,网络设备接收终端上报的与终端能够支持的最大候选PDCCH的数目相关的参数y,其中,y为{4,……,16}中的一个整数。
一种实现方式:N=服务小区中最小子载波间隔对应的候选PDCCH数目*y。
具体地,图11示出了载波个数X大于4的情况。如图11所示,载波#1、载波#2、载波#3、载波#4、载波#5聚合。那么最大候选PDCCH的数目N可以为:服务小区中最小子载波间隔对应的候选PDCCH数目*y=A1*y=44*y。
一种实现方式:N=服务小区中最大子载波间隔对应的候选PDCCH数目*y。
具体地,图11示出了载波个数X大于4的情况。如图11所示,载波#1、载波#2、载波#3、载波#4、载波#5聚合。那么最大候选PDCCH的数目N可以为:服务小区中最大子载波间隔对应的候选PDCCH数目*y=A2*y=36*y。
情况C
每个载波上的参考时间单元为一个统一的参考时间时,该参考时间单元可以为以子载波间隔最小的slot为参考时间单元,或,以子载波间隔最大的slot为参考时间单元。下面分别描述。
一种可能的实现方式:以子载波间隔最小的slot为参考时间单元,进行折算,并求统一值。
具体地,结合图8,载波#1的子载波间隔为15KHz,对应的时隙为slot1,载波#1上的最大候选PDCCH的数目A1=44;载波#2的子载波间隔为30KHz,对应的时隙为slot2。假设参考时间单元T为slot1,载波#2上的最大候选PDCCH的数目A2=36。slot2的时长是slot1的一半,因此,载波#2的折算值t2=T/slot2=2。那么在参考时间单元内,终端能够支持的最大候选PDCCH的数目N为:N=A1+t2*A2=44+2*36=116。
一种可能的实现方式:以子载波间隔最大的slot为参考时间单元,进行折算,并求统一值。
具体地,结合图8,载波#1的子载波间隔为15KHz,对应的时隙为slot1;载波#2的子载波间隔为30KHz,对应的时隙为slot2。假设参考时间单元T为slot2。slot2的时长是slot1的一半,因此,载波#1的折算值t1=T/slot1=0.5。那么在参考时间单元内,终端能够支持的最大候选PDCCH的数目N为:N=t1*A1+A2=0.5*44+36=58。
可选地,当X>4时,可以对终端上报的参数进行新的定义。
可选的一种实现方式为,当终端支持的可聚合的载波个数X大于4时,终端可以上报能力y对应的Numerology信息,例如上报的信息对应SCS=15kHz,或上报μ=0,则,终端每参考时间单元所能支持的最大候选PDCCH的数目等于y*A(μ上报的),具体的当y=5时,终端每参考时间单元所能支持的最大候选PDCCH的数目等于5*44=220.
需要注意的是,当计算得到一个统一的终端能支持的最大候选PDCCH的数目N后,网络侧在各个载波上进行配置时需要考虑调度载上被调度载波的数量进行折算。如图12所示,载波1上最大配置的候选PDCCH的数目等于统一值N*2/5,因为载波1上除了自调度还有一个被调度载波,相当于2个载波的份额。其他载波上最大配置的候选PDCCH的数目等于统一值N/5。
具体地,当终端支持的可聚合的载波个数X大于4时,终端可以上报与其每参考时间单元所能支持的最大候选PDCCH的数目相关的参数,该相关的参数可以为不同的Numerology的能力参数。如图11所示,这里涉及2种Numerology,SCS=15kHz和SCS=30kHz。X1为SCS=15kHz的载波个数,X1=2;X2为SCS=30kHz的载波个数,X2=3。
一种可能的实现方式是:以SCS小的Numerology来定义参考时间单元;则,终端在参考时间单元内所能支持的最大候选PDCCH的数目为:
N=y*(X1/X)*A0+y*(X2/X)*A1*2 μ1-μ0
其中μ1对应SCS大的μ值,μ2对应SCS小的μ值。
另一种可能的实现方式是:以SCS大的numerology来定义单位时长;
则终端在参考时间单元内所能支持的最大候选PDCCH的数目为:
N=y*(X1/X)*A0+y*(X2/X)*A1,或,N=y*(X1/X)*(A0/2 μ1-μ0)+y*(X2/X)*A1。
另一种可能是对终端上报的参数进行新的定义。如终端上报y分为y1和y2两个部分(对应不同Numerology的能力参数,这里需要明确y1和y2分别对应哪个μ值),使用y1和y2替代上述公式中y*(X1/X)和y*(X2/X)。
即:
y1=y*(X1/X),y2=y*(X2/X)。
那么,终端能够支持的最大候选PDCCH的数目N可以为:
N=y1*A1+y2*A2*2 μ1-μ0,或,
N=y1*A1+y2*A2,或,
N=y1*(A1/2 μ1-μ0)+y2*A2。
情况D
聚合的载波数X>4时,如图12所示,载波#1、载波#2、载波#3、载波#4、载波#5聚合,聚合载波配置跨载波调度。如图12所示,载波#1为调度载波,载波#2为被调度载波。那么终端每参考时间单元内可支持的最大候选PDCCH的数目N可以同图10的方式相似,如,以调度载波的最大候选PDCCH的数目来计算整体的最大候选PDCCH的数目,即N=2*A1+A2+A1+A2=2*44+36+44+36=204。
通过本申请实施例,网络设备可以根据多个服务小区中的任一服务小区和载波聚合的个数确定最大候选PDCCH的数目。或者,也可以综合考虑载波聚合的各个载波在单位时长内的候选PDCCH的数目,进一步确定最大候选PDCCH的数目。或者,也可以根据一个参考的服务小区(例如,当单位时长为预定义的时长时),进一步确定该多个服务小区的最大候选PDCCH的数目。
上文,结合图6至图12描述了如何确定最大候选PDCCH的数目,下面描述如何确定最大非重叠CCE的数目。CCE个数的大小和最大候选PDCCH的数目有直接的联系,因此确定非重叠CCE的数目的方法与确定最大候选PDCCH的数目的方法类似。此处,为了简洁,不再详细描述。
图13是本申请实施例提供的参数确定的方法的一示意图。方法200包括步骤210-220:
210,网络设备为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;
220,所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端单位时间内监控的最大非重叠CCE的数目。
在本申请实施例中确定终端单位时长内监控的最大非重叠CCE的数目,可以理解为,确定一个统一的数值,作为各个聚合载波的最大非重叠CCE的数目。或者,也可以理解为:分别确定终端单位时长在各个服务小区的最大非重叠CCE的数目,即,终端在各个服务小区的最大非重叠CCE的数目可以相同也可以不同。或者,确定终端在各个服务小区的最大非重叠CCE的数目,得到多个数值,将多个数值中的最大值或最小值作为终端在各个服务小区的最大非重叠CCE的数目。
下面介绍如何确定最大非重叠CCE的数目。确定最大非重叠CCE的数目,可以是确 定服务小区的一个时间单元内,终端能够支持的最大非重叠CCE的数目。在本申请实施例中,为不失一般性,以确定参考时间单元(即,单位时长的一例)内的最大非重叠CCE的数目为例进行说明。应理解,此处,参考时间单元可以是一个时间单元。
需要说明的是,本申请实施例提及的参考时间单元表示的是本申请提及的单位时长。为便于理解,本申请实施例以参考时间单元为例进行说明。
可选地,所述参考时间单元包括第一时长或预定义的时长,其中,所述第一时长为与所述多个服务小区中的任一服务小区的子载波间隔对应的时隙长度。
具体地,一种可能的方式,参考时间单元为聚合的载波中任一载波对应的时间单元。如,载波#1、载波#2聚合,参考时间单元可以为:载波#1对应的时间单元的大小,或者,载波#2对应的时间单元的大小。具体的可以是载波#1子载波间隔对应的时隙长度slot 1,或者是载波#2子载波间隔对应的时隙长度slot 2。终端通过查询表3也可以获取其能够支持的最大非重叠CCE的数目,并根据查询到的最大非重叠CCE的数目监控PDCCH。
一种可能的方式,参考时间单元为预定义的时间单元。预定义的时间单元,如,1毫秒(ms)、0.5ms等,或者,预定义的时间单元为根据协议配置的时间单元。
假设X个载波聚合,那么确定最大非重叠CCE的数目有两种方案,一种方案是每个载波各自确定最大非重叠CCE的数目,或者,另一种方案是整体确定一个统一的最大非重叠CCE的数目。确定了统一的最大非重叠CCE的数目后,各个载波上分别最大可支持的非重叠CCE的数目是通过已经确定的统一值在服务小区个数上根据载波调度配置情况的折算。下面具体说明。
方案1:X个载波聚合,每个载波各自确定最大非重叠CCE的数目。
在本申请实施例中,为便于理解,结合表1和表2对一些参数进行定义。
T表示参考时间单元;
sloti表示对应μi的时隙时间;
Bi表示终端在μi对应的载波上,每sloti内能够支持的最大非重叠CCE的数目;
ti表示对应μi的载波的折算值;
其中,i={1,2,3,4},μ1=0,μ2=1,μ3=2,μ4=3。
假设载波#i对应μi,那么终端在载波#1上,每slot1内,能够支持的最大非重叠CCE的数目为56;终端在载波#2上,每slot2内,能够支持的最大候选PDCCH的数目为56;终端在载波#3上,每slot3内,能够支持的最大候选PDCCH的数目为48;终端在载波#4上,每slot4内,能够支持的最大候选PDCCH的数目为32。
情况1:当每个载波都是自调度时,有以下两种实现方式,可以确定最大非重叠CCE的数目。
实现方式#1
每个载波上的参考时间单元都是各自的时隙时间时,终端在每个载波上,每时隙能够支持的最大非重叠CCE的数目和单载波的情况一样。对应μi的载波,当μi={0,1,2,3}时最大非重叠CCE的数目对应为Bi={56,56,48,32}。
具体地,如图8所示,假设载波#1和载波#2聚合。如前所述,载波#1在自己的时隙时间(slot1)内,能够支持的最大非重叠CCE的数目为56;载波#2在自己的时隙时间(slot2)内,能够支持的最大非重叠CCE的数目为56。因此,载波#1和载波#2聚合时,终端在载 波#1上,每参考时间单元(slot1)能够支持的最大非重叠CCE的数目为56,终端在载波#2上,每参考时间单元(slot2)能够支持的最大非重叠CCE的数目为56。或者,如图9所示,假设载波#1、载波#2、载波#3聚合。如前所述,载波#1在自己的时隙时间(slot1)内,能够支持的最大非重叠CCE的数目为56;载波#2在自己的时隙时间(slot2)内,能够支持的最大非重叠CCE的数目为56;载波#3在自己的时隙时间(slot3)内,能够支持的最大非重叠CCE的数目为48。因此,载波#1、载波#2、载波#3聚合时,终端在载波#1上,每参考时间单元(slot1)能够支持的最大非重叠CCE的数目为56;终端在载波#2上,每参考时间单元(slot2)能够支持的最大非重叠CCE的数目为56;终端在载波#3上,每参考时间单元(slot3)能够支持的最大非重叠CCE的数目为48。
实现方式#2
当每个载波上的参考时间单元为一个统一的参考时间时,各个载波上的最终确定的最大非重叠CCE的数目就是原始各载波上的最大非重叠CCE的数目和折算值的乘积,该折算值是各载波时隙和参考时间的折算值。
具体地,假设,T是slot1的2倍时,载波#1的折算值t1=T/slot1=2,那么终端在该载波#1上,每参考时间单元内能够支持的最大非重叠CCE的数目为:56*t1=112。类似,载波#2的折算值t2=T/slot2=T/(slot1/2)=T/slot1*2=4,那么终端在该载波#2上,每参考时间单元内能够支持的最大非重叠CCE的数目为:56*t2=56*4=224。以此类推,可以得到终端在载波#3和载波#4上,每参考时间单元内能够支持的最大非重叠CCE的数目。
因此,当每个载波上的参考时间单元为一个统一的参考时间时,最大非重叠CCE的数目可以用下面公式表示:
Ni=Bi*(T/ti)
其中,
Ni为终端在载波#i上,每参考时间单元内能够支持的最大非重叠CCE的数目;
Bi表示终端在载波#i上,每sloti内能够支持的最大非重叠CCE的数目;
ti表示载波#i的折算值。
情况2:部分载波配置了跨载波调度,部分载波是自调度,还有部分载波是被别的载波调度。
1)配置了跨载波调度的载波
假设调度载波的子载波间隔小于或等于被调度载波的子载波间隔:
一种可能的方式,当该调度载波配置的被调度载波个数为K时,该调度载波上最大非重叠CCE的数目为:B(调度载波)+K*B(调度载波)=(K+1)*B(调度载波),增加的部分是K的倍数。其中,B(调度载波)表示调度载波在参考时间单元内的最大非重叠CCE的数目。
具体地,如图10所示,图10中的(1)中,K=1,那么调度载波上的最大非重叠CCE的数目可以等于B(调度载波)+B(调度载波)=B(调度载波)*2。第一个B(调度载波)表示该载波调度自己时的最大非重叠CCE的数目,第二个B(调度载波)表示该载波调度另一个载波时所需要的最大非重叠CCE的数目。图10中的(1)中表示的具体计算是:B(调度载波)+B(调度载波)=56+56=56*2=112。图10中的(2)中,K=2,那么调度载波上的最大非重叠CCE的数目可以等于B(调度载波)+B(调度载波)*2。具 体计算是:56+2*56=168。
或者,另一种可能的方式,如图10所示,该载波上的最大非重叠CCE的数目可以等于B(调度载波)+B(被调度载波)*2 μ(被调度载波)-μ(调度载波)。其中,第一个B(调度载波)表示该载波调度自己时的最大非重叠CCE的数目,第二个B(被调度载波)表示被调度载波所需要的最大非重叠CCE的数目,当配置的调度载波个数为K时,通用公式为:
N=B(调度载波)+Σ{B(被调度载波)*2 μ(被调度载波)-μ(调度载波)}。
其中,
N表示最大非重叠CCE的数目;
B(调度载波)表示调度载波在参考时间单元内的最大非重叠CCE的数目;
Σ{B(被调度载波)*2 μ(被调度载波)-μ(调度载波)}表示对所有被调度的载波与2 μ(被调度载波)-μ(调度载 波)相乘,并将相乘的结果求和。
具体地,如图10所示,图10中的(1)中,载波#1(调度载波)上的最大非重叠CCE的数目为:56+56*2=168。图10中的(2)中,载波#1上的最大非重叠CCE的数目为:56+56*2+56*2=280。
调度载波的子载波间隔大于被调度载波的子载波间隔:
一种可能的方式,如图10中的(2)中,该载波上的最大非重叠CCE的数目可以等于B(调度载波)+B(调度载波)=B(调度载波)*2,其中第一个(调度载波)表示该载波调度自己时的最大非重叠CCE的数目,第二个B(调度载波)表示该载波调度另一个载波时所需要的最大非重叠CCE的数目,当配置的调度载波个数为K时,通用公式为:B(调度载波)+K*B(调度载波)=(K+1)*B(调度载波),增加的部分是K的倍数。
具体地,如图10中的(3)中表示的具体计算是:56+56*2=56*3=168。
或者,另一种可能的方式,如图10中的(2)中,该载波上的最大非重叠CCE的数目可以等于B(调度载波)+B(被调度载波)/2 μ(调度载波)-μ(被调度载波),其中第一个B(调度载波)表示该载波调度自己时的最大非重叠CCE的数目,第二个B(被调度载波)表示被调度载波所需要的最大非重叠CCE的数目,当配置的调度载波个数为K时,通用公式为:
N=B(调度载波)+Σ{B(被调度载波)/2 μ(调度载波)-μ(被调度载波)}。
其中,
N表示最大非重叠CCE的数目;
B(调度载波)表示调度载波在参考时间单元内的最大非重叠CCE的数目;
Σ{B(被调度载波)/2 μ(调度载波)-μ(被调度载波)}表示对所有被调度的载波与2 μ(调度载波)-μ(被调度载 波)相除,并将相除的结果求和。
具体地,具体地,如图10所示,图10中的(3)中,载波#1(调度载波)上的最大非重叠CCE的数目为:56+56/2=84。图10中的(4)中,载波#1上的最大非重叠CCE的数目为:56+56/2+56=140。
2)自调度的载波
对于自调度的载波的最大非重叠CCE的数目,同上述情况1中,每个载波都是自调度时的情况类似,此处为简洁,不再赘述。
如,确定自调度的载波的最大非重叠CCE的数目,可以是按照实现方式#1,即,每个载波上的参考时间单元都是各自的时隙时间时,终端在每个载波上,每时隙能够支持的 最大非重叠CCE和单载波的情况一样。
或者,确定自调度的载波的最大非重叠CCE的数目,也可以是按照实现方式#2,即,当每个载波上的参考时间单元为一个统一的参考时间时,各个载波上的最终确定的最大非重叠CCE的数目就是原始各载波上的最大非重叠CCE的数目和折算值的乘积,该折算值是各载波时隙和参考时间的折算值。
3)被其他载波调度的载波:不用进行PDCCH盲检,即非重叠CCE的数目为0。
方案2:X个载波聚合,整体确定一个统一的最大非重叠CCE的数目。
情况A:按照一个参考子载波间隔进行统一,如,不管服务小区的子载波间隔是多少,
均按照15kHz的子载波间隔进行计算,统一值:N=X*56。
其中,N为统一的最大候选PDCCH的数目,X为载波聚合数。
当X>4时,如图11所示,网络设备接收终端上报的与终端能够支持的最大非重叠CCE的数目相关的参数y,其中,y为{4,……,16}中的一个整数。此时,N=y*56。
情况B:
一种实现方式:N=服务小区中最小子载波间隔对应的非重叠CCE数目*载波个数。
具体地,结合图8具体说明。如图8所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。那么N=载波#1对应的非重叠CCE数目*载波个数=56*2=112。
一种实现方式:N=服务小区中最大子载波间隔对应的非重叠CCE数目*载波个数。
具体地,结合图8具体说明。如图8所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。那么N=载波#2对应的非重叠CCE数目*载波个数=56*2=112。
一种实现方式:N=服务小区中各个子载波间隔对应的非重叠CCE数目之和。
具体地,结合图8具体说明。如图8所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。那么N=载波#1对应的非重叠CCE数目+载波#2对应的非重叠CCE数目=56+56=112。
或,
当X>4时,如图11所示,网络设备接收终端上报的与终端能够支持的最大非重叠CCE的数目相关的参数y,其中,y为{4,……,16}中的一个整数。
一种实现方式:N=服务小区中最小子载波间隔对应的非重叠CCE数目*y。
具体地,图11示出了载波个数X大于4的情况。如图11所示,载波#1、载波#2、载波#3、载波#4、载波#5聚合。那么最大非重叠CCE的数目N可以为:服务小区中最小子载波间隔对应的非重叠CCE数目*y=B1*y=56*y。
一种实现方式:N=服务小区中最大子载波间隔对应的非重叠CCE数目*y。
具体地,图11示出了载波个数X大于4的情况。如图11所示,载波#1、载波#2、载波#3、载波#4、载波#5聚合。那么最大非重叠CCE的数目N可以为:服务小区中最大子载波间隔对应的非重叠CCE数目*y=B2*y=56*y。
情况C
每个载波上的参考时间单元为一个统一的参考时间时,该参考时间单元可以为以子载波间隔最小的slot为参考时间单元,或,以子载波间隔最大的slot为参考时间单元。下面分别描述。
一种可能的实现方式:以子载波间隔最小的slot为参考时间单元,进行折算,并求统 一值。
具体地,结合图8,载波#1的子载波间隔为15KHz,对应的时隙为slot1,载波#1上的最大非重叠CCE的数目B1=56;载波#2的子载波间隔为30KHz,对应的时隙为slot2。假设参考时间单元T为slot1,载波#2上的最大非重叠CCE的数目B2=56。slot2的时长是slot1的一半,因此,载波#2的折算值t2=T/slot2=2。那么在参考时间单元内,终端能够支持的最大非重叠CCE的数目N为:N=B1+t2*B2=56+2*56=168。
一种可能的实现方式:以子载波间隔最大的slot为参考时间单元,进行折算,并求统一值。
具体地,结合图8,载波#1的子载波间隔为15KHz,对应的时隙为slot1;载波#2的子载波间隔为30KHz,对应的时隙为slot2。假设参考时间单元T为slot2。slot2的时长是slot1的一半,因此,载波#1的折算值t1=T/slot1=0.5。那么在参考时间单元内,终端能够支持的最大非重叠CCE的数目N为:N=t1*B1+B2=0.5*56+56=84。
可选地,当X>4时,可以对终端上报的参数进行新的定义。
可选的一种实现方式为,当终端支持的可聚合的载波个数X大于4时,终端可以上报能力y对应的Numerology信息,例如上报的信息对应SCS=15kHz,或上报μ=0,则,终端每参考时间单元所能支持的最大非重叠CCE的数目等于y*B(μ上报的),具体的当y=5时,终端每参考时间单元所能支持的最大非重叠CCE的数目等于5*56=280。
需要注意的是,当计算得到一个统一的终端能支持的最大非重叠CCE的数目N后,网络侧在各个载波上进行配置时需要考虑调度载上被调度载波的数量进行折算。如图12所示,载波1上最大配置的非重叠CCE的数目等于统一值N*2/5,因为载波1上除了自调度还有一个被调度载波,相当于2个载波的份额。其他载波上最大配置的非重叠CCE的数目等于统一值N/5。
具体地,当终端支持的可聚合的载波个数X大于4时,终端可以上报与其每参考时间单元所能支持的最大非重叠CCE的数目相关的参数,该相关的参数可以为不同的Numerology的能力参数。如图11所示,这里涉及2种Numerology,SCS=15kHz和SCS=30kHz。X1为SCS=15kHz的载波个数,X1=2;X2为SCS=30kHz的载波个数,X2=3。
一种可能的实现方式是:以SCS小的Numerology来定义参考时间单元;则,终端在参考时间单元内所能支持的最大非重叠CCE的数目为:
N=y*(X1/X)*B0+y*(X2/X)*B1*2 μ1-μ0
另一种可能的实现方式是:以SCS大的numerology来定义单位时长;
则终端在参考时间单元内所能支持的最大非重叠CCE的数目为:
N=y*(X1/X)*B0+y*(X2/X)*B1,或,N=y*(X1/X)*(B0/2 μ1-μ0)+y*(X2/X)*B1。
其中μ1对应SCS大的μ值,μ2对应SCS小的μ值。
另一种可能是对终端上报的参数进行新的定义。如终端上报y分为y1和y2两个部分(对应不同Numerology的能力参数,这里需要明确y1和y2分别对应哪个μ值),使用y1和y2替代上述公式中y*(X1/X)和y*(X2/X)。
即:
y1=y*(X1/X),y2=y*(X2/X)。
那么,终端能够支持的最大非重叠CCE的数目N可以为:
N=y1*B1+y2*B2*2 μ1-μ0,或,
N=y1*B1+y2*B2,或,
N=y1*(B1/2 μ1-μ0)+y2*B2。
情况D
聚合的载波数X>4时,如图12所示,载波#1、载波#2、载波#3、载波#4、载波#5聚合,聚合载波配置跨载波调度。如图12所示,载波#1为调度载波,载波#2为被调度载波。那么终端每参考时间单元内可支持的最大非重叠CCE的数目N可以同图10的方式相似,如,以调度载波的最大非重叠CCE的数目来计算整体的最大非重叠CCE的数目,即N=2*B1+B2+B1+B2=2*56+56+56+56=280。
通过本申请实施例,网络设备可以根据多个服务小区中的任一服务小区和载波聚合的个数确定最大非重叠CCE的数目。或者,也可以综合考虑载波聚合的各个载波在单位时长内的非重叠CCE的数目,进一步确定最大非重叠CCE的数目。或者,也可以根据一个参考的服务小区(例如,当单位时长为预定义的时长时),进一步确定该多个服务小区的最大非重叠CCE的数目。
上文,结合图6至图13介绍了多个载波聚合时,如何确定最大候选PDCCH的数目和最大非重叠CCE的数目,下面结合DCI的大小分析最大候选PDCCH的数目。
可选地,所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目,以及,所述方法还包括:所述不同大小的DCI格式的总数小于或等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或,第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
DCI format,用于定义控制信息域(Field)位于DCI中的位置。为便于理解,先结合表4简单介绍一下DCI format。
表4
Figure PCTCN2019085794-appb-000001
Figure PCTCN2019085794-appb-000002
下行控制信息的大小(DCI size),可以理解为下行控制信息包括的信息比特的多少,若DCI包括W个信息比特则下行控制信息大小为W。或者,下行控制信息大小可以理解为DCI包括的信息比特数与循环冗余校验码长度的和;例如,DCI包括W个信息比特,循环冗余校验码长度为L,则DCI大小等于W+L的值。DCI大小的个数会直接影响到候选PDCCH的数目,相同搜索空间内DCI size相同的PDCCH看做是一个PDCCH candidate。目前NR的会议讨论中只对单载波的情况进行了限制,如,在单载波情况下,终端每个时隙最多支持4种不同DCI sizes的PDCCH监控,即终端检测的总DCI size不能超过4个。且,终端检测的在循环冗余校验码上加扰的C-RNTI的DCI size不能超过3个。
网络设备在控制终端监控的候选PDCCH的数目时需要同时考虑到终端对不同DCI sizes的监控配置。下面结合表5,从聚合载波不配置跨载波调度和聚合载波配置跨载波调度这两种情况出发,进行描述。
情况一
聚合载波不配置跨载波调度
PCell上的DCI预算(budget)需要满足单载波时的DCI budget要求,如:
列1,列3,列4,列5/列6
列1,列3/列4,列5,列6
SCell上不需要监控只在PCell上才会出现的DCI format,如1_0(用SI-RNTI/RA-RNTI/T-CRNTI/P-RNTI加扰)、0_0(为Type1-PDCCH用T-CRNTI/C-RNTI加扰),因此在进行DCI budget考虑的时候可以将表5中第二列的第四行、第六行、第十行、第十一行,所对应的DCI size不算到SCell的DCI budget内,将2-2和2-3的DCI size对应(mapping)到其他列上,因此对SCell的DCI budget示例可以是如下的情况:
列2,列3,列4,列5/列6
列2,列3/列4,列5,列6
表5
Figure PCTCN2019085794-appb-000003
Figure PCTCN2019085794-appb-000004
情况二
聚合载波配置跨载波调度
对于调度小区(Scheduling cell),即配置了跨载波调度的小区,对于自调度和调度别的载波的DCI size可能相同,可能不同。例如,可能mapping到相同的大小,那么就会减少盲检。又如,可能每个调度有不同的大小,即,在该调度小区内可能可能配置其他大小的DCI format,因此盲检次数相比单载波增加。
对于被调度小区(Scheduled cell)不需要在自己的载波上监控PDCCH。
因此,DCI budget在载波聚合的场景下,假设聚合的载波数为X。
对于非跨载波调度(即自调度的载波),每个载波的DCI budget与单载波的情况相同,终端在所有载波聚合的载波上检测的不同DCI size的数量最大值可以小于或等于单载波场景下的X倍(当X=2时,为2*4=8个不同的DCI sizes,C-RNTI加扰的DCI size不能超过3*2=6个)。其中,SCell和PCell上的DCI size选择不同。
对于跨载波调度,终端在多个载波聚合的载波上检测的不同DCI size的数量最大值可以等于单载波场景下的总数。或者,终端在多个载波聚合的载波上检测的不同DCI size的数量最大值可以小于或等于单载波场景下的X倍。其中,终端在调度载波上检测的不同DCI size的数量最大值可以小于或等于单载波场景下的M倍,其中,M为上配置的被调度的载波个数。终端在被调度载波(Scheduled cell)上可以不检测DCI。
上文,结合图6至图13介绍了多个载波聚合时,如何确定最大候选PDCCH的数目和最大非重叠CCE的数目,结合表4、表5从DCI format的角度分析候选PDCCH的数目。
下文描述与下行数据动态码本生成方式相关,适用于本申请另一实施例的参数确定的方法。在开始描述本申请实施例之前,首先介绍一下下行数据动态码本生成方式。
在NR Rel-15中,PDSCH及下行半持续调度(Semi-persistent scheduling,SPS)释放消息的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息的生成方式包括静态和动态两种方式,这里用HARQ-确认(Acknowledgement,ACK)来表示HARQ反馈信息。其中动态码本生成方式是通过DCI中包含的累积计数(counter DAI,C-DAI)和/或总和计数(total DAI,T-DAI)来实现的。其中,C-DAI包含在DCI format 1_0或DCI format 1_1中,表示存在DCI format 1_0或DCI format 1_1所调度的PDSCH或用于指示下行SPS释放的DCI format 1_0的{Serving Cell,PDCCH监控时机}-对(pair),只到当前服务小区和当前的PDCCH监控时机的累积数,累积的顺序是先按照服务小区索引再按照PDCCH监控时机索引进行的。T-DAI包含在DCI format 1_1中,表示存在DCI format1_0或DCI format 1_1所调度的PDSCH或用于指示下行SPS释放的DCI format 1_0的{Serving Cell,PDCCH监控时机}-pair,只到当前的PDCCH监控时机的总数,这个总数在每个PDCCH监控时机都可以更新。
具体地,结合图14说明,图14是计算动态码本的一种方式。如图14所示,动态HARQ码本的生成是根据{Serving cell,PDCCH监控时机}-pair的累积计数和总和计数来进行的。计数的顺序以PDCCH监控时机的起始时间点为基准,采用先Serving cell序号顺序,再PDCCH监控时机顺序为准则进行。
其中,PDCCH监控时机(PDCCH monitoring occasion)是用于监控PDCCH的一个时 间单位,相关的参数在search space和控制资源集(control-resource set,CORESET)的配置中给出。确定PDCCH monitoring occasion是根据RRC配置的PDCCH监控周期,PDCCH监控偏移和PDCCH监控模式三个参数共同决定的。如图15所示,PDCCH监控周期为2个时隙,偏移值为1,对应图中黑色部分的时隙位置。更进一步的,通过PDCCH监控模式来指示PDCCH监控时机在一个时隙中的位置。PDCCH监控模式是用一个14比特的位图(bitmap)来指示需要监控的符号位置,该图中14比特的指示为二进制数(00001100001100),每个比特代表一个符号的位置,为1表示需要监控,为0表示不需要监控。这样就表示需要监控图中黑色所对应时隙中的第4、5、10、11这四个符号。也可以用这个14比特的位图(bitmap)指示PDCCH监控时机对应CORESET在一个时隙内的第一个符号的位置。同样以图15为例,该图中14比特的指示为二进制数(00001100001100),表示在一个时隙内有4个可能的CORESET第一个符号的位置。至于PDCCH监控时机所对应的时间长度是由PDCCH监控时机所对应的搜索空间相关联的CORESET的时长所决定的。
上述计算动态码本的方式适用于一个PDCCH监控时机里只有一个PDCCH的情况,或者说只包含一个DCI时,可以正常工作。很多场景下,一个PDCCH监控时机里可以包含有多个DCI,如图16所示,在跨载波调度时一个PDCCH occasion里包含有多个DCI。或者,在跨时隙调度时,也可能出现一个PDCCH监控时机里包含有多个DCI的情况。
如图16所示,当一个PDCCH监控时机里包含有多个DCI时,如果还是按照PDCCH监控时机进行计数的话,会漏掉需要反馈的信息,如,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息,如,HARQ-ACK信息。图中共调度了6个PDSCH数据,但由于只有3个PDCCH监控时机,因此只能反馈3个PDSCH的HARQ-ACK信息,漏掉了剩余3个PDSCH的HARQ-ACK信息。图中括号中的两个数字分别代表C-DAI和T-DAI的值,即(C-DAI,T-DAI)。
基于此,本申请实施例提出一种参数确定的方法,能够避免漏掉需要反馈的HARQ-ACK信息。该方法包括:网络设备根据终端的服务小区、物理下行控制信道PDCCH监控时机、以及所述PDCCH监控时机内的参数确定累积计数下行分配指示C-DAI和/或总和计数下行分配指示T-DAI;所述网络设备向所述终端发送包括所述C-DAI和/或所述T-DAI的下行控制信息DCI。
可选地,所述PDCCH监控时机内的参数包括以下一项或多项:
所述PDCCH监控时机内,PDCCH所对应的起始控制信道单元CCE索引;
所述PDCCH监控时机内,PDCCH所调度数据的位置信息;和
所述PDCCH监控时机内,与PDCCH所关联的搜索空间相关联控制资源集CORESET的序列号ID值。
可选地,所述PDCCH所调度数据的位置信息包括PDCCH所调度数据的位置的索引,所述PDCCH所调度数据的位置的索引的顺序为先频域后时域。或者,也可以先时域后频域。
具体地,一种可能的方式,如图17所示,可以采用每个DCI的PDCCH所对应的CCE索引(index)顺序进行进一步的C-DAI和T-DAI计数。图中括号中的两个数字分别代表C-DAI和T-DAI的值,即(C-DAI,T-DAI)。如图17可见第一个PDCCH监控时机内根 据3个PDCCH的CCE起始地址顺序,可以得到3个(C-DAI,T-DAI)的值,依次为(1,3),(2,3)和(3,3)。后续PDCCH监控时机内的(C-DAI,T-DAI)值计数原则与第一个PDCCH监控时机内的原理相同,这里不再累述。
一种可能的方式,如图18所示,可以采用每个DCI所调度的PDSCH数据的位置进行确定。位置的顺序可以按照先频域后时域的顺序进行C-DAI和T-DAI计数。如图18可见第一个PDCCH监控时机内根据3个DCI所调度的PDSCH位置先频域再时域的顺序进行C-DAI和T-DAI计数,可以得到3个(C-DAI,T-DAI)的值,依次为(1,3),(3,3)和(2,3)。后续PDCCH监控时机内的(C-DAI,T-DAI)值计数原则与第一个PDCCH监控时机内的原理相同,这里不再累述。
此外,数据的位置也可以按照先时域再频域的顺序进行C-DAI和T-DAI计数。
一种可能的方式,可以采用与PDCCH所关联的搜索空间相关联的CORESET ID进行C-DAI和T-DAI计数。例如,按照CORESET ID增大的顺序排序。在相同PDCCH监控时机内,当第一个PDCCH所对应的搜索空间相关联的CORESET的序列号ID值为2,第二个PDCCH所对应的搜索空间相关联的CORESET的序列号ID值为1时,则当第一个PDCCH对应的C-DAI为2,第二个PDCCH对应的C-DAI为1,两个T-DAI的值都为2。
其中,一个CORESET是控制区域内的一块时频资源。每个搜索空间或搜索空间组的配置都会关联一个CORESET的配置,CORESET的配置中包含一个CORESET ID和一个持续时长。如不做特别说明,本申请实施例中所描述的搜索空间也可以表示是一个搜索空间组(search space set),这里不做区分。
终端接收下行控制信息的过程如下。
网络设备给终端配置一个CORESET或多个CORESETs,每个CORESET有各自的ID,记为CORESET_ID;
每个BWP最多配置3个CORESETs;4个BWPs最多可配置12个CORESETs;
网络设备为每个下行BWP配置用于监控PDCCH的search space,一次配置一个搜索空间集合(search space set),每个search space set有各自的ID,记为search space set index。每个BWP最多可以配置10个search space set,每个search space set对应一个CORESET,多个search space set可对应相同的CORESET。
终端在每个服务小区激活的BWP上的一个或多个CORESETs里根据search spaces的配置监控一组候选的PDCCH。
此外,现有协议的描述中对PDCCH monitoring occasion的排序仅说明按照其关联搜索空间的开始时刻进行排序,当不同PDCCH monitoring occasion具有相同开始时刻时,仅按照开始时刻,无法对这些PDCCH monitoring occasion进行排序,如图19所示,PDCCH监控时机1和PDCCH监控时机2具有相同的起始时间,PDCCH监控时机3和PDCCH监控时机4具有相同的起始时间。因此需要解决监控时机关联搜索空间具有相同开始时刻的不同PDCCH监控时机排序问题。
需要说明的是,为简单起见本文中PDCCH监控时机的起始时间和PDCCH监控时机关联搜索空间的开始时刻是相同的含义,可以互换。PDCCH监控时机对应的持续时长和PDCCH监控时机关联CORESET的持续时长具有相同的含义,可以互换。
如图19所示,图中有两组具有相同开始时刻的PDCCH监控时机,若要对其进行区 分,需要在开始时刻基础上再考虑另外的因素才能区分。基于此,本申请实施例提出一种参数确定的方法,能够区分具有相同开始时刻的PDCCH监控时机,从而明确具有相同开始时刻的PDCCH监控时机的排序,正常进行C-DAI和T-DAI计数。该方法包括:
网络设备确定与物理下行控制信道PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息;所述网络设备根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序。
可选地,所述与所述PDCCH监控时机相关的信息包括以下中的一项或者多项:
PDCCH监控时机对应的持续时长;
PDCCH监控时机所关联的搜索空间的结束时刻;
PDCCH所关联的搜索空间的索引值;和,
与PDCCH所关联的搜索空间相关联的控制资源集CORSET的索引值。
其中,在本申请实施例中,持续时长可以为PDCCH对应搜索空间关联的CORESET的持续时长。PDCCH监控时机对应的时间单元上的结束时刻,可以为结束符号位置,或,起始时刻加上持续时长。如图19所示,PDCCH监控时机1的结束时刻为时隙1,PDCCH监控时机2的结束时刻为时隙2,那么按照结束时刻升序排序就是将PDCCH监控时机1排在PDCCH监控时机2的前面。
可选地,当所述与所述PDCCH监控时机相关的信息为所述PDCCH监控时机对应的持续时长时,所述网络设备根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序,包括:所述网络设备根据如下公式,为所述PDCCH监控时机编号:
T=A*(L-1)+S
其中,T表示PDCCH监控时机的编号,
A表示每时隙包括的符号数,
L表示所述PDCCH监控时机对应的持续时长,
S表示所述PDCCH监控时机所关联的搜索空间的起始时间。
具体地,一种可能的方式是同时考虑连续符号的长度,也可称为持续时长(duration)。可以将不同开始时刻和不同长度的PDCCH监控时机进行编号,编号原则是S表示开始符号的位置,取值范围(0~13),L表示连续符号的长度,(1~3),那么PDCCH监控时机编号N=14*(L-1)+S,则图19中4个PDCCH监控时机编号分别为:N1=0,N2=14,N3=7,N4=35。有了这个编号后就可以将具有相同开始时刻的PDCCH监控时机进行区分和排序了。
排序可以按照编号的升序或降序进行。
当使用PDCCH监控时机的开始时刻和PDCCH监控时机对应搜索空间的索引值排序时,当PDCCH监控时机的开始时刻不同时直接按照PDCCH监控时机的开始时刻进行排序,开始时刻在前面的PDCCH监控时机排在前面,当然也可以返之,按照开始时刻在后面的PDCCH监控时机排在前面。当PDCCH监控时机的开始时刻相同时,按照PDCCH对应搜索空间的索引值的大小进行PDCCH监控时机的排序,搜索空间索引小的排在前面,索引大的排在后面。当然,反之也可以,搜索空间索引大的排在前面,索引小的排在后面。
同理,当使用PDCCH监控时机的开始时刻和PDCCH监控时机对应CORESET的索引值排序时,当PDCCH监控时机的开始时刻不同时直接按照PDCCH监控时机的开始时刻进行排序,开始时刻在前面的PDCCH监控时机排在前面,当然也可以返之,按照开始时刻在后面的PDCCH监控时机排在前面。当PDCCH监控时机的开始时刻相同时,按照PDCCH对应CORESET的索引值的大小进行PDCCH监控时机的排序,CORESET索引小的排在前面,索引大的排在后面。当然,反之也可以,CORESET索引大的排在前面,索引小的排在后面。
应理解,在本申请的各实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图1至图19对本申请实施例的参数确定的方法做了详细说明。以下,结合图20至图23对本申请实施例的参数确定的装置进行详细说明。
图20为本申请实施例提供的用于参数确定的装置20的示意图,如图20所示,该装置20可以包括处理单元21和收发单元22。
在一种可能的设计中,该装置20可以为网络设备或配置于网络设备中的芯片。
一种可能的设计中,处理单元21为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目。
可选地,所述单位时长包括第一时长或预定义的时长,其中,所述第一时长为与所述多个服务小区中的任一服务小区的子载波间隔对应的时隙长度。
可选地,该处理单元21具体用于根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第一服务小区为所述多个服务小区中的任一服务小区;或,根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第二服务小区和所述第三服务小区为所述多个服务小区中的任意两个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,根据与所述服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的各个服务小区的最大候选PDCCH的数目,或,根据第四服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中所述第四服务小区为预定的参考小区。
可选地,所述单位时长为所述第一时长,以及该处理单元21具体用于当根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,确定所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目的乘积;或,当根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确 定所述终端单位时长内监控的最大候选PDCCH的数目时,确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和;或,当根据与所述服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的各个服务小区的最大候选PDCCH的数目时,确定所述终端单位时长内监控的最大候选PDCCH的数目为:所述多个服务小区中的与各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和。
可选地,所述单位时长为所述第一时长,所述第一时长为所述第二服务小区的子载波间隔对应的时隙长度,该处理单元21具体用于:
当所述基站确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和时,所述基站确定所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述第一时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述第一时长内对应的候选PDCCH的数目之和,其中,与所述第三服务小区的子载波间隔在所述第一时长内对应的候选PDCCH的数目是根据所述第一时长、第二时长、以及与所述第五服务小区在所述第二时长内对应的候选PDCCH的数目确定的,所述第二时长为所述第三服务小区的子载波间隔对应的时隙长度。
可选地,所述单位时长为所述预定义的时长,以及该处理器31具体用于确定:当所述网络设备确定所述终端单位时长内监控的最大候选PDCCH的数目为:所述与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和时,包括:所述终端单位时长内监控的最大候选PDCCH的数目为:与所述多个服务小区中各个服务小区在所述各个服务小区各自对应的时长内的候选PDCCH的数目的和;或,所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目为:与所述多个服务小区中各个服务小区在所述预定义的时长内的候选PDCCH的数目的和,其中,与所述多个服务小区中各个服务小区在所述预定义的时长内的候选PDCCH的数目是根据与所述多个服务小区中各个服务小区在所述各个服务小区各自对应的时长、所述预定义的时长、以及与所述多个服务小区中各个服务小区在各自对应的时长内的候选PDCCH的数目确定的。
可选地,收发单元22用于:接收所述终端上报的第一信息,所述第一信息用于指示所述终端能够支持的最大候选PDCCH的数目相关的第一参数;处理单元21用于:根据所述第一参数和所述多个服务小区的子载波间隔中的至少一个,确定所述终端单位时长内监控的最大候选PDCCH的数目。
可选地,收发单元22用于:接收所述终端上报的第二信息,所述第二信息用于指示N个参数,所述N个参数为与所述终端能够支持的最大候选PDCCH的数目相关的参数,其中,N小于或等于所述多个服务小区中的服务小区的数目;处理单元21用于:根据所述N个参数和所述多个服务小区的多个子载波间隔中的至少一个子载波间隔,确定所述终端单位时长内监控的最大候选PDCCH的数目。
可选地,所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目,以及,所述方法还包括:所述不同大小的DCI格式的总数小于或等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或,第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
其中,以上列举的装置20中各模块或单元的功能和动作仅为示例性说明,装置20中各模块或单元可以用于执行上述方法中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一种可能的设计中,该处理单元21可以用于根据终端的服务小区、物理下行控制信道PDCCH监控时机、以及所述PDCCH监控时机内的参数确定累积计数下行分配指示C-DAI和/或总和计数下行分配指示T-DAI;向所述终端发送包括所述C-DAI和/或所述T-DAI的下行控制信息DCI。
可选地,所述PDCCH监控时机内的参数包括以下一项或多项:
所述PDCCH监控时机内,PDCCH所对应的起始控制信道单元CCE索引;
所述PDCCH监控时机内,PDCCH所调度数据的位置信息;和
所述PDCCH监控时机内,与PDCCH所关联的搜索空间相关联控制资源集CORESET的序列号ID值。
可选地,所述PDCCH所调度数据的位置信息包括PDCCH所调度数据的位置的索引,所述PDCCH所调度数据的位置的索引的顺序为先频域后时域。
其中,以上列举的装置20中各模块或单元的功能和动作仅为示例性说明,装置20中各模块或单元可以用于执行上述图14至图18中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一种可能的设计中,该处理单元21可以用于确定与物理下行控制信道PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息;根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序。
可选地,所述与所述PDCCH监控时机相关的信息包括以下中的一项或者多项:
PDCCH监控时机对应的持续时长;
PDCCH监控时机所关联的搜索空间的结束时刻;
PDCCH所关联的搜索空间的索引值;和,
与PDCCH所关联的搜索空间相关联的控制资源集CORSET的索引值。
可选地,当所述与所述PDCCH监控时机相关的信息为所述PDCCH监控时机对应的持续时长时,根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序,包括:
该处理单元21用于根据如下公式,为所述PDCCH监控时机编号:
T=A*(L-1)+S
其中,T表示PDCCH监控时机的编号,
A表示每时隙包括的符号数,
L表示所述PDCCH监控时机对应的时长,
S表示所述PDCCH监控时机对应的时长单元上的起始时刻。
其中,以上列举的装置20中各模块或单元的功能和动作仅为示例性说明,装置20中各模块或单元可以用于执行上述图19中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图21为本申请实施例提供的用于参数确定的装置30的示意图,如图21所示,该装置30可以为网络设备(例如,上述网络设备),也可以为芯片或电路,如可设置于网络设备内的芯片或电路。其中,该网络设备对应上述方法中的网络设备(例如,上述网络设备)。
该装置30可以包括处理器31(即,处理单元的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述方法中网络设备(例如,网络设备)执行的步骤。
进一步的,该装置30还可以包括输入口33(即,通信单元的一例)和输出口33(即,处理单元的另一例)。
再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
该存储器32用于存储计算机程序。
一种可能的设计中,在本申请实施例中,该处理器31可以用于从该存储器32中调用并运行该计算计程序,为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目。
可选地,所述单位时长包括第一时长或预定义的时长,其中,所述第一时长为与所述多个服务小区中的任一服务小区的子载波间隔对应的时隙长度。
可选地,该处理器31具体用于根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第一服务小区为所述多个服务小区中的任一服务小区;或,根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第二服务小区和所述第三服务小区为所述多个服务小区中的任意两个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,根据与所述服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的各个服务小区的最大候选PDCCH的数目,或,根据第四服务小区的子载波间 隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中所述第四服务小区为预定的参考小区。
可选地,所述单位时长为所述第一时长,以及该处理器31具体用于当根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,确定所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目的乘积;或,当根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和;或,当根据与所述服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的各个服务小区的最大候选PDCCH的数目时,确定所述终端单位时长内监控的最大候选PDCCH的数目为:所述多个服务小区中的与各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和。
可选地,所述单位时长为所述预定义的时长,以及该处理器31具体用于确定:当所述网络设备确定所述终端单位时长内监控的最大候选PDCCH的数目为:所述与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和时,包括:所述终端单位时长内监控的最大候选PDCCH的数目为:与所述多个服务小区中各个服务小区在所述各个服务小区各自对应的时长内的候选PDCCH的数目的和;或,所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目为:与所述多个服务小区中各个服务小区在所述预定义的时长内的候选PDCCH的数目的和,其中,与所述多个服务小区中各个服务小区在所述预定义的时长内的候选PDCCH的数目是根据与所述多个服务小区中各个服务小区在所述各个服务小区各自对应的时长、所述预定义的时长、以及与所述多个服务小区中各个服务小区在各自对应的时长内的候选PDCCH的数目确定的。
可选地,输入口30用于:接收所述终端上报的第一信息,所述第一信息用于指示所述终端能够支持的最大候选PDCCH的数目相关的第一参数;处理器31用于:根据所述第一参数和所述多个服务小区的多个子载波间隔中的至少一个子载波间隔,确定所述终端单位时长内监控的最大候选PDCCH的数目。
可选地,输入口30用于:接收所述终端上报的第二信息,所述第二信息用于指示N个参数,所述N个参数为与所述终端能够支持的最大候选PDCCH的数目相关的参数,其中,N小于或等于所述多个服务小区中的服务小区的数目;处理器31用于:根据所述N个参数和所述多个服务小区的多个子载波间隔中的至少一个子载波间隔,确定所述终端单位时长内监控的最大候选PDCCH的数目。
可选地,所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目,以及,所述方法还包括:所述不同大小的DCI格式的总数小于或 等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或,第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述方法网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一种可能的设计中,该处理器31可以用于根据终端的服务小区、物理下行控制信道PDCCH监控时机、以及所述PDCCH监控时机内的参数确定累积计数下行分配指示C-DAI和/或总和计数下行分配指示T-DAI;向所述终端发送包括所述C-DAI和/或所述T-DAI的下行控制信息DCI。
可选地,所述PDCCH监控时机内的参数包括以下一项或多项:
所述PDCCH监控时机内,PDCCH所对应的起始控制信道单元CCE索引;
所述PDCCH监控时机内,PDCCH所调度数据的位置信息;和
所述PDCCH监控时机内,与PDCCH所关联的搜索空间相关联控制资源集CORESET的序列号ID值。
可选地,所述PDCCH所调度数据的位置信息包括PDCCH所调度数据的位置的索引,所述PDCCH所调度数据的位置的索引的顺序为先频域后时域。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述图14至图18中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
一种可能的设计中,该处理器31可以用于确定与物理下行控制信道PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息;根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序。
可选地,所述与所述PDCCH监控时机相关的信息包括以下中的一项或者多项:
PDCCH监控时机对应的持续时长;
PDCCH监控时机所关联的搜索空间的结束时刻;
PDCCH所关联的搜索空间的索引值;和,
与PDCCH所关联的搜索空间相关联的控制资源集CORSET的索引值。
可选地,当所述与所述PDCCH监控时机相关的信息为所述PDCCH监控时机对应的持续时长时,根据所述与PDCCH监控时机所关联的搜索空间的起始时刻和与所述PDCCH监控时机相关的信息,为所述PDCCH监控时机排序,包括:
该处理器31用于根据如下公式,为所述PDCCH监控时机编号:
T=A*(L-1)+S
其中,T表示PDCCH监控时机的编号,
A表示每时隙包括的符号数,
L表示所述PDCCH监控时机对应的时长,
S表示所述PDCCH监控时机对应的时长单元上的起始时刻。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述图19中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图22为本申请实施例提供的一种网络设备40的结构示意图,可以用于实现上述方法中的网络设备(例如,网络设备)的功能。网络设备40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对网络设备进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。
所述BBU 402为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制网络设备40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗网络设备功能芯片实现,该网络设备功能芯片集成了处理器、存储器、天线接口等器件,网络设备相关功能的程序存储在存储器中,由处理器执行程序以实现网络设备的相关功能。可选的,该网络设备功能芯片也能够读取该芯片外部的存储器以实现网络设备的相关功能。
应理解,图22示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种参数确定的系统,其包括前述的网络设备和一个或多于一个终端设备。
图23是本申请实施例提供的终端设备50的结构示意图。如图23所示,该终端设备50包括处理器51和收发器52。可选地,该终端设备50还包括存储器53。其中,处理器51、收发器52和存储器53之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器53用于存储计算机程序,该处理器51用于从该存储器53中调用并运行该计算 机程序,以控制该收发器52收发信号。
上述处理器51和存储器53可以合成一个处理装置,处理器51用于执行存储器53中存储的程序代码来实现上述功能。具体实现时,该存储器53也可以集成在处理器51中,或者独立于处理器51。
上述终端设备还可以包括天线54,用于将收发器52输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该终端设备50可对应于根据本申请实施例的参数确定的方法中的终端设备,该终端设备50可以包括用于执行上述方法实施例中终端设备执行的方法的模块。具体地,该存储器53用于存储程序代码,使得处理器51在执行该程序代码时,执行上述方法实施例中终端设备执行的方法,各模块执行上述相应步骤的具体过程中已经详细说明,为了简洁,在此不再赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介 质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种参数确定的方法,其特征在于,包括:
    网络设备为终端配置多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同;
    所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目。
  2. 根据权利要求1所述的方法,其特征在于,所述单位时长包括第一时长或预定义的时长,其中,所述第一时长为与所述多个服务小区中的服务小区的子载波间隔对应的时隙长度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目,包括:
    所述网络设备根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区的数目,确定所述终端在所述单位时长内监控的最大候选PDCCH的数目,其中,所述第一服务小区属于所述多个服务小区中的任一服务小区;或,
    所述网络设备根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目,其中,所述第二服务小区和所述第三服务小区属于所述多个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,
    所述网络设备根据与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端在单位时长内监控的各个服务小区的最大候选PDCCH的数目。
  4. 根据权利要求3所述的方法,其特征在于,
    当所述网络设备根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,所述网络设备确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目的乘积;或,
    当所述网络设备根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目,确定所述终端单位时长内监控的最大候选PDCCH的数目时,所述网络设备确定的所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和;或,
    当所述网络设备根据与所述服务小区中各个服务小区的子载波间隔在所述单位时长 内对应的候选PDCCH的数目,确定所述终端在单位时长内监控的各个服务小区的最大候选PDCCH的数目时,所述网络设备确定所述终端单位时长内监控的最大候选PDCCH的数目为:与所述多个服务小区中个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端上报的第一信息,所述第一信息用于指示与所述终端能够支持的最大候选PDCCH的数目相关的第一参数;
    所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目,包括:
    所述网络设备根据所述第一参数和所述多个服务小区的子载波间隔中的至少一个,确定所述终端在单位时长内监控的最大候选PDCCH的数目。
  6. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端上报的第二信息,所述第二信息用于指示N个参数,所述N个参数为与所述终端能够支持的最大候选PDCCH的数目相关的参数,且分别与所述多个服务小区的不同子载波间隔相对应,其中,N为正整数,且N小于或等于所述多个服务小区中的服务小区的数目;
    所述网络设备根据所述多个服务小区的子载波间隔中的至少一个,确定所述终端单位时长内监控的最大候选物理下行控制信道PDCCH的数目,包括:
    所述网络设备根据所述N个参数和所述多个服务小区的多个子载波间隔中的至少一个子载波间隔,确定所述终端在单位时长内监控的最大候选PDCCH的数目。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目;
    所述不同大小的DCI格式的总数小于或等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或
    第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述多个服务小区中的服务小区的子载波间隔为所述服务小区中激活的带宽部分BWP的子载波间隔。
  9. 一种监控方法,其特征在于,包括:
    终端获取单位时长内监控的最大候选物理下行控制信道PDCCH的数目;
    所述终端根据所述最大候选PDCCH数目监控PDCCH;
    其中,所述终端配置有多个服务小区,所述多个服务小区中的至少两个服务小区的子载波间隔不同,所述最大候选PDCCH数目是根据所述多个服务小区的子载波间隔的至少一种确定的。
  10. 根据权利要求9所述的监控方法,其特征在于,所述单位时长包括第一时长或预 定义的时长,其中,所述第一时长为与所述多个服务小区中的服务小区的子载波间隔对应的时隙长度。
  11. 根据权利要求9或10所述的监控方法,其特征在于,所述最大候选PDCCH数目是根据所述多个服务小区的子载波间隔的至少一种确定的,包括:
    所述最大候选PDCCH数目是根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区的数目确定的,其中,所述第一服务小区属于所述多个服务小区;或,
    所述最大候选PDCCH数目是根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的,其中,所述第二服务小区和所述第三服务小区属于所述多个服务小区,且所述第二服务小区的子载波间隔和所述第三服务小区的子载波间隔不同;或,
    所述最大候选PDCCH数目是根据与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的。
  12. 根据权利要求11所述的监控方法,其特征在于,
    当所述最大候选PDCCH数目是根据与第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区的数目确定的时,所述终端单位时长内监控的最大候选PDCCH的数目为:与所述第一服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和所述多个服务小区中的服务小区的数目的乘积;或,
    当所述最大候选PDCCH数目是根据与第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的时,所述终端在单位时长内监控的最大候选PDCCH的数目为:与所述第二服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目和与所述第三服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的和;或者,
    当所述最大候选PDCCH数目是根据与所述多个服务小区中各个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目确定的时,所述终端在单位时长内监控的最大候选PDCCH的数目为:与所述多个服务小区中个服务小区的子载波间隔在所述单位时长内对应的候选PDCCH的数目的总和。
  13. 根据权利要求9或10所述的监控方法,其特征在于,所述监控方法还包括:
    所述终端向基站上报第一信息,所述第一信息用于指示与所述终端能够支持的最大候选PDCCH的数目相关的第一参数;所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目还根据所述第一参数确定。
  14. 根据权利要求9或10所述的监控方法,其特征在于,所述监控方法还包括:
    所述终端向基站上报第二信息,所述第二信息用于指示N个参数,所述N个参数为与所述终端能够支持的最大候选PDCCH的数目相关的参数,且分别与所述多个服务小区的不同子载波间隔相对应,其中,N为正整数,且N小于或等于所述多个服务小区中的服务小区的数目;所述所述终端在单位时长内监控的最大候选物理下行控制信道PDCCH的数目还根据所述N个参数确定。
  15. 根据权利要求9至14中任一项所述的监控方法,其特征在于,所述最大候选PDCCH的数目包括:不同大小的下行控制信息DCI格式对应的候选PDCCH的数目;
    所述不同大小的DCI格式的总数小于或等于所述多个服务小区中的任一服务小区对应的不同大小的DCI格式的数目的M倍,其中,M为所述多个服务小区中的服务小区的数目;和/或
    第四服务小区对应的不同大小的DCI格式的数目小于或等于一个服务小区对应的不同大小的DCI格式的数目的K倍,其中,所述第四服务小区为所述多个服务小区中进行跨载波调度的小区,所述K为所述第四服务小区跨载波调度的服务小区的数目。
  16. 根据权利要求9至15中任一项所述的监控方法,其特征在于,
    所述多个服务小区中服务小区的子载波间隔为所述服务小区中激活的带宽部分BWP的子载波间隔。
  17. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至8中任一项所述的方法。
  18. 一种通信装置,其特征在于,
    所述通信装置包括用于执行权利要求1至8中任一项所述的方法的模块或单元。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1至8中任一项所述的方法。
  20. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的设备执行权利要求1至8中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求9至16中任一项所述的监控方法。
  22. 一种通信装置,其特征在于,
    所述通信装置包括用于执行权利要求9至16中任一项所述的监控方法的模块或单元。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求9至16中任一项所述的监控方法。
  24. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行权利要求9至16中任一项所述的监控方法。
  25. 一种通信系统,其特征在于,包括:
    如权利要求17或18所述的通信装置,和/或,如权利要求21或22所述的通信装置。
PCT/CN2019/085794 2018-05-11 2019-05-07 参数确定的方法、监控方法、通信装置 WO2019214596A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19799816.4A EP3780468A4 (en) 2018-05-11 2019-05-07 PARAMETER DETERMINATION METHOD, MONITORING METHOD AND COMMUNICATION DEVICE
CA3098949A CA3098949C (en) 2018-05-11 2019-05-07 Parameter determining method, monitoring method, and communications apparatus
US17/094,573 US11528090B2 (en) 2018-05-11 2020-11-10 Parameter determining method, monitoring method, and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450877.9 2018-05-11
CN201810450877.9A CN110474737B (zh) 2018-05-11 2018-05-11 参数确定的方法、监控方法、通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,573 Continuation US11528090B2 (en) 2018-05-11 2020-11-10 Parameter determining method, monitoring method, and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019214596A1 true WO2019214596A1 (zh) 2019-11-14

Family

ID=68466891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085794 WO2019214596A1 (zh) 2018-05-11 2019-05-07 参数确定的方法、监控方法、通信装置

Country Status (5)

Country Link
US (1) US11528090B2 (zh)
EP (1) EP3780468A4 (zh)
CN (2) CN112491520B (zh)
CA (1) CA3098949C (zh)
WO (1) WO2019214596A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021204231A1 (zh) * 2020-04-10 2021-10-14 中兴通讯股份有限公司 信息确定方法、装置、设备和存储介质
CN113572713A (zh) * 2020-04-29 2021-10-29 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
WO2022031379A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Number of bd and cce for cross-carrier scheduling from an s-cell to a p-cell

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233610B2 (en) 2018-05-11 2022-01-25 Qualcomm Incorporated Search space design with overbooking in carrier aggregation
EP3806569A4 (en) * 2018-06-01 2021-06-23 Fujitsu Limited METHOD OF CONFIGURING A BANDWIDTH SUB INDICATOR, DEVICE AND COMMUNICATION SYSTEM
JP2019220742A (ja) * 2018-06-15 2019-12-26 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN110740514B (zh) * 2018-07-20 2021-11-23 维沃移动通信有限公司 一种监听方法及终端设备
CN113826346A (zh) * 2019-03-22 2021-12-21 三星电子株式会社 无线通信系统中用于控制信道接收的方法和装置
US11350436B2 (en) * 2019-05-03 2022-05-31 Qualcomm Incorporated Downlink control indicator distribution for cross carrier scheduling
US11304218B2 (en) * 2019-07-24 2022-04-12 Samsung Electronics Co., Ltd. Control signaling design for improved resource utilization
JP7307855B2 (ja) * 2019-10-11 2023-07-12 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線通信ネットワークにおける設定ダウンリンク送信および動的ダウンリンク送信をハンドリングする方法および装置
CN111132344B (zh) * 2019-12-27 2023-01-17 北京紫光展锐通信技术有限公司 跨载波调度方法、装置及存储介质
WO2021138796A1 (en) * 2020-01-07 2021-07-15 Qualcomm Incorporated Downlink control information size and buffering limits for combination dci
CN114826535B (zh) * 2020-02-12 2023-10-31 Oppo广东移动通信有限公司 通信方法、设备及存储介质
US11818723B2 (en) * 2020-02-14 2023-11-14 Qualcomm Incorporated Downlink assignment index for multi-component carrier scheduling
CN115398852A (zh) * 2020-02-14 2022-11-25 瑞典爱立信有限公司 针对不同pdcch监测能力的ca限制
CN113271185B (zh) * 2020-02-14 2022-10-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113395773B (zh) * 2020-03-13 2024-04-09 大唐移动通信设备有限公司 一种子载波间隔指示方法、终端及基站
EP4061035B1 (en) * 2020-03-26 2024-05-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Physical channel monitoring method and terminal device
EP4128621A4 (en) * 2020-04-03 2024-01-10 Qualcomm Incorporated PHYSICAL DOWNLINK CONTROL CHANNEL (PDCCH) AGGREGATION IN MONITORING EVENTS
CN113498185A (zh) * 2020-04-07 2021-10-12 维沃移动通信有限公司 监测数量的确定方法及装置、通信设备
KR20230005216A (ko) * 2020-05-14 2023-01-09 지티이 코포레이션 무선 통신에서의 자원 결정
CN116347610A (zh) * 2020-05-29 2023-06-27 维沃移动通信有限公司 控制信息dci传输方法及相关设备
CN113839728A (zh) * 2020-06-24 2021-12-24 维沃移动通信有限公司 Dci检测方法、发送方法及相关设备
WO2022027384A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Systems and methods for pdcch monitoring in new radio
EP4193763A1 (en) * 2020-08-07 2023-06-14 Telefonaktiebolaget LM Ericsson (publ) Scheduling technique for multiple cells
CN114157403B (zh) * 2020-09-07 2023-09-22 维沃移动通信有限公司 资源确定方法、装置、终端及网络侧设备
US20220304026A1 (en) * 2021-03-22 2022-09-22 Samsung Electronics Co., Ltd. Scheduling enhancements for wireless communication systems
CN115884209A (zh) * 2021-09-28 2023-03-31 华为技术有限公司 物理下行控制信道的监测方法和监测装置
CN116419412A (zh) * 2021-12-31 2023-07-11 维沃移动通信有限公司 Pdcch的监测方法、装置、终端及可读存储介质
WO2024000108A1 (en) * 2022-06-27 2024-01-04 Zte Corporation Harq-ack codebook determination techniques
WO2024092830A1 (zh) * 2022-11-04 2024-05-10 Oppo广东移动通信有限公司 检测能力确定方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078165A1 (ja) * 2015-11-06 2017-05-11 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN107113603A (zh) * 2015-01-12 2017-08-29 Lg 电子株式会社 无线通信系统中通过用户设备发送ue能力信息的方法及其设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100518042C (zh) * 2006-03-30 2009-07-22 中兴通讯股份有限公司 基于多载波高速下行分组接入系统的载波资源处理方法
US20140307694A1 (en) * 2011-11-07 2014-10-16 Broadcom Corporation Uplink Transmissions and Grants in Extension Carrier
US9712300B2 (en) * 2012-01-30 2017-07-18 Nokia Solutions And Networks Oy Method and apparatus for reporting reference information with respect to multiple carriers or multiple cells
TWI487408B (zh) * 2012-11-01 2015-06-01 Innovative Sonic Corp 在無線通訊系統中處理上行鏈路資訊之方法
EP3209082B1 (en) * 2014-10-17 2023-12-06 Sharp Kabushiki Kaisha Terminal, base station, and communication method
KR20170094190A (ko) * 2014-12-09 2017-08-17 엘지전자 주식회사 5개를 초과하는 셀을 반송파 집성에 따라 사용하는 경우 하향링크 데이터에 대한 harq ack/nack를 전송하는 방법 및 사용자 장치
US9888465B2 (en) * 2015-04-06 2018-02-06 Samsung Electronics Co., Ltd. Codeword determination for acknowledgement information
CN107370570B (zh) * 2016-05-13 2021-04-06 电信科学技术研究院 一种反馈信息传输方法、ue、基站和系统
CN107547179A (zh) * 2016-06-23 2018-01-05 中兴通讯股份有限公司 物理层传输参数配置、获取方法及装置
CN107888349A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种时隙时分复用方法及装置、信息传输方法及装置
EP3657874A4 (en) * 2017-07-21 2021-03-03 Ntt Docomo, Inc. USER TERMINAL, AND WIRELESS COMMUNICATIONS PROCESS
WO2019056164A1 (en) * 2017-09-19 2019-03-28 Nec Corporation METHODS AND APPARATUS FOR TRANSMITTING CONTROL INFORMATION
EP3711244A1 (en) * 2017-11-14 2020-09-23 IDAC Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
US10826758B2 (en) * 2018-02-14 2020-11-03 Asustek Computer Inc. Method and apparatus for control resource monitoring considering beam failure recovery in a wireless communication system
US11153862B2 (en) * 2018-03-22 2021-10-19 Apple Inc. Physical downlink control channel (PDCCH) blind decoding in fifth generation (5G) new radio (NR) systems
US11102643B2 (en) * 2018-03-30 2021-08-24 Asustek Computer Inc. Method and apparatus for determining size of preemption indication in a wireless communication system
US11233610B2 (en) * 2018-05-11 2022-01-25 Qualcomm Incorporated Search space design with overbooking in carrier aggregation
US10924250B2 (en) * 2018-09-13 2021-02-16 Samsung Electronics Co., Ltd. UE operation with reduced power consumption

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113603A (zh) * 2015-01-12 2017-08-29 Lg 电子株式会社 无线通信系统中通过用户设备发送ue能力信息的方法及其设备
WO2017078165A1 (ja) * 2015-11-06 2017-05-11 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Remaining Issues On control Resource Set and Search Space", 3GPP TSG RAN WGI MEETING #92BIS, R1-1804798, vol. RAN WG1, 7 April 2018 (2018-04-07), XP051414154 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021204231A1 (zh) * 2020-04-10 2021-10-14 中兴通讯股份有限公司 信息确定方法、装置、设备和存储介质
CN113572713A (zh) * 2020-04-29 2021-10-29 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
WO2022031379A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Number of bd and cce for cross-carrier scheduling from an s-cell to a p-cell

Also Published As

Publication number Publication date
CA3098949A1 (en) 2019-11-14
US20210058189A1 (en) 2021-02-25
CN110474737A (zh) 2019-11-19
EP3780468A4 (en) 2021-04-14
US11528090B2 (en) 2022-12-13
EP3780468A1 (en) 2021-02-17
CN110474737B (zh) 2020-11-17
CN112491520A (zh) 2021-03-12
CA3098949C (en) 2023-10-17
CN112491520B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2019214596A1 (zh) 参数确定的方法、监控方法、通信装置
WO2020029945A1 (zh) 确定载波聚合下监控pdcch候选数目的方法和装置
US10735170B2 (en) ACK/NACK feedback method and user equipment
US11147090B2 (en) Dynamic HARQ-ACK codebook size in unlicensed spectrum
US10278141B2 (en) Method for transmitting uplink signal and user equipment, and method for receiving uplink signal and base station
WO2020048364A1 (zh) 发送和接收混合自动重传请求确认信息的方法、通信装置
TWI751475B (zh) 喚配信號(wus)控制動作
US20170099664A1 (en) Method, apparatus and computer program for transmission scheduling
EP2556617B1 (en) Component carrier configuration
WO2016119455A1 (zh) 下行控制信息dci的配置、下行数据的接收方法及装置
WO2019047719A1 (zh) 通信方法、终端设备和网络设备
WO2018202059A1 (zh) 传输控制信道的方法、网络设备、网络控制器和终端设备
TWI805821B (zh) 亂序排程
US11653336B2 (en) Method and apparatus for transmitting and receiving downlink control information in wireless communication system
WO2018059168A1 (zh) 传输数据的方法、网络设备和终端设备
WO2020143802A1 (zh) 一种通信方法及装置
US20190069218A1 (en) Flexible Transmission of Combined System Information Blocks
WO2021032021A1 (zh) 一种通信方法及装置
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
US20190268870A1 (en) Selection of a reliable cell for downlink timing and timing advance in a timing advance group
WO2020135105A1 (zh) 上行传输的方法、上行传输的装置、以及终端设备
WO2020088423A1 (zh) 一种通信方法及装置
WO2020142925A1 (zh) 上行控制信息的发送和接收方法以及装置
WO2021031948A1 (zh) 处理数据的方法和通信装置
US20210360657A1 (en) Communication Method and Communication Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3098949

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019799816

Country of ref document: EP

Effective date: 20201104

NENP Non-entry into the national phase

Ref country code: DE