WO2019214408A1 - 芯材及其制作方法、复合材料 - Google Patents

芯材及其制作方法、复合材料 Download PDF

Info

Publication number
WO2019214408A1
WO2019214408A1 PCT/CN2019/082984 CN2019082984W WO2019214408A1 WO 2019214408 A1 WO2019214408 A1 WO 2019214408A1 CN 2019082984 W CN2019082984 W CN 2019082984W WO 2019214408 A1 WO2019214408 A1 WO 2019214408A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
cell
core material
cell wall
walls
Prior art date
Application number
PCT/CN2019/082984
Other languages
English (en)
French (fr)
Inventor
刘晖
Original Assignee
西安弗曼博复合材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安弗曼博复合材料有限责任公司 filed Critical 西安弗曼博复合材料有限责任公司
Publication of WO2019214408A1 publication Critical patent/WO2019214408A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties

Definitions

  • the invention relates to the technical field of composite materials, in particular to a core material, a manufacturing method thereof and a composite material.
  • Core material for sandwich structure is made of non-metal material or metal material such as aramid paper, aluminum foil, glass fiber cloth, carbon fiber cloth, stainless steel foil, high temperature alloy foil, kraft paper, etc. .
  • the hexagonal honeycomb core material made of aramid paper as the main material is a hot spot currently developed, and the aramid paper hexagonal honeycomb core material is coated, laminated and aramid paper.
  • the hexagonal cell shape honeycomb core material produced by a series of complicated processes such as laminating, curing, cutting, expanding, dipping, and resin curing is an advanced composite of high strength and high modulus aramid paper.
  • the material has many advantages such as light weight, high strength, high modulus, flame retardancy, high temperature resistance and low dielectric loss, and has been widely used in the aerospace field and many other civil fields.
  • FIG. 1 is a schematic view showing the structure of a hexagonal core material in the prior art.
  • the conventional hexagonal core cell unit 1' is a regular hexagon and arranged to form a honeycomb structure, but the six cell walls 11' of the regular hexagonal 1' cell unit are flat.
  • the core material is stretched in one direction in the LW plane, the other direction perpendicular to it can only be reduced.
  • the other direction perpendicular to it can only be elongated, resulting in a straight cell wall.
  • the hexagonal core material becomes "saddle" during bending. Therefore, the existing hexagonal core material has poor deformation ability, and the application field is thus limited.
  • an object of the present invention is to provide a core material of a composite material comprising a plurality of cell units, the cell unit comprising a second type of cell wall connected to the cell unit adjacent thereto.
  • the cell unit further includes a first type of cell wall, the first type of cell wall including two connected cell walls, and between the two adjacent cell walls in the same first cell wall An angle such that the first type of cell walls are a bent structure;
  • Two adjacent first type of cell walls are a group, and two sets of the first type of cell walls and two oppositely disposed second type of cell walls are oppositely arranged to form a first type of cell Unit and second type of cell unit.
  • the first type of cell wall includes a plurality of cell walls at a certain angle
  • a wrinkle structure is formed in the plane of deformation, and when the core material is forced and transmitted to the cell unit, the cell unit
  • the force in one direction causes the cell size change in this direction.
  • the above angle changes, thereby compensating for the other direction perpendicular to the deformation direction (strip direction or expansion direction).
  • the wrinkle structure can reduce or eliminate the deformation in the other direction perpendicular to the deformation direction, thereby improving the deformation ability of the core material under stress, and having the performance of the flexible core material, that is, having The ability to form a non-expandable surface such as a spherical surface.
  • the first type of cell wall comprises two first cell walls of a first cell wall and a second cell wall, and the first cell wall and the second cell wall are both At least one is inclined with respect to the direction of expansion and the direction of the strip.
  • an angle is formed between the first cell wall and the second cell wall, and the second cell wall faces the outer side of the cell with respect to the first cell wall tilt.
  • two strips of the first type of cells disposed opposite each other along the strip direction, including two oppositely disposed along the expansion direction
  • the first type of cell wall
  • the strip direction including two first-type cell walls disposed opposite to each other, along the expansion direction, including two opposite phases A type of unit wall.
  • the second type of cell walls extend along a strip direction of the core material, and each of the second type of cell walls is provided with a connection structure adjacent to the cell in an expansion direction of the core material.
  • the second type of cell walls of the unit are offset and connected by the connection structure.
  • the first type of cell walls and the second type of cell walls are spaced apart and connected end to end, and two of the first type of cells are located at two ends of the second type of cell walls.
  • the walls are oppositely set.
  • each of the cell walls of the first type of cell walls is not provided with a connection structure.
  • the present invention also provides a composite material comprising a core material and a panel covering the core material, wherein the core material is the core material described above.
  • the present invention provides a method of fabricating a core material comprising a plurality of single-layer sheets joined together in a direction in which the core sheets are arranged, and the single-layer sheets are spaced apart and end to end.
  • a plurality of first type of unit walls and a plurality of second type of unit walls the first type of unit walls including at least two connected cell walls, and within the same first type of unit walls, adjacent to the cell walls Forming an angle therebetween such that the first type of unit wall is a bent structure, and the angle can be changed when the core material is stressed, and the second type of unit wall extends along the strip direction ;
  • the manufacturing method includes the following steps:
  • the connecting structure is an adhesive or a solder.
  • the present invention also provides a method for manufacturing a core material, wherein the core material is the core material described above, comprising the following steps:
  • the core material model of the core material is made by using an auxiliary material, and the molding sand is covered on the core material model, and the auxiliary material is removed to obtain the mold.
  • FIG. 1 is a schematic view showing the structure of a cell of a hexagonal core material in the prior art
  • Figure 2 is an axial view of a cell unit of the core material provided in the present invention in a specific embodiment
  • Figure 3 is a front elevational view of Figure 2;
  • Figure 4 is a front elevational view of the core material of Figure 2 in another embodiment
  • FIG. 5 is a schematic structural view of a first type of cell unit of the core material of FIG. 3 in a specific embodiment
  • FIG. 6 is a schematic structural view of a second type of cell unit of the core material of FIG. 3 in a specific embodiment
  • Figure 7 is a schematic structural view of the single-layer thin plate of Figure 2.
  • FIG. 8 is a schematic structural view showing a second type of unit wall of the single-layer thin plate of FIG. 7 after the connection structure is provided;
  • Figure 9 is a schematic view showing the structure of each of the single-layer sheets of Figure 8 stacked in the direction of expansion to form the core material of the present invention.
  • FIG. 10 is a flow chart of a method for fabricating a core material according to a first embodiment of the present invention
  • Figure 11 is a flow chart showing a method of fabricating a core material according to the present invention in a second embodiment.
  • FIG. 2 is an axial view of a cell unit of a core material provided in the present invention
  • FIG. 3 is a front view of FIG. 2
  • FIG. 5 is a schematic view showing the structure of the first type of cell unit of the core material of FIG. 3 in a specific embodiment
  • FIG. 6 is a second type of cell of the core material of FIG.
  • FIG. 7 is a schematic structural view of a single-layer thin plate of FIG. 2
  • FIG. 8 is a structural schematic view of a second type of unit wall of the single-layer thin plate of FIG. 7 after the connection structure is provided
  • Each of the single-layer sheets in 8 is stacked in the direction of expansion to form a structural schematic view of the core material of the present invention.
  • orientation words such as “strip direction L”, “expansion direction W” and “thickness direction T” are defined based on the core material of the three-dimensional structure, wherein, as shown in FIG. 2
  • the “stripe direction L” indicates the width direction of the core material
  • the “expansion direction W” indicates the longitudinal direction of the core material
  • the “thickness direction T” indicates the thickness direction of the core material
  • the three are perpendicular to each other.
  • the present invention provides a core material of a composite material, as shown in FIGS. 2-4, the core material includes a plurality of cell units, wherein the cell unit is a closed structure formed in the core material.
  • the smallest repeating unit, and the cell unit includes the first type of cell unit 1 and the second type of cell unit 10.
  • the cell unit (the first type of cell unit 1 or the second type of cell unit 10) comprises a first type of cell wall 11 and a second type of cell wall 12, wherein the second type
  • the cell wall 12 is used to connect adjacent cell units, and the cell walls represent the sides of the cell unit, and the two interconnected cell walls forming the angle form a first type of cell wall 11 to make the first class
  • the unit wall 11 is a bent structure, and a plane composed of a strip direction L of the core material and an expansion direction W is defined as a deformation plane.
  • the angle between adjacent cell walls can vary. Wherein, as shown in the embodiment shown in Figures 5 and 6, the formation of an angle between adjacent cell walls means that the adjacent two cell walls are not parallel to each other and may be at any angle between (0, 180). .
  • the first type of unit wall 11 includes two aperture walls having an angle
  • a corrugated structure having a section in the plane of deformation is formed, and when the core material is forced and transmitted to the cell unit 1, the hole
  • the force of one direction of the cell unit 1 (expansion direction W or strip direction L) causes the cell unit 1 in this direction to change in size.
  • the deformation of the strip direction L or the expansion direction W can reduce or eliminate the deformation in the other direction perpendicular to the deformation direction as compared with the prior art, thereby improving the deformation ability of the core material under stress, and It has the performance of a flexible core material, that is, the ability to form a non-expandable curved surface such as a spherical surface.
  • the two first type of unit walls 11 are arranged in a group, and the two sets of the first type of unit walls 11 and the oppositely disposed two second type of unit walls 12 are arranged in a first shape.
  • a type of cell unit 1 and a second type of cell unit 10 that is, a total of four first type of cell walls 11, and two second type of cell walls, adjacent two first type of cell walls 11,
  • the second type of unit wall 12, the adjacent two first type unit wall 11 and the second type of unit wall 12 are connected end to end in order to form a first type of cell unit 1 as shown in FIG. 5 or as shown in FIG.
  • the second type of cell unit 10 is shown.
  • the first type of cell wall 11 when the first type of cell walls 11 are oppositely disposed, that is, the opening of the first type of cell wall 11 (the opening of the bent structure, that is, the side of the first cell wall 111 and the second cell wall 112 having an obtuse angle) When all are outwardly disposed, the first type of cell unit 1 as shown in FIG. 5 can be enclosed, and when the first type of cell walls 11 are disposed opposite each other, that is, the openings of the first type of cell walls 11 are all disposed inward. At the same time, the second type of cell unit 10 of a similar polygonal structure as shown in FIG. 6 can be enclosed.
  • the first type of cell unit 1 and the second type of cell unit 10 each comprise four first type of cell walls 11, i.e., have four pleated structures to compensate for deformation in any direction within the core and W planes.
  • the first type of cell wall 11 includes two cell walls, respectively a first cell wall 111 and a second cell wall 112, and the first cell wall 111 It is relatively inclined with respect to the second cell wall 112 and forms a corrugated structure.
  • the above-mentioned wrinkle structure formed by the first type of cell wall 11 specifically includes a first bent cell wall 111 and a second cell wall 112, and the core material is forced and transmitted.
  • the angle between the first cell wall 111 and the second cell wall 112 changes.
  • the core material is subjected to a tensile force in the L direction.
  • the tensile force acts on the cell unit 1
  • the size of the L-direction increases, and at the same time, under the action of the tensile force, the first cell wall 111 and The angle between the second cell walls 112 is increased to compensate for the deformation of the cell unit 1 in the W direction so as to substantially maintain the original size.
  • the angle between the first cell wall 111 and the second cell wall 112 is an obtuse angle, and the second cell wall 112 is opposite to the first cell wall 111.
  • the outer side of the cell unit 1 is inclined to form a first type of cell wall 11 as shown in FIG.
  • the first cell wall 111 extends in the expansion direction W, and the second cell wall 112 is inclined outwardly relative to the first cell wall 111, thereby forming the Figure 3
  • the cell structure of the core material in this embodiment is an ideal state.
  • the first cell wall 111 is inclined with respect to the expansion direction W and the strip direction L, and the second cell wall 112 is formed with the first cell wall 111 (0 to 180°).
  • the angle formed to form the core material shown in Fig. 4, the cell unit structure in this embodiment is in an actual state due to design and manufacturing errors.
  • the first type of cell walls 11 in the present invention may have various structures as long as the wrinkle structure can be formed.
  • the structure of the first type of cell walls 11 in the present embodiment makes the core material manufacturing method simple. Easy to implement.
  • the first type of cell unit 1 includes four oppositely disposed first type of cell walls 11, that is, four wrinkle structures, thereby being able to compensate for any of the core materials in the W and L planes. The deformation of the direction.
  • the same second type of cell unit 10 has four wrinkle structures, so that deformation in any direction in the core material W and the L plane can be compensated.
  • the first type of cell unit 1 further includes a second type of cell wall 12, wherein the second type of cell wall 12 is provided with a connection structure 13 along the expansion direction of the core material. W, adjacent two first type of cell units 1 correspond to each other and are connected by a connection structure 13.
  • the second type of cell unit 10 further includes a second type of cell wall 12, wherein the second type of cell wall 12 is provided with a connection structure 13 adjacent to the expansion direction W of the core material.
  • the two second type of cell units 10 are correspondingly offset and connected by a connection structure 13.
  • the second unit walls 12 of the adjacent two first type of cell units 1 are connected together by the connection structure 13 to form a two-layer material cell wall, and two adjacent second type cells
  • the second unit walls 12 of the unit 10 are joined together by a joint structure 13 to form a two-layer material cell wall, thereby increasing the strength and rigidity of the core material.
  • the first type of cell walls 11 and the second type of cell walls 12 of the core material are spaced apart and connected end to end, and are located at both ends of the second type of cell walls 12.
  • the first type of cell walls 11 of the two groups are oppositely disposed.
  • the second type of unit wall 12 is used for connecting adjacent first type of unit walls 11 in the strip direction, in addition to the adjacent two cell units 1 for connecting the expansion direction W, that is, capable of connecting the same cell unit.
  • Adjacent first type of cell walls 11 can also connect adjacent first type of cell walls 11 of adjacent cell units to form the structure shown in FIG.
  • each of the second type of unit walls 12 is provided with a connection structure 13, and each of the cell walls of the first type of unit walls 11 is not provided with the connection structure 13.
  • connection structure 13 when the second type of unit wall 12 is provided with the connection structure 13, the adjacent cell unit can be connected, and the cell wall of the connection structure 13 is not easily deformed, thereby improving the strength and rigidity of the core material.
  • the connecting structure 13 may be an adhesive, so that adjacent cell units (the first type of cell unit 1 and the second type of cell unit 10) are connected by an adhesive; or the above connection
  • the structure 13 can also be solder, so that soldering between adjacent cell units can be performed. In a specific implementation, various soldering methods such as laser welding can be used.
  • the above-mentioned connecting structure 13 can also be other structures or materials capable of connecting in the art.
  • the core material provided by the present invention has a plurality of folded cell units, which are a first type of cell unit 1 and a second type of cell unit 10, respectively.
  • Each of the first type of cell unit 1 and the second type of cell unit 10 has two bilayer material cell walls (second type cell wall 12) and four adjacent cell cells shared with adjacent cell units.
  • a single-layer material cell wall shared by the unit 1 two sets of first-type cell walls 11
  • the single-layer material cell wall (the first type of cell wall 11) is a wrinkled structural unit wall including relatively bent
  • the adjacent four first type of cell units 1 are connected to form a second type of cell unit 10, and the adjacent four second type of cell units 10 are connected. Enclosed into the first type of cell unit 1.
  • the above-mentioned respective cell walls of the core material may be materials such as aramid paper, aluminum alloy foil or glass fiber cloth.
  • the present invention also provides a composite material comprising a core material and a panel covering the core material, wherein the core material is the core material described in any of the above embodiments. Since the core material has the above technical effects, the composite material including the core material should also have corresponding technical effects, and details are not described herein again.
  • FIG. 10 is a flow chart of a method for fabricating a core material according to the present invention in a first embodiment
  • FIG. 11 is a method for fabricating a core material provided by the present invention.
  • the present invention further provides a method of manufacturing a core material, wherein the core material comprises a plurality of single-layer thin sheets 2 connected in a direction W of expansion thereof, along the strip direction L of the core material, the single-layer thin sheet 2 including a space a first type of unit wall 11 and a second type of unit wall 12, which are distributed end to end, wherein the first type of unit wall 11 includes a plurality of cell walls, and adjacent cell walls have an angle between them, and the second type of cell walls 12 extends in the strip direction L of the core material.
  • the manufacturing method includes the following steps:
  • the length of each cell wall in the cell unit 1 and the angle between adjacent cell walls in the cell wall 11 of the first type can be estimated according to the properties required of the core material under specific use conditions. .
  • the core material of the composite material needs to have sufficient mechanical properties, including plane compressive strength, L-plane shear strength and modulus, W-plane shear strength and modulus, etc., and also Has a certain core density and the number of cells per foot. Therefore, in the specific design, the structure and size of the cell unit 1 can be designed by comprehensively considering the above various factors, and the mold is designed according to the designed core material structure.
  • the single-layer thin plate 2 is formed by connecting the first type of unit wall 11 and the second type of unit wall 12 end to end, and the direction in which the two are connected is the strip direction L of the core material.
  • connection structure 13 is provided on each of the second type of cell walls 12 in the single-layer thin plate 2.
  • Fig. 8 indicates the connection structure 13
  • the solid line indicates the respective cell walls of the single-layer thin plate 2.
  • S140 A plurality of single-layer sheets 2 are placed opposite each other to form a core material of the present invention.
  • FIG. 9 is a schematic view showing the structure in which the individual single-layer sheets 2 are stacked after the connection structure 13 is provided. As can be seen from FIG. 9, the second type of unit walls 12 of the adjacent two single-layer sheets 2 are overlapped and can be connected by the connection structure 13, thereby The core material of the present invention is formed.
  • the connecting structure 13 is an adhesive
  • the core material of the present invention shown in FIG. 9 is placed in a device having a heating function, and a flat aluminum plate or other plate-like structure having a smooth surface is placed on the upper surface of the LT plane of the core material of the present invention.
  • the surface of the aluminum plate contacting the core material of the present invention is coated with a release material or a spray release agent, and a surface not in contact with the core material of the present invention is evenly placed with an appropriate amount of weight to apply a certain pressure to the core material of the present invention.
  • the heating device is set to be within a certain temperature range and kept for a predetermined time, thereby completing the curing of the core material of the present invention to obtain a core material as shown in FIG.
  • the method of manufacturing the core material is a molding method using a mold. Therefore, it is possible to realize the production of core materials having different cell numbers by changing the size of the mold, thereby forming core materials having different densities, and capable of manufacturing a cell size.
  • a small core material for example, can produce a core material with a minimum cell size of about 3.4 mm, which is equivalent to up to 90 cells per foot. Therefore, the core material can be manufactured in a larger number of cells per foot.
  • the core material with good mechanical properties and wide density range has high manufacturing efficiency.
  • the mold may be a mold having a heating function, and the temperature thereof may be set to 220 ° C to 230 ° C, so that the base material can be hot pressed into the single layer thin plate 2 .
  • the adhesive when the connection structure 13 provided by the second type of unit wall 12 is an adhesive, the adhesive may specifically be "J-80B Nomex Paper Honeycomb Sandwich Adhesive", "J-80B Nomex Paper Honeycomb Sandwich”
  • the viscosity of the adhesive can be 120 cps ⁇ 2 cps, and the applied amount of glue can be controlled from 1.5 g/m 2 to 2.0 g/m 2 to form a composite folded single-layer sheet of "J-80B Nomex Paper Honeycomb Sandwich Adhesive".
  • the composite material single-layer sheet folding structure of "J-80B Nomex Paper Honeycomb Sandwich Adhesive" will be left at room temperature for 2 to 3 minutes or dried for a certain period of time.
  • the above-mentioned production method is less affected by the core material, and a wide range of materials can be used.
  • the raw material of the core material may be a non-metallic material such as aramid paper or glass fiber cloth, or a metal material such as an aluminum alloy foil. .
  • step S120 when the raw material of the core material in the above steps is a non-metal material such as aramid paper or glass fiber cloth, before step S120, the following steps are further included:
  • the raw material can be specifically passed through a resin tank containing a GP445d05 phenolic resin solution, and the specific gravity of the GP445d05 phenolic resin solution can be 1.100g/cm 3 ⁇ 0.002g/cm 3 , and then the thin plate material infiltrated with a large amount of GP445d05 phenolic resin is passed.
  • a pair of squeeze rolls were used to extrude the excess phenolic resin to form a composite material having a resin content of about 31.4 g/m 2 .
  • S112 passing the composite material through a drying device, the drying device having at least two regions of a first region and a second region, wherein the temperature of the first region is lower than the temperature of the second region, and the composite material passes through the first region and the first The two regions are held in the two regions for a predetermined time to form a matrix material of the core material.
  • the drying device in the step may be a drying box, and the drying box is divided into two regions, the temperature of the first region may be 60 ° C to 65 ° C, and the temperature of the second region is 150 ° C to 160 ° C, The time of controlling the composite material through the first region is controlled to be 10 s to 12 s, and the time passing through the second region is 120 s to 144 s, and finally the material coming out of the drying box is cut to a desired length to form the above-mentioned base material.
  • steps S111 and S112 may be located between steps S110 and S120, or may be located before step S110.
  • the core material manufacturing method in the present invention is applicable to aramid paper, polyimide paper, PBO fiber paper, kraft paper, glass fiber cloth, carbon fiber cloth, aluminum foil, stainless steel foil, titanium alloy foil, high temperature alloy foil, Non-metallic and metal sheet materials such as iron chrome aluminum foil.
  • the present invention also provides a second method of producing a core material, wherein the core material is the core material described above.
  • the manufacturing method includes the following steps:
  • the base material of the core material may be a non-metal material such as a metal material or a plastic material, and may be selected according to actual needs.
  • the method for producing the core material is a casting method capable of realizing the production of the core material having the wrinkle structure by changing the shape and size of the mold to realize the production of different cell sizes and different cell shapes.
  • a core material model of the core material is made using an auxiliary material, and the molding sand is covered in the core material model or filled in the core material model, and then the auxiliary material is removed to obtain a mold.
  • the auxiliary material is a material having a low melting point and easy to remove, such as wax or gypsum. After the molding sand is formed, the auxiliary material may be removed.
  • the core material and the manufacturing method thereof of the present invention have the following advantages: first, a core material having a maximum number of cells per foot can be manufactured, which is equivalent to a minimum cell size of about 3.4 mm, and is easy. Adjust the number of cells per foot, therefore, suitable for the manufacture of surface-like sandwich structures; second, a wide range of applicable materials, can be used as aramid paper with a thickness of 1.5 mil, 2 mil, 3 mil, 4 mil, para-aramid paper And polyimide paper, aluminum foil, glass fiber cloth, carbon fiber cloth and other materials, and the aramid paper used in the existing aramid paper flexible core material has a thickness of only 3 mils and 4 mils; third, high production efficiency, Flexible core blocks with a thickness of 18 inches and above can be manufactured in a single pass. The available information indicates that only 12 inches of flexible core blocks are currently available on the market.
  • the density range is wide.
  • the number of cells per foot can be made 80 (equivalent to Flexible core material with a hole size of 3.8mm), density range from 48kg/m 3 to 112kg/m3.
  • the number of cells per foot can be made 60 (equivalent to the hole size) 5.1mm) flexible core material with a density ranging from 24kg/m 3 to 64kg/m 3 .
  • it can produce 90 holes per foot (equivalent to a hole size of 3.4mm). ) a flexible core member, a density in the range of 36kg / m 3 to 96kg / m 3.
  • the core material of the present invention can be used for the secondary bearing sandwich structure component of the aircraft radome, wing body fairing, engine nacelle, rudder, floor, partition, helicopter, general aircraft and the like. It can also be used for fairings and interior structures of transportation tools such as ships and high-speed railways.
  • the core material compared with the conventional hexagonal core material, has the ability to be formed into a hyperbolic part, and the sandwich core structure has a larger deformation because the core material has a negative Poisson's ratio or a zero Poisson's ratio. The ability to expand the application area of the sandwich structure and expand the safety factor of the sandwich structure.
  • the core material of the present invention can reduce the manufacturing cost of the radial type such as the radome, the wing body fairing, and the engine nacelle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

一种复合材料及其芯材、芯材的制作方法,该芯材包括若干孔格单元,孔格单元包括用于与其相邻的孔格单元相连的第二类单元壁(12),孔格单元还包括第一类单元壁(11),第一类单元壁(11)包括两个相连的孔格壁,在同一第一类单元壁(11)内,相邻两孔格壁之间形成夹角,以使第一类单元壁(11)为弯折结构;相邻四个第一类单元壁(11)与相邻两个第二类单元壁(12)围成形状不同的第一类孔格单元(1)和第二类孔格单元(10)。第一类单元壁(11)具备有规律地引发第一类单元壁变形的能力,当芯材受L向或W向的力并传递至孔格单元时,相邻两孔格壁之间的夹角改变,补偿与变形方向垂直的另一方向的变形,改善芯材受力时的变形能力,使芯材具备成型成球面等不可展开曲面的能力。

Description

芯材及其制作方法、复合材料
本申请要求于2018年05月09日提交中国专利局、申请号为201810439261.1、发明名称为“芯材及其制作方法、复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及复合材料技术领域,特别涉及一种芯材及其制作方法、复合材料。
背景技术
夹芯结构用芯材,特别是六边形蜂窝芯材由芳族聚酰胺纸、铝箔、玻璃纤维布、碳纤维布、不锈钢箔、高温合金箔、牛皮纸等非金属材料或金属材料之一制成。其中,以芳族聚酰胺纸为主要材料制成的六边形蜂窝芯材是目前研发的热点,芳族聚酰胺纸六边形蜂窝芯材是芳族聚酰胺纸经涂布、叠合和薄板层压制固化、切割、膨胀、浸胶、树脂固化等一系列复杂工艺制作而成的六边形孔格形状的蜂窝芯材,是高强度、高模量芳族聚酰胺纸增强的先进复合材料,具有轻质、高强、高模、阻燃、耐高温、低介电损耗等众多优点,已经广泛应用于航空航天领域和其他多个民用领域中。
图1为现有技术中六边形芯材的结构示意图。如图1所示,传统六边形芯材孔格单元1'为正六边形,并排列形成蜂窝结构,但是该正六边形1'孔格单元的六个单元壁11'均为平直状态,在LW平面内当芯材一个方向被拉伸时,与其垂直的另一个方向尺寸只能缩小,当一个方向被压缩时,与其垂直的另一个方向尺寸只能伸长,从而导致平直单元壁的六边形芯材在弯曲的过程中变为“马鞍形”。因此,现有的六边形芯材的变形能力很差,应用领域因此受局限。
有鉴于此,如何提供一种变形能力优良的芯材,是本领域技术人员亟待解决的技术问题。
发明内容
为解决上述技术问题,本发明的目的为提供复合材料的芯材,包括若干孔格单元,所述孔格单元包括用于与其相邻的所述孔格单元相连的第二类单元壁,所述孔格单元还包括第一类单元壁,所述第一类单元壁包括两个相连的孔格壁,在同一所述第一类单元壁内,相邻两所述孔格壁之间形成夹角,以使所述第一类单元壁为弯折结构;
相邻两个所述第一类单元壁为一组,相对设置的两组所述第一类单元壁与相对设置的两个所述第二类单元壁围成形状不同的第一类孔格单元和第二类孔格单元。
本发明中,第一类单元壁包括呈一定夹角的若干孔格壁时,形成位于变形平面内的皱褶结构,当芯材受力并传递至该孔格单元时,该孔格单元的一个方向(膨胀方向或条带方向)受力导致该方向的孔格单元尺寸变化,在外力作用下,上述夹角改变,从而补偿与变形方向垂直的另一个方向(条带方向或膨胀方向)的变形,与现有技术相比,该皱褶结构能够降低或消除与变形方向垂直的另一方向的形变,从而改善芯材受力时的变形能力,并具有柔性芯材的性能,即具备成型成球面等不可展开曲面的能力。
可选地,所述第一类单元壁包括第一孔格壁和第二孔格壁两个所述孔格壁,且所述第一孔格壁与所述第二孔格壁两者中,至少一者相对于所述膨胀方向和所述条带方向均倾斜。
可选地,所述第一孔格壁与所述第二孔格壁之间形成夹角,且所述第二孔格壁相对于所述第一孔格壁朝向所述孔格单元的外侧倾斜。
可选地,在同一所述第一类孔格单元内,沿所述条带方向,包括相背设置的两所述第一类单元壁,沿所述膨胀方向,包括相背设置的两所述第一类单元壁。
可选地,在同一所述第二类孔格单元内,沿所述条带方向,包括相向设置的两所述第一类单元壁,沿所述膨胀方向,包括相向设置的两所述第一类单元壁。
可选地,所述第二类单元壁沿所述芯材的条带方向延伸,各所述第二类单元壁设置有连接结构,沿所述芯材的膨胀方向,相邻所述孔格单元的所述第二类单元壁相抵,并通过所述连接结构相连。
可选地,沿所述条带方向,所述第一类单元壁和所述第二类单元壁间隔分布并首尾相连,且位于所述第二类单元壁两端的两所述第一类单元壁相对设置。
可选地,所述第一类单元壁的各所述孔格壁未设置连接结构。
同时,本发明还提供复合材料,包括芯材和覆盖于所述芯材的面板,其中,所述芯材为以上所述的芯材。
另外,本发明提供一种芯材的制作方法,所述芯材包括沿其膨胀方向相连的若干单层薄板,沿所述芯材的条带方向,所述单层薄板包括间隔分布并首尾相连的若干第一类单元壁和若干第二类单元壁,所述第一类单元壁包括至少两个相连的孔格壁,且同一所述第一类单元壁内,相邻所述孔格壁之间形成夹角,以使所述第一类单元壁为弯折结构,且所述芯材受力时,所述夹角能够改变,所述第二类单元壁沿所述条带方向延伸;
所述制作方法包括下述步骤:
110)设计所述第一类单元壁中各所述孔格壁的长度及相邻所述孔格壁之间的夹角、设计所述第二类单元壁的长度,根据设计结果制作所述单层薄板的成型模具,并选取所述单层薄板的基体材料;
120)将所述基体材料在所述成型模具中压制形成所述单层薄板;
130)在各所述第二类单元壁上设置连接结构;
140)将若干所述单层薄板两两相对放置,形成所述芯材;
150)通过所述连接结构连接相邻所述单层薄板。
可选地,所述连接结构为粘结剂或焊料。
同时,本发明还提供一种芯材的制作方法,所述芯材为以上所述的芯材,包括下述步骤:
210)根据所述芯材制作铸模;
220)将所述芯材的基体材料浇注于所述铸模内;
230)开模,得到所述芯材。
可选地,步骤210)中,采用辅助材料制作所述芯材的芯材模型,并将型砂覆盖于所述芯材模型,去除所述辅助材料,得到所述铸模。
附图说明
图1为现有技术中六边形芯材的孔格单元结构示意图;
图2为本发明所提供芯材的孔格单元在一种具体实施例中的轴视图;
图3为图2的正视图;
图4为图2中芯材在另一具体实施例中的正视图;
图5为图3中芯材的第一类孔格单元在具体实施例中的结构示意图;
图6为图3中芯材的第二类孔格单元在具体实施例中的结构示意图;
图7为图2中单层薄板的结构示意图;
图8为图7中单层薄板的第二类单元壁设置连接结构后的结构示意图;
图9为图8中的各单层薄板沿膨胀方向堆叠形成本发明所述芯材的结构示意图;
图10为本发明所提供芯材的制作方法在第一种具体实施例中的流程图;
图11为本发明所提供芯材的制作方法在第二种具体实施例中的流程图。
图1中:
1'孔格单元、11'单元壁。
图2-9中:
1第一类孔格单元、10第二类孔格单元、11第一类单元壁、111第一孔格壁、112第二孔格壁、12第二类单元壁、13连接结构、2单层薄板;
L条带方向、W膨胀方向、T厚度方向。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考附图2-9,其中,图2为本发明所提供芯材的孔格单元在一种具体实施例中的轴视图;图3为图2的正视图;图4为图2中芯材在另一 具体实施例中的正视图;图5为图3中芯材的第一类孔格单元在具体实施例中的结构示意图;图6为图3中芯材的第二类孔格单元在具体实施例中的结构示意图;图7为图2中单层薄板的结构示意图;图8为图7中单层薄板的第二类单元壁设置连接结构后的结构示意图;图9为图8中的各单层薄板沿膨胀方向堆叠形成本发明所述芯材的结构示意图。
需要说明的是,本文中提到的“条带方向L”、“膨胀方向W”和“厚度方向T”等方位词是以立体结构的芯材为基准定义的,其中,如图2所示,“条带方向L”表示芯材的宽度方向,“膨胀方向W”表示芯材的长度方向,“厚度方向T”表示芯材的厚度方向,且三者相互垂直。可以理解,当芯材成型时的方向不同时,上述各方位词所代表的含义也应不同,因此,上述方位词的出现不应视为对本发明保护范围的绝对限定。
在一种具体实施例中,本发明提供一种复合材料的芯材,如图2-4所示,该芯材包括若干孔格单元,其中,孔格单元为该芯材中形成闭合结构的最小重复单元,且孔格单元包括第一类孔格单元1和第二类孔格单元10。
如图5和图6所示,该孔格单元(第一类孔格单元1或第二类孔格单元10)包括第一类单元壁11和第二类单元壁12,其中,第二类单元壁12用于连接相邻的孔格单元,且孔格壁表示孔格单元的各边,两个相连、形成夹角的孔格壁形成第一类单元壁11,以使该第一类单元壁11为弯折结构,芯材的条带方向L和膨胀方向W组成的平面定义为变形平面。
在同一第一类单元壁11内,相邻孔格壁之间的夹角能够改变。其中,如图5和图6所示的实施例,相邻孔格壁之间形成夹角指的是相邻两孔格壁之间不相互平行,可为(0,180°)之间的任意角度。
本发明中,第一类单元壁11包括呈夹角的两个孔格壁时,形成截面位于变形平面内的皱褶结构,当芯材受力并传递至该孔格单元1时,该孔格单元1的一个方向(膨胀方向W或条带方向L)受力导致该方向的孔格单元1尺寸变化,在外力作用下,上述夹角改变,从而补偿与变形方向垂直的另一个方向(条带方向L或膨胀方向W)的变形,与现有技术相比,该皱褶结构能够降低或消除与变形方向垂直的另一方向的形变,从而改善芯材受力时的变形能力,并具有柔性芯材的性能,即具备成型成球面等不可展开曲面的能力。
详细的讲,以相邻的两个第一类单元壁11为一组,相对设置的两组第一类单元壁11和相对设置的两个第二类单元壁12围成形状不同的第一类孔格单元1和第二类孔格单元10,也就是说,一共有四个第一类单元壁11,和两个第二类单元壁,相邻的两个第一类单元壁11、第二类单元壁12、相邻的两个第一类单元壁11和第二类单元壁12依次首尾相连,以围合形成如图5所示的第一类孔格单元1或如图6所示的第二类孔格单元10。
具体的,当各第一类单元壁11相对设置,即第一类单元壁11的开口(弯折结构的开口,即第一孔格壁111和第二孔格壁112呈钝角的一侧)均向外设置时,能够围合形成如图5所示的第一类孔格单元1,而当各第一类单元壁11相向设置,即各第一类单元壁11的开口均向内设置时,能够围合形成如图6所示的类似多边形结构第二类孔格单元10。
第一类孔格单元1和第二类孔格单元10均包括四个第一类单元壁11,即具有四个皱褶结构,从而能够补偿芯材W和L平面内任意方向的变形。
具体地,如图5所示的实施例中,该第一类单元壁11包括两个孔格壁,分别为第一孔格壁111和第二孔格壁112,且第一孔格壁111与第二孔格壁112之间相对倾斜,并形成一个皱褶结构。
如图5所示,本实施例中,第一类单元壁11形成的上述皱褶结构具体包括相对弯折的第一孔格壁111和第二孔格壁112,当芯材受力并传递至该孔格单元1时,第一孔格壁111与第二孔格壁112之间的夹角改变。如图2所示,以该芯材受到L方向的拉力为例,该拉力作用于孔格单元1时,其L方向的尺寸增大,同时,在拉力作用下,第一孔格壁111与第二孔格壁112之间的夹角增大,从而补偿该孔格单元1沿W方向的变形,使其基本维持原有的尺寸。
而图1所示的现有技术中,在L方向拉力的作用下,L方向尺寸增大,W方向尺寸随之减小,反之在L方向压力的作用下,L方向尺寸减小,W方向尺寸随之增大;因此,在L、W构成的平面内,该芯材在一个方向受到弯曲作用力后,该方向受压缩小,另一个方向增大,从而使整张芯材呈现“马鞍形”。
更具体地,如图5所示的实施例中,第一孔格壁111与第二孔格壁112之间的夹角为钝角,且第二孔格壁112相对于第一孔格壁111向孔格单元 1的外侧倾斜,从而形成如图5所示的第一类单元壁11。
图3、图5和图6所示的实施例中,第一孔格壁111沿膨胀方向W延伸,第二孔格壁112相对于第一孔格壁111向外倾斜,从而形成图3所示的芯材,该实施例中芯材的孔格单元结构为理想状态。
如同4所示的实施例中,第一孔格壁111相对于膨胀方向W和条带方向L均倾斜,且第二孔格壁112与第一孔格壁111之间形成(0~180°)的夹角,从而形成图4所示的芯材,由于设计制造误差,该实施例中的孔格单元结构为实际状态。
如上所述,本发明中第一类单元壁11可为多种结构,只要能够形成皱褶结构即可,但是,本实施例中第一类单元壁11的结构使得该芯材制造方法简单,便于实现。
进一步地,如图5所示,在同一第一类孔格单元1内,沿条带方向L,包括相对设置的两第一类单元壁11,沿膨胀方向W,包括相对设置的两第一类单元壁11。
因此,本实施例中,同一第一类孔格单元1内,包括四个相对设置的上述第一类单元壁11,即具有四个皱褶结构,从而能够补偿芯材W和L平面内任意方向的变形。
同时,如图6所示,在同一第二类孔格单元10内,沿条带方向L,包括相向设置的两第一类单元壁11,沿膨胀方向W,包括相向设置的两第一类单元壁11。
因此,本实施例中,同一第二类孔格单元10内,具有四个皱褶结构,从而能够补偿芯材W和L平面内任意方向的变形。
以上各实施例中,如图5所示,该第一类孔格单元1还包括第二类单元壁12,其中,该第二类单元壁12设置有连接结构13,沿芯材的膨胀方向W,相邻两第一类孔格单元1对应相抵,并通过连接结构13相连。
同样地,如图6所示,该第二类孔格单元10还包括第二类单元壁12,其中该第二类单元壁12设置有连接结构13,沿芯材的膨胀方向W,相邻两第二类孔格单元10对应相抵,并通过连接结构13相连。
因此,在芯材的膨胀方向W,相邻两第一类孔格单元1的第二单元壁12通过连接结构13连接在一起,形成双层材料孔格壁,相邻两第二类孔 格单元10的第二单元壁12通过连接结构13连接在一起,形成双层材料孔格壁,从而提高芯材的强度和刚性。
同时,如图5和图6所示,沿条带方向L,该芯材的第一类单元壁11和第二类单元壁12间隔分布并首尾相连,且位于第二类单元壁12两端的两组第一类单元壁11相对设置。
因此,第二类单元壁12除用于连接膨胀方向W的相邻两孔格单元1外,还用于连接条带方向的相邻第一类单元壁11,即能够连接同一孔格单元内的相邻第一类单元壁11,也能够连接相邻孔格单元的相邻第一类单元壁11,从而形成图2所示的结构。
另外,以上各实施例中,如图9所示,各第二类单元壁12设置连接结构13,第一类单元壁11的各孔格壁均未设置连接结构13。
如上所述,第二类单元壁12设置连接结构13时,能够连接相邻孔格单元,且设置连接结构13的该孔格壁不易变形,从而提高芯材的强度和刚度。
以上各实施例中,上述连接结构13可为粘接剂,从而使得相邻孔格单元(第一类孔格单元1和第二类孔格单元10)通过粘接剂连接;或者,上述连接结构13也可为焊料,从而使得相邻孔格单元之间焊接,在具体实施时,可采用激光焊等多种焊接方式。当然,上述连接结构13也可为本领域其它能够起到连接作用的结构或材料。
综上所述,如图2和图3所示,本发明提供的芯材中,具有多个折叠的孔格单元,分别为第一类孔格单元1和第二类孔格单元10,且各第一类孔格单元1和第二类孔格单元10均具有两个与相邻孔格单元共用的双层材料孔格壁(第二类单元壁12)和四个与相邻孔格单元1共用的单层材料孔格壁(两组第一类单元壁11),且该单层材料孔格壁(第一类单元壁11)为皱褶结构单元壁,其包括相对弯折的第一孔格壁111和第二孔格壁112。同时,沿膨胀方向W和条带方向L,相邻的四个第一类孔格单元1相连,围成第二类孔格单元10,相邻的四个第二类孔格单元10相连,围成第一类孔格单元1。
同时,芯材的上述各孔格壁为可为芳族聚酰胺纸、铝合金箔或玻璃纤维布等材料。
本发明还提供一种复合材料,包括芯材和覆盖于芯材的面板,其中,芯材为以上任一实施例中所述的芯材。由于该芯材具有上述技术效果,包括该芯材的复合材料也应具有相应的技术效果,此处不再赘述。
请继续参考附图10和图11,其中,图10为本发明所提供芯材的制作方法在第一种具体实施例中的流程图;图11为本发明所提供芯材的制作方法在第二种具体实施例中的流程图;
另外,本发明进一步提供一种芯材的制作方法,其中,该芯材包括沿其膨胀方向W相连的若干单层薄板2,沿该芯材的条带方向L,该单层薄板2包括间隔分布且首尾相连的第一类单元壁11和第二类单元壁12,其中,第一类单元壁11包括若干孔格壁,且相邻孔格壁之间呈夹角,第二类单元壁12沿芯材的条带方向L延伸。如图10所示,该制作方法包括下述步骤:
S110:设计第一类单元壁11中各孔格壁的长度及相邻孔格壁之间的夹角、设计第二类单元壁12的长度,根据设计结果制作单层薄板2的成型模具,并选取该单层薄板2所需的基体材料;
设计时,可根据该芯材在具体使用工况下所需具备的性质推算孔格单元1中各孔格壁的长度,以及第一类单元壁11中相邻孔格壁之间的夹角。
具体地,为了满足使用需求,复合材料的芯材需具备足够的力学性能,包括平面压缩强度、L向平面剪切强度和模量、W向平面剪切强度和模量等,同时,还需具有一定的芯材密度和每英尺孔格数。因此,具体设计时可综合考虑上述各方面的因素设计孔格单元1的结构和尺寸,并根据设计得到的芯材结构设计制作模具。
S120:将基体材料在成型模具中压制形成单层薄板2。
如图7所示,该单层薄板2由第一类单元壁11和第二类单元壁12首尾相连形成,且二者相连的方向即为上述芯材的条带方向L。
S130:在单层薄板2中的各第二类单元壁12上设置连接结构13。
图8中的虚线即表示连接结构13,实线表示单层薄板2的各孔格壁。
S140:将若干单层薄板2两两相对放置,形成本发明的芯材。
图9表示设置连接结构13后各单层薄板2叠放的结构示意图,从图9中可知,相邻两单层薄板2的第二类单元壁12重叠,并能够通过连接结构 13相连,从而形成本发明的芯材。
S150:通过连接结构连接相邻单层薄板2。
具体地,当上述连接结构13为粘接剂时,各单层薄板2叠放后,需要进行粘接剂的固化。固化时,将图9所示的本发明的芯材放入具有加温功能的设备中,并在该本发明的芯材LT平面的上表面放置平整的铝板或其它具有平滑表面的板状结构,铝板与本发明的芯材接触的表面铺贴脱模材料或喷涂脱模剂,未与本发明的芯材接触的表面均匀放置适量的重物,以便对本发明的芯材施加一定的压力,并设定该加温设备处于一定的温度范围内,保温预定时间,从而完成本发明的芯材的粘接剂固化,得到如图2所示的芯材。
本发明中,芯材的制作方法为采用模具的成型法,因此,能够通过改变模具的尺寸实现不同孔格数芯材的制作,从而形成具有不同密度的芯材,且能够制造孔格尺寸较小的芯材,例如,可制造最小孔格尺寸约为3.4mm的芯材,相当于每英尺孔格数可达90个,因此,该芯材的制作方法能够制造每英尺孔格数较多、力学性能较好、密度范围较广的芯材,且制造效率较高。
具体地,上述步骤S120中,该模具可为具有加热功能的模具,且其温度可设置为220℃~230℃,从而能够将基体材料热压成型为单层薄板2。
上述步骤S130中,第二类单元壁12设置的连接结构13为粘接剂时,该粘接剂具体可为《J-80B Nomex纸蜂窝夹芯胶粘剂》,《J-80B Nomex纸蜂窝夹芯胶粘剂》的粘度可为120cps±2cps,施加的胶量控制可为1.5g/m 2~2.0g/m 2,从而形成有《J-80B Nomex纸蜂窝夹芯胶粘剂》的复合材料折叠单层薄板结构(见图8),将有《J-80B Nomex纸蜂窝夹芯胶粘剂》的复合材料单层薄板折叠结构在室温下晾置2~3分钟或者烘干一定时间即可。
同时,上述制作方法受芯材原材料的影响较小,可使用的材料范围广,例如,芯材的原材料可为芳族聚酰胺纸、玻璃纤维布等非金属材料,或者铝合金箔等金属材料。
具体地,当上述各步骤中芯材的原材料为芳族聚酰胺纸、玻璃纤维布等非金属材料时,步骤S120之前,还包括下述步骤:
S111:将原材料浸渍树脂,形成复合材料;
该步骤中,具体可将原材料通过装有GP445d05酚醛树脂溶液的树脂槽,GP445d05酚醛树脂溶液比重可为1.100g/cm 3±0.002g/cm 3,然后将浸润有大量GP445d05酚醛树脂的薄板材料通过一对挤胶辊,将多余酚醛树脂挤出,最终形成树脂含量为31.4g/m 2左右的复合材料。
S112:将复合材料通过烘干设备,该烘干设备至少具有第一区域和第二区域两个区域,且第一区域的温度低于第二区域的温度,复合材料依次通过第一区域和第二区域,并在两区域中停留预定时间,从而形成芯材的基体材料。
具体地,该步骤中的烘干设备可为烘干箱,烘干箱分成两个区域,第一区域的温度可为60℃~65℃,第二区域的温度为150℃~160℃,还可控制复合材料通过第一区域的时间控制为10s~12s,通过第二区域的时间为120s~144s,最后将从烘干箱中出来的材料切割为所需要的长度,形成上述基体材料。
需要说明的是,步骤S111和S112可位于步骤S110与S120之间,也可位于步骤S110之前。
当上述步骤S110~S150中芯材的原材料为金属材料时,无需进行步骤S111和S112。另外,本发明中的芯材制作方法适用于芳族聚酰胺纸、聚酰亚胺纸、PBO纤维纸、牛皮纸、玻璃纤维布、碳纤维布,铝箔、不锈钢箔、钛合金箔、高温合金箔、铁铬铝箔等非金属和金属薄板材料。
同时,本发明还提供芯材的第二种制作方法,其中,该芯材为以上所述的芯材。如图11所示,该制作方法包括下述步骤:
S210:根据芯材制作铸模;
S220:将芯材的基体材料浇注于铸模内。
其中,芯材的基体材料可为金属材料或塑料等非金属材料,可根据实际需要选取。
S230:开模,得到芯材。
本发明中,上述芯材的制作方法为铸造法,其能够通改变铸模的形状和尺寸实现不同孔格尺寸以及不同孔格形状芯材的制作,从而能够形成上述具有皱褶结构的芯材。
具体地,步骤S210中,采用辅助材料制作芯材的芯材模型,并将型砂覆盖于芯材模型或填充于芯材模型内,然后去除辅助材料,得到铸模。
其中,辅助材料为蜡或石膏等熔点低、容易去除的材料,型砂成型后,只要将该辅助材料去掉即可。
综上所述,本发明中的芯材及其制作方法具备下述优点:第一,可制造每英尺孔格数最多为90个的芯材,相当于最小孔格尺寸约3.4mm,并且易于调整每英尺孔格数,因此,适用于曲面类夹层结构的制造;第二,适用材料范围广,可采用厚度为1.5mil、2mil、3mil、4mil的间位芳纶纸、对位芳纶纸,以及聚酰亚胺纸、铝箔、玻璃纤维布、碳纤维布等材料,而现有芳纶纸柔性芯材使用的芳纶纸的厚度仅有3mil和4mil两种;第三,生产效率高,单次可制造厚度为18英寸及以上的柔性芯材块,可查询到的资料表明目前市场供应的仅有厚度为12英寸的柔性芯材块。
第四,密度范围广,例如,按照传统六边形蜂窝芯材芳纶纸和浸渍树脂的比例范围,若采用2mil厚度间位芳纶纸,能够制造每英尺孔格数为80个(相当于孔尺寸为3.8mm)的柔性芯材,密度范围为48kg/m 3至112kg/m3,若采用1.5mil厚度间位芳纶纸,能够制造每英尺孔格数为60个(相当于孔尺寸为5.1mm)的柔性芯材,密度范围为24kg/m 3至64kg/m 3,若采用1.5mil厚度间位芳纶纸,能够制造每英尺孔格数为90个(相当于孔尺寸为3.4mm)的柔性芯材,密度范围为36kg/m 3至96kg/m 3
而现有技术仅有每英尺孔格数为35个(相当于孔尺寸为8.7mm)和50个(相当于孔尺寸为6.1mm)两种孔格尺寸的柔性芯材,密度仅有40kg/m 3、56kg/m 3、72kg/m 3、80kg/m 3、88/m 3五种密度。
另外,本发明中的芯材可用于飞机的雷达天线罩、翼身整流罩、发动机短舱,方向舵,地板、隔板,直升飞机、通用飞机等飞行器的次承力三明治夹芯结构零部件,也可用于船舶、高速铁路等运输工具的整流罩和内饰结构。同时,与传统六边形芯材相比,该芯材具有成型成双曲面零件的能力,同时因该芯材具有负泊松比或零泊松比,其三明治夹芯结构具有更大的变形能力,从而扩大三明治夹芯结构的应用部位和扩大三明治夹芯结构的安全系数。另外,与六边形芯材相比,本发明中的芯材能为雷达天线罩、翼身整流罩及发动机短舱等曲面类零件降低大量的制造成本。
以上对本发明所提供的芯材及其制作方法、复合材料均进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (13)

  1. 复合材料的芯材,包括若干孔格单元,所述孔格单元包括用于与其相邻的所述孔格单元相连的第二类单元壁(12),其特征在于,所述孔格单元还包括第一类单元壁(11),所述第一类单元壁(11)包括两个相连的孔格壁,在同一所述第一类单元壁(11)内,相邻两所述孔格壁之间形成夹角,以使所述第一类单元壁(11)为弯折结构;
    相邻两个所述第一类单元壁(11)为一组,相对设置的两组所述第一类单元壁(11)与相对设置的两个所述第二类单元壁(12)围成形状不同的第一类孔格单元(1)和第二类孔格单元(10)。
  2. 根据权利要求1所述的芯材,其特征在于,所述第一类单元壁(11)包括第一孔格壁(111)和第二孔格壁(112)两个所述孔格壁,且所述第一孔格壁(111)与所述第二孔格壁(112)两者中,至少一者相对于所述膨胀方向(W)和所述条带方向(L)均倾斜。
  3. 根据权利要求2所述的芯材,其特征在于,所述第一孔格壁(111)与所述第二孔格壁(112)之间形成夹角,且所述第二孔格壁(112)相对于所述第一孔格壁(111)朝向所述孔格单元(1)的外侧倾斜。
  4. 根据权利要求2所述的芯材,其特征在于,在同一所述第一类孔格单元(1)内,沿所述条带方向(L),包括相背设置的两所述第一类单元壁(11),沿所述膨胀方向(W),包括相背设置的两所述第一类单元壁(11)。
  5. 根据权利要求2所述的芯材,其特征在于,在同一所述第二类孔格单元(10)内,沿所述条带方向(L),包括相向设置的两所述第一类单元壁(11),沿所述膨胀方向(W),包括相向设置的两所述第一类单元壁(11)。
  6. 根据权利要求1-5中任一项所述的芯材,其特征在于,所述第二类单元壁(12)沿所述芯材的条带方向(L)延伸,各所述第二类单元壁(12)设置有连接结构(13),沿所述芯材的膨胀方向(W),相邻所述孔格单元(1)的所述第二类单元壁(12)相抵,并通过所述连接结构(13)相连。
  7. 根据权利要求6所述的芯材,其特征在于,沿所述条带方向(L),所述第一类单元壁(11)和所述第二类单元壁(12)间隔分布并首尾相连,且位于所述第二类单元壁(12)两端的两所述第一类单元壁(11)相对设 置。
  8. 根据权利要求1-5中任一项所述的芯材,其特征在于,所述第一类单元壁(11)的各所述孔格壁未设置连接结构(13)。
  9. 复合材料,包括芯材和覆盖于所述芯材的面板,其特征在于,所述芯材为权利要求1-8中任一项所述的芯材。
  10. 芯材的制作方法,其特征在于,所述芯材包括沿其膨胀方向(W)相连的若干单层薄板(2),沿所述芯材的条带方向(L),所述单层薄板(2)包括间隔分布并首尾相连的若干第一类单元壁(11)和若干第二类单元壁(12),所述第一类单元壁(11)包括至少两个相连的孔格壁,且同一所述第一类单元壁(11)内,相邻所述孔格壁之间形成夹角,以使所述第一类单元壁(11)为弯折结构,且所述芯材受力时,所述夹角能够改变,所述第二类单元壁(12)沿所述条带方向(L)延伸;
    所述制作方法包括下述步骤:
    110)设计所述第一类单元壁(11)中各所述孔格壁的长度及相邻所述孔格壁之间的夹角、设计所述第二类单元壁(12)的长度,根据设计结果制作所述单层薄板(2)的成型模具,并选取所述单层薄板(2)的基体材料;
    120)将所述基体材料在所述成型模具中压制形成所述单层薄板(2);
    130)在各所述第二类单元壁(12)上设置连接结构(13);
    140)将若干所述单层薄板(2)两两相对放置,形成所述芯材;
    150)通过所述连接结构(13)连接相邻所述单层薄板(2)。
  11. 根据权利要求10所述的制作方法,其特征在于,所述连接结构(13)为粘结剂或焊料。
  12. 芯材的制作方法,所述芯材为权利要求1-8中任一项所述的芯材,其特征在于,包括下述步骤:
    210)根据所述芯材制作铸模;
    220)将所述芯材的基体材料浇注于所述铸模内;
    230)开模,得到所述芯材。
  13. 根据权利要求12所述的制作方法,其特征在于,步骤210)中,采用辅助材料制作所述芯材的芯材模型,并将型砂覆盖于所述芯材模型, 去除所述辅助材料,得到所述铸模。
PCT/CN2019/082984 2018-05-09 2019-04-17 芯材及其制作方法、复合材料 WO2019214408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810439261.1A CN110466207A (zh) 2018-05-09 2018-05-09 芯材及其制作方法、复合材料
CN201810439261.1 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214408A1 true WO2019214408A1 (zh) 2019-11-14

Family

ID=68467680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082984 WO2019214408A1 (zh) 2018-05-09 2019-04-17 芯材及其制作方法、复合材料

Country Status (2)

Country Link
CN (1) CN110466207A (zh)
WO (1) WO2019214408A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825011B2 (ja) * 1992-04-23 1996-03-13 住友軽金属工業株式会社 ろう付ハニカムパネルの製造方法
JP2004195702A (ja) * 2002-12-16 2004-07-15 Taisei Laminator Co Ltd カーボンシート製ハニカム構造体とその製造方法
CN102202881A (zh) * 2008-10-31 2011-09-28 京洛株式会社 夹芯板、夹芯板用芯材的成形方法以及夹芯板的成形方法
CN203077714U (zh) * 2013-01-28 2013-07-24 苏州芳磊蜂窝复合材料有限公司 一种变孔格蜂窝芯

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1214291A (en) * 1966-09-12 1970-12-02 Mini Of Technology Honeycomb core and sandwich structure
JP3157411B2 (ja) * 1995-03-03 2001-04-16 昭和飛行機工業株式会社 ハニカムコアおよびその製造方法
KR100620544B1 (ko) * 2005-02-24 2006-09-11 주식회사 태성에스엔이 하니컴코아
EP2705521B1 (de) * 2011-05-03 2021-06-23 Phoenix Contact GmbH & Co. KG Anordnung und verfahren zur kontaklosen energieübertragung mit einer kopplungsminimierten matrix aus planaren sendespulen
CN102745324B (zh) * 2012-07-07 2014-08-06 西北工业大学 一种柔性蒙皮
CN103171175B (zh) * 2013-04-08 2015-12-16 漯河君叁材料高科有限公司 具有抗分层特性的复合材料构件单元及含该单元复合材料
CN204109449U (zh) * 2014-09-11 2015-01-21 张景贤 一种无面纸蜂窝复合材料
CN204820472U (zh) * 2015-06-15 2015-12-02 清华大学 蜂窝夹芯
CN107282761A (zh) * 2017-08-01 2017-10-24 中国航空工业集团公司西安飞机设计研究所 一种零泊松比柔性蜂窝制造设备
CN208438808U (zh) * 2018-05-09 2019-01-29 西安弗曼博复合材料有限责任公司 复合材料及其芯材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825011B2 (ja) * 1992-04-23 1996-03-13 住友軽金属工業株式会社 ろう付ハニカムパネルの製造方法
JP2004195702A (ja) * 2002-12-16 2004-07-15 Taisei Laminator Co Ltd カーボンシート製ハニカム構造体とその製造方法
CN102202881A (zh) * 2008-10-31 2011-09-28 京洛株式会社 夹芯板、夹芯板用芯材的成形方法以及夹芯板的成形方法
CN203077714U (zh) * 2013-01-28 2013-07-24 苏州芳磊蜂窝复合材料有限公司 一种变孔格蜂窝芯

Also Published As

Publication number Publication date
CN110466207A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
KR102154875B1 (ko) 주름 코어 패널
US4284443A (en) Single stage hot bonding method for producing composite honeycomb core structures
CA2960779C (en) Honeycomb, in particular deformable honeycomb, for lightweight components, corresponding production method and sandwich component
US4304376A (en) Composite honeycomb core structures and single stage hot bonding method of producing such structures
CN112223804B (zh) 一种层合复合材料蜂窝的成型制备方法
US3642566A (en) Quasi-isotropic sandwich core
DE102010036218A1 (de) Schichtelement aus strukturierten wabenförmigen Schichten
CN105835484A (zh) 一种六边形蜂窝及其制备方法和应用
JP6331619B2 (ja) 繊維強化複合材
EP3081373B1 (en) Composite material structure
CN208438808U (zh) 复合材料及其芯材
WO2019214409A1 (zh) 芯材及其制作方法、复合材料
WO2019214408A1 (zh) 芯材及其制作方法、复合材料
JP2011224989A (ja) 複次曲面サンドイッチパネル
US20080166541A1 (en) Double walled structural reinforcement
CN108481824A (zh) 一种蜂窝芯材
US3389748A (en) Cellular core including perimeter passageway means
WO2021157082A1 (ja) 複合材構造体の製造方法及び積層体の製造方法並びに積層体及び積層型
WO2023217048A1 (zh) 零泊松比芯材及其制备方法、复合材料
CN208438809U (zh) 复合材料及其芯材
CN109177428B (zh) 一种复合板材的制作方法
JP3107477B2 (ja) ハニカムパネル
EP2821219A1 (en) Method of producing a composite honeycomb
KR100519943B1 (ko) 하니컴 코아, 하니컴 코아용 금형 및 하니콤 코아 제조방법
EP2943332B1 (en) Composite honeycomb and method of producing a composite honeycomb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800694

Country of ref document: EP

Kind code of ref document: A1