WO2019214333A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019214333A1
WO2019214333A1 PCT/CN2019/077395 CN2019077395W WO2019214333A1 WO 2019214333 A1 WO2019214333 A1 WO 2019214333A1 CN 2019077395 W CN2019077395 W CN 2019077395W WO 2019214333 A1 WO2019214333 A1 WO 2019214333A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
mobility measurement
synchronization signal
signal block
parameter
Prior art date
Application number
PCT/CN2019/077395
Other languages
English (en)
French (fr)
Inventor
向铮铮
罗俊
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207035776A priority Critical patent/KR102462464B1/ko
Priority to EP19799118.5A priority patent/EP3790307B1/en
Priority to BR112020022927-0A priority patent/BR112020022927A2/pt
Priority to CN201980031327.6A priority patent/CN112119656B/zh
Publication of WO2019214333A1 publication Critical patent/WO2019214333A1/zh
Priority to US17/094,225 priority patent/US20210112508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technologies, and in particular, to mobility measurement techniques.
  • Mobility measurement is an important part of wireless communication networks.
  • the terminal device can obtain the signal quality of the local cell and the neighboring cell by performing the mobility measurement, and report the related measurement result to the network device.
  • the network device determines, according to the measurement result reported by the terminal device, whether the terminal device performs cell handover.
  • the network device can independently configure a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS) for the terminal device.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the network device may configure one or more measurement objects for the terminal device, such as the structure diagram of the measurement object configuration in the prior art as shown in FIG.
  • each measurement object includes a synchronization signal block for mobility measurement configured by the network device for the terminal device, it indicates the frequency position, subcarrier spacing, and the like where the synchronization signal block is located.
  • the network device configures CSI-RS resources for mobility measurement for the terminal device, it also indicates the frequency location, subcarrier spacing, and the like of the CSI-RS.
  • the network device may also configure an associated synchronization signal block for each CSI-RS resource and indicate whether the CSI-RS and its associated synchronization signal block are quasi co-located or quasi co-located (QCL). .
  • QCL quasi co-located
  • the associated sync signal block may be a sync signal block of the aforementioned configuration for mobility measurement. If the two signals are QCL, then the relevant parameters of the two signals, such as Doppler spread, beam direction, etc., are the same.
  • the terminal device receives a certain CSI-RS signal for mobility measurement, if the CSI-RS resource has a synchronization signal block associated with the configuration, and the CSI-RS resource and its associated synchronization signal block are QCL, the terminal device The CSI-RS signal is received according to parameters of the associated sync signal block, such as Doppler spread, beam direction, and the like.
  • the network device can configure only the sync signal block or only the CSI-RS for mobility measurement in the measurement object, or both can be configured for mobility measurement.
  • the terminal device When the network device configures only the CSI-RS for the mobility measurement for the terminal device, and does not configure the synchronization signal block for the mobility measurement, the terminal device does not know the related parameter information of the synchronization signal block associated with the foregoing CSI-RS, for example. The frequency position and the subcarrier spacing, so the terminal device needs to blindly check the associated synchronization signal block, which increases the complexity of receiving the synchronization signal block at the terminal device end.
  • the present application provides a communication method and apparatus to improve the accuracy of receiving associated sync signal blocks.
  • a communication method comprising: receiving a measurement object configuration transmitted by a network device, the measurement object configuration including a mobility measurement configuration of one or more channel state information reference signals CSI-RS, and a first parameter of a CSI-RS associated synchronization signal block; the measurement object configured to instruct the terminal device to perform mobility measurement; and transmit the mobility measurement result to the network device.
  • the measurement object configuration including a mobility measurement configuration of one or more channel state information reference signals CSI-RS, and a first parameter of a CSI-RS associated synchronization signal block
  • the accuracy of receiving the associated synchronization signal block is improved, and the measurement object configuration is performed to share the parameters of the synchronization signal block.
  • Configuration can save the signaling overhead of the configuration.
  • a communication method comprising: transmitting a measurement object configuration to a terminal device, the measurement object configuration including a mobility measurement configuration of one or more channel state information reference signals CSI-RS, and the CSI a first parameter of the synchronization signal block associated with the RS; the measurement object configured to instruct the terminal device to perform mobility measurement; and to receive a mobility measurement result transmitted by the terminal device.
  • the accuracy of receiving the associated sync signal block is improved by including the parameters of the sync signal block associated with the CSI-RS in the measurement object configuration.
  • the mobility measurement configuration of the CSI-RS further includes a second parameter of a synchronization signal block associated with the CSI-RS.
  • the mobility measurement configuration of the CSI-RS further includes parameters such as an index of the synchronization signal block, a CSI-RS, and whether the synchronization signal block is co-located, so as to determine a synchronization signal associated with the CSI-RS. Piece.
  • the first parameter of the one or more CSI-RS associated synchronization signal blocks is the same.
  • a communication method comprising: receiving a mobility measurement configuration of one or more channel state information reference signals CSI-RS sent by a network device, where the mobility measurement configuration of the CSI-RS includes a first parameter of a synchronization signal block associated with the CSI-RS; the mobility measurement of the CSI-RS is configured to instruct the terminal device to perform mobility measurement; and transmit the mobility measurement result to the network device.
  • CSI-RS channel state information reference signals
  • the accuracy of receiving the associated sync signal block is improved by including the parameters of the sync signal block associated with the CSI-RS in the mobility measurement configuration of the CSI-RS.
  • the method further includes: receiving a measurement object configuration sent by the network device, where the measurement object configuration includes mobility measurement of the one or more CSI-RSs The configuration, the mobility measurement configuration of the CSI-RS further includes a second parameter of the synchronization signal block.
  • the mobility measurement configuration of the CSI-RS further includes parameters such as an index of the synchronization signal block, a CSI-RS, and whether the synchronization signal block is co-located, so as to determine a synchronization signal associated with the CSI-RS. Piece.
  • a communication method including: transmitting, to a terminal device, a mobility measurement configuration of one or more channel state information reference signals CSI-RS, the mobility measurement configuration of the CSI-RS including the CSI a first parameter of the RS-associated synchronization signal block; the mobility measurement of the CSI-RS is configured to instruct the terminal device to perform mobility measurement; and receive the mobility measurement result sent by the terminal device.
  • CSI-RS channel state information reference signals
  • the accuracy of receiving the associated sync signal block is improved by including the parameters of the sync signal block associated with the CSI-RS in the mobility measurement configuration of the CSI-RS.
  • the method further includes: transmitting, to the terminal device, a measurement object configuration, where the measurement object configuration includes a mobility measurement configuration of the one or more CSI-RSs
  • the mobility measurement configuration of the CSI-RS further includes a second parameter of the synchronization signal block.
  • the mobility measurement configuration of the CSI-RS further includes parameters such as an index of the synchronization signal block, a CSI-RS, and whether the synchronization signal block is co-located, so as to determine a synchronization signal associated with the CSI-RS. Piece.
  • the first parameter of the synchronization signal block includes one or more of the following parameters: a frequency position of the synchronization signal block, and a subcarrier spacing of the synchronization signal block.
  • the sync signal block can be accurately received according to the first parameter of the sync signal block.
  • the second parameter of the synchronization signal block includes one or more of the following parameters: an index of the synchronization signal block, the CSI-RS, and whether the synchronization signal block is It is co-located.
  • the mobility measurement configuration of the CSI-RS further includes a serving cell identifier for determining time information of the measurement cell required by the terminal device.
  • the mobility measurement configuration of the CSI-RS includes a serving cell for determining time information of the measured cell required by the terminal device.
  • the identification is such that the terminal device communicates according to the indicated time information of the serving cell.
  • a communication apparatus which can implement the communication method in the first aspect or the third aspect described above.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a terminal device.
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the necessary programs (instructions) and/or data for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiver are included, the processor being coupled to the transceiver, the processor for executing a computer program or instructions to control the transceiver to receive information and Transmitting; when the processor executes the computer program or instructions, the processor is further configured to implement the above method.
  • the transceiver device can be a transceiver, a transceiver circuit, or an input/output interface.
  • the transceiver device is a transceiver circuit or an input/output interface.
  • the transmitting unit may be an output unit such as an output circuit or a communication interface; the receiving unit may be an input unit such as an input circuit or a communication interface.
  • the transmitting unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a communication apparatus which can implement the communication method in the second aspect or the fourth aspect described above.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a network device, and the foregoing method may be implemented by software, hardware, or by executing corresponding software through hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the programs (instructions) and data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiver are included, the processor being coupled to the transceiver, the processor for executing a computer program or instructions to control the transceiver to receive information and Transmitting; when the processor executes the computer program or instructions, the processor is further configured to implement the above method.
  • the transceiver device can be a transceiver, a transceiver circuit, or an input/output interface.
  • the transceiver device is a transceiver circuit or an input/output interface.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic structural view of a measurement object configuration in the prior art
  • FIG. 2 is a schematic structural diagram of a communication system according to the present application.
  • FIG. 3 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • 4a is a schematic structural diagram of a measurement object configuration according to an example of an embodiment of the present application.
  • FIG. 4b is a schematic structural diagram of another measurement object configuration according to an example of an embodiment of the present application.
  • 4c is a schematic structural diagram of still another measurement object configuration according to an example of an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of another communication method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another measurement object configuration according to an example of an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of still another measurement object configuration according to an example of an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of hardware of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of hardware of a network device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a communication system according to the present application.
  • the communication system may include at least one network device 100 (only one shown) and one or more terminal devices 200 connected to the network device 100.
  • Network device 100 can be a device that can communicate with terminal device 200.
  • the network device 100 can be any device having a wireless transceiving function. Including but not limited to: a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or network device in a future communication system, an access node in a WiFi system, and a wireless relay Node, wireless backhaul node, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a small station, a transmission reference point (TRP) or the like.
  • TRP transmission reference point
  • the terminal device 200 is a device with wireless transceiving function, which can be deployed on land, including indoor or outdoor, handheld, wearable or on-board; it can also be deployed on the water surface, such as a ship, etc.; it can also be deployed in the air, such as an airplane. , balloons and satellites.
  • the terminal device may be a mobile phone, a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • a terminal device may also be referred to as a user equipment (UE), an access terminal device, a UE unit, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a terminal, a wireless communication device, and a UE. Agent or UE device, etc.
  • UE user equipment
  • Agent or UE device etc.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the present application provides a communication method and apparatus for improving the accuracy of receiving an associated synchronization signal block by including parameters of a synchronization signal block associated with a CSI-RS in a measurement object configuration or a mobility measurement configuration of a CSI-RS. .
  • FIG. 3 is a schematic flowchart diagram of a communication method according to an embodiment of the present application. among them:
  • the network device sends a measurement object configuration to the terminal device.
  • the terminal device receives the measurement object configuration.
  • the measurement object configuration includes a mobility measurement configuration of one or more CSI-RSs, and a first parameter of a synchronization signal block associated with the CSI-RS; the measurement object configured to instruct the terminal device to perform mobility measurement.
  • the terminal device sends a mobility measurement result to the network device.
  • the network device receives the mobility measurement result.
  • the network device configures the CSI-RS for the mobility measurement of the terminal device.
  • the configured measurement object includes a mobility measurement configuration of one or more CSI-RSs, and some parameters common to the mobility measurement configurations of all CSI-RSs included in the measurement object.
  • the CSI-RS mobility measurement configuration includes a CSI-RS resource index (csi-rs-index), an associated synchronization signal block index (ssb-index), and an associated synchronization signal block co-location (isQuasiColocated). Scrambling code sequences, etc. Whether or not the co-location with the associated sync signal block refers to whether it has a quasi co-location or a quasi co-located (QCL) relationship with the CSI-RS.
  • the shared parameter includes a first parameter of a synchronization signal block associated with the CSI-RS.
  • the shared parameter may also include a CSI-RS reference frequency location (refFreqCSI-RS).
  • the first parameter of the synchronization signal block includes one or more of the following parameters: a frequency position of the synchronization signal block (ssbFrequency), and a subcarrier spacing of the synchronization signal block (ssbSubcarrierSpacing).
  • the first parameter of the synchronization signal block associated with the CSI-RS is configured in the shared parameter of the measurement object, that is, the first parameter of the synchronization signal block associated with the one or more CSI-RSs is the same.
  • the one or more CSI-RSs may be associated with the same sync signal block or associated with different sync signal blocks, the first parameters of the one or more sync signal blocks being the same.
  • the index of the associated sync signal block included in the mobility measurement configuration of the CSI-RS and whether it is co-located with the associated sync signal block may be referred to as the second parameter of the sync signal block associated with the CSI-RS.
  • a sync signal block associated with the CSI-RS can be identified based on the second parameter.
  • the measurement object configuration can take the form of a structure, and the example structure is as follows:
  • the measurement object configuration (MeasObjectNR) includes a frequency position and a subcarrier spacing of all CSI-RS associated synchronization signal blocks included in the measurement object configuration.
  • a CSI-RS reference frequency location and reference signal configuration is also included.
  • the measurement object configuration also includes one or more CSI-RS mobility measurement configurations (CSI-RS-Resource-Mobility).
  • the terminal device can accurately receive the synchronization signal block associated with the CSI-RS according to the first parameter of the synchronization signal block included in the measurement object configuration. Further, if the CSI-RS has a QCL relationship with the synchronization signal block, the terminal device may receive the CSI-RS according to parameters of the associated synchronization signal block, such as Doppler spread, beam direction, and the like.
  • the time information of the neighboring cell may be determined by receiving the synchronization signal block associated with the CSI-RS (the synchronization signal block of the neighboring cell) The time information of the neighboring cell is carried, and the CSI-RS sent by the neighboring cell is received based on the time information.
  • the terminal device performs mobility measurement according to the mobility measurement configuration of the CSI-RS. Specifically, one or more CSI-RSs are received according to the mobility measurement configuration of one or more CSI-RSs, and the one or more CSI-RSs are measured to obtain a mobility measurement result. And transmitting the mobility measurement result to the network device.
  • the parameter shared by the measurement object configuration includes a frequency position of a synchronization signal block associated with the CSI-RS. And subcarrier spacing. That is, all the CSI-RS associated sync signal blocks included in the measurement object have the same frequency position and subcarrier spacing.
  • a schematic structural diagram of another measurement object configuration of the embodiment of the present application shown in FIG. 4b where the parameter shared by the measurement object configuration includes a synchronization signal block associated with the CSI-RS.
  • the frequency location, the subcarrier spacing parameter of the synchronization signal block associated with the CSI-RS is located in the mobility measurement configuration of each CSI-RS. That is, the frequency positions of all the CSI-RS-associated synchronization signal blocks included in the measurement object are the same, and the sub-carrier intervals of the synchronization signal blocks associated with the plurality of CSI-RSs may be different.
  • a schematic structural diagram of another measurement object configuration in the example of the embodiment of the present application shown in FIG. 4c where the parameter shared by the measurement object configuration includes a synchronization signal block associated with the CSI-RS.
  • the subcarrier spacing, the frequency location parameter of the synchronization signal block associated with the CSI-RS is located in the mobility measurement configuration of each CSI-RS. That is, the subcarrier spacings of all CSI-RS associated synchronization signal blocks included in the measurement object are the same, and the frequency positions of the synchronization signal blocks associated with the plurality of CSI-RSs may be different.
  • the first parameter of the synchronization signal block includes two parameters, and the parameter shared by the measurement object configuration includes only one first parameter, and the other first parameter needs to be separately configured.
  • the first parameter of the separate configuration may be a cell level configuration.
  • a cell CSI-RS measurement configuration-1 (CSI-RSCellMobility) includes a plurality of CSI-RS mobility measurement configurations (CSI-RS-Resource-Mobility) and a cell-shared parameter configuration.
  • the parameter configuration shared by the cell includes a cell identifier (cellId) and a CSI-RS measurement bandwidth (csi-rs-Measurement BW).
  • the parameter configuration shared by the cell may include the other first parameter.
  • the parameter configuration shared by the cell may include all CSI-RS associated synchronization signal blocks of the cell.
  • Subcarrier spacing The signaling overhead of the configuration can be saved through a shared configuration.
  • the first parameter of the synchronization signal block includes two parameters, and the parameter shared by the measurement object configuration includes only one first parameter, and the other first parameter may also be configured in the CSI-RS.
  • the parameter shared by the measurement object configuration includes the subcarrier spacing of all CSI-RS associated synchronization signal blocks included in the measurement object, and the CSI-RS associated synchronization signal block may be included in the mobility measurement configuration of the CSI-RS.
  • the frequency position of the CSI-RS may be included in the mobility measurement configuration of the CSI-RS, or the parameter shared by the measurement object configuration includes the frequency position of the synchronization signal block associated with all CSI-RSs included in the measurement object.
  • the subcarrier spacing of the signal block includes the subcarrier spacing of the signal block.
  • the communication method by including the parameters of the synchronization signal block associated with the CSI-RS in the measurement object configuration, the accuracy of receiving the associated synchronization signal block is improved, and the measurement object configuration is synchronized.
  • the shared configuration of the parameters of the signal block can save the signaling overhead of the configuration.
  • FIG. 5 is a schematic flowchart diagram of another communication method according to an embodiment of the present application. among them:
  • the network device sends a mobility measurement configuration of one or more CSI-RSs to the terminal device.
  • the terminal device receives the mobility measurement configuration of the one or more CSI-RSs.
  • the mobility measurement configuration of the CSI-RS includes a first parameter of a synchronization signal block associated with the CSI-RS; the mobility measurement configuration of the CSI-RS is configured to instruct a terminal device to perform mobility measurement.
  • the terminal device sends a mobility measurement result to the network device.
  • the network device receives the mobility measurement result.
  • the network device configures the CSI-RS for the mobility measurement of the terminal device.
  • the network device transmits a mobility measurement configuration of one or more CSI-RSs to the terminal device, or the network device transmits a measurement object configuration to the terminal device, the measurement object configuration including a mobility measurement configuration of the one or more CSI-RSs.
  • the mobility measurement configuration of the CSI-RS includes a first parameter of a synchronization signal block associated with the CSI-RS.
  • the first parameter of the synchronization signal block includes one or more of the following parameters: a frequency position of the synchronization signal block, and a subcarrier spacing of the synchronization signal block.
  • the first parameter of the synchronization signal block associated with the CSI-RS included in the mobility measurement configuration of the different CSI-RS may be the same or different.
  • FIG. 6 is a schematic structural diagram of still another measurement object configuration according to an example of the embodiment of the present application.
  • the mobility measurement configuration 1 of the CSI-RS includes a frequency position and a subcarrier spacing of a synchronization signal block associated with the CSI-RS.
  • the mobility measurement configuration of other CSI-RSs is similar.
  • the mobility measurement configuration of the CSI-RS may further include a CSI-RS resource index, an associated synchronization signal block index, whether and associated synchronization signal block co-location, and a scrambling code sequence.
  • the associated synchronization signal block index, whether and the associated synchronization signal block co-location may be referred to as a second parameter of the synchronization signal block associated with the CSI-RS.
  • the measurement object configuration or the mobility measurement configuration of the CSI-RS can be expressed in the form of a structure.
  • An example of its structure is as follows:
  • the ssbFrequency field is a new frequency position for indicating a synchronization signal block associated with the CSI-RS resource (for example, the frequency position is 2.1 GHz).
  • the subcarrierSpacing field is a new subcarrier spacing used to indicate the associated sync block (eg, subcarrier spacing is 30 kHz).
  • the terminal device can accurately receive the synchronization signal block associated with the CSI-RS according to the first parameter of the synchronization signal block included in the mobility measurement configuration of the CSI-RS. Further, if the CSI-RS has a QCL relationship with the synchronization signal block, the terminal device may receive the CSI-RS according to parameters of the associated synchronization signal block, such as Doppler spread, beam direction, and the like.
  • the time information of the neighboring cell may be determined by receiving the synchronization signal block associated with the CSI-RS.
  • the synchronization signal block of the cell carries time information of the neighboring cell, and then receives the CSI-RS transmitted by the neighboring cell based on the time information.
  • the terminal device performs mobility measurement according to the mobility measurement configuration of the CSI-RS. Specifically, one or more CSI-RSs are received according to the mobility measurement configuration of one or more CSI-RSs, and the one or more CSI-RSs are measured to obtain a mobility measurement result. And transmitting the mobility measurement result to the network device.
  • the shared configuration of one cell may include one of the first parameters of all CSI-RS associated synchronization signal blocks of the cell, and the mobility measurement configuration of each CSI-RS includes the CSI. Another first parameter of the sync signal block associated with the RS.
  • the shared configuration of the cell CSI-RS measurement configuration 1 includes a cell identity, a CSI-RS measurement bandwidth, and may also include a frequency location of all CSI-RS associated synchronization signal blocks of the cell, that is, all CSI-RSs of the cell.
  • the frequency location of the associated sync signal block is the same, the mobility measurement configuration of each CSI-RS of the cell includes a subcarrier spacing of the synchronization signal block associated with the CSI-RS; or the common of the cell CSI-RS measurement configuration 1 Configuring a subcarrier spacing including all CSI-RS associated synchronization signal blocks of the cell, that is, the subcarrier spacing of all CSI-RS associated synchronization signal blocks of the cell is the same, and mobility measurement of each CSI-RS of the cell
  • the configuration includes a frequency location of a sync signal block associated with the CSI-RS.
  • the signaling overhead of the configuration can be saved through a shared configuration.
  • the shared parameter configuration of the cell includes synchronization of all CSI-RS associations of the cell.
  • the first parameter of the signal block including the frequency position and subcarrier spacing. That is, the frequency positions and subcarrier spacings of the synchronization signal blocks associated with all CSI-RSs of the cell are respectively the same.
  • the signaling overhead of the configuration can be saved through a shared configuration.
  • an accuracy of receiving an associated synchronization signal block is improved by including a parameter of a synchronization signal block associated with a CSI-RS in a mobility measurement configuration of a CSI-RS.
  • the terminal device determines the timing of the CSI-RS for the mobility measurement of the neighboring cell according to the time information of the current serving cell, thereby being able to correctly receive the CSI- RS.
  • the terminal device may have multiple serving cells and the time information of different serving cells is different.
  • an LTE cell working in a low frequency band
  • an NR cell working in a high frequency band
  • the cell and the NR cell, and the timing of the two is different.
  • the mobility measurement configuration of the existing CSI-RS does not include indication information to indicate which serving cell time is specifically indicated.
  • the mobility measurement configuration of the CSI-RS further includes determining the required measurement cell of the terminal device.
  • the service cell identity of the time information Specifically, a field is added in the CSI-RS resource configuration message currently used for mobility measurement to indicate that the time of the CSI-RS is based on which serving cell of the terminal device.
  • the specific signaling is as follows:
  • the new SyncPCI field is used to indicate the identity of the serving cell for the time reference of the CSI-RS resource.
  • the network device may configure a common SyncPCI field for all CSI-RS resources in one measurement object, or may configure a common SyncPCI field for all CSI-RS resources of the same cell in the foregoing measurement object, or may be Each CSI-RS resource in the aforementioned measurement object is configured with a SyncPCI field.
  • the embodiment of the present application further provides a communication device 1000, which can be applied to the communication method shown in FIG.
  • the communication device 1000 may be the terminal device 200 as shown in FIG. 2 or may be a component (for example, a chip) applied to the terminal device 200.
  • the communication device 1000 includes: a receiving unit 11 and a transmitting unit 12; wherein:
  • the receiving unit 11 is configured to receive a measurement object configuration sent by the network device, where the measurement object configuration includes a mobility measurement configuration of one or more channel state information reference signals CSI-RS, and a synchronization signal associated with the CSI-RS a first parameter of the block; the measurement object configured to instruct the terminal device to perform mobility measurement.
  • the measurement object configuration includes a mobility measurement configuration of one or more channel state information reference signals CSI-RS, and a synchronization signal associated with the CSI-RS a first parameter of the block; the measurement object configured to instruct the terminal device to perform mobility measurement.
  • the sending unit 12 is configured to send a mobility measurement result to the network device.
  • the embodiment of the present application further provides a communication device 2000, which can be applied to the communication method shown in FIG.
  • the communication device 2000 may be the network device 100 as shown in FIG. 2, or may be a component (for example, a chip) applied to the network device 100.
  • the communication device 2000 includes: a transmitting unit 21 and a receiving unit 22; wherein:
  • a sending unit 21 configured to send, to the terminal device, a measurement object configuration, where the measurement object configuration includes a mobility measurement configuration of one or more channel state information reference signals CSI-RS, and a synchronization signal block associated with the CSI-RS
  • the first parameter; the measurement object is configured to instruct the terminal device to perform mobility measurement.
  • the receiving unit 22 is configured to receive a mobility measurement result sent by the terminal device.
  • the embodiment of the present application further provides a communication device 3000, which can be applied to the communication method shown in FIG. 5 described above.
  • the communication device 3000 may be the terminal device 200 as shown in FIG. 2 or may be a component (for example, a chip) applied to the terminal device 200.
  • the communication device 3000 includes: a receiving unit 31 and a transmitting unit 32; wherein:
  • the receiving unit 31 is configured to receive a mobility measurement configuration of one or more channel state information reference signals CSI-RS sent by the network device, where the mobility measurement configuration of the CSI-RS includes a synchronization signal associated with the CSI-RS The first parameter of the block; the mobility measurement of the CSI-RS is configured to instruct the terminal device to perform mobility measurement.
  • CSI-RS channel state information reference signals
  • the sending unit 32 is configured to send a mobility measurement result to the network device.
  • the receiving unit 31 is further configured to receive a measurement object configuration sent by the network device, where the measurement object configuration includes a mobility measurement configuration of the one or more CSI-RSs, and further includes The second parameter of the synchronization signal block.
  • the embodiment of the present application further provides a communication device 4000, which can be applied to the communication method shown in FIG. 5 described above.
  • the communication device 4000 may be the network device 100 as shown in FIG. 2 or may be a component (for example, a chip) applied to the network device 100.
  • the communication device 4000 includes a transmitting unit 41 and a receiving unit 42.
  • a sending unit 41 configured to send, to the terminal device, a mobility measurement configuration of one or more channel state information reference signals CSI-RS, where the mobility measurement configuration information of the CSI-RS includes a synchronization signal associated with the CSI-RS
  • the first parameter of the block; the mobility measurement of the CSI-RS is configured to instruct the terminal device to perform mobility measurement.
  • the receiving unit 42 is configured to receive a mobility measurement result sent by the terminal device.
  • the sending unit 41 is further configured to send a measurement object configuration to the terminal device, where the measurement object configuration includes a mobility measurement configuration of the one or more CSI-RSs, and further includes the The second parameter of the sync signal block.
  • a communication device is also provided in the embodiment of the present application, and the communication device is configured to execute the foregoing communication method. Some or all of the above communication methods may be implemented by hardware or by software.
  • the communication device may be a chip or an integrated circuit when implemented.
  • the communication device when part or all of the communication methods of the foregoing embodiments are implemented by software, the communication device includes: a memory for storing a program; a processor, a program for executing the memory storage, when the program is executed, The communication device can be implemented to implement the communication method provided by the above embodiments.
  • the above memory may be a physically separate unit or may be integrated with the processor.
  • the communication device may also include only the processor.
  • the memory for storing the program is located outside the communication device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • Fig. 12 is a block diagram showing the structure of a simplified terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input/output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna and a radio frequency circuit having a transceiving function can be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transceiving unit) of the terminal device, and a processor having a processing function is regarded as a processing unit of the terminal device.
  • the terminal device includes a receiving unit 51, a processing unit 52, and a transmitting unit 53.
  • the receiving unit 51 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 53 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the receiving unit 51 is configured to perform the function of the terminal device in step S101 in the embodiment shown in FIG. 3; and the transmitting unit 53 is configured to perform the step S102 in the embodiment shown in FIG. The function of the terminal device.
  • the receiving unit 51 is configured to perform the function of the terminal device in step S201 in the embodiment shown in FIG. 5; and the transmitting unit 53 is configured to perform step S202 in the embodiment shown in FIG. The function of the terminal device.
  • FIG 13 shows a schematic diagram of the structure of a simplified network device.
  • the network device includes a radio frequency signal transceiving and converting portion and a 62 portion, and the radio frequency signal transceiving and converting portion further includes a receiving unit 61 portion and a transmitting unit 63 portion (also collectively referred to as a transceiving unit).
  • the RF signal transmission and reception and conversion part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals; 62 parts are mainly used for baseband processing and control of network equipment.
  • the receiving unit 61 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 63 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the portion 62 is typically the control center of the network device, and may generally be referred to as a processing unit for controlling the network device to perform the steps performed by the network device described above with respect to FIG. 3 or FIG. For details, please refer to the description of the relevant part above.
  • the 62 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and network devices control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the transmitting unit 63 is configured to perform the function of the network device in step S101 in the embodiment shown in FIG. 3; and the receiving unit 61 is configured to execute the network device in step S102 in the embodiment shown in FIG. The function.
  • the sending unit 63 is configured to perform the function of the network device in step S201 in the embodiment shown in FIG. 5; and the receiving unit 61 is configured to perform step S202 in the embodiment shown in FIG. The function of the network device.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner.
  • multiple units or components may be combined or integrated into another system, or some features may be ignored, or carried out.
  • the mutual coupling, or direct coupling, or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted over a computer readable storage medium.
  • the computer instructions can be routed from a website site, computer, server or data center to another via wire (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.)
  • wire eg coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg infrared, wireless, microwave, etc.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the available medium may be a read-only memory (ROM), or a random access memory (RAM), or a magnetic medium such as a floppy disk, a hard disk, a magnetic tape, a magnetic disk, or an optical medium, for example, A digital versatile disc (DVD), or a semiconductor medium, such as a solid state disk (SSD) or the like.
  • ROM read-only memory
  • RAM random access memory
  • magnetic medium such as a floppy disk, a hard disk, a magnetic tape, a magnetic disk, or an optical medium, for example, A digital versatile disc (DVD), or a semiconductor medium, such as a solid state disk (SSD) or the like.
  • SSD solid state disk

Abstract

一种通信方法及装置。该方法包括:接收网络设备发送的测量对象配置,该测量对象配置包括一个或多个CSI-RS的移动性测量配置、以及与该CSI-RS关联的同步信号块的第一参数;该测量对象配置用于指示终端设备进行移动性测量;或接收网络设备发送的一个或多个CSI-RS的移动性测量配置,该CSI-RS的移动性测量配置包括与该CSI-RS关联的同步信号块的第一参数;该CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;向该网络设备发送移动性测量结果。还公开了相应的装置。通过在测量对象配置或CSI-RS的移动性测量配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及移动性测量技术。
背景技术
移动性测量是无线通信网络的一个重要环节。终端设备可以通过进行移动性测量获得本小区以及邻小区的信号质量,并且将相关的测量结果上报给网络设备。网络设备根据终端设备上报的测量结果确定终端设备是否进行小区切换。
在下一代无线通信网络(new radio,NR)中,网络设备可以独立地为终端设备配置同步信号块(synchronization signal block,SSB)或者信道状态信息参考信号(channel state information reference signal,CSI-RS)来进行移动性测量。
网络设备可以为终端设备配置一个或者多个测量对象,如图1所示的现有技术中的测量对象配置的结构示意图。在每个测量对象中包含网络设备为终端设备配置的用于移动性测量的同步信号块时,会指示同步信号块所在的频率位置、子载波间隔等。同样地,网络设备在为终端设备配置用于移动性测量的CSI-RS资源时,也会指示CSI-RS的频率位置、子载波间隔等。此外,网络设备还可以为每个CSI-RS资源配置一个关联的同步信号块,并且指示CSI-RS和其关联的同步信号块是否是准同位或准共址的(quasi co-located,QCL)。该关联的同步信号块可以是前述配置的用于移动性测量的同步信号块。如果两个信号是QCL的,则说明两个信号的相关参数例如多普勒拓展、波束方向等是一样的。当终端设备接收某个CSI-RS信号进行移动性测量时,如果该CSI-RS资源有配置关联的同步信号块,并且该CSI-RS资源和其关联的同步信号块是QCL的,则终端设备根据关联的同步信号块的参数例如多普勒拓展、波束方向等来接收该CSI-RS信号。
网络设备可以在测量对象中只配置同步信号块或者只配置CSI-RS用于移动性测量,也可以二者都配置用于移动性测量。
当网络设备为终端设备只配置了CSI-RS用于移动性测量,而没有配置同步信号块用于移动性测量时,终端设备不知道和前述CSI-RS关联的同步信号块的相关参数信息例如频率位置,子载波间隔,因此终端设备需要盲检关联的同步信号块,加大了终端设备端接收同步信号块的复杂度。
发明内容
本申请提供一种通信方法及装置,以提高接收关联的同步信号块的准确率。
第一方面,提供了一种通信方法,包括:接收网络设备发送的测量对象配置,所述测量对象配置包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述测量对象配置用于指示终端设备进行移动性测量;以及向所述网络设备发送移动性测量结果。
在该方面中,通过在测量对象配置中包括与CSI-RS关联的同步信号块的参数,提高了接 收关联的同步信号块的准确率,且在测量对象配置进行同步信号块的参数的共用的配置,可以节省配置的信令开销。
第二方面,提供了一种通信方法,包括:向终端设备发送测量对象配置,所述测量对象配置包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述测量对象配置用于指示终端设备进行移动性测量;以及接收所述终端设备发送的移动性测量结果。
在该方面中,通过在测量对象配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率。
结合第一方面或第二方面,在一种可能的实现方式中,所述CSI-RS的移动性测量配置还包括与所述CSI-RS关联的同步信号块的第二参数。
在该实现方式中,该CSI-RS的移动性测量配置中还包括同步信号块的索引、CSI-RS和同步信号块是否是共址的等参数,以便于确定与CSI-RS关联的同步信号块。
结合第一方面或第二方面,在另一种可能的实现方式中,所述一个或多个CSI-RS关联的同步信号块的第一参数相同。
在该实现方式中,配置时,只需在测量对象配置中配置一个同步信号块的第一参数,该一个或多个CSI-RS关联的同步信号块的第一参数相同。
第三方面,提供了一种通信方法,包括:接收网络设备发送的一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;以及向所述网络设备发送移动性测量结果。
在该方面中,通过在CSI-RS的移动性测量配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率。
结合第三方面,在一种可能的实现方式中,所述方法还包括:接收所述网络设备发送的测量对象配置,所述测量对象配置包括所述一个或多个CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置还包括所述同步信号块的第二参数。
在该实现方式中,该CSI-RS的移动性测量配置中还包括同步信号块的索引、CSI-RS和同步信号块是否是共址的等参数,以便于确定与CSI-RS关联的同步信号块。
第四方面,提供了一种通信方法,包括:向终端设备发送一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;以及接收所述终端设备发送的移动性测量结果。
在该方面中,通过在CSI-RS的移动性测量配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率。
结合第四方面,在一种可能的实现方式中,所述方法还包括:向所述终端设备发送测量对象配置,所述测量对象配置包括所述一个或多个CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置还包括所述同步信号块的第二参数。
在该实现方式中,该CSI-RS的移动性测量配置中还包括同步信号块的索引、CSI-RS和同步信号块是否是共址的等参数,以便于确定与CSI-RS关联的同步信号块。
结合以上各方面,在一种可能的实现方式中,所述同步信号块的第一参数包括以下一个或多个参数:同步信号块的频率位置、同步信号块的子载波间隔。
在该实现方式中,根据该同步信号块的第一参数可以准确地接收同步信号块。
结合以上各方面,在另一种可能的实现方式中,所述同步信号块的第二参数包括以下一个或多个参数:同步信号块的索引、所述CSI-RS和所述同步信号块是否是共址的。
结合以上各方面,在又一种可能的实现方式中,所述CSI-RS的移动性测量配置还包括用于确定所述终端设备所需测量小区的时间信息的服务小区标识。
在该实现方式中,若当前服务小区有多个,且各个服务小区的时间信息不相同,在CSI-RS的移动性测量配置中包括用于确定终端设备所需测量小区的时间信息的服务小区标识,从而终端设备根据所指示的服务小区的时间信息进行通信。
第五方面,提供了一种通信装置,可以实现上述第一方面或第三方面中的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第六方面,提供了一种通信装置,可以实现上述第二方面或第四方面中的通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者网络设备,可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括执行上述方法中的相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发 送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为终端设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为现有技术中的测量对象配置的结构示意图;
图2为本申请涉及的一种通信系统的结构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4a为本申请实施例示例的一种测量对象配置的结构示意图;
图4b为本申请实施例示例的另一种测量对象配置的结构示意图;
图4c为本申请实施例示例的又一种测量对象配置的结构示意图;
图5为本申请实施例提供的另一种通信方法的流程示意图;
图6为本申请实施例示例的又一种测量对象配置的结构示意图;
图7为本申请实施例示例的又一种测量对象配置的结构示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图;
图10为本申请实施例提供的又一种通信装置的结构示意图;
图11为本申请实施例提供的又一种通信装置的结构示意图;
图12为本申请实施例提供的一种终端设备的硬件结构示意图;
图13为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
图2给出了本申请涉及的一种通信系统的结构示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备200是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能 的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
本申请提供了一种通信方法及装置,通过在测量对象配置或CSI-RS的移动性测量配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率。
请参阅图3,图3为本申请实施例提供的一种通信方法的流程示意图。其中:
S101、网络设备向终端设备发送测量对象配置。终端设备接收该测量对象配置。该测量对象配置包括一个或多个CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述测量对象配置用于指示终端设备进行移动性测量。
S102、终端设备向网络设备发送移动性测量结果。网络设备接收该移动性测量结果。
在本实施例中,网络设备给终端设备配置CSI-RS进行移动性测量。配置的测量对象包括一个或多个CSI-RS的移动性测量配置、以及该测量对象中所包含的所有CSI-RS的移动性测量配置共用的一些参数。其中,CSI-RS的移动性测量配置中包括CSI-RS资源索引(csi-rs-index)、关联的同步信号块索引(ssb-index)、是否和关联的同步信号块共址(isQuasiColocated)以及扰码序列等。其中,是否和关联的同步信号块共址是指是否与CSI-RS具有准共址或准同位关系(quasi co-located,QCL)。在本实施例中,该共用的参数包括与CSI-RS关联的同步信号块的第一参数。此外,该共用的参数还可以包括CSI-RS参考频率位置(refFreqCSI-RS)。
其中,该同步信号块的第一参数包括以下一个或多个参数:同步信号块的频率位置(ssbFrequency)、同步信号块的子载波间隔(ssbSubcarrierSpacing)。本实施例中,与CSI-RS关联的同步信号块的第一参数配置在测量对象的共用参数中,即该一个或多个CSI-RS关联的同步信号块的第一参数相同。该一个或多个CSI-RS可以关联同一个同步信号块,或关联不同的同步信号块,这一个或多个同步信号块的第一参数相同。
此外,在CSI-RS的移动性测量配置中包含的关联的同步信号块的索引、以及是否和关联的同步信号块共址,可以称为与CSI-RS关联的同步信号块的第二参数。根据第二参数可以识别与CSI-RS关联的同步信号块。
测量对象配置可以采用结构体的形式,示例的结构体如下:
Figure PCTCN2019077395-appb-000001
Figure PCTCN2019077395-appb-000002
其中,测量对象配置(MeasObjectNR)包括该测量对象配置包括的所有CSI-RS关联的同步信号块的频率位置和子载波间隔。可选地,还包括CSI-RS参考频率位置和参考信号配置。该测量对象配置还包括一个或多个CSI-RS的移动性测量配置(CSI-RS-Resource-Mobility)。
终端设备根据测量对象配置中包含的同步信号块的第一参数,可以准确地接收与CSI-RS关联的同步信号块。进一步地,如果CSI-RS与该同步信号块具有QCL关系,终端设备可以根据关联的同步信号块的参数例如多普勒拓展、波束方向等来接收该CSI-RS。此外,在非同步的网络中,终端设备根据测量对象配置测量邻小区的CSI-RS时,可以通过接收该CSI-RS关联的同步信号块来确定邻小区的时间信息(邻小区的同步信号块携带了邻小区的时间信息),进而基于该时间信息来接收邻小区发送的CSI-RS。
终端设备根据CSI-RS的移动性测量配置进行移动性测量。具体地,根据一个或多个 CSI-RS的移动性测量配置接收一个或多个CSI-RS,对该一个或多个CSI-RS进行测量,得到移动性测量结果。并向网络设备发送该移动性测量结果。
在一些可行的实施例中,例如图4a所示的本申请实施例示例的一种测量对象配置的结构示意图,该测量对象配置共用的参数中包含与CSI-RS关联的同步信号块的频率位置和子载波间隔。即该测量对象所包含的所有的CSI-RS关联的同步信号块的频率位置和子载波间隔都相同。
在另一些可行的实施例中,例如图4b所示的本申请实施例示例的另一种测量对象配置的结构示意图,该测量对象配置共用的参数中包含与CSI-RS关联的同步信号块的频率位置,与CSI-RS关联的同步信号块的子载波间隔参数位于每个CSI-RS的移动性测量配置中。即该测量对象所包含的所有的CSI-RS关联的同步信号块的频率位置相同,多个CSI-RS关联的同步信号块的子载波间隔可以不同。
在又一些可行的实施例中,例如图4c所示的本申请实施例示例的又一种测量对象配置的结构示意图,该测量对象配置共用的参数中包含与CSI-RS关联的同步信号块的子载波间隔,与CSI-RS关联的同步信号块的频率位置参数位于每个CSI-RS的移动性测量配置中。即该测量对象所包含的所有的CSI-RS关联的同步信号块的子载波间隔相同,多个CSI-RS关联的同步信号块的频率位置可以不同。
在一些可行的实施例中,同步信号块的第一参数包括两个参数,而在测量对象配置共用的参数只包括一个第一参数,对于另一个第一参数需要单独配置。该单独配置的第一参数可以是小区级配置。例如,图4a~图4c中,小区CSI-RS测量配置-1(CSI-RSCellMobility)中包括多个CSI-RS的移动性测量配置(CSI-RS-Resource-Mobility)和小区共用的参数配置。该小区共用的参数配置包括小区标识(cellId)和CSI-RS测量带宽(csi-rs-MeasurementBW)等。若该小区包含的一个或多个CSI-RS关联的同步信号块的另一个第一参数相同,则该小区共用的参数配置可以包含该另一个第一参数。例如,测量对象配置共用的参数包含该测量对象包含的所有CSI-RS关联的同步信号块的子载波间隔,则该小区共用的参数配置可以包含该小区的所有CSI-RS关联的同步信号块的频率位置;或者测量对象配置共用的参数包含该测量对象包含的所有CSI-RS关联的同步信号块的频率位置,则该小区共用的参数配置可以包含该小区的所有CSI-RS关联的同步信号块的子载波间隔。通过共用的配置可以节省配置的信令开销。
在另一些可行的实施例中,同步信号块的第一参数包括两个参数,而在测量对象配置共用的参数只包括一个第一参数,对于另一个第一参数也可以配置在CSI-RS的移动性测量配置中。例如,测量对象配置共用的参数包含该测量对象包含的所有CSI-RS关联的同步信号块的子载波间隔,则在CSI-RS的移动性测量配置中可以包含该CSI-RS关联的同步信号块的频率位置;或者测量对象配置共用的参数包含该测量对象包含的所有CSI-RS关联的同步信号块的频率位置,则在CSI-RS的移动性测量配置中可以包含该CSI-RS关联的同步信号块的子载波间隔。
根据本申请实施例提供的一种通信方法,通过在测量对象配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率,且在测量对象配置进行同步信号块的参数的共用的配置,可以节省配置的信令开销。
请参阅图5,图5为本申请实施例提供的另一种通信方法的流程示意图。其中:
S201、网络设备向终端设备发送一个或多个CSI-RS的移动性测量配置。终端设备接收该一个或多个CSI-RS的移动性测量配置。该CSI-RS的移动性测量配置包括与所述CSI-RS 关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量。
S202、终端设备向网络设备发送移动性测量结果。网络设备接收该移动性测量结果。
在本实施例中,网络设备给终端设备配置CSI-RS进行移动性测量。网络设备向终端设备发送一个或多个CSI-RS的移动性测量配置,或者网络设备向终端设备发送测量对象配置,该测量对象配置包括该一个或多个CSI-RS的移动性测量配置。CSI-RS的移动性测量配置包括与该CSI-RS关联的同步信号块的第一参数。该同步信号块的第一参数包括以下一个或多个参数:同步信号块的频率位置、同步信号块的子载波间隔。不同的CSI-RS的移动性测量配置包含的与CSI-RS关联的同步信号块的第一参数可以相同,也可以不同。
如图6所示的本申请实施例示例的又一种测量对象配置的结构示意图,CSI-RS的移动性测量配置1中包含与该CSI-RS关联的同步信号块的频率位置和子载波间隔,其它CSI-RS的移动性测量配置类似。此外,CSI-RS的移动性测量配置还可以包括CSI-RS资源索引、关联的同步信号块索引、是否和关联的同步信号块共址、以及扰码序列等。其中,关联的同步信号块索引、是否和关联的同步信号块共址可以称为与CSI-RS关联的同步信号块的第二参数。
测量对象配置或CSI-RS的移动性测量配置可以采用结构体的形式表示。其结构体示例如下:
Figure PCTCN2019077395-appb-000003
其中,ssbFrequency字段是新增的用于指示和该CSI-RS资源关联的同步信号块的频率位置(例如频率位置是2.1GHz)。subcarrierSpacing字段是新增的用于指示关联的同步信号块的子载波间隔(例如子载波间隔为30kHz)。
终端设备根据CSI-RS的移动性测量配置中包含的同步信号块的第一参数,可以准确地接收与CSI-RS关联的同步信号块。进一步地,如果CSI-RS与该同步信号块具有QCL关系,终端设备可以根据关联的同步信号块的参数例如多普勒拓展、波束方向等来接收该CSI-RS。此外,在非同步的网络中,终端设备根据CSI-RS的移动性测量配置测量邻小区的CSI-RS时, 可以通过接收该CSI-RS关联的同步信号块来确定邻小区的时间信息(邻小区的同步信号块携带了邻小区的时间信息),进而基于该时间信息来接收邻小区发送的CSI-RS。
终端设备根据CSI-RS的移动性测量配置进行移动性测量。具体地,根据一个或多个CSI-RS的移动性测量配置接收一个或多个CSI-RS,对该一个或多个CSI-RS进行测量,得到移动性测量结果。并向网络设备发送该移动性测量结果。
在一些可行的实施例中,也可以是一个小区的共用的配置包括该小区的所有CSI-RS关联的同步信号块的其中一个第一参数,每个CSI-RS的移动性测量配置包括该CSI-RS关联的同步信号块的另一个第一参数。例如,小区CSI-RS测量配置1的共用的配置包括小区标识、CSI-RS测量带宽,还可以包括该小区的所有CSI-RS关联的同步信号块的频率位置,即该小区的所有CSI-RS关联的同步信号块的频率位置相同,该小区的每个CSI-RS的移动性测量配置包括与该CSI-RS关联的同步信号块的子载波间隔;或者小区CSI-RS测量配置1的共用的配置包括该小区的所有CSI-RS关联的同步信号块的子载波间隔,即该小区的所有CSI-RS关联的同步信号块的子载波间隔相同,该小区的每个CSI-RS的移动性测量配置包括与该CSI-RS关联的同步信号块的频率位置。通过共用的配置可以节省配置的信令开销。
在另一些可行的实施例中,如图7所示的本申请实施例示例的又一种测量对象配置的结构示意图,该小区的共用的参数配置中包括该小区的所有CSI-RS关联的同步信号块的第一参数,包括频率位置和子载波间隔。即该小区的所有CSI-RS关联的同步信号块的频率位置和子载波间隔均分别相同。通过共用的配置可以节省配置的信令开销。
根据本申请实施例提供的一种通信方法,通过在CSI-RS的移动性测量配置中包括与CSI-RS关联的同步信号块的参数,提高了接收关联的同步信号块的准确率。
在又一个实施例中,考虑同步网络的情形,也即终端设备根据当前服务小区的时间信息来确定邻小区的用于移动性测量的CSI-RS的时间(timing),进而能够正确接收CSI-RS。但是在有些场景下,终端设备可能有多个服务小区并且不同服务小区的时间信息不相同。例如在非独立组网的NR网络中,LTE小区(工作在低频频段)和NR小区(工作在高频频段)通过双连接的方式工作,此时终端设备的服务小区有两个,也即LTE小区和NR小区,并且二者时间(timing)不同。但是,现有的CSI-RS的移动性测量配置中没有包含指示信息来指示具体指示以哪个服务小区的时间为基准。为了使得终端设备在有多个服务小区的同步网络中能够正确接收邻小区的CSI-RS,本实施例中,CSI-RS的移动性测量配置还包括用于确定所述终端设备所需测量小区的时间信息的服务小区标识。具体地,在当前用于移动性测量的CSI-RS资源配置消息中增加一个字段来指示该CSI-RS的时间以终端设备的哪个服务小区的时间为基准。具体信令如下所示:
Figure PCTCN2019077395-appb-000004
Figure PCTCN2019077395-appb-000005
其中新增的SyncPCI字段用于指示用于该CSI-RS资源的时间基准的服务小区的标识。
类似地,上面都是分别在各个CSI-RS的移动性测量配置中新增SyncPCI字段。更为一般地,网络设备可以为一个测量对象中所有的CSI-RS资源配置公共的SyncPCI字段,也可以为前述测量对象中同一个小区的所有CSI-RS资源配置公共的SyncPCI字段,也可以为前述测量对象中的每个CSI-RS资源分别配置SyncPCI字段。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的装置。
基于上述实施例中的通信方法的同一构思,如图8所示,本申请实施例还提供一种通信装置1000,该通信装置可应用于上述图3所示的通信方法中。该通信装置1000可以是如图2所示的终端设备200,也可以是应用于该终端设备200的一个部件(例如芯片)。该通信装置1000包括:接收单元11和发送单元12;其中:
接收单元11,用于接收网络设备发送的测量对象配置,所述测量对象配置包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述测量对象配置用于指示终端设备进行移动性测量。
发送单元12,用于向所述网络设备发送移动性测量结果。
有关上述接收单元11和发送单元12更详细的描述可以直接参考上述图3所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图9所示,本申请实施例还提供一种通信装置2000,该通信装置可应用于上述图3所示的通信方法中。该通信装置2000可以是如图2所示的网络设备100,也可以是应用于该网络设备100的一个部件(例如芯片)。该通信装置2000包括:发送单元21和接收单元22;其中:
发送单元21,用于向终端设备发送测量对象配置,所述测量对象配置包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述测量对象配置用于指示终端设备进行移动性测量。
接收单元22,用于接收所述终端设备发送的移动性测量结果。
有关上述发送单元21和接收单元22更详细的描述可以直接参考上述图3所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图10所示,本申请实施例还提供一种通信装置3000,该通信装置可应用于上述图5所示的通信方法中。该通信装置3000可以是如图2所示的终端设备200,也可以是应用于该终端设备200的一个部件(例如芯片)。该通信装置3000包括:接收单元31和发送单元32;其中:
接收单元31,用于接收网络设备发送的一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一 参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量。
发送单元32,用于向所述网络设备发送移动性测量结果。
在一个实现方式中,所述接收单元31,还用于接收所述网络设备发送的测量对象配置,所述测量对象配置包括所述一个或多个CSI-RS的移动性测量配置,还包括所述同步信号块的第二参数。
有关上述接收单元31和发送单元32更详细的描述可以直接参考上述图5所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于上述实施例中的通信方法的同一构思,如图11所示,本申请实施例还提供一种通信装置4000,该通信装置可应用于上述图5所示的通信方法中。该通信装置4000可以是如图2所示的网络设备100,也可以是应用于该网络设备100的一个部件(例如芯片)。该通信装置4000包括:发送单元41和接收单元42。
发送单元41,用于向终端设备发送一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置信息包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量。
接收单元42,用于接收所述终端设备发送的移动性测量结果。
在一个实现方式中,所述发送单元41,还用于向所述终端设备发送测量对象配置,所述测量对象配置包括所述一个或多个CSI-RS的移动性测量配置,还包括所述同步信号块的第二参数。
有关上述发送单元41和接收单元42更详细的描述可以直接参考上述图5所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
本申请实施例中还提供一种通信装置,该通信装置用于执行上述通信方法。上述通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现。
可选的,通信装置在具体实现时可以是芯片或者集成电路。
可选的,当上述实施例的通信方法中的部分或全部通过软件来实现时,通信装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当程序被执行时,使得通信装置可以实现上述实施例提供的通信方法。
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。
可选的,当上述实施例的通信方法中的部分或全部通过软件实现时,通信装置也可以只包括处理器。用于存储程序的存储器位于通信装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存 储器还可以包括上述种类的存储器的组合。
图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括接收单元51、处理单元52和发送单元53。接收单元51也可以称为接收器、接收机、接收电路等,发送单元53也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元51用于执行图3所示实施例中的步骤S101中的终端设备的功能;以及发送单元53用于执行图3所示实施例中的步骤S102中的终端设备的功能。
又如,在另一个实施例中,接收单元51用于执行图5所示实施例中的步骤S201中的终端设备的功能;以及发送单元53用于执行图5所示实施例中的步骤S202中的终端设备的功能。
图13示出了一种简化的网络设备的结构示意图。网络设备包括射频信号收发及转换部分以及62部分,该射频信号收发及转换部分又包括接收单元61部分和发送单元63部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;62部分主要用于基带处理,对网络设备进行控制等。接收单元61也可以称为接收器、接收机、接收电路等,发送单元63也可以称为发送器、发射器、发射机、发射电路等。62部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图3或图5中关于网络设备所执行的步骤。具体可参见上述相关部分的描述。
62部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元63用于执行图3所示实施例中的步骤S101中网络设备的功能;以及接收单元61用于执行图3所示实施例中的步骤S102中网络设备的功能。
又如,在另一个实施例中,发送单元63用于执行图5所示实施例中的步骤S201中网络 设备的功能;以及接收单元61用于执行图5所示实施例中的步骤S202中网络设备的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存储存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。

Claims (37)

  1. 一种通信方法,其特征在于,包括:
    接收网络设备发送的测量对象配置MeasObjectNR,所述MeasObjectNR包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述MeasObjectNR用于指示终端设备进行移动性测量;
    向所述网络设备发送移动性测量结果。
  2. 一种通信方法,其特征在于,包括:
    向终端设备发送测量对象配置MeasObjectNR,所述MeasObjectNR包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述MeasObjectNR用于指示终端设备进行移动性测量;
    接收所述终端设备发送的移动性测量结果。
  3. 如权利要求1或2所述的方法,其特征在于,所述CSI-RS的移动性测量配置还包括与所述CSI-RS关联的同步信号块的第二参数。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述一个或多个CSI-RS关联的同步信号块的第一参数相同。
  5. 一种通信方法,其特征在于,包括:
    接收网络设备发送的一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;
    向所述网络设备发送移动性测量结果。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    接收所述网络设备发送的MeasObjectNR,所述MeasObjectNR包括所述一个或多个CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置还包括所述同步信号块的第二参数。
  7. 一种通信方法,其特征在于,包括:
    向终端设备发送一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;
    接收所述终端设备发送的移动性测量结果。
  8. 如权利要求7所述的方法,其特征在于,还包括:
    向所述终端设备发送测量对象配置MeasObjectNR,所述MeasObjectNR包括所述一个或多个CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置还包括所述同步信号块的第二参数。
  9. 如权利要求1至8任一项所述的方法,其特征在于,所述同步信号块的第一参数包括以下一个或多个参数:同步信号块的频率位置、同步信号块的子载波间隔。
  10. 如权利要求3、6或8所述的方法,其特征在于,所述同步信号块的第二参数包括以下一个或多个参数:同步信号块的索引、所述CSI-RS和所述同步信号块是否是共址的。
  11. 如权利要求1~10任一项所述的方法,其特征在于,所述CSI-RS的移动性测量配置还包括用于确定所述终端设备所需测量小区的时间信息的服务小区标识。
  12. 一种装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的测量对象配置MeasObjectNR,所述MeasObjectNR包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述MeasObjectNR用于指示终端设备进行移动性测量;
    发送单元,用于向所述网络设备发送移动性测量结果。
  13. 一种装置,其特征在于,包括:
    发送单元,用于向终端设备发送测量对象配置MeasObjectNR,所述MeasObjectNR包括一个或多个信道状态信息参考信号CSI-RS的移动性测量配置、以及与所述CSI-RS关联的同步信号块的第一参数;所述MeasObjectNR用于指示终端设备进行移动性测量;
    接收单元,用于接收所述终端设备发送的移动性测量结果。
  14. 如权利要求12或13所述的装置,其特征在于,所述CSI-RS的移动性测量配置还包括与所述CSI-RS关联的同步信号块的第二参数。
  15. 如权利要求12至14任一项所述的装置,其特征在于,所述一个或多个CSI-RS关联的同步信号块的第一参数相同。
  16. 一种装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;
    发送单元,用于向所述网络设备发送移动性测量结果。
  17. 如权利要求16所述的装置,其特征在于:
    所述接收单元,还用于接收所述网络设备发送的测量对象配置MeasObjectNR,所述MeasObjectNR包括所述一个或多个CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置还包括所述同步信号块的第二参数。
  18. 一种装置,其特征在于,包括:
    发送单元,用于向终端设备发送一个或多个信道状态信息参考信号CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置包括与所述CSI-RS关联的同步信号块的第一参数;所述CSI-RS的移动性测量配置用于指示终端设备进行移动性测量;
    接收单元,用于接收所述终端设备发送的移动性测量结果。
  19. 如权利要求18所述的装置,其特征在于:
    所述发送单元,还用于向所述终端设备发送测量对象配置MeasObjectNR,所述MeasObjectNR包括所述一个或多个CSI-RS的移动性测量配置,所述CSI-RS的移动性测量配置还包括所述同步信号块的第二参数。
  20. 如权利要求12至19任一项所述的装置,其特征在于,所述同步信号块的第一参数包括以下一个或多个参数:同步信号块的频率位置、同步信号块的子载波间隔。
  21. 如权利要求14、17或19所述的装置,其特征在于,所述同步信号块的第二参数包括以下一个或多个参数:同步信号块的索引、所述CSI-RS和所述同步信号块是否是共址的。
  22. 如权利要求12~21任一项所述的装置,其特征在于,所述CSI-RS的移动性测量配置还包括用于确定所述终端设备所需测量小区的时间信息的服务小区标识。
  23. 一种装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如权利要求1、3、4、9至11任意一项所述的方法。
  24. 一种装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如权利要求2、3、4、9至11任意一项所述的方法。
  25. 一种装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如权利要求5、6、9至11任意一项所述的方法。
  26. 一种装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如权利要求7、8、9至11任意一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1、3、4、9至11任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求2、3、4、9至11任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求5、6、9至11任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求7、8、9至11任一项所述的方法。
  31. 一种装置,其特征在于,用于执行如权利要求1-11中任一项所述的方法。
  32. 一种装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-11中任一项所述的方法。
  33. 一种装置,其特征在于,包括:处理器,存储器和收发器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要 求1-11中任一项所述的方法。
  34. 一种处理器,其特征在于,该处理器包括:至少一种电路,用于执行如权利要求1-11中任一项所述的方法。
  35. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-11中任意一项所述的方法被执行。
  36. 一种计算机程序,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-11中任意一项所述的方法被执行。
  37. 一种系统,其特征在于,所述系统包括上述装置中的一种或多种。
PCT/CN2019/077395 2018-05-11 2019-03-08 通信方法及装置 WO2019214333A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207035776A KR102462464B1 (ko) 2018-05-11 2019-03-08 통신 방법 및 장치
EP19799118.5A EP3790307B1 (en) 2018-05-11 2019-03-08 Method and device for communication
BR112020022927-0A BR112020022927A2 (pt) 2018-05-11 2019-03-08 método de comunicações e aparelho
CN201980031327.6A CN112119656B (zh) 2018-05-11 2019-03-08 通信方法、装置、介质、系统及计算机程序产品
US17/094,225 US20210112508A1 (en) 2018-05-11 2020-11-10 Communications Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450413.8 2018-05-11
CN201810450413.8A CN110475257A (zh) 2018-05-11 2018-05-11 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,225 Continuation US20210112508A1 (en) 2018-05-11 2020-11-10 Communications Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2019214333A1 true WO2019214333A1 (zh) 2019-11-14

Family

ID=68466656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077395 WO2019214333A1 (zh) 2018-05-11 2019-03-08 通信方法及装置

Country Status (6)

Country Link
US (1) US20210112508A1 (zh)
EP (1) EP3790307B1 (zh)
KR (1) KR102462464B1 (zh)
CN (2) CN110475257A (zh)
BR (1) BR112020022927A2 (zh)
WO (1) WO2019214333A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3794871B1 (en) * 2018-05-17 2021-12-22 Nokia Technologies Oy Channel state information reference signal configuration for inter-cell mobility
CN111901837A (zh) * 2020-02-14 2020-11-06 中兴通讯股份有限公司 控制信令的传输方法和通信节点
US20240089774A1 (en) * 2021-01-15 2024-03-14 Nokia Technologies Oy Measuring a Reference Signal with Associated Synchronization Signal
US11765733B2 (en) * 2021-03-31 2023-09-19 Qualcomm Incorporated Techniques for measurement gap configurations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580297A (zh) * 2013-09-27 2016-05-11 三星电子株式会社 用于先进lte的发现信号的方法和装置
CN106165323A (zh) * 2014-03-04 2016-11-23 Lg电子株式会社 接收用于接收发现参考信号的控制信息的方法及其装置
US20180124618A1 (en) * 2014-05-28 2018-05-03 Lg Electronics Inc. Method for performing discovery signal measurements in wireless communication system and user equipment thereof
WO2018143760A1 (ko) * 2017-02-06 2018-08-09 엘지전자 주식회사 측정 수행 방법 및 사용자기기

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9763210B2 (en) * 2014-01-30 2017-09-12 Intel Corporation Evolved node-B and user equipment and methods for operation in a coverage enhancement mode
US10355757B2 (en) * 2015-01-30 2019-07-16 Nokia Solutions And Networks Oy Method and apparatus for performing radio-resource-management measurements
EP3446432A1 (en) * 2016-04-20 2019-02-27 Convida Wireless, LLC Configurable reference signals
CN109565432B (zh) * 2017-01-06 2021-12-03 Lg 电子株式会社 无线通信系统中接收参考信号的方法及其装置
WO2018173238A1 (ja) * 2017-03-23 2018-09-27 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018198342A1 (ja) * 2017-04-28 2018-11-01 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7139413B2 (ja) * 2017-07-21 2022-09-20 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャンネル状態情報参照信号を送受信する方法、及びこのための装置
WO2019032025A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND APPARATUS FOR MANAGING MOBILITY MEASUREMENTS FOR USER EQUIPMENT
CN111316706B (zh) * 2017-11-14 2022-03-18 鸿颖创新有限公司 用于具有多分量载波的网络辅助传输的方法、设备和系统
US20190166513A1 (en) * 2017-11-28 2019-05-30 Mediatek Inc. CSI-RS Radio Resource Management (RRM) Measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580297A (zh) * 2013-09-27 2016-05-11 三星电子株式会社 用于先进lte的发现信号的方法和装置
CN106165323A (zh) * 2014-03-04 2016-11-23 Lg电子株式会社 接收用于接收发现参考信号的控制信息的方法及其装置
US20180124618A1 (en) * 2014-05-28 2018-05-03 Lg Electronics Inc. Method for performing discovery signal measurements in wireless communication system and user equipment thereof
WO2018143760A1 (ko) * 2017-02-06 2018-08-09 엘지전자 주식회사 측정 수행 방법 및 사용자기기

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Missing need code for refFreqCSI-RS", 3GPP TSG-RAN2 MEETING #104, R2-1818863, 30 November 2018 (2018-11-30), XP051495107 *
HUAWEI: "CR to 38.331 on associatedSSB", 3GPP TSG-RAN2 WG2#104, R2-1818864, 12 November 2018 (2018-11-12), XP051495108 *
See also references of EP3790307A4 *

Also Published As

Publication number Publication date
EP3790307A1 (en) 2021-03-10
EP3790307B1 (en) 2022-12-21
EP3790307A4 (en) 2021-07-07
KR102462464B1 (ko) 2022-11-01
BR112020022927A2 (pt) 2021-02-02
CN110475257A (zh) 2019-11-19
CN112119656B (zh) 2021-08-27
CN112119656A (zh) 2020-12-22
KR20210006456A (ko) 2021-01-18
US20210112508A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
CN110475337B (zh) 通信方法及装置
CN109391962B (zh) 通信方法及通信装置
WO2019137172A1 (zh) 确定波束、信号质量测量方法及通信装置
WO2019214333A1 (zh) 通信方法及装置
US20210274513A1 (en) Uplink determining method and apparatus
US9532249B2 (en) Method for processing reference signal, user equipment, and base station
JP7388609B2 (ja) ビーム構成方法および装置
US11824697B2 (en) Method, apparatus and storage medium for receiving a PDCCH
US20220376865A1 (en) Reference signal resource configuration method and apparatus
EP3787340A1 (en) Communication method and device
US10917895B2 (en) Power control method and apparatus
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2019100776A1 (zh) 通信方法及装置
US20220225180A1 (en) Communications method and apparatus
WO2022151494A1 (zh) 一种传输参数确定方法及装置
EP4181596A1 (en) Communication method, apparatus, and system
CN111771402B (zh) 通信方法及装置
WO2020164337A1 (zh) 侧行链路管理方法及装置
JP2020533866A (ja) Hrssi測定方法、ネットワークデバイス及び端末デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022927

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019799118

Country of ref document: EP

Effective date: 20201202

Ref document number: 20207035776

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020022927

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201110