WO2019214147A1 - 多激光器的驱动电流校正方法及装置、激光投影仪 - Google Patents

多激光器的驱动电流校正方法及装置、激光投影仪 Download PDF

Info

Publication number
WO2019214147A1
WO2019214147A1 PCT/CN2018/107868 CN2018107868W WO2019214147A1 WO 2019214147 A1 WO2019214147 A1 WO 2019214147A1 CN 2018107868 W CN2018107868 W CN 2018107868W WO 2019214147 A1 WO2019214147 A1 WO 2019214147A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light intensity
light
actual
lasers
Prior art date
Application number
PCT/CN2018/107868
Other languages
English (en)
French (fr)
Inventor
杨乐宝
王显彬
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US17/051,885 priority Critical patent/US11231641B2/en
Publication of WO2019214147A1 publication Critical patent/WO2019214147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the invention relates to the field of laser technology. More specifically, it relates to a multi-laser driving current correction method and apparatus, and a laser projector.
  • the laser projection uses a laser light source as the projection illumination source. Because the directivity of the laser is good, the stray light is small, the color saturation is high, the projected picture looks bright, the color reproduction degree is high, and the service life is long.
  • Laser projection usually combines RGB trichromatic laser modules with MEMS (Micro-Electro-Mechani cal Systems) micromirrors. From a driving perspective, it is a scanning projection display.
  • MEMS Micro-Electro-Mechani cal Systems
  • the commonly used single-pixel point scanning method the principle of the method is as follows: first, the RGB three primary color laser is combined and shaped, and then X and Y direction scanning is performed by the MEMS micro mirror, and the image is projected on the projection screen.
  • the image demodulator generates a laser driving signal and a scanning driving signal according to the image signal; the laser driver respectively transmits a laser driving current to the plurality of lasers in the laser light source according to the laser driving signal, so as to drive each laser to synchronously emit the light corresponding to the set light.
  • the combiner combines the lasers from each laser and then enters the shaper.
  • the combined laser is shaped into a scanning galvanometer (MEMS micromirror) by a shaper, and the scanning galvanometer According to the scan driving signal, the X and Y directions are scanned, and the pixel points are projected one by one on the projection screen. Since the scanning frequency is high, the human eye sees the entire projected image, and the pixel-by-pixel projection process is not perceived.
  • the actual light intensity of the laser emitted by the laser when the laser is driven by the set laser driving current may have an error compared with the set light intensity.
  • the best projection picture quality cannot be achieved.
  • the theoretical value of a laser is 50 cd when the driving current is 2 A.
  • the intensity of the laser emitted by the laser is only 45 cd, which affects the projection screen. quality.
  • a solution is to separately provide a beam splitter and a light sensor in each of the laser light paths, and use the light sensor disposed corresponding to each laser to sense the actual light intensity of the laser exiting the laser, thereby Monitoring of multiple lasers and correction of the drive current of each laser is achieved.
  • the solution requires multiple beam splitters and multiple light sensors.
  • the laser light source has too many optical components, the optical path is too complicated, the operating temperature is high, the volume of the laser light source is large, the laser light source is difficult to manufacture and the cost is high, and With multiple light sensors, the consistency of monitoring is not guaranteed.
  • a first aspect of the present invention provides a method for correcting a driving current of a multi-laser, including:
  • the actual light intensity of the combined laser beam, the number of lasers in the laser source is m;
  • the drive current of each laser is corrected based on the set light intensity of each laser and the correspondence between the drive current of each laser and the actual light intensity of the laser emitted from each laser.
  • the method further comprises: self-projecting the n+mth pixel point: the driving current of each laser obtained by using the m-ary equations when the m pixels are currently projected, and the actual light intensity of the laser emitted by each laser
  • the correspondence relationship corrects the correspondence between the driving currents of the existing lasers and the actual light intensity of the lasers emitted from the respective lasers.
  • the sensing, by the light sensor, the light intensity information of the combined laser light after the plurality of lasers exiting the laser light in the laser light source further comprises: splitting the combined laser into a first laser for sensing and for projection a second laser that senses light intensity information of the first laser by using the light sensor;
  • the obtaining, according to the electrical signals output by the photosensor, respectively, the actual light intensity of the combined laser when projecting the nth to n+m-1 pixel points further comprises: calculating the projection according to the electrical signal output by the photosensor and the splitting ratio The actual light intensity of the combined laser when n to n+m-1 pixels.
  • the calculating, according to the electrical signal output by the photosensor and the splitting ratio, the actual light intensity of the combined laser when projecting the nth to n+m-1 pixel points further comprises:
  • the actual light intensity of the combined laser light when the nth to n+m-1 pixel points are projected is calculated according to the correspondence relationship between the optical signal output electric signal and the light intensity obtained in advance, the electric signal output from the photosensor, and the splitting ratio.
  • the intensity of the first laser beam after splitting the combined laser is much smaller than the intensity of the second laser.
  • a second aspect of the present invention provides a driving current correcting device for a multi-laser, comprising:
  • a light sensor for sensing light intensity information of a combined laser beam after a plurality of lasers exiting the laser light source
  • a data processor in a projection period of the nth to n+m-1 pixel points: respectively acquiring an actual laser beam when the nth to n+m-1 pixel points are projected according to the electrical signal output by the photosensor Light intensity, the number of lasers in the laser source is m; according to the projection current of each laser from the nth to n+m-1 pixel points and the actual light intensity of the combined laser, an m-ary equation is established to solve each laser Corresponding relationship between the driving current and the actual light intensity of the laser emitted by each laser; from the projection of the n+mth pixel point: according to the set light intensity of each laser and the driving current of each laser and the actual light emitted by each laser A strong correspondence generates and sends a drive current correction signal to the laser driver;
  • the memory stores a correspondence relationship between the driving current of each laser and the actual light intensity of the laser emitted from each laser.
  • the data processor starts from projecting the n+thth pixel point: the driving current of each laser obtained by using the m-ary equations when projecting m pixel points and the actual light of each laser emitting laser
  • the strong correspondence corrects the correspondence between the driving currents of the existing lasers and the actual light intensity of the lasers emitted by the respective lasers.
  • the device further comprises:
  • a beam splitter that splits the combined laser into a first laser for sensing and a second laser for projection, the light sensor sensing light intensity information of the first laser
  • the data processor calculates an actual light intensity of the combined laser when the nth to n+m-1 pixel points are projected according to the electrical signal outputted by the light sensor and the splitting ratio.
  • the memory further stores a correspondence relationship between the optical signal outputted by the optical sensor and the light intensity acquired in advance;
  • the data processor combines the output of the optical signal output light intensity with the light intensity, the electrical signal output by the light sensor, and the splitting ratio to calculate the projection of the nth to n+m-1 pixel points.
  • the actual light intensity of the laser is the actual light intensity of the laser.
  • the light intensity of the first laser beam after the splitting of the beam splitter is much smaller than the light intensity of the second laser light.
  • a third aspect of the present invention provides a laser projector comprising a laser light source and a multi-laser driving current correcting device provided by the second aspect of the present invention, the laser light source comprising a laser driver, a plurality of lasers, and the plurality of lasers Corresponding shaped collimators, combiners and shapers, the beam splitters are arranged after the combiner.
  • the technical solution of the invention can realize the correction of the driving current of each laser by using only one light sensor that senses the light intensity information, which is simple and easy, and the consistency of the sensing light intensity information is high.
  • FIG. 1 shows a flow chart of a method of correcting a driving current of a multi-laser.
  • Figure 2 shows a schematic of a laser projector.
  • an embodiment of the present invention provides a method for correcting a driving current of a multi-laser, including:
  • the light intensity information of the combined laser light after the laser beams are combined by the plurality of lasers in the laser light source is sensed by the light sensor, and the nth to n+m-1 pixel points are respectively acquired according to the electrical signals output by the light sensor.
  • the actual light intensity of the beam laser, the number of lasers in the laser source is m, n and m are positive integers;
  • the drive current of each laser is corrected in accordance with the relationship between the set light intensity of each laser and the drive current of each laser and the actual light intensity of the laser emitted from each laser.
  • a plurality of lasers synchronously emit laser light according to a driving current from a laser driver.
  • the correspondence between the driving current of the laser and the actual light intensity is linear.
  • the 5-element linear equation of the driving current of the first to fifth lasers and the actual light intensity of the combined laser light when projecting the first to fifth pixel points can be, for example, the following formula:
  • a 1 -A 5 are the actual light intensity of the combined laser beam when the first to fifth pixel points of the acquired projection are respectively, and ⁇ 1 - ⁇ 5 are the first to fifth lasers to be solved unknown in the equation group, respectively.
  • ⁇ 1 is the driving current of the first laser to be solved unknown in the equation group and the actual light intensity of the first laser emitting laser Correspondence
  • I i,j is the drive current of the i-th laser when the j-th pixel is known to be projected (for example, I 3, 4 is the drive of the third laser when the fourth pixel is known to be projected) Current).
  • the laser is corrected when the sixth pixel is projected.
  • the drive current determines the drive current of the first to fifth lasers.
  • the driving current correction method of the multi-laser provided by the embodiment can realize the use of only one sensing light intensity information by using a multivariate one-time equation system based on a linear correspondence relationship between the driving current of the laser and the actual light intensity of the laser emitting laser light.
  • the light sensor can correct the driving current of multiple lasers, utilizes fewer optical components, has simple optical path and lower cost, and is easy to correct the driving current of multiple lasers and has high consistency of sensing light intensity information. .
  • the method provided by the embodiment further includes: self-projecting the n+mth pixel point: according to the current m pixel point when the m-ary equation is solved
  • the correspondence between the drive current of each laser and the actual light intensity of the laser emitted from each laser corrects the correspondence between the drive current of each laser and the actual light intensity of the laser emitted from each laser. For example, in the projection period of the fifth pixel, the correspondence relationship between the driving current of each laser and the actual light intensity is established; from the sixth pixel point of projection, the first to fifth lasers are projected according to each pixel point.
  • Sensing the light intensity information of the combined laser light after combining the plurality of lasers exiting the laser light in the laser light source further comprises: splitting the combined laser into a first laser for sensing and a second for projection a laser that senses light intensity information of the first laser by using a light sensor;
  • Obtaining the actual light intensity of the combined laser when the nth to n+m-1 pixel points are respectively projected according to the electrical signals outputted by the light sensor further includes: calculating the nth to n+th of the projection according to the electrical signal outputted by the light sensor and the splitting ratio The actual light intensity of the combined laser at m-1 pixels.
  • calculating the actual light intensity of the combined laser when the nth to n+m-1 pixel points are projected according to the electrical signal outputted by the photosensor and the splitting ratio further includes:
  • the actual light intensity of the combined laser light when the nth to n+m-1 pixel points are projected is calculated according to the correspondence relationship between the optical signal output of the optical sensor and the light intensity, the electrical signal output by the light sensor, and the splitting ratio.
  • the corresponding relationship between the output signal of the photosensor and the light intensity can be obtained by preliminary testing of the photosensor.
  • the intensity of the first laser beam after splitting the combined laser is much smaller than the intensity of the second laser. In this way, the influence of the splitting on the laser used for projection can be reduced, and the quality of the laser projection picture can be ensured.
  • Another embodiment of the present invention provides a multi-laser driving current correcting apparatus, including:
  • a light sensor for sensing light intensity information of a combined laser beam after a plurality of lasers exiting the laser light source
  • the data processor in the projection period of the nth to n+m-1 pixel points: respectively acquiring the actual light intensity of the combined laser when the nth to n+m-1 pixel points are projected according to the electrical signals output by the photosensor
  • the number of lasers in the laser source is m; the m-ary equations are established according to the driving current of each laser and the actual light intensity of the combined laser at the nth to n+m-1 pixel points, and the driving current of each laser is solved.
  • the memory stores a correspondence relationship between the drive current of each laser and the actual light intensity of the laser emitted from each laser.
  • the memory may be an integrated local storage device, or an extended storage device, such as a pluggable memory card, etc., which is not specifically limited in this embodiment.
  • the multi-laser driving current correcting device can solve the linear relationship between the laser-based driving current and the actual light intensity of the laser-exposed laser light by the data processor, and can realize only one sense.
  • the optical sensor with metering information can correct the driving current of multiple lasers, using less optical components, simple optical path, lower cost, easy to correct the driving current of multiple lasers and sensing light intensity information. The consistency is high.
  • the data processor in the apparatus provided in this embodiment automatically projects from the n+mth pixel point: using the m-ary equations according to the current projection of m pixel points
  • the correspondence relationship between the obtained driving currents of the respective lasers and the actual light intensity of the lasers emitted from the respective lasers corrects the correspondence between the driving currents of the respective lasers and the actual light intensity of the lasers emitted from the respective lasers.
  • the data processor can implement corrections in a variety of ways, such as mean and minimum variance. As the data processor continuously corrects the correspondence between the driving current of each laser and the actual light intensity, the accuracy of the data processor for the correction of the driving current is higher and higher.
  • the apparatus provided in this embodiment further includes:
  • a beam splitter that splits the combined laser into a first laser for sensing and a second laser for projection, the light sensor sensing light intensity information of the first laser
  • the data processor calculates the actual light intensity of the combined laser when the nth to n+m-1 pixel points are projected according to the electrical signal outputted by the light sensor and the splitting ratio.
  • the memory further stores a correspondence relationship between the output electrical signal of the optical sensor obtained in advance and the light intensity
  • the data processor calculates the actual light of the combined laser when the nth to n+m-1 pixel points are projected according to the corresponding relationship between the output signal of the optical sensor and the light intensity, the electrical signal output by the light sensor, and the splitting ratio. Strong.
  • the corresponding relationship between the output signal of the photosensor and the light intensity can be obtained by a preliminary test of the optical sensor by the test system.
  • the light intensity of the first laser beam split by the beam splitter in the device provided by the embodiment is much smaller than the light intensity of the second laser light. In this way, the influence of the splitting on the laser used for projection can be reduced, and the quality of the laser projection picture can be ensured.
  • another embodiment of the present invention provides a laser projector including a laser light source, a multi-laser driving current correcting device, and a MEMS micromirror 113 disposed on a light path of the laser light source, the laser light source including the laser a driver (not shown), a plurality of lasers 301, a shaping collimator corresponding to the plurality of lasers 301, a combiner 302, and a shaper 303.
  • the combiner 302 emits the lasers 301 to the optical path, and drives the current.
  • the correction device includes a data processor (not shown), a memory (not shown), a beam splitter 306, and a light sensor 307, and the beam splitter 306 is disposed between the combiner 302 and the shaper 303.
  • the beam splitter 306 is disposed between the combiner 302 and the shaper 303.
  • the light sensor 307 is located at the first light exit path of the beam splitter 306, and the shaper 303 is located at the second light exit path of the splitter 306.
  • the shaping collimator is used to shape and collimate the spot size of the laser light emitted by each laser 301, and the shaper 303 is used to shape the spot size of the laser light incident on the shaper 303 via the beam splitter 306.
  • the beam splitter can also be disposed on the light path of the shaper (not shown in FIG. 2), and the shaper is used to shape the spot size of the laser light incident on the shaper after the combiner merges the light path.
  • the light sensor is located at the first light exiting path of the beam splitter, and the laser light of the second light exiting path of the beam splitter is used as the outgoing light beam of the laser light source.
  • the beam splitter 306 is disposed between the combiner 302 and the shaper 303.
  • the beam splitter 306 splits the laser beam after the beam combiner 302 into two laser beams, one beam is incident on the light sensor 307, and the other beam is incident on the light sensor 307.
  • a beam of injection shaper 303 is shaped by the shaper 303 to emit laser light as a laser light source.
  • the projected laser light from the laser source is projected onto the MEMS micromirror 113 to project an image on the projection screen.
  • the beam splitter 306 splits the combined laser light obtained by combining the laser light emitted from each laser 301 by the combiner 302 into a first laser for sensing and a second laser for projection, and the light sensor 307 senses Light intensity information of the first laser;
  • the light sensor 307 respectively senses light intensity information of the lasers emitted by the plurality of lasers 301;
  • the data processor in the projection period of the nth to n+m-1 pixel points: respectively, according to the electrical signal outputted by the light sensor 307 and the splitting ratio, respectively, when the projection nth to n+m-1 pixel points are combined
  • the actual light intensity of the laser wherein the number of lasers 301 in the laser source is m; the m-ary equation is established according to the driving current of each laser 301 and the actual light intensity of the combined laser when projecting nth to n+m-1 pixels
  • the group is configured to solve the correspondence relationship between the driving current of each laser 301 and the actual light intensity of the laser light emitted by each laser 301; from the projection of the n+th pixel points: according to the set light intensity of each laser 301 and the driving current of each laser 301 Generating a corresponding relationship between the actual light intensity of the laser light emitted by each of the lasers 301 and transmitting a drive current correction signal to the laser driver;
  • the memory stores a correspondence relationship between the drive current of each laser 301 and the actual light intensity.
  • the laser projector provided in this embodiment can solve the linear relationship between the driving current of the laser 301 and the actual light intensity of the laser 301 emitted by the laser 301 by the data processor, and can realize only one sensing light.
  • the strong information light sensor 307 can correct the driving current of the plurality of lasers 301, utilizes fewer optical components, has a simple optical path, and has lower cost, and is easy to correct the driving current of the multiple lasers and senses the light intensity information. High consistency.
  • the data processor starts from the n+thth pixel point: the driving of each laser 301 obtained by using the m-ary equations when the m pixels are currently projected.
  • the correspondence between the current and the actual light intensity of the laser light emitted from each of the lasers 301 corrects the correspondence between the drive current of each of the existing lasers 301 and the actual light intensity of the laser light emitted from each of the lasers 301.
  • the data processor can implement corrections in a variety of ways, such as mean and minimum variance. As the data processor continuously corrects the correspondence between the driving current of each laser 301 and the actual light intensity, the accuracy of the data processor for correcting the driving current is higher and higher.
  • the memory further stores a correspondence relationship between the output electrical signal and the light intensity of the optical sensor 307 obtained in advance;
  • the data processor calculates the actual light intensity of the combined laser when the nth to n+m-1 pixel points are projected according to the correspondence between the output of the electrical signal and the light intensity by the light sensor 307, the electrical signal output by the light sensor 307, and the splitting ratio. .
  • the corresponding relationship between the output of the optical sensor 307 and the light intensity can be obtained by a preliminary test of the optical sensor 307 by the test system.
  • the intensity of the first laser beam split by the beam splitter 306 is much smaller than the light intensity of the second laser. In this way, the influence of the splitting on the laser used for projection can be reduced, and the quality of the laser projection picture can be ensured. That is, the light intensity of the light beam incident on the light sensor 307 after passing through the beam splitter 306 is much smaller than the light intensity of the light beam incident on the beam splitter 306. Similarly, the beam splitter 306 is disposed between the combiner 302 and the shaper 303. After the beam splitter 306, the light intensity of the light beam incident on the light sensor 307 is much smaller than the light intensity of the light beam incident on the beam splitter 306.
  • the beam 306 splits the laser beam bundled by the combiner 302 into two laser beams, and the intensity of one laser beam incident on the photosensor 307 is much smaller than the intensity of the other laser beam incident on the shaper 303.
  • the light intensity of the first optical path beam emitted by the beam splitter 306 is the intensity of the first optical path beam and the second optical path beam emitted by the beam splitter 306. And about 0.8%.
  • the beam splitter 306 is a flat glass, and the incident angle of the light beam incident on the flat glass is 45° ⁇ 20°.
  • the incident angle of the light beam incident on the flat glass is 45° ⁇ 20°.
  • the light intensity of the small portion of the reflected light beam is about 0.8% of the total light intensity. Therefore, the reflected light of the surface of the flat glass that is not plated with the high transparent film is used.
  • the light sensor 307, the transmitted light is incident on the shaper 303, and the splitting requirement of the embodiment can be realized, and the requirement for the splitting ratio of the embodiment is basically satisfied.
  • the reflection ratio of the flat glass is related to the incident angle of the incident light beam.
  • the incident angle of the light beam incident on the flat glass is 45° ⁇ 20°.
  • the incident angle of the flat glass is 45° ⁇ 20° can be achieved by adjusting the position or angle between the combiner 302 or the shaper 303 and the flat glass.
  • the spectral performance (or reflection performance) of the flat glass is related to the polarization state of the laser, regardless of the wavelength of the laser. If the beam splitter 306 does not use flat glass, but uses other forms such as coated optical elements, the operating temperature in the laser 301 and its packaging environment will rise after the lasers 301 are driven to emit laser light, or after the laser projector starts to work. High, after which the center wavelength of the laser emitted by the laser 301 changes.
  • the data processor has high accuracy in calculating the actual light intensity of the combined laser light based on the correspondence between the output of the optical signal 307 and the light intensity, the electrical signal output from the optical sensor 307, and the splitting ratio of the beam splitter 306.
  • one of the surfaces of the flat glass is plated with a high permeability film. Since only one surface is required for reflection, the other surface may be plated with a high permeability film to reduce the light intensity loss of the laser light emitted from the laser light source, that is, to reduce the light intensity loss of the laser light for projection.
  • the photosensor 307 is a photodiode.
  • the multi-laser drive current correcting means further includes a laser attenuator 308 disposed between the beam splitter 307 and the photodiode. In this case, when the actual light intensity of the combined laser is calculated by the data processor, the corresponding calculation of the attenuation of the light intensity by the laser attenuator 308 may be performed accordingly.
  • the shaping collimator includes a plurality of shaping collimating mirrors 309 corresponding to the plurality of lasers 301.
  • the plurality of lasers 301 respectively emit P-state polarized light, or respectively emit S-state polarized light, so that it is convenient to fabricate a plurality of lasers 301, for example, to facilitate the input of multiple lasers 301.
  • Drive signal routing
  • the plurality of lasers 301 include a green laser, a blue laser, and two red lasers, and an shaping collimator disposed corresponding to one of the two red lasers.
  • the two red lasers can ensure the overall red light intensity of the laser light source, avoiding the projection image caused by the increase of the working temperature and the overall red light intensity of the laser light source.
  • the picture color is distorted.
  • the wave plate 310 between the shaping collimator and the combiner 302 corresponding to one of the two red lasers changes the laser.
  • the polarization state or the light-emitting direction of the two red lasers is set to 90°, and the combiner 302 can be combined.
  • the principle that the combiner 302 in this embodiment realizes the combination of lasers of different wavelengths is:
  • Each of the "45° angle bevel mirrors" corresponding to the laser 301 in the combiner 302 of FIG. 2 is coated with an optical film that reflects only the laser beam of certain wavelengths and polarization states, and the other lasers.
  • the beam is transmitted, and the combiner 302 combines the laser beams of different wavelengths through the optical film to achieve the combination.
  • the wave plate 310 is preferably a half wave plate.
  • the plurality of lasers 301 further include an infrared laser, and the infrared laser can cooperate with other devices to implement touch, feedback, and ranging when the laser projector is a touch laser projector. And other functions.
  • the embodiment does not limit the arrangement manner of the infrared laser, the green laser, the blue laser, and the two red lasers. If it is arranged side by side from left to right as shown in FIG. 2, it can be used from left to right.
  • the right side is an infrared laser, a red laser, a red laser, a green laser, a blue laser, and may be a blue laser, a green laser, a red laser, a red laser, an infrared laser, or the like from left to right.
  • the laser light source further includes a light source housing, and the inner cavity formed by the light source housing houses the plurality of lasers 301, the shaping collimator, the combiner 302, the shaper 303, and the beam splitter 306.
  • the photosensor 307, the laser attenuator 308 and the wave plate 310, the light source housing is provided with a light exit port, that is, the beam splitter 306, the photosensor 307 and the laser attenuator 308 in the drive current correcting device of the multi-laser together with the device of the laser light source It is housed in the inner cavity formed by the light source housing.
  • the laser projector provided in this embodiment further includes a device cover 312 and a device substrate.
  • the device cover 312 cooperates with the device substrate to form a device housing.
  • the laser light source and the MEMS micro mirror 313 are received in the inner cavity of the device housing, and the MEMS micro mirror 313 is provided.
  • the device housing is provided with a light exit port, and the light emitted from the MEMS micro mirror 313 is emitted from the light exit opening formed in the device casing.
  • the laser light source further includes a thermistor 311 received in a cavity formed by the light source housing, and the thermistor 311 is configured to sense a temperature in a cavity formed by the light source housing. Temperature monitoring can be done in conjunction with other devices.
  • the light source housing includes a substrate 304 and a light source cover 305.
  • the substrate 304 and the light source cover 305 cooperate to form a light source housing, and the device is fixed on the substrate 304.
  • the connection between the substrate 304 and the light source cover 305 can be performed in various forms such as fastening.
  • the substrate 304 may form a convex annular enclosure on the top surface thereof, and the annular enclosure is connected to the light source cover 305 to form an inner cavity; and the detachable annular enclosure and the substrate 304 and the light source cover may also be utilized.
  • 305 together form a lumen.
  • the optional connection between the device cover 312 and the device substrate is similar to the optional connection between the light source cover 305 and the substrate 304, and details are not described herein.
  • the device substrate and the substrate 304 forming the light source housing may be a substrate, that is, the device substrate is the substrate 304.
  • the substrate 304 and the light source cover 305 cooperate to form a light source housing, and the substrate 304 and the device cover 312 cooperate to form a device housing.
  • the light exit opening of the device housing is provided with a full lens 315.
  • the full lens 315 can also be referred to as a window glass, which ensures the tightness of the device housing.
  • the laser projector provided by the embodiment further includes a mirror 314 disposed in the inner cavity of the device housing and disposed between the laser light source and the MEMS micro mirror 313. If the projection direction needs to be adjusted, the device cover 312 can be opened, and the angle of the laser light source and the MEMS micromirror 313 can be adjusted by adjusting the position or the reflection direction of the mirror 314.
  • the terms “mounted,” “connected,” and “connected” are used in a broad sense, and may be, for example, a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

一种多激光器的驱动电流校正方法及装置、激光投影仪。方法包括:在第n至n+m-1个像素点的投影时段内:利用光传感器感测激光光源中m个激光器出射激光经合束后的合束激光的光强信息,并根据光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强;根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;自投影第n+m个像素点起:根据各激光器的设定光强及各激光器的驱动电流与各激光器出射激光的实际光强的对应关系校正各激光器的驱动电流。实现方式简便易行且感测光强信息一致性高。

Description

多激光器的驱动电流校正方法及装置、激光投影仪 技术领域
本发明涉及激光技术领域。更具体地,涉及一种多激光器的驱动电流校正方法及装置、激光投影仪。
背景技术
激光投影使用激光光源作为投影照明光源,因激光的指向性好而杂散光少,且色彩饱和度高,投影画面看起来鲜亮、色彩还原度高,而且其使用寿命较长。
激光投影通常将RGB三基色激光模组与MEMS(Micro-Electro-Mechani cal Systems,微机电系统)微镜结合。从驱动的角度来说,属于扫描式投影显示。其中,常用的是单像素点扫描方式,该方式的原理如下:先将RGB三基色激光进行合束和整形,然后通过MEMS微镜进行X和Y方向扫描,在投影屏投射图像。具体来说,图像解调器根据图像信号生成激光驱动信号和扫描驱动信号;激光驱动器根据激光驱动信号向激光光源中的多个激光器分别发送激光驱动电流,以驱动各激光器同步出射符合设定光强的各像素点的激光;合束器将各激光器出射激光合束后射入整形器,合束后的激光经整形器整形后的激光射入扫描振镜(MEMS微镜),扫描振镜根据扫描驱动信号进行X和Y方向扫描,在投影屏逐个投射像素点,由于扫描频率很高,人眼看到的是整幅投影图像,不会感知到逐个像素点投射过程。
由于激光光源中各激光器的出厂性能存在差异或长时间使用后性能出现衰减,导致了以设定的激光驱动电流驱动激光器时激光器出射激光的实际光强与设定光强相比可能会存在误差,无法实现最佳的投影画面质量。例如某激光器的理论值为驱动电流为2A时激光器出射激光的强度为50cd,但由于前述原因,激光驱动器根据激光驱动信号向激光器发送2A的驱动电流时激光器出射激光的强度只有45cd,影响投影画面质量。现有技术中,解决的方案是在每个激光器的出光光路分别布设一个分束器和一个光传感器,利用与每个激光器对应布设的光传感器对激光器出射激光的实际光强进行感测,从而实现对多个激光器的监测及对各激光器的驱动电流的校正。该解决方案需要多个分束器和多个光传感器,激光光源的光学器件过多、光路过于复杂、工作温度较高、激光光源的体积较大、激光光源制作难度大且成本高,且由 于使用多个光传感器,监测的一致性也无法保证。
因此,需要提供一种简便易行且感测光强信息一致性高的多激光器的驱动电流校正方法及装置、激光投影仪。
发明内容
本发明的目的在于提供一种简便易行且感测光强信息一致性高的多激光器的驱动电流校正方法及装置、激光投影仪。
为达到上述目的,本发明采用下述技术方案:
本发明第一方面提供了一种多激光器的驱动电流校正方法,包括:
在第n至n+m-1个像素点的投影时段内:
利用光传感器感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息,并根据所述光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强,激光光源中激光器的个数为m;
根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;
自投影第n+m个像素点起:
根据各激光器的设定光强及所述各激光器的驱动电流与各激光器出射激光的实际光强的对应关系校正各激光器的驱动电流。
优选地,该方法还包括:自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。
优选地,
所述利用光传感器感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息进一步包括:将合束激光分束为用于感测的第一激光和用于投影的第二激光,利用光传感器感测第一激光的光强信息;
所述根据所述光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强进一步包括:根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
优选地,所述根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强进一步包括:
根据预先获取的光传感器输出电信号与光强的对应关系、光传感器输出 的电信号和所述分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
优选地,将合束激光分束后的第一激光的光强远小于第二激光的光强。
本发明第二方面提供了一种多激光器的驱动电流校正装置,包括:
光传感器,感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息;
数据处理器,在第n至n+m-1个像素点的投影时段内:根据所述光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强,激光光源中激光器的个数为m;根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;自投影第n+m个像素点起:根据各激光器的设定光强及所述各激光器的驱动电流与各激光器出射激光的实际光强的对应关系生成并向激光驱动器发送驱动电流校正信号;
存储器,存储各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。
优选地,所述数据处理器,自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。
优选地,该装置进一步包括:
分束器,将合束激光分束为用于感测的第一激光和用于投影的第二激光,所述光传感器感测第一激光的光强信息;
所述数据处理器,根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
优选地,
所述存储器,还存储有预先获取的光传感器输出电信号与光强的对应关系;
所述数据处理器,根据预先获取的光传感器输出电信号与光强的对应关系、光传感器输出的电信号和所述分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
优选地,所述分束器分束后的第一激光的光强远小于第二激光的光强。
本发明第三方面提供了一种激光投影仪,包括激光光源和本发明第二方 面提供的多激光器的驱动电流校正装置,所述激光光源包括激光驱动器、多个激光器、与所述多个激光器对应的整形准直器、合束器和整形器,所述分束器设于合束器之后。
本发明的有益效果如下:
本发明所述技术方案可实现仅使用一个感测光强信息的光传感器,就可对各激光器的驱动电流进行校正,简便易行且感测光强信息的一致性高。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明;
图1示出多激光器的驱动电流校正方法的流程图。
图2示出激光投影仪的示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
如图1所示,本发明的一个实施例提供了一种多激光器的驱动电流校正方法,包括:
在第n至n+m-1个像素点的投影时段内:
利用光传感器感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息,并根据光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强,激光光源中激光器的个数为m,n和m均为正整数;
根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;
自投影第n+m个像素点起:
根据各激光器的设定光强及各激光器的驱动电流与各激光器出射激光的实际光强的对应关系校正各激光器的驱动电流。
其中,多个激光器根据激光驱动器发出的驱动电流同步出射激光。激光器的驱动电流与实际光强的对应关系为线性关系。
以激光光源包括五个激光器为例,根据投影第1至5个像素点时第1至5个激光器的驱动电流和合束激光的实际光强的建立5元一次方程组可例如下式:
Figure PCTCN2018107868-appb-000001
其中,A 1-A 5分别为已获取的投影第1至5个像素点时合束激光的实际光强,β 15分别为方程组中未知的待求解的第1至5个激光器的驱动电流与第1至5个激光器出射激光的实际光强的对应关系(例如β 1为方程组中未知的待求解的第1个激光器的驱动电流与第1个激光器出射激光的实际光强的对应关系),I i,j为已知的投影第j个像素点时第i个激光器的驱动电流(例如I 3,4为已知的投影第4个像素点时第3个激光器的驱动电流)。
在第6个像素点的投影时段内:根据投影第6个像素点时第1至5个激光器的设定光强及驱动电流与实际光强的对应关系校正投影第6个像素点时由激光驱动信号确定的第1至5个激光器的驱动电流。
本实施例提供的多激光器的驱动电流校正方法,通过基于激光器的驱动电流与激光器出射激光的实际光强之间的线性对应关系建立的多元一次方程组,可实现仅使用一个感测光强信息的光传感器就可以对多个激光器的驱动电流进行校正,利用的光学器件少、光路简单、成本较低,对多个激光器的驱动电流的校正简便易行且感测光强信息的一致性高。
在本实施例的一些可选的实现方式中,本实施例提供的方法还包括:自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。例如,在第5个像素点的投影时段内,建立各激光器的驱动电流与实际光强的对应关系;自投影第6个像素点起,根据投影每一个像素点时第1至5个激光器的设定光强及驱动电流与实际光强的对应关系校正投影每一个像素点时由激光驱动信号确定的第1至5个激光器的驱动电流,并根据每投影5个像素点时利用5元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与实际光强 的对应关系。其中,修正可以采用均值、最小方差等多种方式。随着不断修正各激光器的驱动电流与实际光强的对应关系,对驱动电流校正的准确性越来越高。
在本实施例的一些可选的实现方式中,
利用光传感器感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息进一步包括:将合束激光分束为用于感测的第一激光和用于投影的第二激光,利用光传感器感测第一激光的光强信息;
根据光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强进一步包括:根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
在本实施例的一些可选的实现方式中,根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强进一步包括:
根据预先获取的光传感器输出电信号与光强的对应关系、光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
其中,光传感器输出电信号与光强的对应关系可通过对光传感器的前期测试得到。
在本实施例的一些可选的实现方式中,将合束激光分束后的第一激光的光强远小于第二激光的光强。这样,可减小分束对用于投影的激光的影响,保证激光投影画面质量。
本发明的另一个实施例提供了一种多激光器的驱动电流校正装置,包括:
光传感器,感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息;
数据处理器,在第n至n+m-1个像素点的投影时段内:根据光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强,激光光源中激光器的个数为m;根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;自投影第n+m个像素点起:根据各激光器的设定光强及各激光器的驱动电流与各激光器出射激光的实际光强的对应关系生成并向激光驱动器发送驱动电流校正信号;
存储器,存储各激光器的驱动电流与各激光器出射激光的实际光强的对 应关系。
可理解的是,存储器可以为集成的本地存储设备,或扩展存储设备,如:可插拔的存储卡等,本实施例对此不作具体限定。
本实施例提供的多激光器的驱动电流校正装置,通过数据处理器求解基于激光器的驱动电流与激光器出射激光的实际光强之间的线性对应关系建立的多元一次方程组,可实现仅使用一个感测光强信息的光传感器就可以对多个激光器的驱动电流进行校正,利用的光学器件少、光路简单、成本较低,对多个激光器的驱动电流的校正简便易行且感测光强信息的一致性高。
在本实施例的一些可选的实现方式中,本实施例提供的装置中的数据处理器,自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。其中,数据处理器可以采用均值、最小方差等多种方式实施修正。随着数据处理器不断修正各激光器的驱动电流与实际光强的对应关系,数据处理器对驱动电流校正的准确性越来越高。
在本实施例的一些可选的实现方式中,本实施例提供的装置进一步包括:
分束器,将合束激光分束为用于感测的第一激光和用于投影的第二激光,光传感器感测第一激光的光强信息;
数据处理器,根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
在本实施例的一些可选的实现方式中,
存储器,还存储有预先获取的光传感器输出电信号与光强的对应关系;
数据处理器,根据预先获取的光传感器输出电信号与光强的对应关系、光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
其中,光传感器输出电信号与光强的对应关系可通过测试系统对光传感器的前期测试得到。
在本实施例的一些可选的实现方式中,本实施例提供的装置中的分束器分束后的第一激光的光强远小于第二激光的光强。这样,可减小分束对用于投影的激光的影响,保证激光投影画面质量。
如图2所示,本发明的另一个实施例提供了一种激光投影仪,包括激光 光源、多激光器的驱动电流校正装置和设于激光光源的出光光路的MEMS微镜113,激光光源包括激光驱动器(图中未示出)、多个激光器301、与多个激光器301对应的整形准直器、合束器302和整形器303,合束器302将各激光器301出射激光合并光路,驱动电流校正装置包括数据处理器(图中未示出)、存储器(图中未示出)、分束器306和光传感器307,分束器306设于合束器302与整形器303之间。
分束器306设于合束器302与整形器303之间,这种情况下,光传感器307位于分束器306第一出光光路,整形器303位于分束器306第二出光光路。整形准直器用于整形各激光器301出射激光的光斑尺寸并对其进行准直,整形器303用于整形经分束器306入射到整形器303的激光的光斑尺寸。
分束器也可设于整形器出光光路上(图2中未示出),整形器用于整形经合束器合并光路后入射到整形器的激光的光斑尺寸。光传感器位于分束器第一出光光路,分束器第二出光光路的激光作为激光光源的出射光束。
以分束器306设于合束器302与整形器303之间为例,分束器306将合束器302合束后的激光光束分为两束激光,一束射入光传感器307,另一束射入整形器303,经整形器303对光斑尺寸进行整形后作为激光光源的出射激光。激光光源的出射激光投射至MEMS微镜113即可在投影屏投影图像。
分束器306,将各激光器301出射的激光经合束器302合束后得到的合束激光分束为用于感测的第一激光和用于投影的第二激光,光传感器307感测第一激光的光强信息;
光传感器307,分别感测多个激光器301出射激光的光强信息;
数据处理器,在第n至n+m-1个像素点的投影时段内:根据光传感器307输出的电信号和分束比例分别计算投影第n至n+m-1个像素点时合束激光的实际光强,其中激光光源中激光器301的个数为m;根据投影第n至n+m-1个像素点时各激光器301的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器301的驱动电流与各激光器301出射激光的实际光强的对应关系;自投影第n+m个像素点起:根据各激光器301的设定光强及各激光器301的驱动电流与各激光器301出射激光的实际光强的对应关系生成并向激光驱动器发送驱动电流校正信号;
存储器,存储各激光器301的驱动电流与实际光强的对应关系。
本实施例提供的激光投影仪,通过数据处理器求解基于激光器301的驱动电流与激光器301出射激光的实际光强之间的线性对应关系建立的多元一 次方程组,可实现仅使用一个感测光强信息的光传感器307就可以对多个激光器301的驱动电流进行校正,利用的光学器件少、光路简单、成本较低,对多激光器的驱动电流的校正简便易行且感测光强信息的一致性高。
在本实施例的一些可选的实现方式中,数据处理器,自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器301的驱动电流与各激光器301出射激光的实际光强的对应关系修正已有的各激光器301的驱动电流与各激光器301出射激光的实际光强的对应关系。其中,数据处理器可以采用均值、最小方差等多种方式实施修正。随着数据处理器不断修正各激光器301的驱动电流与实际光强的对应关系,数据处理器对驱动电流校正的准确性越来越高。
在本实施例的一些可选的实现方式中,
存储器,还存储有预先获取的光传感器307输出电信号与光强的对应关系;
数据处理器,根据光传感器307输出电信号与光强的对应关系、光传感器307输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
其中,光传感器307输出电信号与光强的对应关系可通过测试系统对光传感器307的前期测试得到。
在本实施例的一些可选的实现方式中,分束器306分束后的第一激光的光强远小于第二激光的光强。这样,可减小分束对用于投影的激光的影响,保证激光投影画面质量。即,经分束器306后入射光传感器307的光束的光强远小于入射分束器306的光束的光强。同样以分束器306设于合束器302与整形器303之间为例,经分束器306后入射光传感器307的光束的光强远小于入射分束器306的光束的光强即分束器306将合束器302合束后的激光光束分为两束激光,射入光传感器307的一束激光的光强远小于射入整形器303的另一束激光的光强。在具体实施时,以各激光器301出射P态偏振光为例,分束器306出光的第一光路光束的光强为分束器306出光的第一光路光束和第二光路光束的光强之和的0.8%左右。
在本实施例的一些可选的实现方式中,分束器306为平板玻璃,入射平板玻璃的光束的入射角度为45°±20°。在光束透过平板玻璃时,会有一小部分光束被反射,被反射的小部分光束的光强占总光强的0.8%左右,因此,利用平板玻璃不镀高透膜的表面的反射光射入光传感器307,透射光射入整 形器303,即可实现本实施例的分束需求,且基本满足本实施例对于分束比例的需求。另外,平板玻璃的反射比例与其入射光束的入射角度相关,因此,本实施例中将入射平板玻璃的光束的入射角度为45°±20°。平板玻璃的入射角度为45°±20°可通过调整合束器302或整形器303与平板玻璃之间的位置或角度实现。需要说明的是,平板玻璃的分光性能(或者说反射性能)与激光的偏振态有关,与激光的波长无关。如果分束器306不采用平板玻璃,而是采用镀膜的光学元件等其他形式,由于驱动各激光器301出射激光后,或者说激光投影仪开始工作后激光器301及与其封装环境中的工作温度会升高,之后激光器301出射激光的中心波长会发生变化。采用镀膜的光学元件等其他形式的分束器306因为镀膜的原因,工作温度变化引起各激光器301出射激光的波长变化会导致分束器306分光性能的变化,进而影响数据处理器获取实际光强的准确性。因此,采用平板玻璃作为分束器306,可以消除温度漂移的影响。数据处理器根据光传感器307输出电信号与光强的对应关系、光传感器307输出的电信号和分束器306的分束比例计算合束激光的实际光强的准确性高。
在本实施例的一些可选的实现方式中,平板玻璃的表面之一镀有高透膜。由于仅需一个表面进行反射,因此另一表面可以镀有高透膜,以减少激光光源的出射激光的光强损失,即减少用于投影的激光的光强损失。
在本实施例的一些可选的实现方式中,光传感器307为一个光电二极管(Photo Diode)。在光电二极管正常工作范围限定其感测光强的强度值的较小的情况下,多激光器的驱动电流校正装置还包括设于分束器307与光电二极管之间的激光衰减器308。在此情况下,利用数据处理器计算合束激光的实际光强时根据激光衰减器308对光强的衰减倍数做出相应计算即可。
在本实施例的一些可选的实现方式中,整形准直器包括与多个激光器301对应的多个整形准直镜309。
在本实施例的一些可选的实现方式中,多个激光器301分别出射P态偏振光,或分别出射S态偏振光,这样,便于制作多个激光器301,例如便于布设多个激光器301的输入驱动信号的走线。
在本实施例的一些可选的实现方式中,多个激光器301包括绿光激光器、蓝光激光器和两个红光激光器,及设于与两个红光激光器其中之一对应的整形准直器与合束器302之间的波片310。由于红光激光器对工作温度比较敏感,当工作温度在50℃到60℃时,其出光效率只有工作温度在-10℃到 40℃时的65%左右。因此,采用两个红光激光器,可在保证激光光源整体红光光强的同时降低单个红光激光器的功率,从而降低单个红光激光器的工作温度和其封装环境中的工作温度。另外,即使工作温度偏高,红光激光器出光效率下降,两个红光激光器也可保证激光光源整体红光光强,避免由于工作温度升高、激光光源整体红光光强下降而造成投影图像画面颜色失真。在采用两个红光激光器时,由于两个红光激光器出射激光的波长相同,在与两个红光激光器其中之一对应的整形准直器与合束器302之间的波片310改变激光的偏振状态或者将两个红光激光器的出光方向布设为成90°,合束器302才能实现合束(本实施例中的合束器302实现对不同波长的激光进行合束的原理是,如图2中的合束器302中与激光器301对应的各“45°角斜面镜”均镀有光学膜,该光学膜只对某些特定波长和偏振状态的激光光束反射,而对其他激光光束透射,合束器302将不同波长的激光光束通过光学膜实现合束)。其中,波片310优选为半波片。
在本实施例的一些可选的实现方式中,多个激光器301还包括红外激光器,红外激光器可在激光投影仪为触控式激光投影仪时,与其他器件配合实现触控、反馈、测距等功能。
在具体实施时,本实施例不对红外激光器、绿光激光器、蓝光激光器和两个红光激光器的布设方式作出限制,若为如图2所示的从左到右并排布设,可采用从左到右依次为红外激光器、红光激光器、红光激光器、绿光激光器、蓝光激光器,也可采用从左到右依次为蓝光激光器、绿光激光器、红光激光器、红光激光器、红外激光器等等。
在本实施例的一些可选的实现方式中,激光光源还包括光源外壳,光源外壳形成的内腔收容多个激光器301、整形准直器、合束器302、整形器303、分束器306、光电传感器307、激光衰减器308和波片310,光源外壳开设有出光口,即多激光器的驱动电流校正装置中的分束器306、光电传感器307和激光衰减器308与激光光源的器件一起收容于光源外壳形成的内腔中。本实施例提供的激光投影仪还包括装置盖板312和装置基板,装置盖板312与装置基板配合形成装置外壳,激光光源和MEMS微镜313收容于装置外壳的内腔,MEMS微镜313设于激光光源的出光光路,装置外壳开设有出光口,MEMS微镜313的出射光自形成在装置外壳开设的出光口射出。这样,因为将上述器件封装于一个独立于MEMS微镜113的光源外壳形成的内腔中之后,如果需要调整激光投影仪尺寸,在不涉及光源外壳的位置时可直 接对激光投影仪的装置外壳进行操作,光源外壳可以保证对其内腔中器件的密封防尘性。
在本实施例的一些可选的实现方式中,激光光源还包括收容于光源外壳形成的内腔中的热敏电阻311,热敏电阻311用于感测光源外壳形成的内腔中的温度,可与其他器件配合实现对温度的监控。
在本实施例的一些可选的实现方式中,光源外壳包括基板304和光源盖板305,基板304和光源盖板305配合形成光源外壳,上述器件固定于基板304上。其中,基板304和光源盖板305之间可采用扣合等多种形式的连接。基板304可在其顶面形成凸起的环状围挡,由该环状围挡与光源盖板305连接以形成内腔;也可利用可拆卸的环状围挡与基板304和光源盖板305一起形成内腔。装置盖板312和装置基板之间的可选连接方式与前述光源盖板305和基板304之间的可选连接方式相似,在此不再赘述。另外,装置基板和形成光源外壳的基板304可为一块基板,即,装置基板即为基板304,基板304和光源盖板305配合形成光源外壳,基板304和装置盖板312配合形成装置外壳。
在本实施例的一些可选的实现方式中,装置外壳开设的出光口设有全透镜315。全透镜315也可称为视窗玻璃,其可保证装置外壳的密封性。
在本实施例的一些可选的实现方式中,本实施例提供的激光投影仪还包括收容于装置外壳的内腔中且设于激光光源与MEMS微镜313之间的反射镜314。如果需要调整投影方向,可将装置盖板312开启,通过调整反射镜314的位置或反射方向,调整激光光源出光入射MEMS微镜313的角度即可。
在本发明的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
还需要说明的是,在本发明的描述中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要 求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于本领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (11)

  1. 一种多激光器的驱动电流校正方法,其特征在于,包括:
    在第n至n+m-1个像素点的投影时段内:
    利用光传感器感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息,并根据所述光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强,激光光源中激光器的个数为m;
    根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;
    自投影第n+m个像素点起:
    根据各激光器的设定光强及所述各激光器的驱动电流与各激光器出射激光的实际光强的对应关系校正各激光器的驱动电流。
  2. 根据权利要求1所述的方法,其特征在于,该方法还包括:自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。
  3. 根据权利要求1所述的方法,其特征在于,
    所述利用光传感器感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息进一步包括:将合束激光分束为用于感测的第一激光和用于投影的第二激光,利用光传感器感测第一激光的光强信息;
    所述根据所述光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强进一步包括:根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
  4. 根据权利要求3所述的方法,其特征在于,所述根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强进一步包括:
    根据预先获取的光传感器输出电信号与光强的对应关系、光传感器输出的电信号和所述分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
  5. 根据权利要求3所述的方法,其特征在于,将合束激光分束后的第一激光的光强远小于第二激光的光强。
  6. 一种多激光器的驱动电流校正装置,其特征在于,包括:
    光传感器,感测激光光源中多个激光器出射激光经合束后的合束激光的光强信息;
    数据处理器,在第n至n+m-1个像素点的投影时段内:根据所述光传感器输出的电信号分别获取投影第n至n+m-1个像素点时合束激光的实际光强,激光光源中激光器的个数为m;根据投影第n至n+m-1个像素点时各激光器的驱动电流和合束激光的实际光强建立m元一次方程组,求解各激光器的驱动电流与各激光器出射激光的实际光强的对应关系;自投影第n+m个像素点起:根据各激光器的设定光强及所述各激光器的驱动电流与各激光器出射激光的实际光强的对应关系生成并向激光驱动器发送驱动电流校正信号;
    存储器,存储各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。
  7. 根据权利要求6所述的装置,其特征在于,所述数据处理器,自投影第n+m个像素点起:根据当前投影m个像素点时利用m元一次方程组求解得到的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系修正已有的各激光器的驱动电流与各激光器出射激光的实际光强的对应关系。
  8. 根据权利要求6所述的装置,其特征在于,该装置进一步包括:
    分束器,将合束激光分束为用于感测的第一激光和用于投影的第二激光,所述光传感器感测第一激光的光强信息;
    所述数据处理器,根据光传感器输出的电信号和分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
  9. 根据权利要求8所述的装置,其特征在于,
    所述存储器,还存储有预先获取的光传感器输出电信号与光强的对应关系;
    所述数据处理器,根据预先获取的光传感器输出电信号与光强的对应关系、光传感器输出的电信号和所述分束比例计算投影第n至n+m-1个像素点时合束激光的实际光强。
  10. 根据权利要求8所述的装置,其特征在于,所述分束器分束后的第一激光的光强远小于第二激光的光强。
  11. 一种激光投影仪,其特征在于,包括激光光源和如权利要求8-10中任一项所述的多激光器的驱动电流校正装置,所述激光光源包括激光驱动器、多个激光器、与所述多个激光器对应的整形准直器、合束器和整形器,所述分束器设于合束器之后。
PCT/CN2018/107868 2018-05-09 2018-09-27 多激光器的驱动电流校正方法及装置、激光投影仪 WO2019214147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/051,885 US11231641B2 (en) 2018-05-09 2018-09-27 Driving current correction method and apparatus for multiple laser devices, and laser projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810438082.6 2018-05-09
CN201810438082.6A CN108646509B (zh) 2018-05-09 2018-05-09 多激光器的驱动电流校正方法及装置、激光投影仪

Publications (1)

Publication Number Publication Date
WO2019214147A1 true WO2019214147A1 (zh) 2019-11-14

Family

ID=63754013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107868 WO2019214147A1 (zh) 2018-05-09 2018-09-27 多激光器的驱动电流校正方法及装置、激光投影仪

Country Status (3)

Country Link
US (1) US11231641B2 (zh)
CN (1) CN108646509B (zh)
WO (1) WO2019214147A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666861B (zh) * 2018-05-09 2019-12-06 歌尔股份有限公司 多激光器的驱动电流校正方法及装置、激光投影仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201464785U (zh) * 2009-03-06 2010-05-12 上海三鑫科技发展有限公司 微型投影机
US20130063705A1 (en) * 2010-05-28 2013-03-14 Nec Display Solutions, Ltd. Projector
CN103246061A (zh) * 2012-02-09 2013-08-14 日立视听媒体股份有限公司 图像显示装置
CN104038747A (zh) * 2013-03-08 2014-09-10 日立乐金光科技株式会社 激光投影显示装置及激光驱动控制方法
CN105911807A (zh) * 2016-06-03 2016-08-31 青岛海信电器股份有限公司 激光投影方法及激光投影机
CN107210020A (zh) * 2015-01-30 2017-09-26 日立乐金光科技株式会社 激光投射显示装置和该装置中使用的激光光源驱动部的控制方法
CN107229172A (zh) * 2016-03-25 2017-10-03 日立乐金光科技株式会社 激光投影显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027360A (ja) * 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd 投射型テレビジョン受信機
CN100524450C (zh) * 2005-07-27 2009-08-05 精工爱普生株式会社 动态图像显示装置及动态图像显示方法
KR101199566B1 (ko) * 2009-12-14 2012-11-12 엘지이노텍 주식회사 프로젝션 시스템
CN102404532A (zh) * 2010-09-10 2012-04-04 鸿富锦精密工业(深圳)有限公司 投影仪及其梯形失真校正方法
JP2012068361A (ja) * 2010-09-22 2012-04-05 Konica Minolta Opto Inc 投影装置
JP2017106976A (ja) * 2015-12-07 2017-06-15 船井電機株式会社 プロジェクタ
GB201702649D0 (en) * 2017-02-17 2017-04-05 Barco Nv Laser driver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201464785U (zh) * 2009-03-06 2010-05-12 上海三鑫科技发展有限公司 微型投影机
US20130063705A1 (en) * 2010-05-28 2013-03-14 Nec Display Solutions, Ltd. Projector
CN103246061A (zh) * 2012-02-09 2013-08-14 日立视听媒体股份有限公司 图像显示装置
CN104038747A (zh) * 2013-03-08 2014-09-10 日立乐金光科技株式会社 激光投影显示装置及激光驱动控制方法
CN107210020A (zh) * 2015-01-30 2017-09-26 日立乐金光科技株式会社 激光投射显示装置和该装置中使用的激光光源驱动部的控制方法
CN107229172A (zh) * 2016-03-25 2017-10-03 日立乐金光科技株式会社 激光投影显示装置
CN105911807A (zh) * 2016-06-03 2016-08-31 青岛海信电器股份有限公司 激光投影方法及激光投影机

Also Published As

Publication number Publication date
US20210364903A1 (en) 2021-11-25
CN108646509B (zh) 2020-08-25
US11231641B2 (en) 2022-01-25
CN108646509A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
US9462244B2 (en) Image display apparatus and optical component
US20100302513A1 (en) Projection-type image displaying apparatus
US20090128717A1 (en) Image display apparatus
US20110304832A1 (en) Optical axis adjustment device, method for adjusting optical axis and projection-type display apparatus
US10133165B2 (en) Optical device
US7980703B2 (en) Projector
US8670170B2 (en) Optical scanning projection system
US20230296977A1 (en) Image display apparatus
WO2019214146A1 (zh) 多激光器的驱动电流校正方法及装置、激光投影仪
JP2009222973A (ja) 画像投射装置
KR101185297B1 (ko) 영상 프로젝터
CN208092417U (zh) 激光光源及激光投影装置
WO2019214147A1 (zh) 多激光器的驱动电流校正方法及装置、激光投影仪
JP2010085472A (ja) 画像投影・撮像装置
CN110161788A (zh) 激光光源装置以及影像显示装置
JP2012078683A (ja) プロジェクター、台形歪み補正方法
WO2019126951A1 (zh) 激光束扫描显示设备及增强现实眼镜
CN208092416U (zh) 激光模组、激光光源及激光投影装置
US11422447B2 (en) Illumination system, projection device and color wheel calibrating method
JP2014131326A (ja) プロジェクター、台形歪み補正方法
CN208092415U (zh) 激光模组、激光光源及激光投影装置
JP2014059522A (ja) 画像表示装置
CN219417971U (zh) 基于双目视差具有深度信息采集功能的投影光机及投影仪
CN207457690U (zh) 一种激光投影仪
JP2015191148A (ja) レーザ走査型プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918334

Country of ref document: EP

Kind code of ref document: A1