WO2019213922A1 - 中继网络中节点间转发数据的方法和网络节点 - Google Patents

中继网络中节点间转发数据的方法和网络节点 Download PDF

Info

Publication number
WO2019213922A1
WO2019213922A1 PCT/CN2018/086392 CN2018086392W WO2019213922A1 WO 2019213922 A1 WO2019213922 A1 WO 2019213922A1 CN 2018086392 W CN2018086392 W CN 2018086392W WO 2019213922 A1 WO2019213922 A1 WO 2019213922A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
data
relay
terminal device
node
Prior art date
Application number
PCT/CN2018/086392
Other languages
English (en)
French (fr)
Inventor
卢前溪
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880084829.0A priority Critical patent/CN111543116B/zh
Priority to PCT/CN2018/086392 priority patent/WO2019213922A1/zh
Publication of WO2019213922A1 publication Critical patent/WO2019213922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method, network node, chip, and system for forwarding data between nodes in a relay network.
  • the 3rd Generation Partnership Project (3GPP) is currently conducting research on wireless relay networks in New Radio (NR) including: multi-hop transmission from fixed node to relay node; fixed node to medium Following the redundant path transmission of the node; the automatic configuration of the backbone path from the relay node to the fixed node.
  • NR New Radio
  • the network nodes in the existing network architecture are connected through the transport layer, they belong to the layer 3 connection, and the switching process of the existing network is designed based on the existing network structure.
  • IAB integrated access and backhaul link
  • a method, a network node, a chip and a system for forwarding data between nodes in a relay network are provided, and a method, a network node, a chip and a system for forwarding data between nodes in the relay network enable data transmission between network nodes to be connected Incoming layers are relayed.
  • a method for forwarding data between nodes in a relay network including:
  • the first network node determines first data, where the first data includes a Packet Data Convergence Protocol (PDCP) service data unit (SDU) and/or a PDCP protocol data unit (PDU) );
  • PDCP Packet Data Convergence Protocol
  • SDU Packet Data Convergence Protocol
  • PDU PDCP protocol data unit
  • the first network node configures a target address of the first data as an address of a target network node to form second data
  • the first network node forwards the second data.
  • the data transmission between the network nodes can be relayed through the access layer.
  • the first data is data for a target terminal device.
  • the original target address of the first data is an address of a source network node.
  • the first data includes any one of the following data:
  • the PDCP discard timer has no timeout PDCP SDU and/or PDCP PDU;
  • the PDCP SDU and/or PDCP PDU of the correct transmission acknowledgement of the Radio Link Control (RLC) Automatic Repeat-ReQuest (ARQ) is not received.
  • RLC Radio Link Control
  • ARQ Automatic Repeat-ReQuest
  • the correct transmission acknowledgement of the RLC ARQ includes at least one of the following correct transmission acknowledgements:
  • the first network node is a relay network anchor node, and the relay network anchor node is directly connected to the core network.
  • the first network node is a relay network node.
  • the first network node is a relay network node that directly connects to the terminal device, or the first network node is a relay network node that connects the terminal device through the relay network node.
  • the first network node configuring the target address of the first data as an address of the target network node including:
  • the first network node receives the indication information sent by the relay network anchor node, and the first network node configures the target address of the first data as the address of the target network node according to the indication information.
  • the method further includes:
  • the sending, by the first network device, a handover command to the terminal device includes:
  • the first network node sends Radio Resource Control (RRC) signaling to the terminal device, where the RRC signaling includes the handover command.
  • RRC Radio Resource Control
  • the method further includes:
  • the first network node receives, by the target network node, a response of the handover signaling sent by the terminal device.
  • a network node is provided for performing the method of the above first aspect or the method of any of the above possible implementations.
  • the network node includes:
  • a network node including:
  • the network node further includes:
  • a memory for storing the computer program.
  • a chip is provided for performing the method of the above first aspect or the method of any of the above possible implementations.
  • the chip includes:
  • the chip further includes:
  • a memory for storing the computer program.
  • a computer readable storage medium for storing a computer program for performing the method of the above first aspect or the method of any of the above possible implementations.
  • a computer program product comprising computer program instructions for performing the method of the above first aspect or the method of any of the above possible implementations.
  • a computer program which, when run on a computer, causes the computer to perform the method of the first aspect described above or the method of any of the possible implementations described above.
  • a communication system comprising: a first network node; the first network node is configured to: determine first data, where the first data comprises a packet data convergence protocol PDCP service data unit SDU and/or a PDCP protocol data unit PDU; configuring a target address of the first data as an address of a target network node to form second data; forwarding the second data.
  • FIG. 1 is an example of an application scenario of the present invention.
  • FIG. 2 to FIG. 4 are schematic flowcharts of a method for forwarding data between network nodes in a relay network according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a network node according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of another network node in accordance with an embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a chip in accordance with an embodiment of the present invention.
  • Figure 8 is a schematic block diagram of a communication system in accordance with an embodiment of the present invention.
  • the technical solution of the embodiment of the present application can be applied to a 5G NR communication system.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • communication system 100 can include a core network device 110, an anchor node device 120, relay node devices 130-170, and terminal devices 180-190.
  • a topology network centered on the core network device 110 can be established in the communication system 100.
  • the core network device 110 can establish a communication connection with the terminal device 180 through the anchor node device 120, the relay node device 130, the relay node device 140, and the relay node device 150.
  • the core network device 110 can be anchored to the node device 120,
  • the node device 160, the relay node device 170 establishes a communication connection with the terminal device 190.
  • the embodiment of the present application is only exemplified by the communication system 100, but the embodiment of the present application is not limited thereto. That is to say, the number of the relay node devices and the number of the terminal devices in the embodiment of the present application can be determined according to actual needs.
  • the core network device 110 may be a 5G core (5G Core, 5GC) device, for example, an Access and Mobility Management Function (AMF), and, for example, a Session Management Function (SMF). ), for example, User Plane Function (UPF).
  • 5G Core 5G Core, 5GC
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • the anchor node device 120 can be a base station or an access network device that is in direct wired communication with the core network device 110.
  • the anchor node device 120 can provide communication coverage for a particular geographic area and can communicate with relay node devices or terminal devices (e.g., UEs) located within the coverage area.
  • the anchor node device 120 may be a base station (gNB) in a New Radio (NR) system, or a wireless controller in a Cloud Radio Access Network (CRAN), or It is a relay station, an access point, an in-vehicle device, a wearable device, or a network device in a publicly available Public Land Mobile Network (PLMN).
  • gNB New Radio
  • CRAN Cloud Radio Access Network
  • the relay node device may implement data or signaling forwarding between the anchor node device and the terminal device.
  • the relay node device 130 connects the anchor node device 120 and the relay node device 140 for forwarding data or signaling between the anchor node device 120 and the relay node device 140 (terminal device 180).
  • the relay node device can provide communication coverage for a particular geographic area and can communicate with other relay node devices or terminal devices located within the coverage area.
  • the relay node device may be a base station (gNB) in the NR system, or a relay station, an access point, an in-vehicle device, a wearable device, or a network device in a future evolved PLMN.
  • gNB base station
  • the communication connection between the relay node device and the anchor node device 120 may be represented by a hop count, for example, the hop count between the relay node device 130 and the anchor node device 120 is 1, the relay node The number of hops between device 150 and anchor node device 120 is three.
  • the last hop device of the relay node device is its parent node, and the next hop is its child node.
  • the parent node of the relay node device 140 is the relay node device 130
  • the child node of the relay node device 140 is the relay node device 150.
  • the relay node device 130 has a higher priority than the relay node device 140.
  • the priority of the relay node device 130 is the same as the priority between the relay node devices 160.
  • the terminal devices (180-190) can be mobile or fixed.
  • the terminal device may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device.
  • user agent or user device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a functional handheld device a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a 5G NR network, or a terminal device in a future evolved PLMN, or the like.
  • FIG. 1 exemplarily shows one core network device, one anchor node device, five relay node devices, and two terminal devices.
  • the wireless communication system 100 may include a plurality of anchor node devices, and Other numbers of relay node devices, and the number of other terminal devices may be included in the coverage of each of the relay node devices, which is not limited in this embodiment of the present application.
  • the wireless communication system 100 may further include a network management function (SMF), a unified data management (UDM), an authentication server function (AUSF), and other network entities.
  • SMS network management function
  • UDM unified data management
  • AUSF authentication server function
  • the application embodiment does not limit this.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the method 200 can be performed by a network node.
  • the network node may be the anchor node device 120 as shown in FIG. 1, or may be the relay node device 130-170 as shown in FIG.
  • the embodiment of the invention is not specifically limited.
  • the following is an example in which the execution entity of the method 200 is a first network node, and the method 200 includes some or all of the following contents:
  • the method 200 includes:
  • the first network node determines the first data.
  • the first network node configures a target address of the first data as an address of the target network node to form second data.
  • the first network node forwards the second data.
  • the first network node determines first data, where the first data includes the Packet Data Convergence Protocol (PDCP) service data unit (SDU) and/or PDCP. a protocol data unit (PDU); the first network node configures a target address of the first data as an address of the target network node to form second data; and the first network node forwards the second data.
  • PDCP Packet Data Convergence Protocol
  • SDU Packet Data Convergence Protocol
  • PDU protocol data unit
  • the data transmission between the network nodes can be relayed through the access layer.
  • the first data is data for the target terminal device.
  • the original target address of the first data is an address of the source network node.
  • the first data includes any one of the following data:
  • PDCP SDUs that are not mapped to PDCP PDUs; PDCP SDUs and/or PDCP PDUs that have no timeout for PDCP drop timers; PDCP SDUs and/or PDCP PDUs that do not receive PDCP status reports; and no radio link layer control protocol received ( Radio Link Control (RLC) Automatic Repeat-reQuest (ARQ) correct transmission of acknowledged PDCP SDUs and/or PDCP PDUs.
  • RLC Radio Link Control
  • ARQ Automatic Repeat-reQuest
  • the first data can include new data packets, such as data packets that are not mapped to PDCP PDUs.
  • the first data may also include old data packets, for example, old data packets that the PDCP drop timer does not time out; old data packets that have not received the PDCP status report; and old data packets that have not received the correct transmission acknowledgement of the RLC ARQ.
  • the correct transmission confirmation of the RLC ARQ includes at least one of the following correct transmission confirmations:
  • the correct transmission confirmation of the RLC ARQ involved in the embodiment of the present invention may be feedback of the end (the UE or the relay network node connecting the UE) to the end (the first network node), or may be a single hop (from the first Feedback from the nearest relay network node of the network node to the first network node.
  • the embodiment of the invention is not specifically limited.
  • a method for forwarding data between nodes in a relay network is described in detail from the perspective of a first network node (a network node configuring a target address of a first data as a network node of a target network node).
  • the inter-node forwarding in the relay network according to the embodiment of the present application will be described below from the perspective of the first network node being a relay network node and the first network node being a relay network anchor node, respectively, with reference to FIG. 3 to FIG.
  • the method of data is described in detail from the perspective of a first network node (a network node configuring a target address of a first data as a network node of a target network node).
  • the first network node is a relay network node as an example, and a method for forwarding data between nodes in the relay network according to the embodiment of the present invention is described.
  • the first network node is a relay network node directly connected to the terminal device, or the first network node is a relay network node that connects the terminal device through the relay network node.
  • FIG. 3 is a schematic flowchart of a method for forwarding data between network nodes in a relay network according to an embodiment of the present invention.
  • the terminal device shown in FIG. 3 may be the terminal device 180-190 as shown in FIG. 1, and the relay network anchor node shown in FIG. 3 may be the anchor node device 120 as shown in FIG. 1.
  • the relay network node shown in FIG. 3 may be the relay node device 130-170 as shown in FIG. 1.
  • the method 300 includes some or all of the following:
  • the terminal device sends a measurement report to the relay network anchor node.
  • the relay network anchor node sends the first data to the relay network node.
  • the relay network anchor node generates indication information according to the measurement report.
  • the first network node receives the indication information sent by the relay network anchor node, and the first network node configures the target address of the first data as the address of the target network node according to the indication information.
  • the relay network anchor node sends the indication information to the relay network node.
  • the relay network node configures the target address in the first data as the address of the target network node according to the indication information to generate the second data.
  • the relay network node generates second data according to the indication information.
  • the relay network node sends the second data to the target network node.
  • the target network node sends the second data to the terminal device.
  • the first data in the embodiment of the present invention is an old data packet for the relay network node and the relay network anchor node.
  • the relay network node may directly modify the target address in the first data from the address of the source network node to the address of the target network node according to the indication information to generate second data and retransmit the second data.
  • the first data in the embodiment of the present invention is a new data packet for the relay network node, and the relay network node may directly use the target address in the first data by the source network node according to the indication information.
  • the address is modified to the address of the target network node to generate the second data and forward it.
  • the target terminal device is 190, assuming that the source network node is the relay network node 170, and the target network node is the relay network node 150, and the relay network node 160 does not receive the transmission from the relay network node 170.
  • the second data can be generated by the relay network node 160 and the second data can be forwarded or retransmitted to the relay network node 150 (the target network node).
  • the second data is finally forwarded by the relay network node 150 (the target network node) to the terminal device 190 (target terminal device).
  • the relay network node generates the second data according to the indication information as an example, but the embodiment of the present invention is not limited thereto.
  • the second data may also be generated and forwarded or retransmitted directly through the relay network anchor node.
  • the target terminal device is 190, assuming that the source network node is the relay network node 170, and the target network node is the relay network node 150, and the relay network node 160 does not receive the transmission from the relay network node 170.
  • the second data may be generated by the anchor node device 120, and the second data is retransmitted to the relay network node 150 through the relay network node 130 and the relay network node 140 (target network) node). The second data is finally forwarded by the relay network node 150 (the target network node) to the terminal device 190 (target terminal device).
  • the second data can be generated by the source network node and forwarded by the data.
  • the source network node receives the first data and the indication information, and generates the second data according to the address of the target data configured as the address of the target network node, and forwards the second data to The target network node, and then the second network data is sent by the target network node to the target terminal device.
  • the target terminal device is 190
  • the source network node is the relay network node 170
  • the target network node is the relay network node 150
  • the second data can be generated by the relay network node 170 (source network node). And forwarding the second data to the relay network node 150 (target network node), and finally forwarding the second data to the terminal device 190 (target terminal device) by the relay network node 150 (target network node).
  • the method 300 may further include:
  • the relay network anchor node sends a handover command to the terminal device.
  • the first network node sends a handover command to the terminal device, where the handover command is used to command the terminal device to switch the relay network node directly connected to the terminal device from the source network node to the target network node.
  • the first network node sends RRC signaling to the terminal device, and the RRC signaling includes the handover command.
  • the method 300 may further include:
  • the terminal device sends a response of the handover command to the relay network anchor node.
  • the first network node receives the response of the handover signaling sent by the terminal device through the target network node.
  • the relay network node in the embodiment of the present invention may be understood as an access network device between the relay network anchor node and the terminal device.
  • the relay network anchor node in the embodiment of the present invention can be understood as an access network device directly connected to the core network.
  • relay network anchor node and “anchor node device” are often used interchangeably herein.
  • the relay network anchor node may also be referred to as a fixed network node or an integrated access and backhaul link (IAB) anchor.
  • the terms “relay network node” and “relay node device” are often used interchangeably herein.
  • the relay network node may also be referred to as an integrated access and backhaul link (IAB) node.
  • the first network node is a relay network anchor node as an example, and a method for forwarding data between nodes in the relay network according to the embodiment of the present invention is described:
  • the terminal device shown in FIG. 4 may be the terminal device 180-190 as shown in FIG. 1, and the relay network anchor node shown in FIG. 4 may be the anchor node device 120 as shown in FIG. 1.
  • the relay network node shown in FIG. 4 may be the relay node device 130-170 as shown in FIG. 1.
  • the method 400 includes some or all of the following:
  • the terminal device sends a measurement report to the relay network anchor node.
  • the relay network anchor node generates second data according to the measurement report and the first data.
  • the relay network anchor node sends the second data to the relay network node.
  • the relay network node sends the second data to the target network node.
  • the target network node sends the second data to the terminal device.
  • the first data in the embodiment of the present invention is an old data packet for the relay network anchor node.
  • the relay network anchor node may generate second data according to the measurement report and the first data, and retransmit the second data.
  • the relay network anchor node determines, according to the measurement report, whether the target address of the first data is configured as an address of the target network node, where the measurement report is used to reflect that the terminal device is respectively separated from the source network node and the target network node. Channel quality. If it is determined that the target address of the first data is configured as the address of the target network node, the target address in the first data is modified from the address of the source network node to the address of the target network node.
  • the source network node is a relay network node 170
  • the target network node is a relay network node 150.
  • the anchor node device 120 does not receive the correct transmission confirmation of the RLC ARQ sent by the relay network node 160.
  • the second data may be generated by the anchor node device 120 and the second data may be retransmitted .
  • FIG. 4 is only an example in which the first data is an old data packet for the relay network anchor node, but the embodiment of the present invention is not limited thereto.
  • the first data in the embodiment of the present invention may also be a new data packet for the relay network anchor node.
  • the relay network anchor node can directly generate the second data according to the measurement report and forward the second data.
  • the method 400 may further include:
  • the relay network anchor node sends a handover command to the terminal device.
  • the first network node sends a handover command to the terminal device, where the handover command is used to command the terminal device to switch the relay network node directly connected to the terminal device from the source network node to the target network node.
  • the first network node sends RRC signaling to the terminal device, and the RRC signaling includes the handover command.
  • the method 400 may further include:
  • the terminal device sends a response of the handover command to the relay network anchor node.
  • the first network node receives the response of the handover signaling sent by the terminal device through the target network node.
  • any combination of various embodiments of the present application may be made as long as it does not contradict the idea of the present application, and it should also be regarded as the content disclosed in the present application.
  • step S380 is followed by step S370.
  • the relay network anchor node may perform step S380 before step S330, or perform step S330 and step S380 simultaneously.
  • step S330 and step S380 may be performed.
  • the specific execution sequence of step S330 and step S380 is not limited in the embodiment of the present invention.
  • step S420 and step S460 are not limited in the embodiment of the present invention.
  • the relay network anchor node may perform step S460 before step S420, or perform step S420 and step S460 simultaneously.
  • FIG. 5 is a schematic block diagram of a network node 500 in accordance with an embodiment of the present invention.
  • the network node 500 may include:
  • the processing unit 510 is configured to:
  • first data comprising a PDCP SDU and/or a PDCP PDU; configuring a target address of the first data as an address of a target network node to form second data;
  • the transceiver unit 520 is configured to forward the second data.
  • the first data is data for the target terminal device.
  • the original target address of the first data is an address of the source network node.
  • the first data includes any one of the following data:
  • PDCP SDUs that are not mapped to PDCP PDUs; PDCP SDUs and/or PDCP PDUs that have no timeout for PDCP drop timers; PDCP SDUs and/or PDCP PDUs that do not receive PDCP status reports; and no correct transmission confirmation of RLC ARQs received PDCP SDU and/or PDCP PDU.
  • the correct transmission confirmation of the RLC ARQ includes at least one of the following correct transmission confirmations:
  • the network node 500 is a relay network anchor node, and the relay network anchor node is directly connected to the core network.
  • the network node 500 is a relay network node.
  • the network node 500 is a relay network node directly connected to the terminal device, or the network node 500 is a relay network node that connects the terminal device through the relay network node.
  • the transceiver unit 520 is further configured to:
  • the processing unit 510 is specifically configured to:
  • the target address of the first data is configured as the address of the target network node.
  • the transceiver unit 520 is further configured to:
  • the handover command is used to command the terminal device to switch the relay network node directly connected to the terminal device from the source network node to the target network node.
  • the transceiver unit 520 is specifically configured to:
  • the transceiver unit 520 is further configured to:
  • the network node of the embodiment of the present application has been described above from the perspective of a functional module in conjunction with FIG. 5. It should be understood that the functional module may be implemented by hardware, by software instructions, or by a combination of hardware and software modules.
  • the steps of the method embodiment of the present invention may be implemented by the integrated logic circuit of the hardware in the processor and/or the instruction of the software.
  • the steps of the method disclosed in the embodiment of the present invention may be directly embodied as hardware.
  • the decoding processor is executed or completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the foregoing method embodiments in combination with the hardware.
  • the processing unit 510 shown in FIG. 5 may be implemented by a processor, and the transceiver unit 520 shown in FIG. 5 may be implemented by a transceiver.
  • FIG. 6 is a schematic structural diagram of a network node 600 according to an embodiment of the present application.
  • the network node 600 shown in FIG. 6 includes a processor 610 that can call and run a computer program from memory to implement the methods in the embodiments of the present application.
  • the network node 600 may further include a memory 620.
  • the memory 620 can be used to store indication information and can also be used to store code, instructions, etc., executed by the processor 610.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 or may be integrated in the processor 610.
  • the network node 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, in particular, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 can include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of the antennas may be one or more.
  • the network node 600 may be the relay network node of the embodiment of the present application, and the network node 600 may implement a corresponding process implemented by the relay network node in each method of the embodiment of the present application. That is, the network node 600 in the embodiment of the present application may correspond to the network node 500 in the embodiment of the present application, and may correspond to the corresponding body in the method 200 according to the embodiment of the present application. Narration.
  • the network node 600 may be the relay network anchor node of the embodiment of the present application, and the network node 600 may implement a corresponding process implemented by the relay network anchor node in each method of the embodiment of the present application, that is,
  • the network node 600 of the embodiment of the present application may correspond to the network node 500 in the embodiment of the present application, and may correspond to the corresponding entity in the method 200 according to the embodiment of the present application.
  • no further details are provided herein.
  • the various components in the network node 600 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the embodiment of the present invention further provides a chip, which may be an integrated circuit chip, which has signal processing capability, and can implement or execute the disclosed methods, steps and logic block diagrams in the embodiments of the present invention.
  • a chip which may be an integrated circuit chip, which has signal processing capability, and can implement or execute the disclosed methods, steps and logic block diagrams in the embodiments of the present invention.
  • the chip can be applied to various communication devices such that the communication device on which the chip is mounted is capable of performing the various methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710 that can call and run a computer program from a memory to implement the method in the embodiments of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 620 can be used to store indication information and can also be used to store code, instructions, etc., executed by the processor 610.
  • the memory 720 may be a separate device independent of the processor 710 or may be integrated in the processor 710.
  • the chip 700 can also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, information or data sent by other devices or chips can be acquired.
  • the chip 700 can also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, information or data can be output to other devices or chips.
  • the chip can be applied to the relay network node in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the relay network node in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the relay network anchor node in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can be applied to the relay network anchor node in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system level chip, a system chip, a chip system or a system on chip. It should also be understood that the various components of the chip 700 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the processor mentioned in the embodiment of the present invention may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array. , FPGA) or other programmable logic devices, transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory referred to in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • the memory in the embodiment of the present invention may also be a static random access memory (SRAM), a dynamic random access memory (DRAM), or a dynamic random access memory (DRAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • DDR double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection Synchro link DRAM
  • DR RAM direct memory bus
  • FIG. 8 is a schematic block diagram of a communication system 800 in accordance with an embodiment of the present application.
  • the communication system 800 includes a terminal device 810 and a first network node 820.
  • the first network node 820 is configured to:
  • Determining first data the first data comprising a packet data convergence protocol PDCP service data unit SDU and/or a PDCP protocol data unit PDU; configuring a target address of the first data as an address of the target network node to form second data; Forwarding the second data.
  • the first network node is a relay network node or a relay network anchor node.
  • the network node 500 shown in FIG. 5 may correspond to the corresponding body in the method 200 of the embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the network node 500 are respectively implemented in FIG. The corresponding processes in each method are not described here for brevity.
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the foregoing methods 300 to 400, and the composition of the terminal device 810 can be as shown in the terminal device 180-190 in FIG. This will not be repeated here.
  • the first network node 820 can be used to implement the corresponding functions implemented by the relay network node or the relay network anchor node in the above methods 300 to 400, and the composition of the first network node 820 can be anchored as in FIG. As shown by the node device 120, the relay node devices 130-170 as shown in FIG. 1 can also be used. For the sake of brevity, it will not be repeated here.
  • system and the like in the text may also be referred to as “network management architecture” or “network system” and the like.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method of the embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • the division of a unit or a module or a component in the device embodiment described above is only a logical function division, and the actual implementation may have another division manner.
  • multiple units or modules or components may be combined or integrated.
  • To another system, or some unit or module or component can be ignored, or not executed.
  • the units/modules/components described above as separate/display components may or may not be physically separate, ie may be located in one place, or may be distributed over multiple network elements. Some or all of the units/modules/components may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • mutual coupling or direct coupling or communication connection shown or discussed above may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or other form. .

Abstract

提供了一种中继网络中节点间转发数据的方法和网络节点。该方法包括:第一网络节点确定第一数据,该第一数据包括分组数据汇聚协议PDCP服务数据单元SDU和/或PDCP协议数据单元PDU;该第一网络节点将该第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;该第一网络节点转发该第二数据。本发明实施例中,通过第一网络设备将第一数据的目标地址配置为目标网络节点的地址后再转发,能够使得网络节点间的数据传输通过接入层进行中继。

Description

中继网络中节点间转发数据的方法和网络节点 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种中继网络中节点间转发数据的方法、网络节点、芯片和系统。
背景技术
第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)目前正在进行新空口(New Radio,NR)中无线中继网络的研究包括:固定节点到中继节点的多跳传输;固定节点到中继节点的冗余路径传输;中继节点到固定节点的骨干路径的自动配置。
目前,由于现有的网络构架中网络节点间是通过传输层相连的,属于层3连接,而现有网络的切换流程都是基于现有的网络结构设计的。
因此,数据达到集成接入和回程链路(integrated access and backhaul link,IAB)固定(donor)网络节点之后,通过在传输层(层3)进行中继,继而到达最终的IAB中继网络节点(node)。
然而,网络节点间如何通过接入层进行中继,目前没有具体的解决方案。发明内容
提供了一种中继网络中节点间转发数据的方法、网络节点、芯片和系统,该中继网络中节点间转发数据的方法、网络节点、芯片和系统能够使得网络节点间的数据传输通过接入层进行中继。
第一方面,提供了一种中继网络中节点间转发数据的方法,包括:
第一网络节点确定第一数据,所述第一数据包括分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)服务数据单元(service data unit,SDU)和/或PDCP协议数据单元(Protocol Data Unit,PDU);
所述第一网络节点将所述第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;
所述第一网络节点转发所述第二数据。
本发明实施例中,通过第一网络设备将第一数据的目标地址配置为目标网络节点的地址后再转发,能够使得网络节点间的数据传输通过接入层进行中继。
在一些可能的实现方式中,所述第一数据为针对目标终端设备的数据。
在一些可能的实现方式中,所述第一数据的原目标地址为源网络节点的地址。
在一些可能的实现方式中,所述第一数据包括以下数据中的任一项:
未映射成PDCP PDU的PDCP SDU;
PDCP丢弃定时器没有超时的PDCP SDU和/或PDCP PDU;
没有收到PDCP状态报告的PDCP SDU和/或PDCP PDU;以及
没有收到无线链路层控制协议(Radio Link Control,RLC)自动重传请求(Automatic Repeat-reQuest,ARQ)的正确传输确认的PDCP SDU和/或PDCP PDU。
在一些可能的实现方式中,所述RLC ARQ的正确传输确认包括以下正确传输确认中的至少一项:
所述第一网络节点直接连接的终端设备发送的正确传输确认;
与所述第一网络节点直接相连的中继网络节点发送的正确传输确认;
所述第一网络节点通过中继网络节点连接的终端设备发送的正确传输确认;
直接连接终端设备的中继网络节点发送的正确传输确认。
在一些可能的实现方式中,所述第一网络节点为中继网络锚节点,所述中继网络锚节点与核心网络直接相连。
在一些可能的实现方式中,所述第一网络节点为中继网络节点。
在一些可能的实现方式中,所述第一网络节点为直接连接终端设备的中继网络节点,或者,所述第一网络节点为通过中继网络节点连接终端设备的中继网络节点。
在一些可能的实现方式中,所述第一网络节点将所述第一数据的目标地址配置为目标网络节点的地址,包括:
所述第一网络节点接收中继网络锚节点发送的指示信息,所述第一网络节点根据所述指示信息,将所述第一数据的目标地址配置为所述目标网络节点的地址。
在一些可能的实现方式中,所述方法还包括:
所述第一网络节点向所述终端设备发送切换命令,所述切换命令用于命令所述终端设备将与所述终端设备直接连接的中继网络节点从源网络节点切换到所述目标网络节点。
在一些可能的实现方式中,所述第一网络设备向所述终端设备发送切换命令,包括:
所述第一网络节点向所述终端设备发送无线资源控制(Radio Resource Control,RRC)信令,所述RRC信令包括所述切换命令。
在一些可能的实现方式中,所述方法还包括:
所述第一网络节点通过所述目标网络节点接收终端设备发送的所述切换信令的响应。
第二方面,提供了一种网络节点,用于执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述网络节点包括:
用于执行上述第一方面的方法或者上述任一可能的实现方式中的方法的功能模块。
第三方面,提供了一种网络节点,包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于 执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述网络节点还包括:
存储器,所述存储器用于存储所述计算机程序。
第四方面,提供了一种芯片,用于执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片还包括:
存储器,所述存储器用于存储所述计算机程序。
第五方面,提供了一种计算机可读存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序用于执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面的方法或者上述任一可能的实现方式中的方法。
第八方面,提供了一种通信系统,包括:第一网络节点;所述第一网络节点用于:确定第一数据,所述第一数据包括分组数据汇聚协议PDCP服务数据单元SDU和/或PDCP协议数据单元PDU;将所述第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;转发所述第二数据。
附图说明
图1是本发明应用场景的示例。
图2-图4是本发明实施例的中继网络中网络节点间转发数据的方法的示意性流程图。
图5是本发明实施例的网络节点的示意性框图。
图6是本发明实施例的另一网络节点的示意性框图。
图7是本发明实施例的芯片的示意性框图。
图8是本发明实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例的技术方案可以应用于5G NR通信系统。
图1是本发明实施例的应用场景的示意图。
如图1所示,通信系统100可以包括核心网设备110、锚定节点设备120、中继节点设备130-170和终端设备180-190。该通信系统100中可以建立以 核心网设备110为中心的拓扑网络。核心网设备110可以通过锚定节点设备120、中继节点设备130、中继节点设备140、中继节点设备150与终端设备180建立通信连接,核心网设备110可以通过锚定节点设备120、中继节点设备160、中继节点设备170与终端设备190建立通信连接。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例中的中继节点设备的数量与终端设备的数量可以根据实际需要确定。
其中,核心网设备110可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,会话管理功能(Session Management Function,SMF),又例如,用户面功能(User Plane Function,UPF)。
锚定节点设备120可以是直接与核心网设备110进行有线通信的基站或者接入网设备。锚定节点设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的中继节点设备或者终端设备(例如UE)进行通信。可选地,该锚定节点设备120可以是新空口(New Radio,NR)系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者为中继站、接入点、车载设备、可穿戴设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
中继节点设备(130-170)可以实现锚定节点设备与终端设备之间的数据或者信令转发。例如,中继节点设备130连接锚定节点设备120和中继节点设备140,用于转发锚定节点设备120与中继节点设备140(终端设备180)之间的数据或者信令。中继节点设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的其他中继节点设备或者终端设备进行通信。可选地,该中继节点设备可以是NR系统中的基站(gNB),或者为中继站、接入点、车载设备、可穿戴设备,或者未来演进的PLMN中的网络设备等。
可选地,中继节点设备与锚定节点设备120之间的通信连接可以通过跳数来表示,例如,中继节点设备130与锚定节点设备120之间的跳数为1,中继节点设备150与锚定节点设备120之间的跳数为3。
可选地,中继节点设备的上一跳设备为其父节点,下一跳为其子节点。例如,中继节点设备140的父节点为中继节点设备130,中继节点设备140的子节点为中继节点设备150。
可选地,与锚定节点设备120之间的跳数越少,其优先级就越高。例如,中继节点设备130的优先级大于中继节点设备140。又例如,中继节点设备130的优先级与中继节点设备160之间的优先级相同。
终端设备(180-190)可以是移动的或固定的。可选地,终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动 协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G NR网络中的终端设备或者未来演进的PLMN中的终端设备等。
图1示例性地示出了一个核心网设备、一个锚定节点设备、五个中继节点设备和两个终端设备,可选地,该无线通信系统100可以包括多个锚定节点设备,以及其他数量的中继节点设备,并且每个中继节点设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括会话管理功能(Session Management Function,SMF)、统一数据管理(Unified Data Management,UDM),认证服务器功能(Authentication Server Function,AUSF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是本发明实施例的中继网路中网络节点间转发数据的方法的示意性流程图。该方法200可以由网络节点执行。该网络节点可以是如图1所示的的锚定节点设备120,也可以是如图1所示的中继节点设备130-170。本发明实施例不作具体限定。为便于说明,下面以该方法200的执行主体为第一网络节点为例,该方法200包括以下部分或全部内容:
如图2所示,该方法200包括:
S210,第一网络节点确定第一数据。
S220,该第一网络节点将该第一数据的目标地址配置为目标网络节点的地址,以形成第二数据。
S230,该第一网络节点转发该第二数据。
具体而言,第一网络节点确定第一数据,该第一数据包括所述第一数据包括分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)服务数据单元(service data unit,SDU)和/或PDCP协议数据单元(Protocol Data Unit,PDU);该第一网络节点将该第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;该第一网络节点转发该第二数据。
本发明实施例中,通过第一网络设备将第一数据的目标地址配置为目标网络节点的地址后再转发,能够使得网络节点间的数据传输通过接入层进行中继。
可选地,该第一数据为针对目标终端设备的数据。
可选地,该第一数据的原目标地址为源网络节点的地址。
可选地,该第一数据包括以下数据中的任一项:
未映射成PDCP PDU的PDCP SDU;PDCP丢弃定时器没有超时的PDCP SDU和/或PDCP PDU;没有收到PDCP状态报告的PDCP SDU和/或PDCP PDU;以及没有收到无线链路层控制协议(Radio Link Control,RLC)自动重传请求(Automatic Repeat-reQuest,ARQ)的正确传输确认的PDCP SDU和/或PDCP PDU。
换句话说,该第一数据可以包括新数据包,例如,未映射成PDCP PDU的数据包。该第一数据也可以包括旧数据包,例如,PDCP丢弃定时器没有超时的旧数据包;没有收到PDCP状态报告的旧数据包;以及没有收到RLC ARQ的正确传输确认的旧数据包。
可选地,该RLC ARQ的正确传输确认包括以下正确传输确认中的至少一项:
该第一网络节点直接连接的终端设备发送的正确传输确认;与该第一网络节点直接相连的中继网络节点发送的正确传输确认;该第一网络节点通过中继网络节点连接的终端设备发送的正确传输确认;直接连接终端设备的中继网络节点发送的正确传输确认。
应理解,本发明实施例中涉及的RLC ARQ的正确传输确认可以是端(UE或者连接UE的中继网络节点)到端(该第一网络节点)的反馈,也可以单跳(离该第一网络节点最近的中继网络节点到该第一网络节点)的反馈。本发明实施例不作具体限定。
上文中结合图2,从第一网络节点(将第一数据的目标地址配置为目标网络节点的网络节点)的角度详细描述了根据本申请实施例的中继网络中节点间转发数据的方法,下面将结合图3至图4,分别从该第一网络节点为中继网络节点,以及该第一网络节点为中继网络锚节点的角度描述根据本申请实施例的中继网络中节点间转发数据的方法。
下面对本发明实施例中,该第一网络节点为中继网络节点为例,对本发明实施例的中继网络中节点间转发数据的方法进行说明。例如,该第一网络节点为直接连接终端设备的中继网络节点,或者,该第一网络节点为通过中继网络节点连接终端设备的中继网络节点。
图3是本发明实施例的中继网路中网络节点间转发数据的方法的示意性流程图。图3中所示的终端设备可以是如图1所示的终端设备180-190,图3中所示的中继网络锚节点可以是如图1所示的锚定节点设备120。图3中所示的中继网络节点可以是如图1所示的中继节点设备130-170。
如图3所示,该方法300包括以下部分或全部内容:
S310,终端设备向中继网络锚节点发送测量报告。
S320,该中继网络锚节点向中继网络节点发送第一数据。
S330,该中继网络锚节点根据该测量报告生成指示信息。
具体地,该第一网络节点接收中继网络锚节点发送的指示信息,该第一网络节点根据该指示信息,将该第一数据的目标地址配置为该目标网络节点的地址。
S340,中继网络锚节点向该中继网络节点发送指示信息。
具体地,该中继网络节点根据该指示信息,将第一数据中的目标地址配置为目标网络节点的地址,以生成第二数据。
S350,该中继网络节点根据该指示信息,生成第二数据。
S360,该中继网络节点向目标网络节点发送第二数据。
S370,该目标网络节点向终端设备发送第二数据。
可选地,本发明实施例中的第一数据对于该中继网络节点和该中继网络锚节点来说为旧数据包。该中继网络节点可以直接根据该指示信息将第一数据中的目标地址由源网络节点的地址修改为目标网络节点的地址,以生成第二数据并重传该第二数据。
可选地,本发明实施例中的第一数据对于该中继网络节点来说为新数据包,该中继网络节点可以直接根据该指示信息将第一数据中的目标地址由源网络节点的地址修改为目标网络节点的地址,以生成第二数据并进行转发。
结合图1来说,假设目标终端设备为190,假设源网络节点为中继网络节点170,目标网络节点为中继网络节点150,该中继网络节点160没有接收到中继网络节点170发送的RLC ARQ的正确传输确认时,可以通过中继网络节点160生成该第二数据并转发或重传该第二数据至该中继网络节点150(目标网络节点)。最终由中继网络节点150(目标网络节点)将该第二数据转发给该终端设备190(目标终端设备)。
应理解,本发明实施例中,以该中继网络节点根据该指示信息生成第二数据为例,但本发明实施例不限于此。
例如,也可以直接通过该中继网络锚节点生成该第二数据并进行转发或重传。
结合图1来说,假设目标终端设备为190,假设源网络节点为中继网络节点170,目标网络节点为中继网络节点150,该中继网络节点160没有接收到中继网络节点170发送的RLC ARQ的正确传输确认时,可以通过锚定节点设备120生成该第二数据,并通过中继网络节点130和中继网络节点140重传该第二数据至该中继网络节点150(目标网络节点)。最终由中继网络节点150(目标网络节点)将该第二数据转发给该终端设备190(目标终端设备)。
又例如,可以通过源网络节点生成该第二数据并进行数据的转发。
具体地,该源网络节点接收该第一数据和该指示信息,并根据该将该第一数据的目标地址配置为该目标网络节点的地址,生成该第二数据,并转发该第二数据给该目标网络节点,进而由该目标网络节点将该第二数据发送给目标终端设备。
结合图1来说,假设目标终端设备为190,源网络节点为中继网络节点170,目标网络节点为中继网络节点150,可以通过该中继网络节点170(源网络节点)生成第二数据,并将该第二数据转发给该中继网络节点150(目标网络节点),最终由中继网络节点150(目标网络节点)将该第二数据转发 给该终端设备190(目标终端设备)。
如图3所示,该方法300还可以包括:
S380,该中继网络锚节点向终端设备发送切换命令。
具体地,该第一网络节点向该终端设备发送切换命令,该切换命令用于命令该终端设备将与该终端设备直接连接的中继网络节点从源网络节点切换到该目标网络节点。
例如,该第一网络节点向该终端设备发送RRC信令,该RRC信令包括该切换命令。
如图3所示,该方法300还可以包括:
S390,该终端设备向该中继网络锚节点发送切换命令的响应。
换句话说,该第一网络节点通过该目标网络节点接收终端设备发送的该切换信令的响应。
应理解,本发明实施例中的中继网络节点可以理解为中继网络锚节点和终端设备之间的接入网络设备。例如,如图1所述的中继节点设备130-170。本发明实施例中的中继网路锚节点可以理解为与核心网络直接相连的接入网络设备。例如,如图1所示的锚定节点设备120。
还应理解,本文中术语“中继网路锚节点”和“锚定节点设备”在本文中常被可互换使用。在其他实施例中,该中继网络锚节点也可称为固定网络节点或者集成接入和回程链路(integrated access and backhaul link,IAB)锚节点(donor)。本文中术语“中继网路节点”和“中继节点设备”在本文中常被可互换使用。在其他实施例中,该中继网络节点也可称为集成接入和回程链路(integrated access and backhaul link,IAB)节点(node)。
下面对本发明实施例中,该第一网络节点为中继网络锚节点为例,对本发明实施例的中继网络中节点间转发数据的方法进行说明:
图4是本发明实施例的中继网路中网络节点间转发数据的方法的示意性流程图。图4中所示的终端设备可以是如图1所示的终端设备180-190,图4中所示的中继网络锚节点可以是如图1所示的锚定节点设备120。图4中所示的中继网络节点可以是如图1所示的中继节点设备130-170。
如图4所示,该方法400包括以下部分或全部内容:
S410,终端设备向中继网络锚节点发送测量报告。
S420,该中继网络锚节点根据该测量报告和第一数据生成第二数据。
S430,该中继网络锚节点向中继网络节点发送该第二数据。
S440,该中继网络节点向目标网络节点发送第二数据。
S450,该目标网络节点向终端设备发送第二数据。
可选地,本发明实施例中的第一数据对于该中继网络锚节点来说为旧数据包。该中继网络锚节点可以根据该测量报告和第一数据生成第二数据,并重新传输该第二数据。
具体地,该中继网络锚节点根据该测量报告确定是否将第一数据的目标地址配置为目标网络节点的地址,该测量报告用于反映终端设备分别与源网 络节点和该目标网络节点之间的信道质量。如果确定将该第一数据的目标地址配置为该目标网络节点的地址,则将该第一数据中的目标地址由源网络节点的地址修改为该目标网络节点的地址。
结合图1来说,假设源网络节点为中继网络节点170,目标网络节点为中继网络节点150,该锚定节点设备120没有接收到中继网络节点160发送的RLC ARQ的正确传输确认和/或中继网络节点170发送的RLC ARQ的正确传输确认和/或终端设备190发送的RLC ARQ的正确传输确认时,可以通过该锚定节点设备120生成该第二数据并重传该第二数据。
应理解,图4仅以第一数据对于该中继网络锚节点来说为旧数据包为例,但本发明实施例不限于此。
例如,本发明实施例中的第一数据对于该中继网络锚节点来说也可以为新数据包。由此,该中继网络锚节点可以根据该测量报告直接生成该第二数据并转发该第二数据。
如图4所述,该方法400还可以包括:
S460,该中继网络锚节点向终端设备发送切换命令。
具体地,该第一网络节点向该终端设备发送切换命令,该切换命令用于命令该终端设备将与该终端设备直接连接的中继网络节点从源网络节点切换到该目标网络节点。
例如,该第一网络节点向该终端设备发送RRC信令,该RRC信令包括该切换命令。
如图4所述,该方法400还可以包括:
S470,该终端设备向该中继网络锚节点发送切换命令的响应。
换句话说,该第一网络节点通过该目标网络节点接收终端设备发送的该切换信令的响应。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
例如,图3所示的中继网络中中继节点间转发数据的方法的流程图中,仅以步骤S380在步骤S370之后为例。在其他实施例中,该中继网络锚节点可以在步骤S330之前执行步骤S380,或者同时执行步骤S330和步骤S380。换句话说,该中继网络锚节点在确定将与终端设备服务的中继网络节点由源 网络节点切换至目标网络节点后,就可以执行步骤S330和步骤S380。但本发明实施例对步骤S330和步骤S380的具体执行顺序不作限定。
类似地,在图4所示的中继网络中中继节点间转发数据的方法的流程图中,本发明实施例对步骤S420和步骤S460的具体执行顺序不作限定。例如,该中继网络锚节点可以在步骤S420之前执行步骤S460,或者同时执行步骤S420和步骤S460。
上文结合图1至图4,详细描述了本申请的方法实施例,下文结合图5至图7,详细描述本申请的装置实施例。
图5是本发明实施例的网络节点500的示意性框图。
具体地,如图5所示,该网络节点500可以包括:
处理单元510,该处理单元510用于:
确定第一数据,该第一数据包括PDCP SDU和/或PDCP PDU;将该第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;
收发单元520,用于转发该第二数据。
可选地,该第一数据为针对目标终端设备的数据。
可选地,该第一数据的原目标地址为源网络节点的地址。
可选地,该第一数据包括以下数据中的任一项:
未映射成PDCP PDU的PDCP SDU;PDCP丢弃定时器没有超时的PDCP SDU和/或PDCP PDU;没有收到PDCP状态报告的PDCP SDU和/或PDCP PDU;以及没有收到RLC ARQ的正确传输确认的PDCP SDU和/或PDCP PDU。
可选地,该RLC ARQ的正确传输确认包括以下正确传输确认中的至少一项:
该网络节点500直接连接的终端设备发送的正确传输确认;与该网络节点500直接相连的中继网络节点发送的正确传输确认;该网络节点500通过中继网络节点连接的终端设备发送的正确传输确认;直接连接终端设备的中继网络节点发送的正确传输确认。
可选地,该网络节点500为中继网络锚节点,该中继网络锚节点与核心网络直接相连。
可选地,该网络节点500为中继网络节点。
可选地,该网络节点500为直接连接终端设备的中继网络节点,或者,该网络节点500为通过中继网络节点连接终端设备的中继网络节点。
可选地,该收发单元520还用于:
接收中继网络锚节点发送的指示信息,该处理单元510具体用于:
根据该指示信息,将该第一数据的目标地址配置为该目标网络节点的地址。
可选地,该收发单元520还用于:
向该终端设备发送切换命令,该切换命令用于命令该终端设备将与该终端设备直接连接的中继网络节点从源网络节点切换到该目标网络节点。
可选地,该收发单元520具体用于:
向该终端设备发送RRC信令,该RRC信令包括该切换命令。
可选地,该收发单元520还用于:
通过该目标网络节点接收终端设备发送的该切换信令的响应。
上文中结合图5从功能模块的角度描述了本申请实施例的网络节点。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本发明实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本发明实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,本发明实施例中,图5所示的处理单元510可以由处理器实现,图5所示的收发单元520可由收发器实现。
图6是本申请实施例的网络节点600示意性结构图。图6所示的网络节点600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,网络节点600还可以包括存储器620。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,网络节点600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该网络节点600可为本申请实施例的中继网络节点,并且该网络节点600可以实现本申请实施例的各个方法中由中继网络节点实现的相应流程。也就是说,本申请实施例的网络节点600可对应于本申请实施例中的网络节点500,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
可选地,该网络节点600可为本申请实施例的中继网络锚节点,并且该网络节点600可以实现本申请实施例的各个方法中由中继网络锚节点实现的相应流程,也就是说,本申请实施例的网络节点600可对应于本申请实施例 中的网络节点500,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
应当理解,该网络节点600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
此外,本发明实施例中还提供了一种芯片,该芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。
可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本发明实施例中的公开的各方法、步骤及逻辑框图。
图7是根据本申请实施例的芯片的示意性结构图。
图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的中继网络节点,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的中继网络锚节点,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本发明实施例中提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等等。此外,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
此外,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8是根据本申请实施例的通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和第一网络节点820。其中,该第一网络节点820用于:
确定第一数据,该第一数据包括分组数据汇聚协议PDCP服务数据单元SDU和/或PDCP协议数据单元PDU;将该第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;转发所述第二数据。
可选地,该第一网络节点为中继网络节点或者中继网络锚节点。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图5所示的网络节点500可以对应于执行本申请实施例的方法200中的相应主体,并且网络节点500中的各个单元的前述和其它操作和/或功能分别为了实现图1中的各个方法中的相应流程,为了简洁,在此不再赘述。
其中,该终端设备810可以用于实现上述方法300至400中由终端设备实现的相应的功能,以及该终端设备810的组成可以如图1中的终端设备180-190所示,为了简洁,在此不再赘述。
该第一网络节点820可以用于实现上述方法300至400中由中继网络节点或中继网络锚节点实现的相应的功能,以及该第一网络节点820的组成可以如图1中的锚定节点设备120所示,也可以如图1所示的中继节点设备130-170。为了简洁,在此不再赘述。
需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本发明实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明实施例。
例如,在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本发明实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种中继网络中节点间转发数据的方法,其特征在于,包括:
    第一网络节点确定第一数据,所述第一数据包括分组数据汇聚协议PDCP服务数据单元SDU和/或PDCP协议数据单元PDU;
    所述第一网络节点将所述第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;
    所述第一网络节点转发所述第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数据为针对目标终端设备的数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一数据的原目标地址为源网络节点的地址。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一数据包括以下数据中的任一项:
    未映射成PDCP PDU的PDCP SDU;
    PDCP丢弃定时器没有超时的PDCP SDU和/或PDCP PDU;
    没有收到PDCP状态报告的PDCP SDU和/或PDCP PDU;以及
    没有收到无线链路层控制协议RLC自动重传请求ARQ的正确传输确认的PDCP SDU和/或PDCP PDU。
  5. 根据权利要求4所述的方法,其特征在于,所述RLC ARQ的正确传输确认包括以下正确传输确认中的至少一项:
    所述第一网络节点直接连接的终端设备发送的正确传输确认;
    与所述第一网络节点直接相连的中继网络节点发送的正确传输确认;
    所述第一网络节点通过中继网络节点连接的终端设备发送的正确传输确认;
    直接连接终端设备的中继网络节点发送的正确传输确认。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一网络节点为中继网络锚节点,所述中继网络锚节点与核心网络直接相连。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一网络节点为中继网络节点。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网络节点为直接连接终端设备的中继网络节点,或者,所述第一网络节点为通过中继网络节点连接终端设备的中继网络节点。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一网络节点将所述第一数据的目标地址配置为目标网络节点的地址,包括:
    所述第一网络节点接收中继网络锚节点发送的指示信息,所述第一网络节点根据所述指示信息,将所述第一数据的目标地址配置为所述目标网络节点的地址。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法 还包括:
    所述第一网络节点向所述终端设备发送切换命令,所述切换命令用于命令所述终端设备将与所述终端设备直接连接的中继网络节点从源网络节点切换到所述目标网络节点。
  11. 根据权利要求10所述的方法,其特征在于,所述第一网络设备向所述终端设备发送切换命令,包括:
    所述第一网络节点向所述终端设备发送无线资源控制RRC信令,所述RRC信令包括所述切换命令。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点通过所述目标网络节点接收终端设备发送的所述切换信令的响应。
  13. 一种网络节点,其特征在于,包括:
    处理单元,所述处理单元用于:
    确定第一数据,所述第一数据包括分组数据汇聚协议PDCP服务数据单元SDU和/或PDCP协议数据单元PDU;将所述第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;
    收发单元,用于转发所述第二数据。
  14. 根据权利要求13所述的网络节点,其特征在于,所述第一数据为针对目标终端设备的数据。
  15. 根据权利要求13或14所述的网络节点,其特征在于,所述第一数据的原目标地址为源网络节点的地址。
  16. 根据权利要求13至15中任一项所述的网络节点,其特征在于,所述第一数据包括以下数据中的任一项:
    未映射成PDCP PDU的PDCP SDU;
    PDCP丢弃定时器没有超时的PDCP SDU和/或PDCP PDU;
    没有收到PDCP状态报告的PDCP SDU和/或PDCP PDU;以及
    没有收到无线链路层控制协议RLC自动重传请求ARQ的正确传输确认的PDCP SDU和/或PDCP PDU。
  17. 根据权利要求16所述的网络节点,其特征在于,所述RLC ARQ的正确传输确认包括以下正确传输确认中的至少一项:
    所述网络节点直接连接的终端设备发送的正确传输确认;
    与所述网络节点直接相连的中继网络节点发送的正确传输确认;
    所述网络节点通过中继网络节点连接的终端设备发送的正确传输确认;
    直接连接终端设备的中继网络节点发送的正确传输确认。
  18. 根据权利要求13至17中任一项所述的网络节点,其特征在于,所述网络节点为中继网络锚节点,所述中继网络锚节点与核心网络直接相连。
  19. 根据权利要求13至17中任一项所述的网络节点,其特征在于,所述网络节点为中继网络节点。
  20. 根据权利要求19所述的网络节点,其特征在于,所述网络节点为直 接连接终端设备的中继网络节点,或者,所述网络节点为通过中继网络节点连接终端设备的中继网络节点。
  21. 根据权利要求19或20所述的网络节点,其特征在于,所述收发单元还用于:
    接收中继网络锚节点发送的指示信息,所述处理单元具体用于:
    根据所述指示信息,将所述第一数据的目标地址配置为所述目标网络节点的地址。
  22. 根据权利要求13至21中任一项所述的网络节点,其特征在于,所述收发单元还用于:
    向所述终端设备发送切换命令,所述切换命令用于命令所述终端设备将与所述终端设备直接连接的中继网络节点从源网络节点切换到所述目标网络节点。
  23. 根据权利要求22所述的网络节点,其特征在于,所述收发单元具体用于:
    向所述终端设备发送无线资源控制RRC信令,所述RRC信令包括所述切换命令。
  24. 根据权利要求22或23所述的网络节点,其特征在于,所述收发单元还用于:
    通过所述目标网络节点接收终端设备发送的所述切换信令的响应。
  25. 一种网络节点,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至12中任一项所述的方法的指令。
  26. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至12中任一项所述的方法的指令。
  27. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序包括:用于执行权利要求1至12中任一项所述的方法的指令。
  28. 一通信系统,其特征在于,包括:第一网络节点;
    所述第一网络节点用于:
    确定第一数据,所述第一数据包括分组数据汇聚协议PDCP服务数据单元SDU和/或PDCP协议数据单元PDU;
    将所述第一数据的目标地址配置为目标网络节点的地址,以形成第二数据;
    转发所述第二数据。
PCT/CN2018/086392 2018-05-10 2018-05-10 中继网络中节点间转发数据的方法和网络节点 WO2019213922A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880084829.0A CN111543116B (zh) 2018-05-10 2018-05-10 中继网络中节点间转发数据的方法和网络节点
PCT/CN2018/086392 WO2019213922A1 (zh) 2018-05-10 2018-05-10 中继网络中节点间转发数据的方法和网络节点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086392 WO2019213922A1 (zh) 2018-05-10 2018-05-10 中继网络中节点间转发数据的方法和网络节点

Publications (1)

Publication Number Publication Date
WO2019213922A1 true WO2019213922A1 (zh) 2019-11-14

Family

ID=68466623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086392 WO2019213922A1 (zh) 2018-05-10 2018-05-10 中继网络中节点间转发数据的方法和网络节点

Country Status (2)

Country Link
CN (1) CN111543116B (zh)
WO (1) WO2019213922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301826A (zh) * 2021-12-23 2022-04-08 杭州数梦工场科技有限公司 一种消息传输的方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112437106A (zh) * 2020-08-31 2021-03-02 上海哔哩哔哩科技有限公司 一种使用中继节点上传文件的方法及设备
CN117643093A (zh) * 2021-07-30 2024-03-01 瑞典爱立信有限公司 终端设备、网络节点及其处理路径调换和切换的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175454A1 (ko) * 2015-04-30 2016-11-03 엘지전자(주) 블루투스 메쉬 네트워크를 이용하여 데이터를 송수신하기 위한 방법 및 장치
WO2018028504A1 (zh) * 2016-08-11 2018-02-15 中兴通讯股份有限公司 一种路由方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175454A1 (ko) * 2015-04-30 2016-11-03 엘지전자(주) 블루투스 메쉬 네트워크를 이용하여 데이터를 송수신하기 위한 방법 및 장치
WO2018028504A1 (zh) * 2016-08-11 2018-02-15 中兴通讯股份有限公司 一种路由方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Architecture and Protocol Stack for IAB", 3GPP TSG-RAN WG3 #99. R3-181364, 17 February 2018 (2018-02-17), XP051401799 *
ZTE: "Discussion on Relay Architecture Supporting IAB", 3GPP TSG-RAN WG3 MEETING #99. R3-180792, 14 February 2018 (2018-02-14), XP051401225 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301826A (zh) * 2021-12-23 2022-04-08 杭州数梦工场科技有限公司 一种消息传输的方法及装置
CN114301826B (zh) * 2021-12-23 2023-11-21 杭州数梦工场科技有限公司 一种消息传输的方法及装置

Also Published As

Publication number Publication date
CN111543116A (zh) 2020-08-14
CN111543116B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
JP7303833B2 (ja) 情報伝送方法及び装置
WO2019214747A1 (zh) 一种配置方法、数据传输方法和装置
JP5642765B2 (ja) 移動性管理のための擬似配線
JP2023517977A (ja) データパケット送信方法、データパケット送信装置、通信ノード及び記憶媒体
US11356294B2 (en) Packet processing method and device
US20180317156A1 (en) Methods and Devices for Handling Data Packet Transmissions in a Multi-Path Multi-Hop Adapted Wireless Communication Network
WO2022082679A1 (zh) 一种通信方法及相关设备
US11844010B2 (en) Relay transmission method and relay node
US20220078661A1 (en) Network nodes and methods supporting multiple connectivity
WO2019213922A1 (zh) 中继网络中节点间转发数据的方法和网络节点
US11722574B2 (en) Packet transmission method, communication apparatus, and communication system
WO2021189235A1 (zh) 一种数据传输方法及装置、通信设备
WO2022143684A1 (zh) 一种数据处理方法及装置
TW202013936A (zh) 無線通訊方法和通訊設備
CN106712908B (zh) 数据传输方法、装置和系统
WO2020029080A1 (zh) 切换网络的方法、网络节点、芯片和通信系统
WO2018218996A1 (zh) 数据包传输方法及设备
WO2021238318A1 (zh) 一种通信方法及装置
JP6499283B2 (ja) ページング方法、関連デバイス、及びシステム
WO2019136933A1 (zh) 中继传输的方法和中继节点
TWI827186B (zh) 路由方法和通信裝置
WO2022127579A1 (zh) Iab节点的数据处理方法、装置及iab节点
WO2024016279A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023005919A1 (zh) 分组数据汇聚协议状态报告发送方法、设备及装置
WO2021168813A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917967

Country of ref document: EP

Kind code of ref document: A1