WO2019213866A1 - 智能弹簧制造系统 - Google Patents

智能弹簧制造系统 Download PDF

Info

Publication number
WO2019213866A1
WO2019213866A1 PCT/CN2018/086153 CN2018086153W WO2019213866A1 WO 2019213866 A1 WO2019213866 A1 WO 2019213866A1 CN 2018086153 W CN2018086153 W CN 2018086153W WO 2019213866 A1 WO2019213866 A1 WO 2019213866A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
correction
axis
industrial computer
machine
Prior art date
Application number
PCT/CN2018/086153
Other languages
English (en)
French (fr)
Inventor
林炳南
Original Assignee
展望系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展望系统股份有限公司 filed Critical 展望系统股份有限公司
Priority to PCT/CN2018/086153 priority Critical patent/WO2019213866A1/zh
Publication of WO2019213866A1 publication Critical patent/WO2019213866A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer

Definitions

  • the invention relates to the technical field of spring manufacturing, in particular to a smart spring manufacturing system which accelerates the adjustment and trial production speed through the introduction of an experience database.
  • Multi-axis material bending machines can be divided into two categories, one is called a coil spring machine with a processing freedom of at least 5 axes, and the other is called a universal machine is free to process. The degree is above 10 axes.
  • the multi-axis spring machine described above mostly uses computer numerical control (CNC) to control the movement of each axis. Basically, the most common difficulties occur are as follows:
  • the application of computer numerical control (CNC) control tool machine is mainly used to process hard steel metal, and the preset machining size of the control tool will be the same as the actual size of the finished product after processing.
  • the general spring wire is mostly steel with good elasticity, and the rebound phenomenon occurs after the force is deformed.
  • the variable of the rebound size includes the difference of the material, the length of the processing time or the external force of the deformation, and the same coil spring wire.
  • the material of each segment is different, which leads to the multi-axis spring machining using computer numerical control. If the tool setting is exactly the size of the preset spring product, that is, the size of the original spring, the actual size of the finished product will often be The preset size produces a large tolerance. The main cause of this tolerance comes from the springback of the spring wire. It takes more time to adjust and trial production in a trial and error manner to produce a good spring product.
  • CNC computer numerical control
  • CNC computer numerical control
  • the design of the device is less concerned with a small number of problems.
  • the multi-axis spring machine has a short machining time, often converts and produces springs of different sizes, and it is better to quickly change the programming for correction when manufacturing defective products. Therefore, the direction of control and programming of the multi-axis spring machine can be quickly Setting and transition, the existing computer numerical control (CNC) control method is not suitable for controlling multi-axis spring machine.
  • the existing computer numerical control (CNC) is not suitable for controlling a multi-axis spring machine, and it is not possible to speed up the adjustment time when a multi-axis spring machine manufactures springs of different specifications.
  • the object of the present invention is to revise the programming of an industrial computer by an empirical database made of appropriate parameters, so that a first-time manufacturing can produce a spring close to the original set size, thereby accelerating the production of the multi-axis spring machine.
  • the present invention provides a smart spring manufacturing system comprising:
  • An industrial computer electrically connected to the multi-axis spring the industrial computer is provided with a control interface, which receives user input wire material, wire cross-section shape and size, and spring type, spring specification data, and stores in the industrial computer
  • An experience database each experience database corresponds to a spring type, a wire material and a wire cross-section shape and size, and each experience database is stored as a matrix table of spring index and pitch angle for the horizontal and vertical axes respectively.
  • a plurality of empirical correction coefficients are recorded in each experience database, and each experience database corresponds to a spring type, a wire material and a wire cross-section shape and size;
  • the industrial computer receives the spring type and the spring specification data input by the control interface, and generates an original control program according to mathematical logic, the original control program includes a plurality of steps arranged according to a time axis, and each step includes multiple controlling the The control target data of the multi-axis spring machine; the industrial computer selects an empirical database corresponding to the spring type, the wire material and the wire cross-section shape and size input by the control interface, according to the spring specification input by the control interface, the wire The calculated spring index and the pitch angle are searched in the selected empirical database, and the empirical correction coefficient closest to or the same as the spring index and the pitch angle is selected, and the original control program is corrected by the empirical correction coefficient.
  • a correction control program is generated corresponding to the control target data of the step, and the correction control process controls the multi-axis spring machine to produce a correction spring.
  • the data of the spring specification according to the present invention includes the number of turns, the outer diameter, and the length;
  • the control target data is a control object of moving the distance of the plurality of motion axes of the multi-axis spring machine in each of the steps, including The number of turns of the spring, the outer diameter of the spring, the pitch, the length of the wire, and the time.
  • the multi-axis spring machine of the present invention is provided with a body; an image detecting device is provided, and a camera is disposed in front of the body, the camera captures the correction spring; and the industrial computer is electrically connected to the camera Before each of the correction springs is manufactured to be sheared, the correction spring is photographed by the camera and an actual size is measured, and the actual size is compared with the data of the spring specification, if the positive and negative errors are less than the tolerance If the range is judged to be unsatisfactory, if the determination is unqualified, when the number of the unqualified correction springs of the multi-axis spring machine continuously fails to reach a set error amount, the industrial computer commands the multi-axis spring machine to stop and executes a correction procedure. The empirical correction coefficient is corrected and the corrected empirical correction coefficient is restored to the corresponding position of the experience database, and the original production is completed after the calibration is completed until the number of good products is completed.
  • the present invention is provided with a spring sorter in front of the multi-axis spring machine, and a finished part and a waste part are arranged on the lower part of the spring sorter, on the spring sorter.
  • the half portion is provided with a receiving bucket for receiving the correction spring manufactured by the multi-axis spring machine, and an electric control valve is disposed in the middle of the spring sorter, and the electric control valve is communicated with the bottom end of the receiving bucket,
  • the electronically controlled valve is selectively connectable to the finished portion or the waste portion;
  • the industrial computer is electrically connected to the electronically controlled valve, and the industrial computer controls the electricity when it is determined that the qualified correcting spring falls to the receiving bucket
  • the control valve causes the qualified correction spring to fall into the finished part, and when it is determined that the failed correction spring falls to the receiving bucket, the industrial computer controls the electronically controlled valve to cause the defective correction spring to fall into the waste portion.
  • the image detecting device of the present invention incorporates a light source in front of the body, the light source is irradiated toward the camera, and the correction spring is located between the light source and the camera.
  • the parameter of the user input wire characteristic is received through the control interface of the industrial computer, that is, the wire material, the wire cross-section shape and size, and the data of the spring type and the spring specification to generate an original.
  • Controlling the program and deriving the applicable empirical correction coefficient by looking up a table of empirical data corresponding to a wire characteristic, and then using the empirical correction coefficient to correct the step of correspondingly controlling the multi-axis spring machine in the original control program to generate said
  • a correction control program is used by which the multi-axis spring machine produces a correction spring that is approximately the same size as the original set size spring.
  • the invention makes various experience databases through the experience of correction on the same or the same type of multi-axis spring machine.
  • the experience of correcting the original control program can be quickly obtained through table lookup. Correct the coefficient and correct the original control program with the empirical correction coefficient to obtain the correction control program.
  • the correction spring with the same or similar size as the original set size can be manufactured.
  • the same size as the original spring can be manufactured, which can greatly shorten the calibration time of the multi-axis spring machine, especially for a small number of spring production modes; if multiple multi-axis springs
  • the exchange of experience databases between machines can also speed up the calibration process during the manufacture of multiple multi-axis spring machines.
  • the intersection of various wire conditions is various.
  • the inventor selected the wire material, wire cross-section shape and size, which are the most relevant parameters of the spring resilience and the spring type as the parameters of the corresponding experience database, which can greatly simplify the number of experience databases that the industrial computer needs to store, and reduce the number of experience databases. The burden of watchmaking and industrial computer lookups.
  • Figure 1 is a block diagram of an apparatus in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a schematic view of a multi-axis spring machine and an image detecting device according to a preferred embodiment of the present invention
  • Figure 3 is a schematic illustration of a device in accordance with a preferred embodiment of the present invention.
  • Figure 5 is a diagram showing an original control program of an industrial computer in accordance with a preferred embodiment of the present invention.
  • Figure 6 is an empirical database of one embodiment of the present invention.
  • Figure 7 is a calibration control routine displayed on an industrial computer in accordance with a preferred embodiment of the present invention.
  • the present invention is a smart spring manufacturing system including a multi-axis spring machine 10, an image detecting device 20 mounted on the multi-axis spring machine 10, and a The spring sorter 30 in front of the multi-axis spring machine 10, and one of the multi-axis spring machine 10, the image detecting device 20 and the spring sorter 30 are electrically connected to control the multi-axis spring machine 10, the image The detection device 20 and the industrial computer 40 of the spring sorter 30, wherein:
  • the multi-axis spring machine 10 is provided with a body 11 , and a knife drill 12 is arranged in front of the body 11 , and the knife drill 12 is driven and raised by a knife drill lifting structure 121 , directly above the knife drill 12 , in front of the body 11
  • a knife mechanism 122 is provided.
  • a cutter 123 driven downward by the cutter mechanism 122 is disposed. The cutter 123 is interlaced with the cutter 12, and the cutter 123 is When it is extended downward, it will be interlaced with the cutter 12 to produce a shearing effect.
  • a wire feeding structure 13 is disposed in front of the body 11 , and the wire feeding structure 13 is provided with two rollers 13 facing up and down and facing each other, and the wire feeding structure 13 is passed through the two rollers 131
  • a spring wire A is outputted in the direction of the cutter drill 12, and the outer end of the spring wire A is wound into a ring-shaped spring C by a bending point B, and the spring C is suspended from the cutter drill 12,
  • the center of the spring C is set as a virtual center D.
  • the cutter mechanism 122 drives the cutter 123 to extend, and the cutter 123 cooperates with the cutter 12 to cut the completed spring C, so that the spring C is
  • the multi-axis spring machine 10 is ejected forward to be separated from the end where the spring wire A is wound into a circle.
  • a mounting seat 14 for lifting up and down is provided on the front side of the body 11, and the mounting base 14 is driven to be lifted and lowered by a tool lifting device 141, and the tool lifting device 141 is disposed at the same
  • the extension line of the spring wire A is divided into upper and lower boundaries, and two tool position control devices 15 are disposed on the upper and lower sides of the front surface of the mounting seat 14, and each tool position control device 15 is An oblique arrangement, and the extending direction of each tool position control device 15 passes through the virtual center D, and a spring outer diameter knife 151 is disposed at one end of each tool position control device 15 toward the virtual center, and the two spring outer diameter blades 151 respectively abut The spring C and the outer ends of the two spring outer diameter knives 151 are directed to the virtual center D.
  • a servo motor 16 is coupled to a servo drive group 162 by a power transmission device 161 mounted on the body 11, such as a belt set, a gear set, a chain set, or a linkage set or a combination of the above examples.
  • the servo drive group 162 drives the tool lifting device 141 and the two tool position control devices 15 in a synchronous and synchronous manner, so that the mounting seat 14 and the spring outer diameter blades 151 are linearly synchronized and moved in the same stroke.
  • the lifting device 141 and the tool position control device 15 may be a screw group, a cam group, a gear set or the above-described mechanical structure, respectively, and the mounting seat 14 and each of the spring outer diameter blades 151 can be linearly moved.
  • the multi-axis spring machine 10 is provided with a pitch knife position adjuster 17 on the side of the body 11 corresponding to the blade drill 12 facing the wire feed structure 13, and the pitch knife position adjuster 17 is coupled with the pitch cutter 171.
  • the pitch knife position adjuster 17 can drive the front and rear movements of the pitch knife 171.
  • the outer end of the pitch knife 171 extends into one side of the spring C suspended from the knife drill 12, and the pitch cutter is used.
  • the outer end of the 171 contacts and guides the wound spring C to spiral forward.
  • the pitch knife position adjuster 17 drives the pitch knife 171 to increase the pitch after waiting for the spring C to complete the first turn.
  • the pitch cutter position adjuster 17 drives the pitch cutter 171 to perform the program of descending the pitch to return to the origin, waiting
  • the spring C bypasses the tail ring, that is, the process of manufacturing the spring C by the pitch cutter 171 is completed, and finally the cutter mechanism 122 drives the cutter 123 to extend, and the cutter 123 cooperates with the cutter 12 to complete the spring.
  • C is cut to obtain the finished product of the spring C; the position where the pitch knife 171 moves forward can control the length of the finished product of the spring C.
  • the image detecting device 20 is provided with a camera 21 on the front side of the body 11.
  • the camera is located beside the cutter mechanism 122, and the camera 21 is electrically connected to the industrial computer 40.
  • the camera 21 captures the appearance of the spring C.
  • the front surface of the body 11 is coupled to a light source 22 that illuminates in the direction of the camera 21, and the spring C is located between the light source 22 and the camera 21.
  • the spring sorter 30 is disposed in front of the multi-axis spring machine 10, and a finished portion 31 and a waste portion 32 are disposed on both sides of the lower half of the spring sorter 30, on the spring sorter 30.
  • the receiving portion 33 is provided with a receiving bucket 33 for receiving a spring C which is sprayed forward by the multi-axis spring machine 10, and a bottom end of the spring sorter 30 is provided with a bottom end of the receiving bucket 33
  • the electrically controlled valve 34 is in communication with the finished portion 31 or the waste portion 32.
  • the industrial computer 40 is electrically connected to the multi-axis spring machine 10, and the industrial computer 40 controls the lifting and lowering of the cutter 12, the operation of the cutter 123, the rotation speed of the two rollers 131, the lifting and lowering of the mounting seat 14, and the two springs.
  • the industrial computer 40 controls the lifting and lowering of the mounting base 14 and the distance between the two spring outer diameter knives 151 toward the virtual center D linearly forward and backward by controlling the servo driving group 162 to drive the tool lifting and lowering device 141 and the respective tool position control devices 15.
  • the industrial computer 40 is electrically connected to the camera 21 of the image detecting device 20, and receives an image of the spring C captured by the camera 21; the industrial computer 40 is electrically connected to the electronically controlled valve 34 of the spring sorter 30 to control the electronic control. Valve 34.
  • the industrial computer 40 is provided with a control interface 50 for receiving data of a user input spring type 52 and a spring size 51.
  • the spring type 52 of the preferred embodiment is a straight tube.
  • the type, the olive type, the funnel type, and the taper type are selected to manufacture a straight type spring C
  • the spring size 51 includes the number of turns, the outer diameter, and the length of the spring C, corresponding to a data of the spring type 52 and the spring size 51.
  • the control program when the original control program is executed by the industrial computer 40, controls the multi-axis spring machine 10 to produce an original spring C that does not have a corrected rebound size. Referring to FIG.
  • the original control program includes a plurality of steps arranged according to a time axis, and a plurality of control object data corresponding to each step, and the plurality of control target data is a plurality of motion axes of the multi-axis spring machine 10
  • the control object of the moving distance in each step includes the number of turns, the outer diameter, the pitch, the length of the wire, and the time, wherein the number of turns is the number of turns of the spring C, the outer diameter is the outer diameter of the spring C, and the pitch is controlled.
  • the distance that the pitch cutter 171 enters or retreats from the previous step to the next step, and the length of the feed line is the length and time required for the feed line structure 13 to transport the spring wire A at the step of the step, which is the time required for each step.
  • the unit of the length of the above control object data is mm, and the time required for each step is related to the wire feeding speed of the spring wire A. The faster the feeding speed, the shorter the time required for each step.
  • the general spring wire A is a material with good elasticity, rebound phenomenon occurs after the force is deformed, and the degree of rebound is related to various conditions of the spring wire A, such as ambient temperature, material, diameter, and cross section.
  • the shape of the spring, the spring type, the outer diameter of the spring, the number of coils, the production speed, etc. will affect the degree of springback of the spring wire A after deformation, so the parameter value becomes larger when the pitch angle becomes larger.
  • the position of the pitch knife is fixed, and when the outer diameter of the spring is different, the position of the spring ring is pushed by the pitch knife, so the spring index becomes larger, the outer diameter becomes larger, and the parameter value also becomes larger.
  • the industrial computer 40 When the industrial computer 40 performs the original control process to control the multi-axis spring machine 10 to manufacture the original spring C, the actual size of the outer diameter or the length of the original spring C product is different, and then correction is required to control the original control program.
  • the data of the target such as the outer diameter or pitch control data, is corrected to the diameter of the spring C which is made of the outer diameter or the length (the pitch of each revolution of the spring is reduced) becomes the corrected correction control.
  • the program controls the multi-axis spring machine 10 with a correction control process to manufacture a correction spring C that conforms to the original set size after rebound.
  • the experience database of the original control program records the empirical correction coefficients of various sizes of spring C in each experience database, and uses the empirical correction coefficient to correct the selected control target data in the original control program, and corrects the original control program to the correction. control program. Due to the different degrees of springback of the various spring wires A and the different positions of the outer diameters caused by the pitch cutters, the wire materials are selected from a variety of conditions related to the spring wire A rebound.
  • the two parameters of the cross-section shape and size of the wire are the conditions most relevant to the springback of the spring wire A.
  • the empirical database is defined to correspond to a spring type 52, a wire material and a wire cross-section shape and size.
  • the empirical correction coefficients of the spring C of different spring specifications 51 are recorded in the experience database (the springs C used in the same empirical database are all the same spring type 52).
  • the same wire material and the spring wire A of the wire cross-section shape and size are selected, and the two parameters of the spring index and the pitch angle of the specific spring specification 51 are selected.
  • the numerical values (the spring index and the pitch angle are calculated from the known spring size 51 and the wire cross-sectional dimension, that is, the wire diameter) are the data of the horizontal axis and the vertical axis, and each empirical database is made into a data type storage of a matrix table. .
  • the spring size 51 can be found in the corresponding empirical database to find the closest or the same to the spring C size.
  • Empirical correction factor The plurality of empirical correction coefficients described in each of the above experience databases are operated by the operator operating the multi-axis spring machine 10, and the same type of multi-axis spring machine 10 starts with the same wire material, the wire cross-sectional shape and the size of the spring wire A.
  • the control target data in the corrected correction control program for example, the control target data selected from the outer diameter and the pitch, is divided by the corresponding in the original control program.
  • the value obtained from the control object data is the empirical correction coefficient.
  • the length (pitch) of the spring C manufactured by the multi-axis spring machine 10 is exemplified as an example, and after an empirical correction coefficient is obtained by looking up the table in the empirical database by the present invention, For the control target data in the original control program, such as the pitch, the data of the pitch of the original control program is corrected and rewritten into a system for correcting the control program:
  • the control interface 50 of the industrial computer 40 receives user input, and the user adopts a wire material of high carbon steel (HI CARBON) and the wire cross-section and size are round.
  • HI CARBON high carbon steel
  • the spring wire A having a diameter of 0.8 mm
  • the industrial computer 40 receives a spring type 52 having a spring type 52 of a straight type and a number of turns 6, an outer diameter of 6.5 mm, and a length of 10 mm to generate an original control program including six time-aligned axes.
  • the steps are controlled by the multi-axis spring machine 10 in each step.
  • the steps of the six steps are sequentially the cutter, the first circle, the rising pitch, the parallel circle, the descending pitch and the trailing ring.
  • the cutter step is to control the multi-axis spring machine 10 to cut the completed spring C with the cutter 123 and the cutter drill 12, the first loop step is to complete the first coil of the spring C, and the step of raising the pitch is to control the
  • the multi-axis spring machine 10 drives the pitch cutter 171 to advance from the origin to the position of 1.704 mm and to complete one turn of the spring C.
  • the parallel loop step is to fix the position of the pitch cutter 171 to bypass the spring C of 2.75 turns.
  • the pitching step is to control the multi-axis spring machine 10 to drive the pitch cutter 171 to return to the origin from the position where the position of the pitch knife 171 is retracted by 1.704 mm and to complete the one-turn spring C in the process, and the final tail step is to complete 0.25 turns.
  • Spring C tail ring the outer diameter of each of the above steps is kept at 6.5 mm.
  • the six steps of the above-mentioned original control program are for controlling the original spring C in which the multi-axis spring machine 10 produces an error in the size after the rebound and the original set size, and therefore correction is also required.
  • the industrial computer 40 selects an empirical database in which the corresponding wire material is high carbon steel, the wire cross-section and the dimensions are circular and diameter 0.8 mm, and the spring form 52 is a straight cylinder type, known springs.
  • the wire cross-sectional dimension of C that is, the wire diameter of 0.8 mm and the outer diameter of the spring of 6.5 mm and the length of 10 mm, the spring index and the pitch angle are calculated to be 7.1 and 5.5, respectively, and the experience closest to the spring specification 51 is obtained by looking up the table.
  • the correction coefficient is 0.82 for the X and Y coordinates of 7.0 and 5.5, and the control target data of the corresponding pitch of the original control program is multiplied by 0.82, that is, the data multiplied by the pitch, and the pitch step and the step of the step down step are
  • the distance data 1.704 and - 1.704 are corrected, rewritten to 1.397 and -1.397, thereby obtaining a correction control program to provide the multi-axis spring machine 10 to perform a correction spring C, the spring index of the size of the correction spring C after rebound
  • the pitch angle is equivalent to 7.0 and 5.5.
  • the correction spring C is manufactured by the industrial computer 40 reading a correction control program that has manufactured a spring that is close to or conforms to the original set size, the manufactured correction spring C is very close to or conforms to the original design size, After the correction control program is executed, the multi-axis spring machine 10 can be manufactured to produce the spring C corresponding to the original design size without much time and trial, and the multi-axis spring machine 10 can be greatly reduced to produce different size springs C. The correction time required.
  • the industrial computer 40 of the present invention performs a correction control process to control the multi-axis spring machine 10 to manufacture the correction spring C, in addition to being able to manually measure whether the manufactured correction spring C is sized, thereby re-calibrating the correction control program.
  • the size of the correction spring C can also be detected in an automated manner to correct the correction control program, as follows:
  • the correction spring C Before each correction spring C is manufactured and is cut by the cutter 123 in conjunction with the cutter 12, the correction spring C is photographed by the camera 21 of the image detecting device 20 and the length of the correction spring C is measured to obtain an actual size, which will be actual. The size is compared with the original set size of the correction spring C, that is, the size of the spring specification 51. If the positive and negative errors of the actual size and the original set size are less than the tolerance range, the determination is passed, and when the qualified correction spring C is cut and When ejected to the spring sorter 30, the industrial computer 40 controls the electronically controlled valve 34 to cause the qualified correcting spring C to fall into the finished portion 31.
  • the industrial computer 40 controls the electronically controlled valve 34 to cause the defective correcting spring C to fall into the waste portion 32 for collection.
  • the industrial computer 40 commands the multi-axis spring machine 10 to stop and execute.
  • a corrected program such as correcting control target data of the correction control program, such as pitch data and overwriting the correction control program, for correcting the correction control program for execution by the industrial computer 40, and calculating the corrected
  • the empirical correction coefficient of the control target data is written back into the corresponding experience database; the above-mentioned set error amount may be any number of two or more.
  • the corrected correction control process controls the multi-axis spring machine 10 to manufacture, and if the corrected correction control program can control the multi-axis spring machine 10 to manufacture the spring C according to the original set size, that is, after the correction
  • the pitch value is set to 1.397mm, divided by the pitch value of the original set size to obtain the corrected empirical correction coefficient of 0.820, and the corrected empirical correction coefficient is written back to the corresponding experience database, and the experience database is improved.
  • This industrial computer 40 is used. If the spring C of the multi-axis spring machine 10 is continuously manufactured to meet the set error amount during the manufacture of the spring C, the industrial computer 40 commands the multi-axis spring machine 10 to stop, and repeats the above-mentioned correction procedure.
  • the plurality of experience databases stored in the industrial computer 40 can be transferred to the industrial computer 40 of the other multi-axis spring machine 10 in addition to the supply itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Abstract

一种智能弹簧制造系统,设有多轴弹簧机(10)与工业计算机(40),该工业计算机(40)可自动建立生产弹簧的原始控制程序,在工业计算机(40)储存多个经验数据库,各经验数据库储存多个经验校正系数,使用时以弹簧线材的材质、线材截面的外型与尺寸以及弹簧型式选择经验数据库,并以弹簧的规格查询该经验数据库,得出最接近的经验校正系数,以该经验校正系数校正原始控制程序,令该多轴弹簧机(10)直接生产尺寸接近需求的弹簧。该智能弹簧制造系统通过经验数据库的导入能直接制造尺寸接近需求的弹簧,可大幅缩短多轴弹簧机生产不同尺寸弹簧时的校正时间,适合少量多样的生产制造,又能通过正式生产将最新的校正系数新增或更新至经验数据库的方式提供机台自我学习的能力。

Description

智能弹簧制造系统 技术领域
本发明涉及弹簧制造技术领域,尤其涉及一种通过经验数据库的导入加快调校与试产速度的智能弹簧制造系统。
背景技术
常见的多轴线材折弯机(或称多轴弹簧机)可分两大类,一类称为卷簧机具有至少5轴以上的加工自由度,另一类称为万用机则加工自由度在10轴以上。上述多轴弹簧机多采用计算机数值控制(CNC)的方式来控制各轴的运动,基本上最常发生的困难有以下两种:
其一,应用计算机数值控制(CNC)控制工具机的方式主要用在加工坚硬的钢铁金属,其控制刀具预设的加工尺寸会与加工后成品的实际尺寸相同。但一般的弹簧线材多是弹性很好的钢材,在受力变形后会发生回弹的现象,而回弹大小的变量包含材质的不同、加工时间的长短或变形外力的大小,同一卷弹簧线材每段的材质又有差异,导致应用计算机数值控制的多轴弹簧机加工时,其刀具摆设若恰好符合预设制作弹簧成品的尺寸,也就是原始弹簧的尺寸,则成品的实际尺寸往往会与预设的尺寸产生很大的公差,此公差的主因来自于弹簧线材的回弹,需要较多的时间以试误的方式进行调校、试产才能生产出良好的弹簧成品。
其二,计算机数值控制(CNC)一般用于控制工具机加工制造时间长的工件,CNC计算机数值控制(CNC)的编程储存的目的在停电、停机复工时能再加载编程再继续生产,因此控制器的设计较少考虑多样少量的问题。而多轴弹簧机的工件加工时间短,经常转换生产不同尺寸的弹簧,且在制造不良品时最好能快速变更编程以进行校正,因此多轴弹簧机的控制与编程追求的方向是能快速设定与转变,现有的计算机数值控制(CNC)的控制方式不适合用于控制多轴弹簧机。
发明内容
现有的计算机数值控制(CNC)不适合用于控制多轴弹簧机,不能加快多轴 弹簧机生产制造不同规格弹簧时的调校时间。为此,本发明的目的在于通过适当参数制成的经验数据库修正工业计算机的编程,达到首次制造就能产出接近原设定尺寸的弹簧,由此加快多轴弹簧机的生产。
为达到上述目的,本发明提供一种智能弹簧制造系统,包括:
一多轴弹簧机;以及
一与该多轴弹簧机电连接的工业计算机,该工业计算机设有一控制接口,该控制接口接收用户输入线材材质、线材截面外型与尺寸以及弹簧型式、弹簧规格的数据,在该工业计算机储存多个经验数据库,各经验数据库分别对应一种弹簧型式、一种线材材质与一种线材截面外型与尺寸,将各经验数据库储存为横、纵两轴分别为弹簧指数与节距角度的矩阵表,在各经验数据库内记载多个经验校正系数,各经验数据库分别对应一种弹簧型式、一种线材材质与一种线材截面外型与尺寸;
该工业计算机接收由该控制接口输入的该弹簧型式与该弹簧规格的数据,依数理逻辑产生一原始控制程序,该原始控制程序包括多个依照时间轴排列的步骤,各步骤包括多个控制该多轴弹簧机的控件目数据;该工业计算机选择一个对应由该控制接口输入的弹簧型式、线材材质以及线材截面外型与尺寸的经验数据库,依据由该控制接口输入的该弹簧规格、该线材截面尺寸计算出的弹簧指数与节距角度在该选择的经验数据库中查表,选择最接近或相同于该弹簧指数与该节距角度的经验校正系数,以该经验校正系数校正该原始控制程序中对应步骤的控件目数据而产生一校正控制程序,以该校正控制过程控制该多轴弹簧机生产一校正弹簧。
进一步,本发明所述的弹簧规格的数据包括圈数、外径以及长度;所述的控件目数据是该多轴弹簧机的多个运动轴在各所述的步骤中移动距离的控件目,包含所述的弹簧绕行的圈数、该弹簧的外径、节距、送线长以及时间。
较佳的,本发明所述的多轴弹簧机设有一机体;设有一影像检测装置,是在该机体的前面设有一摄影机,该摄影机拍摄该校正弹簧;所述的工业计算机与该摄影机电连接;在每一个校正弹簧制造完成受剪断之前,以该摄影机拍摄该校正弹簧并量测得出一实际尺寸,将实际尺寸与所述的弹簧规格的数据比对,若两者正负误差小于公差范围则判定合格,反之则判定不合格,当该多轴弹簧机连续制造不合格的校正弹簧的数量达到一设定误差数量时, 该工业计算机命令该多轴弹簧机停机并执行一校正的程序,校正该经验校正系数并将该校正后的经验校正系数回存至该经验数据库的对应位置,完成校正后再继续原来的生产直至完成良品数量。
较佳的,本发明在所述的多轴弹簧机的前方设有一弹簧分拣器,在该弹簧分拣器的下半部设有一成品部以及一废料部,在该弹簧分拣器的上半部设有一承接斗,以该承接斗承接该多轴弹簧机制造完成的校正弹簧,在该弹簧分拣器的中间设有一电控阀门,该电控阀门与该承接斗的底端相通,该电控阀门可选择性的与该成品部或该废料部相通;所述的工业计算机与该电控阀门电连接,当判定合格的校正弹簧落至该承接斗时,该工业计算机控制该电控阀门使合格的校正弹簧落入该成品部,当判定不合格的校正弹簧落至该承接斗时,该工业计算机控制该电控阀门使不合格的校正弹簧落入该废料部。
较佳的,本发明所述的影像检测装置在所述的机体的前面结合一光源,该光源朝所述的摄影机的方向照射,且所述的校正弹簧位于该光源与该摄影机之间。
本发明的多轴弹簧机制造弹簧时,通过工业计算机的控制接口接收用户输入线材特性的参数,也就是线材材质、线材截面外型与尺寸,以及该弹簧型式、弹簧规格的数据来产生一原始控制程序,并通过向对应一种线材特性的经验数据库查表的方式得出适用的经验校正系数,接着利用经验校正系数校正原始控制程序中对应控制该多轴弹簧机的步骤而产生所述的校正控制程序,通过该校正控制程序令该多轴弹簧机制造出接近或与原设定尺寸弹簧相同尺寸的校正弹簧。
本发明具有的优点在于:
本发明通过在同样或同类型的多轴弹簧机上经验的校正经验制作各经验数据库,在该多轴弹簧机更换制造弹簧的尺寸时,能快速地经由查表的方式获得校正原始控制程序的经验校正系数,并以经验校正系数校正原始控制程序得出校正控制程序,使多轴弹簧机开始转换生产不同的弹簧时,就能制造出与原设定尺寸相同或相近的校正弹簧,如此一来经由较少的尝试与较少的时间就能制造出与原设定尺寸相同的弹簧,可大幅缩短多轴弹簧机校正的时间,尤其适用少量多样的弹簧生产模式;若在多个多轴弹簧机之间交流经验数据库,还能同时加快多个多轴弹簧机生产制造时的校正过程。
再者,由于不同线材的回弹特性取决于多种不同的条件,各种线材条件的交集种类繁多。发明人选用了线材材质、线材截面外型与尺寸这两种与弹簧回弹程度最为相关的参数以及弹簧型式作为对应经验数据库的参数,可大幅简化该工业计算机需要储存的经验数据库的数量,减少制表以及工业计算机查表的负担。
附图说明
图1是本发明较佳实施例装置的方块图;
图2是本发明较佳实施例多轴弹簧机与影像检测装置的示意图;
图3是本发明较佳实施例装置的示意图;
图4是本发明较佳实施例工业计算机的控制接口;
图5是本发明较佳实施例显示在工业计算机的原始控制程序;
图6是本发明较佳实施例其中一种经验数据库;
图7是本发明较佳实施例显示在工业计算机的校正控制程序。
符号说明:
10多轴弹簧机                  11机体
12刀钻                        121刀钻升降构造
122切刀机构                  123切刀
13送线构造                   131滚轮
14装设座                     141刀具升降装置
15刀具位置控制装置           151弹簧外径刀
16伺服马达                   161动力传输装置
162伺服驱动组                17节距刀位置调整器
171节距刀                    20影像检测装置
21摄影机                     22光源
30弹簧分拣器                 31成品部
32废料部                     33承接斗
34电控阀门                   40工业计算机
50控制接口                   51弹簧规格
52弹簧型式                   A弹簧线材
B起弯点                  C弹簧
D虚拟圆心
具体实施方式
为能详细了解本发明的技术特征及实用功效,并可依照说明书的内容来实施,进一步以如图式所示的较佳实施例,详细说明如下。
如图1至图3所示的较佳实施例,本发明是一种智能弹簧制造系统,包括一多轴弹簧机10、一安装在该多轴弹簧机10的影像检测装置20、一设置在该多轴弹簧机10前的弹簧分拣器30,以及一分别与该多轴弹簧机10、该影像检测装置20以及该弹簧分拣器30电连接而控制该多轴弹簧机10、该影像检测装置20以及该弹簧分拣器30的工业计算机40,其中:
该多轴弹簧机10设有一机体11,在该机体11的前面设有一刀钻12,该刀钻12受一刀钻升降构造121驱动升降,对应刀钻12的正上方,在该机体11的前面设有一切刀机构122,在切刀机构122底端设有一受该切刀机构122驱动而朝下伸出的切刀123,该切刀123与该刀钻12左右交错,当该切刀123向下伸出时,会与该刀钻12交错产生剪断的效果。对应刀钻12左右两侧的其中一侧,在机体11前面设有一送线构造13,该送线构造13设有两上下相对且相向旋转的滚轮131,该送线构造13通过两滚轮131以抽拉的方式向该刀钻12的方向输出一弹簧线材A,该弹簧线材A的外端由一起弯点B开始卷绕成圆环状的弹簧C,该弹簧C悬挂在该刀钻12,该弹簧C的中心设为一虚拟圆心D,当弹簧C制造完毕时该切刀机构122驱动切刀123下伸,以切刀123配合该刀钻12将完成的弹簧C剪断,使弹簧C由多轴弹簧机10向前喷出而脱离弹簧线材A卷绕成圆圈处的末端。
对应该刀钻12的另一侧位置,在该机体11的前面设有一上下升降移动的装设座14,该装设座14受一刀具升降装置141驱动升降,该刀具升降装置141设于该装设座14与该机体11之间,以弹簧线材A的延伸线为上下的分界,在该装设座14前面的上下两侧设有两刀具位置控制装置15,各刀具位置控制装置15是斜向的设置,且各刀具位置控制装置15的延伸方向通过虚拟圆心D,在各刀具位置控制装置15朝向虚拟圆心的一端设有一弹簧外径刀151,两弹簧外径刀151分别抵靠该弹簧C,且两弹簧外径刀151的外端指向虚拟 圆心D。
当弹簧线材A受送线构造13输送时会依序抵靠下侧的弹簧外径刀151以及上侧的弹簧外径刀151而扭曲卷绕成圆环状的弹簧C,在该机体11结合一伺服马达16,该伺服马达16通过一装设在该机体11的动力传输装置161,例如皮带组、齿轮组、链条组、或一连杆组或上述举例的组合,搭配成一伺服驱动组162,该伺服驱动组162以同步且同行程的方式驱动该刀具升降装置141以及两刀具位置控制装置15,使该装设座14以及各弹簧外径刀151线性地同步且同行程移动,该刀具升降装置141以及刀具位置控制装置15可分别为螺杆组、凸轮组、齿轮组或上述举例的机械构造,能将装设座14及各弹簧外径刀151线性地移动。
多轴弹簧机10在该机体11对应该刀钻12上方朝向该送线构造13的一侧设有一节距刀位置调整器17,在该节距刀位置调整器17结合一节距刀171,该节距刀位置调整器17可驱动该节距刀171前、后进退移动,该节距刀171的外端伸入悬挂在刀钻12上的弹簧C的一侧,以该节距刀171的外端接触并导引卷绕的弹簧C向前螺旋伸长。例如以该多轴弹簧机10制造直筒型的该弹簧C时,是先等待该弹簧C绕完首圈之后,该节距刀位置调整器17驱动该节距刀171进行升节距的程序而由原点前进至定点,接着节距刀171固定位置使弹簧C绕行平行圈而前后变长,然后该节距刀位置调整器17驱动该节距刀171进行降节距的程序退回原点,等待该弹簧C绕行尾圈,即完成该节距刀171配合制造该弹簧C的过程,最后该切刀机构122驱动切刀123下伸,以该切刀123配合该刀钻12将完成的弹簧C剪断即可得到该弹簧C的成品;该节距刀171往前移动的位置可以控制该弹簧C成品的长度。
该影像检测装置20是在该机体11的前面设有一摄影机21,该摄影机位于该切刀机构122旁,且该摄影机21与该工业计算机40电连接,该摄影机21拍摄弹簧C的外型,在该机体11的前面结合一光源22,该光源22朝该摄影机21的方向照射,且该弹簧C位于该光源22与该摄影机21之间。
该弹簧分拣器30设置在该多轴弹簧机10的前方,在该弹簧分拣器30下半部的两侧设有一成品部31以及一废料部32,在该弹簧分拣器30的上半部设有一承接斗33,该承接斗33用以承接该多轴弹簧机10制造完成而向前喷出的弹簧C,在该弹簧分拣器30的中间设有一与该承接斗33底端相通的电 控阀门34,该电控阀门34可选择性的与该成品部31或废料部32相通。
该工业计算机40与该多轴弹簧机10电连接,以该工业计算机40控制该刀钻12的升降、该切刀123的动作,两滚轮131的转速、装设座14的升降、两弹簧外径刀151的位置,以及该节距刀171的位置。该工业计算机40控制装设座14的升降以及两弹簧外径刀151朝虚拟圆心D线性进退的距离是通过控制伺服驱动组162驱动该刀具升降装置141以及各刀具位置控制装置15的方式完成。该工业计算机40与该影像检测装置20的摄影机21电连接,接收该摄影机21拍摄的弹簧C的影像;该工业计算机40与该弹簧分拣器30的电控阀门34电连接而控制该电控阀门34。
请参看图1与图4所示,该工业计算机40设有一控制接口50,该控制接口50接收用户输入弹簧型式52以及弹簧规格51的数据,如本较佳实施例的弹簧型式52是由直筒型、橄榄型、漏斗型、锥型中选择制造直筒型的弹簧C,其弹簧规格51包括弹簧C的圈数、外径以及长度,对应一种弹簧型式52与弹簧规格51的数据产生一原始控制程序,当该原始控制程序供该工业计算机40执行时,可控制该多轴弹簧机10生产没有校正回弹尺寸的原始弹簧C。请参看图5所示,该原始控制程序包含多个依照时间轴排列的步骤,以及对应各步骤的多个控件目数据,多个控件目数据是该多轴弹簧机10的多个运动轴在各步骤中移动距离的控件目,包含圈数、外径、节距、送线长以及时间,其中圈数是弹簧C绕行的圈数,外径是弹簧C的外径尺寸、节距是控制节距刀171由上一步骤往下一步骤时所进或退的距离、送线长是该送线构造13于所在步骤时输送该弹簧线材A的长度、时间是各步骤所需要的时间,上述控件目数据有关长度的单位是mm,各步骤所需要的时间与该弹簧线材A的送线速度有关,送件速度越快则各步骤所需要的时间越短。
由于一般的弹簧线材A是弹性很好的材料,因此受力变形后会发生回弹的现象,而回弹的程度大小与弹簧线材A的多种条件有关,例如环境温度、材质、直径、截面外型,弹簧类别、弹簧外径、弹簧圈数、生产速度等等条件会对该弹簧线材A受力变形后回弹的程度产生影响,所以节距角度变大时,此参数值也变大,再加上节距刀的位置固定不变,而弹簧外径不同时,弹簧圈受节距刀推动的位置不同,所以弹簧指数变大,外径变大,此参数值也要变大,使得工业计算机40执行原始控制过程控制该多轴弹簧机10制造原始 弹簧C时,原始弹簧C成品的外径或长度的实际尺寸产生差异,这时就需要进行校正,将该原始控制程序的控件目数据,例如外径或节距的控件目数据,校正为制造外径或长度较小(缩小弹簧每一圈距离的节距)的弹簧C的数据成为校正后的校正控制程序,以校正控制过程控制该多轴弹簧机10制造出一校正弹簧C,该校正弹簧C在回弹后符合原设定尺寸的大小。
本发明为了避免该多轴弹簧机10在更换制造不同尺寸的弹簧C时,在调校该多轴弹簧机10制造出校正弹簧C上花费大量时间,因此在该工业计算机40导入用以校正该原始控制程序的经验数据库,在各经验数据库内记载各种不同尺寸弹簧C的经验校正系数,利用该经验校正系数校正该原始控制程序中选定的控件目数据,将该原始控制程序校正为校正控制程序。由于各种弹簧线材A回弹的程度不同,以及因外径大小不同使得节距刀对弹簧圈推动的位置不同,因此由多种与弹簧线材A回弹有关的条件中,选出线材材质、线材截面外型与尺寸的两种参数作为与弹簧线材A的回弹程度最为相关的条件,定义各经验数据库分别对应一种弹簧型式52、一种线材材质以及一种线材截面外型与尺寸。当该多轴弹簧机10用于生产制造同一种弹簧型式52的弹簧C的线材材质以及线材截面外型与尺寸各有三种时,就会需要使用多种经验数据库,将所需要的各经验数据库储存在该工业计算机40。
请参看图6所示的经验数据库,为了将相同弹簧型式52,不同弹簧规格51的弹簧C的经验校正系数都记载在经验数据库中(同一经验数据库中所用的弹簧C都是相同的弹簧型式52,并且以相同的线材材质以及线材截面外型与尺寸的弹簧线材A所制造),选用可体现出特定弹簧规格51的弹簧指数(Spring index)以及节距角度(Pitch angle)的两个参数的数值(弹簧指数与节距角度是由已知的弹簧规格51以及线材截面尺寸,即线材直径计算得出)作为横轴以及纵轴的数据,将各经验数据库制作成一种矩阵表的数据型式储存。只要弹簧线材A的线材材质、线材截面外型与尺寸以及要生产出的弹簧C的弹簧型式52确定,就能在对应的经验数据库中以弹簧规格51查找出最接近或相同于该弹簧C尺寸的经验校正系数。上述各经验数据库内记载的多个经验校正系数,是由操作多轴弹簧机10的操作者,在同一种多轴弹簧机10以同样的线材材质、线材截面外型与尺寸的弹簧线材A开始制造各种相同弹簧型式52但不同弹簧规格51的弹簧C时,校正后的校正控制程序中的控件 目数据,例如选自外径与节距的控件目数据,除以原始控制程序中对应的控件目数据所得出的数值,即为所述的经验校正系数。
请配合参看图4至图7,以下通过校正该多轴弹簧机10制造出的弹簧C的长度(节距)为范例,说明通过本发明在经验数据库中查表得出一经验校正系数后,针对原始控制程序中的控件目数据例如节距,将原始控制程序的节距的数据校正、改写为校正控制程序的系统:
请参看图1、图2以及图4所示,该工业计算机40的该控制接口50接收用户输入,使用者采用线材材质为高碳钢(HI CARBON)且线材截面外型与尺寸各为圆形与直径0.8mm的弹簧线材A,制造弹簧型式52为直筒型且弹簧规格51为圈数6、外径6.5mm且长度10mm的弹簧C。如图5所示,该工业计算机40接收弹簧型式52为直筒型且圈数6、外径6.5mm且长度10mm的弹簧规格51产生一原始控制程序,该原始控制程序包括6个依照时间轴排列的步骤,以各步骤的程控该多轴弹簧机10进行生产,6个步骤的步骤名称依序为切刀、首圈、升节距、平行圈、降节距以及尾圈。
切刀步骤是控制该多轴弹簧机10以该切刀123配合该刀钻12将完成的弹簧C剪断,首圈步骤是绕完1圈的该弹簧C首圈,升节距步骤是控制该多轴弹簧机10驱动该节距刀171由原点前进1.704mm的位置并且过程中绕完1圈的弹簧C,平行圈步骤是固定该节距刀171的位置绕行2.75圈的弹簧C,降节距步骤是控制该多轴弹簧机10驱动该节距刀171由所在的位置后退1.704mm的位置退回原点并且过程中绕完1圈的弹簧C,最后的尾圈步骤是绕完0.25圈的弹簧C尾圈;上述各步骤的外径都保持为6.5mm。上述的原始控制程序的6个步骤是用于控制该多轴弹簧机10制造出一回弹后尺寸与原设定尺寸会产生误差的原始弹簧C,因此还需要进行校正。
请参看图6,该工业计算机40选择一对应线材材质为高碳钢、线材截面外型与尺寸各为圆形与直径0.8mm,以及弹簧形式52为直筒型的经验数据库,由已知的弹簧C的线材截面尺寸,即线材直径0.8mm以及弹簧的外径6.5mm、长度10mm的数据计算出弹簧指数以及节距角度分别为7.1以及5.5,经由查表得出最接近该弹簧规格51的经验校正系数是X、Y坐标为7.0、5.5的0.82,以0.82乘以该原始控制程序对应节距的控件目数据,即乘以节距的数据,将升节距步骤以及降节距步骤的节距的数据1.704以及-1.704校正、改写为1.397 以及-1.397,从而得出一校正控制程序工提供该多轴弹簧机10执行以制造一校正弹簧C,该校正弹簧C回弹后尺寸的弹簧指数与节距角度相当于7.0以及5.5。
由于该校正弹簧C是利用该工业计算机40读取曾经制造出接近或与原设定尺寸一致的弹簧的校正控制程序所制造,因此制造出的校正弹簧C很接近或与原设计尺寸一致,因此执行该校正控制程序后,不需要经过太多时间以及尝试,就能使该多轴弹簧机10制造出与原设计尺寸相符的弹簧C,大幅降低该多轴弹簧机10更换生产不同尺寸弹簧C时所需要的校正时间。
本发明的工业计算机40执行校正控制过程控制该多轴弹簧机10制造校正弹簧C,除了能够以人工的方式量测制造出的校正弹簧C是否合乎尺寸,由此对该校正控制程序进行再度的校正,来制造出与原设定尺寸相符的弹簧C以外,也能够以自动化的方式检测校正弹簧C的尺寸来校正该校正控制程序,说明如下:
在每一个校正弹簧C制造完成并受切刀123配合刀钻12剪断之前,以影像检测装置20的摄影机21拍摄该校正弹簧C并量测该校正弹簧C的长度得出一实际尺寸,将实际尺寸与该校正弹簧C的原设定尺寸,即弹簧规格51的尺寸比对,若该实际尺寸与原设定尺寸的正负误差小于公差范围则判定合格,当合格的校正弹簧C被剪断并喷出至弹簧分拣器30时,该工业计算机40控制电控阀门34使合格的校正弹簧C落入成品部31。
当将实际尺寸与该校正弹簧C的原设定尺寸比对,若实际尺寸与原设定尺寸的正负误差大于公差范围则判定不合格,当不合格的校正弹簧C被剪断并喷出至弹簧分拣器30时,该工业计算机40控制电控阀门34使不合格的校正弹簧C落入废料部32收集。当该多轴弹簧机10连续制造不合格的校正弹簧C的数量达到一设定误差数量,例如连续制造三次不合格的校正弹簧C时,该工业计算机40命令该多轴弹簧机10停机并执行一校正的程序,例如校正该校正控制程序的控件目数据,例如节距的数据并改写该校正控制程序,以校正的校正控制程序供该工业计算机40执行,并将可计算得出该校正后的控件目数据的经验校正系数写回对应的经验数据库内;上述的设定误差数量可以是二以上的任意数量。
例如该多轴弹簧机10停机前,该工业计算机40最后以摄影机21拍摄并 量测的三个不合格的校正弹簧C的数值都大于10mm+公差值,表示该原始控制程序所算出的节距1.704mm,因无法考虑节距刀的位置与线材回弹系数而过大,通过由该经验数据库取一经验校正系数0.820后,将原始控制程序所算出的节距改为1.704mm*0.820=1.397mm,以此校正后的校正控制过程控制该多轴弹簧机10进行制造,若该校正后的校正控制程序可控制该多轴弹簧机10制造出符合原设定尺寸的弹簧C,即将校正后的节距数值定为1.397mm,除以原设定尺寸的节距数值得出校正后的经验校正系数0.820,并将该校正后的经验校正系数写回对应的经验数据库,完善该经验数据库供该工业计算机40使用。若该多轴弹簧机10制造弹簧C的过程中再有连续制造不合格的弹簧C达到该设定误差数量时,该工业计算机40命令该多轴弹簧机10停机,再度重复上述校正程序。该工业计算机40内储存的多个经验数据库除了供给本身使用以外,也可以转移给其他的多轴弹簧机10的工业计算机40使用。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明主张的权利范围,凡其它未脱离本发明所揭示的精神所完成的等效改变或修饰,均应包括在本发明的申请专利范围内。

Claims (5)

  1. 一种智能弹簧制造系统,其特征在于,包括:
    一多轴弹簧机;以及
    一与该多轴弹簧机电连接的工业计算机,该工业计算机设有一控制接口,该控制接口接收用户输入线材材质、线材截面外型与尺寸以及弹簧型式、弹簧规格的数据,在该工业计算机储存多个经验数据库,各经验数据库分别对应一种弹簧型式、一种线材材质与一种线材截面外型与尺寸,将各经验数据库储存为横、纵两轴分别为弹簧指数与节距角度的矩阵表,在各经验数据库内记载多个经验校正系数,各经验数据库分别对应一种弹簧型式、一种线材材质与一种线材截面外型与尺寸;
    该工业计算机接收由该控制接口输入的该弹簧型式与该弹簧规格的数据产生一原始控制程序,该原始控制程序包括多个依照时间轴排列的步骤,各步骤包括多个控制该多轴弹簧机的控件目数据;该工业计算机选择一个对应由该控制接口输入的弹簧型式、线材材质以及线材截面外型与尺寸的经验数据库,依据由该控制接口输入的该弹簧规格、该线材截面尺寸计算出的弹簧指数与节距角度在该选择的经验数据库中查表,选择最接近或相同于该弹簧指数与该节距角度的经验校正系数,以该经验校正系数校正该原始控制程序中对应步骤的控件目数据而产生一校正控制程序,以该校正控制过程控制该多轴弹簧机生产一校正弹簧。
  2. 如权利要求1所述的智能弹簧制造系统,其特征在于,其中所述的弹簧规格的数据包括圈数、外径以及长度;所述的控件目数据是该多轴弹簧机的多个运动轴在各所述的步骤中移动距离的控件目,包含所述的弹簧绕行的圈数、该弹簧的外径、节距、送线长以及时间。
  3. 如权利要求1、2所述的智能弹簧制造系统,其特征在于,其中所述的多轴弹簧机设有一机体;设有一影像检测装置,是在该机体的前面设有一摄影机,该摄影机拍摄该校正弹簧;所述的工业计算机与该摄影机电连接;在每一个校正弹簧制造完成受剪断之前,以该摄影机拍摄该校正弹簧并量测得出一实际尺寸,将实际尺寸与所述的弹簧规格的数据比对,若两者正负误差小于公差范围则判定合格,反之则判定不合格,当该多轴弹簧机连续制造不合格的校正弹簧的数量达到一设定误差数量时,该工业计算机命令该多轴弹簧机停机并执行一校正的程序,校正该经验校正系数并将该校正后的经验 校正系数回存至该经验数据库的对应位置,完成校正后再继续原来的生产直至完成良品数量。
  4. 如权利要求3所述的智能弹簧制造系统,其特征在于,其中在所述的多轴弹簧机的前方设有一弹簧分拣器,在该弹簧分拣器的下半部设有一成品部以及一废料部,在该弹簧分拣器的上半部设有一承接斗,以该承接斗承接该多轴弹簧机制造完成的校正弹簧,在该弹簧分拣器的中间设有一电控阀门,该电控阀门与该承接斗的底端相通,该电控阀门可选择性的与该成品部或该废料部相通;所述的工业计算机与该电控阀门电连接,当判定合格的校正弹簧落至该承接斗时,该工业计算机控制该电控阀门使合格的校正弹簧落入该成品部,当判定不合格的校正弹簧落至该承接斗时,该工业计算机控制该电控阀门使不合格的校正弹簧落入该废料部。
  5. 如权利要求4所述的智能弹簧制造系统,其特征在于,其中所述的影像检测装置在所述的机体的前面结合一光源,该光源朝所述的摄影机的方向照射,且所述的校正弹簧位于该光源与该摄影机之间。
PCT/CN2018/086153 2018-05-09 2018-05-09 智能弹簧制造系统 WO2019213866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086153 WO2019213866A1 (zh) 2018-05-09 2018-05-09 智能弹簧制造系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086153 WO2019213866A1 (zh) 2018-05-09 2018-05-09 智能弹簧制造系统

Publications (1)

Publication Number Publication Date
WO2019213866A1 true WO2019213866A1 (zh) 2019-11-14

Family

ID=68466691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086153 WO2019213866A1 (zh) 2018-05-09 2018-05-09 智能弹簧制造系统

Country Status (1)

Country Link
WO (1) WO2019213866A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875666A (en) * 1996-08-23 1999-03-02 Kabushiki Kaisha Itaya Seisaku Sho Spring manufacturing apparatus and position adjustment apparatus for tools
US5875664A (en) * 1997-12-23 1999-03-02 L&P Property Management Company Programmable servo-motor quality controlled continuous multiple coil spring forming method and apparatus
CN201807687U (zh) * 2010-09-21 2011-04-27 泰州市创新电子有限公司 电脑数控恒力弹簧机
CN102233398A (zh) * 2010-04-20 2011-11-09 盐城海旭数控装备有限公司 一种八轴弹簧成形机芯轴切断机构
CN105195650A (zh) * 2015-10-15 2015-12-30 山西北方机械制造有限责任公司 一种基于自动卷簧机的压缩弹簧卷簧方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875666A (en) * 1996-08-23 1999-03-02 Kabushiki Kaisha Itaya Seisaku Sho Spring manufacturing apparatus and position adjustment apparatus for tools
US5875664A (en) * 1997-12-23 1999-03-02 L&P Property Management Company Programmable servo-motor quality controlled continuous multiple coil spring forming method and apparatus
CN102233398A (zh) * 2010-04-20 2011-11-09 盐城海旭数控装备有限公司 一种八轴弹簧成形机芯轴切断机构
CN201807687U (zh) * 2010-09-21 2011-04-27 泰州市创新电子有限公司 电脑数控恒力弹簧机
CN105195650A (zh) * 2015-10-15 2015-12-30 山西北方机械制造有限责任公司 一种基于自动卷簧机的压缩弹簧卷簧方法

Similar Documents

Publication Publication Date Title
JP5727253B2 (ja) ばね巻きによって螺旋ばねを製造するための方法
US9724801B2 (en) Deburring device including visual sensor and force sensor
KR101257275B1 (ko) 자동가공기능을 갖는 지능형 cnc공작기계 및 그 제어방법
CN104842042B (zh) 一种基于cmt的金属焊接快速成形系统和方法
CN103197567B (zh) 螺栓拧紧系统及防错控制方法
US20110239719A1 (en) Method and apparatus for production of helical springs by spring winding
TWI654039B (zh) 智能彈簧製造系統
CN102527832A (zh) 一种自动打金箔装置及打金箔方法
CN109015242A (zh) 一种航空精锻叶片前尾缘轮廓的抛磨设备及抛磨方法
WO2019213866A1 (zh) 智能弹簧制造系统
KR20110003502A (ko) 처리 기계에 대해 여러 개의 파이프 부품으로 절단되는 하나의 파이프 또는 여러 개의 파이프의 점유를 최적화하는 방법
CN108857130B (zh) 一种基于图像帧位处理的船舶通用结构件三维定位方法
CN110560529A (zh) 一种应用极坐标法的弯管加工方法及系统
CN204486670U (zh) 一种弹簧成型装置
CN105353740A (zh) 一种摩托车曲轴智能化生产控制方法及系统
CN205733724U (zh) 一种凸轮压装设备
CN205718874U (zh) 直缝焊管在线卷管实时测量控制装置
CN116197534A (zh) 激光焊接方法及激光焊接加工工艺
CN105195650A (zh) 一种基于自动卷簧机的压缩弹簧卷簧方法
CN109226317B (zh) 一种挤压机自动调速控压装置及控制方法
CN201107660Y (zh) 精整机影像定位控制系统
CN207982134U (zh) 一种记忆双金属片自动成型加工装置
JPS6160296A (ja) 全自動粉末成形プレス
CN209821126U (zh) 一种自适应传感器在线激光修调系统
CN106890901A (zh) 一种新能源电池不锈钢外壳的多工位加工系统及加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918064

Country of ref document: EP

Kind code of ref document: A1