WO2019213730A1 - Adesivo à base de materiais contendo látex e lignina e processo de produção do mesmo - Google Patents

Adesivo à base de materiais contendo látex e lignina e processo de produção do mesmo Download PDF

Info

Publication number
WO2019213730A1
WO2019213730A1 PCT/BR2019/050177 BR2019050177W WO2019213730A1 WO 2019213730 A1 WO2019213730 A1 WO 2019213730A1 BR 2019050177 W BR2019050177 W BR 2019050177W WO 2019213730 A1 WO2019213730 A1 WO 2019213730A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
lignin
cellulose
latex
formulation
Prior art date
Application number
PCT/BR2019/050177
Other languages
English (en)
French (fr)
Inventor
Rubia Figueredo Gouveia
Naima Mohamed ORRA
Original Assignee
Centro Nacional De Pesquisa Em Energia E Materiais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Nacional De Pesquisa Em Energia E Materiais filed Critical Centro Nacional De Pesquisa Em Energia E Materiais
Priority to CN201980039050.1A priority Critical patent/CN112469793B/zh
Priority to US17/054,636 priority patent/US20210071049A1/en
Publication of WO2019213730A1 publication Critical patent/WO2019213730A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J107/00Adhesives based on natural rubber
    • C09J107/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/262Alkali metal carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates

Definitions

  • This description relates to adhesive formulations based on materials containing natural rubber latex and lignin.
  • soluble cellulose derivatives such as methyl cellulose, carboxymethyl cellulose or hydroxymethyl cellulose and their salts, alginates, gelatin, casein, starch, dextrose, xanthan and other low molecular weight carbohydrates, polymers derived from ethylene oxide and water soluble acrylates.
  • Conventional tannin resins include terpene resins, coumarone indene resins, natural resins such as lacquer, and long chain hydrogenated resins, among other resins.
  • Plasticizers most commonly used in the prior art comprise phthalate derivatives, especially dibutyl and diethylphthalate.
  • Adhesion of state of the art adhesives is controlled by the addition of release agents such as polyethylene, waxes and paraffins, or by the addition of polymer emulsions such as acrylates, acetates (especially ethyl, butyl and vinyl). ), polyvinyl alcohol and copolymers such as styrene / butadiene or styrene / acrylics.
  • release agents such as polyethylene, waxes and paraffins
  • polymer emulsions such as acrylates, acetates (especially ethyl, butyl and vinyl).
  • polyvinyl alcohol and copolymers such as styrene / butadiene or styrene / acrylics.
  • Alkals generally most commonly used in the prior art comprise ammonium hydroxide and borax, among various chemical bases.
  • Usual solvents come from the aromatic family, mainly xylene and toluene.
  • defoaming agents comprise aliphatic alcohols and glycols.
  • natural rubber latex-based adhesive formulations may be additive to organic or mineral fillers such as alkaline earth metal oxides and carbonates, metal oxides, silicas or carbon blacks, or by crosslinking, curing or curing agents.
  • vulcanization generally sulfur derivatives, peroxides, metal oxides, silanes or urethanes, or by flame retardants, especially bromine and phosphorus derivatives.
  • Some water-soluble cellulose ethers have application as thickeners in the manufacture of adhesives.
  • the most commonly used ethers in the industry include methyl cellulose (MC), carboxymethyl cellulose (CMC), hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose (HPC) and their hydrophobically modified anionic (HMHPC) forms , hydroxyethyl cellulose (HEC) and its hydrophobically modified forms, both cationic and anionic (HMHEC) and ethylhydroxyethyl cellulose (EHEC), but not limited to these compounds.
  • MC methyl cellulose
  • CMC carboxymethyl cellulose
  • HPMC hydroxypropyl methyl cellulose
  • HPC hydrophobically modified anionic
  • HEC hydroxyethyl cellulose
  • EHEC ethylhydroxyethyl cellulose
  • Cellulose in its pure form is a straight chain polysaccharide composed of the binding of several hundred to thousands of units of D-glucose.
  • the chain lengths of celluloses differ depending on the nature of the biomass from which cellulose is extracted. Pulp from wood pulp, such as eucalyptus or pine, has typical chain lengths between 300 and 1700 glucose units, while celluloses from fibrous textile species such as cotton may have chains of up to 10,000 glucose units. Some of the properties of cellulose depend on this number of glucose units that determine their chain length, crystallinity, or degree of polymerization.
  • PI 0102823-5 discloses a process for the manufacture of adhesives for polyphosphate modified natural rubber latex glass, ceramic, masonry and plastic surfaces at room temperature and under agitation resulting in an adhesive water based biodegradable material with high wettability, adhesion and covering power on the surfaces of the above substrates.
  • the technology proposed in this description dispenses with the use of polyphosphate additive formulation formulation to improve adhesion to similar substrates.
  • GB 1455744 describes a process for producing a natural rubber latex-based adhesive formulation for joining plywood.
  • the foregoing promotes the stability of natural rubber latex by the inclusion of a nonionic stabilizer or disulfide.
  • the formulation is supplemented by conventional vulcanizing agents, inert fillers and extenders and by synthetic resins in suitable proportions by weight such as urea formaldehyde, phenol formaldehyde or a mixture of urea formaldehyde (75%) and melamin formaldehyde ( 25%).
  • JP1761276 reports the production of panels from wood chips and shavings using a natural rubber latex-based adhesive as a particle binder for subsequent hot pressing of the panel.
  • a vulcanizing agent is dispersed in the latex.
  • teachings of the present disclosure differ from the foregoing in that they do not require the addition of additives and resins, and have the advantage of cold adhesion without the need for curing of the adhesive by vulcanization.
  • PI 9603408-4 discloses a process for producing a non-toxic aqueous based contact adhesive for boards composed of agglomerated wood, cork, wood, vinyl flooring and polyvinyl chloride tiles, among other materials.
  • the foregoing differs from the description proposed herein in that it contains in its composition natural rubber latex associated with resins such as acrylic acid-based copolymers, polyvinyl acetate terpolymers, taching resins, polyurethane-based elastomeric resins, and associated to other additives, such as mineral fillers, so that it may serve its ultimate purpose.
  • cellulose nanocrystals and nanofibrils have been reported in US 6103790 as latex emulsion additives for the production of water-based adhesives, paints and varnishes as well as adjuvants. for the manufacture of films by evaporation or lyophilization of latex emulsions and for the manufacture of objects by mechanical compression or injection processes.
  • teachings of the foregoing cited above differ from those proposed herein as to the origin and application of cellulose nanocrystals and nanofibrils.
  • the microcellulose comes from different algae and chordate marine animals of the Tunicata subphylum, mainly from the ascidian class.
  • Celluloses from animal sources are essentially crystalline due to the intrinsic nature of their primary and secondary chains being intertwined in a disorderly manner, hindering their separation and dissolution, and promoting a clustering of crystalline regions that confer a high degree of stiffness.
  • the addition of cellulose in the foregoing is effective to impart hardness to the adhesive, paint and varnish films, differing from the application as a rheological agent proposed for the micro and nanocelluloses of plant origin of the invention proposed herein.
  • additive latex emulsions are acrylic or styrene acrylic based, unlike the natural rubber latex emulsions mentioned in this invention.
  • micro or nanocellulose to natural latex-based adhesive formulations as proposed herein replaces cellulose ethers in their application as thickeners and adds additional functionality to the adhesives, which are not made possible by use of traditional thickeners in the state of the art.
  • concentration of micro or nanocellulose can be easily adjusted in the adhesive formulations in order to obtain ideal rheological properties for the physical application of the adhesive.
  • KR 100673507 describes a process for producing an environmentally sustainable water-based contact adhesive for bonding paper to substrates such as walls, floors and wood carpets, among others, with excellent adhesion of paper to substrates and offering high mechanical strength.
  • Said adhesive is a liquid emulsion of natural rubber latex in water, thickened by carboxymethyl cellulose (CMC), and has no ammonia odor as the formulation is additive with oxalic acid to promote the neutralization reaction of ammoniacal alkalis and attenuate the odor of the adhesive.
  • CMC carboxymethyl cellulose
  • Such natural rubber latex-based adhesives are susceptible over time to microbiological action, which promotes breakage of polymer chains and negatively impacts properties essential for adhesive performance, for example by reducing its viscosity or promoting particle agglomeration and formation.
  • cellulose ether thickeners such as CMC further enhances the propensity for microbiological attack.
  • natural rubber latex adhesives and cellulosic thickeners are often added with preservatives and / or with enough alkalis to raise the pH above 10 to inhibit pH. or delay the attack.
  • Ammoniacal alkalis are the cheapest and most efficient for this purpose, but have as an undesirable consequence the exhalation of strong odors during adhesive drying or curing, which cause occupational exposure problems and damage to workers' health.
  • the technology proposed in the present description does not require the use of cellulose ether based thickeners since the viscosity adjustment occurs through the interaction of micro and nanocellulose with latex.
  • micro and nanoscale celluloses are less prone to microbiological attacks, and their application as thickeners in the technology proposed here eliminates the need to add a large amount of ammoniacal alkali to raise the pH above 10 or above. preserving agents are added to stabilize the formulation.
  • CN104530496 is one example, where we have a suspension of cellulose nano or microcrystals originating from recycled paper and cardboard, mechanically extracted, and added to the natural rubber latex.
  • the suspension is produced by stirring and further admixed with a suspension of CaCl 2 and carbon black.
  • the following steps are precipitation, washing and drying the suspension to obtain a precipitate containing solid natural latex particles and crystalline cellulose whose proposed application is as an additive for polymer composites and rubbers.
  • the presence of crystalline cellulose partially replaces the addition of carbon black to the composites to improve their mechanical strength.
  • the additive can be processed into polymer and rubber composites via traditional production processes of various rubber composite products such as hoses and tires.
  • CN107474343 discloses another example of uses of blends of natural rubber latex with nano or cellulose microfibrils and describes a method for slowly mixing at room temperature a diluted natural rubber latex with an emulsifier and nanocellulose. crystalline from ascites to obtain a premix which will be further coagulated, dried and added to rubber compounds for further vulcanization.
  • the state of the art includes records of the use of cellulose in its non-functionalized form as a component of adhesive formulations in order to impart greater mechanical strength and hardness to the coalesced adhesive film after application and drying on the substrate, as reported by CN101864252.
  • This patent document relates to the preparation of an aqueous based adhesive formulation from the blend of low-impact natural rubber latex, cellulose and talc and for use in bonding carpets and rugs to floors and related substrates.
  • Patent document CN102718995 discloses lignin-reinforced non-vulcanized natural rubber and its method of production. Lignin-reinforced industrial rubber is formed by the coagulation and drying of a lignin suspension mixed with natural rubber latex, plasticizers and oils and offers a formulation variation where lignin is added to the aqueous suspension latex additive by inorganic fillers. According to the teachings of that document, lignin is previously treated with chemicals to promote latex particle anchorage, thus promoting a faster speed in the coagulation and drying processes without losing the physical and mechanical properties of rubber, and reducing energy consumption for rubber manufacture.
  • lignin or its derivatives as an anchor promoting agent is also known, and an exemplary approach is described in patent document JP2002226812, which deals with the production of a rubber latex-based adhesive.
  • natural additive with lignosulfonic acid salts designed to improve the surface anchoring of carbon fibers so that they can be applied as rubber reinforcing fillers.
  • non-functionalized lignin as an ingredient in adhesive formulations has been investigated for decades and there is no record of success in this application unless it is associated with other compounds such as furfural or tannins, or functionalized through condensation reactions, for example with glyoxal.
  • the adhesive further comprises micro or nanoscale crystalline or fibrillated cellulose in its non-functionalized form.
  • This process comprises: (i) adding lignin in solid (powder) form to a colloidal dispersion of natural rubber latex in aqueous medium at pH 9 or greater; (ii) optionally adding crystalline or fibrillated cellulose to the dispersion; (iii) vigorously stirring the mixture for 10 to 30 minutes under ambient temperature and pressure conditions.
  • the adhesive resulting from this process is environmentally sustainable because it is water based and does not require curing under temperature or pressure, having gained from the state of the art as it can be used on disparate substrates, which were not possible before. , especially aluminum substrates.
  • Figure 1 is a photographic image of the rupture of a tensile test plywood specimen, the portions of which have been adhered to by an adhesive formulation embodiment 1 of example 1 of the present disclosure.
  • Figure 2 shows images obtained by x-ray microtomography of the interface and the interior of two plywood strips joined by an adhesive formulation embodiment 1 of example 1 of the present disclosure.
  • Figure 3 is a photographic image of the rupture of tensile-tested MDF wood specimens, the portions of which have been adhered to by an adhesive formulation embodiment 1 of Example 2 of the present disclosure.
  • Figure 4 shows images obtained by x-ray microtomography of the interface and interior of two MDF wood strips joined by an adhesive formulation embodiment 1 of example 2 of the present disclosure.
  • Figure 5 shows a photographic image of the rupture of tensile paper sulfite specimens, the parts of which were adhered by an adhesive formulation embodiment 1 of Example 3 of the present disclosure.
  • Figure 6 shows a photographic image of the rupture of cardboard specimens subjected to tensile testing, the parts of which were adhered by an adhesive formulation embodiment 1 of example 4 of the present disclosure.
  • Figure 7 is a photographic image of paperboard test specimens subjected to tensile testing, the portions of which were adhered to by an adhesive formulation embodiment of Example 5 of the present disclosure.
  • Figure 8 is a schematic representation of a wood specimen for tensile testing as set forth in example 8 of the present disclosure.
  • Figure 9 is a photographic image of three embodiments of adhesive formulations of the present disclosure.
  • a material-based adhesive containing natural rubber latex and non-functionalized lignin is described.
  • an adhesive comprising a colloidal suspension of natural rubber latex in aqueous medium mixed with non-functionalized lignin.
  • natural rubber latex is extracted in an ammoniacal solution, with pH> 9 to prevent its coagulation.
  • a solution comprises 0.1 to 3% by weight of an alkali selected from the group comprising ammonium, sodium, calcium, magnesium, potassium hydroxides and salts such as sodium bicarbonate. Since lignin solubilizes only in basic aqueous medium, this characteristic allowed to overcome technical difficulties related to the preparation of the adhesive, since it was not necessary to add components that changed the pH of the aqueous medium to stabilize the suspension.
  • an adhesive comprising a colloidal suspension of natural rubber latex in aqueous medium mixed with lignin and micro or nanocellulose in crystalline or fibrillated form, the lignin and cellulose being non-functionalized.
  • a colloidal suspension of natural rubber latex in aqueous medium mixed with lignin and micro or nanocellulose in crystalline or fibrillated form, the lignin and cellulose being non-functionalized.
  • cellulose aids in the dispersion of lignin, allowing an increase in the proportion of lignin in relation to latex.
  • Cellulose also has the property of a thickening agent, which has overcome some technical difficulties related to the preparation of the adhesive.
  • the adhesive comprises up to 5% nanocellulose and 0.1% to 20% lignin, both expressed by mass on a dry basis, the mass ratio on a dry basis supplemented by the amount of latex.
  • natural rubber latex comprises the natural product registered under CAS number 9006-04-6 preferably derived from Hevea brasiliensis, not limited to this species and its origin.
  • lignin comprises the aromatic organic polymer of natural origin in its non-functionalized form found in all vascular plants and cell wall component of woody and grassy species fibers consisting of crosslinking of groups.
  • phenolic in proportions variable, registered under CAS number 9005-53-2, and still includes lignins extracted from these species through different processes, such as: the lignin obtained by organosolve process, registered under CAS number 8068-03-9, the lignin obtained by the Kraft process, registered under CAS number 8068-05-1, and the alkali lignin obtained through the oxidation process, registered under CAS number 68512-36-7, but not limited to these extraction processes.
  • cellulose comprises cellulose polymer in its non-functionalized form, registered under CAS No 9004-34-6.
  • cellulose employed in this disclosure, different crystalline forms of the polymer are comprised, including micro and nanocrystalline celluloses, and macro, micro or nanofiber arrangements of cellulose of different size and aspect ratio, referred to as micro or nanofibrillated celluloses.
  • micro and nanocelluloses comprise partially depolymerized celluloses extracted from the cellulose chains.
  • the crystalline regions may be isolated and extracted from the amorphous regions by mechanical and chemical processes, exposure to enzymes, steam explosion or by acidic hydrolysis using ionic liquids or mineral acids such as H 2 S0 4, HCI and HBr.
  • the degree of extraction can be controlled to generate micro and nanocelluloses with polymerization grades typically less than 400, which are thus easily dispersed in water, and to present properties that suit the micro and nanocelluloses for their final application, such as controlled size.
  • particle size (generally between 5 pm and 5 nm), low density, compressibility index, angle of repose, porosity, sorption capacity, volumetric expansion capacity, crystallinity index and crystallite size, rheological functionalities and different mechanical properties such as as high hardness and high tensile strength.
  • micro and nanocelluloses may come from wood species such as eucalyptus and pine, fibrous species such as cotton, and sugarcane, not limited to these species.
  • the adhesives described herein may be used for gluing or surface finishing metals or alloys, glass, plastics and substrates.
  • cellulosics of different compositions with bonding being possible between substrates of the same nature, such as paper-paper, wood-wood, metal-metal, glass-glass, plastic-plastic, or between substrates of different natures, such as paper-wood, cardboard- paper, metal-plastic.
  • the use of the adhesive for gluing or surface finishing of cellulosic substrates refers to the application to substrates selected from the group comprising woods such as peroba, mahogany, ipe, mastic, oak, pine, eucalyptus, cedar, jacaranda, jacare ⁇ ba, maca ⁇ ba , ita ⁇ ba and walnut, among others, wood processing and treatment waste, wood from demolition, plywood produced from wood including MDF, MDP among others, cellulose and its derivatives including fresh and bleached cellulose pulp, cellulose fibers, cellulose, cellulose composites, cellulose wadding and fabrics, regenerated cellulose, cellophane and its films and their derivatives, among others, paper and its derivatives including cardboard, sulphite paper and others, cardboard, packaging made from cellulose and its derivatives, fabrics made from from cellulosic fibers and their compositions.
  • Said cellulosic substrates may have undergone surface treatments prior to application of the adhesive, treatments selected from the group comprising
  • Use of the adhesive on metal substrates may be for the adhesion or coating of selected metal substrates from the group comprising aluminum, brass, silver, gold, copper, stainless steel, platinum, iron, carbon steel of different compositions, or any alloy. of these materials.
  • Said metal substrates may have undergone surface treatments prior to application of the adhesive, treatments selected from the group comprising polishing, application of paints, waxes, enamels, varnishes and / or greases, oxidation, corrosion, anodizing, buckling, corona discharge or discharge. electric, amalgamation, phosphating, nitriding, sulphiding, carbetting, diamond, irradiation, film coating through electrostatic painting, evaporation or electrodeposition.
  • the use of the adhesive in inorganic substrates may be for adhesion or coating of inorganic substrates selected from the group comprising ceramics, glasses preferably composed of aluminum silicate, borosilicate, soda lime, fused silica and lead and silica plates.
  • Said inorganic substrates may have undergone surface treatments prior to application of the adhesive, treatments selected from the group comprising polishing, quenching, coloring, resin addition and blasting.
  • the use of the adhesive on polymeric substrates may be for the adhesion or coating of polymeric substrates selected from the group comprising elastomers of different origins and compositions, thermoplastics of different origins and compositions, thermosets of different origins and compositions, their composites and nanocomposites, their blends, foams and films, and fabrics made from synthetic fibers and their compositions.
  • Said polymeric substrates may have been subjected to surface treatments selected from the group comprising polishing, blasting, ultraviolet irradiation, functionalization and pigment dyeing.
  • ingredients are added to the adhesive formulation such as biocides, coalescents, pH correctors, rheological agents or viscosity adjusting agents, not limited to these ingredient natures.
  • the process comprises the steps of: adding solid lignin (powder) to a colloidal dispersion of natural rubber latex in aqueous medium at pH 9 or greater; and vigorously stirring the mixture for a period of between 10 and 20 minutes under ambient temperature and pressure conditions using a stirrer of any kind, for example a magnetic stirrer operating between 1350 and 1650 rpm.
  • a stirrer of any kind, for example a magnetic stirrer operating between 1350 and 1650 rpm.
  • the process further comprises the step of adding micro or nanocellulose to the colloidal dispersion before stirring the mixture.
  • the added cellulose may be fibrillated or crystalline micro or nanocellulose, being in the form of aqueous dispersion with a solids content of up to 5% by weight on a dry basis, being in solid form (powder) or in the form of aqueous dispersion of up to 5% by weight. 5% by mass on dry basis.
  • Example 1 Preparation of adhesive dispersions for bonding plywood.
  • Formulation 1 was prepared containing 95% latex: 5% lignin by mass on dry basis and formulation 2 was prepared to contain 94% latex: 5% lignin: 1% nanocellulose on dry basis.
  • the resulting dispersion was left under magnetic stirring at 1500 rpm for 15 min at 25 ° C, and at the end of the stirring the lignin was completely dispersed in the medium and the adhesive reached a suitable viscosity for application with roller applicator.
  • adhesion efficiency of adhesive formulations 1 and 2 compared to commercial formulation was evaluated by a tensile test adapted from ISO 6237: 2017. 60 plywood strips of 8 cm x 2.5 cm x 1.2 cm size were made.
  • An approximately 60 mg layer of the adhesive formulation to be evaluated (adhesive formulation 1, 2 or commercial formulation) was applied at 25 ° C using a roll-like applicator on the surface of a strip defining a 2 cm x 2 cm adhesion area. 2.5 cm and completely covering this area.
  • the face of this adhesive impregnated strip was joined to the face of another non-adhesive strip at a compressive force of approximately 4 N for 25 s.
  • Figure 1 is a photographic image of the rupture of said plywood specimens subjected to tensile testing, the portions of which were adhered by the adhesive formulation 1 produced according to this example 1. The rupture occurred in a portion of one of the specimens, rather than the adhesive bonded section, demonstrating good adhesion and shear strength of the adhesive bonded plywood section.
  • Figure 2 presents two images obtained by microtomography of X-rays of the interface and interior of two plywood strips joined by the adhesive formulation 1 produced according to this example 1, containing 95% latex and 5% lignin by mass on dry basis.
  • 3D three-dimensional
  • 2D two-dimensional
  • Table 1 presents the results obtained for the modulus of elasticity (MPa) of formulations 1 and 2 compared to the performance of specimens bonded by the commercial PVA formulation.
  • the modulus of elasticity is expressed as the average of the elastic modulus measured for each set of 10 specimens.
  • Figure 1 illustrates this result for formulation 1 and is complemented by Figure 2 which shows the regions of the adhesive joint analyzed by X-ray microtomography with images of the adhesion region (A) containing the adhesive and the strips (B and C ).
  • Figure 2 shows the micrographs on the left (3D image) and on the right (2D image) show a virtually imperceptible interface between the two woods, pointing to a good interaction between the two woods and the adhesive.
  • Example 1 for wood substrate showed a similar performance between the formulations of this invention compared to the adhesive. commercial for these substrates.
  • Formulation 1 was prepared to contain 95% latex: 5% lignin by mass on dry basis and formulation 2 was prepared to contain 94% latex: 5% lignin: 1% nanocellulose on dry basis.
  • the process of producing both formulations comprised the initial addition of lignin to the aqueous dispersion of natural rubber latex at pH> 9 and then, in the case of formulation 2 alone, nanocellulose was added to the dispersion.
  • the lignin used comes from sugarcane bagasse and nanocellulose comes from eucalyptus.
  • Lignin is in solid form (powder) and nanocellulose in aqueous dispersion form with solids content equivalent to 2.1% by mass on dry basis.
  • the resulting dispersion was left under magnetic stirring for 15 min at 25 ° C for proper homogenization, and at the end of stirring the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with roller applicator.
  • adhesion efficiency of adhesive formulations 1 and 2 was evaluated by a tensile test adapted from ISO 6237: 2017. Forty strips of MDF wood were made in the size 8 cm x 2.5 cm x 0.3 cm. An approximately 60 mg layer of the adhesive formulation to be evaluated (adhesive formulation 1 and 2) was applied at 25 ° C using a roller-like applicator on the surface of a strip, defining a 2 cm x 2 size adhesion area, 5 cm and completely covering this area. After application of the adhesive formulation, the adhesive coated strip face was joined to the non-adhesive strip face at a force approximately 4 N for 25 sec.
  • Figure 3 is a photographic image of the rupture of tensile-tested MDF wood specimens, the parts of which were adhered to by the adhesive formulation 1 produced in example 2 of this invention. The rupture occurred in a portion of one of the specimens, and not in the section joined by the adhesive, demonstrating good adhesion and shear strength of the MDF wood section joined by the adhesive.
  • Figure 4 shows X-ray microtomography images of the interface and interior of two MDF wood strips joined by the adhesive formulation 1 developed in this example 2, containing 95% latex and 5% lignin by mass on dry basis.
  • 3D three-dimensional
  • 2D two-dimensional
  • Table 2 presents the results obtained for the elastic modulus (MPa) of formulations 1 and 2.
  • the elastic modulus is expressed as the average of the elastic modulus measured for each set of 10 specimens.
  • Figure 3 illustrates this result for formulation 1 and is complemented by Figure 4 showing the regions of the adhesive joint analyzed by X-ray microtomography with images of the interface (A) containing the adhesive and the strips (B and C).
  • Figure 4 shows the left (3D image) and right (2D image) micrographs show a virtually imperceptible interface between the two woods, indicating a good interaction between the two woods and the adhesive.
  • Example 3 Preparation of adhesive dispersions for bonding sulfite paper.
  • Formulation 1 was prepared to contain 95% latex: 5% lignin by mass on dry basis and formulation 2 was prepared to contain 94% latex: 5% lignin: 1% nanocellulose on dry basis.
  • the production process of both formulations comprised the initial addition of lignin to the aqueous dispersion of natural rubber latex at pH> 9 and thereafter, for formulation 2 only, fibrillated nanocellulose was added to the dispersion.
  • the lignin used comes from sugarcane bagasse and nanocellulose comes from eucalyptus.
  • Lignin is in solid form (powder) and fibrillated nanocellulose in aqueous dispersion form having a solids content equivalent to 2.1 mass% on dry basis.
  • the resulting dispersion was left under magnetic stirring for 15 min at 25 ° C for proper homogenization, and at the end of stirring the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with roller applicator.
  • the adhesion efficiency of the adhesive formulations 1 and 2 compared to the commercial formulation was evaluated by a tensile test adapted from ISO 1924-2: 2008. 60 strips of commercial sulfite paper in the size 10 cm x 2.5 cm x 80 pm were made. An approximately 60 mg layer of the adhesive formulation to be evaluated (adhesive formulation 1, 2 or was applied at 25 ° C using a roll-like applicator on the surface of a strip, defining a 2 cm x 2.5 cm adhesion area and fully covering this area. After application of the adhesive formulation, the strip face was bonded to a strip without adhesive at a compressive force of approximately 4 N for 25 s.
  • Figure 5 is a photographic image of the rupture of tensile paper specimens subjected to tensile testing, the parts of which were adhered by the adhesive formulation 1 produced in this example 3. All specimens ruptured in regions other than bonding region, demonstrating a stronger paper-adhesive interaction than the paper-paper interaction. Similar behavior was also observed for commercial adhesive assays, indicating that the developed adhesive has performance similar to the reference standard for these substrates.
  • Example 4 Preparation of adhesive dispersions for bonding cardboard.
  • Formulation 1 was prepared to contain 95% latex: 5% lignin by mass on dry basis and formulation 2 was prepared to contain 94% latex: 5% lignin: 1% nanocellulose on dry basis.
  • the production process of both formulations comprised the initial addition of lignin to the aqueous dispersion of natural rubber latex at pH> 9 and then, for formulation 2 only, fibrilated nanocellulose was added to the dispersion.
  • the lignin used comes from sugarcane bagasse and nanocellulose comes from eucalyptus.
  • Lignin is in solid form (powder) and fibrillated nanocellulose in aqueous dispersion form having a solids content of 2,1% by weight on dry basis.
  • the resulting dispersion was left under magnetic stirring for 15 min at 25 ° C for proper homogenization, and at the end of stirring the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with roller applicator.
  • the adhesion efficiency of the adhesive formulations 1 and 2 compared to the commercial formulation was evaluated by a tensile test adapted from ISO 1924-2: 2008. Sixty strips of cardboard were made in the dimension 10 cm x 2.5 cm x 0.12 cm. An approximately 60 mg layer of the adhesive formulation to be evaluated (adhesive formulation 1, 2 or commercial formulation) was applied at 25 ° C using a roll-like applicator on the surface of a strip, defining a 2 cm size adhesion area. x 2.5 cm and completely covering this area. After application of the adhesive formulation, the face of this strip was bonded to a strip without adhesive for 25 s and a compressive strength of approximately 4 N. 30 specimens were prepared, 10 for each formulation, which were conditioned for 120 h and 22 ⁇ 2.
  • Figure 6 is a photographic image of the rupture of cardboard specimens subjected to tensile testing, the parts of which were adhered by the adhesive formulation 1 of this example 4. The rupture of the specimens took place in an adjacent region. adhesion, demonstrating the strong attraction of the cardboard by the adhesive.
  • Table 3 presents the results obtained for the elastic modulus (MPa) of formulations 1 and 2 compared to the performance of specimens bonded by the commercial PVA formulation.
  • the elastic modulus is expressed as the average of the elastic modulus measured for each set of 10 specimens.
  • Example 5 Preparation of adhesive dispersions for bonding cardboard and sulfite paper.
  • the production process comprised the initial addition of lignin to the aqueous dispersion of natural rubber latex at pH> 9.
  • the lignin used comes from sugarcane bagasse and nanocellulose comes from eucalyptus.
  • Lignin is in solid form (powder) and fibrillated nanocellulose in aqueous dispersion form having a solids content equivalent to 2.1 mass% on dry basis.
  • the resulting dispersion was left under magnetic stirring for 15 min at 25 ° C for proper homogenization, and at the end of stirring the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with roller applicator.
  • the adhesion efficiency of the adhesive formulation compared to the commercial formulation was evaluated by a tensile test adapted from ISO 1924-2: 2008. Twenty strips of 10 cm x 2.5 cm x 80 pm paper and 20 strips of 10 cm x 2.5 cm x 0.12 cm paperboard were made. An approximately 60 mg layer of the adhesive formulation to be evaluated was applied at 25 ⁇ ° C using a roll-type applicator on the surface of the cardboard strips, defining an adhesive area of 2 cm x 2.5 cm in size and covering it. totally this area. After application of the adhesive formulation, the faces of the cardboard strips were bonded to the faces of the sulfite paper strips at a compressive force of approximately 4 N for 25 s.
  • Figure 7 is a photographic image of paperboard test specimens subjected to tensile testing, the portions of which were adhered to by the adhesive formulation produced in example 5. All specimens broke in regions other than the region showing a stronger paper-adhesive-cardboard interaction than the paper-cardboard interaction.
  • Table 4 presents the results obtained for the elastic modulus (MPa) of the developed formulation compared to the performance of the specimens bonded by the commercial PVA formulation.
  • the elastic modulus is expressed as the average of the elastic modulus measured for each set of 10 specimens.
  • Table 4 Mean value of elastic modulus obtained in the tensile paper and cardboard tensile test for the developed formulation compared to the performance of the commercial PVA-based formulation.
  • Example 6 Preparation of adhesive dispersions for bonding aluminum and MDF.
  • Formulation 1 was prepared to contain 95% latex: 5% lignin by weight on dry basis and formulation 2 was prepared to contain 94% latex: 5% lignin: 1% nanocellulose on dry basis.
  • the process of producing both adhesive formulations comprised the initial addition of lignin to the aqueous dispersion of natural rubber latex at pH> 9 and then, for formulation 2 only, fibrilated nanocellulose was added to the dispersion.
  • the lignin used comes from sugarcane bagasse and nanocellulose comes from eucalyptus.
  • Lignin is in solid form (powder) and fibrillated nanocellulose in aqueous dispersion form having a solids content equivalent to 2.1 mass% on dry basis of the dispersion.
  • the resulting dispersion was allowed to stir for 15 min at 25 ° C for proper homogenization, and at the end of agitation the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with a roller applicator.
  • the adhesion efficiency of adhesive formulations 1 and 2 was assessed by a tensile test adapted from ISO 6237: 2017. An approximately 60 mg layer of each of the adhesive formulations 1 and 2 was applied at 25 ° C using a roll-like applicator on the surface of a MDF strip defining a 2 cm x 2.5 cm adhesion area, and completely covering this area. After application of the adhesive formulations, an aluminum profile with the same adhesion area and no adhesive was pressed onto the MDF strip coated with the same adhesive composition, and the faces were bonded for 15 min at 58%. relative age at a compressive force of approximately 4 N.
  • 16 specimens were made of aluminum / MDF in the dimension of 8 cm x 2.5 cm, being 8 for each formulation, which were conditioned by 120 h at 22 ⁇ 2 ° C and 58 ⁇ 3% of one age. The specimens were subsequently subjected to tensile tests according to ISO 6237: 2017, and a tensile speed of 2 mm / min was applied. Similar behavior was observed for both formulations.
  • Example 7 Preparation of adhesive dispersions using eucalyptus or sugarcane bagasse liner for bonding plywood.
  • Formulation 1 was prepared to contain 95% latex: 5% lignin derived from sugarcane bagasse on a dry basis and formulation 2 was prepared to contain 95% latex: 5% lignin derived from eucalyptus dry pasta.
  • Formulation 3 was prepared to contain 94.9% latex: 5% eucalyptus-derived lignin: 0.1% eucalyptus nanocellulose by mass on dry basis and formulation 4 was prepared to contain 94% latex: 5% lignin-derived Eucalyptus: 1% eucalyptus nanocellulose by mass on dry basis.
  • the production process comprised the initial addition of eucalyptus-derived lignin or, just in example 1, sugarcane bagasse to the aqueous dispersion of natural rubber latex at pH> 9 and then only in the formulations. 3 and 4, fibrillated nanocellulose was added to the dispersion.
  • the lignin used comes from eucalyptus or bagasse and nanocellulose comes from eucalyptus.
  • Lignin is in solid form (powder) and fibrillated nanocellulose in aqueous dispersion form having a solids content equivalent to 2.1 mass% on dry basis.
  • the resulting dispersion was left under magnetic stirring for 15 min at 25 ° C for proper homogenization, which ended when the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with roller applicator.
  • the adhesion efficiency of adhesive formulations 1 to 4 has been compared to of the commercial formulation was evaluated by a tensile test adapted from ISO 6237: 2017. 100 strips of plywood of 8 cm x 2.5 cm x 1.2 cm size were made.
  • An approximately 60 mg layer of the adhesive formulation to be evaluated (formulations 1 to 4 or commercial formulation) was applied at 25 ° C using a roll-like applicator on the surface of a strip defining a 2 cm x 2 adhesion area. , 5 cm and completely covering this area.
  • the face of this adhesive impregnated strip was joined to the face of another non-adhesive strip at a compressive strength of approximately 4 N for 1 min for bonding the substrates.
  • Fifty specimens were prepared, 10 for each formulation, conditioned by 120 h at 22 ⁇ 2 ° C and 58 ⁇ 3% humidity and subsequently subjected to tensile testing according to ISO 6237: 2017, with a speed of 1 mm / min pull.
  • Table 5 presents the results obtained for the modulus of elasticity (MPa) of formulations 1 to 4 compared to the performance of the specimens bonded by the commercial PVA formulation.
  • the modulus of elasticity is expressed as the average of the modulus of elasticity measured for each set of 10 specimens.
  • Example 8 Preparation of adhesive dispersions using eucalyptus lianin and cellulose for bonding plywood.
  • Formulation 1 was prepared to contain 94% latex: 5% eucalyptus-derived lignin: 1% dry mass nanocellulose.
  • Formulation 2 was prepared to contain 89% latex: 10% eucalyptus-derived lignin: 1% dry mass nanocellulose.
  • Formulation 3 was prepared to contain 87% latex: 12% eucalyptus-derived lignin: 1% dry bulk nanocellulose.
  • the production process comprised the initial addition of eucalyptus-derived lignin to the aqueous dispersion of natural rubber latex at pH> 9 and thereafter, fibrillated nanocellulose was added to the dispersion, with nanocellulose also being derived from eucalyptus.
  • Lignin is in solid form (powder) and fibrillated nanocellulose in aqueous dispersion form having a solids content equivalent to 2.1 mass% on dry basis.
  • the resulting dispersion was left under magnetic stirring for 20 min at 25 ° C for proper homogenization, which ended when the lignin was completely dispersed in the medium, the adhesive having reached a suitable viscosity for application with roller applicator.
  • the adhesion efficiency of adhesive formulations 1 to 3 was evaluated by a tensile test adapted from DIN EM 204/205: 2003. 60 strips of plywood of 6.7 cm x 2 cm x 0.4 cm and 60 strips of 8 cm x 2 cm x 0.4 cm size were made. An approximately 150 mg layer of the adhesive formulation to be evaluated (adhesive formulation 1, 2 or 3) was applied at 25 ° C using a roller-like applicator on the surface of a strip. 6.7 cm x 2 cm x 0.4 cm which was then glued to a 8 cm x 2 cm x 0.4 cm strip. A pressure of approximately 4 N for 1 min was maintained on this surface for effective bonding. The same process was repeated for another 6.7 cm long strip.
  • Figure 9 is a schematic representation of the specimen for the wood tensile test according to European standard DIN EN 204/205: 2003, applied to this example.
  • Table 6 presents the results obtained for the modulus of elasticity (MPa) of formulations 1 to 3.
  • the modulus of elasticity is expressed as the average of the modulus of elasticity measured for each set of 10 specimens.
  • Figure 9 is a photographic image of three adhesive formulations that have the same amount of lignin (8% on dry weight basis) but different amounts of nanocellulose.
  • the left formulation has no nanocellulose
  • the middle formulation has 0.1% nanocellulose
  • the right formulation has 1% nanocellulose, all proportions expressed as a dry mass of the adhesive.
  • the remaining percentage on dry basis of each of these formulations is completed with latex.
  • this image it can be seen how the increase of nanocellulose concentration helps in lignin solubilization, acting as a thickener / dispersant for the formulations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

É descrito um adesivo à base de materiais contendo de látex de borrachanatural e lignina em sua forma não-funcionalizada. O adesivo pode compreendercelulose micro ou nanofibrilada ou cristalina, em sua forma não-funcionalizada.Também é descrito um processo de produção do referido adesivo, compreendendoetapas de adição dos componentes na mistura e agitação da mesma, realizado emcondições de pressão e temperatura ambientes.

Description

ADESIVO À BASE DE MATERIAIS CONTENDO LÁTEX E LIGNINA E PROCESSO
DE PRODUÇÃO DO MESMO
CAMPO DA DESCRIÇÃO
[0001 ] A presente descrição se refere a formulações adesivas à base de materiais contendo látex de borracha natural e lignina.
FUNDAMENTOS DA DESCRIÇÃO
[0002] O primeiro documento de patente que descreve o uso de látex de borracha natural como matéria-prima para adesivos foi a patente norte americana US 3,965, datada de 26 de março de 1845. A referida patente descreve um processo de produção de um adesivo de contato com tacking (“pega”) para uso como revestimento protetor de bandagens têxteis destinadas para aplicações médicas.
[0003] Desde então, emulsões de látex de borracha natural foram largamente aplicadas em adesivos de contato destinados a inúmeros substratos por apresentar vantagens quando comparadas a látices poliméricos tais como acrílicos, estirenos, butadienos e vinílicos, entre outros. Dentre as vantagens dos adesivos de látex, aponta-se a formação de filmes homogéneos por solidificação por coalescência das partículas de polímero simultaneamente à evaporação da água presente na emulsão, a dispensa da adição de solventes orgânicos potencialmente tóxicos ao ambiente para formação dos filmes, alta compatibilidade com outros produtos químicos para aumentar ou melhorar a funcionalidade de adesão e a possibilidade de vulcanização a quente.
[0004] Para garantir o desempenho, a estabilidade e uma longa vida útil de formulações de adesivos de contato a partir de látex de borracha natural, é comum aditivar as formulações com espessantes, agentes preservantes ou microbiocidas, umectantes, antioxidantes, antiespumantes, álcalis em quantidade suficiente para garantir um pH acima de 9, plastificantes, resinas taquificantes e solventes.
[0005] Espessantes tradicionais no estado da arte compreendem derivados solúveis de celulose tais como metil-celulose, carboximetil-celulose ou hidroximetil- celulose e seus sais, alginatos, gelatina, caseína, amido, dextrose, xantana e outros carboidratos de baixo peso molecular, polímeros derivados do óxido de etileno e acrilatos solúveis em água.
[0006] Resinas taquificantes usuais no estado da técnica compreendem resinas terpênicas, resinas de cumarona-indeno, resinas naturais tais como a laca, e resinas hidrogenadas de cadeias longas, entre outras resinas.
[0007] Plastificantes mais usados no estado da técnica compreendem derivados de ftalatos, especialmente o dibutil e o dietilftalato.
[0008] A aderência de adesivos do estado da técncia é controlada através da adição de agentes desmoldantes, tais como o polietileno, ceras e parafinas, ou pela adição de emulsões de polímeros tais como acrilatos, acetatos (com destaque para etila, butila e vinila), álcool polivinílico e copolímeros tais como estireno/butadieno ou estireno/acrílicos.
[0009] Os álcalis geralmente mais usados no estado da técnica compreendem hidróxido de amónio e bórax, entre várias bases químicas. Solventes usuais, por sua vez, provêm da família dos aromáticos, principalmente xileno e tolueno. Os agentes antiespumantes geralmente mais adotados compreendem álcoois alifáticos e glicóis.
[0010] Eventualmente, formulações de adesivos à base de látex de borracha natural podem ser aditivadas por cargas orgânicas ou minerais tais como óxidos e carbonatos de metais alcalinos terrosos, óxidos metálicos, sílicas ou negros de fumo, ou por agentes de crosslinking, cura ou vulcanização, geralmente derivados de enxofre, peróxidos, óxidos metálicos, silanos ou uretanos, ou por agentes antichama, especialmente derivados de bromo e de fósforo.
[0011 ] Alguns éteres de celulose solúveis em água possuem aplicação como espessantes na fabricação de adesivos. Dentre os éteres mais utilizados pela indústria listam-se metil-celulose (MC), carboximeti l-celulose (CMC), hidroxipropilmetil-celulose (HPMC), hidroxipropil-celulose (HPC) e suas formas hidrofobicamente modificadas tanto catiônica quanto aniônica (HMHPC), hidroxietil- celulose (HEC) e suas formas hidrofobicamente modificadas tanto catiônica quanto aniônica (HMHEC) e etilhidroxietil-celulose (EHEC), porém não se limitando a estes compostos.
[0012] Celulose em sua forma pura é um polissacarídeo de cadeia linear composto pela ligação entre si de várias centenas a milhares de unidades de D- glicose. Os comprimentos de cadeia das celuloses diferem em função da natureza da biomassa da qual a celulose é extraída. Celuloses provenientes de pastas de madeiras, como eucalipto ou pinho, têm comprimentos típicos de cadeia entre 300 e 1700 unidades de glicose, enquanto celuloses provindas de espécies fibrosas com aplicação têxtil, como o algodão, podem ter cadeias com até 10000 unidades de glicose. Algumas das propriedades da celulose dependem deste número de unidades de glicose que determinam o seu comprimento de cadeia, cristalinidade, ou grau de polimerização.
ESTADO DA TÉCNICA
[0013] Destarte, os processos de produção de adesivos de contato à base de látex de borracha natural aditivada por diferentes compostos são largamente conhecido e aplicada pelos que dominam o estado da arte, desde seu primeiro registro de patente no ano de 1845, supracitado.
[0014] Os documentos de patente US2373597, GB729739, GB737742, US2739954, GB799424, US2917422, GB853518, GB906562, US3152921 , GB1080441 , GB1081291 , FR1443217, BE679596, NL6617241 , GB1192871 , BE753691 , DE2340856, US3973563, JP1295779, JP1288684, JPS55142033, JP1769699, US4657960, US4684685, JP21 16351 , JP3544379, JP2688689, US5733958, I N 1 91 547, US5962147, J P2002238360, I N2002DE00587, AU2002365368, US7235294, BRPI0505995, CN101967356, CN103360985 e CN106634681 são alguns exemplos da formulação e da aplicação de adesivos de contato à base de látex de borracha natural aditivadas por diferentes substâncias aplicados para adesão ou tratamento superficial de substratos.
[0015] O documento de patente PI 0102823-5 revela um processo para fabricação de adesivos para superfícies de vidros, cerâmicas, alvenarias e plásticos à base de látex de borracha natural modificado por polifosfato, à temperatura ambiente e sob agitação, resultando em um adesivo biodegradável em base aquosa com alta molhabilidade, adesão e poder de cobertura sobre as superfícies dos substratos citados. Em contraposição, a tecnologia proposta na presente descrição dispensa o uso de aditivação da formulação do adesivo por polifosfato para melhorar a adesão a substratos de semelhante natureza.
[0016] O documento de patente GB 1455744 descreve um processo para produzir uma formulação adesiva à base de látex de borracha natural para união de compensados de madeira. A anterioridade citada promove a estabilidade do látex de borracha natural pela inclusão de um estabilizador não iônico ou de dissulfuretos. A formulação é aditivada por agentes de vulcanização convencionais, cargas e extensores inertes e por resinas sintéticas em proporções adequadas em peso, tais como uréia-formaldeído, fenol-formaldeído ou uma mistura de uréia-formaldeído (75%) e melam ina-formaldeído (25%).
[0017] O documento de patente JP1761276 reporta a produção de painéis a partir de cavacos e aparas de madeira usando um adesivo à base de látex de borracha natural como elemento ligante das partículas, para subseqúente prensagem a quente do painel. A fim de conferir durabilidade à placa, um agente de vulcanização é disperso no látex.
[0018] Os ensinamentos da presente descrição diferem das anterioridades citadas pois dispensam a adição de aditivos e resinas, e têm como vantagem a adesão a frio, sem necessidade de cura do adesivo a quente por vulcanização.
[0019] O documento de patente PI 9603408-4 revela um processo de produção de um adesivo de contato em base aquosa não tóxico para placas compostas por madeira aglomerada, cortiça, madeira, pisos vinílicos e ladrilhos de policloreto de vinila, entre outros materiais. A anterioridade difere da descrição aqui proposta por conter em sua composição o látex de borracha natural associado a resinas tais como copolímeros à base de ésteres de ácido acrílico, terpolímeros de acetato de polivinila, resinas taquificantes, resinas elastoméricas à base de poliéster poliuretano, e associado a outros aditivos, tais como cargas minerais, para que possa atender ao seu propósito final.
[0020] O uso de nanocristais e nanofibrilas de celulose foi reportado no documento de patente US 6103790 como aditivos de emulsões de látices para a produção de adesivos, tintas e vernizes à base de água, assim como coadjuvantes para a manufatura de filmes por evaporação ou liofilização das emulsões de látices e para a manufatura de objetos por processos mecânicos de compressão ou de injeção. Contudo, os ensinamentos da anterioridade ora citada diferem dos aqui propostos quanto à origem e aplicação dos nanocristais e nanofibrilas de celulose. Na referida anterioridade, a microcelulose provêm de diferentes algas e de animais marinhos cordados do subfilo Tunicata, principalmente da classe das ascídeas. Celuloses oriundas de fontes animais são essencialmente cristalinas devido à natureza intrínseca de suas cadeias primárias e secundárias serem entrelaçadas de forma desordenada, dificultando a separação e dissolução das mesmas, e promovendo um agrupamento de regiões cristalinas que conferem alto grau de rigidez. A adição de celulose na referida anterioridade é efetivada para conferir dureza aos filmes de adesivos, tintas e vernizes, diferindo da aplicação como agente reológico proposta para as micro e nanoceluloses de origem vegetal da invenção aqui proposta. Ainda, na referida anterioridade, as emulsões de látices aditivados são de base acrílica ou estireno-acrílica, diferentemente das emulsões à base de látex de borracha natural citadas nesta invenção.
[0021 ] A adição de micro ou nanocelulose às formulações de adesivos à base de látex natural, conforme proposto na presente descrição, substitui os éteres de celulose na sua aplicação como espessantes e contribui com adicionais funcionalidades para os adesivos, as quais não são possibilitadas pelo uso dos espessantes tradicionais no estado da arte. A concentração da micro ou da nanocelulose pode ser facilmente ajustada nas formulações adesivas com o intuito de se obter propriedades reológicas ideais para a aplicação física do adesivo.
[0022] O documento de patente KR 100673507 descreve um processo para produção de um adesivo de contato ambientalmente sustentável à base de água para colagem de papel em substratos tais como paredes, pisos e carpetes de madeira, entre outros, com excelente adesão do papel aos referidos substratos e oferecendo elevada resistência mecânica. O referido adesivo é uma emulsão líquida de látex de borracha natural em água, espessada por carboximetil-celulose (CMC), e não apresenta odor de amónia, pois a formulação é aditivada com ácido oxálico para promover a reação de neutralização dos álcalis amoniacais e atenuar o odor do adesivo. Tais adesivos à base de látex de borracha natural são susceptíveis com o passar do tempo à ação microbiológica, que promove a quebra das cadeias poliméricas e impacta negativamente propriedades essenciais para o desempenho do adesivo, por exemplo reduzindo sua viscosidade ou promovendo aglomeração de partículas e formação de grânulos. O uso de espessantes à base de éteres de celulose tais como a CMC acentua ainda mais a propensão ao ataque microbiológico. Para atenuar este efeito e prolongar a vida útil do adesivo, adesivos à base de látex de borracha natural e espessantes celulósicos costumam ser aditivados com agentes preservantes e/ou com uma suficiente quantidade de álcalis para elevar o pH acima de 10, de forma a inibir ou retardar o ataque. Álcalis amoniacais são os mais baratos e os mais eficientes para esta finalidade, porém trazem como consequência indesejável a exalação de fortes odores durante a secagem ou cura do adesivo, que causam problemas de exposição ocupacional e danos à saúde dos trabalhadores. A tecnologia proposta na presente descrição dispensa o uso de espessantes à base de éteres de celulose já que o ajuste de viscosidade se dá pela interação da micro e nanocelulose com o látex. É notório no estado da arte que celuloses em escala micro e nanométrica são menos propensas a ataques microbiológicos, e sua aplicação como espessantes na tecnologia aqui proposta dispensa a necessidade de se adicionar uma grande quantidade de álcalis amoniacais para elevar o pH acima de 10 ou de se adicionar agentes preservantes para estabilizar a formulação.
[0023] Processos de preparação de aditivos para compósitos por mistura de látex de borracha natural com nano ou microcristais ou fibrilas de celulose já são conhecidos e aplicados no estado da arte, para usos diferentes do descrito nesse pedido. A patente CN104530496 é um dos exemplos, onde temos uma suspensão de nano ou microcristais de celulose originários de papel e papelão reciclados, extraídos por métodos mecânicos, e adicionados ao látex de borracha natural. A suspensão é produzida por agitação e adicionalmente aditivada com uma suspensão de CaCI2 e negro de fumo. As etapas seguintes são precipitação, lavagem e secagem da suspensão para se obter um precipitado contendo partículas sólidas de látex natural e celulose cristalina cuja aplicação proposta é a de aditivo para compósitos de polímeros e borrachas. A presença da celulose cristalina substitui parcialmente a adição de negro de fumo aos compósitos visando melhoria de sua resistência mecânica. O aditivo pode ser processado nos compósitos de polímero e borracha via processos tradicionais de produção de vários produtos à base de compósitos de borracha, como mangueiras e pneus.
[0024] O documento de patente CN107474343 apresenta outro exemplo de usos de misturas de látex de borracha natural com nano ou microfibrilas de celulose e descreve um método para misturar lentamente, sob temperatura ambiente, um látex diluído de borracha natural a um emulsionante e à nanocelulose cristalina proveniente de ascídeas para obter uma pré-mistura que será adicionalmente coagulada, seca e adicionada a compostos de borracha para posterior vulcanização.
[0025] Ademais, o estado da arte comporta registros do uso de celulose em sua forma não-funcionalizada como componente de formulações adesivas com objetivo de conferir maior resistência mecânica e dureza ao filme adesivo coalescido após aplicação e secagem sobre o substrato, como reporta a patente CN101864252. Esse documento de patente versa sobre a preparação de uma formulação adesiva em base aquosa a partir da mistura de látex de borracha natural, celulose e talco, de baixo impacto ambiental e para uso na colagem de carpetes e tapetes em pisos e substratos afins.
[0026] O uso de lignina como aditivo para produção de compósitos poliméricos e elastoméricos com propriedades mecânicas e químicas diferenciadas já é conhecido e aplicado no estado da arte. O documento de patente CN102718995 discorre sobre borracha natural não-vulcanizada reforçada por lignina e ao seu método de produção. A borracha industrial reforçada por lignina é formada pela coagulação e secagem de uma suspensão de lignina misturada ao látex de borracha natural, a plastificantes e óleos e oferece uma variação de formulação onde a lignina é adicionada ao látex em suspensão aquosa aditivada por cargas inorgânicas. Conforme os ensinamentos do referido documento, a lignina é previamente tratada com substâncias químicas para promover o ancoramento às partículas do látex, assim promovendo uma maior velocidade nos processos de coagulação e secagem sem perda das propriedades físicas e mecânicas da borracha, e reduzindo o consumo energético para a fabricação da borracha.
[0027] A possibilidade de usar lignina ou seus derivados como um agente de promoção de ancoramento também é conhecida, e um exemplo de abordagem está descrito no documento de patente JP2002226812, que versa sobre a produção de um agente adesivo à base de látex de borracha natural aditivado com sais de ácidos lignossulfônicos, destinado para melhorar a ancoragem da superfície de fibras de carbono para que possam ser aplicadas como cargas de reforço de borrachas.
[0028] Contudo, a aplicação da lignina em forma não funcionalizada como ingrediente em formulações adesivas tem sido investigada há décadas e não existem registros de sucesso nesta forma de aplicação, a não ser que esteja associada a outros compostos tais como o furfural ou taninos, ou funcionalizada através de reações de condensação, como por exemplo, com o glioxal.
BREVE DESCRIÇÃO DO OBJETO
[0029] É descrito um adesivo à base de materiais contendo de látex de borracha natural e lignina em sua forma não-funcionalizada. Em sua modalidade preferida, o adesivo compreende ainda celulose cristalina ou fibrilada, em escala micro ou nanométrica, em sua forma não-funcionalizada.
[0030] Também é descrito um processo de produção do referido adesivo. Este processo compreende: (i) adicionar lignina na forma sólida (em pó) a uma dispersão coloidal de látex de borracha natural em meio aquoso com pH igual ou maior a 9; (ii) opcionalmente, adicionar celulose cristalina ou fibrilada à dispersão; (iii) agitar vigorosamente a mistura por um período entre 10 e 30 minutos, em condições de temperatura e pressão ambiente.
[0031 ] O adesivo resultante desse processo é ambientalmente sustentável por ser à base de água e não necessita de cura sob temperatura ou sob pressão, tendo ganho em relação ao estado da arte por ser passível de utilização em substratos díspares, que antes não eram possíveis, com destaque para substratos de alumínio. BREVE DESCRIÇÃO DAS FIGURAS
[0032] A Figura 1 é uma imagem fotográfica da ruptura de um corpo de prova de madeira compensada submetido a ensaio de tração, cujas partes foram aderidas por uma modalidade de formulação adesiva 1 do exemplo 1 da presente descrição.
[0033] A Figura 2 apresenta imagens obtidas por microtomografia de raios X da interface e do interior de duas tiras de madeira compensada unidas por uma modalidade formulação adesiva 1 do exemplo 1 da presente descrição.
[0034] A Figura 3 é uma imagem fotográfica da ruptura de corpos de prova de madeira MDF submetidos a ensaio de tração, cujas partes foram aderidas por uma modalidade formulação adesiva 1 do exemplo 2 da presente descrição.
[0035] A Figura 4 apresenta imagens obtidas por microtomografia de raios X da interface e do interior de duas tiras de madeira MDF unidas por uma modalidade formulação adesiva 1 do exemplo 2 da presente descrição.
[0036] A Figura 5 demonstra uma imagem fotográfica da ruptura de corpos de prova de papel sulfite submetidos a ensaio de tração, cujas partes foram aderidas por uma modalidade formulação adesiva 1 do exemplo 3 da presente descrição.
[0037] A Figura 6 demonstra uma imagem fotográfica da ruptura de corpos de prova de papelão submetidos a ensaio de tração, cujas partes foram aderidas por uma modalidade formulação adesiva 1 do exemplo 4 da presente descrição.
[0038] A Figura 7 é uma imagem fotográfica de corpos de prova compostos por papel-papelão submetidos a ensaio de tração, cujas partes foram aderidas por uma modalidade formulação adesiva do exemplo 5 da presente descrição.
[0039] A Figura 8 é uma representação esquemática de um corpo de prova de madeira para ensaio de tração conforme previsto no exemplo 8 da presente descrição.
[0040] A Figura 9 é uma imagem fotográfica de três modalidades de formulações adesivas da presente descrição.
DESCRIÇÃO DETALHADA DO OBJETO
[0041 ] É descrito um adesivo à base de materiais contendo látex de borracha natural e lignina não-funcionalizada. [0042] Em uma modal idade da descrição, é provido um adesivo compreendendo uma suspensão coloidal de látex de borracha natural em meio aquoso misturada a lignina não-funcionalizada.
[0043] Em uma modalidade da descrição, o látex de borracha natural é extraído em uma solução amoniacal, com pH > 9 para evitar a sua coagulação. Essa solução compreende 0,1 a 3% em massa de um álcali selecionado do grupo compreendendo hidróxidos de amónio, de sódio, de cálcio, de magnésio, de potássio e sais como bicarbonato de sódio. Uma vez que a lignina se solubiliza apenas em meio aquoso básico, essa característica permitiu superar dificuldades técnicas relacionadas com o preparo do adesivo, pois não foi necessário a adição de componentes que alterassem o pH do meio aquoso para estabilizar a suspensão.
[0044] Em um a modal idade da descrição, é provido um adesivo compreendendo uma suspensão coloidal de látex de borracha natural em meio aquoso misturada a lignina e a micro ou nanocelulose em forma cristalina ou fibrilada, sendo a lignina e a celulose não-funcionalizadas. Nota-se nessa modalidade que a adição de celulose auxilia na dispersão da lignina, possibilitando aumento da proporção de lignina em relação ao látex. A celulose também apresenta propriedade de agente espessante, o que permitiu superar algumas dificuldades técnicas relacionadas com o preparo do adesivo.
[0045] Em uma modalidade da descrição, o adesivo compreende até 5% de nanocelulose e de 0,1 % a 20% de lignina, ambas expressas em massa em base seca, sendo a proporção massica em base seca complementada pela quantidade de látex.
[0046] Nesta descrição, “látex de borracha natural” compreende o produto natural registrado sob o número CAS 9006-04-6 proveniente preferencialmente da Hevea brasiliensis, não se restringindo a esta espécie e a sua origem.
[0047] Nesta descrição,“lignina” compreende o polímero orgânico aromático de origem natural em sua forma não funcionalizada, encontrado em todas as plantas vasculares e componente da parede celular das fibras de espécies lenhosas e de espécies de capins, constituído pelo crosslinking de grupos fenólicos em proporções variáveis, registrado sob o número CAS 9005-53-2, e ainda compreende as ligninas extraídas destas espécies através de diferentes processos, tais como: a lignina obtida pelo processo organossolve, registrada sob o número CAS 8068-03-9, a lignina obtida pelo processo Kraft, registrada sob o número CAS 8068-05-1 , e a lignina álcali obtida através do processo de oxidação, registrada sob o número CAS 68512-36-7, não se limitando, contudo, a estes processos de extração.
[0048] Nesta descrição,“celulose” compreende o polímero de celulose em sua forma não funcionalizada, registrado sob o número CAS 9004-34-6. Dentro da denominação “celulose” empregada nesta descrição, estão compreendidas diferentes formas cristalinas do polímero, incluindo celuloses micro e nanocristalinas, e arranjos de macro, micro ou nanofibras de celulose de diferentes dimensões e razões de aspecto, referidas como celuloses micro ou nanofibriladas.
[0049] Nesta descrição, micro e nanoceluloses compreendem celuloses parcialmente despolimerizadas extraídas das cadeias da celulose. As regiões cristalinas podem ser isoladas e extraídas das regiões amorfas por processos mecânicos e químicos, exposição a enzimas, explosão a vapor ou por hidrólise ácida usando líquidos iônicos ou ácidos minerais, tais como H2S04, HCI e HBr. O grau de extração pode ser controlado de forma a gerar micro e nanoceluloses com grau de polimerização tipicamente inferior a 400, que são assim facilmente dispersas em água, e para apresentar propriedades que adéquem as micro e nanoceluloses a sua aplicação final, tais como tamanho controlado de partícula (geralmente entre 5 pm e 5 nm), baixa densidade, índice de compressibilidade, ângulo de repouso, porosidade, capacidade de sorção, capacidade de expansão volumétrica, índice de cristalinidade e tamanho dos cristalitos, funcionalidades reológicas e propriedades mecânicas diferenciadas, tais como alta dureza e elevada resistência à tração.
[0050] Nesta descrição, micro e nanoceluloses podem ser provenientes de espécies de madeiras, como eucalipto e pinho, espécies fibrosas, como algodão, e da cana-de-açúcar, não se limitando a estas espécies.
[0051 ] Os adesivos aqui descritos podem ser usados para a colagem ou acabamento superficial de metais ou ligas metálicas, vidros, plásticos e substratos celulósicos de diferentes composições, sendo a colagem possível entre substratos de mesma natureza, como papel-papel, madeira-madeira, metal-metal, vidro-vidro, plástico-plástico, ou entre substratos de naturezas distintas, como papel-madeira, papelão-papel, metal-plástico.
[0052] O uso do adesivo para colagem ou acabamento superficial de substratos celulósicos refere-se a aplicação em substratos selecionados do grupo compreendendo madeiras tais como peroba, mogno, ipê, aroeira, carvalho, pinho, eucalipto, cedro, jacarandá, jacareúba, macaúba, itaúba e nogueira entre outras, resíduos do processamento e do tratamento de madeiras, madeiras provenientes de demolição, compensados produzidos de madeiras incluindo MDF, MDP entre outros, celulose e seus derivados incluindo polpa celulósica in natura e branqueada, fibras de celulose, filmes de celulose, compósitos de celulose, mantas e tecidos celulósicos, celulose regenerada, celofane e seus filmes e seus derivados entre outros, papéis e seus derivados incluindo papel cartão, papel sulfite entre outros, papelão, embalagens constituídas por celulose e seus derivados, tecidos produzidos a partir de fibras celulósicas e suas composições. Os referidos substratos celulósicos podem ter sido submetidos a tratamentos superficiais antes da aplicação do adesivo, tratamentos esses selecionados do grupo compreendendo pulverização, pincelamento, polimento, aplicação de tintas, ceras, esmaltes, vernizes el ou graxas.
[0053] O uso do adesivo em substratos metálicos pode ser para a adesão ou revestimento de substratos metálicos selecionados do grupo compreendendo alumínio, latão, prata, ouro, cobre, aço inox, platina, ferro, aço carbono de diferentes composições, ou qualquer liga metálica destes materiais. Os referidos substratos metálicos podem ter sido submetidos a tratamentos superficiais antes da aplicação do adesivo, tratamentos esses selecionados do grupo compreendendo polimento, aplicação de tintas, ceras, esmaltes, vernizes e ou graxas, oxidação, corrosão, anodização, flambagem, descarga corona ou descarga elétrica, amalgamação, fosfatização, nitretação, sulfetação, carbetação, diamantação, irradiação, recobrimento com filmes através de pintura eletrostática, evaporação ou eletrodeposição. [0054] O uso do adesivo em substratos inorgânicos pode ser para adesão ou revestimento de substratos inorgânicos selecionados do grupo compreendendo cerâmicas, vidros preferencialmente compostos por silicato de alumínio, borossilicato, soda-cal, sílica fundida e chumbo e placas de sílica. O referidos substratos inorgânicos podem ter sido submetidos a tratamentos superficiais antes da aplicação do adesivo, tratamentos esses selecionados do grupo compreendendo polimento, têmpera, coloração, adição de resinas e jateamento.
[0055] O uso do adesivo em substratos poliméricos pode ser para a adesão ou revestimento de substratos poliméricos selecionados do grupo compreendendo elastômeros de diferentes origens e composições, termoplásticos de diferentes origens e composições, termofixos de diferentes origens e composições, seus compósitos e nanocompósitos, suas blendas, espumas e filmes, e tecidos produzidos a partir de fibras sintéticas e suas composições. O referidos substratos poliméricos podem ter sido submetidos a tratamentos superficiais selecionados do grupo compreendendo polimento, jateamento, irradiação por ultravioleta, funcionalização e tingimento por pigmentos.
[0056] Em uma modalidade particular da descrição, são adicionados outros ingredientes à formulação adesiva tais como biocidas, coalescentes, corretores de pH, agentes reológicos ou agentes para ajuste de viscosidade, não se limitando a estas naturezas de ingredientes.
[0057] Também é descrito um processo de produção do referido adesivo à base de materiais contendo látex de borracha natural e lignina não-funcionalizada.
[0058] Em uma modalidade, o processo compreende as etapas de: adicionar lignina na forma sólida (em pó) em uma dispersão coloidal de látex de borracha natural em meio aquoso com pH igual ou maior a 9; e, agitar vigorosamente a mistura por um período entre 10 e 20 minutos, em condições de temperatura e pressão ambiente, com uso de agitador de qualquer natureza, como exemplo um agitador magnético operando entre 1350 e 1650 rpm.
[0059] Em uma modalidade preferida, o processo compreende ainda a etapa de adicionar micro ou nanocelulose à dispersão coloidal, antes de agitar a mistura. A celulose adicionada pode ser micro ou nanocelulose fibrilada ou cristalina, estando na forma de dispersão aquosa com teor de sólidos de até 5% em massa em base seca, estando em forma sólida (pó) ou na forma de dispersão aquosa com teor de sólidos de até 5% em massa em base seca.
[0060] A partir da presente descrição, é possível efetuar diferentes composições e aplicar diferentes etapas para preparar as formulações variando a origem, a natureza estrutural, a quantidade e a ordem de adição dos seus constituintes, a composição do meio solvente, a ordem de inserção de aditivos e de ingredientes, a temperatura de solubilização, a velocidade ou o tempo de agitação da mistura, não se limitando a estas variáveis de processo.
[0061 ] A invenção poderá ser melhor compreendida através dos exemplos, não limitantes, que seguem.
EXEMPLOS DE CONCRETIZAÇÃO
[0062] Exemplo 1 : Preparação de dispersões adesivas para colagem de madeiras compensadas.
[0063] Neste exemplo foram preparadas duas formulações de adesivos de contato que foram comparadas quanto ao seu desempenho em adesão com um adesivo comercial denominado Cascola Cascorez Universal, produto da empresa multinacional Henkel. A Cascola Cascorez Universal, citada neste e nos demais exemplos, é uma cola conhecida pelo mercado consumidor, usada para as mesmas aplicações propostas para o adesivo da presente descrição. É uma dispersão aquosa à base de poliacetato de vinila (PVA) preferencialmente aplicada para adesão por contato por prensagem a frio ou a quente de materiais porosos como artefatos de madeira, laminados plásticos, papéis e papelão, constituindo-se assim em um padrão de referência apropriado para avaliar o desempenho das formulações propostas nesta descrição.
[0064] A formulação 1 foi preparada contendo 95% látex : 5% lignina em massa em base seca e a formulação 2 foi preparada para conter 94% látex : 5% lignina : 1 % nanocelulose em massa em base seca.
[0065] O processo de produção de ambas formulações compreendeu a adição inicial da lignina sólida à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, apenas no caso da formulação 2, foi adicionada a nanocelulose fibrilada à dispersão. A lignina usada é proveniente do bagaço de cana de açúcar e a nanocelulose é proveniente do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca da solução. A dispersão resultante foi deixada sob agitação magnética a 1500 rpm, por 15 min, a 25 °C, sendo que ao final da agitação a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0066] A eficiência de adesão das formulações adesivas 1 e 2 comparadas à da formulação comercial foi avaliada por um ensaio de tração adaptado da norma ISO 6237:2017. Foram confeccionadas 60 tiras de madeira compensada de dimensão 8 cm x 2,5 cm x 1 ,2 cm. Uma camada de aproximadamente 60 mg da formulação adesiva a ser avaliada (formulação adesiva 1 , 2 ou formulação comercial) foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira definindo uma área de adesão com dimensão 2 cm x 2,5 cm e recobrindo totalmente esta área. Após a aplicação da formulação adesiva, a face desta tira impregnada com adesivo foi unida à face de outra tira sem adesivo a uma força compressiva de aproximadamente 4 N durante 25 s. Foram preparados 30 corpos de prova, 10 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de umidade e, posteriormente, submetidos a ensaio de tração segundo a ISO 6237:2017, tendo sido aplicada uma velocidade de tração de 5 mm/min.
[0067] A Figura 1 é uma imagem fotográfica da ruptura dos referidos corpos de prova de madeira compensada submetidos a ensaio de tração, cujas partes foram aderidas pela formulação adesiva 1 produzida conforme este exemplo 1. A ruptura se deu em uma porção de um dos corpos de prova, e não na seção unida pelo adesivo, demonstrando boa aderência e resistência ao cisalhamento da seção de madeira compensada unida pelo adesivo.
[0068] A Figura 2 apresenta duas imagens obtidas por microtomografia de raios X da interface e do interior de duas tiras de madeira compensada unidas pela formulação adesiva 1 produzida conforme este exemplo 1 , contendo 95% látex e 5% lignina em massa em base seca. À esquerda da figura encontra-se uma imagem tridimensional (3D) do conjunto e à direita encontra-se uma imagem bidimensional (2D) de um corte da imagem tridimensional no interior do conjunto.
[0069] Nas imagens, é possível observar uma região de adesão (A) que corresponde à interface entre duas tiras (B e C) unidas pelo filme do adesivo. A fase praticamente contínua na região de adesão (A), onde ocorre a adesão, aponta uma interface muito pouco pronunciada decorrente da coalescência e secagem do filme adesivo sobre a região de contato dos corpos de prova, demonstrando excelente interação entre as madeiras e o adesivo.
[0070] A Tabela 1 apresenta os resultados obtidos para o módulo de elasticidade (MPa) das formulações 1 e 2 comparados ao desempenho dos corpos de prova colados pela formulação comercial de PVA. O módulo de elasticidade é expresso como a média dos módulos elásticos medidos para cada conjunto de 10 corpos de prova.
[0071 ] Tabela 1. Valor médio de módulo de elasticidade obtido no ensaio de tração de madeira compensada para as formulações adesivas 1 e 2 comparados ao desempenho da formulação comercial à base de PVA.
Figure imgf000018_0001
[0072] Ambas formulações adesivas (1 e 2) apresentaram desempenho semelhante ao adesivo comercial para estes substratos.
[0073] Após o teste de tração, observou-se para as formulações 1 e 2 o corpo de prova rompeu em uma porção fora da região de adesão (A). A Figura 1 ilustra este resultado para a formulação 1 e é complementada pela Figura 2 que apresenta as regiões da junta adesiva analisadas por microtomografia de raios-X com imagens da região de adesão (A) que contém o adesivo e as tiras (B e C). Na Figura 2, as micrografias à esquerda (imagem 3D) e à direita (imagem 2D) mostram uma interface praticamente imperceptível entre as duas madeiras, apontando uma boa interação entre as duas madeiras e o adesivo.
[0074] Exemplo 2: Preparação de dispersões adesivas para colagem de Madeiras MDF.
[0075] Neste exemplo foram preparadas duas formulações semelhantes ao exemplo 1 , não tendo sido efetuada uma comparação de desempenho com o adesivo comercial, uma vez que o exemplo 1 para substrato de madeira apresentou um desempenho semelhante entre as formulações desta invenção em comparação ao adesivo comercial para estes substratos.
[0076] A formulação 1 foi preparada para conter 95% látex: 5% lignina em massa em base seca e a formulação 2 foi preparada para conter 94% látex: 5% lignina : 1 % nanocelulose em massa em base seca.
[0077] O processo de produção de ambas formulações compreendeu a adição inicial da lignina à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, apenas no caso da formulação 2, foi adicionada a nanocelulose à dispersão. A lignina usada provém do bagaço de cana de açúcar e a nanocelulose provém do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca. A dispersão resultante foi deixada sob agitação magnética por 15 min a 25 °C para a devida homogeneização, sendo que ao final da agitação a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0078] A eficiência de adesão das formulações adesivas 1 e 2 foi avaliada por um ensaio de tração adaptado da norma ISO 6237:2017. Foram confeccionadas 40 tiras de madeira MDF na dimensão 8 cm x 2,5 cm x 0,3 cm. Uma camada de aproximadamente 60 mg da formulação adesiva a ser avaliada (formulação adesiva 1 e 2) foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira, definindo uma área de adesão com dimensão 2 cm x 2,5 cm e recobrindo totalmente esta área. Após a aplicação da formulação adesiva, a face da tira recoberta por adesivo foi unida à face de uma tira sem adesivo a uma força compressiva de aproximadamente 4 N por 25 s. Foram preparados 20 corpos de prova, 10 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de um idade e posteriormente submetidos a ensaio de tração segundo a ISO 6237:2017, tendo sido aplicada uma velocidade de tração de 5 mm/min.
[0079] A Figura 3 é uma imagem fotográfica da ruptura de corpos de prova de madeira MDF submetidos a ensaio de tração, cujas partes foram aderidas pela formulação adesiva 1 produzida no exemplo 2 desta invenção. A ruptura se deu em uma porção de um dos corpos de prova, e não na seção unida pelo adesivo, demonstrando boa aderência e resistência ao cisalhamento da seção de madeira MDF unida pelo adesivo.
[0080] A Figura 4 apresenta imagens obtidas por microtomografia de raios X da interface e do interior de duas tiras de madeira MDF unidas pela formulação adesiva 1 desenvolvida neste exemplo 2, contendo 95% látex e 5% lignina em massa em base seca. À esquerda da figura encontra-se uma imagem tridimensional (3D) do conjunto e à direita encontra-se uma imagem bidimensional (2D) de um corte do interior do conjunto. Nas imagens, é possível observar uma região de adesão (A) que corresponde à interface entre duas tiras (B e C) unidas pelo filme do adesivo. A fase praticamente contínua na região (A), onde ocorre a adesão, aponta uma interface muito pouco pronunciada decorrente da coalescência e secagem do filme adesivo sobre a região de contato dos corpos de prova, demonstrando excelente interação entre as madeiras e o adesivo.
[0081 ] A Tabela 2 apresenta os resultados obtidos para o módulo elástico (MPa) das formulações 1 e 2. O módulo elástico é expresso como a média dos módulos elásticos medidos para cada conjunto de 10 corpos de prova.
[0082] Tabela 2. Valor médio de módulo elástico obtido no ensaio de tração de madeira MDF para as formulações adesivas 1 e 2.
Figure imgf000020_0001
[0083] Após o teste de tração, observou-se para as formulações 1 e 2 o descolamento de madeira de uma tira e adesão deste material na face da outra tira do corpo de prova. A Figura 3 ilustra este resultado para a formulação 1 e é complementada pela Figura 4 que apresenta as regiões da junta adesiva analisadas por microtomografia de raios-X com imagens da interface (A) que contém o adesivo e as tiras (B e C). Na Figura 4, as micrografias à esquerda (imagem 3D) e à direita (imagem 2D) mostram uma interface praticamente imperceptível entre as duas madeiras, apontando uma boa interação entre as duas madeiras e o adesivo.
[0084] Exemplo 3: Preparação de dispersões adesivas para colagem de papel sulfite.
[0085] Neste exemplo foram preparadas duas formulações que foram comparadas quanto ao seu desempenho em adesão com Cascola Cascorez Universal, produto da empresa Flenkel, à base de poliacetato de vinila (PVA).
[0086] A formulação 1 foi preparada para conter 95% látex: 5% lignina em massa em base seca e a formulação 2 foi preparada para conter 94% látex: 5% lignina: 1 % nanocelulose em massa em base seca.
[0087] O processo de produção de ambas formulações compreendeu a adição inicial da lignina à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, apenas para a formulação 2, foi adicionada a nanocelulose fibrilada à dispersão. A lignina usada provém do bagaço de cana de açúcar e a nanocelulose provém do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca. A dispersão resultante foi deixada sob agitação magnética por 15 min a 25 °C para a devida homogeneização, sendo que ao final da agitação a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0088] A eficiência de adesão das formulações adesivas 1 e 2 comparadas a da formulação comercial foi avaliada por um ensaio de tração adaptado da norma ISO 1924-2:2008. Foram confeccionadas 60 tiras de papel sulfite comercial na dimensão 10 cm x 2,5 cm x 80 pm. Uma camada de aproximadamente 60 mg da formulação adesiva a ser avaliada (formulação adesiva 1 , 2 ou formulação comercial) foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira, definindo uma área de adesão com dimensão 2 cm x 2,5 cm e recobrindo totalmente esta área. Após a aplicação da formulação adesiva, a face da tira foi unida a uma tira sem adesivo a uma força compressiva de aproximadamente 4 N por 25 s. Foram preparados 30 corpos de prova, 10 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de um idade e posteriormente submetidos a ensaio de tração segundo a ISO 1924-2:2008, tendo sido aplicada uma velocidade de tração de 7 mm/min. Uma pré-carga de 6N foi usada para que os corpos de prova não estivessem curvados no início do ensaio.
[0089] A Figura 5 é uma imagem fotográfica da ruptura de corpos de prova de papel sulfite submetidos a ensaio de tração, cujas partes foram aderidas pela formulação adesiva 1 produzida neste exemplo 3. Todos os corpos de prova se romperam em regiões que não a região de colagem, demonstrando uma interação papel-adesivo mais forte que a interação papel-papel. Comportamento semelhante também foi observado para os ensaios com o adesivo comercial, indicando que o adesivo desenvolvido tem desempenho similar ao padrão de referência para estes substratos.
[0090] Exemplo 4: Preparação de dispersões adesivas para colagem de papelão.
[0091 ] Neste exemplo foram preparadas duas formulações que foram comparadas quanto ao seu desempenho em adesão com Cascola Cascorez Universal, adesivo da empresa Flenkel, à base de poliacetato de vinila (PVA).
[0092] A formulação 1 foi preparada para conter 95% látex: 5% lignina em massa em base seca e a formulação 2 foi preparada para conter 94% látex: 5% lignina: 1 % nanocelulose em massa em base seca.
[0093] O processo de produção de ambas formulações compreendeu a adição inicial da lignina à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, apenas para formulação 2, foi adicionada a nanocelulose fibrilada à dispersão. A lignina usada provém do bagaço de cana de açúcar e a nanocelulose provém do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca. A dispersão resultante foi deixada sob agitação magnética por 15 min a 25 °C para a devida homogeneização, sendo que ao final da agitação a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0094] A eficiência de adesão das formulações adesivas 1 e 2 comparadas a da formulação comercial foi avaliada por um ensaio de tração adaptado da norma ISO 1924-2:2008. Foram confeccionadas 60 tiras de papelão na dimensão 10 cm x 2,5 cm x 0,12 cm. Uma camada de aproximadamente 60 mg da formulação adesiva a ser avaliada (formulação adesiva 1 , 2 ou formulação comercial) foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira, definindo uma área de adesão com dimensão 2 cm x 2,5 cm e recobrindo totalmente esta área. Após a aplicação da formulação adesiva, a face desta tira foi unida a uma tira sem adesivo por 25 s a uma força compressiva de aproximadamente 4 N. Foram preparados 30 corpos de prova, 10 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de umidade e posteriormente submetidos a ensaio de tração segundo a ISO 1924-2:2008, tendo sido aplicada uma velocidade de tração de 6,5 mm/min. Uma pré-carga de 6N foi usada para que os corpos de prova não estivessem curvados no início do ensaio.
[0095] A Figura 6 é uma imagem fotográfica da ruptura de corpos de prova de papelão submetidos a ensaio de tração, cujas partes foram aderidas pela formulação adesiva 1 deste exemplo 4. A ruptura dos copos de prova se deram em uma porção adjacente a região de adesão, demonstrando a forte atração do papelão pelo adesivo.
[0096] A Tabela 3 apresenta os resultados obtidos para o módulo elástico (MPa) das formulações 1 e 2 comparados ao desempenho dos corpos de prova colados pela formulação comercial de PVA. O módulo elástico é expresso como a média dos módulos elásticos medidos para cada conjunto de 10 corpos de prova.
[0097] Tabela 3. Valor médio de módulo elástico obtido no ensaio de tração de papelão para as formulações adesivas 1 e 2 comparados ao desempenho da formulação comercial à base de PVA.
Figure imgf000024_0001
[0098] Após o ensaio, houve rompimento de todos os corpos de prova fora da zona de colagem, demonstrando uma interação papelão-adesivo mais forte que a interação papelão-papelão. Esse resultado está ilustrado para a formulação 1 na Figura 6 e comportamento semelhante também foi observado para o adesivo comercial, indicando que o adesivo desenvolvido tem desempenho similar ao padrão de referência para estes substratos.
[0099] Exemplo 5: Preparação de dispersões adesivas para colagem de papelão e papel sulfite.
[0100] Neste exemplo foi preparada uma única formulação que foi comparada quanto ao seu desempenho em adesão com Cascola Cascorez Universal, adesivo da empresa Henkel, à base de poliacetato de vinila (PVA). A formulação foi preparada para conter 95% látex: 5% lignina em massa em base seca.
[0101 ] O processo de produção compreendeu a adição inicial da lignina à dispersão aquosa de látex de borracha natural em pH > 9. A lignina usada provém do bagaço de cana de açúcar e a nanocelulose provém do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca. A dispersão resultante foi deixada sob agitação magnética por 15 min a 25 °C para a devida homogeneização, sendo que ao final da agitação a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0102] A eficiência de adesão da formulação adesiva comparada a da formulação comercial foi avaliada por um ensaio de tração adaptado da norma ISO 1924-2:2008. Foram confeccionadas 20 tiras de papel sulfite na dimensão de 10 cm x 2,5 cm x 80 pm e 20 tiras de papelão na dimensão de 10 cm x 2,5 cm x 0,12 cm. Uma camada de aproximadamente 60 mg da formulação adesiva a ser avaliada foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície das tiras de papelão, definindo nestas tiras uma área de adesão de dimensão 2 cm x 2,5 cm e recobrindo totalmente esta área. Após a aplicação da formulação adesiva, as faces das tiras de papelão foram unidas às faces das tiras de papel sulfite a uma força compressiva de aproximadamente 4 N por 25 s. Foram preparados 20 corpos de prova, 10 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de um idade e posteriormente submetidos a ensaio de tração segundo a ISO 1924-2:2008, tendo sido aplicada uma velocidade de tração de 6,5 mm/min. Uma pré-carga de 6 N foi usada para que os corpos de prova não estivessem curvados no início do ensaio.
[0103] A Figura 7 é uma imagem fotográfica de corpos de prova compostos por papel-papelão submetidos a ensaio de tração, cujas partes foram aderidas pela formulação adesiva produzida no exemplo 5. Todos os corpos de prova se romperam em regiões que não a região de colagem demonstrando uma interação papel-adesivo-papelão mais forte que a interação papel-papelão.
[0104] A Tabela 4 apresenta os resultados obtidos para o módulo elástico (MPa) da formulação desenvolvida comparado ao desempenho dos corpos de prova colados pela formulação comercial de PVA. O módulo elástico é expresso como a média dos módulos elásticos medidos para cada conjunto de 10 corpos de prova.
[0105] Tabela 4. Valor médio de módulo elástico obtido no ensaio de tração de papelão e papel sulfite para a formulação desenvolvida comparada ao desempenho da formulação comercial à base de PVA.
Figure imgf000025_0001
[0106] Após o ensaio, houve rompimento de todos os corpos de prova fora da zona de colagem, demonstrando uma interação papelão-adesivo mais forte que a interação papelão-papel. Esse resultado está ilustrado para a formulação desenvolvida nessa invenção na Figura 7 e comportamento semelhante foi observado para o adesivo comercial, indicando que o adesivo desenvolvido tem desempenho similar ao padrão de referência para estes substratos.
[0107] Exemplo 6: Preparação de dispersões adesivas para colagem de alumínio e MDF.
[0108] Neste exemplo foram preparadas e testadas duas formulações adesivas, não tendo sido efetuada uma comparação de desempenho com adesivos comerciais, devido ao fato desse uso não ser recomendado pelo fabricante.
[0109] A formulação 1 foi preparada para conter 95% látex: 5% lignina em massa em base seca e a formulação 2 foi preparada para conter 94% látex: 5% lignina: 1 % nanocelulose em massa em base seca.
[0110] O processo de produção de ambas formulações adesivas compreendeu a adição inicial da lignina à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, apenas para formulação 2, foi adicionada a nanocelulose fibrilada à dispersão. A lignina usada provém do bagaço de cana de açúcar e a nanocelulose provém do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca da dispersão. A dispersão resultante foi deixada sob agitação por 15 min a 25 °C para a devida homogeneização, sendo que ao final da agitação a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0111 ] A eficiência de adesão das formulações adesivas 1 e 2 foi avaliada por um ensaio de tração adaptado da norma ISO 6237:2017. Uma camada de aproximadamente 60 mg de cada uma das formulações adesivas 1 e 2 foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira de MDF definindo uma área de adesão com dimensão 2 cm x 2,5 cm, e recobrindo totalmente esta área citada. Após a aplicação das formulações adesivas, um perfil de alumínio com área de adesão de mesma dimensão e sem aplicação de adesivo foi pressionado sobre a tira de MDF recoberta com a mesma composição de adesivo, e as faces foram unidas por 15 min a 58% de um idade relativa a uma força compressiva de aproximadamente 4 N. Foram confeccionados 16 corpos de prova de alumínio/MDF na dimensão de 8 cm x 2,5 cm, sendo 8 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de um idade. Os corpos de prova foram posteriormente submetidos a ensaios de tração segundo a ISO 6237:2017, tendo sido aplicada uma velocidade de tração de 2 mm/min. Comportamento semelhante foi observado para ambas formulações.
[0112] Exemplo 7: Preparação de dispersões adesivas usando liqnina proveniente do eucalipto ou do bagaço de cana-de-açúcar para colagem de madeiras compensadas.
[0113] Neste exemplo foi preparada uma única formulação que foi comparada quanto ao seu desempenho em adesão com Cascola Cascorez Universal, adesivo da empresa Henkel, à base de poliacetato de vinila (PVA).
[0114] A formulação 1 foi preparada para conter 95% látex : 5% lignina derivada do bagaço de cana-de-açúcar em massa em base seca e a formulação 2 foi preparada para conter 95% látex : 5% lignina derivada do eucalipto em massa seca. A formulação 3 foi preparada para conter 94,9% látex: 5% lignina derivada do eucalipto: 0,1 % de nanocelulose de eucalipto em massa em base seca e a formulação 4 foi preparada para conter 94% látex: 5% lignina derivada do eucalipto: 1 % de nanocelulose de eucalipto em massa em base seca.
[0115] O processo de produção compreendeu a adição inicial da lignina derivada do eucalipto ou, apenas no exemplo 1 , do bagaço de cana-de-açúcar à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, apenas nas formulações 3 e 4, foi adicionada a nanocelulose fibrilada à dispersão. A lignina usada provém do eucalipto ou do bagaço e a nanocelulose provém do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca. A dispersão resultante foi deixada sob agitação magnética por 15 min a 25°C para a devida homogeneização, que finalizou quando a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0116] A eficiência de adesão das formulações adesivas 1 a 4 foi comparada a da formulação comercial foi avaliada por um ensaio de tração adaptado da norma ISO 6237:2017. Foram confeccionadas 100 tiras de madeira compensada de dimensão 8 cm x 2,5 cm x 1 ,2 cm. Uma camada de aproximadamente 60 mg da formulação adesiva a ser avaliada (formulações 1 a 4 ou formulação comercial) foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira definindo uma área de adesão com dimensão 2 cm x 2,5 cm e recobrindo totalmente esta área. Após a aplicação da formulação adesiva, a face desta tira impregnada com adesivo foi unida à face de outra tira sem adesivo a uma força compressiva de aproximadamente 4 N durante 1 min, para a colagem dos substratos. Foram preparados 50 corpos de prova, 10 para cada formulação, que foram condicionados por 120 h a 22 ± 2 °C e 58 ± 3% de umidade e posteriormente submetidos a ensaio de tração segundo a ISO 6237:2017, tendo sido aplicada uma velocidade de tração de 1 mm/min.
[0117] A Tabela 5 apresenta os resultados obtidos para o módulo de elasticidade (MPa) das formulações 1 a 4 comparados ao desempenho dos corpos de prova colados pela formulação comercial de PVA. O módulo de elasticidade é expresso como a média dos módulos de elasticidade medidos para cada conjunto de 10 corpos de prova.
[0118] Tabela 5. Valor médio de módulo de elasticidade obtido no ensaio de tração de madeira compensada para as formulações adesivas 1 a 5 comparativamente ao desempenho da formulação comercial à base de PVA.
Figure imgf000028_0001
[0119] Todas formulações adesivas (1 a 2) apresentaram desempenho semelhante ao adesivo comercial.
[0120] Exemplo 8: Preparação de dispersões adesivas usando lianina proveniente do eucalipto e celulose para colagem de madeiras compensadas.
[0121 ] Neste exemplo foram preparadas três formulações de adesivos de contato. A formulação 1 foi preparada para conter 94% látex : 5% lignina derivada do eucalipto: 1 % nanocelulose em massa em base seca. A formulação 2 foi preparada para conter 89% látex : 10% lignina derivada do eucalipto: 1 % de nanocelulose em massa em base seca. A formulação 3 foi preparada para conter 87% látex : 12% lignina derivada do eucalipto: 1 % de nanocelulose em massa em base seca.
[0122] O processo de produção compreendeu a adição inicial da lignina derivada do eucalipto à dispersão aquosa de látex de borracha natural em pH > 9 e a seguir, foi adicionada a nanocelulose fibrilada à dispersão, sendo a nanocelulose também derivada do eucalipto. A lignina está em forma sólida (pó) e a nanocelulose fibrilada em forma de dispersão aquosa com teor de sólidos equivalente a 2,1 % em massa em base seca. A dispersão resultante foi deixada sob agitação magnética por 20 min a 25°C para a devida homogeneização, que finalizou quando a lignina estava completamente dispersa no meio, tendo o adesivo atingido viscosidade adequada para aplicação com aplicador tipo rolo.
[0123] Vale ressaltar que a solubilização de mais de 6% de lignina em látex só foi possível graças à utilização de 1 % de nanocelulose em todas as formulações. Na Figura 8 é possível observar que a solubilização de 8% de lignina em látex só é possível quando se acrescenta 1 % de nanocelulose ao meio. A nanocelulose atua como espessante/dispersante, auxiliando a solubilização da lignina.
[0124] A eficiência de adesão das formulações adesivas 1 a 3 foi avaliada por um ensaio de tração adaptado da norma DIN EM 204/205:2003. Foram confeccionadas 60 tiras de madeira compensada de dimensão 6,7 cm x 2 cm x 0,4 cm e 60 tiras de dimensão 8 cm x 2 cm x 0,4 cm. Uma camada de aproximadamente 150 mg da formulação adesiva a ser avaliada (formulação adesiva 1 , 2 ou 3) foi aplicada a 25 °C usando um aplicador do tipo rolo sobre a superfície de uma tira de 6,7 cm x 2 cm x 0,4 cm que foi então colada a uma tira de 8 cm x 2 cm x 0,4 cm. Uma pressão de aproximadamente 4 N durante 1 min foi mantida sobre essa superfície para sua efetiva colagem. O mesmo processo foi repetido para outra tira de 6,7 cm de comprimento. Por fim, essas duas partes já coladas foram unidas pela colagem de uma área em comum de 2 cm x 1 cm para formarem um corpo de prova de 15 cm x 2 cm x 0,8 cm que possuísse um entalhe de 3 mm de cada lado da área central de 2cm x 1 cm colada. A área central foi colada usando aproximadamente 30 mg de adesivo sob força compressiva de aproximadamente 4 N por 1 min. Foram preparados 30 corpos de prova, 10 para cada formulação, que foram condicionados por 420 h a 22 ± 2 °C e 58 ± 3% de umidade e posteriormente submetidos a ensaio de tração segundo a norma DIN EN 204/205:2003, tendo sido aplicada uma velocidade de tração de 50 mm/min.
[0125] A Figura 9 é uma representação esquemática do corpo de prova para o ensaio de tração em madeiras de acordo com a norma Europeia DIN EN 204/205:2003, aplicada a este exemplo.
[0126] A Tabela 6 apresenta os resultados obtidos para o módulo de elasticidade (MPa) das formulações 1 a 3. O módulo de elasticidade é expresso como a média dos módulos de elasticidade medidos para cada conjunto de 10 corpos de prova.
[0127] Tabela 6. Valor médio de módulo elástico obtido no ensaio de tração de madeira compensada para as formulações adesivas 1 a 3.
Figure imgf000030_0001
[0128] Todas formulações adesivas (1 a 3) apresentaram desempenho semelhante.
[0129] Os exemplos descritos nesta invenção foram realizados a partir de corpos de prova colados com adesivos recém-preparados. Contudo, adesivos armazenados por um mês em ambiente refrigerado e aplicados sobre os mesmos substratos, apresentaram desempenhos similares aos adesivos imediatamente preparados. Acredita-se que a concervação do adesivo se deva, em parte, pela menor proponsão de celuloses em escala micro e nanométrica a ataques microbiológicos, quando comparadas com outros aditivos, inclusive aditivos de base celulósica com dimensões fora das escalas micro e nano.
[0130] A Figura 9 é uma imagem fotográfica de três formulações adesivas que possuem a mesma quantidade de lignina (8% em base mássica seca), porém diferentes quantidades de nanocelulose. A formulação a esquerda não tem nanocelulose, a formulação ao meio possui 0,1 % de nanocelulose e a formulação a direita possui 1 % de nanocelulose, todas proporções expressas em massa em base seca do adesivo. A porcentagem restante em base seca de cada uma dessas formulações é completada com látex. Nessa imagem, pode-se ver como o aumento da concentração de nanocelulose auxilia na solubilização da lignina, atuando como um espessante/dispersante para as formulações.

Claims

REIVINDICAÇÕES
1 . Adesivo à base de materiais contendo látex e lignina caracterizado por compreender lignina não-funcionalizada e látex de borracha natural em meio aquoso com pH > 9.
2. Adesivo à base de materiais contendo látex e lignina, de acordo com a reivindicação 1 , caracterizado pelo fato de que o meio aquoso compreende 0,1 a 3% em massa de pelo menos um álcali selecionado do grupo compreendendo hidróxidos de amónio, de sódio, de cálcio, de magnésio, de potássio e sais como bicarbonato de sódio.
3. Adesivo à base de materiais contendo látex e lignina, de acordo com qualquer uma das reivindicações 1 a 2, caracterizado por compreender entre 0,1 e 20% de lignina, expressa em massa em base seca do adesivo.
4. Adesivo à base de materiais contendo látex e lignina, de acordo com qualquer uma das reivindicações 1 a 3, caracterizado por compreender celulose com pelo menos uma dimensão entre 5 pm e 5 nm, preferencialmente entre 500 nm e 5 nm.
5. Adesivo à base de materiais contendo látex e lignina, de acordo com a reivindicação 4, caracterizado por compreender celulose fibrilada.
6. Adesivo à base de materiais contendo látex e lignina, de acordo com qualquer uma das reivindicações 4 a 5, caracterizado por compreender celulose cristalina.
7. Adesivo à base de materiais contendo látex e lignina, de acordo com qualquer uma das reivindicações 4 a 6, caracterizado por compreender entre 0,05 e 5% de celulose, expressa em massa em base seca do adesivo.
8. Processo de produção do adesivo das reivindicações 1 a 7, caracterizado por compreender:
adicionar lignina não-funcionalizada, sólida, em dispersão coloidal de látex de borracha natural em meio aquoso com pH > 9; e,
agitar a mistura por um período entre 10 e 20 minutos, em condições de temperatura e pressão ambiente.
9. Processo, de acordo com a reivindicação 8, caracterizado por ainda compreender:
adicionar celulose à dispersão coloidal de látex de borracha natural meio aquoso, antes de agitar a mistura, em que a celulose tem dimensões entre 5 pm e 5 nm, preferencialmente entre 500 nm e 5 nm.
10. Processo, de acordo com a reivindicação 9, caracterizado pelo fato da celulose compreender celulose cristalina.
11. Processo, de acordo com a reivindicação 10, caracterizado pelo fato de que adicionar celulose à dispersão compreende adicionar celulose sólida, em pó.
12. Processo, de acordo com qualquer uma das reivindicações de 9 a 1 1 , caracterizado pelo fato da celulose compreender celulose fibrilada.
13. Processo, de acordo com qualquer uma das reivindicações de 9 a 12, caracterizado pelo fato de que adicionar celulose à dispersão compreende adicionar uma dispersão aquosa de celulose com teor de sólidos de até 5% em massa em base seca.
PCT/BR2019/050177 2018-05-11 2019-05-13 Adesivo à base de materiais contendo látex e lignina e processo de produção do mesmo WO2019213730A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980039050.1A CN112469793B (zh) 2018-05-11 2019-05-13 基于含胶乳和木质素的材料的胶粘剂及其生产方法
US17/054,636 US20210071049A1 (en) 2018-05-11 2019-05-13 Adhesive based on materials containing latex and lignin and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102018009673-7 2018-05-11
BR102018009673A BR102018009673A2 (pt) 2018-05-11 2018-05-11 formulação de adesivos verdes para diferentes substratos e seus usos

Publications (1)

Publication Number Publication Date
WO2019213730A1 true WO2019213730A1 (pt) 2019-11-14

Family

ID=68467153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050177 WO2019213730A1 (pt) 2018-05-11 2019-05-13 Adesivo à base de materiais contendo látex e lignina e processo de produção do mesmo

Country Status (4)

Country Link
US (1) US20210071049A1 (pt)
CN (1) CN112469793B (pt)
BR (1) BR102018009673A2 (pt)
WO (1) WO2019213730A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000032627A1 (it) * 2020-12-29 2022-06-29 Pirelli Pneumatico per ruote di veicoli

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074040B (zh) * 2021-08-19 2023-07-28 爱降解环保科技(广东)有限公司 一种植物纤维素膜封箱胶的制备方法
WO2023183223A1 (en) 2022-03-24 2023-09-28 3M Innovative Properties Company Water-based adhesive composition and related methods
US11912903B1 (en) * 2022-12-23 2024-02-27 Aladdin Manufacturing Corporation Latex additive from recycled plastic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3395033A (en) * 1966-04-11 1968-07-30 Inca Inks Lignin base alkali-dispersible adhesive
GB1480280A (en) * 1973-12-11 1977-07-20 Fuji Photo Film Co Ltd Method of adhering sheets together and adhesive composition therefor
US8409403B2 (en) * 2009-10-23 2013-04-02 David H. Blount Production of amino lignin and amino lignin cellulose resins and adhesives
DE102012207868A1 (de) * 2012-05-11 2013-11-14 Tesa Se Haftklebstoff auf Naturkautschukbasis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3395033A (en) * 1966-04-11 1968-07-30 Inca Inks Lignin base alkali-dispersible adhesive
GB1480280A (en) * 1973-12-11 1977-07-20 Fuji Photo Film Co Ltd Method of adhering sheets together and adhesive composition therefor
US8409403B2 (en) * 2009-10-23 2013-04-02 David H. Blount Production of amino lignin and amino lignin cellulose resins and adhesives
DE102012207868A1 (de) * 2012-05-11 2013-11-14 Tesa Se Haftklebstoff auf Naturkautschukbasis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENDAHOU, A. ET AL.: "Investigation on the effect of cellulosic nanoparticles' morphology on the properties of natural rubber based nanocomposites", EUROPEAN POLYMER JOURNAL, vol. 46, January 2010 (2010-01-01), pages 609 - 620, XP026963639 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000032627A1 (it) * 2020-12-29 2022-06-29 Pirelli Pneumatico per ruote di veicoli
WO2022144759A1 (en) * 2020-12-29 2022-07-07 Pirelli Tyre S.P.A. Tyre for vehicle wheels

Also Published As

Publication number Publication date
CN112469793A (zh) 2021-03-09
CN112469793B (zh) 2023-10-13
BR102018009673A2 (pt) 2019-11-26
US20210071049A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019213730A1 (pt) Adesivo à base de materiais contendo látex e lignina e processo de produção do mesmo
CN107236370B (zh) 包含微纤维化纤维素的组合物和制备组合物的方法
ES2367533T3 (es) Dispersiones acuosas de dióxido de silicio para formulaciones de adhesivo.
Sun et al. Economical improvement on the performances of a soybean flour-based adhesive for wood composites via montmorillonite hybridization
WO2019034649A1 (en) MICROFIBRILLED CELLULOSE AS CROSS-LINKING AGENT
US8071670B2 (en) Aqueous dispersions of polyvinylacetate and silica, processes for preparing the same, uses therefor and substrates coated and/or bonded therewith
EP3927886A1 (en) Production of corrugated paperboards and cardboards comprising chemically treated paper
CA2806517C (en) A phenol-formaldehyde polymer with carbon nanotubes, a method of producing same, and products derived therefrom
BR112017022080B1 (pt) Adesivo, método de produção de um adesivo de madeira, e, produto de madeira
US8946338B2 (en) Aqueous silicon dioxide dispersions for sealant and adhesive formulations
JP2007506851A (ja) ポリクロロプレン系水性組成物
BR102019009641B1 (pt) adesivo à base de materiais contendo látex e lignina e processo de produção do mesmo
KR102206991B1 (ko) 친환경 소재를 이용한 바이오 복합재 및 그 제조 방법
FI91162C (fi) Lateksipohjaisia liima-ainekoostumuksia kartonkia ja aaltopahvia varten ja niiden valmistusmenetelmä
WO2021049122A1 (ja) 生分解性ゴム組成物、生分解性ゴム組成物の製造方法及び生分解性ゴム成形品
Shi et al. Modification of soy-based adhesives to enhance the bonding performance
US1777161A (en) Water-resisting adhesive composition of matter
JP2011224477A (ja) バイオポリマーナノ粒子の凝集粉体を分散する方法
US1777158A (en) Flexible water-resisting albuminous adhesive composition and method of making same
WO2019239299A1 (en) Waterborne adhesive comprising crosslinkable microfibrillated cellulose
BR102020025955A2 (pt) Coacervado adesivo a base de nanocelulose e lignossulfonato e processo de produção do mesmo
Luotonen Performance of bio-colloids as structural adhesives: effect of nanoscaled morphology and polymeric additives
Cherezova et al. Influence of Partially Carboxylated Powdered Lignocellulose from Oat Straw on Technological and Strength Properties of Water-Swelling Rubber
EP4305120A1 (en) Adhesive composition comprising lupine protein and lignin
NL2013626B1 (en) Composition suitable as filler and sealant.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800391

Country of ref document: EP

Kind code of ref document: A1