WO2019212159A1 - Glucose sensor - Google Patents

Glucose sensor Download PDF

Info

Publication number
WO2019212159A1
WO2019212159A1 PCT/KR2019/004243 KR2019004243W WO2019212159A1 WO 2019212159 A1 WO2019212159 A1 WO 2019212159A1 KR 2019004243 W KR2019004243 W KR 2019004243W WO 2019212159 A1 WO2019212159 A1 WO 2019212159A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
electrode
electron transport
glucose sensor
unit
Prior art date
Application number
PCT/KR2019/004243
Other languages
French (fr)
Korean (ko)
Inventor
최봉진
조수호
천승환
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Publication of WO2019212159A1 publication Critical patent/WO2019212159A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to a glucose sensor. More specifically, the present invention relates to a glucose sensor capable of keeping the measurement sensitivity to glucose uniform in an optimal range.
  • Glucose is a broad source of nutrition for most organisms and is a component that plays a fundamental role in energy supply, carbon storage, biosynthesis, and the carbon skeleton and cell wall formation.
  • a glucose sensor that measures glucose concentration through potentiometric or current measurements. Research is being actively conducted.
  • Such glucose sensors may be classified into invasive, which mainly measures glucose contained in blood, and non-invasive, which mainly measures glucose contained in saliva, sweat, and the like.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2001-0110272 (published date: December 12, 2001, name: electrode and glucose analysis electrode containing Pt metal)
  • An object of the present invention is to provide a glucose sensor capable of maintaining the measurement sensitivity to glucose uniformly in an optimal range.
  • the glucose sensor according to the present invention for solving the technical problem is formed of a substrate, an electrode unit including a reference electrode and a working electrode formed on the substrate, a single layer formed on the electrode portion to protect the electrode portion and transport electrons An electrode protection / electron transport function and a glucose reaction unit formed on the electrode protection / electron transport function, wherein the relative voltage, which is the potential difference between the reference electrode and the working electrode, is -0.3V to 0.0V. .
  • the Michaelis-Menten constant (K M ) is 0.4mM to 12.2mM.
  • the Michael-less - a 7 mM / s - maximum reaction velocity (V max) of menten enzyme reaction rate equation is 3.85 ⁇ 10 - 7 mM / s to 6.9 ⁇ 10.
  • the electrode protection / electron transport function portion has a structure in which an electrode protector for protecting the electrode portion and an electron transport function for the electron transport function are mixed.
  • the electrode protector is characterized in that it comprises carbon (carbon).
  • the electron transporter is characterized in that it comprises prussian blue.
  • the electrode portion is gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti), nickel (Ni), tin (Ni), molybdenum (Mo ), Cobalt (Co), characterized in that it comprises one or more selected from the group consisting of APC.
  • the glucose reaction unit is characterized in that it comprises glucose oxidase or glucose dehydrogenase.
  • the glucose sensor according to the present invention is further characterized by an ion exchange membrane formed on the glucose reaction unit.
  • the ion exchange membrane is characterized in that it protects the glucose oxidase or the glucose dehydrogenase constituting the glucose reaction part by preventing the penetration of impurity ion components.
  • FIG. 1 is a cross-sectional view of a glucose sensor according to an embodiment of the present invention
  • FIG. 2 is an exemplary plan view of a glucose sensor manufactured according to an embodiment of the present invention
  • FIG. 3 is a view showing a voltage swing test (Voltage Swing Test) results according to the glucose concentration of a substrate in an embodiment of the present invention
  • FIG. 4 is a diagram illustrating a cyclic voltamogram according to a relative voltage according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a calibration curve according to one embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a Lineweaver-Burk Plot according to one embodiment of the present invention.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another, for example without departing from the scope of the rights according to the inventive concept, and the first component may be called a second component and similarly the second component. The component may also be referred to as the first component.
  • FIG. 1 is a cross-sectional view of a glucose sensor according to an embodiment of the present invention
  • Figure 2 is an exemplary plan view of a glucose sensor manufactured according to an embodiment of the present invention.
  • a glucose sensor includes a substrate 10, an electrode unit 20, an electrode protection / electron transport function unit 30, a glucose reaction unit 50, and an ion
  • the exchange membrane 60, the wiring unit 70, and the temperature sensor 100 are included.
  • Equation 1 represents the enzyme reaction equation
  • Equation 2 represents the Michaelis-Menten equation
  • Equation 3 represents the Lineweaver-Burk equation
  • Equation 4 is The Michaelis-Menten constant is shown.
  • Equations 1 to 4 E is an enzyme, S is a substrate, ES is an enzyme-substrate complex, P is a product, [S] is a concentration of glucose that is a substrate, and K M is a Michaelis-Menten constant ( Michaelis-Menten Constant, and V Max is the maximum reaction rate in the Michaelis-Menten enzyme kinetics, in other words, the turnover number, the rate of conversion to the product in unit time.
  • K M means the affinity of the enzyme for the substrate.
  • Low K M means that the substrate-enzyme has a high affinity, in which case the enzyme-substrate complex (ES) state is stable, and high K M means that the substrate-enzyme has low affinity, in which case product (P) production. This is facilitated.
  • a relative voltage which is a potential difference between the reference electrode and the working electrode configuring the electrode unit, is -0.3V to 0.0V.
  • the relative voltage is within the range of -0.3V to 0.0V, the linearity of the detection signal according to the glucose concentration injected into the glucose sensor according to the embodiment of the present invention is secured and the sensitivity is improved, and the linearity and the sensitivity are improved.
  • the more preferable range of relative voltage for is -0.2V to 0V.
  • the relative voltage is less than -0.3 V, the reliability of the sense signal is degraded due to reducing corrosion.
  • the relative voltage exceeds 0.0 V, the linearity of the sense signal is not maintained and the deviation increases as the concentration of glucose increases.
  • the Michaelis-Menten constant (K M ) may be 0.4mM to 12.2mM.
  • the Michael-less - maximum reaction rate of the enzyme reaction rate menten formula (V max) is 3.85 ⁇ 10 - 7 mM / s to 6.9 ⁇ 10 -7 mM / can be s.
  • V max The maximum reaction velocity (V max) is 3.85 ⁇ 10 - 7 mM / s to 6.9 ⁇ 10 - if they meet a range of 7 mM / s, the linearity of the detection signal corresponding to the glucose concentration is to secure and improve the sensitivity.
  • the substrate 10 functions to provide a structural base of the components constituting the glucose sensor.
  • the substrate 10 may be implemented in the form of a base film having a rigid material such as glass or the like and having flexible characteristics.
  • polyester-based resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate; Cellulose resins such as diacetyl cellulose and triacetyl cellulose; Polycarbonate resins; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymers; Polyolefin-based resins such as polyethylene, polypropylene, cyclo-based or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride-based resins; Amide resins such as nylon and aromatic polyamides;
  • thermosetting resin or ultraviolet curable resin such as (meth) acrylic-type, urethane type, acrylurethane type, epoxy type, and silicone type
  • the thickness of such a transparent optical film can be suitably determined, generally, it can be determined to 1-500 micrometers in consideration of workability, thinness, etc., such as intensity
  • Such a base film may contain a suitable one or more additives.
  • a ultraviolet absorber, antioxidant, a lubricant, a plasticizer, a mold release agent, a coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, a coloring agent, etc. are mentioned, for example.
  • the base film may have a structure including various functional layers such as a hard coating layer, an antireflection layer, and a gas barrier layer on one or both surfaces of the film, and the functional layer is not limited to the above, and includes various functional layers depending on the purpose. can do.
  • the base film may be surface-treated as needed.
  • surface treatment include a plasma treatment, a corona treatment, a dry treatment such as a primer treatment, and a chemical treatment such as an alkali treatment including saponification treatment.
  • the electrode unit 20 is composed of a plurality of electrodes formed on the substrate 10.
  • the electrode unit 20 senses an electrical signal generated by a reaction between a substance constituting the glucose reaction unit 50, which will be described later, and glucose contained in the substance to be measured.
  • the measurement target material may be saliva, sweat, body fluid, blood, and the like, but is not limited thereto.
  • the electrodes constituting the electrode portion 20 correspond to the working electrodes 21-1 and 22-1 and the working electrodes 21-1 and 22-1.
  • reference electrodes 21-2 and 22-2, and the electrode part 20 includes gold (Au), silver (Ag), copper (Cu), platinum (Pt), and titanium (Ti).
  • nickel (Ni), tin (Ni), molybdenum (Mo), cobalt (Co) may include one or more selected from the group consisting of APC, or an alloy thereof.
  • APC is an Ag-Pd-Cu alloy.
  • the electrode protection / electron transport function unit 30 is formed on the electrode unit 20 and a portion of the substrate 10 outside the electrode unit 20 to protect the electrodes constituting the electrode unit 20, It performs a function of increasing the electrical sensitivity of the electrode unit 20 through the transport.
  • the electrode protection / electron transport function unit 30 may have a structure in which an electrode protector that protects the electrode unit 20 and an electron transporter that functions as an electron transporter are mixed.
  • the electrode protector constituting the electrode protection / electron transport function 30 may include carbon, and the electron transporter may include prussian blue.
  • Prussian blue included in the electrode protection / electron transport function unit 30 is a component that performs the function of electron transport, and is a blue pigment whose main component is potassium hexacyano iron (II) acid oxide, and has high oxidative property. . If the electrode protection / electron transport function 30 including Prussian blue is formed between the electrode 20 and the glucose reaction unit 50, the sensitivity of the electrode can be improved, but the lower portion of the Prussian blue Located metallic electrode portion 20 may oxidize and corrode.
  • the electrode protection / electron transport function unit 30 is configured to include carbon which performs the function of electrode protection through oxidation prevention in addition to Prussian blue which performs the function of electron transport, Corrosion of the electrode part 20 due to Prussian blue included in the electrode protection / electron transport function part 30 can be prevented.
  • the glucose reaction unit 50 is formed on the electrode protection / electron transport function unit 30 and is a component that reacts with glucose contained in the material to be measured.
  • the glucose reaction unit 50 may include glucose oxidase or glucose dehydrogenase.
  • the reaction in the glucose reaction unit 50 and the signal detection principle of the electrode unit 20 will be described as follows.
  • glucose contained in the sample is oxidized by glucose oxidase or glucose dehydrogenase, and glucose oxidase or glucose dehydrogenase is reduced.
  • the electron transfer mediator oxidizes glucose oxidase or glucose dehydrogenase, and itself is reduced.
  • the reduced electron transfer mediator loses electrons at the electrode surface subjected to a constant voltage and is oxidized electrochemically again. Since the glucose concentration in the sample is proportional to the amount of current generated during the oxidation of the electron transfer medium, the glucose concentration can be measured by measuring the amount of current.
  • the ion exchange membrane 60 is formed on the glucose reaction unit 50, and passes only the component to be measured among the substances included in the sample, thereby preventing the penetration of external impurity ion components to prevent the glucose reaction unit 50.
  • the ion exchange membrane 60 may include Nafion, but this is only one example, and the ion exchange membrane 60 is not limited thereto.
  • the wiring unit 70 includes electrodes constituting the electrode unit 20 and a plurality of electrical wires formed from the temperature sensor 100.
  • the wiring unit 70 may be connected to a sensing analysis unit that performs a current analysis function through an electrical connection medium such as a flexible printed circuit board (FPCB) (not shown).
  • FPCB flexible printed circuit board
  • a pad region may be provided at an end of the wiring unit 70, and the FPCB may be bonded to and electrically connected to the pad region.
  • the temperature sensor 100 is a component that is formed on the substrate 10 to measure the temperature of the environment in which the glucose concentration is measured. That is, the temperature sensor 100 transmits a current corresponding to the temperature to the IC having a current analysis function, and the IC converts the current value received from the temperature sensor 100 according to a set conversion algorithm. Since the measured glucose concentration may vary depending on the temperature, the temperature may be measured together with the glucose concentration, and the glucose concentration may be corrected according to the temperature, or the measured concentration may be matched with the temperature. .
  • Table 1 shows the reproducibility test results for the glucose sensor according to an embodiment of the present invention, the Michaelis-Menten constant (K M ) according to the relative voltage, the maximum in the Michaelis-Menten enzyme reaction rate equation. Experimental data of the reaction rate (V max ).
  • the relative voltage satisfies the range of -0.3V to 0.0V, the linearity of the sensing signal according to the concentration of glucose to be detected is secured and the sensitivity is improved, and the relative voltage for securing the linearity and the sensitivity is improved.
  • the more preferable range of is -0.2V to 0V. If the relative voltage is less than -0.3 V, the reliability of the sense signal is degraded due to reducing corrosion. In addition, when the relative voltage exceeds 0.0 V, the linearity of the sense signal is not maintained and the deviation increases as the concentration of glucose increases.
  • Michaelis-Menten constant (K M ) may be 0.4mM to 12.2mM.
  • the Michaelis-Menten constant (K M ) satisfies the range of 0.4 mM to 12.2 mM, the linearity of the detection signal according to the glucose concentration is ensured and the sensitivity is improved. If the Michaelis-Menten constant (K M ) is less than 0.4 mM, reducing corrosion reduces the reliability of the sense signal. In addition, when the Michaelis-Menten constant K M exceeds 12.2 mM, the linearity of the sense signal is not maintained.
  • V max maximum reaction velocity of menten enzyme reaction rate equation
  • the maximum reaction velocity (V max) is 3.85 ⁇ 10 - if they meet a range of 7 mM / s to 6.9 ⁇ 10 -7 mM / s, the linearity of the detection signal corresponding to the glucose concentration is to secure and improve the sensitivity.
  • the 3.85 ⁇ 10 maximum reaction velocity (V max) - When 7 mM / s is less than, due to reducing the corrosion decreases the reliability of the detected signal. In addition, when the maximum reaction rate (V max ) exceeds 6.9 ⁇ 10 ⁇ 7 mM / s, the linearity of the sense signal is not maintained.
  • FIG. 3 is a diagram illustrating a voltage swing test result according to a glucose concentration, which is a substrate, in which relative voltages are set to 0 V and ⁇ 0.1 for evaluation of two glucose sensor specimens, respectively.
  • D1 and D2 of FIG. 3 represent detection results of the specimen in which the relative voltage is adjusted to -0.1V
  • D1 'and D2' represent detection results of the specimen in which the relative voltage is 0.0V.
  • FIG. 4 is a diagram illustrating a cyclic voltamogram according to a relative voltage, in which a peak value of a reduction potential peak of a Prussian Blue electron transport chain is 0V. It can be confirmed that it exists between and -0.1V, and by fixing the phase voltage to -0.1V, it is possible to convert most of Prussian blue existing in oxidation form to reduction form. This may improve the sensitivity of the glucose sensor.
  • FIG. 5 is a diagram illustrating a calibration curve according to an embodiment of the present invention, and shows a result of evaluating relative voltages for each glucose concentration.
  • FIG. 6 is an embodiment of the present invention. , Lineweaver-Burk plot, a graph obtained by taking the inverse of the result of a calibration curve, Michaelis-Menten constant (K M ) is the intercept, the maximum reaction rate (Vmax ) Is the slope.
  • K M Michaelis-Menten constant
  • Vmax maximum reaction rate

Abstract

The present invention relates to a glucose sensor. The present invention comprises: a substrate; an electrode part including a reference electrode and a working electrode that are formed on the substrate; an electrode protection/electron transport function part formed on the electrode part as a single layer for protecting the electrode part and performing a function of electron transport; and a glucose reaction part formed on the electrode protection/electron transport function part, in which a relative voltage, which is a potential difference between the reference electrode and the working electrode, is -0.3 V to 0.0 V. The present invention can keep the measurement sensitivity to glucose uniform within an optimum range.

Description

글루코스 센서Glucose sensor
본 발명은 글루코스 센서에 관한 것이다. 보다 구체적으로, 본 발명은 글루코스에 대한 측정 민감도를 최적 범위로 균일하게 유지할 수 있는 글루코스 센서에 관한 것이다.The present invention relates to a glucose sensor. More specifically, the present invention relates to a glucose sensor capable of keeping the measurement sensitivity to glucose uniform in an optimal range.
글루코스(glucose)는 대부분 유기체의 광범위한 영양 공급원이며, 에너지 공급, 탄소 저장, 생합성 및 탄소 골격 및 세포벽 형성의 기초적인 역할을 수행하는 성분으로서, 전위차 또는 전류 측정을 통해 글루코스의 농도를 측정하는 글루코스 센서에 대한 연구가 활발히 수행되고 있다.Glucose is a broad source of nutrition for most organisms and is a component that plays a fundamental role in energy supply, carbon storage, biosynthesis, and the carbon skeleton and cell wall formation. A glucose sensor that measures glucose concentration through potentiometric or current measurements. Research is being actively conducted.
글루코스 센서에 대한 대부분의 연구들은 글루코스의 글루코노락톤 (gluconolactone)으로의 산화를 촉진하는 글루코스 산화효소(glucose oxidase) 또는 글루코스 탈수소효소와 같은 효소의 고정에 기반을 두고 있다.Most studies on the glucose sensor are based on the immobilization of enzymes such as glucose oxidase or glucose dehydrogenase, which promote the oxidation of glucose to gluconolactone.
이러한 글루코스 센서는 주로 혈액에 함유된 글루코스를 측정하는 침습형(Invasive)과 주로 침, 땀 등에 함유된 글루코스를 측정하는 비침습형(Non-invasive)으로 구분될 수 있다.Such glucose sensors may be classified into invasive, which mainly measures glucose contained in blood, and non-invasive, which mainly measures glucose contained in saliva, sweat, and the like.
한편, 인체의 침, 땀 등을 시료로 하는 비침습형 글루코스 센서의 경우 시료에 포함되는 글루코스가 극소량이기 때문에, 글루코스 센서의 측정 민감도를 최적 범위로 균일하게 유지하기 어렵다는 문제점이 있다.On the other hand, in the case of non-invasive glucose sensor using a sample of saliva, sweat, etc. of the human body, since the amount of glucose contained in the sample is very small, it is difficult to maintain the measurement sensitivity of the glucose sensor uniformly in the optimum range.
[선행기술문헌][Prior art document]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 공개특허공보 특2001-0110272호(공개일자: 2001년 12월 12일, 명칭: Pt 금속을 함유한 글루코스 분석용 전극과 성능)(Patent Document 1) Korean Unexamined Patent Publication No. 2001-0110272 (published date: December 12, 2001, name: electrode and glucose analysis electrode containing Pt metal)
본 발명은 글루코스에 대한 측정 민감도를 최적 범위로 균일하게 유지할 수 있는 글루코스 센서를 제공하는 것을 기술적 과제로 한다.An object of the present invention is to provide a glucose sensor capable of maintaining the measurement sensitivity to glucose uniformly in an optimal range.
이러한 기술적 과제를 해결하기 위한 본 발명에 따른 글루코스 센서는 기판, 상기 기판 상에 형성된 기준 전극과 작동 전극을 포함하는 전극부, 상기 전극부 상에 단일층으로 형성되어 있으며 상기 전극부를 보호하고 전자 수송의 기능을 수행하는 전극보호/전자수송 기능부 및 상기 전극보호/전자수송 기능부 상에 형성된 글루코스 반응부를 포함하고, 상기 기준 전극과 상기 작동 전극의 전위차인 상대전압은 -0.3V 내지 0.0V이다.The glucose sensor according to the present invention for solving the technical problem is formed of a substrate, an electrode unit including a reference electrode and a working electrode formed on the substrate, a single layer formed on the electrode portion to protect the electrode portion and transport electrons An electrode protection / electron transport function and a glucose reaction unit formed on the electrode protection / electron transport function, wherein the relative voltage, which is the potential difference between the reference electrode and the working electrode, is -0.3V to 0.0V. .
본 발명에 따른 글루코스 센서에 있어서, 미카엘리스-멘텐 상수(Michaelis-Menten constant, KM)는 0.4mM 내지 12.2mM이다.In the glucose sensor according to the present invention, the Michaelis-Menten constant (K M ) is 0.4mM to 12.2mM.
본 발명에 따른 글루코스 센서에 있어서, 미카엘리스-멘텐 효소반응속도식에서의 최대반응속도(Vmax)는 3.85×10- 7mM/s 내지 6.9×10- 7mM/s이다.In the glucose sensor according to the present invention, the Michael-less - a 7 mM / s - maximum reaction velocity (V max) of menten enzyme reaction rate equation is 3.85 × 10 - 7 mM / s to 6.9 × 10.
본 발명에 따른 글루코스 센서에 있어서, 상기 전극보호/전자수송 기능부는 상기 전극부를 보호하는 전극 보호체와 상기 전자 수송의 기능을 하는 전자 수송체가 혼합된 구조를 갖는 것을 특징으로 한다.In the glucose sensor according to the present invention, the electrode protection / electron transport function portion has a structure in which an electrode protector for protecting the electrode portion and an electron transport function for the electron transport function are mixed.
본 발명에 따른 글루코스 센서에 있어서, 상기 전극 보호체는 카본(carbon)을 포함하는 것을 특징으로 한다.In the glucose sensor according to the present invention, the electrode protector is characterized in that it comprises carbon (carbon).
본 발명에 따른 글루코스 센서에 있어서, 상기 전자 수송체는 프러시안 블루(prussian blue)를 포함하는 것을 특징으로 한다.In the glucose sensor according to the present invention, the electron transporter is characterized in that it comprises prussian blue.
본 발명에 따른 글루코스 센서에 있어서, 상기 전극부는 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 티타늄(Ti), 니켈(Ni), 주석(Ni), 몰리브덴(Mo), 코발트(Co), APC로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.In the glucose sensor according to the present invention, the electrode portion is gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti), nickel (Ni), tin (Ni), molybdenum (Mo ), Cobalt (Co), characterized in that it comprises one or more selected from the group consisting of APC.
본 발명에 따른 글루코스 센서에 있어서, 상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 한다.In the glucose sensor according to the present invention, the glucose reaction unit is characterized in that it comprises glucose oxidase or glucose dehydrogenase.
본 발명에 따른 글루코스 센서는 상기 글루코스 반응부 상에 형성된 이온 교환막을 더 포함하는 것을 특징으로 한다.The glucose sensor according to the present invention is further characterized by an ion exchange membrane formed on the glucose reaction unit.
본 발명에 따른 글루코스 센서에 있어서, 상기 이온 교환막은 불순물 이온 성분의 침투를 방지하여 상기 글루코스 반응부를 구성하는 글루코스 산화효소 또는 글루코스 탈수소효소를 보호하는 것을 특징으로 한다.In the glucose sensor according to the present invention, the ion exchange membrane is characterized in that it protects the glucose oxidase or the glucose dehydrogenase constituting the glucose reaction part by preventing the penetration of impurity ion components.
본 발명에 따르면, 글루코스에 대한 측정 민감도를 최적 범위로 균일하게 유지할 수 있는 글루코스 센서가 제공되는 효과가 있다.According to the present invention, there is provided an effect of providing a glucose sensor capable of keeping the measurement sensitivity to glucose uniformly in an optimal range.
도 1은 본 발명의 일 실시 예에 따른 글루코스 센서의 단면도이고,1 is a cross-sectional view of a glucose sensor according to an embodiment of the present invention,
도 2는 본 발명의 일 실시 예에 따라 제조된 글루코스 센서의 예시적인 평면도이고,2 is an exemplary plan view of a glucose sensor manufactured according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 있어서, 기질인 글루코스 농도에 따른 전압 스윙 테스트(Voltage Swing Test) 결과를 나타낸 도면이고,3 is a view showing a voltage swing test (Voltage Swing Test) results according to the glucose concentration of a substrate in an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 있어서, 상대전압에 따른 순환 볼타모그램(Cyclic Voltamogram)을 나타낸 도면이고,4 is a diagram illustrating a cyclic voltamogram according to a relative voltage according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 있어서, 교정 커브(Calibration Curve)를 나타낸 도면이고,FIG. 5 is a diagram illustrating a calibration curve according to one embodiment of the present invention.
도 6은 본 발명의 일 실시예에 있어서, 라인위버-버크 플롯(Lineweaver-Burk Plot)을 나타낸 도면이다.FIG. 6 is a diagram illustrating a Lineweaver-Burk Plot according to one embodiment of the present invention.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.Specific structural or functional descriptions of the embodiments according to the inventive concept disclosed herein are provided only for the purpose of describing the embodiments according to the inventive concept. It may be embodied in various forms and is not limited to the embodiments described herein.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.Embodiments according to the inventive concept may be variously modified and have various forms, so embodiments are illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments in accordance with the concept of the invention to the specific forms disclosed, it includes all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2구성 요소는 제1구성 요소로도 명명될 수 있다.Terms such as first or second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another, for example without departing from the scope of the rights according to the inventive concept, and the first component may be called a second component and similarly the second component. The component may also be referred to as the first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may exist in the middle. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle. Other expressions describing the relationship between components, such as "between" and "immediately between" or "neighboring to" and "directly neighboring", should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described herein, but one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined herein. Do not.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.
도 1은 본 발명의 일 실시 예에 따른 글루코스 센서의 단면도이고, 도 2는 본 발명의 일 실시 예에 따라 제조된 글루코스 센서의 예시적인 평면도이다.1 is a cross-sectional view of a glucose sensor according to an embodiment of the present invention, Figure 2 is an exemplary plan view of a glucose sensor manufactured according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 일 실시 예에 따른 글루코스 센서는 기판(10), 전극부(20), 전극보호/전자수송 기능부(30), 글루코스 반응부(50), 이온 교환막(60), 배선부(70) 및 온도 센서(100)를 포함한다.1 and 2, a glucose sensor according to an embodiment of the present invention includes a substrate 10, an electrode unit 20, an electrode protection / electron transport function unit 30, a glucose reaction unit 50, and an ion The exchange membrane 60, the wiring unit 70, and the temperature sensor 100 are included.
본 발명의 일 실시 예에 따른 글루코스 센서의 세부 구성요소들을 설명하기에 앞서 본 발명의 주요 내용을 먼저 설명한다.Prior to describing the detailed components of the glucose sensor according to an embodiment of the present invention, the main contents of the present invention will be described first.
먼저, 본 발명의 일 실시 예에 따른 글루코스 센서에 적용되는 효소반응속도론(Enzyme Kinetics)을 설명하면 다음과 같다.First, the enzyme kinetics (Enzyme Kinetics) applied to the glucose sensor according to an embodiment of the present invention will be described.
다음 수학식 1은 효소반응식을 나타내고, 수학식 2는 미카엘리스-멘텐 식(Michaelis-Menten equation)을 나타내고, 수학식 3은 라인위버-버크(Lineweaver-Burk equation) 식을 나타내고, 수학식 4는 미카엘리스-멘텐 상수(Michaelis-Menten constant)를 나타낸다. Equation 1 represents the enzyme reaction equation, Equation 2 represents the Michaelis-Menten equation, Equation 3 represents the Lineweaver-Burk equation, Equation 4 is The Michaelis-Menten constant is shown.
[수학식 1][Equation 1]
Figure PCTKR2019004243-appb-I000001
Figure PCTKR2019004243-appb-I000001
[수학식 2][Equation 2]
Figure PCTKR2019004243-appb-I000002
Figure PCTKR2019004243-appb-I000002
[수학식 3][Equation 3]
Figure PCTKR2019004243-appb-I000003
Figure PCTKR2019004243-appb-I000003
[수학식 4][Equation 4]
Figure PCTKR2019004243-appb-I000004
Figure PCTKR2019004243-appb-I000004
수학식 1 내지 4에서, E는 효소이고, S는 기질이고, ES는 효소-기질 복합체이고, P는 생성물이고, [S]는 기질인 글루코스의 농도이고, KM은 미카엘리스-멘텐 상수(Michaelis-Menten Constant)이고, VMax는 미카엘리스-멘텐 효소반응속도식에서의 최대반응속도로서, 달리 말해, 단위시간에 생성물로의 전환 속도인 턴오버 넘버(Turnover number)이다.In Equations 1 to 4, E is an enzyme, S is a substrate, ES is an enzyme-substrate complex, P is a product, [S] is a concentration of glucose that is a substrate, and K M is a Michaelis-Menten constant ( Michaelis-Menten Constant, and V Max is the maximum reaction rate in the Michaelis-Menten enzyme kinetics, in other words, the turnover number, the rate of conversion to the product in unit time.
KM은 기질에 대한 효소의 친화력을 의미한다. 낮은 KM은 기질-효소의 친화력이 크다는 것을 의미하며 이 경우 효소-기질 복합체(ES) 상태가 안정적이고, 높은 KM은 기질-효소의 친화력이 낮다는 것을 의미하며 이 경우 생성물(P) 생성이 촉진된다.K M means the affinity of the enzyme for the substrate. Low K M means that the substrate-enzyme has a high affinity, in which case the enzyme-substrate complex (ES) state is stable, and high K M means that the substrate-enzyme has low affinity, in which case product (P) production. This is facilitated.
본 발명의 일 실시 예에 따른 글루코스 센서에 따르면, 전극부를 구성하는 기준 전극과 작동 전극의 전위차인 상대전압은 -0.3V 내지 0.0V이다.According to the glucose sensor according to the exemplary embodiment of the present invention, a relative voltage, which is a potential difference between the reference electrode and the working electrode configuring the electrode unit, is -0.3V to 0.0V.
상대전압이 -0.3V 내지 0.0V의 범위를 충족하는 경우, 본 발명의 일 실시 예에 따른 글루코스 센서에 주입되는 글루코스 농도에 따른 감지 신호의 선형성이 확보되며 민감도가 개선되며, 선형성 확보 및 민감도 개선을 위한 상대전압의 보다 바람직한 범위는 -0.2V 내지 0V이다.When the relative voltage is within the range of -0.3V to 0.0V, the linearity of the detection signal according to the glucose concentration injected into the glucose sensor according to the embodiment of the present invention is secured and the sensitivity is improved, and the linearity and the sensitivity are improved. The more preferable range of relative voltage for is -0.2V to 0V.
상대전압이 -0.3V 미만인 경우에는, 환원성 부식으로 인해 감지 신호의 신뢰도가 저하된다. 또한, 상대전압이 0.0V를 초과하는 경우에는, 감지 신호의 선형성이 유지되지 않으며 글루코스의 농도가 높아질수록 편차가 증가한다.If the relative voltage is less than -0.3 V, the reliability of the sense signal is degraded due to reducing corrosion. In addition, when the relative voltage exceeds 0.0 V, the linearity of the sense signal is not maintained and the deviation increases as the concentration of glucose increases.
예를 들어, 본 발명의 일 실시 예에 따른 글루코스 센서에 있어서, 미카엘리스-멘텐 상수(Michaelis-Menten constant, KM)는 0.4mM 내지 12.2mM일 수 있다.For example, in the glucose sensor according to an embodiment of the present invention, the Michaelis-Menten constant (K M ) may be 0.4mM to 12.2mM.
미카엘리스-멘텐 상수(KM)가 0.4mM 내지 12.2mM의 범위를 충족하는 경우, 글루코스 농도에 따른 감지 신호의 선형성이 확보되며 민감도가 개선된다.When the Michaelis-Menten constant (K M ) satisfies the range of 0.4 mM to 12.2 mM, the linearity of the detection signal according to the glucose concentration is ensured and the sensitivity is improved.
미카엘리스-멘텐 상수(KM)가 0.4mM 미만인 경우에는, 환원성 부식으로 인해 감지 신호의 신뢰도가 저하된다. 또한, 미카엘리스-멘텐 상수(KM)가 12.2mM를 초과하는 경우에는, 감지 신호의 선형성이 유지되지 않는다.If the Michaelis-Menten constant (K M ) is less than 0.4 mM, reducing corrosion reduces the reliability of the sense signal. In addition, when the Michaelis-Menten constant K M exceeds 12.2 mM, the linearity of the sense signal is not maintained.
예를 들어, 본 발명의 일 실시 예에 따른 글루코스 센서에 있어서, 미카엘리스-멘텐 효소반응속도식에서의 최대반응속도(Vmax)는 3.85×10- 7mM/s 내지 6.9×10-7mM/s일 수 있다.For example, in a glucose sensor in accordance with one embodiment of the invention, the Michael-less - maximum reaction rate of the enzyme reaction rate menten formula (V max) is 3.85 × 10 - 7 mM / s to 6.9 × 10 -7 mM / can be s.
최대반응속도(Vmax)가 3.85×10- 7mM/s 내지 6.9×10- 7mM/s의 범위를 충족하는 경우, 글루코스 농도에 따른 감지 신호의 선형성이 확보되며 민감도가 개선된다.The maximum reaction velocity (V max) is 3.85 × 10 - 7 mM / s to 6.9 × 10 - if they meet a range of 7 mM / s, the linearity of the detection signal corresponding to the glucose concentration is to secure and improve the sensitivity.
최대반응속도(Vmax)가 3.85×10- 7mM/s 미만인 경우에는, 환원성 부식으로 인해 감지 신호의 신뢰도가 저하된다. 또한, 최대반응속도(Vmax)가 6.9×10- 7mM/s를 초과하는 경우에는, 감지 신호의 선형성이 유지되지 않는다.The 3.85 × 10 maximum reaction velocity (V max) - When 7 mM / s is less than, due to reducing the corrosion decreases the reliability of the detected signal. In addition, the maximum reaction rate (V max) 6.9 × 10 - In the case of more than 7 mM / s, but this linearity is not maintained in the detection signal.
기판(10)은 글루코스 센서를 구성하는 구성요소들의 구조적인 기지(base)를 제공하는 기능을 한다.The substrate 10 functions to provide a structural base of the components constituting the glucose sensor.
예를 들어, 기판(10)은 유리 등과 같은 경성 재질을 갖거나 플렉서블 특성을 갖는 기재 필름 형태로 구현일 수 있다. 기판(10)이 플렉서블하게 구현되는 경우 기재 필름에 적용될 수 있는 구체적인 물질의 예로는, 폴리에틸렌테레프탈레이트, 폴리에틸렌이소프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르계 수지; 디아세틸셀룰로오스, 트리아세틸셀룰로오스 등의 셀룰로오스계 수지; 폴리카보네이트계 수지; 폴리메틸(메타)아크릴레이트, 폴리에틸(메타)아크릴레이트 등의 아크릴계 수지; 폴리스티렌, 아크릴로니트릴-스티렌 공중합체 등의 스티렌계 수지; 폴리에틸렌, 폴리프로필렌, 시클로계 또는 노보넨 구조를 갖는 폴리올레핀, 에틸렌-프로필렌 공중합체 등의 폴리올레핀계 수지; 염화비닐계 수지; 나일론, 방향족 폴리아미드 등의 아미드계 수지; 이미드계 수지; 폴리에테르술폰계 수지; 술폰계 수지; 폴리에테르에테르케톤계 수지; 황화 폴리페닐렌계 수지; 비닐알코올계 수지; 염화비닐리덴계 수지; 비닐부티랄계 수지; 알릴레이트계 수지; 폴리옥시메틸렌계 수지; 에폭시계 수지 등과 같은 열가소성 수지로 구성된 필름을 들 수 있으며, 상기 열가소성 수지의 블렌드물로 구성된 필름도 사용할 수 있다. 또한, (메타)아크릴계, 우레탄계, 아크릴우레탄계, 에폭시계, 실리콘계 등의 열경화성 수지 또는 자외선 경화형 수지로 된 필름을 이용할 수도 있다. 이와 같은 투명 광학 필름의 두께는 적절히 결정될 수 있지만, 일반적으로는 강도나 취급성 등의 작업성, 박층성 등을 고려하여, 1 ∼ 500㎛로 결정될 수 있다. 특히 1 ∼ 300㎛가 바람직하고, 5 ∼ 200㎛가 보다 바람직하다.For example, the substrate 10 may be implemented in the form of a base film having a rigid material such as glass or the like and having flexible characteristics. Examples of specific materials that can be applied to the base film when the substrate 10 is implemented to be flexible include polyester-based resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate; Cellulose resins such as diacetyl cellulose and triacetyl cellulose; Polycarbonate resins; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymers; Polyolefin-based resins such as polyethylene, polypropylene, cyclo-based or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride-based resins; Amide resins such as nylon and aromatic polyamides; Imide resin; Polyether sulfone resin; Sulfone resins; Polyether ether ketone resins; Sulfided polyphenylene resins; Vinyl alcohol-based resins; Vinylidene chloride-based resins; Vinyl butyral resin; Allyl resins; Polyoxymethylene resin; And films composed of thermoplastic resins such as epoxy resins, and the like, and films composed of blends of the above thermoplastic resins may also be used. Moreover, the film of thermosetting resin or ultraviolet curable resin, such as (meth) acrylic-type, urethane type, acrylurethane type, epoxy type, and silicone type, can also be used. Although the thickness of such a transparent optical film can be suitably determined, generally, it can be determined to 1-500 micrometers in consideration of workability, thinness, etc., such as intensity | strength and handleability. 1-300 micrometers is especially preferable, and 5-200 micrometers is more preferable.
이러한 기재 필름은 적절한 1종 이상의 첨가제가 함유된 것일 수도 있다. 첨가제로는, 예컨대 자외선흡수제, 산화방지제, 윤활제, 가소제, 이형제, 착색방지제, 난연제, 핵제, 대전방지제, 안료, 착색제 등을 들 수 있다. 기재 필름은 필름의 일면 또는 양면에 하드코팅층, 반사방지층, 가스배리어층과 같은 다양한 기능성층을 포함하는 구조일 수 있으며, 기능성층은 전술한 것으로 한정되는 것은 아니며, 용도에 따라 다양한 기능성층을 포함할 수 있다.Such a base film may contain a suitable one or more additives. As an additive, a ultraviolet absorber, antioxidant, a lubricant, a plasticizer, a mold release agent, a coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, a coloring agent, etc. are mentioned, for example. The base film may have a structure including various functional layers such as a hard coating layer, an antireflection layer, and a gas barrier layer on one or both surfaces of the film, and the functional layer is not limited to the above, and includes various functional layers depending on the purpose. can do.
또한, 필요에 따라 기재 필름은 표면 처리된 것일 수 있다. 이러한 표면 처리로는 플라즈마(plasma) 처리, 코로나(corona) 처리, 프라이머(primer) 처리 등의 건식 처리, 검화 처리를 포함하는 알칼리 처리 등의 화학 처리 등을 들 수 있다.In addition, the base film may be surface-treated as needed. Examples of such surface treatment include a plasma treatment, a corona treatment, a dry treatment such as a primer treatment, and a chemical treatment such as an alkali treatment including saponification treatment.
전극부(20)는 기판(10) 상에 형성된 복수의 전극들로 이루어진다. 이러한 전극부(20)는 후술하는 글루코스 반응부(50)를 구성하는 물질과 측정 대상 물질에 포함되어 있는 글루코스의 반응에 의해 발생된 전기적 신호를 감지한다. 예를 들어, 측정 대상 물질은 인체의 침, 땀, 체액, 혈액 등일 수 있으나, 이에 한정되지는 않는다.The electrode unit 20 is composed of a plurality of electrodes formed on the substrate 10. The electrode unit 20 senses an electrical signal generated by a reaction between a substance constituting the glucose reaction unit 50, which will be described later, and glucose contained in the substance to be measured. For example, the measurement target material may be saliva, sweat, body fluid, blood, and the like, but is not limited thereto.
예를 들어, 도 2에 예시된 바와 같이, 전극부(20)를 구성하는 전극들은 작동 전극들(21-1, 22-1) 및 이 작동 전극들(21-1, 22-1)에 대응하는 기준 전극들(21-2, 22-2)을 포함하여 구성될 수 있으며, 전극부(20)는 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 티타늄(Ti), 니켈(Ni), 주석(Ni), 몰리브덴(Mo), 코발트(Co), APC로 이루어진 군에서 선택된 하나 이상을 포함하거나, 이들의 합금일 수 있다. APC는 Ag-Pd-Cu 합금이다.For example, as illustrated in FIG. 2, the electrodes constituting the electrode portion 20 correspond to the working electrodes 21-1 and 22-1 and the working electrodes 21-1 and 22-1. And reference electrodes 21-2 and 22-2, and the electrode part 20 includes gold (Au), silver (Ag), copper (Cu), platinum (Pt), and titanium (Ti). ), Nickel (Ni), tin (Ni), molybdenum (Mo), cobalt (Co), may include one or more selected from the group consisting of APC, or an alloy thereof. APC is an Ag-Pd-Cu alloy.
전극보호/전자수송 기능부(30)는 전극부(20) 및 전극부(20) 외곽의 기판(10)의 일부 영역 상에 형성되어 전극부(20)를 구성하는 전극들을 보호하는 동시에, 전자 수송을 통해 전극부(20)의 전기적인 감도를 높이는 기능을 수행한다.The electrode protection / electron transport function unit 30 is formed on the electrode unit 20 and a portion of the substrate 10 outside the electrode unit 20 to protect the electrodes constituting the electrode unit 20, It performs a function of increasing the electrical sensitivity of the electrode unit 20 through the transport.
예를 들어, 전극보호/전자수송 기능부(30)는 전극부(20)를 보호하는 전극 보호체와 전자 수송의 기능을 하는 전자 수송체가 혼합된 구조를 가질 수 있다.For example, the electrode protection / electron transport function unit 30 may have a structure in which an electrode protector that protects the electrode unit 20 and an electron transporter that functions as an electron transporter are mixed.
예를 들어, 전극보호/전자수송 기능부(30)를 구성하는 전극보호체는 카본(carbon)을 포함하고, 전자 수송체는 프러시안 블루(prussian blue)를 포함할 수 있다.For example, the electrode protector constituting the electrode protection / electron transport function 30 may include carbon, and the electron transporter may include prussian blue.
전극보호/전자수송 기능부(30)에 포함된 프러시안 블루는 전자 수송의 기능을 수행하는 성분이며, 헥사시아노철(II)산철(III)칼륨이 주성분인 청색 안료로서, 높은 산화성을 갖는다. 프러시안 블루를 포함하는 전극보호/전자수송 기능부(30)를 전극부(20)와 글루코스 반응부(50) 사이에 형성하면, 전극의 감도를 향상시킬 수는 있지만, 프러시안 블루의 하부에 위치한 금속성의 전극부(20)가 산화되어 부식될 수 있다. 본 발명의 일 실시 예에 따르면, 전극보호/전자수송 기능부(30)가 전자 수송의 기능을 수행하는 프러시안 블루 이외에 산화 방지를 통해 전극 보호의 기능을 수행하는 카본을 포함하도록 구성되기 때문에, 전극보호/전자수송 기능부(30)에 포함된 프러시안 블루에 의한 전극부(20)의 부식을 방지할 수 있다.Prussian blue included in the electrode protection / electron transport function unit 30 is a component that performs the function of electron transport, and is a blue pigment whose main component is potassium hexacyano iron (II) acid oxide, and has high oxidative property. . If the electrode protection / electron transport function 30 including Prussian blue is formed between the electrode 20 and the glucose reaction unit 50, the sensitivity of the electrode can be improved, but the lower portion of the Prussian blue Located metallic electrode portion 20 may oxidize and corrode. According to an embodiment of the present invention, since the electrode protection / electron transport function unit 30 is configured to include carbon which performs the function of electrode protection through oxidation prevention in addition to Prussian blue which performs the function of electron transport, Corrosion of the electrode part 20 due to Prussian blue included in the electrode protection / electron transport function part 30 can be prevented.
글루코스 반응부(50)는 전극보호/전자수송 기능부(30) 상에 형성되어 있으며, 측정 대상 물질에 포함되어 있는 글루코스와 반응하는 구성요소이다.The glucose reaction unit 50 is formed on the electrode protection / electron transport function unit 30 and is a component that reacts with glucose contained in the material to be measured.
예를 들어, 글루코스 반응부(50)는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함할 수 있다.For example, the glucose reaction unit 50 may include glucose oxidase or glucose dehydrogenase.
글루코스 반응부(50)에서의 반응 및 전극부(20)의 신호 감지 원리를 예시적으로 설명하면 다음과 같다.The reaction in the glucose reaction unit 50 and the signal detection principle of the electrode unit 20 will be described as follows.
측정 대상 물질인 시료를 글루코스 센서에 주입하면, 시료에 포함되어 있는 글루코스가 글루코스 산화효소 또는 글루코스 탈수소효소에 의하여 산화되고, 글루코스 산화효소 또는 글루코스 탈수소효소는 환원된다. 이때, 전자전달매개체는 글루코스 산화효소 또는 글루코스 탈수소효소를 산화시키고, 자신은 환원된다. 환원된 전자전달매개체는 일정 전압이 가해진 전극 표면에서 전자를 잃고 전기화학적으로 다시 산화된다. 시료 내의 글루코스 농도는 전자전달매개체가 산화되는 과정에서 발생되는 전류량에 비례하므로, 이 전류량을 측정함으로써 글루코스 농도를 측정할 수 있다.When a sample, which is the substance to be measured, is injected into the glucose sensor, glucose contained in the sample is oxidized by glucose oxidase or glucose dehydrogenase, and glucose oxidase or glucose dehydrogenase is reduced. At this time, the electron transfer mediator oxidizes glucose oxidase or glucose dehydrogenase, and itself is reduced. The reduced electron transfer mediator loses electrons at the electrode surface subjected to a constant voltage and is oxidized electrochemically again. Since the glucose concentration in the sample is proportional to the amount of current generated during the oxidation of the electron transfer medium, the glucose concentration can be measured by measuring the amount of current.
이온 교환막(60)은 글루코스 반응부(50) 상에 형성되어 있으며, 시료에 포함되어 있는 물질들 중에서 측정 대상 성분만을 통과시키기 때문에, 외부의 불순물 이온 성분의 침투를 방지하여 글루코스 반응부(50)를 구성하는 글루코스 산화효소 또는 글루코스 탈수소효소를 보호한다. 예를 들어, 이온 교환막(60)은 나피온(Nafion)을 포함할 수 있으나, 이는 하나의 예시일 뿐이며, 이온 교환막(60)이 이에 한정되지는 않는다.The ion exchange membrane 60 is formed on the glucose reaction unit 50, and passes only the component to be measured among the substances included in the sample, thereby preventing the penetration of external impurity ion components to prevent the glucose reaction unit 50. Protects glucose oxidase or glucose dehydrogenase. For example, the ion exchange membrane 60 may include Nafion, but this is only one example, and the ion exchange membrane 60 is not limited thereto.
배선부(70)는 전극부(20)를 구성하는 전극들 및 온도 센서(100)로부터 연장 형성된 복수의 전기 배선들로 이루어진다. 이러한 배선부(70)는 도시하지 않은 FPCB(Flexible Printed Circuit Board)와 같은 전기적 연결 매체를 매개로 전류 분석 기능을 하는 감지 분석 수단에 연결될 수 있다. 도면상 도시하지는 않았으나, 배선부(70)의 종단에는 패드 영역이 구비될 수 있으며, FPCB는 이 패드 영역에 접착되어 전기적으로 연결될 수 있다.The wiring unit 70 includes electrodes constituting the electrode unit 20 and a plurality of electrical wires formed from the temperature sensor 100. The wiring unit 70 may be connected to a sensing analysis unit that performs a current analysis function through an electrical connection medium such as a flexible printed circuit board (FPCB) (not shown). Although not shown in the drawings, a pad region may be provided at an end of the wiring unit 70, and the FPCB may be bonded to and electrically connected to the pad region.
온도 센서(100)는 기판(10) 상에 형성되어 글루코스 농도가 측정되는 환경의 온도를 측정하는 구성요소이다. 즉, 온도 센서(100)는 온도에 대응하는 전류를 전류 분석 기능을 하는 IC에 전달하며, IC는 온도 센서(100)로부터 전달받은 전류값을 설정된 변환 알고리즘에 따라 온도값을 변환한다. 측정되는 글루코스 농도에는 온도에 따라 편차가 있을 수 있기 때문에, 글루코스의 농도와 함께 온도를 측정하고, 이 온도에 따라 글루코스의 농도를 보정하거나, 측정된 농도와 온도를 매칭(matching)시켜 활용할 수 있다. The temperature sensor 100 is a component that is formed on the substrate 10 to measure the temperature of the environment in which the glucose concentration is measured. That is, the temperature sensor 100 transmits a current corresponding to the temperature to the IC having a current analysis function, and the IC converts the current value received from the temperature sensor 100 according to a set conversion algorithm. Since the measured glucose concentration may vary depending on the temperature, the temperature may be measured together with the glucose concentration, and the glucose concentration may be corrected according to the temperature, or the measured concentration may be matched with the temperature. .
다음 표 1은 본 발명의 일 실시 예에 따른 글루코스 센서에 대한 재현성 시험 결과로서, 상대전압에 따른 미카엘리스-멘텐 상수(Michaelis-Menten constant, KM), 미카엘리스-멘텐 효소반응속도식에서의 최대반응속도(Vmax)의 실험 결과 데이터이다.Table 1 shows the reproducibility test results for the glucose sensor according to an embodiment of the present invention, the Michaelis-Menten constant (K M ) according to the relative voltage, the maximum in the Michaelis-Menten enzyme reaction rate equation. Experimental data of the reaction rate (V max ).
상대전압(V)Relative voltage (V) 00 -0.1-0.1 -0.2-0.2 -0.3-0.3
KM(mM)K M (mM) 0.750.75 12.1912.19 2.082.08 0.420.42
Vmax(mM/s)Vmax (mM / s) 3.85×10-7 3.85 × 10 -7 6.90×10-6 6.90 × 10 -6 1.58×10-6 1.58 × 10 -6 5.62×10-7 5.62 × 10 -7
표 1을 참조하면, 상대전압이 -0.3V 내지 0.0V의 범위를 충족하는 경우, 감지 대상인 글루코스의 농도에 따른 감지 신호의 선형성이 확보되며 민감도가 개선되며, 선형성 확보 및 민감도 개선을 위한 상대전압의 보다 바람직한 범위는 -0.2V 내지 0V이다. 상대전압이 -0.3V 미만인 경우에는, 환원성 부식으로 인해 감지 신호의 신뢰도가 저하된다. 또한, 상대전압이 0.0V를 초과하는 경우에는, 감지 신호의 선형성이 유지되지 않으며 글루코스의 농도가 높아질수록 편차가 증가한다.Referring to Table 1, when the relative voltage satisfies the range of -0.3V to 0.0V, the linearity of the sensing signal according to the concentration of glucose to be detected is secured and the sensitivity is improved, and the relative voltage for securing the linearity and the sensitivity is improved. The more preferable range of is -0.2V to 0V. If the relative voltage is less than -0.3 V, the reliability of the sense signal is degraded due to reducing corrosion. In addition, when the relative voltage exceeds 0.0 V, the linearity of the sense signal is not maintained and the deviation increases as the concentration of glucose increases.
미카엘리스-멘텐 상수(Michaelis-Menten constant, KM)는 0.4mM 내지 12.2mM일 수 있다. 미카엘리스-멘텐 상수(KM)가 0.4mM 내지 12.2mM의 범위를 충족하는 경우, 글루코스 농도에 따른 감지 신호의 선형성이 확보되며 민감도가 개선된다. 미카엘리스-멘텐 상수(KM)가 0.4mM 미만인 경우에는, 환원성 부식으로 인해 감지 신호의 신뢰도가 저하된다. 또한, 미카엘리스-멘텐 상수(KM)가 12.2mM를 초과하는 경우에는, 감지 신호의 선형성이 유지되지 않는다.Michaelis-Menten constant (K M ) may be 0.4mM to 12.2mM. When the Michaelis-Menten constant (K M ) satisfies the range of 0.4 mM to 12.2 mM, the linearity of the detection signal according to the glucose concentration is ensured and the sensitivity is improved. If the Michaelis-Menten constant (K M ) is less than 0.4 mM, reducing corrosion reduces the reliability of the sense signal. In addition, when the Michaelis-Menten constant K M exceeds 12.2 mM, the linearity of the sense signal is not maintained.
미카엘리스-멘텐 효소반응속도식에서의 최대반응속도(Vmax)는 3.85×10- 7mM/s 내지 6.9×10- 7mM/s일 수 있다. 최대반응속도(Vmax)가 3.85×10- 7mM/s 내지 6.9×10-7mM/s의 범위를 충족하는 경우, 글루코스 농도에 따른 감지 신호의 선형성이 확보되며 민감도가 개선된다. 최대반응속도(Vmax)가 3.85×10- 7mM/s 미만인 경우에는, 환원성 부식으로 인해 감지 신호의 신뢰도가 저하된다. 또한, 최대반응속도(Vmax)가 6.9×10-7mM/s를 초과하는 경우에는, 감지 신호의 선형성이 유지되지 않는다.Michael Let - maximum reaction velocity (V max) of menten enzyme reaction rate equation is 3.85 × 10 - may be a 7 mM / s - 7 mM / s to 6.9 × 10. The maximum reaction velocity (V max) is 3.85 × 10 - if they meet a range of 7 mM / s to 6.9 × 10 -7 mM / s, the linearity of the detection signal corresponding to the glucose concentration is to secure and improve the sensitivity. The 3.85 × 10 maximum reaction velocity (V max) - When 7 mM / s is less than, due to reducing the corrosion decreases the reliability of the detected signal. In addition, when the maximum reaction rate (V max ) exceeds 6.9 × 10 −7 mM / s, the linearity of the sense signal is not maintained.
도 3은 본 발명의 일 실시예에 있어서, 기질인 글루코스 농도에 따른 전압 스윙 테스트(Voltage Swing Test) 결과를 나타낸 도면으로서, 2개의 글루코스 센서 시편에 대한 평가를 위해 상대전압을 각각 0V와 -0.1V로 조정하여 글루코스 농도별로 측정한 결과로서 -0.1V에서 평가시 민감도가 개선되는 효과를 확인하였다. 도 3의 D1, D2는 상대전압이 -0.1V로 조정된 시편의 감지 결과를 나타내고, D1', D2'는 상대전압이 0.0V인 시편의 감지 결과를 나타낸다.FIG. 3 is a diagram illustrating a voltage swing test result according to a glucose concentration, which is a substrate, in which relative voltages are set to 0 V and −0.1 for evaluation of two glucose sensor specimens, respectively. As a result of measuring the concentration of glucose by adjusting to V, the effect of improving the sensitivity at the evaluation at -0.1V was confirmed. D1 and D2 of FIG. 3 represent detection results of the specimen in which the relative voltage is adjusted to -0.1V, and D1 'and D2' represent detection results of the specimen in which the relative voltage is 0.0V.
도 4는 본 발명의 일 실시예에 있어서, 상대전압에 따른 순환 볼타모그램(Cyclic Voltamogram)을 나타낸 도면으로서, 전자수송체인 프러시안 블루(Prussian Blue)의 환원전위 피크값(Peak value)이 0V와 -0.1V사이에 존재하고 있음을 확인할 수 있으며, 상재전압을 -0.1V로 고정함으로써 산화형(Oxidation Form)으로 존재하고 있는 프러시안 블루를 대부분 환원형(Reduction Form)으로 전환하는 것이 가능하며 이로 인해 글루코스 센서의 민감도가 개선될 수 있다.4 is a diagram illustrating a cyclic voltamogram according to a relative voltage, in which a peak value of a reduction potential peak of a Prussian Blue electron transport chain is 0V. It can be confirmed that it exists between and -0.1V, and by fixing the phase voltage to -0.1V, it is possible to convert most of Prussian blue existing in oxidation form to reduction form. This may improve the sensitivity of the glucose sensor.
도 5는 본 발명의 일 실시예에 있어서, 교정 커브(Calibration Curve)를 나타낸 도면으로서, 각 글루코스 농도별로 상대전압을 각각 다르게 하여 평가한 결과를 나타내고, 도 6은 본 발명의 일 실시예에 있어서, 라인위버-버크 플롯(Lineweaver-Burk Plot)을 나타낸 도면으로서, 교정 커브(Calibration Curve)의 결과에서 역수를 취하여 얻어진 그래프로서 미카엘리스-멘텐 상수(KM)은 절편이고, 최대반응속도(Vmax)는 기울기이다.FIG. 5 is a diagram illustrating a calibration curve according to an embodiment of the present invention, and shows a result of evaluating relative voltages for each glucose concentration. FIG. 6 is an embodiment of the present invention. , Lineweaver-Burk plot, a graph obtained by taking the inverse of the result of a calibration curve, Michaelis-Menten constant (K M ) is the intercept, the maximum reaction rate (Vmax ) Is the slope.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 글루코스에 대한 측정 민감도를 최적 범위로 균일하게 유지할 수 있는 글루코스 센서가 제공되는 효과가 있다.As described in detail above, according to the present invention, there is an effect of providing a glucose sensor capable of maintaining the measurement sensitivity to glucose uniformly in an optimal range.
[부호의 설명][Description of the code]
10: 기판10: Substrate
20: 전극부20: electrode part
21-1, 22-1: 작동 전극21-1, 22-1: working electrode
21-2, 22-2: 기준 전극21-2, 22-2: reference electrode
30: 전극보호/전자수송 기능부30: electrode protection / electron transport function
50: 글루코스 반응부50: glucose reaction part
60: 이온 교환막60: ion exchange membrane
70: 배선부70: wiring section
100: 온도 센서100: temperature sensor

Claims (10)

  1. 기판;Board;
    상기 기판 상에 형성된 기준 전극과 작동 전극을 포함하는 전극부;An electrode unit including a reference electrode and an operation electrode formed on the substrate;
    상기 전극부 상에 단일층으로 형성되어 있으며 상기 전극부를 보호하고 전자 수송의 기능을 수행하는 전극보호/전자수송 기능부; 및An electrode protection / electron transport function unit formed on the electrode unit as a single layer and protecting the electrode unit and performing a function of electron transport; And
    상기 전극보호/전자수송 기능부 상에 형성된 글루코스 반응부를 포함하고,It comprises a glucose reaction portion formed on the electrode protection / electron transport function,
    상기 기준 전극과 상기 작동 전극의 전위차인 상대전압은 -0.3V 내지 0.0V인, 글루코스 센서.A relative voltage that is the potential difference between the reference electrode and the working electrode is -0.3V to 0.0V.
  2. 제1항에 있어서,The method of claim 1,
    미카엘리스-멘텐 상수(Michaelis-Menten constant, KM)는 0.4mM 내지 12.2mM인, 글루코스 센서.Michaelis-Menten constant (K M ) is a glucose sensor, 0.4mM to 12.2mM.
  3. 제1항에 있어서,The method of claim 1,
    미카엘리스-멘텐 효소반응속도식에서의 최대반응속도(Vmax)는 3.85×10- 7mM/s 내지 6.9×10-7mM/s인, 글루코스 센서.Michael-less-menten maximum reaction velocity (V max) of the enzyme reaction rate equation was 3.85 × 10 - 7 is mM / s to 6.9 × 10 -7 mM / s, the glucose sensor.
  4. 제1항에 있어서,The method of claim 1,
    상기 전극보호/전자수송 기능부는 상기 전극부를 보호하는 전극 보호체와 상기 전자 수송의 기능을 하는 전자 수송체가 혼합된 구조를 갖는 것을 특징으로 하는, 글루코스 센서.And said electrode protection / electron transport function part has a structure in which an electrode protector for protecting said electrode part and an electron transporter functioning as said electron transport are mixed.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 전극 보호체는 카본(carbon)을 포함하는 것을 특징으로 하는, 글루코스 센서.The electrode protector comprises a carbon, characterized in that the glucose sensor.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 전자 수송체는 프러시안 블루(prussian blue)를 포함하는 것을 특징으로 하는, 글루코스 센서.Wherein said electron transporter comprises prussian blue.
  7. 제1항에 있어서,The method of claim 1,
    상기 전극부는 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 티타늄(Ti), 니켈(Ni), 주석(Ni), 몰리브덴(Mo), 코발트(Co), APC로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 글루코스 센서.The electrode part is made of gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti), nickel (Ni), tin (Ni), molybdenum (Mo), cobalt (Co), and APC. A glucose sensor, characterized in that it comprises one or more selected from the group consisting of.
  8. 제1항에 있어서,The method of claim 1,
    상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 하는, 글루코스 센서.The glucose reaction unit comprises a glucose oxidase or glucose dehydrogenase, glucose sensor.
  9. 제8항에 있어서,The method of claim 8,
    상기 글루코스 반응부 상에 형성된 이온 교환막을 더 포함하는 것을 특징으로 하는, 글루코스 센서.It further comprises an ion exchange membrane formed on the glucose reaction unit, glucose sensor.
  10. 제9항에 있어서,The method of claim 9,
    상기 이온 교환막은 불순물 이온 성분의 침투를 방지하여 상기 글루코스 반응부를 구성하는 글루코스 산화효소 또는 글루코스 탈수소효소를 보호하는 것을 특징으로 하는, 글루코스 센서.Wherein the ion exchange membrane protects glucose oxidase or glucose dehydrogenase constituting the glucose reaction unit by preventing penetration of impurity ion components.
PCT/KR2019/004243 2018-04-30 2019-04-10 Glucose sensor WO2019212159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180049632A KR102610724B1 (en) 2018-04-30 2018-04-30 Glucose sensor
KR10-2018-0049632 2018-04-30

Publications (1)

Publication Number Publication Date
WO2019212159A1 true WO2019212159A1 (en) 2019-11-07

Family

ID=68385912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004243 WO2019212159A1 (en) 2018-04-30 2019-04-10 Glucose sensor

Country Status (3)

Country Link
KR (1) KR102610724B1 (en)
TW (1) TW201945728A (en)
WO (1) WO2019212159A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102463324B1 (en) * 2020-01-10 2022-11-04 동우 화인켐 주식회사 Bio Sensor
KR102481839B1 (en) * 2020-07-09 2022-12-28 동우 화인켐 주식회사 Biosensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070121980A (en) * 2006-06-23 2007-12-28 안동대학교 산학협력단 Electrode preparation method for electrochemical biosensor and electrode structure thereof
US20140197042A1 (en) * 2013-01-11 2014-07-17 Northeastern University Saliva Glucose Monitoring System
KR101440735B1 (en) * 2013-12-06 2014-09-17 안광현 Glucose Measurement System Minimize the Number of Blood Sampling and Method Thereof
KR101447970B1 (en) * 2013-06-13 2014-10-13 명지대학교 산학협력단 Sensor strip for blood glucose monitoring, method of manufacturing the sensor strip, and monitoring device using the same
KR101789687B1 (en) * 2015-06-12 2017-10-25 서울대학교산학협력단 Glucose control system, method for forming the clucose control system, and method for controlling clucose using the clucose control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110272A (en) 2001-11-20 2001-12-12 홍영표 Glucose Electrode Containing Pt metal and its efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070121980A (en) * 2006-06-23 2007-12-28 안동대학교 산학협력단 Electrode preparation method for electrochemical biosensor and electrode structure thereof
US20140197042A1 (en) * 2013-01-11 2014-07-17 Northeastern University Saliva Glucose Monitoring System
KR101447970B1 (en) * 2013-06-13 2014-10-13 명지대학교 산학협력단 Sensor strip for blood glucose monitoring, method of manufacturing the sensor strip, and monitoring device using the same
KR101440735B1 (en) * 2013-12-06 2014-09-17 안광현 Glucose Measurement System Minimize the Number of Blood Sampling and Method Thereof
KR101789687B1 (en) * 2015-06-12 2017-10-25 서울대학교산학협력단 Glucose control system, method for forming the clucose control system, and method for controlling clucose using the clucose control system

Also Published As

Publication number Publication date
TW201945728A (en) 2019-12-01
KR20190125620A (en) 2019-11-07
KR102610724B1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US7285198B2 (en) Strip electrode with conductive nano tube printing
WO2019212159A1 (en) Glucose sensor
CN109613078B (en) Anti-interference electrochemical detection sensor and manufacturing method thereof
WO2019059496A1 (en) Glucose sensor
WO2019045232A1 (en) Glucose sensor and method for manufacturing same
WO2019031845A1 (en) Graphene electrode-based glucose sensor for in vitro diagnosis
WO2019164111A1 (en) Glucose sensor
WO2021033870A1 (en) Biosensor
KR20190009973A (en) Glucose sensor
WO2014046318A1 (en) Sample recognition method and biosensor using same
KR20210048131A (en) Bio Sensor
WO2021075944A1 (en) Biosensor
WO2018147619A1 (en) Glucose sensor and method for manufacturing same
WO2021080132A1 (en) Biosensor and concentration measurement method using same
WO2020204455A1 (en) Biosensor
WO2023043105A1 (en) Biosensor
WO2013133459A1 (en) Reagent composition for biosensors and biosensor comprising reagent layer formed of the same
KR102463324B1 (en) Bio Sensor
KR20200093871A (en) Glucose sensing electrode and glucose sensor including the same
KR20200084678A (en) Glucose sensing electrode, method of maufacturing the same and glucose sensor including the same
WO2023277518A1 (en) Biosensor
KR20210097444A (en) Bio Sensor
WO2019083206A1 (en) Biosensor robust against coffee ring effect
US20220161256A1 (en) Biochemical test chip
KR20210116889A (en) Biosensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796892

Country of ref document: EP

Kind code of ref document: A1