WO2019045232A1 - Glucose sensor and method for manufacturing same - Google Patents

Glucose sensor and method for manufacturing same Download PDF

Info

Publication number
WO2019045232A1
WO2019045232A1 PCT/KR2018/006340 KR2018006340W WO2019045232A1 WO 2019045232 A1 WO2019045232 A1 WO 2019045232A1 KR 2018006340 W KR2018006340 W KR 2018006340W WO 2019045232 A1 WO2019045232 A1 WO 2019045232A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
glucose
function layer
forming
electron
Prior art date
Application number
PCT/KR2018/006340
Other languages
French (fr)
Korean (ko)
Inventor
최봉진
천승환
금중한
김태균
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Publication of WO2019045232A1 publication Critical patent/WO2019045232A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a glucose sensor and a manufacturing method thereof. More specifically, the present invention simplifies the process by forming the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes through one printing process, thereby reducing the number, time and cost of the required processes And to a glucose sensor capable of realizing a thin film type and a method for manufacturing the same.
  • Glucose is a broad nutrient source of most organisms and plays a fundamental role in energy supply, carbon storage, biosynthesis, and carbon skeleton and cell wall formation.
  • Glucose sensor which measures glucose concentration through potential difference or current measurement, Is being actively studied.
  • glucose sensors are based on the fixation of enzymes such as glucose oxidase or glucose dehydrogenase, which catalyze the oxidation of glucose to gluconolactone.
  • enzymes such as glucose oxidase or glucose dehydrogenase, which catalyze the oxidation of glucose to gluconolactone.
  • a prussian blue layer is formed on the electrode by an electroplating method in order to increase the electrical sensitivity of the electrode. Since the prussian blue layer is highly oxidative, There is a problem that the sensitivity of the electrode is increased but the metal component constituting the electrode is oxidized and corroded by the Prussian blue layer.
  • a step of further printing a carbon protective layer between the electrode and the Prussian blue layer is performed in order to prevent electrode corrosion by prussian blue.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 2001-0110272 (Disclosure Date: December 12, 2001, Name: Electrode for analyzing glucose containing Pt metal)
  • the present invention is directed to reducing the number, time, and cost of processes required to manufacture a glucose sensor.
  • the present invention has a technical object to reduce the thickness of the glucose sensor by implementing electrode protection means for protecting the electrode and electrode transport means for transporting electrons to the electrode as one layer.
  • a method of fabricating a glucose sensor including: forming an electrode portion having a plurality of electrodes on a substrate; forming an electrode protector on the electrode portion, Forming a glucose reaction part on the electrode protection / electron transporting function layer, and forming an ion exchange membrane on the glucose reaction part And an ion exchange membrane forming step.
  • a paste mixed with the electrode protecting material and the electron transporting material is printed on the electrode part and dried, Thereby forming a transport function layer.
  • the electrode protecting member includes carbon.
  • the electron transporting body may include prussian blue.
  • the electrode portion may be formed of gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti), nickel (Ni), tin (Mo), cobalt (Co), and APC.
  • the glucose reaction unit may include a glucose oxidase or a glucose dehydrogenase.
  • the ion exchange membrane prevents permeation of an impurity ion component, thereby protecting a glucose oxidase or a glucose dehydrogenase constituting the glucose reaction unit.
  • the ion exchange membrane may include Nafion.
  • the glucose sensor according to the present invention includes an electrode protection electrode / electron transport function layer including an electrode portion formed of a plurality of electrodes formed on a substrate, an electrode protector formed on the electrode portion and an electron transporter, A glucose reaction part formed on the functional layer and an ion exchange membrane formed on the glucose reaction part.
  • the electrode protecting / electron transporting function layer is formed of one layer in which the electrode protecting body and the electron transporting body are mixed.
  • the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes are formed on the electrodes through one printing step, thereby simplifying the process.
  • the glucose sensor can be made thinner.
  • FIG. 1 is a process flow chart of a method of manufacturing a glucose sensor according to an embodiment of the present invention
  • FIGS. 2 to 5 are cross-sectional views illustrating a method of manufacturing a glucose sensor according to an embodiment of the present invention
  • FIG. 6 is an exemplary top view of a glucose sensor made in accordance with one embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms.
  • the terms may be named for the purpose of distinguishing one element from another, for example, without departing from the scope of the right according to the concept of the present invention, the first element may be referred to as a second element,
  • the component may also be referred to as a first component.
  • FIG. 1 is a process flow diagram of a method of manufacturing a glucose sensor according to an embodiment of the present invention
  • FIGS. 2 to 5 are sectional views of a process for manufacturing a glucose sensor according to an embodiment of the present invention
  • 1 is an exemplary top view of a glucose sensor made according to an embodiment.
  • a method for fabricating a glucose sensor includes forming an electrode (S10), forming an electrode protection / electron transport layer (S20), forming a glucose reaction part (S30) And an ion exchange membrane forming step (S40).
  • an electrode forming step (S10) a process of forming an electrode unit 20 including a plurality of electrodes on a substrate 10 is performed.
  • the electrode unit 20 senses an electrical signal generated by a reaction between a substance included in the glucose reaction unit 40 described later and glucose contained in the measurement target substance.
  • the substance to be measured may be, but not limited to, sweat, body fluids, blood, etc. of the human body.
  • the electrodes constituting the electrode unit 20 correspond to the sensing electrodes 21-1 and 22-1 and the sensing electrodes 21-1 and 22-1, respectively.
  • the reference electrode 21-2 or 22-2 may be formed of gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti ), Nickel (Ni), tin (Ni), molybdenum (Mo), cobalt (Co), and APC.
  • APC is an Ag-Pd-Cu alloy.
  • Reference numeral 60 in FIG. 6 denotes electric wiring
  • reference numeral 70 denotes a temperature sensor. This temperature sensor can be used as a means for correcting the measurement deviation according to the temperature.
  • the substrate 10 serves to provide a structural base of the components making up the glucose sensor.
  • the substrate 10 may be implemented in the form of a substrate film having a hard material, such as glass, or having flexible characteristics.
  • polyester resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate and polybutylene terephthalate; Cellulose-based resins such as diacetylcellulose and triacetylcellulose; Polycarbonate resin; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymer; Polyolefin resins such as polyethylene, polypropylene, cyclo- or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride resin; Amide resins such as nylon and aromatic polyamide; Imide resin; Polyether sulf
  • a film made of a thermosetting resin such as (meth) acrylic, urethane, acrylic urethane, epoxy, or silicone or a film made of an ultraviolet curable resin may be used.
  • the thickness of such a transparent optical film can be suitably determined, but in general, it can be determined to be 1 to 500 ⁇ ⁇ in consideration of workability such as strength and handling property, thin layer property, and the like. Particularly preferably 1 to 300 mu m, and more preferably 5 to 200 mu m.
  • Such a base film may contain one or more suitable additives.
  • the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment and a colorant.
  • the base film may be a structure including various functional layers such as a hard coating layer, an antireflection layer, and a gas barrier layer on one side or both sides of the film.
  • the functional layer is not limited to the above, and may include various functional layers can do.
  • the base film may be surface-treated.
  • the surface treatment include a chemical treatment such as a plasma treatment, a corona treatment, a dry treatment such as a primer treatment, and an alkali treatment including a saponification treatment.
  • an electrode protection / electron transport function layer 30 including an electrode protection body and an electron transporter is formed on the electrode portion 20, Are formed.
  • the electrode protector may include carbon, and the electron transport material may include prussian blue.
  • the Prussian blue which is an electron transport included in the electrode protection / electron transport function layer 30, functions to increase the electrical sensitivity of the electrode unit 20.
  • Such prussian blue is a blue pigment mainly composed of potassium hexacyanoferrate (II) iron (III) oxide, and has a high oxidizing property.
  • the sensitivity of the electrode unit 20 can be improved by forming Prussian blue between the electrode unit 20 and the glucose reaction unit 40, the metallic electrode unit 20 located at the lower portion of Prussian blue It can be oxidized and corroded.
  • Prussian blue which is an electron transporting material, and an electrode protection carbon are mixed to form an electrode protection / electron transport function layer 30 on the electrode portion 20, (20) corrosion can be prevented, and the sensitivity of the electrode portion (20) can be improved.
  • the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes can be formed on the electrodes through one printing process, the process can be simplified and the manufacturing time and cost can be reduced .
  • a glucose reaction unit 40 is formed on the electrode protection / electron transport function layer 30 in the glucose reaction unit formation step S30.
  • the glucose reaction unit 40 is a component that reacts with glucose contained in the measurement target substance.
  • the glucose reaction unit 40 may include a glucose oxidase or a glucose dehydrogenase.
  • the reaction in the glucose reaction unit 40 and the signal detection principle of the electrode unit 20 will be described below as an example.
  • the glucose contained in the sample is oxidized by a glucose oxidase or a glucose dehydrogenase, and a glucose oxidase or a glucose dehydrogenase is reduced.
  • the electron transfer mediator oxidizes glucose oxidase or glucose dehydrogenase and itself is reduced.
  • the reduced electron transfer mediator loses electrons at the surface of the electrode to which a constant voltage is applied and is electrochemically reoxidized.
  • the glucose concentration in the sample is proportional to the amount of current generated in the course of the oxidation of the electron transport mediator. Thus, the glucose concentration can be measured by measuring this amount of current.
  • a process of forming the ion exchange membrane 50 on the glucose reaction unit 40 is performed.
  • the ion exchange membrane 50 passes only the component to be measured out of the substances contained in the sample, it prevents the penetration of the external impurity ion component and protects the glucose oxidase or glucose dehydrogenase constituting the glucose reaction unit 40 do.
  • the ion exchange membrane 50 may include Nafion, but this is only one example, and the ion exchange membrane 50 is not limited thereto.
  • the electrode protecting / electron transporting function layer 30 is formed as a single layer in which the electrode protecting member and the electron transporting material are mixed, a thin film glucose sensor can be obtained in comparison with the conventional one.
  • the electrode protection function layer and the electron transport function layer exist as separate layers and the thickness of the glucose sensor is thick, but according to the present invention, the electrode protection / It is possible to make the glucose sensor thinner.
  • the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes are formed on the electrodes through one printing step, thereby simplifying the process.
  • the glucose sensor can be made thinner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to a method for manufacturing a glucose sensor. The present invention comprises: an electrode forming step of forming an electrode part composed of a plurality of electrodes on a substrate; an electrode protection/electron transport function layer forming step of forming an electrode protection/electron transport function layer including an electrode protector and an electron transporter on the electrode part; a glucose reaction part forming step of forming a glucose reaction part on the electrode protection/electron transport function layer; and an ion exchange membrane forming step of forming an ion exchange membrane on the glucose reaction part. According to the present invention, the number, time, and cost of the processes required to manufacture a glucose sensor can be reduced.

Description

글루코스 센서 및 그 제조방법Glucose sensor and manufacturing method thereof
본 발명은 글루코스 센서 및 그 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 1회의 인쇄 공정을 통해 전극 상에 형성함으로써 공정을 간소화하고 요구되는 공정의 수와 시간 및 비용을 줄일 수 있으며, 박막형으로 구현할 수 있는 글루코스 센서 및 그 제조방법에 관한 것이다.The present invention relates to a glucose sensor and a manufacturing method thereof. More specifically, the present invention simplifies the process by forming the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes through one printing process, thereby reducing the number, time and cost of the required processes And to a glucose sensor capable of realizing a thin film type and a method for manufacturing the same.
글루코스(glucose)는 대부분 유기체의 광범위한 영양 공급원이며, 에너지 공급, 탄소 저장, 생합성 및 탄소 골격 및 세포벽 형성의 기초적인 역할을 수행하는 성분으로서, 전위차 또는 전류 측정을 통해 글루코스의 농도를 측정하는 글루코스 센서에 대한 연구가 활발히 수행되고 있다.Glucose is a broad nutrient source of most organisms and plays a fundamental role in energy supply, carbon storage, biosynthesis, and carbon skeleton and cell wall formation. Glucose sensor, which measures glucose concentration through potential difference or current measurement, Is being actively studied.
글루코스 센서에 대한 대부분의 연구들은 글루코스의 글루코노락톤 (gluconolactone)으로의 산화를 촉진하는 글루코스 산화효소(glucose oxidase) 또는 글루코스 탈수소효소와 같은 효소의 고정에 기반을 두고 있다.Most studies on glucose sensors are based on the fixation of enzymes such as glucose oxidase or glucose dehydrogenase, which catalyze the oxidation of glucose to gluconolactone.
한편, 글루코스 센서와 관련한 종래 기술에 따르면, 전극의 전기적인 감도를 높이기 위해 전극 상에 프러시안 블루층(prussian blue layer)을 전기도금 방식으로 형성하는데, 이 프러시안 블루층은 산화성이 크기 때문에, 전극의 감도는 높아지나, 전극을 구성하는 금속 성분이 프러시안 블루층에 의해 산화되어 부식된다는 문제점이 있다.According to the prior art related to the glucose sensor, a prussian blue layer is formed on the electrode by an electroplating method in order to increase the electrical sensitivity of the electrode. Since the prussian blue layer is highly oxidative, There is a problem that the sensitivity of the electrode is increased but the metal component constituting the electrode is oxidized and corroded by the Prussian blue layer.
종래 기술에 따르면, 프러시안 블루에 의한 전극 부식 방지를 위해 전극과 프러시안 블루층 사이에 카본 보호층을 추가로 인쇄하는 공정을 수행한다.According to the prior art, a step of further printing a carbon protective layer between the electrode and the Prussian blue layer is performed in order to prevent electrode corrosion by prussian blue.
이와 같이, 종래 기술에 따르면, 전극 상에 카본 보호층을 인쇄한 이후 카본 보호층에 프러시안 블루층을 전기도금하는 공정을 수행하였기 때문에 제조 시간과 비용 측면에서 비효율이 발생하는 문제점이 있었다.As described above, according to the related art, since the process of electroplating the prussian blue layer on the carbon protective layer after printing the carbon protective layer on the electrode has been performed, there has been a problem that inefficiency occurs in terms of manufacturing time and cost.
또한, 카본 보호층과 프러시안 블루층이 별개의 층으로 존재하기 때문에, 글루코스 센서의 박막화를 저해하는 문제점이 있었다.Further, since the carbon protective layer and the Prussian blue layer are present as separate layers, there is a problem that the thinness of the glucose sensor is hindered.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 공개특허공보 특2001-0110272호(공개일자: 2001년 12월 12일, 명칭: Pt 금속을 함유한 글루코스 분석용 전극과 성능)(Patent Document 1) Korean Patent Laid-Open Publication No. 2001-0110272 (Disclosure Date: December 12, 2001, Name: Electrode for analyzing glucose containing Pt metal)
본 발명은 글루코스 센서를 제조하기 위해 요구되는 공정의 수와 시간 및 비용을 줄이는 것을 기술적 과제로 한다.SUMMARY OF THE INVENTION The present invention is directed to reducing the number, time, and cost of processes required to manufacture a glucose sensor.
또한, 본 발명은 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 1회의 인쇄 공정을 통해 전극 상에 형성함으로써 공정을 간소화할 수 있는 글루코스 센서 제조방법을 제공하는 것을 기술적 과제로 한다.It is another object of the present invention to provide a method of manufacturing a glucose sensor capable of simplifying a process by forming an electrode protecting means for protecting the electrode and an electrode transporting means for transporting electrons to the electrode through one printing process on the electrode. .
또한, 본 발명은 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 하나의 층으로 구현함으로써, 글루코스 센서를 박막화하는 것을 기술적 과제로 한다.In addition, the present invention has a technical object to reduce the thickness of the glucose sensor by implementing electrode protection means for protecting the electrode and electrode transport means for transporting electrons to the electrode as one layer.
이러한 기술적 과제를 해결하기 위한 본 발명에 따른 글루코스 센서 제조방법은 기판 상에 복수의 전극들로 이루어진 전극부를 형성하는 전극 형성단계, 상기 전극부 상에 전극 보호체와 전자 수송체를 포함하는 전극보호/전자수송 기능층을 형성하는 전극보호/전자수송 기능층 형성단계, 상기 전극보호/전자수송 기능층 상에 글루코스 반응부를 형성하는 글루코스 반응부 형성단계 및 상기 글루코스 반응부 상에 이온 교환막을 형성하는 이온교환막 형성단계를 포함한다.According to an aspect of the present invention, there is provided a method of fabricating a glucose sensor, including: forming an electrode portion having a plurality of electrodes on a substrate; forming an electrode protector on the electrode portion, Forming a glucose reaction part on the electrode protection / electron transporting function layer, and forming an ion exchange membrane on the glucose reaction part And an ion exchange membrane forming step.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 전극보호/전자수송 기능층 형성단계에서는, 상기 전극 보호체와 상기 전자 수송체가 혼합된 페이스트를 상기 전극부 상에 인쇄하여 건조함으로써 상기 전극보호/전자수송 기능층을 형성하는 것을 특징으로 한다.In the method for manufacturing a glucose sensor according to the present invention, in the step of forming the electrode protection / electron transporting function layer, a paste mixed with the electrode protecting material and the electron transporting material is printed on the electrode part and dried, Thereby forming a transport function layer.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 전극 보호체는 카본(carbon)을 포함하는 것을 특징으로 한다.In the method for manufacturing a glucose sensor according to the present invention, the electrode protecting member includes carbon.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 전자 수송체는 프러시안 블루(prussian blue)를 포함하는 것을 특징으로 한다.In the method of manufacturing a glucose sensor according to the present invention, the electron transporting body may include prussian blue.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 전극부는 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 티타늄(Ti), 니켈(Ni), 주석(Ni), 몰리브덴(Mo), 코발트(Co), APC로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.In the method for manufacturing a glucose sensor according to the present invention, the electrode portion may be formed of gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti), nickel (Ni), tin (Mo), cobalt (Co), and APC.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 한다.In the method for manufacturing a glucose sensor according to the present invention, the glucose reaction unit may include a glucose oxidase or a glucose dehydrogenase.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 이온 교환막은 불순물 이온 성분의 침투를 방지하여 상기 글루코스 반응부를 구성하는 글루코스 산화효소 또는 글루코스 탈수소효소를 보호하는 것을 특징으로 한다.In the method for manufacturing a glucose sensor according to the present invention, the ion exchange membrane prevents permeation of an impurity ion component, thereby protecting a glucose oxidase or a glucose dehydrogenase constituting the glucose reaction unit.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 이온 교환막은 나피온(Nafion)을 포함하는 것을 특징으로 한다.In the method of manufacturing a glucose sensor according to the present invention, the ion exchange membrane may include Nafion.
본 발명에 따른 글루코스 센서는 기판 상에 형성된 복수의 전극들로 이루어진 전극부, 상기 전극부 상에 형성된 전극 보호체와 전자 수송체를 포함하는 전극보호/전자수송 기능층, 상기 전극보호/전자수송 기능층 상에 형성된 글루코스 반응부 및 상기 글루코스 반응부 상에 형성된 이온 교환막을 포함한다.The glucose sensor according to the present invention includes an electrode protection electrode / electron transport function layer including an electrode portion formed of a plurality of electrodes formed on a substrate, an electrode protector formed on the electrode portion and an electron transporter, A glucose reaction part formed on the functional layer and an ion exchange membrane formed on the glucose reaction part.
본 발명에 따른 글루코스 센서에 있어서, 상기 전극보호/전자수송 기능층은, 상기 전극 보호체와 상기 전자 수송체가 혼합된 하나의 층으로 형성되어 있는 것을 특징으로 한다.In the glucose sensor according to the present invention, the electrode protecting / electron transporting function layer is formed of one layer in which the electrode protecting body and the electron transporting body are mixed.
본 발명에 따르면, 글루코스 센서를 제조하기 위해 요구되는 공정의 수와 시간 및 비용을 줄일 수 있는 효과가 있다.According to the present invention, it is possible to reduce the number, time, and cost of a process required for manufacturing a glucose sensor.
또한, 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 1회의 인쇄 공정을 통해 전극 상에 형성함으로써 공정을 간소화할 수 있다.In addition, the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes are formed on the electrodes through one printing step, thereby simplifying the process.
또한, 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 하나의 층으로 구현함으로써, 글루코스 센서를 박막화할 수 있다.In addition, by implementing electrode protection means for protecting the electrodes and electrode transport means for transporting electrons to the electrodes, the glucose sensor can be made thinner.
도 1은 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 공정 순서도이고,FIG. 1 is a process flow chart of a method of manufacturing a glucose sensor according to an embodiment of the present invention,
도 2 내지 도 5는 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 공정 단면도들이고,FIGS. 2 to 5 are cross-sectional views illustrating a method of manufacturing a glucose sensor according to an embodiment of the present invention,
도 6은 본 발명의 일 실시 예에 따라 제조된 글루코스 센서의 예시적인 평면도이다.Figure 6 is an exemplary top view of a glucose sensor made in accordance with one embodiment of the present invention.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.It is to be understood that the specific structural or functional description of embodiments of the present invention disclosed herein is for illustrative purposes only and is not intended to limit the scope of the inventive concept But may be embodied in many different forms and is not limited to the embodiments set forth herein.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.The embodiments according to the concept of the present invention can make various changes and can take various forms, so that the embodiments are illustrated in the drawings and described in detail herein. It should be understood, however, that it is not intended to limit the embodiments according to the concepts of the present invention to the particular forms disclosed, but includes all modifications, equivalents, or alternatives falling within the spirit and scope of the invention.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2구성 요소는 제1구성 요소로도 명명될 수 있다.The terms first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The terms may be named for the purpose of distinguishing one element from another, for example, without departing from the scope of the right according to the concept of the present invention, the first element may be referred to as a second element, The component may also be referred to as a first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between. Other expressions that describe the relationship between components, such as "between" and "between" or "neighboring to" and "directly adjacent to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises" or "having" and the like are used to specify that there are features, numbers, steps, operations, elements, parts or combinations thereof described herein, But do not preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the meaning of the context in the relevant art and, unless explicitly defined herein, are to be interpreted as ideal or overly formal Do not.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 공정 순서도이고, 도 2 내지 도 5는 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 공정 단면도들이고, 도 6은 본 발명의 일 실시 예에 따라 제조된 글루코스 센서의 예시적인 평면도이다.FIG. 1 is a process flow diagram of a method of manufacturing a glucose sensor according to an embodiment of the present invention, FIGS. 2 to 5 are sectional views of a process for manufacturing a glucose sensor according to an embodiment of the present invention, 1 is an exemplary top view of a glucose sensor made according to an embodiment.
도 1 내지 도 6을 참조하면, 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법은 전극 형성단계(S10), 전극보호/전자수송 기능층 형성단계(S20), 글루코스 반응부 형성단계(S30) 및 이온교환막 형성단계(S40)를 포함한다.Referring to FIGS. 1 to 6, a method for fabricating a glucose sensor according to an embodiment of the present invention includes forming an electrode (S10), forming an electrode protection / electron transport layer (S20), forming a glucose reaction part (S30) And an ion exchange membrane forming step (S40).
먼저, 도 1 및 도 2를 참조하면, 전극 형성단계(S10)에서는, 기판(10) 상에 복수의 전극들로 이루어진 전극부(20)를 형성하는 과정이 수행된다.First, referring to FIGS. 1 and 2, in an electrode forming step (S10), a process of forming an electrode unit 20 including a plurality of electrodes on a substrate 10 is performed.
전극부(20)는 후술하는 글루코스 반응부(40)를 구성하는 물질과 측정 대상 물질에 포함되어 있는 글루코스의 반응에 의해 발생된 전기적 신호를 감지한다. 예를 들어, 측정 대상 물질은 인체의 땀, 체액, 혈액 등일 수 있으나, 이에 한정되지는 않는다.The electrode unit 20 senses an electrical signal generated by a reaction between a substance included in the glucose reaction unit 40 described later and glucose contained in the measurement target substance. For example, the substance to be measured may be, but not limited to, sweat, body fluids, blood, etc. of the human body.
예를 들어, 도 6에 예시된 바와 같이, 전극부(20)를 구성하는 전극들은 감지 전극들(21-1, 22-1) 및 이 감지 전극들(21-1, 22-1)에 대응하는 기준 전극들(21-2, 22-2)을 포함하여 구성될 수 있으며, 전극부(20)는 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 티타늄(Ti), 니켈(Ni), 주석(Ni), 몰리브덴(Mo), 코발트(Co), APC로 이루어진 군에서 선택된 하나 이상을 포함하거나, 이들의 합금일 수 있다. APC는 Ag-Pd-Cu 합금이다.For example, as illustrated in FIG. 6, the electrodes constituting the electrode unit 20 correspond to the sensing electrodes 21-1 and 22-1 and the sensing electrodes 21-1 and 22-1, respectively. And the reference electrode 21-2 or 22-2 may be formed of gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium (Ti ), Nickel (Ni), tin (Ni), molybdenum (Mo), cobalt (Co), and APC. APC is an Ag-Pd-Cu alloy.
도 6의 도면부호 60은 전기 배선들이고, 도면부호 70은 온도 센서이다. 이 온도 센서는 온도에 따른 측정 편차를 보정하는 수단으로 이용될 수 있다. Reference numeral 60 in FIG. 6 denotes electric wiring, and reference numeral 70 denotes a temperature sensor. This temperature sensor can be used as a means for correcting the measurement deviation according to the temperature.
기판(10)은 글루코스 센서를 구성하는 구성요소들의 구조적인 기지(base)를 제공하는 기능을 한다.The substrate 10 serves to provide a structural base of the components making up the glucose sensor.
예를 들어, 기판(10)은 유리 등과 같은 경성 재질을 갖거나 플렉서블 특성을 갖는 기재 필름 형태로 구현일 수 있다. 기판(10)이 플렉서블하게 구현되는 경우 기재 필름에 적용될 수 있는 구체적인 물질의 예로는, 폴리에틸렌테레프탈레이트, 폴리에틸렌이소프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르계 수지; 디아세틸셀룰로오스, 트리아세틸셀룰로오스 등의 셀룰로오스계 수지; 폴리카보네이트계 수지; 폴리메틸(메타)아크릴레이트, 폴리에틸(메타)아크릴레이트 등의 아크릴계 수지; 폴리스티렌, 아크릴로니트릴-스티렌 공중합체 등의 스티렌계 수지; 폴리에틸렌, 폴리프로필렌, 시클로계 또는 노보넨 구조를 갖는 폴리올레핀, 에틸렌-프로필렌 공중합체 등의 폴리올레핀계 수지; 염화비닐계 수지; 나일론, 방향족 폴리아미드 등의 아미드계 수지; 이미드계 수지; 폴리에테르술폰계 수지; 술폰계 수지; 폴리에테르에테르케톤계 수지; 황화 폴리페닐렌계 수지; 비닐알코올계 수지; 염화비닐리덴계 수지; 비닐부티랄계 수지; 알릴레이트계 수지; 폴리옥시메틸렌계 수지; 에폭시계 수지 등과 같은 열가소성 수지로 구성된 필름을 들 수 있으며, 상기 열가소성 수지의 블렌드물로 구성된 필름도 사용할 수 있다. 또한, (메타)아크릴계, 우레탄계, 아크릴우레탄계, 에폭시계, 실리콘계 등의 열경화성 수지 또는 자외선 경화형 수지로 된 필름을 이용할 수도 있다. 이와 같은 투명 광학 필름의 두께는 적절히 결정될 수 있지만, 일반적으로는 강도나 취급성 등의 작업성, 박층성 등을 고려하여, 1 ∼ 500㎛로 결정될 수 있다. 특히 1 ∼ 300㎛가 바람직하고, 5 ∼ 200㎛가 보다 바람직하다.For example, the substrate 10 may be implemented in the form of a substrate film having a hard material, such as glass, or having flexible characteristics. Examples of specific materials that can be applied to the substrate film when the substrate 10 is flexibly embodied include polyester resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate and polybutylene terephthalate; Cellulose-based resins such as diacetylcellulose and triacetylcellulose; Polycarbonate resin; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymer; Polyolefin resins such as polyethylene, polypropylene, cyclo- or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride resin; Amide resins such as nylon and aromatic polyamide; Imide resin; Polyether sulfone type resin; Sulfone based resin; Polyether ether ketone resin; A sulfided polyphenylene resin; Vinyl alcohol-based resin; Vinylidene chloride resins; Vinyl butyral resin; Allylate series resin; Polyoxymethylene type resin; Epoxy resin, and the like, and a film composed of the blend of the thermoplastic resin may also be used. Further, a film made of a thermosetting resin such as (meth) acrylic, urethane, acrylic urethane, epoxy, or silicone or a film made of an ultraviolet curable resin may be used. The thickness of such a transparent optical film can be suitably determined, but in general, it can be determined to be 1 to 500 占 퐉 in consideration of workability such as strength and handling property, thin layer property, and the like. Particularly preferably 1 to 300 mu m, and more preferably 5 to 200 mu m.
이러한 기재 필름은 적절한 1종 이상의 첨가제가 함유된 것일 수도 있다. 첨가제로는, 예컨대 자외선흡수제, 산화방지제, 윤활제, 가소제, 이형제, 착색방지제, 난연제, 핵제, 대전방지제, 안료, 착색제 등을 들 수 있다. 기재 필름은 필름의 일면 또는 양면에 하드코팅층, 반사방지층, 가스배리어층과 같은 다양한 기능성층을 포함하는 구조일 수 있으며, 기능성층은 전술한 것으로 한정되는 것은 아니며, 용도에 따라 다양한 기능성층을 포함할 수 있다.Such a base film may contain one or more suitable additives. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment and a colorant. The base film may be a structure including various functional layers such as a hard coating layer, an antireflection layer, and a gas barrier layer on one side or both sides of the film. The functional layer is not limited to the above, and may include various functional layers can do.
또한, 필요에 따라 기재 필름은 표면 처리된 것일 수 있다. 이러한 표면 처리로는 플라즈마(plasma) 처리, 코로나(corona) 처리, 프라이머(primer) 처리 등의 건식 처리, 검화 처리를 포함하는 알칼리 처리 등의 화학 처리 등을 들 수 있다.Further, if necessary, the base film may be surface-treated. Examples of the surface treatment include a chemical treatment such as a plasma treatment, a corona treatment, a dry treatment such as a primer treatment, and an alkali treatment including a saponification treatment.
도 1 및 도 3을 참조하면, 전극보호/전자수송 기능층 형성단계(S20)에서는, 전극부(20) 상에 전극 보호체와 전자 수송체를 포함하는 전극보호/전자수송 기능층(30)을 형성하는 과정이 수행된다.1 and 3, in the electrode protection / electron transport function layer formation step S20, an electrode protection / electron transport function layer 30 including an electrode protection body and an electron transporter is formed on the electrode portion 20, Are formed.
예를 들어, 전극 보호체는 카본(carbon)을 포함하고, 전자 수송체는 프러시안 블루(prussian blue)를 포함할 수 있다.For example, the electrode protector may include carbon, and the electron transport material may include prussian blue.
전극보호/전자수송 기능층(30)에 포함된 전자 수송체인 프러시안 블루는 전극부(20)의 전기적인 감도를 높이는 기능을 수행한다.The Prussian blue, which is an electron transport included in the electrode protection / electron transport function layer 30, functions to increase the electrical sensitivity of the electrode unit 20. [
이러한 프러시안 블루는 헥사시아노철(II)산철(III)칼륨이 주성분인 청색 안료로서, 높은 산화성을 갖는다. 프러시안 블루를 전극부(20)와 글루코스 반응부(40) 사이에 형성하면, 전극부(20)의 감도를 향상시킬 수는 있지만, 프러시안 블루의 하부에 위치한 금속성의 전극부(20)가 산화되어 부식될 수 있다. 본 발명의 일 실시 예는 전자 수송체인 프러시안 블루와 전극 보호체인 카본을 혼합하여 전극보호/전자수송 기능층(30)을 전극부(20) 상에 형성함으로써, 이러한 프러시안 블루에 의한 전극부(20) 부식을 방지하는 동시에, 전극부(20)의 감도를 향상시킬 수 있다.Such prussian blue is a blue pigment mainly composed of potassium hexacyanoferrate (II) iron (III) oxide, and has a high oxidizing property. Although the sensitivity of the electrode unit 20 can be improved by forming Prussian blue between the electrode unit 20 and the glucose reaction unit 40, the metallic electrode unit 20 located at the lower portion of Prussian blue It can be oxidized and corroded. In an embodiment of the present invention, Prussian blue, which is an electron transporting material, and an electrode protection carbon are mixed to form an electrode protection / electron transport function layer 30 on the electrode portion 20, (20) corrosion can be prevented, and the sensitivity of the electrode portion (20) can be improved.
예를 들어, 전극보호/전자수송 기능층 형성단계(S20)에서는, 전극 보호체인 카본과 전자 수송체인 프러시안 블루가 혼합된 페이스트를 전극부(20) 상에 인쇄하여 건조함으로써 전극보호/전자수송 기능층(30)을 형성하도록 구성될 수 있다. 이러한 구성에 따르면, 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 1회의 인쇄 공정을 통해 전극 상에 형성할 수 있기 때문에, 공정이 간소화되고 제조 시간 및 비용을 줄일 수 있다.For example, in the electrode protection / electron transport function layer formation step S20, a paste in which carbon, which is electrode protection, and Prussian blue, which is an electron transport, is mixed and printed on the electrode portion 20, And may be configured to form the functional layer 30. According to this configuration, since the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes can be formed on the electrodes through one printing process, the process can be simplified and the manufacturing time and cost can be reduced .
도 1 및 도 4를 참조하면, 글루코스 반응부 형성단계(S30)에서는, 전극보호/전자수송 기능층(30) 상에 글루코스 반응부(40)를 형성하는 과정이 수행된다.Referring to FIGS. 1 and 4, a glucose reaction unit 40 is formed on the electrode protection / electron transport function layer 30 in the glucose reaction unit formation step S30.
글루코스 반응부(40)는 측정 대상 물질에 포함되어 있는 글루코스와 반응하는 구성요소이다.The glucose reaction unit 40 is a component that reacts with glucose contained in the measurement target substance.
예를 들어, 글루코스 반응부(40)는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함할 수 있다.For example, the glucose reaction unit 40 may include a glucose oxidase or a glucose dehydrogenase.
글루코스 반응부(40)에서의 반응 및 전극부(20)의 신호 감지 원리를 예시적으로 설명하면 다음과 같다.The reaction in the glucose reaction unit 40 and the signal detection principle of the electrode unit 20 will be described below as an example.
측정 대상 물질인 시료를 글루코스 센서에 주입하면, 시료에 포함되어 있는 글루코스가 글루코스 산화효소 또는 글루코스 탈수소효소에 의하여 산화되고, 글루코스 산화효소 또는 글루코스 탈수소효소는 환원된다. 이때, 전자전달매개체는 글루코스 산화효소 또는 글루코스 탈수소효소를 산화시키고, 자신은 환원된다. 환원된 전자전달매개체는 일정 전압이 가해진 전극 표면에서 전자를 잃고 전기화학적으로 다시 산화된다. 시료 내의 글루코스 농도는 전자전달매개체가 산화되는 과정에서 발생되는 전류량에 비례하므로, 이 전류량을 측정함으로써 글루코스 농도를 측정할 수 있다.When a sample to be measured is injected into a glucose sensor, the glucose contained in the sample is oxidized by a glucose oxidase or a glucose dehydrogenase, and a glucose oxidase or a glucose dehydrogenase is reduced. At this time, the electron transfer mediator oxidizes glucose oxidase or glucose dehydrogenase and itself is reduced. The reduced electron transfer mediator loses electrons at the surface of the electrode to which a constant voltage is applied and is electrochemically reoxidized. The glucose concentration in the sample is proportional to the amount of current generated in the course of the oxidation of the electron transport mediator. Thus, the glucose concentration can be measured by measuring this amount of current.
도 1 및 도 5를 참조하면, 이온교환막 형성단계(S40)에서는, 글루코스 반응부(40) 상에 이온 교환막(50)을 형성하는 과정이 수행된다.1 and 5, in the ion exchange membrane forming step S40, a process of forming the ion exchange membrane 50 on the glucose reaction unit 40 is performed.
이온 교환막(50)은 시료에 포함되어 있는 물질들 중에서 측정 대상 성분만을 통과시키기 때문에, 외부의 불순물 이온 성분의 침투를 방지하여 글루코스 반응부(40)를 구성하는 글루코스 산화효소 또는 글루코스 탈수소효소를 보호한다. 예를 들어, 이온 교환막(50)은 나피온(Nafion)을 포함할 수 있으나, 이는 하나의 예시일 뿐이며, 이온 교환막(50)이 이에 한정되지는 않는다.Since the ion exchange membrane 50 passes only the component to be measured out of the substances contained in the sample, it prevents the penetration of the external impurity ion component and protects the glucose oxidase or glucose dehydrogenase constituting the glucose reaction unit 40 do. For example, the ion exchange membrane 50 may include Nafion, but this is only one example, and the ion exchange membrane 50 is not limited thereto.
이상의 제조공정을 거치게 되면, 전극보호/전자수송 기능층(30)이 전극 보호체와 전자 수송체가 혼합된 하나의 층으로 구현되기 때문에, 종래와 비교하여 박막화된 글루코스 센서를 획득할 수 있다.When the above-described manufacturing process is performed, since the electrode protecting / electron transporting function layer 30 is formed as a single layer in which the electrode protecting member and the electron transporting material are mixed, a thin film glucose sensor can be obtained in comparison with the conventional one.
즉, 종래 기술에 따르면, 전극보호 기능층과 전자수송 기능층이 별개의 층으로 존재하여 글루코스 센서의 두께가 두꺼웠으나, 본 발명에 따르면 전극보호/전자수송 기능층(30)이 하나의 층으로 구현되기 때문에 글루코스 센서를 박막화할 수 있다.That is, according to the related art, the electrode protection function layer and the electron transport function layer exist as separate layers and the thickness of the glucose sensor is thick, but according to the present invention, the electrode protection / It is possible to make the glucose sensor thinner.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 글루코스 센서를 제조하기 위해 요구되는 공정의 수와 시간 및 비용을 줄일 수 있는 효과가 있다.As described above in detail, according to the present invention, it is possible to reduce the number, time, and cost of a process required for manufacturing a glucose sensor.
또한, 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 1회의 인쇄 공정을 통해 전극 상에 형성함으로써 공정을 간소화할 수 있다.In addition, the electrode protecting means for protecting the electrodes and the electrode transporting means for transporting the electrons to the electrodes are formed on the electrodes through one printing step, thereby simplifying the process.
또한, 전극을 보호하는 전극 보호수단과 전자를 전극으로 수송하는 전극 수송수단을 하나의 층으로 구현함으로써, 글루코스 센서를 박막화할 수 있다.In addition, by implementing electrode protection means for protecting the electrodes and electrode transport means for transporting electrons to the electrodes, the glucose sensor can be made thinner.
[부호의 설명][Description of Symbols]
10: 기판10: substrate
20: 전극부20:
30: 전극보호/전자수송 기능층30: electrode protection / electron transport function layer
40: 글루코스 반응부40: glucose reaction part
50: 이온 교환막50: ion exchange membrane
S10: 전극 형성단계S10: Electrode formation step
S20: 전극보호/전자수송 기능층 형성단계S20: Electrode protection / electron transport function layer formation step
S30: 글루코스 반응부 형성단계S30: Glucose reaction part formation step
S40: 이온교환막 형성단계S40: ion exchange membrane forming step

Claims (10)

  1. 기판 상에 복수의 전극들로 이루어진 전극부를 형성하는 전극 형성단계;An electrode forming step of forming an electrode part composed of a plurality of electrodes on a substrate;
    상기 전극부 상에 전극 보호체와 전자 수송체를 포함하는 전극보호/전자수송 기능층을 형성하는 전극보호/전자수송 기능층 형성단계;An electrode protection / electron transport function layer forming step of forming an electrode protection / electron transport function layer including an electrode protector and an electron transporter on the electrode part;
    상기 전극보호/전자수송 기능층 상에 글루코스 반응부를 형성하는 글루코스 반응부 형성단계; 및A glucose reaction part forming step of forming a glucose reaction part on the electrode protection / electron transport function layer; And
    상기 글루코스 반응부 상에 이온 교환막을 형성하는 이온교환막 형성단계를 포함하는, 글루코스 센서 제조방법.And forming an ion exchange membrane on the glucose reaction unit.
  2. 제1항에 있어서,The method according to claim 1,
    상기 전극보호/전자수송 기능층 형성단계에서는,In the electrode protecting / electron transporting function layer forming step,
    상기 전극 보호체와 상기 전자 수송체가 혼합된 페이스트를 상기 전극부 상에 인쇄하여 건조함으로써 상기 전극보호/전자수송 기능층을 형성하는 것을 특징으로 하는, 글루코스 센서 제조방법.Wherein the electrode protecting / electron transporting function layer is formed by printing and drying a paste in which the electrode protecting material and the electron transporting material are mixed on the electrode portion.
  3. 제1항에 있어서,The method according to claim 1,
    상기 전극 보호체는 카본(carbon)을 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.Wherein the electrode protector comprises carbon. ≪ RTI ID = 0.0 > 8. < / RTI >
  4. 제1항에 있어서,The method according to claim 1,
    상기 전자 수송체는 프러시안 블루(prussian blue)를 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.Wherein the electron transporter comprises prussian blue. ≪ RTI ID = 0.0 > 11. < / RTI >
  5. 제1항에 있어서,The method according to claim 1,
    상기 전극부는 금(Au), 은(Ag), 구리(Cu), 백금(Pt), 티타늄(Ti), 니켈(Ni), 주석(Ni), 몰리브덴(Mo), 코발트(Co), APC로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.The electrode part may be formed of at least one of Au, Ag, Cu, Pt, Ti, Ni, Ni, Mo, ≪ / RTI > wherein the glucose sensor comprises at least one selected from the group consisting of:
  6. 제1항에 있어서,The method according to claim 1,
    상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.Wherein the glucose reaction unit comprises a glucose oxidase or a glucose dehydrogenase.
  7. 제6항에 있어서,The method according to claim 6,
    상기 이온 교환막은 불순물 이온 성분의 침투를 방지하여 상기 글루코스 반응부를 구성하는 글루코스 산화효소 또는 글루코스 탈수소효소를 보호하는 것을 특징으로 하는, 글루코스 센서 제조방법.Wherein the ion exchange membrane prevents penetration of an impurity ion component to protect the glucose oxidase or the glucose dehydrogenase constituting the glucose reaction unit.
  8. 제1항에 있어서,The method according to claim 1,
    상기 이온 교환막은 나피온(Nafion)을 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.Wherein the ion exchange membrane comprises Nafion. ≪ RTI ID = 0.0 > 8. < / RTI >
  9. 기판 상에 형성된 복수의 전극들로 이루어진 전극부;An electrode unit including a plurality of electrodes formed on a substrate;
    상기 전극부 상에 형성된 전극 보호체와 전자 수송체를 포함하는 전극보호/전자수송 기능층;An electrode protecting / electron transporting function layer including an electrode protecting body formed on the electrode portion and an electron transporter;
    상기 전극보호/전자수송 기능층 상에 형성된 글루코스 반응부; 및A glucose reaction unit formed on the electrode protection / electron transport function layer; And
    상기 글루코스 반응부 상에 형성된 이온 교환막을 포함하는, 글루코스 센서.And an ion exchange membrane formed on the glucose reaction unit.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 전극보호/전자수송 기능층은, The electrode protective /
    상기 전극 보호체와 상기 전자 수송체가 혼합된 하나의 층으로 형성되어 있는 것을 특징으로 하는, 글루코스 센서.And the glucose sensor is formed of one layer in which the electrode protecting member and the electron transporting member are mixed.
PCT/KR2018/006340 2017-09-01 2018-06-04 Glucose sensor and method for manufacturing same WO2019045232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170111911A KR102499784B1 (en) 2017-09-01 2017-09-01 Glucose sensor and manufacturing method thereof
KR10-2017-0111911 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019045232A1 true WO2019045232A1 (en) 2019-03-07

Family

ID=65527730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006340 WO2019045232A1 (en) 2017-09-01 2018-06-04 Glucose sensor and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102499784B1 (en)
WO (1) WO2019045232A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210047496A (en) * 2019-10-22 2021-04-30 동우 화인켐 주식회사 Bio sensor and method of measuring concentration using the same
KR102463324B1 (en) * 2020-01-10 2022-11-04 동우 화인켐 주식회사 Bio Sensor
KR102481839B1 (en) * 2020-07-09 2022-12-28 동우 화인켐 주식회사 Biosensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163386A (en) * 2002-09-17 2004-06-10 Toto Ltd Biosensor
JP2008046001A (en) * 2006-08-16 2008-02-28 National Institute Of Advanced Industrial & Technology Sensor-use electrode body, sensor using same, sensing system, and method for manufacturing sensor-use electrode body
JP2012513821A (en) * 2008-12-24 2012-06-21 エドワーズ ライフサイエンシーズ コーポレイション Membrane layer for electrochemical biosensor and method for dealing with EMF and RF fields
KR20160107085A (en) * 2015-03-03 2016-09-13 한국과학기술원 Plasmonic biosensor for detecting glucose with groove slit groove structure
KR20160146514A (en) * 2015-06-12 2016-12-21 서울대학교산학협력단 Glucose control system, method for forming the clucose control system, and method for controlling clucose using the clucose control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110272A (en) 2001-11-20 2001-12-12 홍영표 Glucose Electrode Containing Pt metal and its efficiency
WO2014110492A2 (en) * 2013-01-11 2014-07-17 Northeastern University Saliva glucose monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163386A (en) * 2002-09-17 2004-06-10 Toto Ltd Biosensor
JP2008046001A (en) * 2006-08-16 2008-02-28 National Institute Of Advanced Industrial & Technology Sensor-use electrode body, sensor using same, sensing system, and method for manufacturing sensor-use electrode body
JP2012513821A (en) * 2008-12-24 2012-06-21 エドワーズ ライフサイエンシーズ コーポレイション Membrane layer for electrochemical biosensor and method for dealing with EMF and RF fields
KR20160107085A (en) * 2015-03-03 2016-09-13 한국과학기술원 Plasmonic biosensor for detecting glucose with groove slit groove structure
KR20160146514A (en) * 2015-06-12 2016-12-21 서울대학교산학협력단 Glucose control system, method for forming the clucose control system, and method for controlling clucose using the clucose control system

Also Published As

Publication number Publication date
KR20190025354A (en) 2019-03-11
KR102499784B1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2019045232A1 (en) Glucose sensor and method for manufacturing same
WO2019059496A1 (en) Glucose sensor
WO2019031845A1 (en) Graphene electrode-based glucose sensor for in vitro diagnosis
KR20190009973A (en) Glucose sensor
WO2019164111A1 (en) Glucose sensor
EP4006534A1 (en) Biochemical test chip
JP2005069952A (en) Biosensor having adhesive and separable protective film
KR102610724B1 (en) Glucose sensor
KR20200093871A (en) Glucose sensing electrode and glucose sensor including the same
WO2021033870A1 (en) Biosensor
WO2018147619A1 (en) Glucose sensor and method for manufacturing same
KR20210048131A (en) Bio Sensor
WO2023043105A1 (en) Biosensor
KR102481839B1 (en) Biosensor
KR20200084678A (en) Glucose sensing electrode, method of maufacturing the same and glucose sensor including the same
WO2024186192A1 (en) Electrochemical sensor electrode and electrochemical sensor comprising same
KR102463324B1 (en) Bio Sensor
WO2020204455A1 (en) Biosensor
WO2019022454A1 (en) Electrochemical gas sensor having planar exterior
WO2021080132A1 (en) Biosensor and concentration measurement method using same
CN114544725B (en) Biochemical test piece
WO2021080274A1 (en) Method for manufacturing thin film battery
KR20210097444A (en) Bio Sensor
KR102247002B1 (en) Bio sensor
WO2019022353A1 (en) Electrochemical gas sensor having flexible curved electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849561

Country of ref document: EP

Kind code of ref document: A1