WO2019211996A1 - 圧縮着火式エンジンの制御装置 - Google Patents

圧縮着火式エンジンの制御装置 Download PDF

Info

Publication number
WO2019211996A1
WO2019211996A1 PCT/JP2019/016878 JP2019016878W WO2019211996A1 WO 2019211996 A1 WO2019211996 A1 WO 2019211996A1 JP 2019016878 W JP2019016878 W JP 2019016878W WO 2019211996 A1 WO2019211996 A1 WO 2019211996A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
combustion
fuel
air
engine
Prior art date
Application number
PCT/JP2019/016878
Other languages
English (en)
French (fr)
Inventor
浩太 松本
漆原 友則
慶士 丸山
賢也 末岡
諒平 大野
雄司 原田
亨 宮本
井上 淳
達広 徳永
拓也 大浦
佑介 河合
智博 西田
啓太 朴
陽大 山口
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP19796963.7A priority Critical patent/EP3779161A4/en
Priority to US17/051,546 priority patent/US11168639B2/en
Publication of WO2019211996A1 publication Critical patent/WO2019211996A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B9/00Engines characterised by other types of ignition
    • F02B9/02Engines characterised by other types of ignition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for a compression ignition engine capable of compression ignition combustion in which at least a part of an air-fuel mixture is combusted by self-ignition.
  • HCCI combustion is a mode in which the air-fuel mixture burns at the same time. Therefore, compared to SI combustion (spark ignition combustion) used in ordinary gasoline engines, the air-fuel mixture burns faster and is extremely heat efficient. It is said that it is advantageous to.
  • SI combustion spark ignition combustion
  • HCCI combustion has a problem that the combustion start timing of the air-fuel mixture (the time when the air-fuel mixture self-ignites) fluctuates greatly due to external factors such as temperature, and control during transient operation where the load changes suddenly. There was also a problem that was difficult.
  • Patent Document 1 An engine employing a concept similar to the partial compression ignition combustion is disclosed in Patent Document 1.
  • a stratified mixture formed around an ignition plug (ignition plug) by auxiliary fuel injection is subjected to flame propagation combustion by spark ignition.
  • the main fuel is injected into the combustion chamber heated to a high temperature by the action of the combustion (flame), and the fuel injected by the main fuel injection is burned by self-ignition.
  • Patent Document 2 discloses a spark ignition engine in which spark ignition by a spark plug is executed twice in one cycle.
  • pre-ignition is performed during the compression stroke to supply ignition energy that is small enough that the entire air-fuel mixture in the combustion chamber is not ignited and burned (so that a local kind of fire is formed).
  • Main ignition that supplies ignition energy larger than the preceding ignition is executed at an appropriate timing delayed from the preceding ignition.
  • the combustion speed of CI combustion affects the thermal efficiency. Since CI combustion is a phenomenon in which fuel components spontaneously react chemically, it can be said that the combustion rate is inherently faster than SI combustion in which the combustion region gradually expands due to flame propagation. However, for example, if the fuel can be reformed to a highly reactive one before the CI combustion, the combustion speed of the CI combustion can be further increased, the thermal efficiency can be further improved, and both fuel efficiency performance and torque performance can be achieved. It is considered possible.
  • the fuel reforming to increase the reactivity may be realized by raising the temperature of the air-fuel mixture to a predetermined temperature range, for example. That is, an intermediate product containing highly reactive OH radicals is generated by cleaving the fuel component (hydrocarbon) by raising the temperature of the air-fuel mixture.
  • the inventor of the present application performs, for example, spark ignition a plurality of times as in the case of Patent Document 2, that is, rather than the main ignition. We considered increasing the temperature of the air-fuel mixture by performing an auxiliary pre-ignition before.
  • JP 2009-108778 A Japanese Patent No. 4691373
  • An object of the present invention is to provide a control device for a compression ignition engine capable of realizing compression ignition combustion having a high combustion speed and excellent thermal efficiency.
  • a control apparatus for a compression ignition engine includes a cylinder, an injector that injects fuel into the cylinder, and an ignition plug that generates a spark in the cylinder, and fuel injected from the injector; It is an apparatus for controlling a compression ignition engine capable of performing CI combustion in which at least a part of an air-fuel mixture mixed with air is self-ignited and combusted with a compression force.
  • the said control apparatus is provided with the combustion control part which controls the combustion operation in the said cylinder, and the ignition control part which controls the ignition operation by the said spark plug.
  • the combustion control unit may be an A / F lean environment in which an air-fuel ratio, which is a ratio of air and fuel in the cylinder, is greater than 20 and less than 35, or a gas air that is a ratio of total gas and fuel in the cylinder.
  • a G / F lean environment is formed in which the fuel ratio is over 18 and less than 50, and the air-fuel ratio substantially matches the stoichiometric air-fuel ratio.
  • the ignition control unit generates a spark at the spark plug to form a high temperature part in the A / F lean environment or the G / F lean environment prior to the scheduled timing of the CI combustion. Is executed.
  • a control device for a compression ignition engine is an apparatus for controlling an engine including a cylinder, an injector and a spark plug disposed so as to face the cylinder, the injector and the A controller electrically connected to the spark plug and outputting a control signal to the injector and the spark plug;
  • the controller has an electric circuit.
  • the controller having the electric circuit is a partial compression ignition in which a mixture of fuel and air injected from the injector is subjected to flame propagation combustion by spark ignition by the ignition plug, and compression self-ignition combustion occurs after the start of the flame propagation combustion.
  • a spark is generated in the spark plug to form a high temperature portion.
  • a ignition control unit to execute the fire.
  • FIG. 1 is a system diagram schematically showing an overall configuration of a compression ignition engine according to an embodiment of the present invention.
  • FIG. 2 is a view showing both a sectional view of the engine body and a plan view of the piston.
  • FIG. 3 is a schematic plan view showing the structure of the intake and exhaust system in the vicinity of the cylinder.
  • FIG. 4 is a block diagram showing an engine control system.
  • FIG. 5 is an operation map in which the operation region of the engine is divided according to the difference in combustion mode.
  • FIG. 6 is a time chart for schematically explaining the combustion control performed in each operation region of the engine.
  • FIG. 7 is a graph showing the waveform of the heat generation rate during SPCCI combustion (partial compression ignition combustion).
  • FIG. 8 is a map diagram showing a specific example of the target air-fuel ratio set in the first operating region of the engine.
  • FIG. 9 is a map diagram showing a specific example of the target swirl opening degree set in the first operation region.
  • FIG. 10 is a graph showing changes in the target swirl opening when the rotational speed is changed under a constant load condition.
  • FIG. 11 is a diagram showing an outline of a rig testing apparatus for measuring a swirl ratio.
  • FIG. 12 is a graph showing the relationship between the swirl opening degree and the swirl ratio.
  • FIG. 13 is a flowchart showing a specific example of combustion control when the engine is warm.
  • FIG. 14 is a subroutine showing details of control in step S10 of FIG.
  • FIGS. 15A and 15B are map diagrams for determining basic ignition energy of preceding ignition.
  • FIG. 16 is a graph showing the relationship between A / F lean and G / F lean and the limit of ignition energy at which premature ignition occurs.
  • FIG. 17 is a time chart showing the electrical state of the spark plug together with the combustion waveform when the preceding ignition and the main ignition are performed in the first operating region.
  • FIG. 18 is a graph showing the relationship between the gas mixture temperature and the amount of intermediate product produced.
  • FIG. 19 is a time chart showing a specific example when the number of preceding ignitions is increased.
  • FIG. 20 is a graph showing the relationship between the number of preceding ignitions and the fuel consumption improvement allowance.
  • FIG. 21 is a diagram corresponding to FIG. 7 and is a diagram for explaining various methods of defining the SI rate.
  • FIG. 1 is a diagram showing a preferred embodiment of a compression ignition engine (hereinafter simply referred to as an engine) to which a control device of the present invention is applied.
  • the engine shown in FIG. 1 is a four-cycle gasoline direct-injection engine mounted on a vehicle as a driving power source.
  • the engine body 1 an intake passage 30 through which intake air introduced into the engine body 1 circulates,
  • An exhaust passage 40 through which exhaust gas discharged from the engine body 1 flows and an external EGR device 50 that recirculates part of the exhaust gas flowing through the exhaust passage 40 to the intake passage 30 are provided.
  • the engine body 1 is inserted into a cylinder block 3 in which a cylinder 2 is formed, a cylinder head 4 attached to the upper surface of the cylinder block 3 so as to close the cylinder 2 from above, and a reciprocating slide in the cylinder 2 And a piston 5 which is made.
  • the engine main body 1 is typically of a multi-cylinder type having a plurality of (for example, four) cylinders, but here, for the sake of simplification, the description will be focused on only one cylinder 2.
  • FIG. 2 shows a cross-sectional view of the engine body 1 and a plan view of the piston 5 together.
  • a combustion chamber 6 is defined above the piston 5.
  • a fuel mainly composed of gasoline is supplied to the combustion chamber 6 by injection from an injector 15 described later.
  • the supplied fuel burns while being mixed with air in the combustion chamber 6, and the piston 5 pushed down by the expansion force due to the combustion reciprocates in the vertical direction.
  • the fuel injected into the combustion chamber 6 should just contain gasoline as a main component, for example, in addition to gasoline, it may contain subcomponents, such as bioethanol.
  • crankshaft 7 that is an output shaft of the engine body 1 is provided below the piston 5, a crankshaft 7 that is an output shaft of the engine body 1 is provided.
  • the crankshaft 7 is connected to the piston 5 via a connecting rod 8 and is rotationally driven around the central axis according to the reciprocating motion (vertical motion) of the piston 5.
  • the geometric compression ratio of the cylinder 2 that is, the ratio between the volume of the combustion chamber 6 when the piston 5 is at the top dead center and the volume of the combustion chamber when the piston 5 is at the bottom dead center is the SPCCI combustion (described later)
  • a value suitable for partial compression ignition combustion is set to 13 to 30 and preferably 14 to 18. More specifically, the geometric compression ratio of the cylinder 2 is set to 14 or more and 17 or less in the case of a regular specification using gasoline fuel having an octane number of about 91, and a high-octane specification using gasoline fuel having an octane number of about 96. In this case, it is preferably set to 15 or more and 18 or less.
  • the cylinder block 3 includes a crank angle sensor SN1 that detects a rotation angle (crank angle) of the crankshaft 7 and a rotation speed (engine rotation speed) of the crankshaft 7, and cooling that circulates inside the cylinder block 3 and the cylinder head 4.
  • a water temperature sensor SN2 that detects the temperature of the water (engine water temperature) is provided.
  • the cylinder head 4 is provided with an intake port 9 and an exhaust port 10 that open to the combustion chamber 6, an intake valve 11 that opens and closes the intake port 9, and an exhaust valve 12 that opens and closes the exhaust port 10.
  • the valve type of the engine of this embodiment is a four-valve type of 2 intake valves ⁇ 2 exhaust valves as shown in FIG.
  • FIG. 3 is a schematic plan view showing the structure of the intake and exhaust system in the cylinder 2 and the vicinity thereof.
  • the intake port 9 has a first intake port 9A and a second intake port 9B
  • the exhaust port 10 has a first exhaust port 10A and a second exhaust port 10B.
  • One intake valve 11 is provided for each of the first intake port 9A and the second intake port 9B
  • one exhaust valve 12 is provided for each of the first exhaust port 10A and the second exhaust port 10B. Yes.
  • the second intake port 9B is provided with a swirl valve 18 that can be opened and closed.
  • the swirl valve 18 is provided only in the second intake port 9B, and is not provided in the first intake port 9A.
  • the swirl valve 18 is driven in the closing direction, the ratio of the intake air flowing into the combustion chamber 6 from the first intake port 9A where the swirl valve 18 is not provided increases. For this reason, the swirl flow swirling around the cylinder axis Z (the central axis of the combustion chamber 6), that is, the swirl flow can be enhanced.
  • the intake port 9 of this embodiment is a tumble port capable of forming a tumble flow (longitudinal vortex). For this reason, the swirl flow formed when the swirl valve 18 is closed becomes an oblique swirl flow mixed with the tumble flow.
  • the intake valve 11 and the exhaust valve 12 are driven to open and close in conjunction with the rotation of the crankshaft 7 by valve mechanisms 13 and 14 including a pair of camshafts and the like disposed in the cylinder head 4.
  • the valve mechanism 13 for the intake valve 11 incorporates an intake VVT 13a that can change the opening and closing timing of the intake valve 11.
  • the valve operating mechanism 14 for the exhaust valve 12 incorporates an exhaust VVT 14a that can change the opening / closing timing of the exhaust valve 12.
  • the intake and exhaust VVT 13a is a so-called phase variable mechanism, and changes the opening timing and closing timing of the intake valve 11 (exhaust valve 12) simultaneously and by the same amount.
  • the intake VVT 13a and the exhaust VVT 14a By controlling the intake VVT 13a and the exhaust VVT 14a, in this embodiment, it is possible to adjust the valve overlap period during which both the intake valve 11 and the exhaust valve 12 are opened across the exhaust top dead center. Further, the amount of burnt gas (internal EGR gas) remaining in the combustion chamber 6 can be adjusted by adjusting the valve overlap period.
  • an injector 15 that injects fuel (mainly gasoline) into the combustion chamber 6 in the cylinder 2, fuel injected from the injector 15 into the combustion chamber 6, and air introduced into the combustion chamber 6 are mixed.
  • a spark plug 16 for igniting the air-fuel mixture is provided.
  • the cylinder head 4 is further provided with an in-cylinder pressure sensor SN3 that detects the pressure in the combustion chamber 6 (in-cylinder pressure).
  • a cavity 20 is formed on the crown surface of the piston 5 in which a relatively wide region including the central portion is recessed on the opposite side (downward) from the cylinder head 4. Further, a squish portion 21 made of an annular flat surface is formed on the outer surface in the radial direction of the crown surface of the piston 5 from the cavity 20.
  • the injector 15 is a multi-hole type injector having a plurality of injection holes at its tip, and can inject fuel radially from the plurality of injection holes.
  • symbol F in FIG. 2 represents the spray of the fuel injected from each nozzle hole.
  • the injector 15 is disposed at the center of the ceiling surface of the combustion chamber 6 such that the tip thereof faces the center of the crown surface of the piston 5 (the center of the bottom of the cavity 20).
  • the spark plug 16 is disposed at a position somewhat shifted to the intake side with respect to the injector 15.
  • the position of the tip (electrode part) of the spark plug 16 is set so as to overlap with the cavity 20 in plan view.
  • the intake passage 30 is connected to one side surface of the cylinder head 4 so as to communicate with the intake port 9. Air (fresh air) taken from the upstream end of the intake passage 30 is introduced into the combustion chamber 6 through the intake passage 30 and the intake port 9.
  • an air cleaner 31 that removes foreign matters in the intake air
  • an openable / closable throttle valve 32 that adjusts the flow rate of intake air
  • a supercharger 33 that sends out compressed air
  • An intercooler 35 that cools the intake air compressed by the feeder 33 and a surge tank 36 are provided.
  • Each part of the intake passage 30 includes an air flow sensor SN4 that detects the flow rate of intake air, first and second intake air temperature sensors SN5 and SN7 that detect the temperature of intake air, and first and second intake air sensors that detect the pressure of intake air.
  • Barometric pressure sensors SN6 and SN8 are provided.
  • the air flow sensor SN4 and the first intake air temperature sensor SN5 are provided in a portion of the intake passage 30 between the air cleaner 31 and the throttle valve 32, and detect the flow rate and temperature of the intake air passing through the portion.
  • the first intake pressure sensor SN6 is provided in a portion of the intake passage 30 between the throttle valve 32 and the supercharger 33 (downstream from a connection port of an EGR passage 51 described later), and intake air passing through the portion Detect pressure.
  • the second intake air temperature sensor SN7 is provided in a portion of the intake passage 30 between the supercharger 33 and the intercooler 35, and detects the temperature of the intake air passing through the portion.
  • the second intake pressure sensor SN8 is provided in the surge tank 36 and detects the pressure of intake air in the surge tank 36.
  • the supercharger 33 is a mechanical supercharger (supercharger) mechanically linked to the engine body 1.
  • supercharger 33 is not particularly limited, for example, any of the known superchargers such as a Rishorum type, a roots type, or a centrifugal type can be used as the supercharger 33.
  • an electromagnetic clutch 34 that can be electrically switched between fastening and releasing is interposed.
  • driving force is transmitted from the engine body 1 to the supercharger 33, and supercharging by the supercharger 33 is performed.
  • the electromagnetic clutch 34 is released, the transmission of the driving force is interrupted and the supercharging by the supercharger 33 is stopped.
  • bypass passage 38 for bypassing the supercharger 33 is provided.
  • the bypass passage 38 connects the surge tank 36 and an EGR passage 51 described later to each other.
  • a bypass valve 39 that can be opened and closed is provided in the bypass passage 38.
  • the exhaust passage 40 is connected to the other side of the cylinder head 4 so as to communicate with the exhaust port 10.
  • the burned gas generated in the combustion chamber 6 is discharged to the outside through the exhaust port 10 and the exhaust passage 40.
  • a catalytic converter 41 is provided in the exhaust passage 40.
  • the catalytic converter 41 includes a three-way catalyst 41a for purifying harmful components (HC, CO, NOx) contained in the exhaust gas flowing through the exhaust passage 40, and particulate matter (PM) contained in the exhaust gas. And a GPF (gasoline particulate filter) 41b for collecting the gas.
  • HC, CO, NOx harmful components contained in the exhaust gas flowing through the exhaust passage 40
  • PM particulate matter
  • GPF gasoline particulate filter
  • a linear O 2 sensor SN10 that detects the concentration of oxygen contained in the exhaust gas is provided in a portion of the exhaust passage 40 upstream of the catalytic converter 41.
  • the linear O 2 sensor SN10 is a type of sensor whose output value changes linearly according to the density of oxygen concentration. It is possible to estimate the air-fuel ratio of the air-fuel mixture based on the output value of the linear O 2 sensor SN10.
  • the external EGR device 50 includes an EGR passage 51 that connects the exhaust passage 40 and the intake passage 30, and an EGR cooler 52 and an EGR valve 53 that are provided in the EGR passage 51.
  • the EGR passage 51 connects a portion of the exhaust passage 40 downstream of the catalytic converter 41 and a portion of the intake passage 30 between the throttle valve 32 and the supercharger 33.
  • the EGR cooler 52 cools the exhaust gas (external EGR gas) recirculated from the exhaust passage 40 to the intake passage 30 through the EGR passage 51 by heat exchange.
  • the EGR valve 53 is provided so as to be openable and closable in the EGR passage 51 on the downstream side (closer to the intake passage 30) than the EGR cooler 52, and adjusts the flow rate of the exhaust gas flowing through the EGR passage 51.
  • the EGR passage 51 is provided with a differential pressure sensor SN9 for detecting the difference between the pressure on the upstream side of the EGR valve 53 and the pressure on the downstream side.
  • FIG. 4 is a block diagram showing an engine control system.
  • the ECU 100 (controller) shown in the figure is a microprocessor configured by an electric circuit for comprehensively controlling the engine, and includes a known CPU, ROM, RAM, and the like.
  • the ECU 100 receives detection signals from various sensors.
  • the ECU 100 includes the crank angle sensor SN1, the water temperature sensor SN2, the in-cylinder pressure sensor SN3, the airflow sensor SN4, the first and second intake temperature sensors SN5 and SN7, the first and second intake pressure sensors SN6 and SN8, and the differential pressure sensor. SN9, and the linear O 2 sensor SN10 is electrically connected to the. Information detected by these sensors (that is, crank angle, engine speed, engine water temperature, in-cylinder pressure, intake air flow rate, intake air temperature, intake air pressure, differential pressure across the EGR valve 53, oxygen concentration of exhaust gas, etc.) It is sequentially input to the ECU 100.
  • the vehicle is provided with an accelerator sensor SN11 that detects the opening degree of an accelerator pedal operated by a driver who drives the vehicle.
  • a detection signal from the accelerator sensor SN11 is also input to the ECU 100.
  • ECU100 controls each part of an engine, performing various determinations, calculations, etc. based on the input information from each said sensor. That is, the ECU 100 is electrically connected to the intake VVT 13a, the exhaust VVT 14a, the injector 15, the spark plug 16, the swirl valve 18, the throttle valve 32, the electromagnetic clutch 34, the bypass valve 39, the EGR valve 53, etc. The control signals are output to these devices based on the results of the above.
  • the ECU 100 functionally includes a calculation unit 101, an injection control unit 102, an ignition control unit 103, a swirl control unit 104, an intake control unit 105, and an EGR control unit 106 by executing a predetermined program. Operate.
  • the injection control unit 102, the swirl control unit 104, the intake control unit 105, and the EGR control unit 106 are the “combustion control unit that controls the combustion operation in the cylinder” or “the first combustion control unit, It is an example of "2 combustion control part.
  • the injection control unit 102 is a control module for controlling the fuel injection operation by the injector 15.
  • the ignition control unit 103 is a control module for controlling the ignition operation by the ignition plug 16.
  • the swirl control unit 104 is a control module for controlling the opening degree of the swirl valve 18.
  • the intake control unit 105 is a control module for adjusting the flow rate and pressure of intake air introduced into the combustion chamber 6, and controls each opening degree of the throttle valve 32 and bypass valve 39 and ON / OFF of the electromagnetic clutch 34. .
  • the EGR control unit 106 is a control module for adjusting the amount of EGR gas (external EGR gas and internal EGR gas) introduced into the combustion chamber 6, and operates each of the intake VVT 13 a and the exhaust VVT 14 a and opens the EGR valve 53. Control the degree.
  • the calculation unit 101 is a control module that executes various calculations for determining control target values and determining engine operating states by the control units 102 to 106.
  • FIG. 5 is an operation map used when the engine is warm, and is a diagram showing a difference in control according to the rotation speed / load of the engine.
  • a high (low) engine load is equivalent to a high (low) required torque of the engine.
  • the engine operating region is roughly divided into three operating regions A1 to A3 depending on the combustion mode.
  • These operation areas A1 to A3 are referred to as a first operation area A1, a second operation area A2, and a third operation area A3, respectively.
  • the third operation area A3 is a high-speed area where the rotation speed is high.
  • the first operation area A1 is a low / medium speed / low load area obtained by excluding a part on the high load side from the low speed side area than the third operation area A3.
  • the second operation area A2 is a remaining area other than the first and third operation areas A1 and A3, that is, a low / medium speed / high load area.
  • the combustion mode selected in each operation region will be described in order.
  • SI combustion is a combustion mode in which an air-fuel mixture is ignited by a spark generated from the spark plug 16 and the air-fuel mixture is forcibly combusted by flame propagation that expands the combustion region from the ignition point to the surroundings.
  • CI combustion is a combustion mode in which an air-fuel mixture is burned by self-ignition in an environment where the temperature of the piston 5 is increased and the pressure is increased.
  • SPCCI combustion which is a combination of SI combustion and CI combustion, SI burns a part of the air-fuel mixture in the combustion chamber 6 by spark ignition performed in an environment just before the air-fuel mixture self-ignites. This is a combustion mode in which the other air-fuel mixture in the combustion chamber 6 is CI-burned by self-ignition later (by further increase in temperature and pressure accompanying SI combustion).
  • SPCCI is an abbreviation of “Spark Controlled Compression Ignition”.
  • SPCCI combustion has the property that heat generation during CI combustion is steeper than heat generation during SI combustion.
  • the waveform of the heat generation rate due to SPCCI combustion has a rising slope at the initial stage of combustion corresponding to SI combustion smaller than the rising slope generated in response to subsequent CI combustion.
  • the waveform of the heat generation rate during SPCCI combustion includes a first heat generation rate portion having a relatively small rising inclination based on SI combustion and a second heat generation having a relatively large rising inclination based on CI combustion.
  • the pressure increase rate (dp / d ⁇ ) in the combustion chamber 6 generated during SI combustion is smaller than that during CI combustion.
  • the unburned mixture is self-ignited and CI combustion is started.
  • the slope of the heat generation rate waveform changes from small to large at the timing of this self-ignition (that is, the timing at which CI combustion starts). That is, the waveform of the heat generation rate in SPCCI combustion has an inflection point (X2 in FIG. 7) that appears at the timing when CI combustion starts.
  • ⁇ SPCCI combustion also ends with the end of CI combustion. Since CI combustion has a higher combustion speed than SI combustion, the combustion end timing can be advanced compared to simple SI combustion (when all fuels are subjected to SI combustion). In other words, in SPCCI combustion, the combustion end timing can be brought close to the compression top dead center in the expansion stroke. Thereby, in SPCCI combustion, fuel consumption performance can be improved compared with simple SI combustion.
  • the spark is generated from the spark plug 16 a plurality of times, and the air-fuel mixture is generated by the last spark ignition among the plurality of times. Control for burning SPCCI is performed.
  • the number of times of spark ignition is two.
  • the ECU 100 controls each part of the engine as follows. In the following explanation, terms such as “first term”, “middle term”, “late term” of the stroke, and “first half” and “second half” of the stroke may be used as terms for specifying the timing of fuel injection and spark ignition.
  • each period when an arbitrary stroke such as an intake stroke or a compression stroke is divided into three equal parts is defined as “first period”, “middle period”, and “late period” in order from the front.
  • first period first period
  • middle stage late stage of the compression stroke
  • BTDC compression top dead center
  • BTDC 120 BTDC 120 to 60 °
  • CA CA, (iii) refers to each range of BTDC 60 to 0 ° CA.
  • each period when an arbitrary stroke such as an intake stroke or a compression stroke is divided into two equal parts is defined as “first half” and “second half” in order from the front.
  • first half and (v) second half of the intake stroke indicate ranges of (iv) BTDC 360 to 270 ° CA and (v) BTDC 270 to 180 ° CA, respectively.
  • the spark plug 16 causes the preceding ignition (first ignition) to generate a spark at a timing sufficiently advanced from the compression top dead center, and the preceding ignition. Also, the main ignition (second ignition) for generating a spark at a time near the compression top dead center is executed.
  • the pre-ignition is performed either in the first half or the middle of the compression stroke (BTDC 180 to 60 ° CA).
  • the main ignition is an ignition that starts SI combustion, and is executed within a period from the late stage of the compression stroke to the early stage of the expansion stroke (BTDC 60 to ATDC 60 ° CA). In addition, if it is after fuel injection, you may perform prior ignition in an intake stroke.
  • FIG. 6 is a time chart for schematically explaining the combustion control performed in each operation region of the engine.
  • the ignition control unit 103 controls the ignition plug 16 to execute the preceding ignition in the first half of the compression stroke as shown in the chart (a) of FIG.
  • the main ignition is executed in the latter half of the compression stroke.
  • the ignition control unit 103 executes the preceding ignition in the first half of the compression stroke and the main part in the second half of the compression stroke as shown in the chart (b) of FIG. Perform ignition.
  • the timing of the preceding ignition at the operating point P2 on the high load side is set to the advance side with respect to the timing of the preceding ignition at the operating point P1 on the low load side. This is linked to the timing of the second injection (the last fuel injection in one cycle) described later. That is, the ignition control unit 103 causes the timing of the preceding ignition to increase toward the higher load side in conjunction with the timing of the second injection so that the crank angle period from the end timing of the second injection to the preceding ignition is maintained substantially constant. Advance.
  • the pre-ignition executed at a time sufficiently advanced from the compression top dead center does not cause flame propagation of the air-fuel mixture.
  • This pre-ignition raises the air-fuel mixture around the spark (arc) to a target temperature of 850 K or more and less than 1140 K, thereby cleaving the fuel component (hydrocarbon) and generating an intermediate product containing OH radicals. It is done for the purpose.
  • the energy of the preceding ignition is made smaller than the energy of the main ignition. Therefore, even if such pre-ignition is performed, a flame is not substantially formed in the air-fuel mixture, and SI combustion is not started.
  • SI combustion main ignition with large energy executed at a time relatively close to the compression top dead center causes flame propagation of the air-fuel mixture and causes SI combustion.
  • SI combustion the combustion chamber 6 is heated to a high temperature and pressure, which causes CI combustion. That is, SPCCI combustion is started in response to the main ignition, a part of the air-fuel mixture in the combustion chamber 6 is combusted by flame propagation (SI combustion), and the other air-fuel mixture is combusted by self-ignition (CI combustion).
  • SI combustion flame propagation
  • CI combustion self-ignition
  • the injector 15 injects fuel to be injected in one cycle in a plurality of times and injects at least part of the fuel during the intake stroke.
  • the number of fuel injections is two. That is, during the operation in the first operation region A1, the injection control unit 102 controls the injector 15 and divides into the first injection and the second injection within a predetermined period earlier than the preceding ignition described above. To inject fuel. For example, at the operation point P1 on the low load side in the first operation region A1, the injector 15 starts the first injection in the first half of the intake stroke (a predetermined point in the intake stroke) as shown in the chart (a) of FIG.
  • the second injection is started in the latter half of the intake stroke (at a time later than the first injection).
  • the injector 15 starts the first injection in the first half of the intake stroke and the second in the second half of the intake stroke as shown in the chart (b) of FIG. Start jetting.
  • the start timing of the second injection at the operation point P2 on the high load side is set to the advance side with respect to the start timing of the second injection at the operation point P1 on the low load side. In other words, the timing of the second injection is advanced as the load increases in the first operation region A1.
  • the amount (total amount) of fuel injected from the injector 15 and the split ratio by the split injection as described above are variably set according to the required torque of the engine. Specifically, the total amount of fuel, that is, the sum of the amount of fuel injected by the first injection and the amount of fuel injected by the second injection is set so as to increase as the required load increases. Further, the split ratio of the first and second injections, that is, (the fuel injection amount by the first injection) :( the fuel injection amount by the second injection) is such that the ratio of the first injection becomes smaller as the load becomes higher. Set to For example, the split ratio of the first and second injections is set so as to change from 9: 1 to 6: 4 from the low load side to the high load side in the first operation region A1.
  • the injection control unit 102 controls the injector 15 so that the amount of fuel injected by the first injection is greater than the amount of fuel injected by the second injection. As a result, it is possible to avoid a reduction in emission performance due to excessive stratification of the fuel.
  • the opening degree of the throttle valve 32 is set to such an opening degree that more air than the theoretical air-fuel ratio is introduced into the combustion chamber 6 through the intake passage 30. That is, the intake control unit 105 is an air-fuel ratio that is a weight ratio of air (fresh air) introduced into the combustion chamber 6 through the intake passage 30 and fuel injected into the combustion chamber 6 by the first and second injections.
  • the opening degree of the throttle valve 32 is set relatively high so that (A / F) becomes larger than the theoretical air-fuel ratio (14.7). As a result, more air than the stoichiometric air-fuel ratio is introduced into the combustion chamber 6 through the intake passage 30.
  • an environment in which the air-fuel ratio in the combustion chamber 6 is larger than the stoichiometric air-fuel ratio during operation in the first operation region A1 (hereinafter referred to as an A / F lean environment) is formed. Meanwhile, control for burning the air-fuel mixture is performed.
  • the ignition control unit 103 performs a pre-ignition (first ignition) in the A / F lean environment as described above to form a high temperature part prior to the scheduled timing of SPCCI combustion.
  • a pre-ignition first ignition
  • the A / F lean environment it is possible to make it difficult to generate a flame due to the ignition even if a spark due to the preceding ignition is generated in the air-fuel mixture. Therefore, the energy of the pre-ignition can be contributed exclusively to the high temperature of the fuel component (fuel reforming).
  • the air-fuel ratio (A / F) in the first operation region A1 is variably set within a range of more than 20 and less than 35.
  • FIG. 8 is a map diagram showing a setting example of a target air-fuel ratio that is a target value of the air-fuel ratio (A / F) in the first operation region A1.
  • the target air-fuel ratio in the first operation region A1 is generally set to increase as the load (requested torque) increases in the first operation region A1. More specifically, the target air-fuel ratio is the highest value (31 in the region a1 set in the vicinity of the upper limit load of the first operation region A1 (that is, the load at the boundary between the first operation region A1 and the second operation region A2).
  • the region a1 in which the target air-fuel ratio is maximum is a belt-like shape that is slightly separated from the upper limit load of the first operation region A1 toward the low load side and separated from the lower limit speed of the first operation region A1 toward the high speed side.
  • the region is set to the middle / high speed / high load region in the first operation region A1. Since the region a1 is close to the upper limit load, the farthest region from the region a1 in the first operation region A1 is an idle region in which both the rotation speed and the load are the lowest. The target air-fuel ratio in this idle region is the smallest.
  • the supercharger 33 is turned off in the inner region of the supercharging line T shown in FIG. 5 and turned on in the outer region of the supercharging line T.
  • the electromagnetic clutch 34 is released and the connection between the supercharger 33 and the engine body 1 is released.
  • the bypass valve 39 is fully opened, the supercharging by the supercharger 33 is stopped.
  • the electromagnetic clutch 34 is engaged and the supercharger 33 and the engine body 1 are connected.
  • the intake control unit 105 controls the opening degree of the bypass valve 39. For example, as the degree of opening of the bypass valve 39 increases, the flow rate of the intake air that flows backward to the upstream side of the supercharger 33 through the bypass passage 38 increases. Become.
  • the bypass valve 39 controls the supercharging pressure to the target pressure by adjusting the reverse flow rate of the intake air in this way.
  • the intake VVT 13a and the exhaust VVT 14a are combusted in many regions within the first operation region A1 so that the temperature of the combustion chamber 6 (in-cylinder temperature) suitable for SPCCI combustion is realized.
  • the intake valve 11 and the exhaust valve 12 are driven at a timing at which internal EGR that causes the burned gas to remain in the chamber 6 can be executed. That is, the intake / exhaust VVTs 13a, 14a drive the valves 11, 12 so that a valve overlap period is formed in which both the intake / exhaust valves 11, 12 are opened across the exhaust top dead center.
  • the exhaust valve 12 is opened until the dead point is passed (until the beginning of the intake stroke).
  • the valve overlap period is an amount necessary to achieve the in-cylinder temperature suitable for obtaining a desired SPCCI combustion waveform (a target SI rate and a target ⁇ ci, which will be described later), in other words, an amount necessary to realize the temperature.
  • the internal EGR gas is adjusted so as to be introduced into the combustion chamber 6.
  • the internal EGR rate realized by such adjustment of the valve overlap period that is, the proportion of the total gas amount in the combustion chamber 6 occupied by the internal EGR gas is generally larger toward the low load side in the first operation region A1. Tend to be.
  • the EGR control unit 106 opens the EGR valve 53 in many regions within the first operation region A1 so that the in-cylinder temperature suitable for SPCCI combustion is realized. That is, the EGR valve 53 is opened so that an external EGR that recirculates the exhaust gas to the combustion chamber 6 through the EGR passage 51 is realized.
  • the opening degree of the EGR valve 53 is necessary to realize the in-cylinder temperature suitable for obtaining a desired SPCCI combustion waveform (target SI rate and target ⁇ ci described later), in other words, to realize the temperature.
  • An appropriate amount of external EGR gas is adjusted to be introduced into the combustion chamber 6.
  • the external EGR rate realized by adjusting the opening degree of the EGR valve 53 that is, the proportion of the total gas amount in the combustion chamber 6 occupied by the external EGR gas is approximately the rotational speed or load within the first operation region A1. There is a tendency for any one of these to become larger.
  • the EGR control unit 106 opens the EGR valve 53 and recirculates the exhaust gas to the combustion chamber 6 for the purpose of making it difficult for a flame to be generated by prior ignition. That is, the EGR control unit 106 has an environment in which the gas air-fuel ratio (G / F) is larger than the stoichiometric air-fuel ratio and the air-fuel ratio (A / F) substantially coincides with the stoichiometric air-fuel ratio (hereinafter referred to as G / F lean environment). It is possible to execute the control to burn the air-fuel mixture while performing the SPCCI combustion.
  • G / F gas air-fuel ratio
  • a / F air-fuel ratio
  • the control for burning the air-fuel mixture while performing the A / F lean environment in which the air-fuel ratio becomes more than 20 and less than 35 is performed.
  • the G / F lean environment may be formed in the first operation region A1, and SPCCI combustion may be performed in that state.
  • the value of the gas air-fuel ratio (G / F) when executing SPCCI combustion in a G / F lean environment is set to be more than 18 and less than 50.
  • a / F lean environment is formed when the ignitability of the engine is easily ensured, and the temperature is lower than this (for example, at the quasi warm time) ), A G / F lean environment may be formed, and two types of environments may be properly used according to temperature conditions.
  • the swirl control unit 104 sets the opening of the swirl valve 18 to a low opening lower than half open (50%). By reducing the opening of the swirl valve 18 in this way, most of the intake air introduced into the combustion chamber 6 comes from the first intake port 9A (the intake port on the side where the swirl valve 18 is not provided). And a strong swirl flow is formed in the combustion chamber 6. This swirl flow grows during the intake stroke and remains partway through the compression stroke, promoting fuel stratification. That is, a concentration difference is formed in which the fuel concentration in the central portion of the combustion chamber 6 is higher than that in the outer region (outer peripheral portion). In addition, specific opening degree setting of the swirl valve 18 will be described in detail in (4) described later.
  • the control for causing the air-fuel mixture to perform SPCCI combustion by one spark ignition is executed.
  • the preceding ignition in the first operation region A1 described above is omitted, and only main ignition is executed.
  • each part of the engine is controlled by the ECU 100 as follows.
  • the spark plug 16 performs one spark ignition within a period from the late stage of the compression stroke to the early stage of the expansion stroke. For example, at the operation point P3 included in the second operation region A2, the spark plug 16 performs one spark ignition in the latter half of the compression stroke, as shown in the chart (c) of FIG. Then, SPCCI combustion is triggered by this spark ignition, a part of the air-fuel mixture in the combustion chamber 6 is combusted by flame propagation (SI combustion), and the other air-fuel mixture is combusted by self-ignition (CI combustion).
  • SI combustion flame propagation
  • CI combustion self-ignition
  • the injector 15 performs at least one fuel injection during the intake stroke. For example, at the operation point P3 included in the second operation region A2, the injector 15 performs one fuel injection for supplying the entire amount of fuel to be injected during one cycle, as shown in the chart (c) of FIG. Run during the intake stroke. It should be noted that the fuel may be injected twice during the intake stroke except for the operation point P3 (for example, the operation point on the lower load side than P3 in the second operation region A2).
  • the opening degree of the throttle valve 32 is such that the air amount corresponding to the stoichiometric air-fuel ratio is introduced into the combustion chamber 6 through the intake passage 30, that is, the weight ratio of air (fresh air) in the combustion chamber 6 and fuel. Is set so that the air-fuel ratio (A / F) is substantially equal to the stoichiometric air-fuel ratio (14.7).
  • the EGR valve 53 is opened and the external EGR gas is introduced into the combustion chamber 6.
  • the gas air-fuel ratio (G / F) which is the weight ratio of the total gas in the combustion chamber 6 to the fuel, becomes larger than the theoretical air-fuel ratio (14.7).
  • the gas air-fuel ratio (G / F) is larger than the stoichiometric air-fuel ratio and the air-fuel ratio (A / F) substantially matches the stoichiometric air-fuel ratio during operation in the second operation region A2.
  • Control is performed in which the air-fuel mixture is subjected to SPCCI combustion while forming a G / F lean environment.
  • the supercharger 33 is turned off at a part of the low load and low speed side overlapping the inner region of the supercharging line T, and is turned on in other regions.
  • the opening of the bypass valve 39 is controlled so that the pressure in the surge tank 36 (supercharging pressure) matches the target pressure.
  • the intake VVT 13a and the exhaust VVT 14a drive the intake valve 11 and the exhaust valve 12 at such timing that the internal EGR is substantially stopped.
  • the EGR valve 53 is opened to an appropriate degree of opening so that an amount of external EGR gas suitable for SPCCI combustion in the second operation region A2 is introduced into the combustion chamber 6.
  • the opening degree of the EGR valve 53 at this time realizes an in-cylinder temperature suitable for obtaining a desired SPCCI combustion waveform (a target SI rate and a target ⁇ ci, which will be described later), as in the first operating region A1 described above.
  • the opening degree of the swirl valve 18 is set to a predetermined intermediate opening degree that is equal to or larger than the opening degree in the first operation region A1.
  • the spark plug 16 performs one spark ignition within a period from the late stage of the compression stroke to the early stage of the expansion stroke. For example, at the operation point P4 included in the third operation region A3, the spark plug 16 performs one spark ignition in the latter half of the compression stroke, as shown in the chart (d) of FIG. Then, SI combustion is started by this spark ignition, and all of the air-fuel mixture in the combustion chamber 6 is combusted by flame propagation.
  • the injector 15 injects at least a predetermined period overlapping with the intake stroke. For example, at the operation point P4, as shown in the chart (d) of FIG. 6, the injector 15 injects fuel over a series of periods from the intake stroke to the compression stroke. Note that since the operating point P4 is a condition of considerably high speed and high load, the amount of fuel to be injected in one cycle is large in the first place and the crank angle period required to inject the required amount of fuel is prolonged. To do. This is why the fuel injection period at the operation point P4 is longer than any of the other operation points (P1 to P3) described above.
  • the supercharger 33 is turned on, and supercharging by the supercharger 33 is performed.
  • the supercharging pressure at this time is adjusted by the bypass valve 39.
  • the throttle valve 32 and the EGR valve 53 are controlled in their opening degrees so that the air-fuel ratio (A / F) in the combustion chamber 6 becomes the stoichiometric air-fuel ratio or a slightly richer value ( ⁇ ⁇ 1).
  • the The swirl valve 18 is fully opened. Thereby, not only the first intake port 9A but also the second intake port 9B is completely opened, and the charging efficiency of the engine is increased.
  • FIG. 9 is a map diagram showing a specific example of the target value of the opening of the swirl valve 18 (hereinafter also referred to as the target swirl opening) set in the first operation region A1.
  • FIG. 10 is a graph showing a change in the target swirl opening when the rotational speed is changed under a constant load condition (along line V in FIG. 9).
  • the target swirl opening is variably set in a range of approximately 20 to 40%, and the value is increased on the high speed side or the high load side.
  • the target swirl opening is uniformly set to 20% in the first region b1 that is the slowest and lightest load in the first operation region A1, and the rotation speed or load is higher than the first region b1.
  • region b2 it is set so that it may increase gradually as a rotational speed or load becomes high.
  • the target swirl opening is closer to 20% on the low speed / low load side closer to the first region b1, and the target swirl opening is larger than 20% on the high speed / high load side far from the first region b1. And increased up to about 40%.
  • the target swirl opening degree is the rotational speed of the first region as shown in FIG. While it is included in one region b1, it is maintained at 20%, and after shifting to the second region b2, it increases at a substantially constant rate as the rotational speed increases.
  • ECU100 controls the opening degree of the swirl valve 18 according to the map (FIGS. 9 and 10) of the target swirl opening degree set as described above during the operation in the first operation region A1.
  • the opening degree of the swirl valve 18 is lowered as the rotational speed and load are lower during operation in the first operation region A1, and accordingly ( The lower the rotational speed and load, the stronger the swirl flow. This is to improve the ignitability by promoting the stratification of the air-fuel mixture under conditions of low speed and low load with severe ignitability.
  • fuel is injected radially from the injectors 15 arranged at the center of the ceiling surface of the combustion chamber 6.
  • Each spray of injected fuel is carried by the swirl flow and moves so as to be directed toward the center of the combustion chamber 6.
  • the swirl flow remains until the later stage of the compression stroke, the lower the opening of the swirl valve 18 (in other words, the faster the initial speed of the swirl flow).
  • an air-fuel mixture having a high fuel concentration is formed in the central portion of the combustion chamber 6 until immediately before the start of combustion.
  • the swirl ratio is defined as a value obtained by dividing a value obtained by measuring and integrating the lateral angular velocity of the intake air flow for each valve lift by the angular velocity of the crankshaft.
  • the lateral angular velocity of the intake air flow can be specified by measurement using the rig testing apparatus shown in FIG.
  • the rig test apparatus measures a lateral angular velocity of an intake air flow for a test engine including a cylinder block 203 and a cylinder head 204, and a base 210 disposed below the test engine; And an impulse meter 211 disposed on the upper side of the test engine.
  • the test engine has a vertically inverted posture, and the cylinder head 204 is placed on the base 210.
  • An intake port 205 is formed in the cylinder head 204, and an intake air supply device (not shown) is connected to the intake port 205.
  • a cylinder 202 is formed inside the cylinder block 203, and intake air supplied from the intake air supply device is introduced into the cylinder 202 via an intake port 205.
  • the impulse meter 211 has a honeycomb-shaped rotor 211a attached to the upper surface of the cylinder block 203, and a meter main body 211b located on the upper side of the honeycomb-shaped rotor 211a.
  • the cylinder bore diameter which is the diameter of the cylinder 202
  • the lower surface of the impulse meter 211 is located at a distance of 1.75D from the mating surface of the cylinder head 204 and the cylinder block 203.
  • a swirl flow (see the arrow in FIG. 11) is generated inside the cylinder 202, and this swirl flow acts on the honeycomb-shaped rotor 211a, thereby forming a honeycomb-like shape.
  • Torque in the rotational direction is generated in the rotor 211a. This torque is measured by the meter main body 211b, and the lateral angular velocity of the intake air flow is obtained based on the measured torque.
  • FIG. 12 shows the relationship between the opening of the swirl valve 18 and the swirl ratio defined above in the engine of this embodiment.
  • the swirl ratio increases (that is, the swirl flow is strengthened) as the opening of the swirl valve 18 decreases.
  • the swirl ratio takes a value slightly exceeding 1.5.
  • the swirl valve 18 is fully closed (0%), the swirl ratio increases to about 6.
  • the opening of the swirl valve 18 is controlled within a range of approximately 20 to 40% during the operation in the first operation region A1 (see FIGS. 9 and 10). From this, in this embodiment, it can be said that the opening degree of the swirl valve 18 in the first operation region A1 is set to a value such that the swirl ratio in the combustion chamber 6 is 1.5 or more.
  • the SPCCI combustion which combined SI combustion and CI combustion is performed in 1st operation area
  • SI combustion and CI combustion it is important to control the ratio between SI combustion and CI combustion in accordance with operating conditions.
  • an SI rate that is a ratio of a heat generation amount by SI combustion to a total heat generation amount in one cycle by SPCCI combustion (SI combustion and CI combustion) is used as the ratio.
  • FIG. 7 is a diagram for explaining the SI rate, and shows a change in the heat generation rate (J / deg) depending on the crank angle when the SPCCI combustion occurs.
  • a point X1 in the waveform of FIG. 7 is a heat generation point where the heat generation rate rises with the start of SI combustion.
  • the crank angle ⁇ si corresponding to the heat generation point X1 is defined as the SI combustion start time.
  • a point X2 in the waveform is an inflection point that appears when the combustion mode is switched from SI combustion to CI combustion.
  • the crank angle ⁇ ci corresponding to the inflection point X2 is defined as the start timing of CI combustion.
  • the area R1 of the waveform of the heat generation rate located on the advance side (between ⁇ si and ⁇ ci), which is the start timing of this CI combustion is defined as the heat generation amount due to SI combustion, and on the retard side from ⁇ ci.
  • the area R2 of the waveform of the heat generation rate located at is defined as the heat generation rate by CI combustion.
  • the air-fuel mixture burns simultaneously and frequently by self-ignition, so the pressure increase rate tends to be higher than SI combustion by flame propagation. For this reason, particularly when the SI rate is inadvertently reduced (that is, the rate of CI combustion is increased) under conditions of a high load and a large amount of fuel injection, a large noise is generated.
  • CI combustion does not occur unless the combustion chamber 6 is sufficiently heated to a high temperature and pressure. For this reason, under conditions where the load is low and the fuel injection amount is small, the CI combustion is not started until the SI combustion has progressed to some extent, and the SI rate inevitably increases (that is, the rate of CI combustion increases). .
  • the target SI rate which is the target value of the SI rate
  • the target SI rate is the engine operation in the operation region where the SPCCI combustion is performed (that is, the first and second operation regions A1, A2). It is predetermined for each condition. Specifically, the target SI rate is set so that the higher the load, the smaller the target SI rate (that is, the higher the load, the higher the CI combustion rate) in the first operating region A1 on the low load side. On the other hand, the target SI rate in the second operation region A2 on the high load side is set so as to increase generally as the load increases (that is, the rate of CI combustion decreases). Further, in response to this, in the present embodiment, the target ⁇ ci that is the start timing of CI combustion when combustion suitable for the target SI rate is performed is also predetermined for each engine operating condition.
  • control amounts such as the timing of main ignition by the spark plug 16, the fuel injection amount / injection timing from the injector 15, and the EGR rate (external EGR rate and internal EGR rate) are set. It is necessary to adjust for each operating condition. For example, as the timing of main ignition is advanced, more fuel is burned by SI combustion, and the SI rate becomes higher. Further, as the fuel injection timing is advanced, more fuel is burned by CI combustion, and the SI rate is lowered. Alternatively, as the in-cylinder temperature increases as the EGR rate increases, more fuel is burned by CI combustion, and the SI rate becomes lower. Further, since the change in the SI rate is accompanied by the change in ⁇ ci, the change in each of these control amounts (main ignition timing, injection timing, EGR rate, etc.) is an element for adjusting ⁇ ci.
  • the main ignition timing when the SPCCI combustion is performed, the main ignition timing, the fuel injection amount / injection timing, the EGR rate (and thus the in-cylinder temperature), etc. Control is performed so that the target ⁇ ci becomes a realizable combination.
  • FIG. 13 is a flowchart showing details of combustion control (mainly control at SPCCI combustion) executed when the engine is warm.
  • the calculation unit 101 of the ECU 100 calculates a required torque of the engine based on the accelerator operation state in step S1. That is, a required torque that is a target torque to be output from the engine is calculated based on the operation amount (depression amount) of the accelerator pedal and the operation speed specified from the detection value of the accelerator sensor SN11. The required torque is calculated higher as the accelerator pedal operation amount and operation speed are larger.
  • step S2 the calculation unit 101 determines whether or not the current operation point of the engine is included in the first operation region A1 shown in FIG. That is, the calculation unit 101 specifies the current engine operating point on the operation map of FIG. 5 based on the engine rotation speed detected by the crank angle sensor SN1 and the required torque calculated in step S1. Then, it is determined whether or not the current operation point is included in the first operation area A1 in the map.
  • Step S2 When it is determined NO in Step S2 and it is confirmed that the current operation point of the engine is not included in the first operation region A1, the calculation unit 101 determines that the current operation point is in the second operation region A2 in Step S20. It is determined whether it is included in.
  • step S20 When it is determined YES in step S20 and it is confirmed that the current operation point of the engine is included in the second operation region A2, the control units 102 to 106 of the ECU 100 control the control corresponding to the second operation region A2. Then, the control (step S21) is performed in which the air-fuel mixture is subjected to SPCCI combustion by one spark ignition by the spark plug 16. Since the contents of the control are as described in the above section (3-2), detailed description is omitted here.
  • step S20 when it is determined NO in step S20, that is, when it is confirmed that the current operation point of the engine is included in the third operation region A3, the respective control units 102 to 106 of the ECU 100 perform the third operation region.
  • control step S22
  • control is performed in which the air-fuel mixture is combusted by SI combustion instead of SPCCI combustion.
  • the details of the control are as described in (3-3) above, and a detailed description thereof is omitted here.
  • the calculation unit 101 of the ECU 100 determines a target air-fuel ratio that is a target value of the air-fuel ratio (A / F) in the combustion chamber 6 based on the required torque (load) and the rotational speed of the engine in step S3. To do. That is, the calculation unit 101 calculates the current operating point based on the required engine torque calculated in step S1, the engine rotational speed detected by the crank angle sensor SN1, and the target air-fuel ratio map shown in FIG. A target air-fuel ratio suitable for (rotational speed / load) is determined.
  • step S4 the calculation unit 101 determines the injection amount and injection timing of the fuel to be injected from the injector 15 based on the engine required torque calculated in step S1.
  • the fuel injection amount / injection timing determined here is an injection amount / injection timing predetermined for each engine operating condition in order to realize the above-described target SI rate and target ⁇ ci.
  • the first operation region A1 fuel is injected separately into the first injection and the second injection, and the first injection is more than the second injection.
  • the fuel injection amount / injection timing is determined so that the injection amount increases.
  • step S5 the calculation unit 101 determines the opening degree of the throttle valve 32 based on the target air-fuel ratio determined in step S3. That is, on the assumption that the amount of fuel determined in step S4 is supplied to the combustion chamber 6, the calculation unit 101 supplies an amount of air (fresh air) corresponding to the target air-fuel ratio to the combustion chamber 6. Is calculated as a target opening value of the throttle valve 32.
  • the target opening value is determined such that an A / F lean environment with an air-fuel ratio of more than 20 and less than 35 is formed.
  • step S6 the calculation unit 101 determines the opening degree of the swirl valve 18 based on the required torque (load) of the engine and the rotation speed. That is, the calculation unit 101 calculates the current operating point based on the required engine torque calculated in step S1, the engine rotation speed detected by the crank angle sensor SN1, and the swirl opening degree map shown in FIG. The opening degree of the swirl valve 18 that matches (rotational speed / load) is specified, and this is determined as the opening target value of the swirl valve 18.
  • a control target value related to spark ignition and EGR is determined in parallel with the determination of the injection amount / injection timing and the like as described above. That is, when it is determined as YES in Step S2 and it is confirmed that the current operation point is included in the first operation region A1, the calculation unit 101 proceeds to Step S10, and the timing of the preceding ignition by the spark plug 16 And determine energy.
  • step S11 the calculation unit 101 determines the target SI rate and the target ⁇ ci based on the engine required torque calculated in step S1.
  • the target SI rate in the first operation region A1 is generally smaller as the required torque is higher at the higher load side (that is, as the higher load side is, the CI combustion ratio is increased). )It is determined. Further, the target ⁇ ci is also determined in association with the determined target SI rate.
  • step S12 the calculation unit 101 determines the timing of main ignition by the spark plug 16 based on the target SI rate and the target ⁇ ci determined in step S11.
  • the calculation unit 101 specifies the SI combustion start timing ( ⁇ si shown in FIG. 7) necessary for realizing combustion that matches the target SI rate and the target ⁇ ci.
  • the calculation unit 101 determines the crank angle advanced by a predetermined ignition delay time (time required from main ignition to ignition) from the SI combustion start timing ⁇ si as a target value of the main ignition timing. .
  • the main ignition is normal spark ignition performed after increasing the voltage of the capacitor included in the ignition circuit of the spark plug 16 to the maximum voltage. For this reason, unlike the case of preceding ignition, it is not necessary to determine the ignition energy according to the conditions.
  • step S13 calculation unit 101 calculates the in-cylinder temperature required at the time of main ignition in order to realize the target SI rate and target ⁇ ci, and determines this as the target in-cylinder temperature at the time of main ignition. To do.
  • step S14 the calculation unit 101 closes the intake valve 11 when the compression of the combustion chamber 6 is substantially started based on the target in-cylinder temperature at the time of main ignition calculated in step S13 (hereinafter referred to as “closed timing”).
  • In-cylinder temperature to be achieved in IVC that is, a target in-cylinder temperature at the time of IVC.
  • the target in-cylinder temperature at the time of IVC is calculated based on the target in-cylinder temperature at the time of main ignition and the amount of increase in the in-cylinder temperature estimated from the compression allowance of the piston 5 between IVC and main ignition.
  • step S15 the calculation unit 101 determines the opening degree of the EGR valve 53 and the valve timings of the intake / exhaust valves 11, 12 based on the target in-cylinder temperature at the time of IVC calculated in step S14. That is, the calculation unit 101 calculates the external EGR rate and the internal EGR rate necessary for realizing the target in-cylinder temperature at the IVC time point, the target in-cylinder temperature at the IVC time point and the temperature detected by the first intake air temperature sensor SN5 (that is, It is calculated based on the difference from the fresh air temperature. Then, the opening degree of the EGR valve 53 necessary for realizing the calculated external EGR rate is calculated, and this is determined as the opening target value of the EGR valve 53, and the calculated internal EGR rate is realized.
  • the valve timing of the intake / exhaust valves 11 and 12 necessary for the calculation is calculated, and this is determined as the target value of the valve timing.
  • the value of the gas air-fuel ratio (G / F) is less than 18 and less than 50, so that a G / F lean environment is formed in which the air-fuel ratio substantially matches the stoichiometric air-fuel ratio.
  • the target opening value of the EGR valve 53 is set.
  • each control unit (the injection control unit 102, the ignition control unit 103, the swirl control unit 104, the intake control unit 105, and the EGR control unit 106) of the ECU 100 performs various controls determined in each step described above in step S16. Based on the target value, the injector 15, spark plug 16, swirl valve 18, throttle valve 32, EGR valve 53, and intake / exhaust VVTs 13a and 14a are driven.
  • the injection control unit 102 controls the injector 15 such that the amount of fuel determined in step S4 is injected from the injector 15 at the determined time.
  • the ignition control unit 103 controls the spark plug 16 so that the spark having the energy determined in step S10 is generated from the spark plug 16 at the determined timing as the preceding ignition. Further, as the main ignition following the preceding ignition, the ignition control unit 103 controls the spark plug 16 so that a spark is generated from the spark plug 16 at the timing determined in step S12.
  • the swirl control unit 104 controls the swirl valve 18 so that the opening of the swirl valve 18 matches the swirl opening determined in step S6.
  • the intake control unit 105 controls the throttle valve 32 so that the opening of the throttle valve 32 matches the throttle opening determined in step S5.
  • the EGR control unit 106 controls the EGR valve 53 so that the opening degree of the EGR valve 53 coincides with the opening degree determined in the above step S15, and at the timing coincident with the valve timing similarly determined in step S15.
  • the intake / exhaust VVTs 13a and 14a are controlled so that the exhaust valves 11 and 12 are opened and closed.
  • step S16 the mixture of fuel and air injected into the combustion chamber 6 is combusted by SPCCI combustion after receiving prior ignition and main ignition.
  • FIG. 14 is a subroutine showing details of the control in step S10.
  • the calculation unit 101 of the ECU 100 determines the timing of preceding ignition based on the fuel injection timing in step S31. For example, the calculation unit 101 identifies the timing at which the second injection with the later injection timing ends from the fuel injection amount / injection timing determined at step S4 described above, and determines the predetermined timing from the injection end timing of the second injection. The time point at which the crank angle has elapsed is determined as the timing of preceding ignition.
  • step S32 the calculation unit 101 determines basic ignition energy that is a basic value of the energy of preceding ignition.
  • FIGS. 15A and 15B show a specific example of a base map used when determining the basic ignition energy in step S32.
  • the basic ignition energy is specified from the engine speed and load (required torque), and is generally set to increase as the engine speed and load increase.
  • Each of the maps in FIGS. 15 (a) and 15 (b) defines a three-way relationship of engine speed, engine load, and basic ignition energy, and represents the same relationship. For this reason, one of the maps in FIGS. 15 (a) and 15 (b) is sufficient, but for ease of understanding, a map with the horizontal axis as a load (FIG. 15 (a)), A map (FIG. 15B) when the horizontal axis is the vertical axis is also shown.
  • the engine load is any one of the low load, medium load, high load, and extremely high load in the first operation region A1.
  • the relationship between engine speed and basic ignition energy when maintained at a load is shown.
  • the relationship between the rotational speed and the basic ignition energy is a substantially directly proportional relationship, that is, a relationship in which the basic ignition energy increases linearly according to the rotational speed. This is the same even when the engine load is held at any one of a low load, a medium load, a high load, and an extremely high load.
  • the map of FIG. 15A shows the case where the engine rotation speed is made constant, specifically, when the engine rotation speed is maintained at any one of the low speed, medium speed and high speed within the first operation region A1.
  • the relationship between engine load and basic ignition energy is shown.
  • FIG. 15 (a) under a condition where the engine rotation speed is constant, the load is large in most load regions except for a region where the engine load is extremely high (near the upper limit load of the first operation region A1). The higher the higher the basic ignition energy. However, in the region where the engine load is extremely high, the basic ignition energy decreases as the load increases. This tendency is the same regardless of whether the engine speed is maintained at a low speed, a medium speed, or a high speed. Note that the phenomenon that the relationship between the load and the basic ignition energy is reversed only in the case of an extremely high load is caused by the fact that the “ultra-high load” diagram is lower than the “high load” diagram in FIG. It also appears to be located.
  • step S32 the basic ignition energy of the preceding ignition is determined by applying the current engine load (required torque) / rotation speed to any one of the maps in FIGS. 15 (a) and 15 (b).
  • the basic ignition energy not defined in the map can be obtained by linear interpolation, for example. That is, in FIG. 15A, the characteristic of basic ignition energy (relationship between engine load and basic ignition energy) when the engine rotation speed is any one of low speed, medium speed, and high speed is defined.
  • the basic ignition energy can be determined by linear interpolation using two specified values that are close to each other.
  • FIG. 15B the characteristic of basic ignition energy (relationship between engine speed and basic ignition energy) when the engine load is one of low load, medium load, high load, and extremely high load is shown. It is prescribed.
  • the basic ignition energy can be determined by linear interpolation using two specified values that are close to each other.
  • a characteristic corresponding to another rotational speed different from the above three engine rotational speeds (low speed, medium speed, and high speed) may be added.
  • a characteristic corresponding to another load different from the four engine loads (low load, medium load, high load, and extremely high load) may be added.
  • FIG. 16 is a graph showing the relationship between the lean environment and the limit of basic ignition energy at which pre-ignition causes premature ignition in the air-fuel mixture.
  • the curves “A / F” and “G / F” in the figure indicate the basic ignition energy at which the air-fuel mixture is ignited by preceding ignition and the degree of lean in the A / F lean environment and the G / F lean environment, respectively. Shows the relationship.
  • the basic ignition energy at which premature ignition occurs tends to be larger as the air-fuel ratio or gas air-fuel ratio of the air-fuel mixture is larger (that is, the fuel is leaner).
  • the purpose of the pre-ignition is to reform the fuel by applying small ignition energy that does not cause flame propagation to the air-fuel mixture before being sufficiently compressed.
  • a mixture layer hereinafter also referred to as a high temperature part
  • the reactivity can be increased.
  • the basic ignition energy map used in step S32 is determined in advance so as to meet the purpose of such pre-ignition, that is, a high-temperature portion of 850K or more and less than 1140K is formed around the spark. is there.
  • OH radicals and other intermediate products increase the thermal efficiency at the time of CI combustion. For this reason, it is desirable to increase the energy of the pre-ignition as much as possible within a range where flame propagation does not occur.
  • the basic ignition energy of the pre-ignition determined in the above step S32 takes into consideration the environment of the combustion chamber 6 that changes in accordance with the load / rotation speed of the engine in advance. As a result, the environment of the combustion chamber 6 often deviates from the expected. Therefore, the calculation unit 101 corrects the ignition energy so that appropriate pre-ignition energy is applied even if there is such a variation (step S33).
  • the calculation unit 101 determines a first correction coefficient corresponding to the air-fuel ratio of the air-fuel mixture, a second correction coefficient corresponding to the engine water temperature, and a third correction coefficient corresponding to the in-cylinder pressure.
  • the first correction coefficient is set to a larger value as the air-fuel ratio is larger (that is, as the fuel is leaner). This means that when various conditions other than the air-fuel ratio are the same, the energy of the preceding ignition is increased as the air-fuel ratio is increased.
  • the second correction coefficient is set to a smaller value as the engine water temperature is higher. This means that when various conditions other than the engine water temperature are the same, the energy of the pre-ignition is reduced as the engine water temperature is higher.
  • determining the second correction coefficient is equivalent to reducing the energy of the preceding ignition as the in-cylinder temperature is higher.
  • the third correction coefficient is set to a larger value as the in-cylinder pressure at the time of IVC is higher. This means that when various conditions other than the in-cylinder pressure are the same, the higher the in-cylinder pressure at the IVC time, the higher the energy of the preceding ignition.
  • step S34 the calculation unit 101 determines the pre-ignition energy based on the basic ignition energy and the first to third correction coefficients. That is, the calculation unit 101 performs a calculation that applies the first to third correction coefficients determined in step S33 to the basic ignition energy determined in step S32, and calculates the value obtained by the calculation.
  • the final pre-ignition energy is determined.
  • the energy of the preceding ignition determined in this way is smaller than that of the main ignition and is energy that causes reforming of the fuel (generation of OH radicals or the like). More specifically, the energy of the pre-ignition is set to an energy at which a high-temperature portion of 850 K or more and less than 1140 K is formed around the spark (arc) by the pre-ignition and the mixture does not cause flame propagation.
  • the pre-ignition with low energy and the main ignition with high energy are executed in one cycle.
  • the spark plug 16 is controlled as follows, for example.
  • one ignition plug 16 is provided for one cylinder 2, and one ignition plug 16 includes one ignition circuit including an LC circuit including a coil, a capacitor, and the like. For this reason, in order to cause the spark plug 16 to perform spark ignition twice, it is necessary to repeatedly charge and discharge the capacitor.
  • FIG. 17 is a time chart showing the electrical state of the spark plug 16 together with the combustion waveform when the pre-ignition and the main ignition are performed in the first operation region A1, and the chart (a) shows the heat generated by the SPCCI combustion.
  • the waveform of the occurrence rate shows the waveform of the energization command to the spark plug 16
  • the chart (c) shows the waveform of the discharge current from the spark plug 16, respectively.
  • the ignition plug 16 is energized before the preceding ignition and the main ignition, respectively.
  • the energization time (waveform W1) at the time of preceding ignition is shorter than that of main ignition (waveform W2). Further, as indicated by the waveforms Y1 and Y2 in the chart (c) of FIG. 17, the discharge from the spark plug 16 (spark generation) is started when the energization of the spark plug 16 is stopped. At this time, since the energization time for pre-ignition is shorter than the energization time for main ignition, the discharge energy (waveform Y1) at the time of pre-ignition is smaller than the discharge energy (waveform Y2) at the time of main ignition. . This is understood from the fact that the area of the waveform Y1 is smaller than the area of the waveform Y2.
  • At least the pre-ignition need not release all the energy stored before that, and may release only a part of the stored energy. That is, if energization to the spark plug 16 is resumed during the discharge from the spark plug 16, the discharge is stopped at that time, so that energy larger than originally required energy is stored by energization and then the discharge is in progress. In this case, only a part of the stored energy may be released from the spark plug 16 by restarting energization (and thereby stopping the discharge).
  • the energization time for main ignition can be shortened, which is effective in the case where the interval from the preceding ignition to the main ignition is relatively short.
  • the preceding ignition is executed at a timing earlier than the main ignition, and a high temperature portion of 850 K or more and less than 1140 K is formed around the spark (arc) by the preceding ignition. Therefore, the fuel can be reformed so that the thermal efficiency at the time of CI combustion becomes high without causing flame propagation of the air-fuel mixture due to the preceding ignition.
  • the fuel component hydrocarbon
  • the fuel component is cleaved by heating to the above temperature range to generate hydrogen peroxide (H 2 O 2 ) and formaldehyde (CH 2 O), and OH radicals generated from these components are generated. be able to.
  • the OH radical Since the OH radical has a strong oxidizing action and high reactivity, an intermediate product containing such OH radical is generated in the combustion chamber 6 after the preceding ignition, whereby the fuel component spontaneously reacts chemically.
  • the burning rate of a certain CI combustion can be increased, and the thermal efficiency can be improved.
  • the pre-ignition is performed in an A / F lean environment where the air-fuel ratio is less than 20 and less than 35, or in a G / F lean environment where the gas air-fuel ratio is less than 18 and less than 50 and the air-fuel ratio substantially matches the stoichiometric air-fuel ratio.
  • Executed In such a lean environment, even if sparks due to preceding ignition occur in the air-fuel mixture, flames are not easily generated, and the energy of the preceding ignition is exclusively used to raise the temperature of the fuel component (reforming fuel). Can contribute.
  • the lean environment makes it difficult for combustion to occur in the combustion chamber 6, thereby making it difficult for pre-ignition to pre-ignite the air-fuel mixture. Therefore, the intermediate product can be sufficiently generated in the cylinder 2 by the preceding ignition.
  • FIG. 18 is a graph showing the relationship between the temperature of the air-fuel mixture and the amount of intermediate product obtained from a numerical simulation performed by the inventors of the present application.
  • the threshold value ⁇ indicated on the vertical axis of the graph represents the amount of intermediate product necessary to obtain a significant effect. If an intermediate product exceeding this threshold value ⁇ exists in the combustion chamber, it is significant in the combustion rate. It shows that a big difference arises. From the graph, it is necessary to raise the temperature of the air-fuel mixture to at least 850 K in order to obtain an intermediate product having a threshold value ⁇ or higher (that is, to accelerate combustion at a significant level).
  • the amount of the intermediate product increases after the temperature of the air-fuel mixture exceeds 850K, but decreases rapidly (substantially vertically) when the temperature reaches 1140K. This is presumably because when the temperature of the air-fuel mixture reaches 1140K, the air-fuel mixture burns to generate a flame (that is, a hot flame reaction occurs), and the intermediate product is almost consumed.
  • the energy of the pre-ignition is adjusted to such an energy that a high temperature portion of 850 or more and less than 1140 K is formed around the spark (arc). Therefore, the intermediate product containing highly reactive OH radicals can be reliably generated by the preceding ignition, and the combustion rate of CI combustion can be increased to improve the thermal efficiency.
  • the waveform (solid line) of the heat generation rate when the preceding ignition adjusted to the appropriate energy is executed is the heat generation rate when the preceding ignition is not executed. It is shown in comparison with the waveform (dashed line).
  • the ignition control unit 103 sets the energy of the preceding ignition to be smaller than the energy of the main ignition. As a result, it is possible to easily realize a configuration in which SI combustion is caused by main ignition while SI combustion is not caused by preceding ignition.
  • the injection control unit 102 causes fuel injection to be executed in the intake stroke
  • the ignition control unit 103 causes the pre-ignition to be executed after fuel injection in the intake stroke, or in the first or middle period of the compression stroke.
  • the air-fuel mixture is homogenized at the time of preceding ignition, and the occurrence of a situation where a rich air-fuel mixture exists only around the spark plug 16 is suppressed. It becomes possible. Therefore, ignition of the air-fuel mixture and flame formation due to preceding ignition are suppressed, and the generation period of the intermediate product can be ensured reliably.
  • preceding ignition and the main ignition are executed by one ignition plug 16 having one ignition circuit for each cylinder 2. For this reason, the preceding ignition and the main ignition can be executed by a simple method using the existing spark plug 16.
  • the swirl valve 18 is closed to an opening that ensures a swirl ratio of 1.5 or more during operation in the first operation region A1. For this reason, the intermediate product produced
  • the SI rate that is the ratio of the heat generation amount by SI combustion to the total heat generation amount in one cycle is The timing of the main ignition by the spark plug 16 is adjusted so as to coincide with a target SI rate determined in advance according to the engine operating conditions. That is, the timing of main ignition is adjusted so that SPCCI combustion suitable for the target SI rate is realized. For this reason, for example, the ratio of CI combustion can be increased as much as possible (that is, the SI rate is lowered) within a range where combustion noise does not become excessive.
  • the operation region in which the preceding ignition and the main ignition are performed is a part of the low load side in the SPCCI combustion execution region (first and second operation regions A1, A2), that is, the first operation region. It is limited only to A1, and the preceding ignition is not executed in the second operation region A2 on the high load side. For this reason, the malfunction which causes abnormal combustion by speeding up of CI combustion by prior ignition can be avoided.
  • the second operating region A2 on the high load side if the preliminary ignition is performed to generate an intermediate product such as OH radical, the combustion speed of the CI combustion becomes too fast and abnormal combustion such as knocking occurs. The possibility increases.
  • the preceding ignition in the second operation region A2 on the high load side is prohibited, so that abnormal combustion such as knocking can be effectively avoided.
  • fuel injection is performed in two steps. That is, the injection control unit 102 causes the injector 15 to execute a first injection that injects fuel at a predetermined point in the intake stroke and a second injection that injects fuel at a point later than the first injection. Then, the preceding ignition is performed after the second injection.
  • the injection control unit 102 causes the injector 15 to execute a first injection that injects fuel at a predetermined point in the intake stroke and a second injection that injects fuel at a point later than the first injection. Then, the preceding ignition is performed after the second injection.
  • the fuel injection amount by the first injection is greater than the fuel injection amount by the second injection regardless of the load level (any of the operation points P1 and P2). More than the injection amount. Thereby, the fuel is not excessively stratified, and good emission performance can be ensured.
  • the geometric compression ratio of the cylinder 2 is set to 13 or more and 30 or less. By setting such a high compression ratio, combustion stability can be ensured even in an A / F lean environment or a G / F lean environment.
  • the timing of the preceding ignition may be any timing at which fuel is present in the combustion chamber 6, and for example, the preceding ignition may be executed during the intake stroke.
  • the number of preceding ignitions is not limited to once in one cycle, and may be increased to two or more.
  • the pre-ignition is a timing at which fuel is present in the combustion chamber 6 and may be executed during the intake stroke or the first half or the middle of the compression stroke. Is possible.
  • FIG. 20 is a graph showing the relationship between the number of times of preceding ignition and the improvement allowance for the fuel consumption rate (g / kWh). As shown in FIG. 20, the fuel consumption rate is sufficiently improved if the preceding ignition is performed once. However, if the number of the preceding ignitions is increased to 2 times or 3 times, the fuel consumption rate is increased little by little. Improve. However, even if the number of times of preceding ignition is increased from 3 times to 4 times, the value of the fuel consumption rate is substantially the same. Thus, since the effect is hardly obtained even if the number of times of preceding ignition is increased to 4 times or more, it is desirable that the number of times of preceding ignition is 3 times or less.
  • the SI rate which is the ratio of the amount of heat generated by SI combustion to the total amount of heat generated by SPCCI combustion, is defined as R1 / (R1 + R2) using the areas R1 and R2 in the combustion waveform of FIG.
  • the timing of main ignition is adjusted so that the SI rate matches a predetermined target SI rate.
  • the SI rate may be R1 / R2.
  • the SI rate may be defined using ⁇ 1 and ⁇ 2 shown in FIG. That is, when the SI combustion crank angle period (combustion period on the more advanced side than the inflection point X2) is ⁇ 1, and the CI combustion crank angle period (the combustion period on the more retarded side than the inflection point X2) is ⁇ 2.
  • SPCCI combustion in the first operation region A1 is illustrated as an example of the combustion mode in which the first ignition (preceding ignition) is performed.
  • various combustion modes can be adopted as long as at least a part of the air-fuel mixture is compression ignition combustion in which CI combustion is performed by self-ignition.
  • main ignition may not be performed, and the entire air-fuel mixture may be burned by CI combustion. That is, the spark plug 16 is not used for ignition of SI combustion, but is used only for pre-ignition for forming a high temperature portion prior to CI combustion.
  • the high temperature portion is formed by the preceding ignition, and thus the fuel can be reformed so that the thermal efficiency at the time of CI combustion becomes high. Therefore, the speed of CI combustion can be increased. Further, since the combustion chamber 6 is in an A / F lean environment or a G / F lean environment, it is difficult for a flame to be generated by the preceding ignition, and the intermediate product can be generated satisfactorily.
  • a control apparatus for a compression ignition engine includes a cylinder, an injector that injects fuel into the cylinder, and a spark plug that generates a spark in the cylinder, and fuel injected from the injector;
  • an ignition control unit that controls an ignition operation by the spark plug, and the combustion control unit has an A / F in which an air-fuel ratio that is a ratio of air and fuel in the cylinder is more than 20 and less than 35 A lean environment or a G / F lean environment in which the gas air-fuel ratio, which is the ratio of the total gas and fuel in the cylinder, is less than 18 and less than 50 and the air-fuel ratio substantially matches the stoichiometric air-fuel ratio is formed.
  • the ignition control unit performs a first ignition that generates a
  • the first ignition is executed prior to the scheduled timing of CI combustion. For this reason, by using the first ignition to raise the surroundings of the spark (arc) to an appropriate temperature, the fuel is improved so that the thermal efficiency during CI combustion is increased while suppressing the flame propagation of the mixture. Can be quality. Specifically, it is possible to generate hydrogen peroxide (H 2 O 2 ) and formaldehyde (CH 2 O) by cleaving the fuel component (hydrocarbon) by increasing the temperature, and to generate OH radicals generated from these components. The OH radical has a strong oxidizing action and high reactivity. By generating such an intermediate product containing OH radicals in the cylinder after the first ignition, it is possible to increase the combustion speed of CI combustion, which is a phenomenon in which fuel components spontaneously react chemically. Therefore, thermal efficiency can be improved.
  • H 2 O 2 hydrogen peroxide
  • CH 2 O formaldehyde
  • the OH radical has a strong oxidizing action and high reactivity.
  • the first ignition is executed in the A / F lean environment or the G / F lean environment.
  • the spark from the first ignition occurs in the air-fuel mixture, it is difficult for the flame to naturally occur, and the energy of the first ignition is exclusively used to raise the temperature of the fuel component (reform the fuel). Quality). Therefore, the above-described intermediate product can be sufficiently generated in the cylinder.
  • the energy of the first ignition is such that a high-temperature portion of 850 K or more and less than 1140 K is formed around the spark generated from the spark plug, and flame propagation of the mixture does not occur. It is desirable to set it to energy.
  • this control device a sufficient amount of the intermediate product is generated by the first ignition, and the intermediate product is consumed by unintended flame propagation by the first ignition before the CI combustion. Can be avoided.
  • the number of times of the first ignition in one cycle is preferably set to 3 or less.
  • the number of times of the first ignition need not be limited to once in one cycle, and a plurality of times of the first ignition may be executed. However, according to the study by the inventors of the present application, when the first ignition is performed more than three times, the effect obtained compared with the case where the first ignition is three times is almost the same. According to the above control device, it is possible to suppress the consumption of the electrode of the spark plug while ensuring the effect of the first ignition that speeds up the CI combustion.
  • the compression ignition engine is configured to perform partial compression ignition in which a part of the air-fuel mixture is subjected to SI combustion by spark ignition of the spark plug and other air-fuel mixture is subjected to CI combustion by self-ignition.
  • the ignition control unit In the engine capable of combustion, the ignition control unit generates a spark when starting the partial compression ignition combustion and starts the SI combustion, and sparks at a time earlier than the second ignition. It is desirable to cause the spark plug to execute the first ignition for generating the ignition.
  • the SI combustion is generated by the second ignition, and the start timing of the CI combustion can be controlled by the SI combustion.
  • the intermediate product exists due to the high temperature by the first ignition, so that the combustion speed of the CI combustion can be increased.
  • the ignition control unit sets the energy of the first ignition to be smaller than the energy of the second ignition.
  • this control device it is possible to easily realize a configuration in which SI combustion is not caused by the first ignition but SI combustion is caused by the second ignition.
  • the ignition control unit execute the first ignition during an intake stroke or in the first or middle period of a compression stroke.
  • the first ignition is executed at a timing sufficiently advanced from the compression top dead center. Therefore, while preventing unintentional flame propagation due to the first ignition, the injected fuel can be reliably reformed by the first ignition to increase the speed of CI combustion.
  • the first ignition and the second ignition are executed by one ignition plug having one ignition circuit for each cylinder. Accordingly, the first ignition and the second ignition can be executed by a simple method using an existing spark plug.
  • control apparatus for the compression ignition type engine further comprising: a swirl valve that is disposed in an intake port communicating with the cylinder and that can open and close the intake port; and a swirl control unit that controls an opening degree of the swirl valve
  • the swirl control unit may control the opening of the swirl valve so that a swirl ratio in the cylinder is 1.5 or more in an operation region where the first ignition and the second ignition are performed.
  • the swirl ratio when the swirl ratio is 1.5 or more, a strong swirl flow can be generated in the cylinder.
  • the intermediate product generated by the first ignition can be dispersed in a wide range in the cylinder in a short time. Therefore, the intermediate product thus dispersed can be used to effectively increase the combustion speed of CI combustion that is simultaneously started at various locations in the cylinder.
  • a setting unit for setting a target SI rate which is a target value of the ratio of the heat generation amount by SI combustion to the total heat generation amount in one cycle, according to the engine operating conditions
  • the ignition control unit may set the timing of the second ignition based on the target SI rate set by the setting unit.
  • the ratio of CI combustion is increased as much as possible within a range in which combustion noise does not become excessive by adjusting the timing of the second ignition so that partial compression ignition combustion that matches the target SI rate is realized. (That is, the SI rate can be lowered).
  • This combined with the effect of reforming the fuel by the first ignition (acceleration of CI combustion), leads to increasing the thermal efficiency by partial compression ignition combustion as much as possible. Since the preceding ignition only serves to generate an intermediate product containing OH radicals (and thereby increase the combustion speed of CI combustion), the SI rate is particularly high even if the energy and timing of the first ignition change. Not affected.
  • the timing of the second ignition for achieving the target SI rate can be uniquely specified independently of the energy and timing of the first ignition. That is, according to the above control device, the timing of the second ignition for realizing the target SI rate is specified with high accuracy while performing the first ignition so that a sufficient intermediate product is generated. Can do.
  • the ignition control unit executes the first ignition and the second ignition only at a part on a low load side in an operation region where the partial compression ignition combustion is executed. Is desirable.
  • this control device it is possible to avoid the problem that abnormal combustion is caused by increasing the speed of CI combustion by the first ignition. That is, when the first ignition and the second ignition are performed uniformly in the execution region of the partial compression ignition combustion, the combustion speed of the CI combustion becomes too fast on the high load side in the same region, and abnormal combustion such as knocking occurs. Is more likely to occur.
  • the first ignition is executed only in a part on the low load side in the execution region of the partial compression ignition combustion, and the first ignition is prohibited on the high load side. Therefore, abnormal combustion such as knocking can be effectively avoided.
  • the combustion control unit includes an injection control unit that controls an injection operation of fuel by the injector, and the injection control unit injects fuel at a predetermined time point in the intake stroke.
  • the injector may cause the injector to execute a first injection and a second injection that injects fuel at a time later than the first injection, and the ignition control unit may execute the first ignition after the second injection. desirable.
  • this control device it is possible to set the fuel injection amount / injection timing in the first injection and the second injection according to the engine operating conditions. Therefore, the stratification degree (or homogeneity degree) of the air-fuel mixture can be adjusted so that appropriate compression ignition combustion or partial compression ignition combustion is realized under each operating condition.
  • the injection control unit controls the injector so that the amount of fuel injected by the first injection is larger than the amount of fuel injected by the second injection. Is desirable. Thereby, by relatively increasing the injection amount by the first injection with the earlier injection timing, it is possible to avoid that the fuel is excessively stratified and the emission performance is deteriorated.
  • the geometric compression ratio of the cylinder is set to 13 or more and 30 or less. By setting such a high compression ratio, the stability of combustion can be ensured even in a lean environment.
  • a control device for a compression ignition engine is an apparatus for controlling an engine including a cylinder, an injector and a spark plug disposed so as to face the cylinder, the injector and the A controller that is electrically connected to a spark plug and outputs a control signal to the injector and the spark plug, the controller having an electric circuit, and the controller having the electric circuit includes fuel injected from the injector A first combustion control unit for executing partial compression ignition combustion in which air-fuel mixture is subjected to flame propagation combustion by spark ignition by the ignition plug, and compression self-ignition combustion occurs after the start of the flame propagation combustion; and the partial compression ignition combustion A / F lean ring in which the air-fuel ratio, which is the ratio of air and fuel in the cylinder, becomes greater than 20 and less than 35 Alternatively, a second combustion control unit that forms a G / F lean environment in which the gas air-fuel ratio, which is the ratio of the total gas and fuel in the cylinder, is less than 18 and less than 50 and the air-

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

圧縮着火式エンジンの制御装置は、混合気の少なくとも一部を自着火によりCI燃焼させる部分圧縮着火燃焼が可能なエンジンに適用される。制御装置の燃焼制御部は、気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成する。点火制御部は、前記CI燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、点火プラグに火花を発生させて高温部を形成する第1点火を実行させる。

Description

圧縮着火式エンジンの制御装置
 本発明は、混合気の少なくとも一部を自着火により燃焼させる圧縮着火燃焼が可能な圧縮着火式エンジンの制御装置に関する。
 近年、空気と混合されたガソリン燃料を十分に圧縮された燃焼室内で自着火により燃焼させるHCCI燃焼が注目されている。HCCI燃焼は、混合気が同時多発的に燃焼する形態であるため、通常のガソリンエンジンにおいて採用されるSI燃焼(火花点火燃焼)に比べて、混合気の燃焼速度が速く、熱効率の面で非常に有利だと言われている。しかしながら、HCCI燃焼は、気温などの外部因子により混合気の燃焼開始時期(混合気が自着火する時期)が大きく変動するなどの問題があり、また、負荷が急変するような過渡運転時の制御が難しいという問題もあった。
 そこで、混合気の全てを自着火により燃焼させるのではなく、混合気の一部については点火プラグを用いた火花点火により燃焼させることが提案されている。すなわち、火花点火をきっかけに混合気の一部を火炎伝播により強制的に燃焼(SI燃焼)させ、その他の混合気を自着火により燃焼(CI燃焼)させるのである。以下では、このような燃焼のことを部分圧縮着火燃焼という。
 上記部分圧縮着火燃焼に類似したコンセプトを採用したエンジンが、特許文献1に開示されている。特許文献1のエンジンは、補助燃料噴射によって点火プラグ(点火栓)周りに形成された成層混合気を、火花点火により火炎伝播燃焼させる。当該燃焼(火炎)の作用により高温化された燃焼室に主燃料噴射が行われ、この主燃料噴射により噴射された燃料を自着火により燃焼させる。
 一方で、圧縮着火燃焼を用いない別の方法によってエンジンの熱効率を向上させることも提案されている。例えば特許文献2には、点火プラグによる火花点火を1サイクル中に2回実行するようにした火花点火式エンジンが開示されている。前記火花点火式エンジンでは、燃焼室内の混合気全体が着火、燃焼しない程度の(局所的に火種が形成される程度の)小さい点火エネルギーを供給する先行点火が、圧縮行程中に実行される。この先行点火よりも遅れた適宜のタイミングで、先行点火よりも大きい点火エネルギーを供給する主点火が実行される。このように、主点火よりも早い段階で先行点火による火種を形成することにより、混合気の失火を防止できるだけでなく、燃焼速度を速めることができるとされている。
 ここで、部分圧縮着火燃焼を含む圧縮着火燃焼においては、CI燃焼の燃焼速度が熱効率を左右する。CI燃焼は燃料成分が自発的に化学反応する現象であるので、火炎伝播により燃焼領域が徐々に拡大するSI燃焼よりも本来的に燃焼速度は速いといえる。しかしながら、例えばCI燃焼の前に燃料を反応性の高いものに改質することができれば、CI燃焼の燃焼速度がより速まって熱効率がさらに向上し、燃費性能とトルク性能とを両立することができると考えられる。
 反応性を高めるための燃料の改質は、例えば混合気の温度を所定の温度域まで高めることによって実現できる可能性がある。すなわち、混合気の高温化によって燃料成分(炭化水素)を開裂させることにより、反応性の高いOHラジカルを含む中間生成物を生成するのである。本願発明者は、このような燃料改質(中間生成物の生成)のための高温化の手段として、例えば上記特許文献2と同様に、火花点火を複数回実行すること、つまり主点火よりも前に補助的な先行点火を行うことによって混合気を高温化することを考えた。しかしながら、本願発明者の研究によれば、上記特許文献2のように混合気の一部が燃焼するようなエネルギーを先行点火によって付与した場合には、その燃焼によって中間生成物の多くが消費されてしまい、CI燃焼の燃焼速度を速める効果が十分に得られないことが分かった。
特開2009-108778号公報 特許第4691373号公報
 本発明の目的は、燃焼速度が速く熱効率に優れた圧縮着火燃焼を実現することが可能な圧縮着火式エンジンの制御装置を提供することにある。
 本発明の一局面に係る圧縮着火式エンジンの制御装置は、気筒と、気筒に燃料を噴射するインジェクタと、前記気筒内で火花を発生する点火プラグとを備え、前記インジェクタから噴射された燃料と空気とが混合された混合気の少なくとも一部を、圧縮力で自着火燃焼させるCI燃焼が実行可能な圧縮着火式エンジンを制御する装置である。当該制御装置は、前記気筒内における燃焼動作を制御する燃焼制御部と、前記点火プラグによる点火動作を制御する点火制御部と、を備える。前記燃焼制御部は、前記気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、前記気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成する。前記点火制御部は、前記CI燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、前記点火プラグに火花を発生させて高温部を形成する第1点火を実行させる。
 本発明の他の局面に係る圧縮着火式エンジンの制御装置は、気筒と、気筒に臨むように配設されたインジェクタおよび点火プラグとを備えたエンジンを制御する装置であって、前記インジェクタ及び前記点火プラグと電気的に接続され、前記インジェクタ及び前記点火プラグに制御信号を出力するコントローラを備える。前記コントローラは電気回路を有する。前記電気回路を有するコントローラは、前記インジェクタから噴射された燃料と空気との混合気が前記点火プラグによる火花点火により火炎伝播燃焼し、この火炎伝播燃焼の開始後に圧縮自己着火燃焼が起きる部分圧縮着火燃焼を実行させる第1燃焼制御部と、前記部分圧縮着火燃焼の実行時に、前記気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、前記気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成する第2燃焼制御部と、前記圧縮自己着火燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、前記点火プラグに火花を発生させて高温部を形成する先行点火を実行させる点火制御部と、を備える。
図1は、本発明の一実施形態にかかる圧縮着火式エンジンの全体構成を概略的に示すシステム図である。 図2は、エンジン本体の断面図とピストンの平面図とを併せて示す図である。 図3は、気筒およびその近傍の吸排気系の構造を示す概略平面図である。 図4は、エンジンの制御系統を示すブロック図である。 図5は、エンジンの運転領域を燃焼形態の相違により区分けした運転マップである。 図6は、エンジンの各運転領域で行われる燃焼制御を概略的に説明するためのタイムチャートである。 図7は、SPCCI燃焼(部分圧縮着火燃焼)時の熱発生率の波形を示すグラフである。 図8は、エンジンの第1運転領域において設定される目標空燃比の具体例を示すマップ図である。 図9は、上記第1運転領域において設定される目標スワール開度の具体例を示すマップ図である。 図10は、負荷が一定の条件下で回転速度を変化させた場合の目標スワール開度の変化を示すグラフである。 図11は、スワール比を測定するリグ試験装置の概略を示す図である。 図12は、スワール開度とスワール比との関係を示すグラフである。 図13は、エンジンの温間時の燃焼制御の具体例を示すフローチャートである。 図14は、図13のステップS10の制御詳細を示すサブルーチンである。 図15(a)、(b)は、先行点火の基本点火エネルギー決定用のマップ図である。 図16は、A/FリーンおよびG/Fリーンと、過早着火が生じる点火エネルギーの限界との関係を示すグラフである。 図17は、上記第1運転領域で先行点火および主点火が行われるときの点火プラグの電気的な状態を燃焼波形と併せて示したタイムチャートである。 図18は、混合気温度と中間生成物生成量との関係を示すグラフである。 図19は、先行点火の回数を増やした場合の具体例を示すタイムチャートである。 図20は、先行点火の回数と燃費改善代との関係を示すグラフである。 図21は、図7に相当する図であって、SI率の種々の定義方法を説明するための図である。
 (1)エンジンの全体構成
 図1は、本発明の制御装置が適用された圧縮着火式エンジン(以下、単にエンジンという)の好ましい実施形態を示す図である。図1に示されるエンジンは、走行用の動力源として車両に搭載された4サイクルのガソリン直噴エンジンであり、エンジン本体1と、エンジン本体1に導入される吸気が流通する吸気通路30と、エンジン本体1から排出される排気ガスが流通する排気通路40と、排気通路40を流通する排気ガスの一部を吸気通路30に還流する外部EGR装置50と、を備えている。
 エンジン本体1は、気筒2が内部に形成されたシリンダブロック3と、気筒2を上から閉塞するようにシリンダブロック3の上面に取り付けられたシリンダヘッド4と、気筒2に往復摺動可能に挿入されたピストン5とを有している。エンジン本体1は、典型的には複数の(例えば4つの)気筒を有する多気筒型のものであるが、ここでは簡略化のため、1つの気筒2のみに着目して説明を進める。図2には、エンジン本体1の断面図と、ピストン5の平面図とが併せて示されている。
 ピストン5の上方には燃焼室6が区画されている。燃焼室6には、ガソリンを主成分とする燃料が、後述するインジェクタ15からの噴射によって供給される。供給された燃料が燃焼室6で空気と混合されつつ燃焼し、その燃焼による膨張力で押し下げられたピストン5が上下方向に往復運動する。なお、燃焼室6に噴射される燃料は、主成分としてガソリンを含有していればよく、例えばガソリンに加えてバイオエタノール等の副成分を含んでいてもよい。
 ピストン5の下方には、エンジン本体1の出力軸であるクランク軸7が設けられている。クランク軸7は、ピストン5とコネクティングロッド8を介して連結され、ピストン5の往復運動(上下運動)に応じて中心軸回りに回転駆動される。
 気筒2の幾何学的圧縮比、つまりピストン5が上死点にあるときの燃焼室6の容積とピストン5が下死点にあるときの燃焼室の容積との比は、後述するSPCCI燃焼(部分圧縮着火燃焼)に好適な値として、13以上30以下、好ましくは14以上18以下に設定される。より詳しくは、気筒2の幾何学的圧縮比は、オクタン価が91程度のガソリン燃料を使用するレギュラー仕様の場合には14以上17以下に設定し、オクタン価が96程度のガソリン燃料を使用するハイオク仕様の場合には15以上18以下に設定することが好ましい。
 シリンダブロック3には、クランク軸7の回転角度(クランク角)およびクランク軸7の回転速度(エンジン回転速度)を検出するクランク角センサSN1と、シリンダブロック3およびシリンダヘッド4の内部を流通する冷却水の温度(エンジン水温)を検出する水温センサSN2とが設けられている。
 シリンダヘッド4には、燃焼室6に開口する吸気ポート9および排気ポート10と、吸気ポート9を開閉する吸気弁11と、排気ポート10を開閉する排気弁12とが設けられている。なお、当実施形態のエンジンのバルブ形式は、図2に示すように、吸気2バルブ×排気2バルブの4バルブ形式である。図3は、気筒2およびその近傍の吸排気系の構造を示す概略平面図である。吸気ポート9は、第1吸気ポート9Aおよび第2吸気ポート9Bを有しており、排気ポート10は、第1排気ポート10Aおよび第2排気ポート10Bを有している。吸気弁11は、第1吸気ポート9Aおよび第2吸気ポート9Bに対しそれぞれ1つずつ設けられ、排気弁12は、第1排気ポート10Aおよび第2排気ポート10Bに対しそれぞれ1つずつ設けられている。
 図3に示すように、第2吸気ポート9Bには開閉可能なスワール弁18が設けられている。スワール弁18は、第2吸気ポート9Bにのみ設けられており、第1吸気ポート9Aには設けられていない。スワール弁18が閉方向に駆動されると、スワール弁18が設けられていない第1吸気ポート9Aから燃焼室6に流入する吸気の割合が増大する。このため、気筒軸線Z(燃焼室6の中心軸)の回りを旋回する旋回流、つまりスワール流を強化することができる。逆に、スワール弁18を開方向に駆動すればスワール流を弱めることができる。なお、当実施形態の吸気ポート9はタンブル流(縦渦)を形成可能なタンブルポートである。このため、スワール弁18の閉時に形成されるスワール流は、タンブル流とミックスされた斜めスワール流となる。
 吸気弁11および排気弁12は、シリンダヘッド4に配設された一対のカム軸等を含む動弁機構13,14により、クランク軸7の回転に連動して開閉駆動される。吸気弁11用の動弁機構13には、吸気弁11の開閉時期を変更可能な吸気VVT13aが内蔵されている。同様に、排気弁12用の動弁機構14には、排気弁12の開閉時期を変更可能な排気VVT14aが内蔵されている。吸気、排気VVT13a(排気VVT14a)は、いわゆる位相式の可変機構であり、吸気弁11(排気弁12)の開時期および閉時期を同時にかつ同量だけ変更する。これら吸気VVT13aおよび排気VVT14aの制御により、当実施形態では、吸気弁11および排気弁12の双方が排気上死点を跨いで開弁するバルブオーバーラップ期間を調整することが可能である。また、このバルブオーバーラップ期間の調整により、燃焼室6に残留する既燃ガス(内部EGRガス)の量を調整することが可能である。
 シリンダヘッド4には、気筒2内の燃焼室6に燃料(主にガソリン)を噴射するインジェクタ15と、インジェクタ15から燃焼室6に噴射された燃料と燃焼室6に導入された空気とが混合された混合気に点火する点火プラグ16とが設けられている。シリンダヘッド4には、さらに、燃焼室6の圧力(筒内圧力)を検出する筒内圧センサSN3が設けられている。
 図2に示すように、ピストン5の冠面には、その中央部を含む比較的広い領域をシリンダヘッド4とは反対側(下方)に凹陥させたキャビティ20が形成されている。また、ピストン5の冠面におけるキャビティ20よりも径方向外側には、円環状の平坦面からなるスキッシュ部21が形成されている。
 インジェクタ15は、その先端部に複数の噴孔を有した多噴孔型のインジェクタであり、当該複数の噴孔から放射状に燃料を噴射することが可能である。図2中の符号Fの領域は、各噴孔から噴射された燃料の噴霧を表している。インジェクタ15は、その先端部がピストン5の冠面の中心部(キャビティ20の底部中央)と対向するように、燃焼室6の天井面の中心部に配置されている。
 点火プラグ16は、インジェクタ15に対し吸気側に幾分ずれた位置に配置されている。点火プラグ16の先端部(電極部)の位置は、キャビティ20と平面視で重複するように設定されている。
 図1に示すように、吸気通路30は、吸気ポート9と連通するようにシリンダヘッド4の一側面に接続されている。吸気通路30の上流端から取り込まれた空気(新気)は、吸気通路30および吸気ポート9を通じて燃焼室6に導入される。
 吸気通路30には、その上流側から順に、吸気中の異物を除去するエアクリーナ31と、吸気の流量を調整する開閉可能なスロットル弁32と、吸気を圧縮しつつ送り出す過給機33と、過給機33により圧縮された吸気を冷却するインタークーラ35と、サージタンク36とが設けられている。
 吸気通路30の各部には、吸気の流量を検出するエアフローセンサSN4と、吸気の温度を検出する第1・第2吸気温センサSN5,SN7と、吸気の圧力を検出する第1・第2吸気圧センサSN6,SN8とが設けられている。エアフローセンサSN4および第1吸気温センサSN5は、吸気通路30におけるエアクリーナ31とスロットル弁32との間の部位に設けられ、当該部位を通過する吸気の流量および温度を検出する。第1吸気圧センサSN6は、吸気通路30におけるスロットル弁32と過給機33との間(後述するEGR通路51の接続口よりも下流側)の部位に設けられ、当該部位を通過する吸気の圧力を検出する。第2吸気温センサSN7は、吸気通路30における過給機33とインタークーラ35との間の部位に設けられ、当該部位を通過する吸気の温度を検出する。第2吸気圧センサSN8は、サージタンク36に設けられ、当該サージタンク36内の吸気の圧力を検出する。
 過給機33は、エンジン本体1と機械的に連係された機械式の過給機(スーパーチャージャ)である。過給機33の具体的な形式は特に問わないが、例えばリショルム式、ルーツ式、または遠心式といった公知の過給機のいずれかを過給機33として用いることができる。
 過給機33とエンジン本体1との間には、締結と解放を電気的に切り替えることが可能な電磁クラッチ34が介設されている。電磁クラッチ34が締結されると、エンジン本体1から過給機33に駆動力が伝達されて、過給機33による過給が行われる。一方、電磁クラッチ34が解放されると、上記駆動力の伝達が遮断されて、過給機33による過給が停止される。
 吸気通路30には、過給機33をバイパスするためのバイパス通路38が設けられている。バイパス通路38は、サージタンク36と後述するEGR通路51とを互いに接続している。バイパス通路38には開閉可能なバイパス弁39が設けられている。
 排気通路40は、排気ポート10と連通するようにシリンダヘッド4の他側面に接続されている。燃焼室6で生成された既燃ガスは、排気ポート10および排気通路40を通じて外部に排出される。排気通路40には触媒コンバータ41が設けられている。触媒コンバータ41には、排気通路40を流通する排気ガス中に含まれる有害成分(HC、CO、NOx)を浄化するための三元触媒41aと、排気ガス中に含まれる粒子状物質(PM)を捕集するためのGPF(ガソリン・パティキュレート・フィルタ)41bとが内蔵されている。なお、触媒コンバータ41の下流側に、三元触媒やNOx触媒等の適宜の触媒を内蔵した別の触媒コンバータを追加してもよい。
 排気通路40における触媒コンバータ41よりも上流側の部位には、排気ガス中に含まれる酸素の濃度を検出するリニアOセンサSN10が設けられている。リニアOセンサSN10は、酸素濃度の濃淡に応じて出力値がリニアに変化するタイプのセンサである。リニアOセンサSN10の出力値に基づいて、混合気の空燃比を推定することが可能である。
 外部EGR装置50は、排気通路40と吸気通路30とを接続するEGR通路51と、EGR通路51に設けられたEGRクーラ52およびEGR弁53とを有している。EGR通路51は、排気通路40における触媒コンバータ41よりも下流側の部位と、吸気通路30におけるスロットル弁32と過給機33との間の部位とを互いに接続している。EGRクーラ52は、EGR通路51を通して排気通路40から吸気通路30に還流される排気ガス(外部EGRガス)を熱交換により冷却する。EGR弁53は、EGRクーラ52よりも下流側(吸気通路30に近い側)のEGR通路51に開閉可能に設けられ、EGR通路51を流通する排気ガスの流量を調整する。EGR通路51には、EGR弁53の上流側の圧力と下流側の圧力との差を検出するための差圧センサSN9が設けられている。
 (2)制御系統
 図4は、エンジンの制御系統を示すブロック図である。本図に示されるECU100(コントローラ)は、エンジンを統括的に制御するための電気回路によって構成されたマイクロプロセッサであり、周知のCPU、ROM、RAM等から構成されている。
 ECU100には各種センサによる検出信号が入力される。ECU100は、上述したクランク角センサSN1、水温センサSN2、筒内圧センサSN3、エアフローセンサSN4、第1・第2吸気温センサSN5,SN7、第1・第2吸気圧センサSN6,SN8、差圧センサSN9、およびリニアOセンサSN10と電気的に接続されている。これらのセンサによって検出された情報(つまりクランク角、エンジン回転速度、エンジン水温、筒内圧力、吸気流量、吸気温、吸気圧、EGR弁53の前後差圧、排気ガスの酸素濃度等)は、ECU100に逐次入力される。
 車両には、当該車両を運転するドライバーにより操作されるアクセルペダルの開度を検出するアクセルセンサSN11が設けられている。このアクセルセンサSN11による検出信号も、ECU100に入力される。
 ECU100は、上記各センサからの入力情報に基づいて種々の判定や演算等を実行しつつエンジンの各部を制御する。すなわち、ECU100は、吸気VVT13a、排気VVT14a、インジェクタ15、点火プラグ16、スワール弁18、スロットル弁32、電磁クラッチ34、バイパス弁39、およびEGR弁53等と電気的に接続されており、上記演算の結果等に基づいてこれらの機器にそれぞれ制御用の信号を出力する。
 ECU100は、所定のプログラムが実行されることによって、演算部101、噴射制御部102、点火制御部103、スワール制御部104、吸気制御部105、およびEGR制御部106を機能的に具備するように動作する。なお、噴射制御部102、スワール制御部104、吸気制御部105およびEGR制御部106は、本発明の「気筒内における燃焼動作を制御する燃焼制御部」、乃至は「第1燃焼制御部、第2燃焼制御部」の一例である。
 噴射制御部102は、インジェクタ15による燃料の噴射動作を制御するための制御モジュールである。点火制御部103は、点火プラグ16による点火動作を制御するための制御モジュールである。スワール制御部104は、スワール弁18の開度を制御するための制御モジュールである。吸気制御部105は、燃焼室6に導入される吸気の流量や圧力を調整するための制御モジュールであり、スロットル弁32およびバイパス弁39の各開度や電磁クラッチ34のON/OFFを制御する。EGR制御部106は、燃焼室6に導入されるEGRガス(外部EGRガスおよび内部EGRガス)の量を調整するための制御モジュールであり、吸気VVT13aおよび排気VVT14aの各動作やEGR弁53の開度を制御する。演算部101は、これら各制御部102~106による制御目標値の決定や、エンジンの運転状態の判定のための各種演算を実行する制御モジュールである。
 (3)運転状態に応じた制御
 図5は、エンジンの温間時に使用される運転マップであり、エンジンの回転速度/負荷に応じた制御の相違を示す図である。なお、以下の説明において、エンジンの負荷が高い(低い)とは、エンジンの要求トルクが高い(低い)ことと等価である。
 図5に示すように、エンジンが温間状態にあるとき、エンジンの運転領域は、燃焼形態の相違によって3つの運転領域A1~A3に大別される。これら運転領域A1~A3を、それぞれ第1運転領域A1、第2運転領域A2、第3運転領域A3と呼ぶ。第3運転領域A3は、回転速度が高い高速領域である。第1運転領域A1は、第3運転領域A3よりも低速側の領域から高負荷側の一部を除いた低・中速/低負荷の領域である。第2運転領域A2は、第1、第3運転領域A1,A3以外の残余の領域、つまり低・中速/高負荷の領域である。以下、各運転領域で選択される燃焼形態等について順に説明する。
 (3-1)第1運転領域
 低・中速/低負荷の第1運転領域A1では、SI燃焼とCI燃焼とを組み合わせた部分圧縮着火燃焼(以下、これをSPCCI燃焼という)が実行される。SI燃焼とは、点火プラグ16から発生する火花により混合気に点火し、その点火点からその周囲へと燃焼領域を拡げていく火炎伝播により混合気を強制的に燃焼させる燃焼形態のことである。CI燃焼とは、ピストン5の圧縮により高温・高圧化された環境下で、混合気を自着火により燃焼させる燃焼形態のことである。これらSI燃焼とCI燃焼とを組み合わせたSPCCI燃焼とは、混合気が自着火する寸前の環境下で行われる火花点火により燃焼室6内の混合気の一部をSI燃焼させ、当該SI燃焼の後に(SI燃焼に伴うさらなる高温・高圧化により)燃焼室6内の他の混合気を自着火によりCI燃焼させる、という燃焼形態のことである。なお、「SPCCI」は「Spark Controlled Compression Ignition」の略である。
 SPCCI燃焼は、SI燃焼時の熱発生よりもCI燃焼時の熱発生の方が急峻になるという性質がある。SPCCI燃焼による熱発生率の波形は、例えば図6または図7に示すように、SI燃焼に対応する燃焼初期の立ち上がりの傾きが、その後のCI燃焼に対応して生じる立ち上がりの傾きよりも小さくなる。言い換えると、SPCCI燃焼時の熱発生率の波形は、SI燃焼に基づく相対的に立ち上がりの傾きが小さい第1熱発生率部と、CI燃焼に基づく相対的に立ち上がりの傾きが大きい第2熱発生部とが、この順に連続するように形成される。また、このような熱発生率の傾向に対応して、SPCCI燃焼では、SI燃焼時に生じる燃焼室6内の圧力上昇率(dp/dθ)がCI燃焼時のそれよりも小さくなる。
 SI燃焼によって、燃焼室6内の温度および圧力が高まると、これに伴い未燃混合気が自着火し、CI燃焼が開始される。図6または図7に例示するように、この自着火のタイミング(つまりCI燃焼が開始するタイミング)で、熱発生率の波形の傾きが小から大へと変化する。すなわち、SPCCI燃焼における熱発生率の波形は、CI燃焼が開始するタイミングで現れる変曲点(図7のX2)を有している。
 CI燃焼の開始後は、SI燃焼とCI燃焼とが並行して行われる。CI燃焼は、SI燃焼よりも混合気の燃焼速度が速いため、熱発生率は相対的に大きくなる。ただし、CI燃焼は、圧縮上死点の後に行われるため、熱発生率の波形の傾きが過大になることはない。すなわち、圧縮上死点を過ぎるとピストン5の下降によりモータリング圧力が低下するので、このことが熱発生率の上昇を抑制する結果、CI燃焼時のdp/dθが過大になることが回避される。このように、SPCCI燃焼では、SI燃焼の後にCI燃焼が行われるという性質上、燃焼騒音の指標となるdp/dθが過大になり難く、単純なCI燃焼(全ての燃料をCI燃焼させた場合)に比べて燃焼騒音を抑制することができる。
 CI燃焼の終了に伴いSPCCI燃焼も終了する。CI燃焼はSI燃焼に比べて燃焼速度が速いので、単純なSI燃焼(全ての燃料をSI燃焼させた場合)に比べて燃焼終了時期を早めることができる。言い換えると、SPCCI燃焼では、燃焼終了時期を膨張行程内において圧縮上死点に近づけることができる。これにより、SPCCI燃焼では、単純なSI燃焼に比べて燃費性能を向上させることができる。
 上記のようなSPCCI燃焼の具体的形態として、第1運転領域A1では、点火プラグ16から火花を複数回発生させることとし、前記複数回のうちの最後の火花点火をきっかけにして、混合気をSPCCI燃焼させる制御が実行される。当実施形態の場合、火花点火の回数は2回とされる。このような2回点火によるSPCCI燃焼を実現するため、第1運転領域A1では、ECU100によってエンジンの各部が次のように制御される。以下の説明では、燃料噴射や火花点火の時期を特定する用語として、~行程の「前期」「中期」「後期」といった用語や、~行程の「前半」「後半」といった用語を用いることがあるが、これは、次のことを前提としている。すなわち、本明細書では、吸気行程や圧縮行程等の任意の行程を3等分した場合の各期間を前から順に「前期」「中期」「後期」と定義する。このため、例えば圧縮行程の(i)前期、(ii)中期、(iii)後期とは、それぞれ、(i)圧縮上死点前(BTDC)180~120°CA、(ii)BTDC120~60°CA、(iii)BTDC60~0°CAの各範囲のことを指す。同様に、本明細書では、吸気行程や圧縮行程等の任意の行程を2等分した場合の各期間を前から順に「前半」「後半」と定義する。このため、例えば吸気行程の(iv)前半、(v)後半とは、それぞれ、(iv)BTDC360~270°CA、(v)BTDC270~180°CAの各範囲のことを指す。
 第1運転領域A1での運転時、点火プラグ16(点火制御部103)は、圧縮上死点から十分に進角された時期に火花を発生させる先行点火(第1点火)と、先行点火よりも圧縮上死点に近い時期に火花を発生させる主点火(第2点火)とを実行する。先行点火は、圧縮行程前期または中期のいずれか(BTDC180~60°CA)に実行される。主点火は、SI燃焼を開始させる点火であり、圧縮行程後期から膨張行程初期までの期間内(BTDC60~ATDC60°CA)に実行される。なお、燃料噴射後であれば、吸気行程において先行点火を実行させても良い。
 図6は、エンジンの各運転領域で行われる燃焼制御を概略的に説明するためのタイムチャートである。例えば、第1運転領域A1における低負荷側の運転ポイントP1において、点火制御部103は点火プラグ16を制御して、図6のチャート(a)に示すように、圧縮行程前期に先行点火を実行するとともに、圧縮行程後期に主点火を実行する。同様に、運転ポイントP1よりも負荷が高い運転ポイントP2において、点火制御部103は、図6のチャート(b)に示すように、圧縮行程前期に先行点火を実行するとともに、圧縮行程後期に主点火を実行する。ただし、高負荷側の運転ポイントP2における先行点火の時期は、低負荷側の運転ポイントP1における先行点火の時期よりも進角側に設定される。これは、後述する第2噴射(1サイクル中の最後の燃料噴射)の時期に連動したものである。すなわち、点火制御部103は、第2噴射の終了時期から先行点火までのクランク角期間が略一定に維持されるように、第2噴射の時期に連動して先行点火の時期が高負荷側ほど進角させる。
 上記のように圧縮上死点から十分に進角された時期に実行される先行点火は、混合気の火炎伝播を生じさせない。この先行点火は、火花(アーク)の周囲の混合気を850K以上1140K未満という狙いの温度にまで上昇させることにより、燃料成分(炭化水素)を開裂させてOHラジカルを含む中間生成物を生成することを目的として行われる。また、火炎伝播が生じるのを確実に防止するため、先行点火のエネルギーは、主点火のエネルギーよりも小さくされる。したがって、このような先行点火が行われても、混合気には実質的に火炎が形成されず、SI燃焼は開始されない。
 一方、圧縮上死点に比較的近い時期に実行されるエネルギーの大きい主点火は、混合気の火炎伝播を生じさせ、SI燃焼を引き起こす。SI燃焼が開始されると、燃焼室6が高温・高圧化し、そのことがCI燃焼を引き起こす。すなわち、主点火をきっかけにSPCCI燃焼が開始され、燃焼室6内の一部の混合気が火炎伝播により燃焼(SI燃焼)し、その他の混合気が自着火により燃焼(CI燃焼)する。
 インジェクタ15(噴射制御部102)は、1サイクル中に噴射すべき燃料を複数回に分けて噴射するとともに、少なくとも一部の燃料を吸気行程中に噴射する。当実施形態の場合、燃料噴射の回数は2回とされる。すなわち、第1運転領域A1での運転時、噴射制御部102はインジェクタ15を制御して、上述した先行点火よりも早い所定の期間内に、第1噴射と第2噴射との2回に分けて燃料を噴射させる。例えば、第1運転領域A1における低負荷側の運転ポイントP1において、インジェクタ15は、図6のチャート(a)に示すように、吸気行程前半(吸気行程の所定の時点)に第1噴射を開始するとともに、吸気行程後半(第1噴射よりも遅い時点)に第2噴射を開始する。同様に、運転ポイントP1よりも負荷が高い運転ポイントP2において、インジェクタ15は、図6のチャート(b)に示すように、吸気行程前半に第1噴射を開始するとともに、吸気行程後半に第2噴射を開始する。ただし、高負荷側の運転ポイントP2における第2噴射の開始時期は、低負荷側の運転ポイントP1における第2噴射の開始時期よりも進角側に設定される。言い換えると、第2噴射の時期は、第1運転領域A1内で負荷が増大するほど進角されるようになっている。
 上記のような分割噴射によりインジェクタ15から噴射される燃料の量(総量)および分割比は、エンジンの要求トルクに応じて可変的に設定される。具体的に、燃料の総量、つまり第1噴射による燃料の噴射量と第2噴射による燃料の噴射量との合計は、要求トルクが高くなる高負荷側ほど多くなるように設定される。また、第1・第2噴射の分割比、つまり、(第1噴射による燃料の噴射量):(第2噴射による燃料の噴射量)は、高負荷側ほど第1噴射の割合が小さくなるように設定される。例えば、第1・第2噴射の分割比は、第1運転領域A1内における低負荷側から高負荷側にかけて、概ね9:1から6:4まで変化するように設定される。このように、噴射制御部102は、第1噴射による燃料の噴射量の方が第2噴射による燃料の噴射量よりも多くなるように、インジェクタ15を制御する。これにより、燃料が成層化され過ぎてエミッション性能が低下することを回避できる。
スロットル弁32の開度は、理論空燃比相当の空気量よりも多くの空気が吸気通路30を通じて燃焼室6に導入されるような開度に設定される。すなわち、吸気制御部105は、吸気通路30を通じて燃焼室6に導入される空気(新気)と、上記第1・第2噴射によって燃焼室6に噴射される燃料との重量比である空燃比(A/F)が、理論空燃比(14.7)よりも大きくなるように、スロットル弁32の開度を比較的高めに設定する。これにより、理論空燃比相当の空気量よりも多くの空気が、吸気通路30を通じて燃焼室6に導入される。このように、当実施形態では、第1運転領域A1での運転時に、燃焼室6内の空燃比が理論空燃比よりも大きくなる環境(以下、これをA/Fリーン環境という)を形成しつつ、混合気をSPCCI燃焼させる制御が実行される。
 つまり、点火制御部103は、SPCCI燃焼の予定時期に先立って、上記のようなA/Fリーン環境において、先行点火(第1点火)を実行して高温部を形成させる。A/Fリーン環境とすることで、先行点火による火花が混合気中で発生させても、当該点火にて火炎を生じ難くすることができる。従って、先行点火のエネルギーを専ら燃料成分の高温化(燃料の改質)に寄与させることができる。
 第1運転領域A1における空燃比(A/F)は、20超35未満の範囲内で可変的に設定される。図8は、第1運転領域A1における空燃比(A/F)の目標値である目標空燃比の設定例を示すマップ図である。第1運転領域A1での目標空燃比は、概ね、第1運転領域A1内で負荷(要求トルク)が高くなるほど大きくなるように設定されている。より詳しくは、目標空燃比は、第1運転領域A1の上限負荷(つまり第1運転領域A1と第2運転領域A2との境界の負荷)の近傍に設定された領域a1において最も高い値(31以上)をとり、当該領域a1から離れるほど小さい値をとるように設定されている。ただし、第1運転領域A1内のいずれの位置においても、空燃比が20以下になることはない。なお、当実施形態において、目標空燃比が最大になる領域a1は、第1運転領域A1の上限負荷からやや低負荷側に離れかつ第1運転領域A1の下限速度から高速側に離れた帯状の領域、つまり第1運転領域A1内の中・高速/高負荷の領域に設定されている。領域a1が上限負荷に近いことから、第1運転領域A1内で領域a1から最も遠いのは、回転速度および負荷が共に最低となるアイドル領域である。このアイドル領域での目標空燃比が最も小さくなる。
 過給機33は、図5に示される過給ラインTの内側領域でOFF状態とされ、過給ラインTの外側領域でON状態とされる。過給機33がOFF状態とされる過給ラインTの内側領域、つまり第1運転領域A1の低速側では、電磁クラッチ34が解放されて過給機33とエンジン本体1との連結が解除されるとともに、バイパス弁39が全開とされることにより、過給機33による過給が停止される。一方、過給機33がON状態とされる過給ラインTの外側領域、つまり第1運転領域A1の高速側では、電磁クラッチ34が締結されて過給機33とエンジン本体1とが連結されることにより、過給機33による過給が行われる。このとき、第2吸気圧センサSN8により検出されるサージタンク36内の圧力(過給圧)が、エンジンの運転条件(回転速度や負荷等の条件)ごとに予め定められた目標圧力に一致するように、吸気制御部105は、バイパス弁39の開度を制御する。例えば、バイパス弁39の開度が大きくなるほど、バイパス通路38を通じて過給機33の上流側に逆流する吸気の流量が多くなる結果、サージタンク36に導入される吸気の圧力つまり過給圧が低くなる。バイパス弁39は、このように吸気の逆流量を調整することにより、過給圧を目標圧力に制御する。
 EGR制御部106による制御下、吸気VVT13aおよび排気VVT14aは、SPCCI燃焼に適した燃焼室6の温度(筒内温度)が実現されるように、第1運転領域A1内の多くの領域において、燃焼室6に既燃ガスを残留させる内部EGRを実行可能なタイミングで吸気弁11および排気弁12を駆動する。すなわち、吸・排気VVT13a,14aは、排気上死点を挟んで吸・排気弁11,12の双方が開かれるバルブオーバーラップ期間が形成されるように各弁11,12を駆動し、排気上死点を過ぎるまで(吸気行程初期まで)排気弁12を開弁させる。これにより、排気ポート10から燃焼室6へと既燃ガスが引き戻されて、内部EGRが実現される。バルブオーバーラップ期間は、所望のSPCCI燃焼の波形(後述する目標SI率および目標θci)を得るのに適した筒内温度が実現されるように、言い換えれば当該温度を実現するのに必要な量の内部EGRガスが燃焼室6に導入されるように調整される。このようなバルブオーバーラップ期間の調整によって実現される内部EGR率、つまり燃焼室6内の全ガス量のうち内部EGRガスが占める割合は、概ね、第1運転領域A1内の低負荷側ほど大きくなる傾向にある。
 EGR制御部106はEGR弁53を、SPCCI燃焼に適した筒内温度が実現されるように、第1運転領域A1内の多くの領域において開弁する。すなわち、EGR通路51を通じて燃焼室6に排気ガスを還流する外部EGRが実現されるように、EGR弁53が開弁される。EGR弁53の開度は、所望のSPCCI燃焼の波形(後述する目標SI率および目標θci)を得るのに適した筒内温度が実現されるように、言い換えれば当該温度を実現するのに必要な量の外部EGRガスが燃焼室6に導入されるように調整される。このようなEGR弁53の開度調整によって実現される外部EGR率、つまり燃焼室6内の全ガス量のうち外部EGRガスが占める割合は、概ね、第1運転領域A1内で回転速度または負荷のいずれかが高くなるほど大きくなる傾向にある。
 また、EGR制御部106は、先行点火にて火炎を生じ難くする目的でも、EGR弁53を開弁して燃焼室6に排気ガスを還流させる。すなわち、EGR制御部106は、ガス空燃比(G/F)が理論空燃比よりも大きくかつ空燃比(A/F)が理論空燃比に略一致する環境(以下、これをG/Fリーン環境という)を形成しつつ混合気をSPCCI燃焼させる制御を実行可能である。つまり、上記では第1運転領域A1でエンジンが運転されているときに、空燃比が20超35未満になるA/Fリーン環境を形成しつつ、混合気をSPCCI燃焼させる制御を例示した。これに代えて、第1運転領域A1において前記G/Fリーン環境を形成し、その状態でSPCCI燃焼を実行するようにしてもよい。G/Fリーン環境下でSPCCI燃焼を実行する場合におけるガス空燃比(G/F)の値は、18超50未満に設定される。このようなG/Fリーン環境おいて先行点火を実行させることで、当該点火にて火炎を生じ難くすることができる。なお、同じ第1運転領域A1でSPCCI燃焼を実行する場合に、着火性が確保され易いエンジンの温間時はA/Fリーン環境を形成し、これより温度が低い条件(例えば準温間時)ではG/Fリーン環境を形成するというように、温度条件に応じて2種類の環境を使い分けるようにしてもよい。
 スワール制御部104は、スワール弁18の開度を、半開(50%)よりも低い低開度に設定する。このようにスワール弁18の開度が低減されることにより、燃焼室6に導入される吸気は、その大部分が第1吸気ポート9A(スワール弁18が設けられていない側の吸気ポート)からの吸気となり、燃焼室6内に強いスワール流が形成される。このスワール流は、吸気行程中に成長して圧縮行程の途中まで残存し、燃料の成層化を促進する。つまり、燃焼室6の中央部の燃料濃度がその外側の領域(外周部)に比べて濃くなるという濃度差が形成される。なお、具体的なスワール弁18の開度設定については後述の(4)において詳しく説明する。
 (3-2)第2運転領域
 低・中速/高負荷の第2運転領域A2では、1回の火花点火によって混合気をSPCCI燃焼させる制御が実行される。言い換えると、第2運転領域A2では、上述した第1運転領域A1における先行点火が省略されて、主点火のみが実行される。このような1回点火によるSPCCI燃焼を実現するため、第2運転領域A2では、ECU100によってエンジンの各部が次のように制御される。
 点火プラグ16は、圧縮行程後期から膨張行程初期までの期間内に1回の火花点火を実行する。例えば、第2運転領域A2に含まれる運転ポイントP3において、点火プラグ16は、図6のチャート(c)に示すように、圧縮行程後期に1回の火花点火を実行する。そして、この火花点火をきっかけにSPCCI燃焼が開始され、燃焼室6内の一部の混合気が火炎伝播により燃焼(SI燃焼)し、その他の混合気が自着火により燃焼(CI燃焼)する。
 インジェクタ15は、吸気行程中に少なくとも1回の燃料噴射を実行する。例えば、第2運転領域A2に含まれる運転ポイントP3において、インジェクタ15は、図6のチャート(c)に示すように、1サイクル中に噴射すべき燃料の全量を供給する1回の燃料噴射を吸気行程中に実行する。なお、運転ポイントP3以外(例えば第2運転領域A2内においてP3よりも低負荷側にある運転ポイント)では、吸気行程中に2回に分けて燃料が噴射されることもある。
 スロットル弁32の開度は、理論空燃比相当の空気量が吸気通路30を通じて燃焼室6に導入されるような開度、つまり、燃焼室6内の空気(新気)と燃料との重量比である空燃比(A/F)が理論空燃比(14.7)に略一致するような開度に設定される。一方、後述するように、第2運転領域A2では、EGR弁53が開弁されて外部EGRガスが燃焼室6に導入される。このため、第2運転領域A2では、燃焼室6内の全ガスと燃料との重量比であるガス空燃比(G/F)は理論空燃比(14.7)よりも大きくなる。このように、当実施形態では、第2運転領域A2での運転時に、ガス空燃比(G/F)が理論空燃比よりも大きくかつ空燃比(A/F)が理論空燃比に略一致するG/Fリーン環境を形成しつつ混合気をSPCCI燃焼させる制御が実行される。
 過給機33は、過給ラインTの内側領域と重複する低負荷かつ低速側の一部においてOFF状態とされ、それ以外の領域でON状態とされる。過給機33がON状態とされて吸気が過給されているとき、バイパス弁39の開度は、サージタンク36内の圧力(過給圧)が目標圧力に一致するように制御される。
 吸気VVT13aおよび排気VVT14aは、内部EGRが実質的に停止されるようなタイミングで吸気弁11および排気弁12を駆動する。EGR弁53は、第2運転領域A2でのSPCCI燃焼に適した量の外部EGRガスが燃焼室6に導入されるように適宜の開度まで開弁される。このときのEGR弁53の開度は、上述した第1運転領域A1のときと同様、所望のSPCCI燃焼の波形(後述する目標SI率および目標θci)を得るのに適した筒内温度が実現されるように調整される。スワール弁18の開度は、第1運転領域A1での開度と同程度の値か、もしくはこれよりも大きい所定の中間開度に設定される。
 (3-3)第3運転領域
 上記第1・第2運転領域A1,A2よりも高速側の第3運転領域A3では、比較的オーソドックスなSI燃焼が実行される。このSI燃焼の実現のために、第3運転領域A3では、ECU100によってエンジンの各部が次のように制御される。
 点火プラグ16は、圧縮行程後期から膨張行程初期までの期間内に1回の火花点火を実行する。例えば、第3運転領域A3に含まれる運転ポイントP4において、点火プラグ16は、図6のチャート(d)に示すように、圧縮行程後期に1回の火花点火を実行する。そして、この火花点火をきっかけにSI燃焼が開始され、燃焼室6内の混合気の全てが火炎伝播により燃焼する。
 インジェクタ15は、少なくとも吸気行程と重複する所定の期間にわたって噴射を噴射する。例えば、上記運転ポイントP4において、インジェクタ15は、図6のチャート(d)に示すように、吸気行程から圧縮行程にかけた一連の期間にわたって燃料を噴射する。なお、運転ポイントP4は、かなり高速かつ高負荷の条件であるため、1サイクル中に噴射すべき燃料の量がそもそも多い上に、所要量の燃料を噴射するのに要するクランク角期間が長期化する。運転ポイントP4における燃料の噴射期間が既述の他の運転ポイント(P1~P3)のいずれよりも長いのはこのためである。
 過給機33はON状態とされ、過給機33による過給が行われる。このときの過給圧は、バイパス弁39によって調整される。スロットル弁32およびEGR弁53は、燃焼室6内の空燃比(A/F)が理論空燃比もしくはこれよりもややリッチな値(λ≦1)となるように、それぞれの開度が制御される。スワール弁18は全開とされる。これにより、第1吸気ポート9Aだけでなく第2吸気ポート9Bが完全に開放されて、エンジンの充填効率が高められる。
 (4)スワール制御
 次に、第1運転領域A1でのスワール制御の詳細について説明する。図9は、第1運転領域A1において設定されるスワール弁18の開度の目標値(以下、目標スワール開度ともいう)の具体例を示すマップ図である。図10は、負荷が一定の条件下で(図9のラインVに沿って)回転速度を変化させた場合の、目標スワール開度の変化を示すグラフである。これらの図に示すように、第1運転領域A1では、目標スワール開度が概ね20~40%の範囲で可変的に設定され、その値は高速側または高負荷側ほど高くされる。
 具体的に、目標スワール開度は、第1運転領域A1内における最も低速かつ低負荷の第1領域b1において一律に20%に設定され、この第1領域b1よりも回転速度または負荷が高い第2領域b2において、回転速度または負荷が高くなるにつれて漸増するように設定されている。第2領域b2では、第1領域b1に近い低速・低負荷側ほど目標スワール開度が20%に近くなり、第1領域b1から遠い高速・高負荷側ほど目標スワール開度が20%より大きくされ、最大で約40%まで増大される。例えば、第1領域b1→第2領域b2の順に横切るように(図9のラインVに沿って)回転速度が増大した場合、目標スワール開度は、図10に示すように、回転速度が第1領域b1に含まれる間は20%に維持され、第2領域b2に移行した後は回転速度の増大とともに略一定の割合で増大する。
 ECU100(スワール制御部104)は、第1運転領域A1での運転時、上記のとおり設定された目標スワール開度のマップ(図9および図10)に従ってスワール弁18の開度を制御する。
 スワール弁18の開度が低いほど、燃焼室6には強いスワール流が生成される。上記図9および図10のマップが使用される当実施形態では、第1運転領域A1での運転時に、回転速度および負荷が低いほどスワール弁18の開度が低くされるので、これに応じて(回転速度および負荷が低いほど)スワール流は強められる。これは、着火性の厳しい低速かつ低負荷の条件下で混合気の成層化を促進し、着火性を改善するためである。
 すなわち、当実施形態では、燃焼室6の天井面の中心部に配置されたインジェクタ15から放射状に燃料が噴射される。噴射された燃料の各噴霧は、スワール流によって運ばれて燃焼室6の中心部を指向するように移動する。このとき、スワール弁18の開度が低いほど(言い換えるとスワール流の初期速度が速いほど)、圧縮行程のより遅い段階までスワール流が残存する。これにより、燃焼の開始直前まで燃焼室6の中央部に燃料濃度の濃い混合気が形成される結果、混合気の成層化が促進される。このことを利用して、当実施形態では、第1運転領域A1の中でも低速かつ低負荷の条件であるほど、スワール弁18の開度を低下させてスワール流を強化し、もって混合気の成層化および着火性の改善を図るようにしている。
 ここで、スワール流の強さについて定義する。本明細書では、燃焼室6に生成されるスワール流の強さを、「スワール比」で表す。スワール比は、吸気流の横方向角速度をバルブリフト毎に測定して積分した値を、クランク軸の角速度で除した値として定義される。吸気流の横方向角速度は、図11に示すリグ試験装置を用いた測定により特定することができる。前記リグ試験装置は、シリンダブロック203とシリンダヘッド204とを含む試験用エンジンを対象として吸気流の横方向角速度を測定するものであり、試験用エンジンの下側に配置される基台210と、試験用エンジンの上側に配置されるインパルスメータ211とを有する。試験用エンジンは、上下反転した姿勢とされ、そのシリンダヘッド204が基台210の上に載置される。シリンダヘッド204には吸気ポート205が形成されており、この吸気ポート205には図外の吸気供給装置が接続されている。シリンダブロック203の内部には気筒202が形成され、当該気筒202には、上記吸気供給装置から供給される吸気が吸気ポート205を介して導入される。
 インパルスメータ211は、シリンダブロック203の上面に取り付けられるハニカム状ロータ211aと、ハニカム状ロータ211aの上側に位置するメータ本体部211bとを有している。気筒202の直径であるシリンダボア径をDとしたとき、インパルスメータ211の下面は、シリンダヘッド204とシリンダブロック203との合わせ面から1.75Dだけ離れたところに位置している。上記吸気供給装置から吸気が供給されると、これに応じて気筒202の内部にスワール流(図11の矢印参照)が発生し、このスワール流がハニカム状ロータ211aに作用することにより、ハニカム状ロータ211aに回転方向のトルクが発生する。このトルクは、メータ本体部211bによって計測されるとともに、計測されたトルクに基づいて吸気流の横方向角速度が求められる。
 図12は、当実施形態のエンジンにおけるスワール弁18の開度と、上記の定義によるスワール比との関係を示している。本図に示すように、スワール弁18の開度が低くなるほど、スワール比は増大する(つまりスワール流が強化される)。例えば、スワール弁18の開度が40%であるとき、スワール比は1.5を少し超えた値をとる。これに対し、スワール弁18が全閉(0%)まで閉じられると、スワール比は約6まで増大する。
 ここで、当実施形態では、上述したとおり、第1運転領域A1での運転時に、スワール弁18の開度が概ね20~40%の範囲内で制御される(図9、図10参照)。このことから、当実施形態では、第1運転領域A1でのスワール弁18の開度が、燃焼室6内のスワール比が1.5以上となるような値に設定されているといえる。
 (5)SI率について
 当実施形態では、SI燃焼とCI燃焼とを組み合わせたSPCCI燃焼が、第1運転領域A1および第2運転領域A2において実行される。このSPCCI燃焼では、SI燃焼とCI燃焼との比率を運転条件に応じてコントロールすることが重要になる。当実施形態では、上記比率として、SPCCI燃焼(SI燃焼およびCI燃焼)による1サイクル中の全熱発生量に対する、SI燃焼による熱発生量の割合であるSI率を用いる。図7は、このSI率を説明するための図であり、SPCCI燃焼が起きたときの熱発生率(J/deg)のクランク角による変化を示している。
 図7の波形における点X1は、SI燃焼の開始に伴って熱発生率が立ち上がる熱発生点である。この熱発生点X1に対応するクランク角θsiを、SI燃焼の開始時期として定義する。また、同波形における点X2は、燃焼形態がSI燃焼からCI燃焼に切り替わるときに現れる変曲点である。この変曲点X2に対応するクランク角θciを、CI燃焼の開始時期と定義する。そして、このCI燃焼の開始時期であるθciよりも進角側(θsiからθciまでの間)に位置する熱発生率の波形の面積R1をSI燃焼による熱発生量とし、θciよりも遅角側に位置する熱発生率の波形の面積R2をCI燃焼による熱発生率とする。これにより、
  (SI燃焼による熱発生量)/(SPCCI燃焼による熱発生量)
で定義される上述したSI率は、上記各面積R1,R2を用いて、R1/(R1+R2)で表すことができる。つまり、当実施形態では、SI率=R1/(R1+R2)である。
 CI燃焼では、混合気が自着火により同時多発的に燃焼するため、火炎伝播によるSI燃焼と比べて圧力上昇率が高くなり易い。このため、特に、負荷が高く燃料噴射量が多い条件下で不用意にSI率を小さくする(つまりCI燃焼の割合を増やす)と、大きな騒音が発生してしまう。一方、CI燃焼は、燃焼室6が十分に高温・高圧化しないと発生しない。このため、負荷が低く燃料噴射量が少ない条件下では、SI燃焼がある程度進行してからでないとCI燃焼が開始されず、必然的にSI率は大きくなる(つまりCI燃焼の割合が多くなる)。
 このような事情を考慮して、当実施形態では、SPCCI燃焼が行われる運転領域(つまり第1・第2運転領域A1,A2)において、SI率の目標値である目標SI率がエンジンの運転条件ごとに予め定められている。具体的に、目標SI率は、低負荷側の第1運転領域A1において、概ね負荷が高いほど小さくなるように(つまり負荷が高いほどCI燃焼の割合が増えるように)設定されている。一方、高負荷側の第2運転領域A2での目標SI率は、概ね負荷が高いほど大きくなるように(つまりCI燃焼の割合が低くなるように)設定されている。さらに、これに対応して、当実施形態では、目標SI率に適合する燃焼が行われた場合のCI燃焼の開始時期である目標θciが、やはりエンジンの運転条件ごとに予め定められている。
 上述した目標SI率および目標θciを実現するには、点火プラグ16による主点火の時期、インジェクタ15からの燃料の噴射量/噴射時期、EGR率(外部EGR率および内部EGR率)といった制御量を運転条件ごとに調整する必要がある。例えば、主点火の時期が進角されるほど、多くの燃料がSI燃焼により燃焼することになり、SI率が高くなる。また、燃料の噴射時期が進角されるほど、多くの燃料がCI燃焼により燃焼することになり、SI率が低くなる。あるいは、EGR率の増大に伴って筒内温度が高くなるほど、多くの燃料がCI燃焼により燃焼することになり、SI率が低くなる。さらに、SI率の変化はθciの変化を伴うので、これらの各制御量(主点火時期、噴射時期、EGR率等)の変化は、θciを調整する要素となる。
 上記のような傾向に基づいて、当実施形態では、SPCCI燃焼の実行時に、主点火時期、燃料の噴射量/噴射時期、およびEGR率(ひいては筒内温度)等が、上述した目標SI率および目標θciを実現可能な組合せになるように制御される。
 (6)SPCCI燃焼時の制御
 図13は、エンジンの温間時に実行される燃焼制御(主にSPCCI燃焼時の制御)の詳細を示すフローチャートである。本図に示す制御がスタートすると、ECU100の演算部101は、ステップS1において、アクセル操作状態に基づいてエンジンの要求トルクを算出する。すなわち、アクセルセンサSN11の検出値から特定されるアクセルペダルの操作量(踏込み量)と操作速度とに基づいて、エンジンから出力すべき目標トルクである要求トルクを算出する。要求トルクは、アクセルペダルの操作量および操作速度が大きいほど高く算出される。
 次いで、演算部101は、ステップS2において、エンジンの現運転ポイントが図5に示した第1運転領域A1に含まれるか否かを判定する。すなわち、演算部101は、クランク角センサSN1により検出されるエンジン回転速度と、上記ステップS1で算出された要求トルクとに基づいて、現時点のエンジンの運転ポイントを図5の運転マップ上で特定し、当該マップ中の第1運転領域A1に現運転ポイントが含まれるか否かを判定する。
 上記ステップS2でNOと判定されてエンジンの現運転ポイントが第1運転領域A1に含まれていないことが確認された場合、演算部101は、ステップS20において、現運転ポイントが第2運転領域A2に含まれるか否かを判定する。
 上記ステップS20でYESと判定されてエンジンの現運転ポイントが第2運転領域A2に含まれることが確認された場合、ECU100の各制御部102~106は、この第2運転領域A2に対応する制御として、点火プラグ16による1回の火花点火によって混合気をSPCCI燃焼させる制御(ステップS21)を実行する。なお、その制御の内容は上記(3-2)項で説明したとおりであるので、詳細な説明はここでは省略する。
 一方、上記ステップS20でNOと判定された場合、つまりエンジンの現運転ポイントが第3運転領域A3に含まれることが確認された場合、ECU100の各制御部102~106は、この第3運転領域A3に対応する制御として、SPCCI燃焼ではなくSI燃焼によって混合気を燃焼させる制御(ステップS22)を実行する。なお、その制御の内容は上述した(3-3)で説明したとおりであるので、詳細な説明はここでは省略する。
 次に、上記ステップS2でYESと判定された場合、つまりエンジンの現運転ポイントが第1運転領域A1に含まれることが確認された場合の制御について説明する。この場合、ECU100の演算部101は、ステップS3において、エンジンの要求トルク(負荷)および回転速度に基づいて、燃焼室6内の空燃比(A/F)の目標値である目標空燃比を決定する。すなわち、演算部101は、上記ステップS1で算出したエンジンの要求トルクと、クランク角センサSN1により検出されるエンジン回転速度と、図8に示した目標空燃比のマップとに基づいて、現運転ポイント(回転速度/負荷)に適合する目標空燃比を決定する。
 次いで、演算部101は、ステップS4において、上記ステップS1で算出されたエンジンの要求トルクに基づいて、インジェクタ15から噴射すべき燃料の噴射量および噴射時期を決定する。なお、ここで決定される燃料の噴射量/噴射時期は、上述した目標SI率および目標θciを実現するためにエンジンの運転条件ごとに予め定められた噴射量/噴射時期である。図6のチャート(a)(b)に示したように、第1運転領域A1では、第1噴射および第2噴射に分けて燃料が噴射され、かつ第1噴射の方が第2噴射よりも噴射量が多くなるように、燃料の噴射量/噴射時期が決定される。
 また、演算部101は、ステップS5において、上記ステップS3で決定された目標空燃比に基づきスロットル弁32の開度を決定する。すなわち、演算部101は、上記ステップS4で決定された量の燃料が燃焼室6に供給されることを前提に、この燃焼室6に対し上記目標空燃比に相当する量の空気(新気)が導入されるようなスロットル弁32の開度を算出し、これをスロットル弁32の開度目標値として決定する。本実施形態では、空燃比が20超35未満のA/Fリーン環境が形成されるような開度目標値が決定されることになる。
 さらに、演算部101は、ステップS6において、エンジンの要求トルク(負荷)および回転速度に基づきスワール弁18の開度を決定する。すなわち、演算部101は、上記ステップS1で算出したエンジンの要求トルクと、クランク角センサSN1により検出されるエンジン回転速度と、図9に示したスワール開度のマップとに基づいて、現運転ポイント(回転速度/負荷)に適合するスワール弁18の開度を特定し、これをスワール弁18の開度目標値として決定する。
 第1運転領域A1での運転中は、以上のような噴射量/噴射時期等の決定と並行して、火花点火やEGR(外部EGR/内部EGR)に関する制御目標値が決定される。すなわち、上記ステップS2でYESと判定されて現運転ポイントが第1運転領域A1に含まれることが確認された場合、演算部101は、ステップS10に移行して、点火プラグ16による先行点火の時期およびエネルギーを決定する。
 次いで、演算部101は、ステップS11において、上記ステップS1で算出したエンジンの要求トルクに基づいて、目標SI率および目標θciを決定する。上記(5)項で説明したように、第1運転領域A1における目標SI率は、概ね、要求トルクが高い高負荷側ほど小さくなるように(つまり高負荷側ほどCI燃焼の割合が増えるように)決定される。また、この決定された目標SI率に付随して目標θciも決定される。
 さらに、演算部101は、ステップS12において、上記ステップS11で決定された目標SI率および目標θciに基づいて、点火プラグ16による主点火の時期を決定する。演算部101は、目標SI率および目標θciに適合する燃焼を実現するのに必要なSI燃焼の開始時期(図7に示すθsi)を特定する。そして、演算部101は、このSI燃焼の開始時期θsiから所定の着火遅れ時間(主点火から着火までに要する時間)の分だけ進角させたクランク角を、主点火時期の目標値として決定する。なお、主点火は、点火プラグ16の点火回路に含まれるコンデンサの電圧を最大電圧まで高めた上で行われる通常の火花点火である。このため、先行点火のときとは異なり、条件に応じて点火エネルギーを決定することは不要である。
 その後、演算部101は、ステップS13において、目標SI率および目標θciを実現するために主点火の時点で必要とされる筒内温度を算出し、これを主点火時点の目標筒内温度として決定する。
 次いで、演算部101は、ステップS14において、上記ステップS13で算出された主点火時点の目標筒内温度に基づいて、燃焼室6の圧縮が実質的に開始される吸気弁11の閉時期(以下、IVCともいう)において達成すべき筒内温度、つまりIVC時点の目標筒内温度を算出する。このIVC時点の目標筒内温度は、上記主点火時点の目標筒内温度と、IVCから主点火までの間のピストン5の圧縮代から推定される筒内温度の上昇量とに基づいて算出される。
 次いで、演算部101は、ステップS15において、上記ステップS14で算出されたIVC時点の目標筒内温度に基づいて、EGR弁53の開度および吸・排気弁11,12のバルブタイミングを決定する。すなわち、演算部101は、上記IVC時点の目標筒内温度を実現するのに必要な外部EGR率および内部EGR率を、IVC時点の目標筒内温度と第1吸気温センサSN5による検出温度(つまり新気の温度)との差に基づいて算出する。そして、算出された外部EGR率を実現するのに必要なEGR弁53の開度を算出し、これをEGR弁53の開度目標値として決定するとともに、算出された内部EGR率を実現するのに必要な吸・排気弁11,12のバルブタイミングを算出し、これをバルブタイミングの目標値として決定する。既述の通り、第1運転領域A1においては、ガス空燃比(G/F)の値が18超50未満となり空燃比が理論空燃比に略一致するG/Fリーン環境が形成されるように、EGR弁53の開度目標値が設定される。
 次いで、ECU100の各制御部(噴射制御部102、点火制御部103、スワール制御部104、吸気制御部105、EGR制御部106)は、ステップS16において、上述した各ステップで決定された種々の制御目標値に基づいて、インジェクタ15、点火プラグ16、スワール弁18、スロットル弁32、EGR弁53、および吸・排気VVT13a,14aを駆動する。
 例えば、噴射制御部102は、上記ステップS4で決定された量の燃料が、決定された時期にてインジェクタ15から噴射されるように、インジェクタ15を制御する。
 点火制御部103は、先行点火として、上記ステップS10で決定されたエネルギーを有する火花が、決定された時期にて点火プラグ16から発生するように、点火プラグ16を制御する。また、この先行点火に続く主点火として、点火制御部103は、上記ステップS12で決定された時期に点火プラグ16から火花が発生するように、点火プラグ16を制御する。
 スワール制御部104は、スワール弁18の開度が上記ステップS6で決定されたスワール開度に一致するように、スワール弁18を制御する。吸気制御部105は、スロットル弁32の開度が上記ステップS5で決定されたスロットル開度に一致するように、スロットル弁32を制御する。EGR制御部106は、EGR弁53の開度が上記ステップS15で決定された開度に一致するようにEGR弁53を制御するとともに、同じくステップS15で決定されたバルブタイミングに一致するタイミングで吸・排気弁11,12が開閉されるように、吸・排気VVT13a,14aを制御する。
 以上のような各制御により、ステップS16では、燃焼室6に噴射された燃料と空気との混合気が、先行点火および主点火を受けた後にSPCCI燃焼によって燃焼する。
 (7)先行点火の時期/エネルギーの決定
 次に、上述したステップS10において先行点火の時期およびエネルギーを決定する際の具体的な手順について説明する。図14は、上記ステップS10の制御の詳細を示すサブルーチンである。この制御がスタートすると、ECU100の演算部101は、ステップS31において、燃料の噴射時期に基づき先行点火の時期を決定する。例えば、演算部101は、上述したステップS4で決定された燃料の噴射量/噴射時期から、噴射時期が遅い第2噴射が終了する時期を特定し、この第2噴射の噴射終了時期から所定のクランク角が経過した時点を、先行点火の時期として決定する。
 次いで、演算部101は、ステップS32において、先行点火のエネルギーの基本値である基本点火エネルギーを決定する。図15(a)(b)は、上記ステップS32において基本点火エネルギーを決定する際に用いられるベースマップの具体例を示している。図示するように、基本点火エネルギーは、エンジンの回転速度および負荷(要求トルク)から特定されるものであり、概ね、エンジン回転速度および負荷が高いほど大きくなるように設定されている。なお、図15(a)(b)の各マップは、いずれも、エンジン回転速度、エンジン負荷、および基本点火エネルギーの三者の関係を規定しており、それぞれ同一の関係を表している。このため、図15(a)(b)のいずれかのマップがあれば足りるが、ここでは理解を容易にするために、横軸を負荷にした場合のマップ(図15(a))と、横軸を縦軸にした場合のマップ(図15(b))とを併記している。
 具体的に、図15(b)のマップは、エンジン負荷を一定にした場合、詳しくは、エンジン負荷を第1運転領域A1内の低負荷、中負荷、高負荷、極高負荷のいずれかの負荷に維持した場合の、エンジン回転速度と基本点火エネルギーとの関係を示している。図15(b)に示すように、エンジン負荷が一定の条件下では、エンジン回転速度が高くなるほど基本点火エネルギーも高くなる。この場合の回転速度と基本点火エネルギーとの関係は、略正比例の関係、つまり回転速度に応じて1次関数的に基本点火エネルギーが増大する関係とされる。このことは、エンジン負荷が低負荷、中負荷、高負荷、極高負荷のいずれに保持された場合でも同様である。
 また、図15(a)のマップは、エンジン回転速度を一定にした場合、詳しくは、エンジン回転速度を第1運転領域A1内の低速、中速、高速のいずれかの回転速度に維持した場合の、エンジン負荷と基本点火エネルギーとの関係を示している。図15(a)に示すように、エンジン回転速度が一定の条件下では、エンジン負荷が極めて高い領域(第1運転領域A1の上限負荷の近傍)を除いた大部分の負荷域において、負荷が高くなるほど基本点火エネルギーも高くなる。ただし、エンジン負荷が極めて高い領域では、逆に、負荷が高くなるほど基本点火エネルギーは低くなる。このような傾向は、エンジン回転速度が低速、中速、高速のいずれに保持された場合でも同様である。なお、極高負荷に限って負荷と基本点火エネルギーとの関係が逆転するという現象は、図15(b)において「極高負荷」の線図が「高負荷」の線図よりも下側に位置していることにも現れている。
 上記ステップS32において、先行点火の基本点火エネルギーは、現時点のエンジン負荷(要求トルク)/回転速度を上記図15(a)(b)の各マップのいずれかに当てはめることにより、決定される。このとき、マップに規定のない基本点火エネルギーは、例えば線形補間により求めることができる。すなわち、図15(a)では、エンジン回転速度が低速、中速、高速のいずれかである場合の基本点火エネルギーの特性(エンジン負荷と基本点火エネルギーとの関係)が規定されているが、エンジン回転速度が上記3つの回転速度のいずれでもない場合は、値が近い2つの規定値を用いた線形補間により、基本点火エネルギーを決定することができる。
 同様に、図15(b)では、エンジン負荷が低負荷、中負荷、高負荷、極高負荷のいずれかである場合の基本点火エネルギーの特性(エンジン回転速度と基本点火エネルギーとの関係)が規定される。エンジン負荷が上記4つの負荷のいずれでもない場合は、値が近い2つの規定値を用いた線形補間により、基本点火エネルギーを決定することができる。なお、この線形補間の精度を上げるために、図15(a)において、上記3つのエンジン回転速度(低速、中速、高速)とは異なる別の回転速度に対応する特性を追加してもよいし、同様に、図15(b)において、上記4つのエンジン負荷(低負荷、中負荷、高負荷、極高負荷)とは異なる別の負荷に対応する特性を追加してもよい。
 ここで、リーン環境と基本点火エネルギーとの関係について説明しておく。図16は、リーン環境と、先行点火によって混合気に過早着火が生じる基本点火エネルギーの限界との関係を示すグラフである。図中の「A/F」、「G/F」の曲線は、それぞれA/Fリーン環境、G/Fリーン環境において、先行点火にて混合気に着火が生じる基本点火エネルギーと、リーンの程度との関係を示している。図16に示すように、過早着火が生じる基本点火エネルギーは、混合気の空燃比もしくはガス空燃比が大きいほど(つまり燃料リーンなほど)大きい値となる傾向がある。このことは、空燃比(ガス空燃比)以外の種々の条件が同一である場合に、空燃比(ガス空燃比)が大きいほど先行点火のエネルギーを大きくすることができる(過早着火が生じない)ことを意味する。従って、A/Fリーン環境もしくはG/Fリーン環境とされる第1運転領域A1において、過早着火が生じない範囲(図16の「A/F」、「G/F」の曲線よりも低い範囲)において可及的に高い基本点火エネルギーを設定することが望ましい。
 上述の通り、先行点火の目的は、十分に圧縮される前の混合気に火炎伝播を生じさせない程度の小さな点火エネルギーを付与することにより、燃料を改質することである。この目的のためには、先行点火による火花(アーク)の周囲の混合気を850K以上1140K未満の温度にまで上昇させる必要がある。このような温度帯の混合気の層(以下、高温部ともいう)を形成することにより、燃料成分(炭化水素)を開裂させてOHラジカル等の中間生成物を生成することができ、その後の反応性を高めることができる。上記ステップS32で用いられる基本点火エネルギーのマップは、このような先行点火の目的に合致するように、つまり火花の周囲に850K以上1140K未満の高温部が形成されるように予め定められたものである。
 OHラジカル等の中間生成物は、それが多い方がCI燃焼時の熱効率が向上する。このため、先行点火のエネルギーは、火炎伝播が生じない範囲でできるだけ大きくすることが望ましい。しかしながら、火炎伝播の生じ易さは、燃焼室6の環境(温度や圧力等)によって変化するので、このことを考慮した上で先行点火のエネルギーを調整する必要がある。もちろん、上記ステップS32で決定される先行点火の基本点火エネルギーは、エンジンの負荷/回転速度に応じて変化する燃焼室6の環境を予め考慮したものであるが、実際のエンジンでは、様々な要因によって燃焼室6の環境が想定よりもずれることが多々ある。そこで、このような変動があっても適切な先行点火のエネルギーが付与されるように、演算部101は、点火エネルギーの補正を行う(ステップS33)。
 具体的には演算部101は、混合気の空燃比に応じた第1補正係数、エンジン水温に応じた第2補正係数、および筒内圧力に応じた第3補正係数を決定する。第1補正係数は、空燃比が大きいほど(つまり燃料リーンなほど)大きい値に設定される。このことは、空燃比以外の種々の条件が同一である場合に、空燃比が大きいほど先行点火のエネルギーが大きくされることを意味する。第2補正係数は、エンジン水温が高いほど小さい値に設定される。このことは、エンジン水温以外の種々の条件が同一である場合に、エンジン水温が高いほど先行点火のエネルギーが小さくされることを意味する。なお、エンジン水温は筒内温度と比例するので、上記の第2補正係数を決定することは、筒内温度が高いほど先行点火のエネルギーを小さくすることと等価である。第3補正係数は、IVC時点の筒内圧力が高いほど大きい値に設定される。このことは、筒内圧力以外の種々の条件が同一である場合に、IVC時点の筒内圧力が高いほど先行点火のエネルギーが大きくされることを意味する。
 次いで、演算部101は、ステップS34において、上記基本点火エネルギーと上記第1~第3補正係数とに基づいて先行点火のエネルギーを決定する。すなわち、演算部101は、上記ステップS32で決定された基本点火エネルギーに対し、上記ステップS33で決定された第1~第3補正係数をそれぞれ適用する演算を行い、当該演算により得られた値を最終的な先行点火のエネルギーとして決定する。このようにして決定される先行点火のエネルギーは、既に述べたとおり、主点火よりも小さくかつ燃料の改質(OHラジカル等の生成)が起きるようなエネルギーとされる。より詳しくは、先行点火による火花(アーク)の周囲に、850K以上1140K未満の高温部が形成され、且つ、混合気の火炎伝播が生じないエネルギーに、先行点火のエネルギーが設定される。
 (8)先行点火/主点火の具体的動作
 上述の通り当実施形態では、第1運転領域A1での運転時に、エネルギーの小さい先行点火とエネルギーの大きい主点火とが1サイクル中に実行される。このようなエネルギーの異なる2回の火花点火(先行点火および主点火)を点火プラグ16に実行させるため、点火プラグ16は例えば次のように制御される。
 当実施形態では、1つの気筒2に対し1つの点火プラグ16が設けられ、1つの点火プラグ16には、コイルやコンデンサ等を含むLC回路からなる1つの点火回路が備わっている。このため、点火プラグ16に2回の火花点火を行わせるには、コンデンサの充放電を繰り返す必要がある。
 図17は、第1運転領域A1で先行点火および主点火が行われるときの点火プラグ16の電気的な状態を燃焼波形と併せて示したタイムチャートであり、チャート(a)はSPCCI燃焼による熱発生率の波形を、チャート(b)は点火プラグ16への通電指令の波形を、チャート(c)は点火プラグ16からの放電電流の波形を、それぞれ示している。図17のチャート(b)において波形W1,W2で示すように、先行点火および主点火の前には、それぞれ点火プラグ16への通電が行われる。これらの通電時間(いわゆるドエル時間)を比較すると、先行点火のときの通電時間(波形W1)の方が、主点火のそれ(波形W2)よりも短い。また、図17のチャート(c)において波形Y1,Y2で示すように、点火プラグ16からの放電(火花の発生)は、点火プラグ16への通電を停止した時点で開始される。このとき、先行点火用の通電時間が主点火用の通電時間よりも短いことから、先行点火のときの放電エネルギー(波形Y1)は、主点火のときの放電エネルギー(波形Y2)よりも小さくなる。このことは、波形Y1の面積が波形Y2の面積よりも小さいことからも理解される。
 図17の例では、先行点火用の通電(波形W1)により蓄えられたエネルギーが先行点火により全て放出されている。このことは、先行点火の後のコンデンサの電圧が実質ゼロまで低下していることを意味する。このため、主点火のための十分なエネルギーを点火プラグ16に蓄えるには、主点火用の通電(波形W2)の際に、コンデンサの電圧がゼロから最大電圧まで上昇するように通電を比較的長く継続する必要がある。一方、小さいエネルギーしか要しない先行点火では、コンデンサの電圧が最大電圧に達するよりも前に通電を停止することができる。先行点火用の通電時間が主点火用の通電時間よりも短いのはこのためである。
 ここで、少なくとも先行点火は、それ以前に蓄えたエネルギーを全て放出するものである必要はなく、蓄えたエネルギーの一部だけを放出するものであってもよい。すなわち、点火プラグ16からの放電中に点火プラグ16への通電を再開すれば、その時点で放電は停止されるので、本来必要なエネルギーよりも大きいエネルギーを通電により蓄えた上で、放電の途中で通電を再開する(それによって放電を停止させる)ことにより、蓄えたエネルギーの一部だけを点火プラグ16から放出させるようにしてもよい。この方法による先行点火を実施した場合には、主点火用の通電時間を短くできるので、先行点火から主点火までの間隔が比較的短いケースにおいて有効である。
 (9)作用効果
 以上説明したように、当実施形態では、SPCCI燃焼が行われる第1運転領域A1において、圧縮行程後期または膨張行程初期に火花を発生させてSI燃焼を開始させる主点火(第2点火)と、主点火よりも早くかつ燃料の噴射よりも遅いタイミングで火花を発生させる先行点火(第1点火)とが実行される。このような構成によれば、燃焼速度が速く熱効率に優れたSPCCI燃焼を実現できるという利点がある。
 すなわち、上記実施形態では、主点火よりも早いタイミングで先行点火が実行されて、この先行点火による火花(アーク)の周囲に850K以上1140K未満の高温部が形成される。このため、先行点火により混合気の火炎伝播を生じさせることなく、CI燃焼時の熱効率が高くなるように燃料を改質することができる。詳しくは、上記温度帯までの加熱により燃料成分(炭化水素)を開裂させて過酸化水素(H)やホルムアルデヒド(CHO)を生成し、これらの成分から生じるOHラジカルを生成することができる。OHラジカルは、酸化作用が強く反応性が高いので、このようなOHラジカルを含む中間生成物が先行点火後の燃焼室6に生成されることにより、燃料成分が自発的に化学反応する現象であるCI燃焼の燃焼速度を速めることができ、熱効率を向上させることができる。
 さらに、先行点火は、空燃比が20超35未満となるA/Fリーン環境、もしくは、ガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境において実行される。このようなリーン環境であれば、たとえ先行点火による火花が混合気中で発生しても、自ずと火炎は生じ難くなり、当該先行点火のエネルギーを専ら燃料成分の高温化(燃料の改質)に寄与させることができる。つまり、リーン環境とすることで、燃焼室6内を燃焼が発生し難い環境とし、これにより先行点火による混合気への過早着火が起き難くすることができる。従って、先行着火によって上述の中間生成物を気筒2内に十分に生成させるこができる。
 図18は、本願発明者らが行った数値シミュレーションから得られた、混合気の温度と中間生成物の生成量との関係を示すグラフである。このグラフに示すように、中間生成物の生成量は、総じて混合気の温度が高いほど多くなる。グラフの縦軸に表記された閾値αは、有意な効果を得るのに必要な中間生成物の生成量を表しており、この閾値α以上の中間生物が燃焼室に存在すれば燃焼速度に有意な差が生じることを表している。グラフより、閾値α以上の中間生成物を得る(つまり燃焼を有意なレベルで高速化する)には、混合気の温度を少なくとも850Kまで上昇させる必要がある。中間生成物の量は、混合気の温度が850Kを超えて以降も増加するが、温度が1140Kに達すると急激に(ほぼ垂直に)低下する。これは、混合気の温度が1140Kに達すると混合気が燃焼して火炎が発生し(つまり熱炎反応が起き)、中間生成物がほとんど消費されてしまうからと考えられる。
 これに対し、上記実施形態では、先行点火のエネルギーが、火花(アーク)の周囲に850以上1140K未満の高温部が形成されるようなエネルギーに調整される。従って、この先行点火によって反応性の高いOHラジカルを含む中間生成物を確実に生成することができ、CI燃焼の燃焼速度を速めて熱効率を向上させることができる。図18のチャート(a)には、このように適切なエネルギーに調整された先行点火を実行した場合の熱発生率の波形(実線)が、先行点火を実行しなかった場合の熱発生率の波形(破線)と比較する形で示されている。これら2つの燃焼波形の比較からも明らかなように、先行点火を実行したときの方が、先行点火を実行しなかった場合よりも、CI燃焼が開始されて以降の(点X’より遅角側での)熱発生率の立ち上がりが急になっており、CI燃焼の燃焼速度が速くなっていることが分かる。なお、先行点火により生成された中間生成物は、CI燃焼よりも前のSI燃焼によってその一部が消費される。しかし、SI燃焼の開始時点では既に燃焼室6の広い範囲に中間生成物が分散しており、SI燃焼の領域の外側にも中間生成物は残存している。この残存した中間生成物の作用によりCI燃焼の高速化は支障なく達成される。
 また、点火制御部103は、先行点火のエネルギーを主点火のエネルギーよりも小さく設定する。これにより、先行点火によってはSI燃焼を生じさせない一方で、主点火によってSI燃焼を生じさせる構成を、簡易的に実現することができる。
 さらに、噴射制御部102は、吸気行程において燃料噴射を実行させ、点火制御部103は、先行点火を、吸気行程における燃料噴射の後、もしくは、圧縮行程の前期または中期において実行させる。このように、吸気行程において燃料を噴射させておくことで、先行点火の時点において混合気を均質化させ、点火プラグ16の周辺だけにリッチな混合気が存在するような状況の発生を抑制することが可能となる。従って、先行点火による混合気への着火および火炎形成が抑止され、前記中間生成物の生成期間を確実に確保することができる。
 また、先行点火および主点火は、気筒2ごとに、1つの点火回路を有する1つの点火プラグ16によって実行される。このため、既存の点火プラグ16を用いた簡単な方法により、先行点火および前記主点火を実行させることができる。
 上記実施形態では、第1運転領域A1での運転時に、スワール比が1.5以上確保されるような開度までスワール弁18が閉じられる。このため、先行点火により生成された中間生成物を、強いスワール流によって短時間のうちに燃焼室6の広い範囲に分散させることができる。そして、この分散した中間生成物を利用して、燃焼室6の各所で同時多発的に開始されるCI燃焼の燃焼速度を効果的に速めることができる。
 上記実施形態では、SPCCI燃焼の実行時(第1・第2運転領域A1,A2での運転時)に、1サイクル中の全熱発生量に対するSI燃焼による熱発生量の割合であるSI率が、エンジンの運転条件に応じて予め定められた目標SI率に一致するように、点火プラグ16による主点火の時期が調整される。つまり、目標SI率に適合するSPCCI燃焼が実現されるように、主点火の時期を調整される。このため、例えば燃焼騒音が過大にならない範囲でできるだけCI燃焼の割合を増やす(つまりSI率を低くする)ことができる。このことは、先行点火による燃料の改質による効果(CI燃焼の高速化)と相俟って、SPCCI燃焼による熱効率を可及的に高めることにつながる。先行点火は、OHラジカルを含む中間生成物を生成する(それによってCI燃焼の燃焼速度を速める)働きをするだけなので、先行点火のエネルギーや時期が変化しても、SI率もしくはCI燃焼の開始時期(θci)は特に影響を受けない。これは、目標SI率を達成するための主点火の時期を、先行点火のエネルギーや時期とは独立して一義的に特定できることを意味する。すなわち、十分な中間生成物が生成されるように先行点火を行いつつ、目標SI率を実現するための主点火の時期を高い精度で特定することができる。
 また、上記実施形態では、先行点火および主点火が実行される運転領域が、SPCCI燃焼の実行領域(第1・第2運転領域A1,A2)における低負荷側の一部、つまり第1運転領域A1のみに限定されており、高負荷側の第2運転領域A2では先行点火が実行されない。このため、先行点火によるCI燃焼の高速化によって異常燃焼が引き起こされる不具合を回避することができる。すなわち、高負荷側の第2運転領域A2において、仮に先行点火を行ってOHラジカル等の中間生成物を生成したとすると、CI燃焼の燃焼速度が速くなり過ぎて、ノッキング等の異常燃焼が起きる可能性が高くなる。これに対し、上記実施形態では、高負荷側の第2運転領域A2での先行点火が禁止されるので、ノッキング等の異常燃焼を有効に回避することができる。
 上記実施形態では、燃料噴射が2回に分けて実行される。すなわち、噴射制御部102は、吸気行程の所定時点で燃料を噴射する第1噴射と、この第1噴射よりも遅い時点で燃料を噴射する第2噴射とをインジェクタ15に実行させる。そして、先行点火は、第2噴射の後に実行される。この構成を採用することで、第1噴射および第2噴射における燃料の噴射量/噴射時期を、エンジンの運転条件に応じて設定することが可能となる。従って、各運転条件において適切なSPCCI燃焼が実現されるように、混合気の成層度合(もしくは均質度合)を調整することができる。
 また、上記実施形態では、第1運転領域A1では、負荷の高低にかかわらず(運転ポイントP1,P2のいずれであっても)、第1噴射による燃料の噴射量の方が第2噴射による燃料の噴射量よりも多くされる。これにより、燃料が過度に成層化されることがなく、良好なエミッション性能を確保することができる。
 されに、気筒2の幾何学的圧縮比が13以上30以下に設定されている。このような高圧縮比に設定することで、A/Fリーン環境もしくはG/Fリーン環境であっても、燃焼の安定性を確保することができる。
 (10)変形例
 上記実施形態では、第1噴射および第2噴射による燃料噴射が完了した後、圧縮行程前期または中期に先行点火を実行する例を示した。先行点火の時期は、燃焼室6に燃料が存在するタイミングであればよく、例えば吸気行程中に先行点火を実行してもよい。さらに、先行点火の回数は1サイクル中に1回とは限られず、2回以上に増やしてもよい。
 例えば、図19のチャート(a)に示すように、第1噴射および第2噴射による燃料噴射が完了した後、圧縮行程の前期から中期にかけて2回の先行点火を実行してもよい。或いは、図19のチャート(b)に示すように、第1の噴射から第2噴射までの間に1回目の先行点火を実行し、かつ第2噴射が完了した後に2回目の先行点火を実行してもよい。いずれにせよ、先行点火は、燃焼室6に燃料が存在するタイミングであって、吸気行程中ないし圧縮行程の前期または中期に実行されればよく、その限りにおいて先行点火の時期および回数は適宜変更可能である。
 ただし、先行点火の回数は3回以下とすることが望ましい。図20は、先行点火の回数と燃料消費率(g/kWh)の改善代との関係を示すグラフである。図20に示すように、先行点火を1回行えば燃料消費率は十分に改善するが、先行点火の回数を2回、3回と増やしていけば、少しずつではあるが燃料消費率はさらに改善する。しかしながら、先行点火の回数を3回から4回に増やしても、燃料消費率の値は実質同一である。このように、先行点火の回数を4回以上に増やしてもほとんど効果が得られないことから、先行点火の回数は3回以下とすることが望ましい。
 上記実施形態では、SPCCI燃焼による全熱発生量に対するSI燃焼による熱発生量の割合であるSI率を、図7の燃焼波形における面積R1,R2を用いて、R1/(R1+R2)と定義し、このSI率が予め定められた目標SI率に一致するように主点火の時期を調整するようにした。SI率を定義する方法は他にも種々考えられる。
 例えば、SI率=R1/R2としてもよい。さらに、図21に示すΔθ1、Δθ2を用いてSI率を定義してもよい。すなわち、SI燃焼のクランク角期間(変曲点X2よりも進角側の燃焼期間)をΔθ1、CI燃焼のクランク角期間(変曲点X2よりも遅角側の燃焼期間)をΔθ2としたときに、SI率=Δθ1/(Δθ1+Δθ2)、もしくはSI率=Δθ1/Δθ2としてもよい。もしくは、SI燃焼の熱発生率のピークをΔH1、CI燃焼の熱発生率のピークをΔH2としたときに、SI率=ΔH1/(ΔH1+ΔH2)、もしくはSI率=ΔH1/ΔH2としてもよい。
 上記実施形態では、第1点火(先行点火)が行われる燃焼形態の一例として、第1運転領域A1におけるSPCCI燃焼を例示した。本発明では、混合気の少なくとも一部が自着火によりCI燃焼する圧縮着火燃焼である限りにおいて、種々の燃焼形態を採用することができる。例えば、図6のチャート(a)(b)において、「主点火」を行わないようにし、混合気を全てCI燃焼により燃焼させても良い。つまり、点火プラグ16をSI燃焼の着火用として用いることなく、CI燃焼に先立っての、高温部形成のための先行点火用にだけ用いる。このような態様でも、先行点火にて高温部が形成され、これによりCI燃焼時の熱効率が高くなるように燃料を改質することができる。従って、CI燃焼の速度を早めることができる。また、燃焼室6内は、A/Fリーン環境もしくはG/Fリーン環境とされるので、前記先行点火によっては火炎が発生し難くし、前記中間生成物を良好に生成させることができる。
 [上記実施形態に包含される発明]
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る圧縮着火式エンジンの制御装置は、気筒と、気筒に燃料を噴射するインジェクタと、前記気筒内で火花を発生する点火プラグとを備え、前記インジェクタから噴射された燃料と空気とが混合された混合気の少なくとも一部を、圧縮力で自着火燃焼させるCI燃焼が実行可能な圧縮着火式エンジンを制御する装置であって、前記気筒内における燃焼動作を制御する燃焼制御部と、前記点火プラグによる点火動作を制御する点火制御部と、を備え、前記燃焼制御部は、前記気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、前記気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成し、前記点火制御部は、前記CI燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、前記点火プラグに火花を発生させて高温部を形成する第1点火を実行させることを特徴とする。
 この制御装置によれば、CI燃焼の予定時期に先立って前記第1点火が実行される。このため、前記第1点火を利用して火花(アーク)の周囲を適切な温度まで上昇させることにより、混合気の火炎伝播を抑制しつつ、CI燃焼時の熱効率が高くなるように燃料を改質することができる。詳しくは、燃料成分(炭化水素)を高温化により開裂させて過酸化水素(H)やホルムアルデヒド(CHO)を生成し、これらの成分から生じるOHラジカルを生成することができる。OHラジカルは、酸化作用が強く反応性が高い。このようなOHラジカルを含む中間生成物が前記第1点火後の気筒内に生成されることにより、燃料成分が自発的に化学反応する現象であるCI燃焼の燃焼速度を速めることができる。従って、熱効率を向上させることができる。
 さらに、前記第1点火は、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において実行される。このようなリーン環境であれば、たとえ前記第1点火による火花が混合気中で発生しても、自ずと火炎は生じ難くなり、当該第1点火のエネルギーを専ら燃料成分の高温化(燃料の改質)に寄与させることができる。従って、上述の中間生成物を気筒内に十分に生成させるこができる。
 上記の圧縮着火式エンジンの制御装置において、前記第1点火のエネルギーは、前記点火プラグから発生した火花の周囲に850K以上1140K未満の高温部が形成され、且つ、混合気の火炎伝播が生じないエネルギーに設定されることが望ましい。
 この制御装置によれば、十分な量の中間生成物を前記第1点火により生成しつつ、その中間生成物がCI燃焼の前に、前記第1点火による意図しない火炎伝播によって消費されてしまうことを回避できる。
 上記の圧縮着火式エンジンの制御装置において、1サイクル中の前記第1点火の回数は3回以下に設定されることが望ましい。
 前記第1点火の回数は1サイクル中に1回に限定する必要はなく、複数回の第1点火を実行してもよい。しかし、本願発明者らの研究によれば、3回を超えて第1点火を実行したところで、第1点火が3回である場合と比べて得られる効果はほとんど変わらない。上記の制御装置によれば、CI燃焼を高速化するという第1点火による効果を担保しつつ、点火プラグの電極の消耗を抑制することができる。
 上記の圧縮着火式エンジンの制御装置において、前記圧縮着火式エンジンは、前記混合気の一部を前記点火プラグの火花点火によりSI燃焼させるとともにその他の混合気を自着火によりCI燃焼させる部分圧縮着火燃焼が可能なエンジンであって、前記点火制御部は、前記部分圧縮着火燃焼の実行時、火花を発生させて前記SI燃焼を開始させる第2点火と、前記第2点火よりも早い時点で火花を発生させる前記第1点火とを前記点火プラグに実行させることが望ましい。
 この制御装置によれば、前記第2点火によって前記SI燃焼を発生させ、このSI燃焼によって前記CI燃焼の開始時期をコントロールできるようになる。そして、CI燃焼の開始時点では、前記第1点火による高温化によって前記中間生成物が存在するので、前記CI燃焼の燃焼速度を速めることができる。
 上記の圧縮着火式エンジンの制御装置において、前記点火制御部は、前記第1点火のエネルギーは前記第2点火のエネルギーよりも小さく設定することが望ましい。
 この制御装置によれば、前記第1点火によってはSI燃焼を生じさせない一方で、前記第2点火によってSI燃焼を生じさせる構成を、簡易的に実現することができる。
 上記の圧縮着火式エンジンの制御装置において、前記点火制御部は、前記第1点火を、吸気行程中、もしくは、圧縮行程の前期または中期において実行させることが望ましい。
 この制御装置によれば、圧縮上死点から十分に進角されたタイミングにおいて、前記第1点火が実行される。従って、前記第1点火によって意図せず火炎伝播が発生することを防止しながら、噴射された燃料を前記第1点火により確実に改質してCI燃焼の高速化を図ることができる。
 上記の圧縮着火式エンジンの制御装置において、前記第1点火および前記第2点火は、前記気筒ごとに、1つの点火回路を有する1つの点火プラグによって実行されることが望ましい。これにより、既存の点火プラグを用いた簡単な方法により、前記第1点火および前記第2点火を実行させることができる。
 上記の圧縮着火式エンジンの制御装置において、前記気筒に連通する吸気ポートに配置され該吸気ポートを開閉可能なスワール弁と、前記スワール弁の開度を制御するスワール制御部と、をさらに備え、前記スワール制御部は、前記第1点火および前記第2点火が実行される運転領域では、前記気筒内のスワール比が1.5以上になるように前記スワール弁の開度を制御することが望ましい。
 この制御装置によれば、スワール比が1.5以上とされることで、気筒内に強いスワール流を発生させることができる。このスワール流によって、前記第1点火により生成された中間生成物を短時間のうちに気筒内の広い範囲に分散させることができる。従って、このように分散した中間生成物を利用して、気筒内の各所で同時多発的に開始されるCI燃焼の燃焼速度を効果的に速めることができる。
 上記の圧縮着火式エンジンの制御装置において、1サイクル中の全熱発生量に対するSI燃焼による熱発生量の割合の目標値である目標SI率をエンジンの運転条件に応じて設定する設定部をさらに備え、前記点火制御部は、前記設定部により設定された目標SI率に基づいて前記第2点火の時期を設定することが望ましい。
 この制御装置によれば、目標SI率に適合する部分圧縮着火燃焼が実現されるように第2点火の時期を調整することで、例えば燃焼騒音が過大にならない範囲でできるだけCI燃焼の割合を増やす(つまりSI率を低くする)ことができる。このことは、第1点火による燃料の改質による効果(CI燃焼の高速化)と相俟って、部分圧縮着火燃焼による熱効率を可及的に高めることにつながる。前記先行点火は、OHラジカルを含む中間生成物を生成する(それによってCI燃焼の燃焼速度を速める)働きをするだけなので、前記第1点火のエネルギーや時期が変化しても、SI率は特に影響を受けない。これは、目標SI率を達成するための前記第2点火の時期を、第1点火のエネルギーや時期とは独立して一義的に特定できることを意味する。すなわち、上記の制御装置によれば、十分な中間生成物が生成されるように前記第1点火を行いつつ、目標SI率を実現するための前記第2点火の時期を高い精度で特定することができる。
 上記の圧縮着火式エンジンの制御装置において、前記点火制御部は、前記部分圧縮着火燃焼が実行される運転領域における低負荷側の一部でのみ前記第1点火および前記第2点火を実行することが望ましい。
 この制御装置によれば、第1点火によるCI燃焼の高速化によって異常燃焼が引き起こされる不具合を回避することができる。すなわち、部分圧縮着火燃焼の実行領域において一律に第1点火および第2点火を実行した場合には、同領域の高負荷側において、CI燃焼の燃焼速度が速くなり過ぎて、ノッキング等の異常燃焼が起きる可能性が高くなる。これに対し、上記の制御装置では、部分圧縮着火燃焼の実行領域における低負荷側の一部でのみ前記第1点火が実行され、高負荷側では前記第1点火が禁止される。従って、ノッキング等の異常燃焼を効果的に回避することができる。
 上記の圧縮着火式エンジンの制御装置において、前記燃焼制御部は、前記インジェクタによる燃料の噴射動作を制御する噴射制御部を含み、前記噴射制御部は、前記吸気行程の所定時点で燃料を噴射する第1噴射と、この第1噴射よりも遅い時点で燃料を噴射する第2噴射とを前記インジェクタに実行させ、前記点火制御部は、前記第1点火を前記第2噴射の後に実行させることが望ましい。
 この制御装置によれば、第1噴射および第2噴射における燃料の噴射量/噴射時期を、エンジンの運転条件に応じて設定することが可能となる。従って、各運転条件において適切な圧縮着火燃焼乃至は部分圧縮着火燃焼が実現されるように、混合気の成層度合(もしくは均質度合)を調整することができる。
 上記の圧縮着火式エンジンの制御装置において、前記噴射制御部は、前記第1噴射による燃料の噴射量の方が前記第2噴射による燃料の噴射量よりも多くなるように前記インジェクタを制御することが望ましい。これにより、噴射時期の早い第1噴射による噴射量を相対的に多くすることで、燃料が成層化され過ぎてエミッション性能が低下することを回避できる。
 上記の圧縮着火式エンジンの制御装置において、前記気筒の幾何学的圧縮比が13以上30以下に設定されていることが望ましい。このような高圧縮比に設定することで、リーン環境であっても、燃焼の安定性を確保することができる。
 本発明の他の局面に係る圧縮着火式エンジンの制御装置は、気筒と、気筒に臨むように配設されたインジェクタおよび点火プラグとを備えたエンジンを制御する装置であって、前記インジェクタ及び前記点火プラグと電気的に接続され、前記インジェクタ及び前記点火プラグに制御信号を出力するコントローラを備え、前記コントローラは電気回路を有し、前記電気回路を有するコントローラは、前記インジェクタから噴射された燃料と空気との混合気が前記点火プラグによる火花点火により火炎伝播燃焼し、この火炎伝播燃焼の開始後に圧縮自己着火燃焼が起きる部分圧縮着火燃焼を実行させる第1燃焼制御部と、前記部分圧縮着火燃焼の実行時に、前記気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、前記気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成する第2燃焼制御部と、前記圧縮自己着火燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、前記点火プラグに火花を発生させて高温部を形成する先行点火を実行させる点火制御部と、を備えることを特徴とする。
 本発明によれば、燃焼速度が速く熱効率に優れた圧縮着火燃焼を実現することが可能な圧縮着火式エンジンの制御装置を提供することができる。

Claims (14)

  1.  気筒と、気筒に燃料を噴射するインジェクタと、前記気筒内で火花を発生する点火プラグとを備え、前記インジェクタから噴射された燃料と空気とが混合された混合気の少なくとも一部を、圧縮力で自着火燃焼させるCI燃焼が実行可能な圧縮着火式エンジンを制御する装置であって、
     前記気筒内における燃焼動作を制御する燃焼制御部と、
     前記点火プラグによる点火動作を制御する点火制御部と、を備え、
     前記燃焼制御部は、前記気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、前記気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成し、
     前記点火制御部は、前記CI燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、前記点火プラグに火花を発生させて高温部を形成する第1点火を実行させる、
    ことを特徴とする圧縮着火式エンジンの制御装置。
  2.  請求項1に記載の圧縮着火式エンジンの制御装置において、
     前記第1点火のエネルギーは、前記点火プラグから発生した火花の周囲に850K以上1140K未満の高温部が形成され、且つ、混合気の火炎伝播が生じないエネルギーに設定される、圧縮着火式エンジンの制御装置。
  3.  請求項1又は2に記載の圧縮着火式エンジンの制御装置において、
     1サイクル中の前記第1点火の回数は3回以下に設定される、圧縮着火式エンジンの制御装置。
  4.  請求項1~3のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     前記圧縮着火式エンジンは、前記混合気の一部を前記点火プラグの火花点火によりSI燃焼させるとともにその他の混合気を自着火によりCI燃焼させる部分圧縮着火燃焼が可能なエンジンであって、
     前記点火制御部は、前記部分圧縮着火燃焼の実行時、火花を発生させて前記SI燃焼を開始させる第2点火と、前記第2点火よりも早い時点で火花を発生させる前記第1点火とを前記点火プラグに実行させる、圧縮着火式エンジンの制御装置。
  5.  請求項4に記載の圧縮着火式エンジンの制御装置において、
     前記点火制御部は、前記第1点火のエネルギーは前記第2点火のエネルギーよりも小さく設定する、圧縮着火式エンジンの制御装置。
  6.  請求項4又は5に記載の圧縮着火式エンジンの制御装置において、
     前記点火制御部は、前記第1点火を、吸気行程中、もしくは、圧縮行程の前期または中期において実行させる、圧縮着火式エンジンの制御装置。
  7.  請求項4~6のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     前記第1点火および前記第2点火は、前記気筒ごとに、1つの点火回路を有する1つの点火プラグによって実行される、圧縮着火式エンジンの制御装置。
  8.  請求項4~7のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     前記気筒に連通する吸気ポートに配置され該吸気ポートを開閉可能なスワール弁と、
     前記スワール弁の開度を制御するスワール制御部と、をさらに備え、
     前記スワール制御部は、前記第1点火および前記第2点火が実行される運転領域では、
    前記気筒内のスワール比が1.5以上になるように前記スワール弁の開度を制御する、圧縮着火式エンジンの制御装置。
  9.  請求項4~8のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     1サイクル中の全熱発生量に対するSI燃焼による熱発生量の割合の目標値である目標SI率をエンジンの運転条件に応じて設定する設定部をさらに備え、
     前記点火制御部は、前記設定部により設定された目標SI率に基づいて前記第2点火の時期を設定する、圧縮着火式エンジンの制御装置。
  10.  請求項4~9のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     前記点火制御部は、前記部分圧縮着火燃焼が実行される運転領域における低負荷側の一部でのみ前記第1点火および前記第2点火を実行する、圧縮着火式エンジンの制御装置。
  11.  請求項1~10のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     前記燃焼制御部は、前記インジェクタによる燃料の噴射動作を制御する噴射制御部を含み、
     前記噴射制御部は、前記吸気行程の所定時点で燃料を噴射する第1噴射と、この第1噴射よりも遅い時点で燃料を噴射する第2噴射とを前記インジェクタに実行させ、
     前記点火制御部は、前記第1点火を前記第2噴射の後に実行させる、圧縮着火式エンジンの制御装置。
  12.  請求項11に記載の圧縮着火式エンジンの制御装置において、
     前記噴射制御部は、前記第1噴射による燃料の噴射量の方が前記第2噴射による燃料の噴射量よりも多くなるように前記インジェクタを制御する、圧縮着火式エンジンの制御装置。
  13.  請求項1~12のいずれか1項に記載の圧縮着火式エンジンの制御装置において、
     前記気筒の幾何学的圧縮比が13以上30以下に設定されている、圧縮着火式エンジンの制御装置。
  14.  気筒と、気筒に臨むように配設されたインジェクタおよび点火プラグとを備えたエンジンを制御する装置であって、
     前記インジェクタ及び前記点火プラグと電気的に接続され、前記インジェクタ及び前記点火プラグに制御信号を出力するコントローラを備え、
     前記コントローラは電気回路を有し、
     前記電気回路を有するコントローラは、
      前記インジェクタから噴射された燃料と空気との混合気が前記点火プラグによる火花点火により火炎伝播燃焼し、この火炎伝播燃焼の開始後に圧縮自己着火燃焼が起きる部分圧縮着火燃焼を実行させる第1燃焼制御部と、
      前記部分圧縮着火燃焼の実行時に、前記気筒内の空気と燃料との割合である空燃比が20超35未満となるA/Fリーン環境、もしくは、前記気筒内の全ガスと燃料との割合であるガス空燃比が18超50未満となりかつ前記空燃比が理論空燃比に略一致するG/Fリーン環境を形成する第2燃焼制御部と、
      前記圧縮自己着火燃焼の予定時期に先立って、前記A/Fリーン環境、もしくは、前記G/Fリーン環境において、前記点火プラグに火花を発生させて高温部を形成する先行点火を実行させる点火制御部と、
    を備えることを特徴とする圧縮着火式エンジンの制御装置。
     
PCT/JP2019/016878 2018-05-02 2019-04-19 圧縮着火式エンジンの制御装置 WO2019211996A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19796963.7A EP3779161A4 (en) 2018-05-02 2019-04-19 CONTROL DEVICE FOR COMPRESSION IGNITION ENGINE
US17/051,546 US11168639B2 (en) 2018-05-02 2019-04-19 Control apparatus for compression-ignition type engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-088563 2018-05-02
JP2018088563A JP7052535B2 (ja) 2018-05-02 2018-05-02 圧縮着火式エンジンの制御装置

Publications (1)

Publication Number Publication Date
WO2019211996A1 true WO2019211996A1 (ja) 2019-11-07

Family

ID=68386252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016878 WO2019211996A1 (ja) 2018-05-02 2019-04-19 圧縮着火式エンジンの制御装置

Country Status (4)

Country Link
US (1) US11168639B2 (ja)
EP (1) EP3779161A4 (ja)
JP (1) JP7052535B2 (ja)
WO (1) WO2019211996A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052534B2 (ja) * 2018-05-02 2022-04-12 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7052536B2 (ja) * 2018-05-02 2022-04-12 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7155916B2 (ja) * 2018-11-16 2022-10-19 マツダ株式会社 エンジンの燃焼室構造
JP2022076784A (ja) * 2020-11-10 2022-05-20 マツダ株式会社 エンジンの制御方法及びエンジンシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003897A (ja) * 2001-06-25 2003-01-08 Nissan Motor Co Ltd 自己着火式エンジン
JP2006002637A (ja) * 2004-06-16 2006-01-05 Denso Corp 圧縮自着火式内燃機関の制御装置
JP2009108778A (ja) 2007-10-30 2009-05-21 Toyota Motor Corp 圧縮着火式内燃機関の燃料噴射装置
US20100037858A1 (en) * 2008-02-15 2010-02-18 Gm Global Technology Operations, Inc. Control strategy for a homogeneous-charge compression-ignition engine
JP4691373B2 (ja) 2005-03-14 2011-06-01 日立オートモティブシステムズ株式会社 火花点火エンジン、当該エンジンに使用する制御装置、及び当該エンジンに使用する点火コイル
JP2011241756A (ja) * 2010-05-18 2011-12-01 Honda Motor Co Ltd 内燃機関の制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850815A (en) * 1996-04-17 1998-12-22 Honda Giken Kogyo Kabushiki Kaisha Control system and control process in internal combustion engine
GB2352772A (en) 1999-08-05 2001-02-07 Ford Global Tech Inc Method of operating a spark-ignition i.c. engine using a series of sparks to promote auto-ignition
DE602006017767D1 (de) * 2005-03-31 2010-12-09 Mazda Motor Steuervorrichtung einer Otto-Brennkraftmaschine
DE112009001033B4 (de) 2008-05-02 2021-08-05 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Erweiterung der Anwendung einer HCCI-Verbrennungsstrategie mit Mehrfacheinspritzung vom Leerlauf bis zu mittlerer Last
KR101189229B1 (ko) 2009-11-12 2012-10-09 현대자동차주식회사 압축 착화 가솔린 엔진
US9512814B2 (en) * 2010-04-30 2016-12-06 Mazda Motor Corporation Control method of spark ignition engine and spark ignition engine
JP5915472B2 (ja) * 2012-09-07 2016-05-11 マツダ株式会社 火花点火式直噴エンジン
DE112015000119T5 (de) * 2014-03-10 2016-04-21 Honda Motor Co., Ltd. Verbrennungssteuervorrichtung für Verbrennungsmotor
US9803580B2 (en) * 2014-07-16 2017-10-31 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine
JP6020526B2 (ja) * 2014-07-31 2016-11-02 トヨタ自動車株式会社 内燃機関の燃料性状判定装置
WO2018096590A1 (ja) 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
JP6558431B2 (ja) * 2017-12-15 2019-08-14 マツダ株式会社 圧縮着火式エンジンの制御装置
JP6642559B2 (ja) * 2017-12-15 2020-02-05 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7043960B2 (ja) * 2018-05-02 2022-03-30 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7047581B2 (ja) * 2018-05-02 2022-04-05 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7043961B2 (ja) * 2018-05-02 2022-03-30 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7047580B2 (ja) * 2018-05-02 2022-04-05 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7052536B2 (ja) * 2018-05-02 2022-04-12 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7052534B2 (ja) * 2018-05-02 2022-04-12 マツダ株式会社 圧縮着火式エンジンの制御装置
JP7077769B2 (ja) * 2018-05-22 2022-05-31 マツダ株式会社 圧縮着火式エンジンの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003897A (ja) * 2001-06-25 2003-01-08 Nissan Motor Co Ltd 自己着火式エンジン
JP2006002637A (ja) * 2004-06-16 2006-01-05 Denso Corp 圧縮自着火式内燃機関の制御装置
JP4691373B2 (ja) 2005-03-14 2011-06-01 日立オートモティブシステムズ株式会社 火花点火エンジン、当該エンジンに使用する制御装置、及び当該エンジンに使用する点火コイル
JP2009108778A (ja) 2007-10-30 2009-05-21 Toyota Motor Corp 圧縮着火式内燃機関の燃料噴射装置
US20100037858A1 (en) * 2008-02-15 2010-02-18 Gm Global Technology Operations, Inc. Control strategy for a homogeneous-charge compression-ignition engine
JP2011241756A (ja) * 2010-05-18 2011-12-01 Honda Motor Co Ltd 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779161A4

Also Published As

Publication number Publication date
US11168639B2 (en) 2021-11-09
JP7052535B2 (ja) 2022-04-12
EP3779161A4 (en) 2021-06-23
US20210239067A1 (en) 2021-08-05
JP2019194453A (ja) 2019-11-07
EP3779161A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP7047581B2 (ja) 圧縮着火式エンジンの制御装置
JP7043960B2 (ja) 圧縮着火式エンジンの制御装置
JP7047580B2 (ja) 圧縮着火式エンジンの制御装置
JP7052536B2 (ja) 圧縮着火式エンジンの制御装置
JP7024586B2 (ja) 圧縮着火式エンジンの制御装置
WO2019211996A1 (ja) 圧縮着火式エンジンの制御装置
JP7167831B2 (ja) 圧縮着火式エンジンの制御装置
WO2019211995A1 (ja) 圧縮着火式エンジンの制御装置
WO2019212012A1 (ja) 圧縮着火式エンジンの制御装置
WO2019211984A1 (ja) 圧縮着火式エンジンの制御装置
WO2019211983A1 (ja) 圧縮着火式エンジンの制御装置
WO2019211982A1 (ja) 圧縮着火式エンジンの制御装置
JP7077770B2 (ja) 圧縮着火式エンジンの制御装置
JP2020176572A (ja) 予混合圧縮着火式エンジンの制御装置
WO2019211986A1 (ja) 圧縮着火式エンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019796963

Country of ref document: EP

Effective date: 20201029