WO2019210720A1 - 一种抗风扰的大气污染物监测设备 - Google Patents

一种抗风扰的大气污染物监测设备 Download PDF

Info

Publication number
WO2019210720A1
WO2019210720A1 PCT/CN2019/074041 CN2019074041W WO2019210720A1 WO 2019210720 A1 WO2019210720 A1 WO 2019210720A1 CN 2019074041 W CN2019074041 W CN 2019074041W WO 2019210720 A1 WO2019210720 A1 WO 2019210720A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
module
sub
monitoring device
main control
Prior art date
Application number
PCT/CN2019/074041
Other languages
English (en)
French (fr)
Inventor
司书春
许军
刘一平
李海滨
赵立健
程琳
Original Assignee
山东诺方电子科技有限公司
山东省济南生态环境监测中心
济南市环境保护网格化监管中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2018/055531 external-priority patent/WO2019150182A1/zh
Application filed by 山东诺方电子科技有限公司, 山东省济南生态环境监测中心, 济南市环境保护网格化监管中心 filed Critical 山东诺方电子科技有限公司
Priority to GBGB2102622.4A priority Critical patent/GB202102622D0/en
Priority to CN201980003738.4A priority patent/CN111094936B/zh
Priority to GBGB2102645.5A priority patent/GB202102645D0/en
Priority to CN201980042990.6A priority patent/CN112384783B/zh
Priority to PCT/CN2019/097589 priority patent/WO2020020255A1/zh
Publication of WO2019210720A1 publication Critical patent/WO2019210720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means

Definitions

  • the invention relates to a vehicle environment monitoring device, in particular to an online atmospheric environment monitoring device installed on a social operation vehicle, and belongs to the technical field of environmental monitoring.
  • Atmospheric environmental monitoring is a process for determining the type and concentration of pollutants in the atmosphere, observing its spatial and temporal distribution and changing laws.
  • the main pollutants monitored are sulfur dioxide, nitrogen oxides, ozone, carbon monoxide and PM 1 in the atmosphere (aerodynamics). Particles smaller than 1 ⁇ m), PM 2.5 (particles with aerodynamic particle size less than 2.5 ⁇ m), PM 10 (particles with aerodynamic particle size less than 10 ⁇ m), PM 100 (aerodynamic particle size less than 100 ⁇ m) particle of).
  • the atmospheric environment monitoring system can collect and process the monitored data, and timely and accurately reflect the regional ambient air quality status and changes.
  • the environmental protection department can use these data for environmental decision-making, environmental management, and pollution prevention; the public can take personal protection according to environmental data and arrange life reasonably.
  • atmospheric environmental monitoring equipment mainly has fixed monitoring stations and mobile monitoring equipment.
  • the current fixed monitoring stations are mainly divided into large fixed monitoring stations and small stations.
  • Mobile monitoring equipment mainly includes dedicated atmospheric environment monitoring vehicles, drones and handheld devices.
  • a large fixed monitoring station is equivalent to an independent laboratory that monitors and analyzes multiple levels of contaminants in the environment through expensive and sophisticated instruments.
  • the large-scale monitoring station is characterized by monitoring the types of pollutants and high precision.
  • large-scale monitoring sites are heavily invested, and the conventional investment is in the order of one million to ten million. It requires high financial support. Therefore, the number of large-scale monitoring stations will not be large and cannot be spread out on a large scale. Therefore, it is only representative and representative. Feasible location for construction.
  • large-scale monitoring sites also have high requirements for site selection. The site needs a large area to accommodate large-scale equipment. The equipment needs temperature and humidity control.
  • a large number of professional and high-quality personnel are required to use instruments, analyze data and maintain the instruments.
  • the data obtained from the super station can only be single-point inference, it is difficult to find other super stations nearby to verify.
  • Small monitoring stations reduce the cost of gridding and batching by integrating low-cost, small-sized sensors.
  • the small monitoring station also features power consumption (powered by solar energy) and easy installation.
  • power consumption powered by solar energy
  • the accuracy and consistency of monitoring data for small stations needs to be improved and sufficient operational support is required.
  • small monitoring stations cover a wide range, they are still fixed monitoring with limited flexibility.
  • the dedicated atmospheric environment monitoring vehicle is a vehicle equipped with a sampling system, a pollutant monitoring instrument, a meteorological parameter observer, a data processing device, and other auxiliary equipment. It is a mobile monitoring station that complements the ground-based fixed air pollution automatic monitoring system.
  • the atmospheric environment monitoring vehicle can be taken to the scene where the pollution accident occurs or the suspect point is sampled and measured, so as to grasp the pollution situation in time, and its use is not limited by time, place and season.
  • Atmospheric environmental monitoring vehicles require full-time driving and require specialists to operate the relevant equipment. It is expensive and cannot be used on a large scale.
  • UAV air pollution monitoring is a way to monitor the atmospheric environment using a drone equipped with miniaturized atmospheric monitoring equipment.
  • the air pollution monitoring of drones can realize the stereoscopic monitoring of air pollution in high-altitude vertical sections, with wide monitoring range and high monitoring efficiency.
  • high airflow may be turbulent, and drone propellers may also cause airflow disturbances, which may affect the monitoring results.
  • UAV pollution monitoring also requires professional operations.
  • the on-line monitoring system mounted on the vehicle changes at any time due to the wind speed and direction of the vehicle during travel, resulting in inaccurate measurement results.
  • This document discloses a taxi dome light with air quality detection function
  • This document discloses an air pollution mobile detection vehicle that includes a pollutant gas sensor.
  • Anti-floss net Prevents the floc in the air from entering the sensor and protecting the sensor.
  • Windproof filter Also known as a windshield, a tubular device used to reduce the effects of changes in outside wind speed on monitoring data.
  • Air inlet The inlet of the air to be sampled, located on the housing of the monitoring device.
  • Exhaust port an outlet for exhausting gas; it may be a dedicated exhaust port, or it may be borrowed from a gap in the device casing, or a cooling hole or a drain hole to perform the function of exhausting.
  • Module bracket A bracket for securing power supplies, sensors, main control boards, and communication boards.
  • Anti-vibration ring A buffer device that ensures that the device remains strong under long-term vibration conditions.
  • Buffer tank a container that acts as a shunting gas and/or gas buffer; the buffer tank has at least one gas inlet and at least one gas outlet; and includes an intake buffer tank and an exhaust buffer tank.
  • Positioning module Provides geographical location information when detecting by GPS, Beidou, GLONASS, 4G and other positioning methods.
  • Transmission module sends the data detected by the detection module, geographical location information and time stamp information to the data center.
  • the detection module of the monitoring device mainly comprises a detection module; the detection module comprises at least one sensor unit.
  • the sensor unit may include a PM 1 sensor, a PM 2.5 sensor, a PM 10 sensor, a PM 100 sensor, a sulfur dioxide sensor, a nitrogen oxide sensor, an ozone sensor, a carbon monoxide sensor, a TOVC sensor, or a VOCs sensor.
  • the detection module can be flexibly matched to the sensor unit according to requirements, such as using one or more sensors, one or more sets of sensors, one or more sensors, and the like.
  • the detection module can operate in an active or passively driven airflow.
  • the detection module 13 of the present invention further includes an active airflow driving device (fan); other active airflow driving modes include an air pump or resistance heating.
  • the detection module can also utilize an external fan or air pump to drive the airflow, such as the detection module 130 of the present invention.
  • the present invention provides an online monitoring device for atmospheric pollutants based on social vehicles, by installing the online monitoring device for atmospheric pollutants on social vehicles, thereby Real-time monitoring of atmospheric pollutants in real time.
  • Socially operated vehicles include city buses, long-distance buses, taxis, mucks, municipal vehicles, official vehicles, networked vehicles, rental vehicles, shared vehicles, and vehicles with automatic driving functions.
  • the pollutants monitoring equipment is installed in the interior space of the taxi dome light, the space at the bottom of the taxi dome, the inside of the taxi trunk, and the taxi chassis for real-time measurement of atmospheric pollutants.
  • the cost of grid monitoring of atmospheric pollutants under the premise of using the same monitoring equipment, the cost of equipment installation, operation and maintenance can be greatly reduced, and the energy consumption and road occupation caused by the purchase of special monitoring vehicles are also reduced. Labor costs.
  • the vehicle In view of the long mileage of taxis and the wide range of driving, it can effectively monitor the real-time distribution of pollutants in urban areas. In addition, the characteristics of the height of the taxi body can monitor the data of pedestrians' high altitude air pollutants. Road monitoring, especially road dust monitoring, has higher value; because the sensor is installed inside or at the bottom of the taxi dome light, it can be waterproof, windproof, high temperature resistant, and reduce the cost while extending the sensor without affecting the aesthetic appearance of the vehicle. Service life.
  • the pollution control provides guidance.
  • it can also extend the monitoring of air pollution sources around the road. For example, it can identify illegal activities such as smuggling of particulate matter by enterprises and illegal driving of vehicles exceeding the standard.
  • the invention puts the online monitoring device for atmospheric pollutants into the interior of the taxi ceiling lamp or the lower part of the roof lamp, and solves the airflow disturbance and the air pressure imbalance generated by the taxi traveling through the structural design, thereby causing the data caused by the sensor to be unstable and not Accurate problem, the invention can continuously, stably and accurately monitor the air pollution situation at the location, solve the influence of humidity on the sensor, and solve the problem of miniaturization of the monitoring device.
  • FIG. 18 is a basic solution of the present invention, where the basic solution includes a positioning module, a detection module, and a transmission module.
  • the detection module is used for detecting the air quality; the positioning module provides the geographical location information at the time of detection through GPS, Beidou, GLONASS, 4G, etc.; the transmission module sends the detected result, location and time information to the data center.
  • Airborne mobile monitoring of atmospheric pollutants can be carried out by applying a basic solution to a socially operated vehicle.
  • main control module is electrically connected with the detection module, the transmission module, and the positioning module respectively, and the positioning module can also be a part integrated on the main control module.
  • the monitoring device can have a housing with an air inlet and an exhaust port.
  • the air inlet and the air outlet may be openings specially designed for the monitoring device, and the heat dissipation holes, drainage holes, slits and other openings in the outer casing may be borrowed.
  • the air inlet and the detection module can be directly connected.
  • An intake buffer tank can also be added between the air inlet and the detection module, and the buffer tank functions to stabilize the air flow.
  • the detection module and the exhaust port can also be directly connected.
  • An exhaust buffer tank can also be added between the detection module and the exhaust port.
  • an anti-floss net at the air inlet and the exhaust port prevents foreign matter from entering the monitoring device and prevents foreign matter from causing damage to the monitoring device.
  • Adding a windproof tube inside the anti-fro net can stabilize the airflow and air pressure, making the measurement module more accurate.
  • the preferred solution includes a device housing 1, an air inlet 2, an air intake buffer tank 12, a detection module 13, a main control module 15, a positioning module 11, an exhaust port 4, and a transmission module 16. .
  • the casing 1 has an air inlet 2 and an exhaust port 4; the air inlet 2, the intake buffer tank 12, the detection module 13, and the exhaust port 4 are sequentially connected to form a closed flow path of the gas; the detecting module 13 is electrically connected to the main control module 15; the main control module 15 and the transmission module 16 are electrically connected; the positioning module 11 is electrically connected to the main control module 15; and the positioning module 11 is also electrically connected to the transmission module 16.
  • the specific process of detection is as follows: the detected gas first flows into the intake buffer tank through the intake port, passes through the intake buffer tank, enters the detection module, passes through the detection module, and finally exits through the exhaust port. After the detection module detects the gas pollutant data, the data is processed by the main control module, and then uploaded to the data center via the transmission module. The data center further processes the data returned by the monitoring device, and then sends the data to the relevant software in the user's hand to realize On-line monitoring of atmospheric pollutants.
  • an exhaust buffer tank is added between the detection module and the exhaust port, and the exhaust gas flow is stabilized by adding an exhaust buffer tank, so that the detection is more accurate.
  • the design of the exhaust buffer tank is such that when the exhausted gas flows through, the narrow narrow space in the inner cavity of the buffer tube will greatly reduce the turbulence of the gas inertia region in the buffer tank, and the gain effect is through the exhaust buffer tank.
  • the airflow maintains a relatively constant value, balancing the pressure difference between the exhaust and the exhaust.
  • Figure 3 is a scheme of a monitoring device applied to a taxi dome light.
  • Figure 3 uses a taxi ceiling housing as the monitoring device housing 1, the detection module 13, the transmission module 16, the positioning module 11 and the intake buffer tank 12 are installed in the taxi ceiling light; the exhaust buffer tank 14 is the inner cavity of the taxi ceiling light Free space. That is, the exhaust buffer tank behind the detection module is removed, and the direct connection between the detection module and the exhaust port is disconnected, so that the exhaust of the detection module is directly discharged into the interior of the ceiling light, and the remaining space inside the taxi dome lamp is used as the exhaust buffer.
  • the area (equivalent to the exhaust buffer tank) simplifies the equipment while also ensuring a larger exhaust buffer space.
  • the detection module is provided with an active airflow driving device (a device with an active driving airflow capability), and the active driving airflow can be implemented by using a fan, a gas pump, a resistance heating, etc., to inhale the atmosphere of the taxi at the position of the taxi overhead light pollutant.
  • an active airflow driving device a device with an active driving airflow capability
  • the active driving airflow can be implemented by using a fan, a gas pump, a resistance heating, etc., to inhale the atmosphere of the taxi at the position of the taxi overhead light pollutant.
  • a further improvement is to add a flow sensor and a flow control valve in front of the intake buffer tank, and stabilize the intake flow through the flow sensor and the flow control valve, so that the data detected by the sensor is more stable and accurate.
  • the flow data can also be used to correct the sensor output data, making the monitoring results more accurate.
  • the air pump can provide a more stable negative pressure and airflow than the fan.
  • the position of the air inlet and the exhaust port of the present invention also have corresponding characteristics.
  • the air inlet and the exhaust port need to be located on both sides of the central axis of the vehicle in the forward direction, and the distance from the central axis. Should be equal, as shown in Figure 9.
  • the design also utilizes the internal remaining space (internal vacant space) of the roof light as the exhaust buffer space (equivalent to the exhaust buffer tank), so that the exhaust is also buffered.
  • the airflow is stabilized and the accuracy of the sensor is improved.
  • the program installs the monitoring equipment inside or below the taxi dome light, concealing the monitoring equipment, so that the monitored sewage companies and individuals cannot know that nearby equipment is testing the air pollutants around them, which can improve the objectivity of monitoring. Concealed installation also makes the device more anti-theft.
  • the entire gas path including the photosensitive element will accumulate dust continuously; the accumulation of dust affects the effective operation of the sensor, and the interference data detection will also affect the smoothness of the gas path.
  • Adding a screen at the inlet of the gas path of the testing device is one of the conventional means of preventing the entry of flocs.
  • the flocculation accumulates on the filter screen, which also slows the entry of gas into the detection equipment.
  • the present invention discloses a backflushing fan installed between an intake port and an intake buffer tank, which is capable of removing dust and foreign matter on the intake air passage, including flocs on the inlet screen.
  • the present invention also discloses a backflushing fan installed inside the detecting module, which is capable of removing dust and foreign matter on the air path inside the sensor, as well as dust and foreign matter accumulated on the internal components.
  • Windproof pipe the wind pipe can reduce the problem of inaccurate data caused by airflow disturbance and air pressure imbalance.
  • the wind shield can be a straight tube or a square tubular structure.
  • the air pollution detecting device includes a main control module and a detecting module; the detecting module uses at least four sub sensor units to form a sensor module; when the main control module finds One of the sub-sensor units has a suspected abnormality, and after determining that the suspected abnormal sub-sensor is an abnormal sub-sensor, the abnormal sub-sensor is isolated, the abnormal sub-sensor is classified into the isolation area, and the multi-core sensor module continues to be normal after being degraded. jobs.
  • the present application further discloses another air pollution detecting device, which comprises a main control module and a detecting module; the detecting module comprises at least two homogeneous sub sensor units to form a sensor module; the sub sensor unit works At normal operating frequency.
  • the detection module further comprises at least one sub-sensor unit similar to the sensor module to form a low-frequency calibration module; the sub-sensor unit in the low-frequency calibration module works far below the operating frequency of the sensor module. Therefore, the low frequency calibration module is also called a low frequency group.
  • sensor modules are also referred to as high frequency groups.
  • the sensor module operates 10 times or more the frequency of the low frequency calibration module.
  • the ratio of the operating frequency of the high frequency group and the low frequency group is called the high frequency low frequency ratio and can be selected as: 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 , 9:1, 10:1, 15:1, 20:1.
  • the operating frequency of the low frequency group can be consistent with the rhythm of the abnormal judgment. That is to say, when it is necessary to judge whether there is a sub-sensor abnormality in the sensor module, the low-frequency group performs the detection work.
  • the low frequency group detection data is used as a reference to calibrate the high frequency group detection data, and the calibration coefficient can use the detection data of the high frequency group sensor.
  • the ratio of the average value to the average value of the low frequency group detection data is obtained.
  • the data weight of the low frequency group can be increased to make a more reliable judgment.
  • a simple solution is that all low frequency group data participate in suspected abnormality judgments with twice the weight.
  • the prior application PCT/IB2018/05531 also discloses a method for identifying the operational status of a sub-sensor and isolating and recovering the sub-sensor.
  • the sensor module obtains a set of detection data at a time, and the main control module filters out the data of the suspected abnormality from the data of the group, and then determines whether the corresponding sub-sensor satisfies the isolation condition. After determining that the sub-sensor is an abnormal sub-sensor, the abnormal sub-sensor is classified into the isolation area; after the sub-sensor that is suspected of being abnormal does not satisfy the isolation condition, the sub-sensor continues to work normally. It is judged whether the sub-sensor entering the isolation zone can self-heal.
  • the self-healing sub-sensor is subjected to frequency-down operation, but the data output by the sub-sensor does not participate in the calculation of the output data of the main control module.
  • the main control module detects the data of the output, determines whether it has reached the recovery condition, and transfers the sub-sensor that has reached the recovery condition away from the isolation area, resumes the work, and outputs data to participate in the sensor module data or main control. Data calculation; for the abnormal sub-sensor that does not meet the recovery condition, it is judged whether it can be self-healing.
  • the average value of the remaining sub-sensor output data is used as the output result of the sensor module, and the sensor module can continue to be used normally.
  • the prior application PCT/IB2018/05531 also discloses the working mode of the sensor module rotation, and in the working sub-sensor, one or more of the sub-sensors can be selected to solve the problem of the performance degradation caused by the sensor fatigue.
  • the internal state will change. For example, the internal temperature will increase with the increase of working time.
  • the mechanical components of the sampling device will have metal fatigue. Therefore, proper rest after working for a period of time will restore the sensor. Good working condition.
  • the sensor After the sensor starts working for a period of time, it enters a stable working period, and after a long period of continuous work, the fatigue rises.
  • the fatigue stage of the sensor select those sub-sensors that enter the fatigue state, put them into a rest state, and try to make the sensor unit work during stable working hours.
  • the wheel rest can also keep the light decay of the same group of sensors substantially synchronized.
  • the light-scattering particle sensor using the semiconductor laser as the light-emitting element needs to consider the light-fading synchronization problem between the sensors when the plurality of sub-sensors are included.
  • the effect on the data is relatively small when the light decay is light, so that there is some difference in the data of each sensor, but according to the difference of these lightness, it is impossible to determine whether the sub-sensor is faulty. , will still participate in the calculation of the sensor's final test data, resulting in deviations in the final test data.
  • one or more of the sub-sensors are selected for the wheel-off, that is, the fatigue problem of the sensor is solved by the active degrading operation.
  • the wheel rest can also keep the light decay of the same group of laser sensors substantially synchronized.
  • Sub-sensors screened by different rotation conditions may be inconsistent; in practical applications, multiple rotation conditions may be given weights or priorities to quantitatively determine which sub-sensors to enter the rotation.
  • each sensor should get a rotation before it enters the fatigue state.
  • the average stable working time of the sub-sensor unit is T; then, for the modules of the N sensor units, when the sequential rotation strategy is selected, that is, the sub-sensors in the sensor module are sequentially rotated, and the interval between the two rotations should not be Greater than T/N to ensure that each sensor can enter the shift in time.
  • T 8 hours, for the sensor module composed of 4 sensor units, adopting the sequential wheel-off strategy, then every 2 hours, it can ensure that each sensor can enter the wheel rest before entering the fatigue state.
  • a status indicator is installed on the sub-sensor unit.
  • the status indicator color of the corresponding position changes to a warning color;
  • the status indicator corresponding to the sub-sensor of the normal working state is continuous green.
  • the status indicator corresponding to the sub-sensor entering the rotation state is alternately bright green.
  • FIG. 1 is a schematic diagram of a preferred scheme and related system components
  • FIG. 2 is a schematic view showing a preferred embodiment of adding an exhaust buffer tank
  • Figure 3 is a schematic diagram of a monitoring dome lamp for simplifying the exhaust buffer tank and adding a gas flow stabilizing device
  • Figure 4 is a schematic diagram of a monitoring ceiling light for increasing the flow sensor and the flow control valve
  • Figure 5 is a schematic view of the ceiling light of the rear of the fan
  • Figure 6 is a schematic view showing the structure of a taxi top light in the form of an air intake pump
  • Figure 7 is a schematic diagram of an external air pump module
  • Figure 8 is a schematic diagram of a modified external air pump module with a flow regulating valve added
  • Figure 9 is a schematic view showing the arrangement of the air inlet and the exhaust port
  • Figure 10 is a schematic diagram of a device module bracket
  • Figure 11 is a schematic view of a buffer tank in which a portion of the can body is made of a flexible material
  • Figure 12 is a schematic view of a buffer tank
  • Figure 13 is a schematic view showing the structure of a semiconductor refrigerating sheet which heats the intake air while cooling the air pump;
  • Figure 14 is a schematic view of the anti-floss net and the windproof pipe (cross-sectional view);
  • FIG. 15 Schematic diagram of the taxi ceiling lamp housing
  • Figure 16 is a schematic view showing the internal structure of the ceiling lamp of the monitoring device.
  • Figure 17 is a schematic view of coaxial intake and exhaust
  • Figure 18 is a schematic diagram of the basic scheme
  • Embodiment 1 is a preferred scheme based on an online monitoring device for atmospheric pollutants. As shown in FIG. 1 , the solution includes an air inlet, an air intake buffer tank, a detection module, an exhaust port, a main control module, and a transmission module.
  • the intake port is connected to the intake port of the intake buffer tank, and the exhaust port of the intake buffer tank is connected to the intake port of the detection module, and the exhaust port of the detection module is connected with the exhaust port.
  • the intake buffer tank can function to stabilize the air flow, and the intake buffer tank can act as a gas distribution device according to the number of sensors or sensor groups, and divide the gas into multiple air streams, that is, the air flow distribution outlet of the air intake buffer tank. The number matches the number of sensor units in the detection module.
  • the flow direction of the detected gas is that the detected gas enters the monitoring device through the air inlet, flows through the air intake buffer tank, the detection module, and the exhaust port to finally discharge the monitoring device.
  • the detection of atmospheric pollutant concentration depends on the detection module.
  • the sensor unit of the detection module may include PM 1 sensor, PM 2.5 sensor, PM 10 sensor, PM 100 sensor, sulfur dioxide sensor, nitrogen oxide sensor, ozone sensor, carbon monoxide sensor, TVOC sensor. Or VOCs sensors.
  • the use of the detection module can be flexibly matched according to requirements, such as using one or more sensors, one or more sets of sensors (sensor modules), one or more sensors, and the like.
  • a specific sensor module can be a set of 1 PM 2.5 sensors. Another specific sensor module can be a set of four PM 2.5 sensors. Another specific sensor module can be a set of three PM 2.5 sensors and one PM 100 sensor. Another specific sensor module can be a set of four PM 2.5 sensors and a sulfur dioxide sensor.
  • the particle sensor can also be of the multi-channel type, ie a particle sensor can simultaneously measure multiple PM values, such as PM 2.5 and PM 10 .
  • a sensor module using a multi-channel particulate sensor can be four multi-channel particulate sensors (which can measure both PM 2.5 and PM 10 types).
  • Another type of sensor module using a multi-channel sensor can be three.
  • the main control module and the detection module and the transmission module on the monitoring device are electrically connected, and the electrical connection can be both power supply and data transmission.
  • the main control module exchanges data with the detection module and the transmission module through the data interface.
  • the detection module sends the detected data to the main control module, and after the main control module performs further calculation, it sends the data to the transmission module, and the transmission module sends the data to the data center.
  • the transmission module can also receive an instruction sent by the data center, and after transmitting the instruction to the main control module, the main control module can also adjust the operation of the detection module.
  • the main control module has a data storage and local data transmission interface.
  • the main control module can also have a positioning function or a data interface with the positioning device, and uses a positioning technology such as GPS or Beidou to record the position of the vehicle in real time.
  • the main control module is connected with a DC power supply such as 12V, 5V, 24V, 36V or 48V of the rental vehicle, and the main control module supplies power to the detection module and the transmission module.
  • a DC power supply such as 12V, 5V, 24V, 36V or 48V of the rental vehicle
  • the online monitoring device for atmospheric pollutants of the first embodiment can also be placed in a specially designed casing, and then the outer casing of the online monitoring device for atmospheric pollutants can be externally attached to the lower part of the taxi lamp or other parts.
  • FIG. 2 is a variant of the basic scheme.
  • An exhaust buffer tank is added between the detection module and the exhaust port for stabilizing the airflow of the exhaust portion, and the detection accuracy of the detection module is improved.
  • Embodiment 2 is an improvement of the basic scheme, as shown in FIG. 3, the scheme includes an air inlet, an exhaust port, an anti-floss net, a windproof pipe, an air intake buffer tank, a detection module, a positioning module, and a transmission module, wherein the detection The module contains an active airflow drive. These devices are installed inside the taxi dome light.
  • the second embodiment utilizes the remaining space inside the taxi ceiling light (the inner space vacant space) as the exhaust buffer area, and achieves the same function as the exhaust buffer tank.
  • the anti-flicking net and the anti-wind pipe are installed on the air inlet and the exhaust port for stabilizing the air flow.
  • the intake port is connected with the intake port of the intake buffer tank, and the exhaust port of the intake buffer tank is connected to the intake port of the detection module, and the exhaust port of the detection module is not connected with other structures, and the exhaust of the sensor Directly discharged into the taxi ceiling light, the gas in the ceiling light is discharged through the exhaust port to the taxi ceiling light.
  • the flow direction of the detected gas is that the detected gas enters the monitoring device through the air inlet, and the detected gas flows through the air intake buffer tank, the detection module, the inner space of the taxi dome lamp, and the exhaust port finally discharges the monitoring device.
  • the remaining space of the closed cavity inside the taxi dome lamp is used as a buffer area for detecting the exhaust of the module, which simplifies the exhaust buffer tank and also functions to stabilize the airflow and improve the accuracy of the sensor.
  • the gas detected by the detection module is finally buffered by the taxi ceiling cavity and then discharged through the exhaust port to discharge the taxi ceiling light.
  • Embodiment 3 is an improvement of the second embodiment.
  • the solution includes an air inlet, an exhaust port, an anti-floss net, a windproof pipe, an air intake buffer tank, a detection module, an external fan, and a main control. Module, positioning module, transmission module. These devices are installed inside the taxi dome light.
  • the detection module of the third embodiment does not include an air flow driving device.
  • the device for driving the airflow is externally used, such as an external fan, and an external fan is placed behind the detection module.
  • the anti-frozen net and the anti-wind pipe are installed on the air inlet and the exhaust port, the air inlet is connected with the air inlet of the air intake buffer tank, and the air outlet of the air intake buffer tank is connected with the air inlet of the detection module.
  • the exhaust port of the detection module is connected to the air inlet of the external fan, and the exhaust port of the external fan is not connected to other structures.
  • the flow direction of the detected gas is that the detected gas enters the monitoring device through the air inlet, and then flows through the air intake buffer tank, the detection module, and the external fan, and the gas discharged by the external fan is finally buffered by the taxi ceiling light body.
  • the taxi overhead light is discharged through the exhaust port.
  • Embodiment 4 is an improvement of the second embodiment.
  • the fourth embodiment adds a flow sensor and a flow controller after the air inlet, such as the 17-flow sensor and the 18-flow control valve in FIGS. 4 and 5.
  • the flow direction of the detected gas in FIG. 4 is that the detected gas enters the monitoring device through the air inlet, and the detected gas first flows through the flow sensor and the flow controller, and then enters the intake buffer tank and the detection module in turn; and is detected by the detection module. The gas is finally buffered by the taxi ceiling cavity and then discharged through the exhaust port to discharge the taxi ceiling light.
  • the flow sensor and flow controller are connected to the main control module through a data interface. Adding flow sensors and flow controllers can make sensor output data more accurate.
  • the flow sensor transmits the monitored gas flow information to the main control module through the data connection, and the main control module adjusts the flow rate of the intake end in real time according to the flow value measured by the flow monitoring device, so that the gas flow entering the sensor is more stable, and the sensor is improved. In the end, more accurate test data will be obtained.
  • Flow control can also be achieved by the main control module adjusting the speed of the fan or the flow of the air pump.
  • the intake air volume data monitored by the flow monitoring device can also be used for calibration of sensor detection data.
  • the change value of the intake air flow of the flow monitoring device is fed back to the main control module through the data connection in real time, and the main control module can correct the sensor data according to the written revision coefficient (such as the ratio of the actual value to the standard intake air flow).
  • the intake port and the exhaust port position of the present invention also have corresponding characteristics.
  • the intake port and the exhaust port need to be arranged on both sides of the central axis of the vehicle forward direction, as shown in FIG. .
  • the distances L 1 and L 2 of the intake port and the exhaust port from the central axis should be equal.
  • the air inlet and exhaust port are available in aluminum alloy, abs, nylon, etc.
  • the air inlet and exhaust port devices are fixed by the anti-vibration ring and the bottom lamp housing of the taxi, and the anti-vibration ring clamps the air inlet and the exhaust port with the bottom cover of the taxi dome by screws.
  • the air inlet and exhaust ports are provided with airflow protection devices to reduce the problem of inaccurate data caused by airflow disturbance and air pressure imbalance.
  • the airflow protection device of the air inlet and the exhaust port comprises an anti-floss net and a windproof tube.
  • the anti-floss net of FIG. 14 is a cylindrical anti-floss net.
  • the anti-fat filter is fixed by the thread (locking, dispensing, clamping) structure and the air inlet and the exhaust port, and the shape of the anti-froat filter can adopt a hemispherical shape, a cylindrical shape, a rectangular parallelepiped shape, a circular plane, a square plane, and the like.
  • the material of the anti-fat filter may be iron, abs, copper, nylon, fiber, stainless steel or the like.
  • the anti-flicking device is composed of a filter mesh and a base (sealing ring).
  • the anti-froat device is internally provided with a windproof pipe (wind filter), which can reduce the problem of inaccurate data caused by airflow disturbance and air pressure imbalance.
  • the windproof pipe can be a straight pipe or a square tubular structure.
  • the structure 111 in Fig. 14 is a windproof filter in the form of a straight pipe, and the material is aluminum alloy, abs or nylon.
  • the first method is: internal or external threading, fixed to the anti-flicker base, sampling head or exhaust port by thread.
  • Method 2 Press the anti-floss net at the same time by pressing, and press the windproof filter element on the air inlet or exhaust port.
  • Embodiment 8 is another intake and exhaust mode in which the intake air and the exhaust gas use one position.
  • This intake and exhaust method uses a coaxial structure, which may be square or circular. As shown in Fig. 17, a circular coaxial intake and exhaust port, a circular outer ring 201 area for exhaust, and an inner ring 202 area for intake. The intake port and the exhaust port together use a hole in the bottom of the roof of the taxi.
  • Embodiment 9 is an improvement of the first embodiment, which can reduce the problem of inaccurate data caused by airflow disturbance and air pressure imbalance.
  • the intake buffer tank, the detection module, the external air pump module, the main control module, and the transmission module are installed inside the taxi ceiling lamp; the air inlet, the exhaust port, and the anti-floss net are located on the taxi ceiling lamp housing.
  • the steady airflow can improve the accuracy of the sensor.
  • the air intake of the air pump can make the flow more stable.
  • the fan responsible for the intake air is changed to the external air pump module, and the exhaust buffer tank is removed.
  • the airflow passes through the air inlet, the air intake buffer tank, the detection module, and the external air pump module in sequence, and finally the taxi ceiling light is discharged.
  • the overhead light inlet of the external air pump device uses a anti-fro net, but the anti-wind tube may not be used; the same exhaust port uses a anti-fro net, but the anti-wind tube may not be used.
  • the external air pump module is mainly composed of a filter, an air pump and a silencer, as shown in FIG.
  • the improved version of the external air pump module consists of a filter, air pump flow control valve, air pump and silencer, as shown in Figure 8.
  • the online monitoring device for atmospheric pollutants of Embodiment 9 can also be placed in a specially designed casing, and the casing containing the online monitoring device for atmospheric pollutants can be externally attached to the lower part of the taxi dome lamp or other parts.
  • the intake buffer tank can make the airflow more stable and reduce the disturbance interference, as shown in Figure 11 and Figure 12.
  • the intake buffer tank can be used as an air distribution device, and the intake buffer tank sets the number of outlets according to the number of sensors.
  • Figures 11 and 12 show the form of an intake buffer tank in one and four outlets.
  • 11 is an air intake buffer tank for the air pump; in FIG. 11, the material of a portion 121 of the intake buffer tank body may be a flexible material, which may further reduce the fluctuation of the air intake of the air pump.
  • the buffer tank material may be aluminum alloy, plastic, nylon, or resin, and the processing technology may be in the form of machining, injection molding or casting depending on the material and structure.
  • a heating device is disposed between the monitoring device inlet and the sensor gas inlet for dehumidification, and the heating device may be a PTC thermistor, a resistance wire, a flexible heating sheet, and a semiconductor refrigeration sheet.
  • a humidity detecting module may be disposed between the air inlet and the exhaust port. When the humidity is greater than the starting set value, the system turns on the heating device; when the humidity is less than the set value, the heating device is turned off.
  • the heating device has a data and power connection with the main control module, and the heating module is controlled by the main control module.
  • Figure 13 is a modified version of a heating dehumidification apparatus using a semiconductor refrigerating sheet, the hot end of the semiconductor refrigerating sheet is used for heating gas dehumidification, and the cold end is connected to the air pump motor. During operation, the hot end heats the intake air for dehumidification, and the cold end cools the air pump motor.
  • the monitoring device is equipped with a backflush function to achieve a cleaning function to improve the accuracy and stability of the data.
  • the backflush fan is connected to the main control module, and the main control module controls the operation of the backflushing fan.
  • Method 1 Install a backflush fan between the buffer tank and the air inlet, pause the sensor at regular intervals (such as 24h, 3d, 7d, 15d), and turn on the backflush fan, the wind direction points to the air inlet, clear Dust and foreign matter;
  • Method 2 Install the backflush fan inside the sensor, pause the sensor at regular intervals (such as 24h, 3d, 7d, 15d), and turn on the backflush fan to directly clean the dust and foreign matter inside the sensor.
  • the air pollutant online monitoring equipment uses the module bracket, as shown in 104 in Fig. 10, the module bracket is fixed by the original screw fastener of the taxi top light, and the fixed module bracket does not need to perform additional modifications such as drilling on the ceiling light.
  • the power supply, the detection module, the main control module and the transmission module are fixed on the module bracket, which facilitates the disassembly and maintenance of the detection module, the main control module and the transmission module.
  • the air pollutant online monitoring device can also add a video capture module for recording the actual situation of the road.
  • the video capture module can be connected to the main control module to control the work of the video capture module through the main control module; the video capture module can also operate independently, and the data center directly controls the work of the video capture module through wireless.
  • An online monitoring device for atmospheric pollutants with its own casing can also be installed in the taxi ceiling light.
  • the intake and exhaust ports on the monitoring device housing extend through the taxi dome housing.
  • the anti-floss net and the wind shield are mounted on the air inlet and exhaust ports that extend to the roof of the taxi dome.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于大气污染物监测设备,属于环境监测技术领域,主要设备包括监测模块(13)、主控模块(15)、传输模块(16)、出租车顶灯。监测设备利用出租车顶灯电力供电,监测模块(13)包括PM 1传感器、PM 2.5传感器、PM 10传感器、PM 100传感器、氮氧化物传感器、臭氧传感器、一氧化碳传感器、二氧化硫传感器、TVOC传感器和VOCs传感器等。装置利用出租车车辆搭载大气污染物监测设备进行实时测量,从而降低网格化设备的安装成本,减少了维护费用,提高了数据的准确性。

Description

一种抗风扰的大气污染物监测设备 技术领域
本发明涉及一种车载环境监测设备,尤其指一种安装于社会运营车辆上的在线大气环境监测设备,属于环境监测技术领域。
背景技术
经济快速发展的同时也带来了严峻的环境问题,我国大部分城市空气污染问题凸显,空气污染严重影响了城市生态景观,而且对人们的身体健康造成了严重的威胁。利用科学的环境监测技术对环境进行实时地监督和检测,可以为相关人员提供寻找解决环境问题行之有效措施的依据。大气环境监测技术可以实现空气污染现状的摸底、排查和全面分析,为治理和管控空气污染提供关键的数据和依据支持,以此达到环境保护的目的。
大气环境监测是测定大气中污染物的种类及其浓度、观察其时空分布和变化规律的过程,主要监测的污染物为大气中的二氧化硫、氮氧化物、臭氧、一氧化碳、PM 1(空气动力学粒径小于1微米的粒子)、PM 2.5(空气动力学粒径小于2.5微米的粒子)、PM 10(空气动力学粒径小于10微米的粒子)、PM 100(空气动力学粒径小于100微米的粒子)。大气环境监测系统可以对监测的数据进行收集和处理,并及时准确地反映区域环境空气质量状况及变化规律。环保部门可以利用这些数据进行环境决策、环境管理、污染防治;民众可以根据环境数据采取个人防护,合理安排生活。
现在的大气环境监测设备主要有固定式监测站和移动式监测设备。目前的固定式监测站主要分为大型固定监测站点和小型站点。移动式监测设备主要有专用大气环境监测车、无人机以及手持设备等。
大型固定监测站相当于一个独立的实验室,通过昂贵精密的仪器监测和分析环境中多种污染物水平。大型监测站点的特点是监测污染物种类多,精度高。但是大型监测站点投入较大,常规投入在百万至千万级别,需要高额的财政支持,因此大型监测站点的数量不会很多,无法大规模铺开,因此只能选择比较有代表性和可行的位置进行建设。同时大型监测站点对选址也有很高的要求,站点需要有大量面积容纳大型设备,设备需要温度湿度控制,同时需要大量专业高素质人员使用仪器、分析数据和对仪器的维护。此外,从超级站获得的数据只能做单点推论,很难再找邻近的其他超级站来验证。
小型监测站点通过整合低成本、小型化传感器的方法,降低成本进行网格化、批量化的布点。小型监测站点还具有用电方便(可采用太阳能供电)、易于安装等特点。但小型站 监测数据的准确性和一致性有待提高,并且需要充分的运营保障。虽然小型监测站覆盖范围较广,但仍然属于固定式监测,灵活性有限。
专用大气环境监测车是装备有采样系统、污染物监测仪器、气象参数观测仪、数据处理装置及其他辅助设备的汽车。它是一种流动监测站,是地面固定空气污染自动监测系统的一种补充。大气环境监测车可以随时开到发生污染事故的现场或可疑点采样测定,以便及时掌握污染情况,其使用不受时间、地点和季节的限制。大气环境监测车需要有专职人员驾驶,并且需要专业人员操作相关仪器。其价格较为昂贵,无法大规模使用。
无人机大气污染监测是一种利用搭载小型化大气监测设备的无人机对大气环境监测的方式。无人机大气污染监测可以实现对高空垂直断面大气污染情况进行立体监测,监测范围广,监测效率高。但是高空中气流有可能紊乱,无人机螺旋桨也可能带来气流扰动,对监测结果可能造成影响。同时目前无人机的续航能力有一定问题,对连续监测也有一定阻碍。无人机污染监测也需要专业人员操作。
现有的监测方式中,比如大型站点、专用移动监测车对颗粒物的测量大多采用称重法、微振荡天平法、β射线法;对VOCs检测使用GC-FID(气相色谱-火焰离子检测)方式。这些精密检测仪器大多体积很大,且十分昂贵,不便于广泛布点监测。其他污染物如二氧化硫、氮氧化物、臭氧和一氧化碳的检测也具有类似的问题。类似的专用移动监测车到达指定位置后需要停车检测,相当于一个固定站点,无法实时移动进行监测。
人口密度较大的道路和地区,往往车流尤其是出租车也较为密集,对这样的地点需要密集、着重监测。
装载于车辆上的在线监测系统由于车辆在行进中风速风向会随时变化,从而导致测量结果不准确。
【现有技术1】:CN206254896U
该文件公开了一种带空气质量检测功能的出租车顶灯;
【现有技术2】:CN205193028U
该文件公开了一种空气污染移动检测车,其包含了污染物气体传感器。
发明内容
本文中出现的专业术语
防絮网:防止空气中的絮状物进入传感器,对传感器起到保护作用。
防风滤芯:也叫防风管,用于减小外界风速变化对监测数据的影响的管状装置。
进气口:待采样空气的入口,位于监测设备的壳体上。
排气口:用于排出气体的出口;可以是专用的排气口,也可以借用设备外壳上的缝隙,或者散热孔、排水孔等实现排气的功能。
模块支架:用于固定电源、传感器、主控板和通讯板的支架。
防震环:保证设备在长时间震动条件下保持牢固的缓冲装置。
缓冲罐:起到分流气体和/或气体缓冲作用的容器;缓冲罐上有至少一个气体入口和至少一个气体出口;包括进气缓冲罐和排气缓冲罐。
定位模块:通过GPS、北斗、格洛纳斯、4G等定位方式提供检测时所在的地理位置信息。
传输模块:将检测模块检测的数据、地理位置信息和时间戳信息发送至数据中心。
检测模块:监测设备的检测模块主要包含检测模块;检测模块包含至少一个传感器单元。传感器单元可以包括PM 1传感器、PM 2.5传感器、PM 10传感器、PM 100传感器、二氧化硫传感器、氮氧化物传感器、臭氧传感器、一氧化碳传感器、TOVC传感器或VOCs传感器。检测模块可以根据需求灵活搭配传感器单元,如采用一个或多个传感器,一组或者多组传感器,一种或者多种传感器等。检测模块可以采用主动驱动或被动驱动气流的方式工作。作为示例,本发明中的检测模块13还包含主动气流驱动装置(风扇);其他主动气流驱动方式包括气泵或电阻加热。检测模块也可以利用外部的风扇或气泵来驱动气流,如本发明中的检测模块130。
针对背景技术中监测方式的不足以及大气环境污染监测的特点,本发明提供了一种基于社会车辆的大气污染物在线监测设备,通过将该种大气污染物在线监测设备安装于社会车辆上,从而实现实时对大气污染物的实时监测。社会运营车辆包括市内公交车、长途车、出租车、渣土车、市政车辆、公务车辆、网约车、租赁车辆、共享汽车,以及具有自动驾驶功能的车辆。
特别结合出租车日行驶里程长与行驶范围广的特点,在出租车顶灯内部空间、出租车顶灯底部的空间、出租车后备箱内部、出租车底盘下安装污染物监测设备进行大气污染物实时测量,进而降低大气污染物网格化监测成本;在采用相同监测设备的前提下,可以大幅减少设备安装、运营维护的费用,同时还减少了购置特种监测车辆所带来的能耗、道路占用和人力成本。
鉴于出租车日行驶里程长与行驶范围广的特点可以有效地监测市区各地实时的污染物 分布情况,加之出租车车身高度的特点能够监测行人呼吸高度大气污染物的数据信息,所测数据对于道路监测尤其是道路扬尘监测有更高价值;又由于传感器安装在出租车顶灯内部或底部,在不影响车辆美观的前提下,可以做到防水、防风、防高温,降低成本的同时延长传感器的使用寿命。
利用社会运营车辆,加装多种传感器设备,得到全面的大气污染数据,可以实现低能耗大气污染物监测,所生成的监测云图与大数据分析对城市的发展规划起到重要作用,并对大气污染管控提供指导,除对道路监测外,还可以延伸监测道路周边大气污染源,如可以识别出企业颗粒物污染偷排、超标排放车辆违法上路等不法行为。
本发明将大气污染物在线监测设备放入出租车顶灯内部或车顶灯下部,通过结构设计,解决了由于出租车行进所产生的气流扰动、气压不平衡,从而给传感器造成的数据不稳定、不准确的问题,本发明可以持续、稳定、准确地监测所处位置的大气污染情况,同时解决湿度对传感器的影响,以及解决了监测设备小型化的问题。
图18为本发明的基础方案,基础方案包括定位模块、检测模块、传输模块。检测模块用于检测空气质量;定位模块通过GPS、北斗、格洛纳斯、4G等定位方式提供检测时所在的地理位置信息;传输模块将检测的结果、位置和时间信息发送至数据中心。在社会运营车辆上应用基础方案就可以对大气污染物进行走航式的移动监测。
在此基础方案上增加主控模块可以实现更多功能,主控模块分别与检测模块、传输模块、定位模块之间电连接,定位模块还可以是集成在主控模块上的一部分。
监测设备可以具有一个壳体,壳体上设有进气口和排气口。进气口和排气口可以是专门为监测设备开设的开口,也可以借用外壳上散热孔、排水孔、缝隙和其他开口。
为了使得检测模块直接检测到外部空气,进气口和检测模块之间可以直接连接。在进气口和检测模块之间还可以增加进气缓冲罐,缓冲罐的作用是稳定气流。同样的,检测模块和排气口之间也可以直接连接。在检测模块和排气口之间也还可以增加排气缓冲罐。
在进气口和排气口增加防絮网可以防止异物进入监测设备,防止异物对监测设备造成损坏。在防絮网内部再增加防风管,可以起到稳定气流和气压的作用,使得检测模块测量的更精确。
图1为本发明的优选方案,优选方案的包括设备壳体1、进气口2、进气缓冲罐12、检测模块13、主控模块15、定位模块11、排气口4和传输模块16。所述壳体1上有进气口2和排气口4;进气口2、进气缓冲罐12、检测模块13、排气口4之间依次连接,形成气体的密闭流动通路;检测模块13和主控模块15之间电连接;主控模块15和传输模块16之间电连接;定位模块11与主控模块15电连接;定位模块11还可以与传输模块16之间电连接。检测的具体流程为:被检测的气体先通过进气口流入进气缓冲罐, 经过进气缓冲罐之后进入检测模块,通过检测模块后最后通过排气口排出。检测模块检测得到气体污染物数据后,数据经由主控模块处理,再经由传输模块上传至数据中心,数据中心对监测设备回传的数据进行进一步处理后,发送至用户手中的相关软件上,实现大气污染物的在线监测。
图2在优选方案上的检测模块与排气口之间增加了排气缓冲罐,通过增加排气缓冲罐稳定排气气流,使得检测更精确。
排气缓冲罐的作用
1)气体惯性由排气气流因素影响,排气的气流和风压将会在遇到阻力时逐渐降低,直至都降为0;当排出的气体流速在不断变化,导致其气体惯性随之改变,不断变化的气流、风压无法维持排气口处与外界的平衡状态,会产生气流倒吸或加快排气现象;
2)排气缓冲罐的设计,使排出的气体流经时,通过缓冲管内腔体内的多路狭窄空间,将大幅降低缓冲罐内气体惯性区的湍流,增益效果为流经排气缓冲罐的气流会维持一个相对恒定的数值,平衡排气口出内外压差。
图3为应用于出租车顶灯的监测设备的方案。图3利用出租车顶灯外壳作为监测设备壳体1,检测模块13、传输模块16、定位模块11和进气缓冲罐12安装在出租车顶灯内;排气缓冲罐14为出租车顶灯的内腔空余空间。也就是去掉了检测模块后面的排气缓冲罐,断开检测模块与排气口的直接连接,使检测模块的排气直接先排入顶灯内部,利用出租车顶灯内部的剩余空间作为排气缓冲区域(相当于排气缓冲罐),简化了设备的同时还可以保证更大的排气缓冲空间。
检测模块内设有主动气流驱动装置(具备主动驱动气流能力的装置),主动驱动气流的实现方式可以采用风扇、气泵、电阻加热等,将出租车所处位置的大气吸入出租车顶灯大气污染物监测装置内。进一步的改进是在进气缓冲罐前增设流量传感器和流量控制阀,通过流量传感器和流量控制阀稳定进气流量,可以使得传感器检测的数据更稳定准确。同时流量数据还可以用于传感器输出数据的修正,使得监测结果更加准确。气泵可以比风扇提供更稳定的负压和气流流量。
本发明的进气口和排气口位置也有相应特点,在规则对称的出租车顶灯底壳上,进气口和排气口需要位于车辆前进方向中轴线的两侧,且距离中轴线的距离应当相等,如图9所示。
车顶灯作为一个密闭的腔体,本设计还利用了车顶灯这样的内部的剩余空间(内腔空余空间)作为排气缓冲空间(相当于排气缓冲罐),使得排气也有了缓冲,进一步稳定了气流,提高了传感器的准确性。
本方案将监测设备安装于出租车顶灯内部或者下部,将监测设备隐蔽起来,使得被监测 的排污企业和个人无法知道附近有设备正在对他们周边进行大气污染物的检测,可以提高监测的客观性,隐蔽安装也使设备具有更好的防盗性。
风扇反吹的作用
传感器在工作过程中,整个气路包括感光元件,都会不断堆积灰尘;灰尘的堆积影响传感器的有效工作,干扰数据检测,也会影响气路的通畅。
在检测设备气路入口处增加滤网是常规的手段之一,可以阻止絮状物的进入。但是絮状物堆积在滤网上,也会减缓气体进入检测设备。
本发明公开了安装在进气口和进气缓冲罐之间的反吹风扇,该风扇能够清除进气气路上的灰尘和异物,包括进气口滤网上的絮状物。
本发明还公开了安装在检测模块内部的反吹风扇,该风扇能够清除传感器内部气路上的灰尘和异物,以及堆积在内部元件上的灰尘和异物。
防风管的作用
防风管(防风滤芯),防风管可以减少气流扰动、气压不平衡从而给传感器造成的数据不准确的问题。防风管可以是直通圆管或者方管状结构。
高低频传感器
在先申请PCT/IB2018/05531中公开了大气污染检测设备,所述大气污染检测设备包含主控模块和检测模块;所述检测模块采用至少四个子传感器单元组成传感器模组;当主控模块发现其中一个子传感器单元出现疑似异常,并判断所述疑似异常子传感器为异常子传感器后,对所述异常子传感器进行隔离,所述异常子传感器归入隔离区,多核传感器模组降级后继续正常工作。
本申请进一步公开了另一种大气污染检测设备,所述大气污染检测设备包含主控模块和检测模块;所述检测模块包含至少两个同类子传感器单元组成传感器模组;所述子传感器单元工作在正常的工作频率。所述检测模块还包含至少一个与传感器模组同类的子传感器单元组成低频校准模组;低频校准模组内的子传感器单元工作在远低于传感器模组的工作频率。因此低频校准模组也称之为低频组。作为对照,传感器模组也称之为高频组。
通常,传感器模组的工作频率是低频校准模组的10倍或以上。高频组和低频组的工作频率的比率,称为高频低频比,可以选择为:2:1,3:1,4:1,5:1,6:1,7:1,8:1,9:1,10:1,15:1,20:1。
低频组的工作频率可以与异常判断的节奏保持一致。也就是说,当需要对传感器模组中是否存在子传感器异常现象进行判断时,低频组才进行检测工作。
由于激光功率衰减在激光传感器的工作寿命内的大多数时间是缓慢进行的,是可以通过校准来恢复其数据的准确性;也就是使用未衰减或衰减程度非常低的子传感器来校准衰减程度高的子传感器。
在传感器模组运行过程中,每隔一定时间,例如1天,1周或1个月,使用低频组检测数据作参考,校准高频组检测数据,校准系数可以使用高频组传感器的检测数据平均值与低频组检测数据平均值之比得到。
除了激光传感器的光衰效应,其他类型的传感器,也存在长时间高负荷工作情况下的性能不稳定或者数据误差增大的可能倾向。通过引入一个低频组,能够作为相对可靠的基准,用来判断传感器模组是否存在数据偏移现象。
同时,由于低频组的数据通常可信度更高,在判断传感器模组中哪个子传感器单元属于疑似异常或异常时,可以通过增加低频组的数据权重,来做出更可信的判断。一种简单的方案是所有的低频组数据按两倍权重参与疑似异常判断。
隔离与恢复
在先申请PCT/IB2018/05531还公开了一套识别子传感器工作状态并对子传感器进行隔离和恢复的方法。传感器模组获得一个时刻的一组检测数据,主控模块从这一组数据中筛选出疑似异常的数据,进而判断相应的子传感器是否满足隔离条件。判断子传感器为异常子传感器后将异常子传感器归入隔离区;判断疑似异常的子传感器不满足隔离条件后,该子传感器继续正常工作。判断进入隔离区的子传感器是否可以自愈,如果判断可以自愈则对该可自愈的子传感器做降频工作处理,但是子传感器输出的数据不参与主控模块输出数据的计算。对于无法自愈的子传感器则停止工作,并通知运行维护方进行维修或者更换。对于降频后的子传感器,由主控模块检测其输出的数据,判断其是否达到恢复条件,将达到恢复条件的子传感器调离隔离区,恢复工作,输出数据参与传感器模组数据或主控数据计算;对于不符合恢复条件的异常子传感器再次进行是否可自愈的判断。
将传感器模组中异常子传感器隔离后,剩余的子传感器输出数据平均值作为传感器模组的输出结果,传感器模组可以继续正常使用。
轮休
在先申请PCT/IB2018/05531还公开了传感器模组轮休的工作模式,在工作正常的子传感器中,选择一个或者多个进行轮休,可以解决传感器疲劳带来的工作性能下降的问题。
传感器随工作时间的增加,内部状态会有一定的变化,例如内部温度随工作时间增加而升高,采样装置的机械元件会有金属疲劳的问题,因此工作一段时间后适当休息会使传感器恢复最佳工作状态。
传感器启动工作一段时间后,进入稳定工作时段,经过长时间的连续工作后会出现疲劳 度上升的情况。为了缓解这种情况,减少传感器疲劳阶段的数据偏移,选择那些进入疲劳状态的子传感器,使其进入休息状态,尽量使传感器单元在稳定工作时段工作。
对于激光传感器模组而言,轮休还可以使得同组传感器的光衰保持基本同步。
半导体激光器随使用时间加长会出现因为半导体材料效率的降低导致出光功率衰减的问题,使用半导体激光器作为发光元件的光散射发颗粒物传感器在包含多个子传感器时需要考虑传感器之间的光衰同步问题。
如果子传感器之间的光衰不同步,在光衰较轻时,其对数据的影响相对小一些,使得各传感器数据会有一些差异,但是根据这些较轻程度差异无法判定该子传感器是否故障,仍然会参与传感器最终检测数据的计算,导致最终检测数据出现偏差。
在工作正常的子传感器中,选择一个或者多个进行轮休,即通过主动降级运行的方式,解决传感器的疲劳问题。对于激光传感器模组而言,轮休还可以使同组激光传感器的光衰保持基本同步。
常用的单一轮休条件包括:
1)进入疲劳状态时间最长的子传感器;
2)离进入疲劳状态最近的子传感器;
3)累计工作时间最长的子传感器;
4)累计轮休次数最少的子传感器;
5)在可以获取子传感器温度数据的情况下,温度最高的子传感器;
6)疑似异常子传感器。
由于采用不同的轮休条件筛选出来的子传感器可能不一致;在实际应用时,可以将多个轮休条件赋予权重或优先级,来定量判断让哪个子传感器进入轮休。
考虑到疲劳问题是个周期性复发的问题,理想情况下,每个传感器应当在其进入到疲劳状态前得到轮休。假设子传感器单元的平均稳定工作时长为T;那么对于N个传感器单元的模组,选择依次轮休策略时,也就是传感器模组中的各个子传感器依次轮休,前后两个轮休的间隔时长应当不大于T/N,以保证每个传感器能及时进入轮休。
如果T=8小时,对于4个传感器单元组成的传感器模组,采用依次轮休策略,那么每隔2个小时轮换一次,就可以保证每个传感器都可以在进入疲劳状态前进入轮休。
在所述子传感器单元上安装状态指示灯,当异常子传感器被识别出后,与其对应位置的状态指示灯颜色改变为警示色;正常工作状态的子传感器对应的状态指示灯则为持续的绿色;进入轮休状态的子传感器对应的状态指示灯则为交替明灭的绿色。
附图说明
图1为优选方案及相关系统组成示意图;
图2为增加排气缓冲罐的优选方案示意图;
图3为简化排气缓冲罐,增设气流稳定装置的监测顶灯示意图;
图4为增加流量传感器和流量控制阀的监测顶灯示意图;
图5是风扇后置的顶灯示意图;
图6是采用进气泵形式的出租车顶灯结构组成示意图;
图7是外置气泵模块示意图;
图8是改进的外置气泵模块示意图,增设了流量调节阀;
图9进气口和排气口布置方式示意图;
图10设备模块支架示意图;
图11部分罐体采用柔性材料的缓冲罐示意图;
图12缓冲罐示意图;
图13是利用半导体制冷片,加热进气同时为气泵冷却制冷的结构示意图;
图14防絮网及防风管示意图(剖视图);
图15出租车顶灯外壳示意图;
图16搭载监测设备顶灯内部结构示意图;
图17为同轴进排气示意图;
图18基础方案示意图;
附图中:1-壳体,2-进气口,4-排气口,10-出租车顶灯外壳,11-定位模块,12-进气缓冲罐,13-检测模块(具有气流驱动装置),14-排气缓冲罐,15-主控模块,16-传输模块,17-流量传感器,18-流量控制阀,19-外置气泵模块,20-数据中心,30-固定监测点,40-用户,130-检测模块(没有气流驱动装置),131-外置风扇,191-过滤器,192-气泵,193-消音器,194-气泵流量控制阀,195-半导体制冷片,101-出租车顶灯底壳,104-模块支架,111-防风管,112-防絮网,105-GPRS天线,121-缓冲罐罐体的一部分,201-排气区域,202-进气区域
具体实施方式
实施例一
实施例一为基于大气污染物在线监测设备的优选方案,如图1所示,方案包括进气口、进气缓冲罐、检测模块、排气口、主控模块、传输模块。
进气口通过与进气缓冲罐的进气口相连接,进气缓冲罐的排气口再与检测模块的进气口相连接,检测模块的排气口与排气口连接。进气缓冲罐可以起到稳定气流的作用,同时进气缓冲罐根据传感器或传感器组的数量,可以充当气体分配装置,将气体分成多股气流,也就是说进气缓冲罐的气流分配出口的数量与检测模块中的传感器单元的数量相匹配。
被检测气体的流向为,被检测气体通过进气口进入监测设备,流经进气缓冲罐、检测模块、排气口最终排出监测设备。
大气污染物浓度的检测依靠检测模块进行,检测模块的传感器单元可以包括PM 1传感器、PM 2.5传感器、PM 10传感器、PM 100传感器、二氧化硫传感器、氮氧化物传感器、臭氧传感器、一氧化碳传感器、TVOC传感器或VOCs传感器。检测模块的使用根据需求可以灵活搭配,如采用一个或多个传感器,一组或者多组传感器(传感器模组),一种或者多种传感器等。一种具体的传感器模组可以是一组1个PM 2.5传感器。另一种具体的传感器模组可以是一组4个PM 2.5传感器。另一种具体的传感器模组可以是一组3个PM 2.5传感器,和1个PM 100传感器。另一种具体的传感器模组可以是一组4个PM 2.5传感器,和1个二氧化硫传感器。颗粒物传感器还可以是多通道类型,即一个颗粒物传感器可以同时测量多种PM值,如PM 2.5和PM 10。一种采用多通道颗粒物传感器的传感器模组可以是4个多通道颗粒物传感器(可以同时测量PM 2.5和PM 10的类型)。另一种采用多通道传感器的传感器模组可以是3个。
主控模块与监测设备上的检测模块和传输模块通过电连接,电连接既可以供电又可以进行数据传输。主控模块通过数据接口与检测模块、传输模块进行数据交换。检测模块将检测到的数据发送给主控模块,主控模块进行进一步计算后,发送至传输模块,传输模块将数据发送至数据中心。传输模块还可以接收数据中心发来的指令,将指令传输给主控模块后,主控模块还可以调整检测模块的运行。主控模块设有数据储存和本地数据传输接口。主控模块还可以具备定位功能或与定位设备的数据接口,利用GPS、北斗等定位技术实时记录车辆位置。
主控模块与出租车辆的12V、5V、24V、36V或48V等直流电源进行连接,主控模块为检测模块、传输模块进行供电。
实施例一的大气污染物在线监测设备还可以置于专门设计的外壳中,再将装有大气污染物在线监测设备的外壳外挂于出租车顶灯下部或者其他部位。
图2为基本方案的变种,在检测模块与排气口之间增加排气缓冲罐,用于稳定排气部分的气流,提高检测模块检测的准确性。
实施例二
实施例二为基本方案的一种改进,如图3所示,方案包括进气口、排气口、防絮网、防风管、进气缓冲罐、检测模块、定位模块、传输模块,其中检测模块包含主动气流驱动装置。这些设备都安装于出租车顶灯内部。实施例二利用了出租车顶灯内部剩余空间(内腔空余空间)作为排气缓冲区域,达到了与排气缓冲罐相同的作用。
防絮网、防风管安装于进气口和排气口上,用于稳定气流。进气口与进气缓冲罐的进气口相连接,进气缓冲罐的排气口再与检测模块的进气口相连接,检测模块的排气口不与其他结构连接,传感器的排气直接排入出租车顶灯内,顶灯内的气体再经过排气口排出出租车顶灯外。
被检测气体的流向为,被检测气体通过进气口进入监测设备,被检测气体再流经进气缓冲罐、检测模块、出租车顶灯内部空间、排气口最终排出监测设备。实施例二利用出租车顶灯内部的密闭腔体的剩余空间作为检测模块排气的缓冲区域,简化了排气缓冲罐,也起到了稳定气流的作用,提高了传感器的准确性。经检测模块检测的气体最终经出租车顶灯腔体内缓冲后再经过排气口排出出租车顶灯。
实施例三
实施例三为实施例二方案的一种改进,如图5所示,方案包括进气口、排气口、防絮网、防风管、进气缓冲罐、检测模块、外置风扇、主控模块、定位模块、传输模块。这些设备都安装于出租车顶灯内部。实施例三中的检测模块不含气流驱动装置。驱动气流的装置采用外置的方式,比如采用风扇外置,外置的风扇置于检测模块的后面。
防絮网、防风管安装于进气口和排气口上,进气口与进气缓冲罐的进气口相连接,进气缓冲罐的排气口再与检测模块的进气口相连接,检测模块的排气口与外置风扇的进气口相连接,外置风扇的排气口不与其他结构连接。
被检测气体的流向为,被检测气体通过进气口进入监测设备,再流经进气缓冲罐、检测模块、外置风扇,经外置风扇排出的气体最终经出租车顶灯腔体内缓冲后再经过排气口排出出租车顶灯。
实施例四
实施例四为实施例二方案的一种改进,实施例四在进气口之后增加流量传感器和流量控制器,如图4和图5中的17-流量传感器和18-流量控制阀。
图4的被检测气体的流向为,被检测气体通过进气口进入监测设备,被检测气体先流经流量传感器和流量控制器,再依次进入进气缓冲罐、检测模块;经检测模块检测的气体最终经出租车顶灯腔体内缓冲后再经过排气口排出出租车顶灯。
流量传感器和流量控制器通过数据接口与主控模块相连接。加装流量传感器和流量控制器可以使得传感器输出数据更加准确。流量传感器将监测的气体流量信息通过数据连接传输至主控模块,主控模块根据流量监控设备测得的流量值,实时调节进气端流量大小,使进入传感器的气体流量更加稳定,改善传感器工况,最终得到更准确的检测数据。流量控制还可以通过主控模块调节风扇的转速或气泵的流量来实现。
流量监控设备监测到的进气量数据还可以用于传感器检测数据的校准。流量监控设备的进气流量变化值会实时通过数据连接反馈给主控模块,主控模块根据写入的修订系数(如实际值与标准进气流量的比值)可以对传感器数据进行修正。
实施例五
合理地布置进气口和排气口,可以降低出租车顶灯外界气流影响,减少气流扰动、气压不平衡对检测数据的影响,提高检测数据稳定性和准确性。本发明的进气口和排气口位置也有相应特点,在规则对称的出租车顶灯底壳上,进气口和排气口需要布置于车辆前进方向中轴线的两侧,如图9所示。进气口与排气口距离中轴线的距离L 1和L 2应当相等。进气口和排气口可选材料为铝合金、abs、尼龙等。进气口与排气口装置通过防震环与出租车顶灯底壳固定,防震环通过螺丝使进气口、排气口与出租车顶灯底壳夹紧。
实施例六
进气口、排气口设有气流保护装置,减少气流扰动、气压不平衡从而给传感器造成的数据不准确的问题。进气口、排气口的气流保护装置包括防絮网、防风管,如图14所示,图14的防絮网为圆柱形防絮网。防絮滤网通过螺纹(锁扣、点胶、夹紧)结构与进气口、排气口固定,防絮滤网外形可采用半球型、圆柱形、长方体、圆形平面、方形平面等,防絮滤网的材料可以为铁质、abs、铜、尼龙、纤维、不锈钢等。防絮装置由滤网和底座(密封圈)共同组成。
实施例七
防絮网装置内部设置防风管(防风滤芯),防风管可以减少气流扰动、气压不平衡从而给传感器造成的数据不准确的问题。防风管可以是直通圆管或者方管状结构,图14中111结构便是直通圆管形式的防风滤芯,材料为铝合金、abs或者尼龙。
防风滤芯有两种安装方式,方式一:内部或外部有螺纹,通过螺纹固定在防絮滤网底座、采样头或排气口。方式二:通过压紧的方式,同时紧固防絮网,将防风滤芯压紧在进气口或者排气口上。
实施例八
实施例八是另外一种进排气方式,进气与排气共同使用一个位置。这种进气和排气方式采用同轴结构,这种结构可以是正方形或者圆形。如图17所示的圆形的同轴进排气口,圆形的外圈201区域用于排气,内圈的202区域用于进气。进气口和排气口共同套用一个出租车顶灯底壳孔位。
实施例九
实施例九为实施例一方案的一种改进,这种改进可以减少气流扰动、气压不平衡从而给传感器造成的数据不准确的问题。如图6所示,进气缓冲罐、检测模块、外置气泵模块、主控模块、传输模块安装于出租车顶灯内部;进气口、排气口、防絮网位于出租车顶灯外壳上。
稳定的气流流量可以提高传感器的准确性,采用气泵进气,气泵进气可以使得流量更加稳定。在实施例一方案上,将负责进气的风扇改为外置气泵模块,同时去掉排气缓冲罐。如图6所示。气流依次经过进气口、进气缓冲罐、检测模块、外置气泵模块,最终排出出租车顶灯。采用外置气泵装置的顶灯进气口使用防絮网,但可以不使用防风管;同样的排气口使用防絮网,但可以不使用防风管。
外置气泵模块主要由过滤器、气泵和消音器组成,如图7所示。改进版的外置气泵模块由过滤器、气泵流量调节阀、气泵和消音器组成,如图8所示。
实施例九的大气污染物在线监测设备还可以置于专门设计的外壳中,再将装有大气污染物在线监测设备的外壳外挂于出租车顶灯下部或者其他部位。
实施例十
进气缓冲罐可以使得气流更加稳定,降低扰流干扰,如图11和图12所示。同时进气缓冲罐可以作为气流分配装置使用,进气缓冲罐根据传感器的数量设置出口数量。
图11和图12为一进四出的进气缓冲罐形式。图11为气泵用进气缓冲罐;图11中,进气缓冲罐罐体的一部分121的材料可以为柔性材料,可以进一步降低气泵进气的波动。缓冲罐材料可以为铝合金、塑料、尼龙、树脂,加工工艺根据材料和结构的不同可以为机加工、注塑或者铸造形式。
实施例十一
为降低湿度对监测数据的影响,在监测设备进气口和传感器气体入口之间设置加热装置进行除湿,加热装置可以是PTC热敏电阻、电阻丝、柔性加热片和半导体制冷片等。在进气口和排气口之间还可以设置湿度检测模块,当湿度大于启动设定值时,系统开启加热装置;当湿度小于关闭设定值时,则关闭加热装置。加热装置与主控模块有数据和电源连接,通过主控模块控制加热模块的工作。
图13为改进版的加热除湿装置,该改进版加热装置采用半导体制冷片,半导体制冷片热端用于加热气体除湿,冷端连接气泵马达。在工作时热端加热进气进行除湿,冷端为气泵马达降温。
实施例十二
监测设备设置反吹功能实现清洁功能,提高数据的准确和稳定。反吹风扇与主控模块连接,由主控模块控制反吹风扇的工作。方式一:在缓冲罐与进气口之间加装反吹风扇,每隔一定周期(如24h、3d、7d、15d)暂停传感器的工作,并开启反吹风扇,风向指向进气口,清除灰尘和异物;方式二:将反吹风扇安装在传感器内部,每隔一定周期(如24h、3d、7d、15d)暂停传感器的工作,并开启反吹风扇,直接清理传感器内部灰尘和异物。
实施例十三
大气污染物在线监测设备使用模块支架,如图10中104所示,利用出租车顶灯原有螺丝紧固件固定模块支架,固定模块支架不需要对顶灯进行额外改动如钻孔等操作。电源、检测模块、主控模块和传输模块固定于模块支架上,这种方式方便检测模块、主控模块和传输模块的拆卸维修。
实施例十四
大气污染物在线监测设备还可以增设视频采集模块,用于录制记录道路的实际情况。视频采集模块可以与主控模块相连,通过主控模块控制视频采集模块的工作;视频采集模块还可以独立运行,数据中心通过无线的方式直接控制视频采集模块的工作。
实施例十五
出租车顶灯内还可以安装带有自身壳体的大气污染物在线监测设备。监测设备壳体上的进气口和排气口延伸并穿过出租车顶灯外壳。防絮网和防风管安装于延伸至出租车顶灯外壳的进气口和排气口上。

Claims (13)

  1. 一种抗风扰的大气污染物监测设备,所述大气污染物监测设备安装在社会运营车辆上,所述大气污染物监测设备包含检测模块(13)、定位模块(11)、传输模块(16)和主控模块(15);所述检测模块(13)包含至少一个传感器单元或一个传感器模组;所述传感器单元为下列传感器之一:PM 1传感器、PM 2.5传感器、PM 10传感器、PM 100传感器、二氧化硫传感器、氮氧化物传感器、臭氧传感器、一氧化碳传感器、VOCs传感器、TVOC传感器或者多通道颗粒物传感器;所述大气污染物监测设备还包含壳体(1);所述壳体(1)上有进气口(2)和排气口(4);所述进气口(2)与所述检测模块(13)之间直通,或由进气管连接;所述排气口(4)与所述检测模块(13)之间直通,或由排气管连接;其特征在于,所述进气口(2)和/或所述排气口(4)还安装有防风管(111)。
  2. 如权利要求1所述的监测设备,其特征在于,所述排气口(4)与所述检测模块(13)之间还有一个排气缓冲罐(14)。
  3. 如权利要求2所述的监测设备,其特征在于,所述社会运营车辆为出租车,所述大气污染物监测设备安装在出租车顶灯内;所述壳体(1)由出租车顶灯的外壳(10)代替;所述进气口(2)和排气口(4)在出租车顶灯的外壳(10)上;所述的排气缓冲罐(14)为出租车顶灯的内腔空余空间。
  4. 如权利要求1所述的监测设备,其特征在于,所述进气口(2)与所述检测模块(13)之间还有一个进气缓冲罐(12);其特征在于,在所述进气口(2)和所述进气缓冲罐(12)之间安装有反吹风扇;所述反吹风扇与主控模块(15)电连接;所述主控模块(15)每隔一定周期暂停所述检测模块(13)的工作,开启所述反吹风扇,清除灰尘和异物。
  5. 如权利要求1至4之一所述的监测设备,其特征在于,在所述检测模块内部安装有反吹风扇;所述反吹风扇与主控模块(15)电连接;所述主控模块(15)每隔一定周期暂停所述检测模块(13)的工作,开启所述反吹风扇,清除灰尘和异物。
  6. 如权利要求1至4之一所述的监测设备,其特征在于,所述传感器模组包含至少两个同类子传感器单元;所述子传感器单元工作在正常的工作频率;所述检测模块还包含至少一个与传感器模组同类的子传感器单元组成的低频校 准模组;低频校准模组内的子传感器单元的工作频率远低于传感器模组内子传感器单元的工作频率。
  7. 如权利要求6所述的监测设备,其特征在于,所述传感器模组的工作频率与低频校准模组的工作频率的比率为:2:1,3:1,4:1,5:1,6:1,7:1,8:1,9:1,10:1,15:1,或者20:1。
  8. 如权利要求1至4之一所述的监测设备,其特征在于,所述检测模块包含至少四个同类子传感器单元组成的传感器模组;当所述主控模块(15)发现所述传感器模组中一个子传感器单元出现疑似异常,并判断该疑似异常子传感器为异常子传感器后,对所述异常子传感器进行隔离,所述异常子传感器归入隔离区,多核传感器模组降级后继续正常工作;进入隔离区的子传感器如无法自愈则停止工作;如可以自愈则做降频工作处理,但是子传感器输出的数据不参与主控模块输出数据的计算;主控模块监测进入隔离区的子传感器输出的数据,判断其是否达到恢复条件;将达到恢复条件的子传感器调离隔离区,恢复工作。
  9. 如权利要求1至4之一所述的监测设备,其特征在于,所述防风管(111)为直通圆管或方管状结构;所述防风管的材料为铝合金、ABS或者尼龙。
  10. 如权利要求1至4之一所述的监测设备,所述检测模块包含至少两个同类子传感器单元组成的传感器模组;其特征在于,所述主控模块在确保传感器模组中至少维持一个正常工作的子传感器单元的前提下,从传感器模组中选择一个或多个子传感器单元进行轮休,所述多核传感器系统主动降级工作。
  11. 如权利要求10所述的监测设备,其特征在于,从所述传感器模组中选择一个达到轮休条件的子传感器单元进行轮休;所述轮休条件为如下条件之一:
    1)进入疲劳状态时间最长的子传感器;
    2)离进入疲劳状态最近的子传感器;
    3)累计工作时间最长的子传感器;
    4)累计轮休次数最少的子传感器;
    5)在可以获取子传感器温度数据的情况下,温度最高的子传感器;
    6)疑似异常子传感器。
  12. 如权利要求4所述的监测设备,其特征在于,所述进气缓冲罐(12)罐体的一部分(121)采用柔性材料。
  13. 如权利要求4所述的监测设备,,所述检测模块(13)由无风扇、无气泵的检测模块(130)代替;所述外置气泵模块(19)包含过滤器(191)、气泵(192)和消音器(193);其特征在于,所述进气缓冲罐(12)的外壁上安装有半导体制冷片(195);所述半导体制冷片(195)的热端连接进气缓冲罐(12),所述半导体制冷片(195)的冷端连接气泵(192)的马达。
PCT/CN2019/074041 2017-08-18 2019-01-31 一种抗风扰的大气污染物监测设备 WO2019210720A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GBGB2102622.4A GB202102622D0 (en) 2017-08-18 2019-01-31 Atmospheric pollutant monitoring device having anti-wind interference function
CN201980003738.4A CN111094936B (zh) 2017-08-18 2019-01-31 一种抗风扰的大气污染物监测设备
GBGB2102645.5A GB202102645D0 (en) 2018-02-01 2019-07-25 Taxi roof light with multi-core sensor capable of resisting wing disturbance
CN201980042990.6A CN112384783B (zh) 2018-02-01 2019-07-25 一种可抗风扰的多核传感器出租车顶灯
PCT/CN2019/097589 WO2020020255A1 (zh) 2018-02-01 2019-07-25 一种可抗风扰的多核传感器出租车顶灯

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201710711884.5A CN107340212A (zh) 2017-08-18 2017-08-18 一种基于出租车顶灯的大气颗粒物在线监测设备
IBPCT/IB2018/055526 2018-07-25
PCT/IB2018/055531 WO2019150182A1 (zh) 2018-02-01 2018-07-25 多核传感器系统及其隔离和恢复的方法
IBPCT/IB2018/055531 2018-07-25
PCT/IB2018/055526 WO2019034949A1 (zh) 2017-08-18 2018-07-25 一种大气污染物监测设备

Publications (1)

Publication Number Publication Date
WO2019210720A1 true WO2019210720A1 (zh) 2019-11-07

Family

ID=60215755

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/IB2018/055526 WO2019034949A1 (zh) 2017-08-18 2018-07-25 一种大气污染物监测设备
PCT/CN2019/074040 WO2019210719A1 (zh) 2017-08-18 2019-01-31 一种具备自清洁功能的大气污染物监测设备
PCT/CN2019/074039 WO2019210718A1 (zh) 2017-08-18 2019-01-31 一种车载大气污染物监测设备
PCT/CN2019/074041 WO2019210720A1 (zh) 2017-08-18 2019-01-31 一种抗风扰的大气污染物监测设备

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/IB2018/055526 WO2019034949A1 (zh) 2017-08-18 2018-07-25 一种大气污染物监测设备
PCT/CN2019/074040 WO2019210719A1 (zh) 2017-08-18 2019-01-31 一种具备自清洁功能的大气污染物监测设备
PCT/CN2019/074039 WO2019210718A1 (zh) 2017-08-18 2019-01-31 一种车载大气污染物监测设备

Country Status (3)

Country Link
CN (3) CN107340212A (zh)
GB (3) GB202102616D0 (zh)
WO (4) WO2019034949A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280248A (zh) * 2021-12-29 2022-04-05 武汉市三藏科技有限责任公司 一种VOCs污染走航实时监测装置及监测方法
US11385177B2 (en) 2018-04-13 2022-07-12 Washington University Designs of accurate pm sensors and systems for laboratory and real time calibration / data inversion
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219157A (zh) * 2017-07-29 2017-09-29 山东诺方电子科技有限公司 一种利用社会车辆进行大气颗粒物监测系统
CN107340212A (zh) * 2017-08-18 2017-11-10 山东诺方电子科技有限公司 一种基于出租车顶灯的大气颗粒物在线监测设备
CN108088953A (zh) * 2017-11-13 2018-05-29 中电科华北网络信息安全有限公司 一种行进过程中道路尾气污染物监测方法及其监测装置
CN108216013A (zh) * 2017-12-29 2018-06-29 五河县智凯环保科技有限公司 一种具有大气净化功能的出租车顶灯
CN108195728A (zh) * 2018-02-01 2018-06-22 山东诺方电子科技有限公司 一种基于多核颗粒物传感器技术的控制系统及其控制方法
CN109298135B (zh) * 2018-09-04 2024-01-30 中国科学院大气物理研究所 一种用于全方位环境监测的无人车系统
CN111781302A (zh) * 2019-04-03 2020-10-16 上海霍亨环保科技有限公司 一种用于检测大气污染的吊舱及其监测方法
CN110426330B (zh) * 2019-07-29 2024-05-07 中国农业大学 畜禽舍颗粒物浓度监测设备
CN112485171B (zh) * 2019-09-12 2024-04-09 广州市易和信息技术有限公司 一种城市环境实时检测传输系统
CN110441484A (zh) * 2019-09-23 2019-11-12 深圳市无眼界科技有限公司 一种空气气态污染物的检测装置及检测系统
CN110553962A (zh) * 2019-10-23 2019-12-10 安徽理工大学 一种室内空气质量监测与净化系统
WO2021117072A1 (en) * 2019-12-09 2021-06-17 Sense Square S.R.L. Dynamic mapping and method of tracking atmoshperic pollutants
IT201900023352A1 (it) * 2019-12-09 2021-06-09 Sense Square S R L Mappatura dinamica e metodo di tracciamento degli inquinanti atmosferici
CN113720964B (zh) * 2020-05-26 2023-04-14 宁波方太厨具有限公司 甲醛检测系统及应用有该甲醛检测系统的空气净化装置
CN111521224B (zh) * 2020-06-18 2021-12-10 佛山市托利环境科技有限公司 智能空气质量监测仪及其应用系统
CN113820075A (zh) * 2020-06-18 2021-12-21 中国石油天然气集团有限公司 一种油气固定顶储罐的甲烷检测实时检测装置
JP6825157B1 (ja) * 2020-09-09 2021-02-03 環境電子株式会社 油類及びカビ臭の自動検出装置及び臭いセンサ付き魚類による毒物自動監視装置
CN113358425B (zh) * 2021-06-08 2023-01-24 陕西省环境科学研究院 基于无人机的火炬气排放气体采样装置及监测方法
CN113390768B (zh) * 2021-06-16 2023-08-22 江苏蓝创智能科技股份有限公司 车辆行驶路线可视化大气颗粒污染物监测平台系统
CN113780820A (zh) * 2021-09-13 2021-12-10 宝航环境修复有限公司 一种土壤污染风险管控用土壤表层生态构建方法及装置
CN114217026A (zh) * 2021-12-23 2022-03-22 徐州博康环保科技有限公司 一种大气污染治理用污染物提取检测装置
DE202022103602U1 (de) 2022-03-25 2022-07-20 Graphic Era (Deemed To Be University) Luftgestütztes Rechnersystem zur Kontrolle der Luftverschmutzung
CN115235963A (zh) * 2022-05-25 2022-10-25 中国船舶重工集团公司第七0三研究所 一种可自校正的线性吸气式感烟探测器
CN114935529B (zh) * 2022-07-21 2022-11-04 山东圣文环保科技有限公司 一种用于废气处理的安全监测系统
CN115931653B (zh) * 2023-01-05 2023-10-13 山东大学 一种移动式大气颗粒物大数据获取系统及方法
CN116343118B (zh) * 2023-03-28 2023-09-08 中关村科学城城市大脑股份有限公司 一种基于污染点的污染监控方法及系统
CN116953173B (zh) * 2023-08-08 2024-01-30 江苏叁山环境科学技术研究有限公司 一种大气污染移动走航监测设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203287312U (zh) * 2013-04-16 2013-11-13 比亚迪股份有限公司 车辆及其pm2.5颗粒检测装置组件
CN205138960U (zh) * 2016-01-27 2016-04-06 广州番禺巨大汽车音响设备有限公司 车载空气检测装置及系统
CN205193028U (zh) * 2015-11-19 2016-04-27 陈常东 一种空气污染移动检测车
WO2016105555A1 (en) * 2014-12-23 2016-06-30 The Regents Of The University Of California Portable airborne particle counting systems and methods
CN106644862A (zh) * 2016-09-12 2017-05-10 济南诺方电子技术有限公司 一种传感器、基于该传感器的监测站及监测站的监测方法
CN107219157A (zh) * 2017-07-29 2017-09-29 山东诺方电子科技有限公司 一种利用社会车辆进行大气颗粒物监测系统
CN107340212A (zh) * 2017-08-18 2017-11-10 山东诺方电子科技有限公司 一种基于出租车顶灯的大气颗粒物在线监测设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896742A (zh) * 2006-06-12 2007-01-17 杭州世创科技有限公司 空间污染实时监测公示仪
CN101266488A (zh) * 2008-04-30 2008-09-17 郦宏 电解式臭氧发生器电气控制系统
CN101266273B (zh) * 2008-05-12 2010-11-24 徐立军 一种多传感器系统故障自诊断方法
CN101661014A (zh) * 2009-10-09 2010-03-03 丁五行 电化学气体传感器残留样气清除装置及采用此装置的气体检测设备
CN102538859A (zh) * 2011-05-19 2012-07-04 广东迅通科技股份有限公司 多类传感器的监测处理方法
CN102263819A (zh) * 2011-07-18 2011-11-30 中交四航工程研究院有限公司 一种基于传感器网络的工程安全监测系统及方法
CN103648097B (zh) * 2013-11-22 2016-08-17 中国电子科技集团公司第二十八研究所 一种基于无线传感器网络分布式视频协同调度方法
CN104703259B (zh) * 2013-12-10 2018-12-14 深圳先进技术研究院 低耗能传感器节点睡眠方法及系统
CN104502534A (zh) * 2014-12-15 2015-04-08 中国航空工业集团公司北京长城航空测控技术研究所 车载便携式大气环境实时监测装置
CN104459057A (zh) * 2014-12-28 2015-03-25 武汉思睿泽科技咨询服务有限公司 一种复合污染气体在线监测装置
CN204429012U (zh) * 2015-01-30 2015-07-01 成都兴邦泰实业有限责任公司 一种制氧室外机自动反吹清洁装置
CN104729890B (zh) * 2015-03-24 2017-12-05 南京埃森环境技术股份有限公司 一种基于流量反馈控制的pm2.5源解析采样装置
CN104972870A (zh) * 2015-07-03 2015-10-14 西华大学 一种汽车车内空气质量监测及净化调节系统
US10221743B2 (en) * 2015-08-25 2019-03-05 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
CN106546280A (zh) * 2015-09-16 2017-03-29 普天信息技术有限公司 移动式交通环境空气质量监测系统
CN105275558B (zh) * 2015-11-12 2017-07-28 舟山市三峰电气设备有限公司 多路巡检式柴油机尾气检测装置
US9766220B2 (en) * 2016-02-08 2017-09-19 International Business Machines Corporation Leveraging air/water current variability for sensor network verification and source localization
WO2017158510A1 (en) * 2016-03-14 2017-09-21 Bechelli Stefano System for detecting and monitoring atmospheric data
CN205826460U (zh) * 2016-05-30 2016-12-21 北京伟瑞迪科技有限公司 车载颗粒物在线监测仪
CN205898621U (zh) * 2016-07-26 2017-01-18 惠州华阳通用电子有限公司 一种检测汽车内外空气质量的装置
CN106092206B (zh) * 2016-08-03 2019-01-11 安徽中科中涣防务装备技术有限公司 一种道路环境综合监测车
CN206038482U (zh) * 2016-09-12 2017-03-22 济南诺方电子技术有限公司 一种传感器及基于该传感器的监测站
CN206254896U (zh) * 2016-12-19 2017-06-16 河北工程技术高等专科学校 一种带空气质量检测功能的出租车顶灯
CN206670682U (zh) * 2017-03-31 2017-11-24 北京燕山和成节能环保工程技术有限公司 一种气体监测装置
CN107202752A (zh) * 2017-07-29 2017-09-26 山东诺方电子科技有限公司 一种颗粒物传感器的防絮网

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203287312U (zh) * 2013-04-16 2013-11-13 比亚迪股份有限公司 车辆及其pm2.5颗粒检测装置组件
WO2016105555A1 (en) * 2014-12-23 2016-06-30 The Regents Of The University Of California Portable airborne particle counting systems and methods
CN205193028U (zh) * 2015-11-19 2016-04-27 陈常东 一种空气污染移动检测车
CN205138960U (zh) * 2016-01-27 2016-04-06 广州番禺巨大汽车音响设备有限公司 车载空气检测装置及系统
CN106644862A (zh) * 2016-09-12 2017-05-10 济南诺方电子技术有限公司 一种传感器、基于该传感器的监测站及监测站的监测方法
CN107219157A (zh) * 2017-07-29 2017-09-29 山东诺方电子科技有限公司 一种利用社会车辆进行大气颗粒物监测系统
CN107340212A (zh) * 2017-08-18 2017-11-10 山东诺方电子科技有限公司 一种基于出租车顶灯的大气颗粒物在线监测设备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385177B2 (en) 2018-04-13 2022-07-12 Washington University Designs of accurate pm sensors and systems for laboratory and real time calibration / data inversion
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
CN114280248A (zh) * 2021-12-29 2022-04-05 武汉市三藏科技有限责任公司 一种VOCs污染走航实时监测装置及监测方法
CN114280248B (zh) * 2021-12-29 2023-09-01 武汉市三藏科技有限责任公司 一种VOCs污染走航实时监测装置及监测方法

Also Published As

Publication number Publication date
GB202102622D0 (en) 2021-04-07
WO2019210719A1 (zh) 2019-11-07
GB202102616D0 (en) 2021-04-07
GB202102617D0 (en) 2021-04-07
CN111094936A (zh) 2020-05-01
WO2019210718A1 (zh) 2019-11-07
CN107340212A (zh) 2017-11-10
CN111480064A (zh) 2020-07-31
CN111094936B (zh) 2022-08-02
WO2019034949A1 (zh) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2019210720A1 (zh) 一种抗风扰的大气污染物监测设备
CN111316085B (zh) 一种具备自清洁功能的大气污染物监测设备
WO2019210723A1 (zh) 一种出租车和公交车协同监测时确定出租车数量的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE