WO2019210603A1 - 智能火灾报警方法、终端及存储介质 - Google Patents

智能火灾报警方法、终端及存储介质 Download PDF

Info

Publication number
WO2019210603A1
WO2019210603A1 PCT/CN2018/100158 CN2018100158W WO2019210603A1 WO 2019210603 A1 WO2019210603 A1 WO 2019210603A1 CN 2018100158 W CN2018100158 W CN 2018100158W WO 2019210603 A1 WO2019210603 A1 WO 2019210603A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
value
preset
alarm
terminal
Prior art date
Application number
PCT/CN2018/100158
Other languages
English (en)
French (fr)
Inventor
陈颖聪
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2019210603A1 publication Critical patent/WO2019210603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/0202Child monitoring systems using a transmitter-receiver system carried by the parent and the child
    • G08B21/0205Specific application combined with child monitoring using a transmitter-receiver system
    • G08B21/0211Combination with medical sensor, e.g. for measuring heart rate, temperature
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/008Alarm setting and unsetting, i.e. arming or disarming of the security system

Definitions

  • the present application relates to the field of fire rescue technology, and in particular, to an intelligent fire alarm method, a terminal, and a storage medium.
  • a first aspect of the present application provides a smart fire alarm method, the method comprising:
  • the sensing information includes: a combustion value of the combustible material, a wind direction value, a smoke concentration value at the fire scene, a temperature value, a flame value, and a user's Heart rate, blood pressure and respiratory rate;
  • the road condition information of the road is acquired in real time and the optimal path plan is sent to the alarm terminal. If the sending time is determined to be at night, the street light information of the road is acquired in real time and the optimal path is sent to the alarm terminal. planning;
  • the prompt of the fire self-rescue measure is output to guide the user to self-rescue.
  • a second aspect of the present application provides a terminal comprising a processor and a memory, the processor implementing the smart fire alarm method when executing computer readable instructions stored in the memory.
  • a third aspect of the present application provides a non-volatile readable storage medium having stored thereon computer readable instructions, the computer readable instructions being implemented by a processor to implement the Intelligent fire alarm method.
  • the intelligent fire alarm method, the terminal and the storage medium described in the present application realize the automatic alarm through the fire APP and realize the automatic alarm by detecting whether the preset alarm condition is met, and when receiving the alarm instruction, first acquire the current environment of the terminal. Sensing the information, and further determining, according to the sensing information, that the fire alarm command is valid, acquiring a fire video of the fire scene, and transmitting a fire alarm command carrying the fire video and the sensing information to the alarm terminal. It can avoid false alarms and provide more detailed and accurate fire information during the alarm, so that the rescue personnel of the alarm terminal can make accurate fire rescue decisions in time.
  • the time of the fire alarm command sent to the alarm terminal is obtained, and according to the sending time, different optimal path plans are selected and provided to the quotation terminal, so that the rescue personnel of the alarm terminal can arrive at the fire scene in time and at the fastest speed. Rescue.
  • Embodiment 1 is a flow chart of a smart fire alarm method provided in Embodiment 1 of the present application.
  • FIG. 2 is a functional block diagram of an intelligent fire alarm device provided in Embodiment 2 of the present application.
  • FIG. 3 is a schematic diagram of a terminal provided in Embodiment 3 of the present application.
  • the intelligent fire alarm method of the embodiment of the present application is applied to one or more terminals.
  • the intelligent fire alarm method can also be applied to a hardware environment composed of a terminal and a server connected to the terminal through a network.
  • Networks include, but are not limited to, wide area networks, metropolitan area networks, or local area networks.
  • the smart fire alarm method of the embodiment of the present application may be executed by a server or by a terminal, or may be performed by a server and a terminal.
  • the intelligent fire alarm function provided by the method of the present application may be directly integrated on the terminal, or the client for implementing the method of the present application may be installed.
  • the method provided by the present application may also be run on a server or the like in the form of a software development kit (SDK), and provide an interface of an intelligent fire alarm function in the form of an SDK, and the terminal or other device provides The intelligent fire alarm function can be realized by the interface.
  • SDK software development kit
  • Embodiment 1 is a flow chart of a smart fire alarm method provided in Embodiment 1 of the present application.
  • the order of execution in the flowchart can be changed according to different requirements, and some steps can be omitted.
  • a fire application (hereinafter simply referred to as "fire APP") may be installed on the terminal in advance, and the fire APP may be used to detect a fire hazard, obtain fire information, and receive a fire alarm command or the like.
  • the fire alarm command can be manually input through the fire APP of the terminal.
  • the fire alarm command input by the user may include one or more of the following combinations: input preset text information, for example, input text "fire”; input preset voice information, for example, input voice "alarm”; touch the fire APP Preset buttons or icons, etc.
  • At least one sensor may also be integrated in advance on the terminal, the sensor may be a thermal sensor such as a thermistor, or for detecting carbon monoxide, carbon dioxide, hydrogen or A gas sensor, such as NOx, which can indicate a gas of a fire, a signal detected by a thermal sensor and/or a gas sensor can be used by the terminal to determine if there is a fire in the environment. That is, the terminal may determine whether to trigger a fire alarm command according to the signal detected by the at least one sensor and the preset alarm condition, when determining that the signal detected by the at least one sensor satisfies the preset alarm When the condition is met, the terminal automatically triggers a fire alarm command.
  • the terminal may determine whether to trigger a fire alarm command according to the signal detected by the at least one sensor and the preset alarm condition, when determining that the signal detected by the at least one sensor satisfies the preset alarm When the condition is met, the terminal automatically triggers a fire alarm command.
  • the preset alarm condition is a preset alarm condition, which may include, but is not limited to, detecting that the user's input is detected within a preset first time period when detecting that the temperature in the air exceeds a preset first temperature threshold. In operation, determining that the preset alarm condition is met; determining that the preset alarm condition is met when detecting that the temperature in the air exceeds a preset second temperature threshold; and detecting that the gas concentration in the air exceeds a preset first a gas concentration threshold, and when the input operation of the user is detected within a preset second time period, determining that the preset alarm condition is satisfied; and when detecting that the gas concentration in the air exceeds a preset second gas concentration threshold, determining The preset alarm condition is met.
  • the preset first temperature threshold is smaller than the preset second temperature threshold
  • the preset first gas concentration threshold is smaller than the preset second gas concentration threshold.
  • the preset first time period may be the same as or different from the preset second time period.
  • the preset first temperature threshold for example, 20 degrees
  • the preset second temperature threshold for example, 50 degrees
  • the preset first time period so that when the temperature in the air exceeds the preset first temperature threshold is preset but the preset second temperature threshold is not exceeded, the user is buffered, and the user decides whether to input an alarm instruction or when to input an alarm instruction according to the fire scene situation, for example, when a fire scene occurs.
  • the range is small, and there are convenient fire extinguishing devices around, and the user can choose not to trigger the alarm command when the fire control or fire extinguishing is performed within the preset first time period.
  • the preset first temperature threshold is swelled to the preset second temperature threshold, and the user may obtain or When an operation cannot be input, the alarm command can be triggered automatically and quickly.
  • the setting of the preset first gas concentration threshold eg, 20%
  • the preset second gas concentration threshold eg, 30%
  • the preset second time period eg, 30 seconds
  • the terminal detects the fire alarm command input by the user and/or detects that the preset alarm condition is met, the fire alarm command is received, and the method for acquiring the fire alarm command is not performed by the application. Any specific limit.
  • the sensing information may include, but is not limited to, a combustion value of the combustible, a wind direction value, a smoke concentration value at the fire site, a temperature value, a flame value, a user's heart rate value, a blood pressure value, and a respiratory rate. Wait.
  • the plurality of sensors may be built in the terminal or may be communicatively connected to the terminal, and the sensing information of the plurality of sensors may be obtained by:
  • the external device may include, but is not limited to, a smoke sensor, a position sensor, a temperature sensor, a humidity sensor, a light sensor, and the like.
  • the external device is a smoke sensor, and when the smoke concentration in the air is 0.1 mg/m 3 , the smoke sensor can respond quickly, and the response time is less than 30 seconds.
  • determining whether the fire alarm instruction is valid according to the sensing information may include:
  • the mapped combustion value is determined to be a maximum value; otherwise, the mapped wind direction value is determined to be a maximum value;
  • the combustion value and the wind direction value with different units can be normalized to the range of (0, 1) and dimensionless, and then the combustion value of the combustible material and the current wind direction value are combined to further judge the current position of the terminal. Whether the environment really has a fire, if there is a fire and there is a tendency to expand, it is determined that the fire alarm command is effective, and it is possible to prevent the user from unintentionally starting the fire APP, which causes the triggering of the fire alarm command.
  • determining whether the fire alarm instruction is valid according to the sensing information may include:
  • the preset physiological parameter threshold is a preset physiological parameter, and is a physiological parameter threshold value that indicates that the user is in an unconscious state
  • the fire alarm command may be determined to be valid.
  • step S14 When it is determined that the fire alarm command is valid, step S14 is performed; when it is determined that the fire alarm command is invalid, step S15 is performed.
  • a real-time fire video of a fire scene can be taken by a preset camera that can perform 360-degree blind-free shooting on the fire scene, the camera can communicate with the terminal in real time, the terminal The fire video captured by the camera can be acquired in real time and a fire alarm command carrying the fire video and the sensing information can be sent to the alarm terminal.
  • the alarm terminal can be an alarm platform center, usually a 119 alarm center.
  • the prompt of the fire self-rescue measure may be output, for example, inputting a preset voice or inputting a preset fire learning video, etc. to guide the user how to prevent excessive smoke from being inhaled, how to use the fire extinguishing device, how to escape, etc. It enables users to self-rescue before the rescuers arrive, and strive for more survival opportunities.
  • the fire alarm command is invalid, the fire alarm command is not sent to the alarm terminal, and waste of fire protection resources can also be reduced.
  • the terminal After the terminal sends the fire alarm command carrying the fire video and the sensing information to the alarm terminal, the terminal acquires the current sending time.
  • the sending time is in the daytime, the road condition information of the road is acquired in real time and the optimal path planning is sent to the alarm terminal; if the sending time is determined to be at night, the street light information of the road is acquired in real time and the most sent to the alarm terminal is sent. Excellent path planning.
  • the terminal may acquire real-time road condition information with the alarm terminal, the road condition information includes: road quality information and road congestion information, and obtaining good road quality and less congestion.
  • the road is used as the optimal path planning, so that the rescue personnel at the alarm terminal can reach the fire scene in time for rescue as quickly as possible, thereby reducing casualties and property losses.
  • the terminal can obtain the lighting facilities and the normal working road section as the optimal path planning, which is not only convenient for the rescue personnel of the alarm terminal. Respond to the scene of the fire in time for the rescue as quickly as possible, and ensure that rescuers drive safely on the way to the scene of the fire.
  • the method when receiving the fire alarm instruction, may further include: outputting the preset prompt information to prompt the user to input the number of people trapped at the fire scene, the cause of the fire, and the user input The number of people trapped and the cause of the fire are sent to the alarm terminal.
  • the preset prompt information may be prompted in a text form, or may be prompted in a voice form, and the user inputs the number of people trapped at the fire site and the cause of the fire according to the preset prompt information (for example, natural combustibles, artificial After arson, line aging, etc., and after receiving the prompt information input by the user, the fire alarm command carrying the fire trapped person, the cause of the fire, the fire video, and the sensing information is sent.
  • the rescue personnel of the alarm terminal can obtain more detailed and accurate fire information, and the rescue personnel of the alarm terminal can make an accurate fire rescue decision in time.
  • the method may further include: determining a fire level of the fire scene; determining whether the fire level is greater than a preset fire level threshold; When the fire level is greater than or equal to the preset fire level threshold, the fire alarm information is sent to the terminal of the manager to which the user's house belongs.
  • the fire alarm information may include: a geographic location where the terminal is currently located, a fire level, and a fire video of the fire scene.
  • the preset fire level threshold is a preset fire level, and is a threshold value that distinguishes a fire level from a fire level to a high level or a low level.
  • the fire level of the fire scene is greater than or equal to the preset fire level threshold, the fire level is determined to be a high level, indicating that the fire at the fire scene is relatively serious, the smoke concentration at the fire scene is high, the temperature is high, and the flame radiation is large.
  • the fire hazard is higher and the destructive power is stronger; when the fire level at the fire site is less than the preset fire level threshold, the fire level is determined to be low, indicating that the smoke concentration at the fire site is lower, the temperature is lower, and the flame radiation is lower. Small, low fire risk and weak destructive power.
  • the determining the fire level of the fire scene may specifically include: weighting and summing the smoke concentration value, the temperature value, and the flame value according to a preset calculation rule to obtain a fire level of the fire scene, wherein
  • , and A1+a2+a3 1, xi represents the smoke concentration value, temperature value and flame value, a1 is the weight value set in advance for the smoke concentration value, a2 is the weight value set in advance for the temperature value, and a3 is the flame pair in advance The weight value set by the value, S is the calculated fire level.
  • the fire alarm information is sent to the terminal of the manager to which the house belongs, which can be beneficial to the management personnel to which the house belongs.
  • the rescuers will carry out the rescue work in the early stage, try their best to win all the rescue opportunities, and avoid the rescuers of the alarm terminal from delaying the rescue.
  • the method may further include: determining a fire type according to the fire video to analyze a cause of the fire; and correspondingly controlling the fire type according to the fire type Fire extinguishing device to extinguish the fire.
  • the terminal may pre-store multiple fire types and corresponding fire suppression devices.
  • the fire type can be set according to the "Fire Classification" issued by the national standard revision.
  • the fire extinguishing device can realize network connection through the Internet of Things and can be intelligently controlled.
  • the analyzing the cause of the fire according to the fire video specifically includes: extracting each frame image in the video; determining whether a preset substance appears in each frame image; and when determining that the preset substance appears, according to the pre-predetermined Set the substance to determine the type of fire. For example, when it is judged that wood, cotton, wool, hemp, paper fire, etc. appear in the fire video, it is determined that the type of fire is a type A fire; it is judged that gasoline, kerosene, crude oil, methanol, ethanol, asphalt, paraffin appear in the fire video.
  • the type of fire is a Class B fire; if there is a fire such as potassium, sodium, magnesium, aluminum-magnesium alloy in the fire video, etc., it is determined that the type of fire is a Class D fire; when it is judged that a cooking appliance appears in the fire video, it is determined The type of fire is a Class F fire.
  • the knife switch can be automatically powered off, thereby cutting off the line power in the house and controlling further deterioration of the fire.
  • the fire type is a Class F fire, that is, a cooking object fire in the cooking appliance
  • the cooking appliance can be controlled to automatically close.
  • Determining the type of fire according to the fire video and controlling the corresponding fire extinguishing device to extinguish the fire can effectively reduce the input operation of the user, especially when the user is in confusion and cannot input any operation, and can automatically determine the type of fire according to the fire video, and further Control the corresponding fire extinguishing device to extinguish the fire, effectively block the source of the fire and reduce the fire.
  • the intelligent fire alarm method described in the present application realizes a quick alarm through a fire APP and an automatic alarm by detecting whether a preset alarm condition is met, and when receiving an alarm instruction, first acquires an environment in which the terminal is currently located. Sensing the information, and further determining, according to the sensing information, that the fire alarm command is valid, acquiring a fire video of the fire scene, and transmitting a fire alarm command carrying the fire video and the sensing information to the alarm terminal. It can avoid false alarms and provide more detailed and accurate fire information during the alarm, so that the rescue personnel of the alarm terminal can make accurate fire rescue decisions in time.
  • the time of the fire alarm command sent to the alarm terminal is obtained, and according to the sending time, different optimal path plans are selected and provided to the quotation terminal, so that the rescue personnel of the alarm terminal can arrive at the fire scene in time and at the fastest speed. Rescue.
  • the prompt of the fire self-rescue measure is output to guide the user to self-rescue, which not only enables the user to self-rescue before the rescue personnel arrives, and strives for more survival opportunities, and can also determine the When the fire alarm command is invalid, the fire alarm command is not sent to the alarm terminal, thereby reducing waste of fire resources.
  • the type of fire is determined; and the corresponding fire extinguishing device is controlled according to the fire type to extinguish the fire, which can block the source of the fire and reduce the fire.
  • FIG. 2 is a functional block diagram of a preferred embodiment of the intelligent fire alarm device of the present application.
  • the intelligent fire alarm device 20 operates in a terminal.
  • the intelligent fire alarm device 20 can include a plurality of functional modules consisting of program code segments.
  • Program code for each of the program segments in the intelligent fire alarm device 20 may be stored in a memory and executed by at least one processor to perform (see Figure 1 and its associated description) intelligent alarms for fire.
  • the intelligent fire alarm device 20 of the terminal can be divided into a plurality of functional modules according to the functions performed by the terminal.
  • the function module may include: a receiving module 201, an obtaining module 202, a determining module 203, a sending module 204, a prompting module 205, a path planning module 206, and a control module 207.
  • a module as referred to herein refers to a series of computer readable instruction segments that are executable by at least one processor and capable of performing a fixed function, which are stored in a memory. In some embodiments, the functionality of each module will be detailed in subsequent embodiments.
  • the receiving module 201 is configured to receive a fire alarm instruction.
  • a fire application (hereinafter simply referred to as "fire APP") may be installed on the terminal in advance, and the fire APP may be used to detect a fire hazard, obtain fire information, and receive a fire alarm command or the like.
  • the fire alarm command can be manually input through the fire APP of the terminal.
  • the fire alarm command input by the user may include one or more of the following combinations: input preset text information, for example, input text "fire”; input preset voice information, for example, input voice "alarm”; touch the fire APP Preset buttons or icons, etc.
  • At least one sensor may also be integrated in advance on the terminal, the sensor may be a thermal sensor such as a thermistor, or for detecting carbon monoxide, carbon dioxide, hydrogen or A gas sensor, such as NOx, which can indicate a gas of a fire, a signal detected by a thermal sensor and/or a gas sensor can be used by the terminal to determine if there is a fire in the environment. That is, the terminal may determine whether to trigger a fire alarm command according to the signal detected by the at least one sensor and the preset alarm condition, when determining that the signal detected by the at least one sensor satisfies the preset alarm When the condition is met, the terminal automatically triggers a fire alarm command.
  • the terminal may determine whether to trigger a fire alarm command according to the signal detected by the at least one sensor and the preset alarm condition, when determining that the signal detected by the at least one sensor satisfies the preset alarm When the condition is met, the terminal automatically triggers a fire alarm command.
  • the preset alarm condition is a preset alarm condition, which may include, but is not limited to, detecting that the user's input is detected within a preset first time period when detecting that the temperature in the air exceeds a preset first temperature threshold. In operation, determining that the preset alarm condition is met; determining that the preset alarm condition is met when detecting that the temperature in the air exceeds a preset second temperature threshold; and detecting that the gas concentration in the air exceeds a preset first a gas concentration threshold, and when the input operation of the user is detected within a preset second time period, determining that the preset alarm condition is satisfied; and when detecting that the gas concentration in the air exceeds a preset second gas concentration threshold, determining The preset alarm condition is met.
  • the preset first temperature threshold is smaller than the preset second temperature threshold
  • the preset first gas concentration threshold is smaller than the preset second gas concentration threshold.
  • the preset first time period may be the same as or different from the preset second time period.
  • the preset first temperature threshold for example, 20 degrees
  • the preset second temperature threshold for example, 50 degrees
  • the preset first time period so that when the temperature in the air exceeds the preset first temperature threshold is preset but the preset second temperature threshold is not exceeded, the user is buffered, and the user decides whether to input an alarm instruction or when to input an alarm instruction according to the fire scene situation, for example, when a fire scene occurs.
  • the range is small, and there are convenient fire extinguishing devices around, and the user can choose not to trigger the alarm command when the fire control or fire extinguishing is performed within the preset first time period.
  • the preset first temperature threshold is swelled to the preset second temperature threshold, and the user may obtain or When an operation cannot be input, the alarm command can be triggered automatically and quickly.
  • the setting of the preset first gas concentration threshold eg, 20%
  • the preset second gas concentration threshold eg, 30%
  • the preset second time period eg, 30 seconds
  • the receiving module 201 detects the fire alarm command input by the user and/or detects that the preset alarm condition is met, the fire alarm command is received, and the method for obtaining the fire alarm command is used in the present application. Do not make any specific restrictions.
  • the obtaining module 202 is configured to acquire sensing information of the plurality of sensors in response to the fire alarm instruction.
  • the sensing information may include, but is not limited to, a combustion value of the combustible, a wind direction value, a smoke concentration value at the fire site, a temperature value, a flame value, a user's heart rate value, a blood pressure value, and a respiratory rate. Wait.
  • the plurality of sensors may be built in the terminal or may be communicatively connected to the terminal, and the sensing information of the plurality of sensors may be obtained by:
  • the external device may include, but is not limited to, a smoke sensor, a position sensor, a temperature sensor, a humidity sensor, a light sensor, and the like.
  • the external device is a smoke sensor, and when the concentration of smoke in the air is 0.1 mg/m3, the smoke sensor can respond quickly, and the response time is less than 30 seconds.
  • the determining module 203 is configured to determine, according to the sensing information, whether the fire alarm instruction is valid.
  • determining, by the determining module 203, whether the fire alarm instruction is valid according to the sensing information may include:
  • the mapped combustion value is determined to be a maximum value; otherwise, the mapped wind direction value is determined to be a maximum value;
  • the combustion value and the wind direction value with different units can be normalized to the range of (0, 1) and dimensionless, and then the combustion value of the combustible material and the current wind direction value are combined to further judge the current position of the terminal. Whether the environment really has a fire, if there is a fire and there is a tendency to expand, it is determined that the fire alarm command is effective, and it is possible to prevent the user from unintentionally starting the fire APP, which causes the triggering of the fire alarm command.
  • determining, by the determining module 203, whether the fire alarm command is valid according to the sensing information may include:
  • the preset physiological parameter threshold is a preset physiological parameter, and is a physiological parameter threshold value that indicates that the user is in an unconscious state
  • the fire alarm command may be determined to be valid.
  • the obtaining module 202 is configured to acquire a fire video of a fire scene when the determining module 203 determines that the fire alarm command is valid.
  • the sending module 204 sends a fire alarm command carrying the fire video and the sensing information to the alarm terminal.
  • a real-time fire video of a fire scene can be taken by a preset camera that can perform 360-degree blind-free shooting on the fire scene, the camera can communicate with the terminal in real time, the terminal The fire video captured by the camera can be acquired in real time and a fire alarm command carrying the fire video and the sensing information can be sent to the alarm terminal.
  • the alarm terminal can be an alarm platform center, usually a 119 alarm center.
  • the prompting module 205 is configured to, when the determining module 203 determines that the fire alarm command is invalid, output a prompt of a fire self-rescue measure to guide the user to perform self-rescue.
  • the prompt of the fire self-rescue measure may be output, for example, inputting a preset voice or inputting a preset fire learning video, etc. to guide the user how to prevent excessive smoke from being inhaled, how to use the fire extinguishing device, how to escape, etc. It enables users to self-rescue before the rescuers arrive, and strive for more survival opportunities.
  • the fire alarm command is invalid, the fire alarm command is not sent to the alarm terminal, and waste of fire protection resources can also be reduced.
  • the obtaining module 202 is further configured to: after the sending module 204 sends the fire alarm command carrying the fire video and the sensing information to the alarm terminal, acquiring the fire alarm command to be sent to the alarm The time of the terminal.
  • the path planning module 206 is configured to acquire the road condition information of the road in real time after the sending module determines that the sending time is in the daytime, and send the optimal path plan to the alarm terminal.
  • the path planning module 206 is further configured to: when the obtaining module 202 determines that the sending time is after night, acquire the street light information of the road in real time and send an optimal path plan to the alarm terminal.
  • the terminal may acquire real-time road condition information with the alarm terminal, the road condition information includes: road quality information and road congestion information, and obtaining good road quality and less congestion.
  • the road is used as the optimal path planning, so that the rescue personnel at the alarm terminal can reach the fire scene in time for rescue as quickly as possible, thereby reducing casualties and property losses.
  • the terminal can obtain the lighting facilities and the normal working road section as the optimal path planning, which is not only convenient for the rescue personnel of the alarm terminal. Respond to the scene of the fire in time for the rescue as quickly as possible, and ensure that rescuers drive safely on the way to the scene of the fire.
  • the prompting module 205 is further configured to: output preset prompt information to prompt the user to input the number of trapped people at the fire site, and the cause of the fire.
  • the sending module 204 is further configured to send the trapped number input by the user and the cause of the fire to the alarm terminal.
  • the preset prompt information may be prompted in a text form, or may be prompted in a voice form, and the user inputs the number of people trapped at the fire site and the cause of the fire according to the preset prompt information (for example, natural combustibles, artificial After arson, line aging, etc., and after receiving the prompt information input by the user, the fire alarm command carrying the fire trapped person, the cause of the fire, the fire video, and the sensing information is sent.
  • the rescue personnel of the alarm terminal can obtain more detailed and accurate fire information, and the rescue personnel of the alarm terminal can make an accurate fire rescue decision in time.
  • the determining module 203 when the determining module 203 determines that the fire alarm command is valid, the determining module 203 is further configured to: determine a fire level of the fire scene and determine whether the fire level is greater than a preset fire
  • the threshold module is further configured to: when the determining module 203 determines that the fire level is greater than or equal to the preset fire level threshold, send the fire alarm information to the terminal of the management personnel to which the user's home belongs.
  • the fire alarm information may include: a geographic location where the terminal is currently located, a fire level, and a fire video of the fire scene.
  • the preset fire level threshold is a preset fire level, and is a threshold value that distinguishes a fire level from a fire level to a high level or a low level.
  • the fire level of the fire scene is greater than or equal to the preset fire level threshold, the fire level is determined to be a high level, indicating that the fire at the fire scene is relatively serious, the smoke concentration at the fire scene is high, the temperature is high, and the flame radiation is large.
  • the fire hazard is higher and the destructive power is stronger; when the fire level at the fire site is less than the preset fire level threshold, the fire level is determined to be low, indicating that the smoke concentration at the fire site is lower, the temperature is lower, and the flame radiation is lower. Small, low fire risk and weak destructive power.
  • the determining the fire level of the fire scene may specifically include: weighting and summing the smoke concentration value, the temperature value, and the flame value according to a preset calculation rule to obtain a fire level of the fire scene, wherein
  • , and A1+a2+a3 1, xi represents the smoke concentration value, temperature value and flame value, a1 is the weight value set in advance for the smoke concentration value, a2 is the weight value set in advance for the temperature value, and a3 is the flame pair in advance The weight value set by the value, S is the calculated fire level.
  • the fire alarm information is sent to the terminal of the manager to which the house belongs, which can be beneficial to the management personnel to which the house belongs.
  • the rescuers will carry out the rescue work in the early stage, try their best to win all the rescue opportunities, and avoid the rescuers of the alarm terminal from delaying the rescue.
  • the determining module 203 is further configured to: determine the fire type according to the fire video to analyze the cause of the fire; and the control module 207 The corresponding fire extinguishing device is controlled according to the fire type to perform fire extinguishing.
  • the terminal may pre-store multiple fire types and corresponding fire suppression devices.
  • the fire type can be set according to the "Fire Classification" issued by the national standard revision.
  • the fire extinguishing device can realize network connection through the Internet of Things and can be intelligently controlled.
  • the determining module 203 analyzing the cause of the fire, specifically includes: extracting each frame image in the video; determining whether a preset substance appears in each frame image; when determining that a preset substance is present, according to The preset substance determines the type of fire. For example, when it is judged that wood, cotton, wool, hemp, paper fire, etc. appear in the fire video, it is determined that the type of fire is a type A fire; it is judged that gasoline, kerosene, crude oil, methanol, ethanol, asphalt, paraffin appear in the fire video.
  • the type of fire is a Class B fire; if there is a fire such as potassium, sodium, magnesium, aluminum-magnesium alloy in the fire video, etc., it is determined that the type of fire is a Class D fire; when it is judged that a cooking appliance appears in the fire video, it is determined The type of fire is a Class F fire.
  • the knife switch can be automatically powered off, thereby cutting off the line power in the house and controlling further deterioration of the fire.
  • the fire type is a Class F fire, that is, a cooking object fire in the cooking appliance
  • the cooking appliance can be controlled to automatically close.
  • Determining the type of fire according to the fire video and controlling the corresponding fire extinguishing device to extinguish the fire can effectively reduce the input operation of the user, especially when the user is in confusion and cannot input any operation, and can automatically determine the type of fire according to the fire video, and further Control the corresponding fire extinguishing device to extinguish the fire, effectively block the source of the fire and reduce the fire.
  • the intelligent fire alarm device 20 described in the present application implements a quick alarm through a fire APP and an automatic alarm by detecting whether a preset alarm condition is met.
  • the current environment of the terminal is first acquired.
  • the time of the fire alarm command sent to the alarm terminal is obtained, and according to the sending time, different optimal path plans are selected and provided to the quotation terminal, so that the rescue personnel of the alarm terminal can arrive at the fire scene in time and at the fastest speed. Rescue.
  • the prompt of the fire self-rescue measure is output to guide the user to self-rescue, which not only enables the user to self-rescue before the rescue personnel arrives, and strives for more survival opportunities, and can also determine the When the fire alarm command is invalid, the fire alarm command is not sent to the alarm terminal, thereby reducing waste of fire resources.
  • the type of fire is determined; and the corresponding fire extinguishing device is controlled according to the fire type to extinguish the fire, which can block the source of the fire and reduce the fire.
  • the above-described integrated unit implemented in the form of a software function module can be stored in a non-volatile readable storage medium.
  • the software function module is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a dual screen device, or a network device, etc.) or a processor to execute the embodiments of the present application. Part of the method.
  • FIG. 3 is a schematic diagram of a terminal according to Embodiment 5 of the present application.
  • the terminal 3 comprises a memory 31, at least one processor 32, computer readable instructions 33 stored in the memory 31 and operable on the at least one processor 32, and at least one communication bus 34.
  • the computer readable instructions 33 may be partitioned into one or more modules/units, the one or more modules/units being stored in the memory 31, and by the at least one processor 32 Execute to complete this application.
  • the one or more modules/units may be a series of computer readable instruction segments capable of performing a particular function, the instruction segments being used to describe the execution of the computer readable instructions 33 in the terminal 3.
  • the terminal 3 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server. It can be understood by those skilled in the art that the schematic diagram 3 is only an example of the terminal 3, does not constitute a limitation of the terminal 3, may include more or less components than the illustration, or combine some components, or different components.
  • the terminal 3 may further include an input/output device, a network access device, a bus, and the like.
  • the at least one processor 32 may be a central processing unit (CPU), or may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, and the like.
  • the processor 32 may be a microprocessor or the processor 32 may be any conventional processor or the like.
  • the processor 32 is a control center of the terminal 3, and connects the entire terminal 3 by using various interfaces and lines. section.
  • the memory 31 can be used to store the computer readable instructions 33 and/or modules/units by running or executing computer readable instructions and/or modules/units stored in the memory 31, and
  • the data stored in the memory 31 is called to implement various functions of the terminal 3.
  • the memory 31 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be Data (such as audio data, phone book, etc.) created according to the use of the terminal 3 is stored.
  • the memory 31 may include a high-speed random access memory, and may also include a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD).
  • a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD).
  • SMC smart memory card
  • SD Secure Digital
  • Card flash card, at least one disk storage device, flash device, or other volatile solid state storage device.
  • the present application implements all or part of the processes in the foregoing embodiments, and may also be implemented by computer-readable instructions, which may be stored in a non-volatile manner.
  • the computer readable instructions when executed by a processor, implement the steps of the various method embodiments described above.
  • the computer readable instructions comprise computer readable instruction code, which may be in the form of source code, an object code form, an executable file or some intermediate form or the like.
  • the computer readable medium can include any entity or device capable of carrying the computer readable instruction code, a recording medium, a USB flash drive, a removable hard drive, a magnetic disk, an optical disk, a computer memory, a read only memory (ROM, Read-Only) Memory), random access memory (RAM), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM Read Only memory
  • RAM random access memory
  • the contents of the non-volatile readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, Volatile readable media does not include electrical carrier signals and telecommunication signals.
  • the disclosed terminal and method may be implemented in other manners.
  • the terminal embodiment described above is only illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner.
  • each functional unit in each embodiment of the present application may be integrated in the same processing unit, or each unit may exist physically separately, or two or more units may be integrated in the same unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software function modules.

Abstract

一种智能火灾报警方法,包括:当接收到火灾报警指令时,获取多个感测器的感测信息,所述感测信息包括:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率;当根据所述感测信息确定所述火灾报警指令有效时,获取火灾现场的火灾视频,并将火灾报警指令发送至报警终端;获取所述火灾报警指令被发送至所述报警终端的时间;若发送在白天,则获取路况信息并向报警终端发送最优路径规划,若发送在夜晚,则获取路灯信息并向报警终端发送最优路径规划;当确定所述火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救。本申请还提供一种智能火灾报警终端及存储介质。能够解决用户报警困难,为救援人员提供更全面的火灾信息,同时进行实时路径规划,使救援人员能够最快到达火灾现场。

Description

智能火灾报警方法、终端及存储介质
本申请要求于2018年05月02日提交中国专利局,申请号为201810410205.5、发明名称为“智能火灾报警方法、终端及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及火灾救援技术领域,具体涉及一种智能火灾报警方法、终端及存储介质。
背景技术
随着现代科学技术的快速发展和人民生活水平的提高,城市化进程不断加快,人口密度持续增长,各种高楼大厦如雨后春笋般矗立起来。高档装修材料、自动化的电器和易燃易爆的化学类生活用品等进入并影响着我们的生活,然而这些高档用品和设备十分容易引起火灾。由于家庭生活空间一般处于密闭状态,发生火灾时很难被发现察觉,给人们的生命和财产带来了极大的威胁。
实践中发现,当发生火灾时,由于用户对火灾的恐惧以及对消防知识的缺乏,报警时很容易由于恐慌导致交流障碍,造成对灾情的误表达;此外,有些轻度的家庭火灾是可以人为的将火灾消灭在萌芽状态的,但用户仍然在第一时间拨打报警电话;其次,救援人员有可能无法快速准确的理解报警人员提供的地理信息和火势信息等,从而错过了抢险的最佳时机,或者难以选择最优的路线最快到达,对道路上的一些突发情况也难以规避。
众所周知,消防资源是及其有限的,出警需要一定的人力物力,上述一些错误的报警及障碍很容易浪费消防资源,不利于消防资源合理有效地利用。
发明内容
鉴于以上内容,有必要提出一种智能火灾报警方法、终端及存储介质,能够解决用户报警困难,为救援人员提供更全面的火灾信息,同时进行实时路径规划,使救援人员能够最快到达火灾现场。
本申请的第一方面提供一种智能火灾报警方法,所述方法包括:
当接收到火灾报警指令时,获取多个感测器的感测信息,所述感测信息包括:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率;
根据所述感测信息判断所述火灾报警指令是否有效;
当确定所述火灾报警指令有效时,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端;
获取所述火灾报警指令被发送至所述报警终端的时间;
若确定发送时间在白天,则实时获取道路的路况信息并向所述报警终端发送最优路径规划,若确定发送时间在夜晚,则实时获取道路的路灯信息并向所述报警终端发送最优路径规划;
当确定所述火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救。
本申请的第二方面提供一种终端,所述终端包括处理器和存储器,所述处理器用于执行所述存储器中存储的计算机可读指令时实现所述智能火灾报警方法。
本申请的第三方面提供一种非易失性可读存储介质,所述非易失性可读存储介质上存储有计算机可读指令,所述计算机可读指令被处理器执行时实现所述智能火灾报警方法。
本申请所述的智能火灾报警方法、终端及存储介质,通过火灾APP实现快速报警及通过侦测是否满足预设报警条件实现自动报警,在接收到报警指令时,先获取终端当前所处环境的感测信息,并根据所述感测信息进一步确定火灾报警指令有效后,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。能够避免错误报警,并在报警时提供更多更详细且准确的火灾信息,便于报警终端的救援人员及时做出准确的火灾救援决策。同时获取发送至所述报警终端的火灾报警指令的时间,根据发送时间,选择不同的最优路径规划提供给所述报价终端,以便报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援。
附图说明
图1是本申请实施例一提供的智能火灾报警方法的流程图。
图2是本申请实施例二提供的智能火灾报警装置的功能模块图。
图3是本申请实施例三提供的终端的示意图。
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施例对本申请进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请实施例的智能火灾报警方法应用在一个或者多个终端中。所述智能火灾报警方法也可以应用于由终端和通过网络与所述终端进行连接的服务器所构成的硬件环境中。网络包括但不限于:广域网、城域网或局域网。本申请实施例的智能火灾报警方法可以由服务器来执行,也可以由终端来执行;还可以是由服务器和终端共同执行。
所述对于需要进行智能火灾报警方法的终端,可以直接在终端上集成本申请的方法所提供的智能火灾报警功能,或者安装用于实现本申请的方法的客户端。再如,本申请所提供的方法还可以以软件开发工具包(Software Development Kit,SDK)的形式运行在服务器等设备上,以SDK的形式提供 智能火灾报警功能的接口,终端或其他设备通过提供的接口即可实现智能火灾报警功能。
实施例一
图1是本申请实施例一提供的智能火灾报警方法的流程图。根据不同的需求,该流程图中的执行顺序可以改变,某些步骤可以省略。
S11、接收火灾报警指令。
在一些实施例中,可以事先在终端上安装有火灾应用程序(下文简称为“火灾APP”),所述火灾APP可以用于检测火灾险情、获取火灾信息以及接收火灾报警指令等。当用户发现有火灾险情或者认为有必要进行火灾报警时,可以通过所述终端的火灾APP手动输入火灾报警指令。用户输入的火灾报警指令可以包括以下一种或多种的组合:输入预设文字信息,例如,输入文字“火灾”;输入预设语音信息,例如,输入语音“报警”;触摸所述火灾APP的预设按钮或图标等。
在一些实施例中,还可以事先在所述终端上集成至少一种感测器,所述感测器可以为诸如热敏电阻等的热感测器,或者为检测诸如一氧化碳、二氧化碳、氢气或NOx等可指示火灾的气体的气体感测器,热感测器和/或气体感测器所检测到的信号可以被所述终端用来确定环境中是否存在火灾。即,可以由所述终端根据所述至少一种感测器检测到的信号及预设报警条件判断是否触发火灾报警指令,当确定至少一种感测器检测到的信号满足所述预设报警条件时,终端自动触发火灾报警指令。
所述预设报警条件为预先设置的报警条件,可以包括,但不限于:当检测到空气中的温度超过预设第一温度阈值,且在预设第一时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;当检测到空气中的温度超过预设第二温度阈值时,确定满足所述预设报警条件;当检测到空气中的气体浓度超过预设第一气体浓度阈值,且在预设第二时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;当检测到空气中的气体浓度超过预设第二气体浓度阈值时,确定满足所述预设报警条件。其中,所述预设第一温度阈值小于所述预设第二温度阈值,所述预设第一气体浓度阈值小于所述预设第二气体浓度阈值。所述预设第一时间段可以与所述预设第二时间段相同,也可以不相同。
设置所述预设第一温度阈值(例如,20度)小于所述预设第二温度阈值(例如,50度)及所述预设第一时间段,是为了当空气中的温度超过所述预设第一温度阈值但并没有超过所述预设第二温度阈值时,给用户缓冲时间,由用户根据火灾现场情况自行决定是否输入报警指令或者何时输入报警指令,例如,当发生火灾现场的范围较小,且周围有较便利的灭火设备,用户能够在所述预设第一时间段内将火情控制或者灭火时,可选择不触发报警指令。同时,当空气中的温度在所述预设第一时间段(例如,1分钟)内,由所述预设第一温度阈值骤升到所述预设第二温度阈值,而用户未来得及或无法输入操作时,能够自动且快速的触发报警指令。本文对于设置所述预设第一气体浓度阈值(例如,20%)小于所述预设第二气体浓度阈值(例如,30%) 及所述预设第二时间段(例如,30秒钟)的目的同上述温度所述,在此不再详细赘述。
所述终端侦测到用户输入的火灾报警指令时及/或侦测到满足所述预设报警条件时,即接收到了所述火灾报警指令,本申请对所述火灾报警指令的获取方式不做任何具体限定。
S12、响应所述火灾报警指令,获取多个感测器的感测信息。
在一些实施例中,所述感测信息可以包括,但不限于:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率等。
在一些实施例中,所述多个感测器可以内置于终端中,也可以与终端通讯连接,所述多个感测器的感测信息可以通过以下方式获取:
1)通过读取内置于所述终端的至少一个感测器所检测到的信号来获取;
2)通过接收与所述终端通讯连接的外部装置来获取。
所述外部装置可以包括,但不限于:烟雾感测器、位置感测器、温度感测器、湿度感测器以及光敏感测器等。优选地,所述外部装置为烟雾感测器,当空气中的烟雾浓度为0.1mg/m 3时,烟雾感测器能够快速响应,响应时间小于30秒。
S13、根据所述感测信息判断所述火灾报警指令是否有效。
作为一种可选的实施方式,所述根据所述感测信息判断所述火灾报警指令是否有效可以包括:
分别将所述燃烧值及所述风向值映射到预设函数中得到映射后的燃烧值及映射后的风向值,其中,预设函数为S(x)=1/(1+e -x),x为映射前的变量值,S(x)为映射后的值;
比较所述映射后的燃烧值是否大于所述映射后的风向值;
若大于,则将所述映射后的燃烧值确定为最大值,否则,将所述映射后的风向值确定为最大值;
判断所述最大值是否大于预设火势趋势阈值;
若所述最大值大于或者等于所述预设火势趋势阈值,则确定所述火灾报警指令有效。
通过预设函数能将具有不同单位的燃烧值和风向值归一化到(0,1)的范围内且无量纲,然后结合可燃物的燃烧值及当前的风向值进一步判断终端当前所处的环境是否真的发生火灾,如果发生火灾且具有扩大的趋势,则确定所述火灾报警指令有效,能够避免用户无意识的启动火灾APP导致了触发火灾报警指令的发生。
作为另一种可选的实施方式,所述根据所述感测信息判断所述火灾报警指令是否有效可以包括:
对所述心跳值、所述血压值及所述呼吸频率进行比较;
确定所述心跳值、所述血压值及所述呼吸频率中的最小值;
判断所述最小值是否大于预设生理参数阈值,所述预设生理参数阈值为预先设置的生理参数,是表征用户处于意识不清醒状态的生理参数临界值;
若所述最小值大于或者等于所述预设生理参数阈值,则确定所述火灾报警指令有效。
通过结合用户的生理参数(如心跳、血压、呼吸频率)进一步判断用户当前是否处于意识不清醒状态,若用户当前处于意识不清醒状态,可以确定所述火灾报警指令有效。
当确定所述火灾报警指令有效时,执行步骤S14;当确定所述火灾报警指令无效时,执行步骤S15。
S14、获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。
在一些实施例中,可以通过预先设置的摄像头来拍摄火灾现场的实时火灾视频,所述摄像头可以对火灾现场进行360度无死角拍摄,所述摄像头可以与所述终端进行实时通信,所述终端能够实时获取所述摄像头拍摄的所述火灾视频并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。所述报警终端可以为报警平台中心,通常是119报警中心。
S15、输出火灾自救措施的提示,以引导用户进行自救。
当确定所述火灾报警指令无效时,可以输出火灾自救措施的提示,例如输入预设语音或者输入预设消防学习视频等以引导用户如何防止吸入过多浓烟、如何使用灭火设备、如何逃生等,能够使得用户在救援人员赶到之前进行自我救援,争取更多的生还机会。此外,当确定所述火灾报警指令无效时,不向所述报警终端发送火灾报警指令,还可以减少消防资源的浪费。
S16、获取所述火灾报警指令被发送至所述报警终端的时间。
终端将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端之后,获取当前发送的时间。
S17、若确定发送时间在白天,则实时获取道路的路况信息并向所述报警终端发送最优路径规划;若确定发送时间在夜晚,则实时获取道路的路灯信息并向所述报警终端发送最优路径规划。
通常,如果在白天发送火灾报警指令,报警终端一侧虽有足够的救援人员分配,但白天时,道路上人流量及车流量较大,有可能因为道路拥堵造成相关人员无法及时的赶往火灾现场。而如果在夜晚发送火灾报警指令,由于夜晚的不便及救援人员配备不充足等问题,很难在第一时间调配大量的执行人员执行救援工作,因而为了适应各种情况,所述终端可以根据火灾报警指令的发送时间来做出不同的操作。
如果所述火灾报警指令的发送时间是在白天,终端可以获取与报警终端之间的实时路况信息,所述路况信息包括:道路的质量信息及道路的拥堵信息,获取路面质量好、拥堵少的道路作为最优路径规划,以便报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援,从而减少人员伤亡及财产损失。如果所述火灾报警指令的发送时间是在夜晚,还需要考虑额外的外界因素-亮度,终端则可以获取有照明设施且在正常工作的路段作为最优路径规划,不仅便于报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援,还能确保救援人员在赶往火灾现场的路程中安全驾驶。
作为一种可选的实施方式,在接收到火灾报警指令时,所述方法还可以进一步包括:输出预设提示信息以提示用户输入火灾现场被困人数、火灾发生的原因;将用户输入的被困人数及火灾发生的原因发送至所述报警终端。
所述预设提示信息可以是以文字形式进行提示,也可以是以语音形式进行提示,用户根据所述预设提示信息输入火灾现场被困人数及火灾发生的原因(例如,可燃物自然、人为纵火、线路老化等),并在接收到用户输入的提示信息后将携带有所述火灾现场被困人数、所述火灾发生的原因、所述火灾视频以及所述感测信息的火灾报警指令发送至所述报警终端,有利于所述报警终端的救援人员能够获得更多更详细且准确的火灾信息,便于报警终端的救援人员及时做出准确的火灾救援决策。
作为一种可选的实施方式,当确定所述火灾报警指令有效时,所述方法还可以包括:确定火灾现场的火灾等级;判断所述火灾等级是否大于预设火灾等级阈值;当确定所述火灾等级大于或者等于所述预设火灾等级阈值时,向用户房屋所属的管理人员的终端发送火灾告警信息。
所述火灾告警信息可以包括:所述终端当前所处的地理位置、火灾等级及所述火灾现场的火灾视频。所述预设火灾等级阈值为预先设置的火灾等级,是区分火灾现场的火灾等级为高等级或低等级的临界值。当火灾现场的火灾等级大于或者等于所述预设火灾等级阈值时,确定火灾等级为高等级,表明火灾现场的火灾较为严重,火灾现场的烟雾浓度较高、温度较高、火焰辐射较大,火灾危险程度较高,破坏力较强;当火灾现场的火灾等级小于所述预设火灾等级阈值时,确定火灾等级为低等级,表明火灾现场的烟雾浓度较低、温度较低、火焰辐射较小,火灾危险程度较低,破坏力较弱。
在一些实施例中,所述确定火灾现场的火灾等级具体可以包括:根据预设计算规则对所述烟雾浓度值、温度值以及火焰值进行加权求和,得到所述火灾现场的火灾等级,其中,所述预设计算规则为:yi=(e xi-e -xi)/(e xi+e -xi),S=a1*|y1|+a2*|y2|+a3*|y3|,且a1+a2+a3=1,xi代表所述烟雾浓度值、温度值以及火焰值,a1为预先对烟雾浓度值设置的权重值,a2为预先对温度值设置的权重值,a3为预先对火焰值设置的权重值,S为计算得到的火灾等级。yi=(e xi-e -xi)/(e xi+e -xi)的目的是将所述烟雾浓度值、温度值以及火焰值归一化到(-1,1)的范围内,再通过取绝对值进一步归一化到(0,1)的范围内。
当确定所述火灾等级为高等级时,即在确定火灾现场的火灾比较严重的情况下,向房屋所属的管理人员的终端发送火灾告警信息,能够有利于房屋所属的管理人员在所述报警终端的救援人员到达火灾现场之前,及时地进行前期的救援工作,尽最大可能的争取一切救援机会,避免报警终端的救援人员出警不及时而耽误救援。
作为一种可选的实施方式,在所述获取火灾现场的火灾视频之后,所述方法还可以进一步包括:根据所述火灾视频分析火灾发生的原因,确定火灾类型;根据所述火灾类型控制对应的灭火装置进行灭火。
在一些实施例中,终端可以预先存储多个火灾类型及对应的灭火装置。 所述火灾类型可以根据国家标准修订发布的《火灾分类》进行设置。所述灭火装置可以通过物联网实现网络连接,并可以智能控制。
所述根据所述火灾视频分析火灾发生的原因具体包括:提取视频中的每一帧图像;判断每一帧图像中是否出现了预设物质;当确定出现了预设物质时,根据所述预设物质确定火灾类型。例如,判断火灾视频中出现了如木材、棉、毛、麻、纸张火灾等时,确定火灾类型为A类火灾;判断火灾视频中出现了如汽油、煤油、原油、甲醇、乙醇、沥青、石蜡火灾等时,确定火灾类型为B类火灾;判断火灾视频中出现了如钾、钠、镁、铝镁合金火灾等,确定火灾类型为D类火灾;判断火灾视频中出现了烹饪器具时,确定火灾类型为F类火灾。
举例来说,当确定火灾类型为E类火灾,即带电火灾时,则可以控制闸刀开关自动断电,从而切断房屋内的线路电源,控制火灾的进一步恶化。又如,当确定火灾类型为F类火灾,即烹饪器具内的烹饪物火灾时,则可以控制烹饪器具自动关闭。
根据所述火灾视频确定火灾类型并控制对应的灭火装置进行灭火,能够有效的减少用户的输入操作,尤其是在用户处于意识模糊无法输入任何操作时,能够自动根据火灾视频确定火灾类型,并进而控制相应的灭火装置进行灭火,有效的阻断了火灾发生的源头,降低火势。
综上所述,本申请所述的智能火灾报警方法,通过火灾APP实现快速报警及通过侦测是否满足预设报警条件实现自动报警,在接收到报警指令时,先获取终端当前所处环境的感测信息,并根据所述感测信息进一步确定火灾报警指令有效后,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。能够避免错误报警,并在报警时提供更多更详细且准确的火灾信息,便于报警终端的救援人员及时做出准确的火灾救援决策。同时获取发送至所述报警终端的火灾报警指令的时间,根据发送时间,选择不同的最优路径规划提供给所述报价终端,以便报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援。
其次,在确定火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救,不仅能够使得用户在救援人员赶到之前进行自我救援,争取更多的生还机会,还可在确定所述火灾报警指令无效时,不向所述报警终端发送火灾报警指令,减少消防资源的浪费。另外,根据所述火灾视频分析火灾发生的原因,确定火灾类型;根据所述火灾类型控制对应的灭火装置进行灭火,能够阻断火灾发生的源头,降低火势。
以上所述,仅是本申请的具体实施方式,但本申请的保护范围并不局限于此,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。
下面结合第2至3图,分别对实现上述智能火灾报警方法的终端的功能模块及硬件结构进行介绍。
实施例二
图2为本申请智能火灾报警装置较佳实施例中的功能模块图。
在一些实施例中,所述智能火灾报警装置20运行于终端中。所述智能火灾报警装置20可以包括多个由程序代码段所组成的功能模块。所述智能火灾报警装置20中的各个程序段的程序代码可以存储于存储器中,并由至少一个处理器所执行,以执行(详见图1及其相关描述)对火灾的智能报警。
本实施例中,所述终端的智能火灾报警装置20根据其所执行的功能,可以被划分为多个功能模块。所述功能模块可以包括:接收模块201、获取模块202、判断模块203、发送模块204、提示模块205、路径规划模块206及控制模块207。本申请所称的模块是指一种能够被至少一个处理器所执行并且能够完成固定功能的一系列计算机可读指令段,其存储在存储器中。在一些实施例中,关于各模块的功能将在后续的实施例中详述。
接收模块201,用于接收火灾报警指令。
在一些实施例中,可以事先在终端上安装有火灾应用程序(下文简称为“火灾APP”),所述火灾APP可以用于检测火灾险情、获取火灾信息以及接收火灾报警指令等。当用户发现有火灾险情或者认为有必要进行火灾报警时,可以通过所述终端的火灾APP手动输入火灾报警指令。用户输入的火灾报警指令可以包括以下一种或多种的组合:输入预设文字信息,例如,输入文字“火灾”;输入预设语音信息,例如,输入语音“报警”;触摸所述火灾APP的预设按钮或图标等。
在一些实施例中,还可以事先在所述终端上集成至少一种感测器,所述感测器可以为诸如热敏电阻等的热感测器,或者为检测诸如一氧化碳、二氧化碳、氢气或NOx等可指示火灾的气体的气体感测器,热感测器和/或气体感测器所检测到的信号可以被所述终端用来确定环境中是否存在火灾。即,可以由所述终端根据所述至少一种感测器检测到的信号及预设报警条件判断是否触发火灾报警指令,当确定至少一种感测器检测到的信号满足所述预设报警条件时,终端自动触发火灾报警指令。
所述预设报警条件为预先设置的报警条件,可以包括,但不限于:当检测到空气中的温度超过预设第一温度阈值,且在预设第一时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;当检测到空气中的温度超过预设第二温度阈值时,确定满足所述预设报警条件;当检测到空气中的气体浓度超过预设第一气体浓度阈值,且在预设第二时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;当检测到空气中的气体浓度超过预设第二气体浓度阈值时,确定满足所述预设报警条件。其中,所述预设第一温度阈值小于所述预设第二温度阈值,所述预设第一气体浓度阈值小于所述预设第二气体浓度阈值。所述预设第一时间段可以与所述预设第二时间段相同,也可以不相同。
设置所述预设第一温度阈值(例如,20度)小于所述预设第二温度阈值(例如,50度)及所述预设第一时间段,是为了当空气中的温度超过所述预设第一温度阈值但并没有超过所述预设第二温度阈值时,给用户缓冲时间,由用户根据火灾现场情况自行决定是否输入报警指令或者何时输入报警指令,例如,当发生火灾现场的范围较小,且周围有较便利的灭火设备,用户 能够在所述预设第一时间段内将火情控制或者灭火时,可选择不触发报警指令。同时,当空气中的温度在所述预设第一时间段(例如,1分钟)内,由所述预设第一温度阈值骤升到所述预设第二温度阈值,而用户未来得及或无法输入操作时,能够自动且快速的触发报警指令。本文对于设置所述预设第一气体浓度阈值(例如,20%)小于所述预设第二气体浓度阈值(例如,30%)及所述预设第二时间段(例如,30秒钟)的目的同上述温度所述,在此不再详细赘述。
所述接收模块201侦测到用户输入的火灾报警指令时及/或侦测到满足所述预设报警条件时,即接收到了所述火灾报警指令,本申请对所述火灾报警指令的获取方式不做任何具体限定。
获取模块202,用于响应所述火灾报警指令,获取多个感测器的感测信息。
在一些实施例中,所述感测信息可以包括,但不限于:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率等。
在一些实施例中,所述多个感测器可以内置于终端中,也可以与终端通讯连接,所述多个感测器的感测信息可以通过以下方式获取:
1)通过读取内置于所述终端的至少一个感测器所检测到的信号来获取;
2)通过接收与所述终端通讯连接的外部装置来获取。
所述外部装置可以包括,但不限于:烟雾感测器、位置感测器、温度感测器、湿度感测器以及光敏感测器等。优选地,所述外部装置为烟雾感测器,当空气中的烟雾浓度为0.1mg/m3时,烟雾感测器能够快速响应,响应时间小于30秒。
判断模块203,用于根据所述感测信息判断所述火灾报警指令是否有效。
作为一种可选的实施方式,所述判断模块203根据所述感测信息判断所述火灾报警指令是否有效可以包括:
分别将所述燃烧值及所述风向值映射到预设函数中得到映射后的燃烧值及映射后的风向值,其中,预设函数为S(x)=1/(1+e -x),x为映射前的变量值,S(x)为映射后的值;
比较所述映射后的燃烧值是否大于所述映射后的风向值;
若大于,则将所述映射后的燃烧值确定为最大值,否则,将所述映射后的风向值确定为最大值;
判断所述最大值是否大于预设火势趋势阈值;
若所述最大值大于或者等于所述预设火势趋势阈值,则确定所述火灾报警指令有效。
通过预设函数能将具有不同单位的燃烧值和风向值归一化到(0,1)的范围内且无量纲,然后结合可燃物的燃烧值及当前的风向值进一步判断终端当前所处的环境是否真的发生火灾,如果发生火灾且具有扩大的趋势,则确定所述火灾报警指令有效,能够避免用户无意识的启动火灾APP导致了触发火灾报警指令的发生。
作为另一种可选的实施方式,所述判断模块203根据所述感测信息判断所述火灾报警指令是否有效可以包括:
对所述心跳值、所述血压值及所述呼吸频率进行比较;
确定所述心跳值、所述血压值及所述呼吸频率中的最小值;
判断所述最小值是否大于预设生理参数阈值,所述预设生理参数阈值为预先设置的生理参数,是表征用户处于意识不清醒状态的生理参数临界值;
若所述最小值大于或者等于所述预设生理参数阈值,则确定所述火灾报警指令有效。
通过结合用户的生理参数(如心跳、血压、呼吸频率)进一步判断用户当前是否处于意识不清醒状态,若用户当前处于意识不清醒状态,可以确定所述火灾报警指令有效。
所述获取模块202,用于当所述判断模块203确定所述火灾报警指令有效时获取火灾现场的火灾视频。
发送模块204将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。
在一些实施例中,可以通过预先设置的摄像头来拍摄火灾现场的实时火灾视频,所述摄像头可以对火灾现场进行360度无死角拍摄,所述摄像头可以与所述终端进行实时通信,所述终端能够实时获取所述摄像头拍摄的所述火灾视频并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。所述报警终端可以为报警平台中心,通常是119报警中心。
提示模块205,用于当所述判断模块203确定所述火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救。
当确定所述火灾报警指令无效时,可以输出火灾自救措施的提示,例如输入预设语音或者输入预设消防学习视频等以引导用户如何防止吸入过多浓烟、如何使用灭火设备、如何逃生等,能够使得用户在救援人员赶到之前进行自我救援,争取更多的生还机会。此外,当确定所述火灾报警指令无效时,不向所述报警终端发送火灾报警指令,还可以减少消防资源的浪费。
所述获取模块202,还用于在所述发送模块204将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端之后,获取所述火灾报警指令被发送至所述报警终端的时间。
路径规划模块206,用于在所述获取模块202确定发送时间在白天后,实时获取道路的路况信息并向所述报警终端发送最优路径规划。所述路径规划模块206,还用于在所述获取模块202确定发送时间在夜晚后,实时获取道路的路灯信息并向所述报警终端发送最优路径规划。
通常,如果在白天发送火灾报警指令,报警终端一侧虽有足够的救援人员分配,但白天时,道路上人流量及车流量较大,有可能因为道路拥堵造成相关人员无法及时的赶往火灾现场。而如果在夜晚发送火灾报警指令,由于夜晚的不便及救援人员配备不充足等问题,很难在第一时间调配大量的执行人员执行救援工作,因而为了适应各种情况,所述终端可以根据火灾报警指令的发送时间来做出不同的操作。
如果所述火灾报警指令的发送时间是在白天,终端可以获取与报警终端之间的实时路况信息,所述路况信息包括:道路的质量信息及道路的拥堵信息,获取路面质量好、拥堵少的道路作为最优路径规划,以便报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援,从而减少人员伤亡及财产损失。如果所述火灾报警指令的发送时间是在夜晚,还需要考虑额外的外界因素-亮度,终端则可以获取有照明设施且在正常工作的路段作为最优路径规划,不仅便于报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援,还能确保救援人员在赶往火灾现场的路程中安全驾驶。
作为一种可选的实施方式,在所述接收模块201接收到火灾报警指令时,所述提示模块205还用于:输出预设提示信息以提示用户输入火灾现场被困人数、火灾发生的原因;所述发送模块204还用于将用户输入的被困人数及火灾发生的原因发送至所述报警终端。
所述预设提示信息可以是以文字形式进行提示,也可以是以语音形式进行提示,用户根据所述预设提示信息输入火灾现场被困人数及火灾发生的原因(例如,可燃物自然、人为纵火、线路老化等),并在接收到用户输入的提示信息后将携带有所述火灾现场被困人数、所述火灾发生的原因、所述火灾视频以及所述感测信息的火灾报警指令发送至所述报警终端,有利于所述报警终端的救援人员能够获得更多更详细且准确的火灾信息,便于报警终端的救援人员及时做出准确的火灾救援决策。
作为一种可选的实施方式,当所述判断模块203确定所述火灾报警指令有效时,所述判断模块203还用于:确定火灾现场的火灾等级及判断所述火灾等级是否大于预设火灾等级阈值;所述发送模块204还用于:当所述判断模块203确定所述火灾等级大于或者等于所述预设火灾等级阈值时,向用户房屋所属的管理人员的终端发送火灾告警信息。
所述火灾告警信息可以包括:所述终端当前所处的地理位置、火灾等级及所述火灾现场的火灾视频。所述预设火灾等级阈值为预先设置的火灾等级,是区分火灾现场的火灾等级为高等级或低等级的临界值。当火灾现场的火灾等级大于或者等于所述预设火灾等级阈值时,确定火灾等级为高等级,表明火灾现场的火灾较为严重,火灾现场的烟雾浓度较高、温度较高、火焰辐射较大,火灾危险程度较高,破坏力较强;当火灾现场的火灾等级小于所述预设火灾等级阈值时,确定火灾等级为低等级,表明火灾现场的烟雾浓度较低、温度较低、火焰辐射较小,火灾危险程度较低,破坏力较弱。
在一些实施例中,所述确定火灾现场的火灾等级具体可以包括:根据预设计算规则对所述烟雾浓度值、温度值以及火焰值进行加权求和,得到所述火灾现场的火灾等级,其中,所述预设计算规则为:yi=(e xi-e -xi)/(e xi+e -xi),S=a1*|y1|+a2*|y2|+a3*|y3|,且a1+a2+a3=1,xi代表所述烟雾浓度值、温度值以及火焰值,a1为预先对烟雾浓度值设置的权重值,a2为预先对温度值设置的权重值,a3为预先对火焰值设置的权重值,S为计算得到的火灾等级。yi=(e xi-e -xi)/(e xi+e -xi)的目的是将所述烟雾浓度值、温度值以及火焰值归一化 到(-1,1)的范围内,再通过取绝对值进一步归一化到(0,1)的范围内。
当确定所述火灾等级为高等级时,即在确定火灾现场的火灾比较严重的情况下,向房屋所属的管理人员的终端发送火灾告警信息,能够有利于房屋所属的管理人员在所述报警终端的救援人员到达火灾现场之前,及时地进行前期的救援工作,尽最大可能的争取一切救援机会,避免报警终端的救援人员出警不及时而耽误救援。
作为一种可选的实施方式,在所述获取模块202获取火灾现场的火灾视频之后,所述判断模块203还用于:根据所述火灾视频分析火灾发生的原因,确定火灾类型;控制模块207根据所述火灾类型控制对应的灭火装置进行灭火。
在一些实施例中,终端可以预先存储多个火灾类型及对应的灭火装置。所述火灾类型可以根据国家标准修订发布的《火灾分类》进行设置。所述灭火装置可以通过物联网实现网络连接,并可以智能控制。
所述判断模块203根据所述火灾视频分析火灾发生的原因具体包括:提取视频中的每一帧图像;判断每一帧图像中是否出现了预设物质;当确定出现了预设物质时,根据所述预设物质确定火灾类型。例如,判断火灾视频中出现了如木材、棉、毛、麻、纸张火灾等时,确定火灾类型为A类火灾;判断火灾视频中出现了如汽油、煤油、原油、甲醇、乙醇、沥青、石蜡火灾等时,确定火灾类型为B类火灾;判断火灾视频中出现了如钾、钠、镁、铝镁合金火灾等,确定火灾类型为D类火灾;判断火灾视频中出现了烹饪器具时,确定火灾类型为F类火灾。
举例来说,当确定火灾类型为E类火灾,即带电火灾时,则可以控制闸刀开关自动断电,从而切断房屋内的线路电源,控制火灾的进一步恶化。又如,当确定火灾类型为F类火灾,即烹饪器具内的烹饪物火灾时,则可以控制烹饪器具自动关闭。
根据所述火灾视频确定火灾类型并控制对应的灭火装置进行灭火,能够有效的减少用户的输入操作,尤其是在用户处于意识模糊无法输入任何操作时,能够自动根据火灾视频确定火灾类型,并进而控制相应的灭火装置进行灭火,有效的阻断了火灾发生的源头,降低火势。
综上所述,本申请所述的智能火灾报警装置20,通过火灾APP实现快速报警及通过侦测是否满足预设报警条件实现自动报警,在接收到报警指令时,先获取终端当前所处环境的感测信息,并根据所述感测信息进一步确定火灾报警指令有效后,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端。能够避免错误报警,并在报警时提供更多更详细且准确的火灾信息,便于报警终端的救援人员及时做出准确的火灾救援决策。同时获取发送至所述报警终端的火灾报警指令的时间,根据发送时间,选择不同的最优路径规划提供给所述报价终端,以便报警终端的救援人员能以最快的速度及时地到达火灾现场进行救援。
其次,在确定火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救,不仅能够使得用户在救援人员赶到之前进行自我救援,争取 更多的生还机会,还可在确定所述火灾报警指令无效时,不向所述报警终端发送火灾报警指令,减少消防资源的浪费。另外,根据所述火灾视频分析火灾发生的原因,确定火灾类型;根据所述火灾类型控制对应的灭火装置进行灭火,能够阻断火灾发生的源头,降低火势。
上述以软件功能模块的形式实现的集成的单元,可以存储在一个非易失性可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,双屏设备,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分。
实施例三
图3为本申请实施例五提供的终端的示意图。
所述终端3包括:存储器31、至少一个处理器32、存储在所述存储器31中并可在所述至少一个处理器32上运行的计算机可读指令33及至少一条通讯总线34。
所述至少一个处理器32执行所述计算机可读指令33时实现上述智能火灾报警方法实施例中的步骤。
示例性的,所述计算机可读指令33可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器31中,并由所述至少一个处理器32执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机可读指令段,该指令段用于描述所述计算机可读指令33在所述终端3中的执行过程。
所述终端3可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。本领域技术人员可以理解,所述示意图3仅仅是终端3的示例,并不构成对终端3的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端3还可以包括输入输出设备、网络接入设备、总线等。
所述至少一个处理器32可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。该处理器32可以是微处理器或者该处理器32也可以是任何常规的处理器等,所述处理器32是所述终端3的控制中心,利用各种接口和线路连接整个终端3的各个部分。
所述存储器31可用于存储所述计算机可读指令33和/或模块/单元,所述处理器32通过运行或执行存储在所述存储器31内的计算机可读指令和/或模块/单元,以及调用存储在存储器31内的数据,实现所述终端3的各种功能。所述存储器31可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端3的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器31可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart  Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
所述终端3集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个非易失性可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性可读存储介质中,该计算机可读指令在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机可读指令包括计算机可读指令代码,所述计算机可读指令代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机可读指令代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述非易失性可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,非易失性可读介质不包括电载波信号和电信信号。
在本申请所提供的几个实施例中,应该理解到,所揭露的终端和方法,可以通过其它的方式实现。例如,以上所描述的终端实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
另外,在本申请各个实施例中的各功能单元可以集成在相同处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在相同单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或,单数不排除复数。系统权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神范围。

Claims (20)

  1. 一种智能火灾报警方法,其特征在于,所述方法包括:
    当接收到火灾报警指令时,获取多个感测器的感测信息,所述感测信息包括:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率;
    根据所述感测信息判断所述火灾报警指令是否有效;
    当确定所述火灾报警指令有效时,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端;
    获取所述火灾报警指令被发送至所述报警终端的时间;
    若确定发送时间在白天,则实时获取道路的路况信息并向所述报警终端发送最优路径规划,若确定发送时间在夜晚,则实时获取道路的路灯信息并向所述报警终端发送最优路径规划;
    当确定所述火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救。
  2. 如权利要求1所述的方法,其特征在于,所述接收火灾报警指令包括:侦测到火灾应用程序接收到用户输入的预设指令,或者确定至少一种感测器检测到的信号满足预设报警条件,
    所述预设报警条件包括以下一种或多种的组合:
    当检测到空气中的温度超过预设第一温度阈值,且在预设第一时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;
    当检测到空气中的温度超过预设第二温度阈值时,确定满足所述预设报警条件;
    当检测到空气中的气体浓度超过预设第一气体浓度阈值,且在预设第二时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;
    当检测到空气中的气体浓度超过预设第二气体浓度阈值时,确定满足所述预设报警条件;
    其中,所述预设第一温度阈值小于所述预设第二温度阈值,所述预设第一气体浓度阈值小于所述预设第二气体浓度阈值。
  3. 如权利要求1所述的方法,其特征在于,所述根据所述感测信息判断所述火灾报警指令是否有效包括:
    分别将所述燃烧值及所述风向值映射到预设函数中得到映射后的燃烧值及映射后的风向值,其中,预设函数为S(x)=1/(1+e -x),x为映射前的变量值,S(x)为映射后的值;
    比较所述映射后的燃烧值是否大于所述映射后的风向值;
    若大于,则将所述映射后的燃烧值确定为最大值,否则,将所述映射后的风向值确定为最大值;
    判断所述最大值是否大于预设火势趋势阈值;
    若所述最大值大于或者等于所述预设火势趋势阈值,则确定所述火灾报警指令有效。
  4. 如权利要求1所述的方法,其特征在于,所述根据所述感测信息判断所述火灾报警指令是否有效包括:
    对所述心跳值、所述血压值及所述呼吸频率进行比较;
    确定所述心跳值、所述血压值及所述呼吸频率中的最小值;
    判断所述最小值是否大于预设生理参数阈值,所述预设生理参数阈值为表征用户处于意识不清醒状态的生理参数临界值;
    若所述最小值大于或者等于所述预设生理参数阈值,则确定所述火灾报警指令有效。
  5. 如权利要求1所述的方法,其特征在于,在所述接收到火灾报警指令之后,所述方法还包括:
    输出预设提示信息以提示用户输入火灾现场被困人数、火灾发生的原因;
    接收并将用户输入的被困人数及火灾发生的原因发送至所述报警终端。
  6. 如权利要求1所述的方法,其特征在于,当确定所述火灾报警指令有效时,所述方法还包括:
    确定火灾现场的火灾等级;
    判断所述火灾等级是否大于预设火灾等级阈值;
    当确定所述火灾等级大于或者等于所述预设火灾等级阈值时,向用户房屋所属的管理人员的终端发送火灾告警信息。
  7. 如权利要求6所述的方法,其特征在于,所述确定火灾现场的火灾等级包括:
    根据预设计算规则对所述烟雾浓度值、温度值以及火焰值进行加权求和,得到所述火灾现场的火灾等级,其中,所述预设计算规则为:yi=(e xi-e -xi)/(e xi+e -xi),S=a1*|y1|+a2*|y2|+a3*|y3|,且a1+a2+a3=1,xi代表所述烟雾浓度值、温度值以及火焰值,a1为预先对烟雾浓度值设置的权重值,a2为预先对温度值设置的权重值,a3为预先对火焰值设置的权重值,S为计算得到的火灾等级。
  8. 如权利要求1至7任一项所述的方法,其特征在于,在所述获取火灾现场的火灾视频之后,所述方法还包括:
    根据所述火灾视频分析火灾发生的原因,确定火灾类型;
    根据所述火灾类型控制对应的灭火装置进行灭火。
  9. 一种终端,其特征在于,所述终端包括处理器和存储器,所述处理器用于执行所述存储器中存储的计算机可读指令时实现如下步骤:
    当接收到火灾报警指令时,获取多个感测器的感测信息,所述感测信息包括:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率;
    根据所述感测信息判断所述火灾报警指令是否有效;
    当确定所述火灾报警指令有效时,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端;
    获取所述火灾报警指令被发送至所述报警终端的时间;
    若确定发送时间在白天,则实时获取道路的路况信息并向所述报警终端发送最优路径规划,若确定发送时间在夜晚,则实时获取道路的路灯信息并向所述报警终端发送最优路径规划;
    当确定所述火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救。
  10. 如权利要求9所述的终端,其特征在于,所述接收火灾报警指令包括:侦测到火灾应用程序接收到用户输入的预设指令,或者确定至少一种感测器检测到的信号满足预设报警条件,
    所述预设报警条件包括以下一种或多种的组合:
    当检测到空气中的温度超过预设第一温度阈值,且在预设第一时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;
    当检测到空气中的温度超过预设第二温度阈值时,确定满足所述预设报警条件;
    当检测到空气中的气体浓度超过预设第一气体浓度阈值,且在预设第二时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;
    当检测到空气中的气体浓度超过预设第二气体浓度阈值时,确定满足所述预设报警条件;
    其中,所述预设第一温度阈值小于所述预设第二温度阈值,所述预设第一气体浓度阈值小于所述预设第二气体浓度阈值。
  11. 如权利要求9所述的终端,其特征在于,所述根据所述感测信息判断所述火灾报警指令是否有效包括:
    分别将所述燃烧值及所述风向值映射到预设函数中得到映射后的燃烧值及映射后的风向值,其中,预设函数为S(x)=1/(1+e -x),x为映射前的变量值,S(x)为映射后的值;
    比较所述映射后的燃烧值是否大于所述映射后的风向值;
    若大于,则将所述映射后的燃烧值确定为最大值,否则,将所述映射后的风向值确定为最大值;
    判断所述最大值是否大于预设火势趋势阈值;
    若所述最大值大于或者等于所述预设火势趋势阈值,则确定所述火灾报警指令有效。
  12. 如权利要求9所述的终端,其特征在于,所述根据所述感测信息判断所述火灾报警指令是否有效包括:
    对所述心跳值、所述血压值及所述呼吸频率进行比较;
    确定所述心跳值、所述血压值及所述呼吸频率中的最小值;
    判断所述最小值是否大于预设生理参数阈值,所述预设生理参数阈值为表征用户处于意识不清醒状态的生理参数临界值;
    若所述最小值大于或者等于所述预设生理参数阈值,则确定所述火灾报警指令有效。
  13. 如权利要求9所述的终端,其特征在于,在所述接收到火灾报警指令之后,所述处理器还用于执行所述计算机可读指令以实现以下步骤:
    输出预设提示信息以提示用户输入火灾现场被困人数、火灾发生的原因;
    接收并将用户输入的被困人数及火灾发生的原因发送至所述报警终端。
  14. 如权利要求9所述的终端,其特征在于,当确定所述火灾报警指令有效时,所述处理器还用于执行所述计算机可读指令以实现以下步骤:
    确定火灾现场的火灾等级;
    判断所述火灾等级是否大于预设火灾等级阈值;
    当确定所述火灾等级大于或者等于所述预设火灾等级阈值时,向用户房屋所属的管理人员的终端发送火灾告警信息。
  15. 如权利要求14所述的终端,其特征在于,所述确定火灾现场的火灾等级包括:
    根据预设计算规则对所述烟雾浓度值、温度值以及火焰值进行加权求和,得到所述火灾现场的火灾等级,其中,所述预设计算规则为:yi=(e xi-e -xi)/(e xi+e -xi),S=a1*|y1|+a2*|y2|+a3*|y3|,且a1+a2+a3=1,xi代表所述烟雾浓度值、温度值以及火焰值,a1为预先对烟雾浓度值设置的权重值,a2为预先对温度值设置的权重值,a3为预先对火焰值设置的权重值,S为计算得到的火灾等级。
  16. 一种非易失性可读存储介质,所述非易失性可读存储介质上存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现如下步骤:
    当接收到火灾报警指令时,获取多个感测器的感测信息,所述感测信息包括:可燃物的燃烧值、风向值、火灾现场的烟雾浓度值、温度值、火焰值、用户的心跳值、血压值及呼吸频率;
    根据所述感测信息判断所述火灾报警指令是否有效;
    当确定所述火灾报警指令有效时,获取火灾现场的火灾视频,并将携带有所述火灾视频以及所述感测信息的火灾报警指令发送至报警终端;
    获取所述火灾报警指令被发送至所述报警终端的时间;
    若确定发送时间在白天,则实时获取道路的路况信息并向所述报警终端发送最优路径规划,若确定发送时间在夜晚,则实时获取道路的路灯信息并向所述报警终端发送最优路径规划;
    当确定所述火灾报警指令无效时,输出火灾自救措施的提示,以引导用户进行自救。
  17. 如权利要求16所述的存储介质,其特征在于,所述接收火灾报警指令包括:侦测到火灾应用程序接收到用户输入的预设指令,或者确定至少一种感测器检测到的信号满足预设报警条件,
    所述预设报警条件包括以下一种或多种的组合:
    当检测到空气中的温度超过预设第一温度阈值,且在预设第一时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;
    当检测到空气中的温度超过预设第二温度阈值时,确定满足所述预设报警条件;
    当检测到空气中的气体浓度超过预设第一气体浓度阈值,且在预设第二时间段内侦测到用户的输入操作时,确定满足所述预设报警条件;
    当检测到空气中的气体浓度超过预设第二气体浓度阈值时,确定满足所述预设报警条件;
    其中,所述预设第一温度阈值小于所述预设第二温度阈值,所述预设第一气体浓度阈值小于所述预设第二气体浓度阈值。
  18. 如权利要求16所述的存储介质,其特征在于,所述根据所述感测信息判断所述火灾报警指令是否有效包括:
    分别将所述燃烧值及所述风向值映射到预设函数中得到映射后的燃烧值及映射后的风向值,其中,预设函数为S(x)=1/(1+e -x),x为映射前的变量值,S(x)为映射后的值;
    比较所述映射后的燃烧值是否大于所述映射后的风向值;
    若大于,则将所述映射后的燃烧值确定为最大值,否则,将所述映射后的风向值确定为最大值;
    判断所述最大值是否大于预设火势趋势阈值;
    若所述最大值大于或者等于所述预设火势趋势阈值,则确定所述火灾报警指令有效。
  19. 如权利要求16所述的存储介质,其特征在于,当确定所述火灾报警指令有效时,所述计算机可读指令被处理器执行时还用以实现以下步骤:
    确定火灾现场的火灾等级;
    判断所述火灾等级是否大于预设火灾等级阈值;
    当确定所述火灾等级大于或者等于所述预设火灾等级阈值时,向用户房屋所属的管理人员的终端发送火灾告警信息。
  20. 如权利要求19所述的存储介质,其特征在于,所述确定火灾现场的火灾等级包括:
    根据预设计算规则对所述烟雾浓度值、温度值以及火焰值进行加权求和,得到所述火灾现场的火灾等级,其中,所述预设计算规则为:yi=(e xi-e -xi)/(e xi+e -xi),S=a1*|y1|+a2*|y2|+a3*|y3|,且a1+a2+a3=1,xi代表所述烟雾浓度值、温度值以及火焰值,a1为预先对烟雾浓度值设置的权重值,a2为预先对温度值设置的权重值,a3为预先对火焰值设置的权重值,S为计算得到的火灾等级。
PCT/CN2018/100158 2018-05-02 2018-08-13 智能火灾报警方法、终端及存储介质 WO2019210603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810410205.5A CN108648402B (zh) 2018-05-02 2018-05-02 智能火灾报警方法、终端及存储介质
CN201810410205.5 2018-05-02

Publications (1)

Publication Number Publication Date
WO2019210603A1 true WO2019210603A1 (zh) 2019-11-07

Family

ID=63748861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100158 WO2019210603A1 (zh) 2018-05-02 2018-08-13 智能火灾报警方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN108648402B (zh)
WO (1) WO2019210603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495418A (zh) * 2022-01-30 2022-05-13 杭州拓深科技有限公司 一种基于危急情况下的高效自救系统及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359858A (zh) * 2018-10-15 2019-02-19 温州洪启信息科技有限公司 基于互联网的智慧校园安防管理系统
CN111127823A (zh) * 2018-10-31 2020-05-08 杭州海康威视数字技术股份有限公司 一种报警方法、装置及视频监控设备
CN109612573B (zh) * 2018-12-06 2021-01-12 南京林业大学 一种基于噪声频谱分析的树冠火和地面火检测方法
CN110081399B (zh) * 2019-04-01 2020-12-18 欧阳培光 一种智慧路灯系统及智慧路灯
CN109993949B (zh) * 2019-04-14 2021-06-29 杭州拓深科技有限公司 一种基于多传感器融合的消防安全检测方法
CN110954165A (zh) * 2019-11-30 2020-04-03 国网河南省电力公司检修公司 一种电缆夹层巡检方法、装置和计算机可存储介质
CN111523528B (zh) * 2020-07-03 2020-10-20 平安国际智慧城市科技股份有限公司 基于规模识别模型的策略发送方法、装置和计算机设备
CN112044006A (zh) * 2020-08-28 2020-12-08 深圳市富思源智慧消防股份有限公司 一种楼宇用监控消防系统
CN112750272B (zh) * 2020-12-30 2022-07-26 江苏河马自动化设备有限公司 一种消防报警器的智能控制方法及系统
CN112927461B (zh) * 2021-02-24 2023-06-16 武汉辰磊科技有限公司 一种新能源汽车充电桩预警决策方法及装置
CN114360194A (zh) * 2022-01-18 2022-04-15 广东新成科技实业有限公司 一种多点监控可视化相阵式火灾报警系统
CN114373276A (zh) * 2022-01-18 2022-04-19 浙江万邦智能科技股份有限公司 一种楼宇智能感知方法、智能终端及存储介质
CN115512510B (zh) * 2022-10-11 2023-09-29 深圳市狮子王科技有限公司 一种充电桩火灾智能处理系统以及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1380631A (zh) * 2001-04-06 2002-11-20 朱正东 智能消防系统及其控制方法
JP3446996B2 (ja) * 1998-09-30 2003-09-16 日立ソフトウエアエンジニアリング株式会社 総合防災救難システム
CN103761824A (zh) * 2013-12-14 2014-04-30 北京冶联科技有限公司 一种用于火灾自救的终端、自救箱及火灾自救系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050102541A (ko) * 2004-04-22 2005-10-26 엘지전자 주식회사 이동 통신 단말기를 이용한 화재 알림 장치와 방법
CN102055630A (zh) * 2009-11-04 2011-05-11 周建乐 一种家庭健康监控网络及实现方法
CN201732463U (zh) * 2010-07-20 2011-02-02 北京紫峰华纳科技有限公司 人体物联网检测智能分析报警系统
CN102737471B (zh) * 2011-04-01 2015-05-20 深圳市赛格导航科技股份有限公司 一种无线火灾报警系统及其方法
KR101324849B1 (ko) * 2012-02-17 2013-11-01 이진석 휴대 단말기를 이용한 인명구조 시스템 및 방법
CN202838620U (zh) * 2012-09-20 2013-03-27 天津市浦海新技术有限公司 一种燃气安全检测及预测报警系统
CN102982644B (zh) * 2012-11-22 2015-09-30 广东欧珀移动通信有限公司 移动终端火灾报警方法及移动终端
CN103905560B (zh) * 2014-04-11 2017-01-11 南京理工大学 基于复杂网络的油罐区火蔓延预测与分析方法
CN103914942A (zh) * 2014-04-15 2014-07-09 北京百纳威尔科技有限公司 移动终端报警方法及装置
CN204274662U (zh) * 2014-11-28 2015-04-22 四川中软科技有限公司 生命体征探测系统
CN204895462U (zh) * 2015-08-12 2015-12-23 杭州冷倍冠科技有限公司 一种汽车方向盘多功能控制系统
JP6584262B2 (ja) * 2015-09-30 2019-10-02 能美防災株式会社 支援システム
US10552914B2 (en) * 2016-05-05 2020-02-04 Sensormatic Electronics, LLC Method and apparatus for evaluating risk based on sensor monitoring
CN205749558U (zh) * 2016-05-20 2016-11-30 南京林业大学 一种森林风速监测装置及系统
EP3513395B1 (de) * 2016-09-15 2020-05-20 Siemens Schweiz AG Rauchmelder, rauchmeldersystem und verfahren zur überwachung eines rauchmelders
CN206133865U (zh) * 2016-09-26 2017-04-26 郭润泽 一种居家老人智能急救系统
CN206115633U (zh) * 2016-09-29 2017-04-19 上海腾盛智能安全科技股份有限公司 一种城市综合管廊用线型感温火灾探测监控系统
CN106530576A (zh) * 2016-12-29 2017-03-22 广东小天才科技有限公司 一种基于移动设备的火灾险情预警方法和装置
CN206599333U (zh) * 2017-01-23 2017-10-31 特斯联(北京)科技有限公司 一种用于智慧建筑的内部自动灭火型电梯
CN106648120B (zh) * 2017-02-21 2020-04-03 戴雨霖 基于虚拟现实和体感技术的火灾逃生训练系统
CN106918348B (zh) * 2017-03-29 2020-05-26 联想(北京)有限公司 一种信息处理方法及电子设备
CN106964090A (zh) * 2017-04-28 2017-07-21 苏州亮磊知识产权运营有限公司 一种自动切换灭火介质的消防机器人及其控制方法
CN207115678U (zh) * 2017-07-31 2018-03-16 济南市公安局市中区分局 一种社区消防联控报警系统
CN107331100A (zh) * 2017-08-01 2017-11-07 深圳市盛路物联通讯技术有限公司 一种基于物联网的火灾报警方法及系统
CN207123923U (zh) * 2017-08-30 2018-03-20 国网安徽省电力公司电力科学研究院 智能型集中吸入式电缆火灾极早期预警装置
CN107564231B (zh) * 2017-09-15 2020-09-04 山东建筑大学 基于物联网的建筑物火灾预警及火灾态势评估系统及方法
CN107610432A (zh) * 2017-10-16 2018-01-19 李修球 一种智能报警方法、系统及智能移动终端
CN107808488A (zh) * 2017-11-02 2018-03-16 安徽唯诗杨信息科技有限公司 一种防误报家居安防监控系统及监控方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446996B2 (ja) * 1998-09-30 2003-09-16 日立ソフトウエアエンジニアリング株式会社 総合防災救難システム
CN1380631A (zh) * 2001-04-06 2002-11-20 朱正东 智能消防系统及其控制方法
CN103761824A (zh) * 2013-12-14 2014-04-30 北京冶联科技有限公司 一种用于火灾自救的终端、自救箱及火灾自救系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495418A (zh) * 2022-01-30 2022-05-13 杭州拓深科技有限公司 一种基于危急情况下的高效自救系统及方法

Also Published As

Publication number Publication date
CN108648402B (zh) 2020-04-24
CN108648402A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2019210603A1 (zh) 智能火灾报警方法、终端及存储介质
CN106251568A (zh) 一种基于紫外与图像检测技术的火灾报警安防系统及方法
JP2017506788A (ja) スマート非常出口表示
CN109819043A (zh) 三维智能应急消防平台系统及其操作方法
CN109993946A (zh) 一种监控告警方法、摄像头、终端、服务器及系统
CN106327813A (zh) 智能语音识别报警方法及系统
CN115146540B (zh) 体育场馆的消防风险仿真方法、系统、设备和存储介质
KR20160040954A (ko) 긴급 재난신고를 판단하는 방법 및 장치
CN112562250A (zh) 一种摄像检测装置与烟雾报警器联动的火灾预警方法
CN112489351A (zh) 基于图片识别的学校火灾预警方法
CN112216054A (zh) 火灾事件联动方法、计算机设备及可读存储介质
CN116343447A (zh) 一种动态接警及快速出警方法、装置、设备及存储介质
CN110650243B (zh) 一种报警方法、装置、存储介质以及终端
CN111275909B (zh) 一种安防预警方法及装置
CN111359132B (zh) 一种基于人工智能的智慧消防警报方法及系统
CN109147241A (zh) 应急信息处理方法、装置及存储介质
US20210288988A1 (en) Home automation risk assessment and mitigation via machine learning
CN204884102U (zh) 智能语音识别报警系统
CN110519560A (zh) 一种智能预警方法、装置及系统
CN113808363A (zh) 基于物联网的应急管理及智能消防系统
CN109432677A (zh) 一种用于建筑物内的智慧消防系统
CN111738205A (zh) 基于图像深度识别的被困人员救援辅助系统
CN111160780A (zh) 调度机器人及调度方法
CN115376261B (zh) 消防提示信息生成方法、装置、设备和计算机可读介质
CN117197984B (zh) 一种办公建筑楼梯间火灾自动报警及灭火系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917275

Country of ref document: EP

Kind code of ref document: A1