WO2019208738A1 - 癌リスクの判定方法 - Google Patents

癌リスクの判定方法 Download PDF

Info

Publication number
WO2019208738A1
WO2019208738A1 PCT/JP2019/017806 JP2019017806W WO2019208738A1 WO 2019208738 A1 WO2019208738 A1 WO 2019208738A1 JP 2019017806 W JP2019017806 W JP 2019017806W WO 2019208738 A1 WO2019208738 A1 WO 2019208738A1
Authority
WO
WIPO (PCT)
Prior art keywords
flora
ratio
derived
oral
data group
Prior art date
Application number
PCT/JP2019/017806
Other languages
English (en)
French (fr)
Inventor
哲治 岡本
亮治 谷
健作 松井
浩一郎 徳丸
剛 大友
Original Assignee
国立大学法人広島大学
日本ケフィア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学, 日本ケフィア株式会社 filed Critical 国立大学法人広島大学
Priority to JP2020515587A priority Critical patent/JP7399398B2/ja
Publication of WO2019208738A1 publication Critical patent/WO2019208738A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]

Definitions

  • the present invention relates to a method for determining whether or not a cancer risk group belongs by analyzing an oral bacterial flora derived from a subject.
  • Patent Document 1 It is known that the oral bacterial flora has an effect on tooth decay and periodontal disease. From this viewpoint, attempts have been made to improve the oral bacterial flora (Patent Document 1).
  • An object of the present invention is to provide a novel determination method that can be used for cancer detection.
  • the present inventor has been engaged in the clinical treatment of cancer, and has been conducting extensive research for many years, and analyzing the composition of bacteria present in the oral bacterial flora derived from the subject by means described below, it was classified into a cancer risk group. It has been found that it can be determined with high reliability whether it belongs or not, and the present invention has been achieved.
  • the present invention includes the following (1) and below.
  • the present invention includes the above-described determination method. Furthermore, a cancer screening method, a test method, a flora ratio Mahalanobis distance determination method, a flora ratio distance determination method, a flora discrimination analysis distance determination method, and a flora discrimination analysis Mahalanobis distance determination method including the above-described steps are also included.
  • the present invention includes the above-described determination method, and a prediction method, an estimation method, an evaluation method, a detection method, a determination method, an analysis method, an inspection method, a diagnosis method, a classification method, and the like including the determination method, A sorting method, a sorting method, an identification method, and a discrimination method are included.
  • the oral flora derived from cancer patients and healthy persons is used as a sample for analysis in the oral cavity of cancer patients.
  • the step of collecting from the plaques can be performed.
  • the oral bacterial flora derived from the subject can be analyzed to determine whether it belongs to the cancer risk group with high reliability.
  • the oral bacterial flora can be collected and identified from plaques in the oral cavity, can be easily collected with little burden on the subject, and can be suitably used for screening for cancer.
  • FIG. 1 is an explanatory diagram showing the flow of an experimental protocol from dental plaque collection to T-RFLP.
  • FIG. 2 is an explanatory image showing the state of dental plaque collection.
  • FIG. 3 is a graph showing the results of examination of the occupation rate of the oral bacterial flora in the untreated oral cancer patient group and the healthy person group by the discriminant analysis method.
  • the cancer is oral cancer
  • the cancer patient is an oral cancer patient
  • the cancer risk group is an oral cancer risk group.
  • the abundance (percentage) is identified according to the following classification: Streptococcus: pa Streptococcus, Eubacterium: pb Streptococcus, Veillonella: pc Parvimonas: pd Fusobacterium, Neisseria: pe Porphyromonas, Prevotella: pf Filifactor: pg Unknown: ph
  • the obtained numerical sequence (pa, pb, pc, pd, pe, pf, pg, ph) can be used for the statistical analysis using the flora ratio P.
  • the ratio of Streptococcus is specified as this ratio pa.
  • the ratio of Streptococcus and Eubacterium is specified as a ratio pb that combines them.
  • other bacteria that could not be identified as the above-mentioned bacteria are classified.
  • a technique for discriminating by performing essentially the same comparison as the above-described calculation of the Mahalanobis distance as a discriminant analysis method is also within the scope of the present invention.
  • the flora ratio Pp for the bacteria in the oral flora derived from cancer patients can be obtained for i (where i is an integer of 20 or more) cancer patients, Preferably, i can be an integer of 24 or greater. Although i does not have an upper limit in particular, it can be, for example, 1000 or less, 100 or less.
  • the flora ratio Pn for the bacteria of the oral flora derived from a healthy person can be obtained for j healthy persons (where j is an integer of 5 or more), Preferably, j can be an integer greater than or equal to 7. j has no particular upper limit, but can be, for example, 1000 or less, 100 or less.
  • the Mahalanobis distance can be calculated by known means, for example, using statistical analysis software.
  • statistical analysis software for example, JMP ver 12.0 (manufactured by SAS Institute Japan Co., Ltd.) can be mentioned.
  • Mahalanobis distance is an index indicating how far a certain data in the data group is from the center of gravity of the data group. Therefore, for a data group obtained by adding data on the flora ratio Pt derived from the subject to the data group (Pp data group) of a plurality of cancer patient-derived flora ratio Pp, the Mahalanobis distance (Dp ), An index indicating how close Pt is to the cancer patient-derived flora ratio can be calculated.
  • the Mahalanobis distance of the flora ratio Pt from the center of gravity By calculating (Dn), it is possible to calculate an index indicating how close Pt is to the healthy person-derived flora ratio. In the present invention, when this Dp is smaller than Dn, it is determined that the bacterial flora structure of the oral bacterial flora derived from the subject belongs to the cancer risk group.
  • the number of persons included in the Pp data group can be, for example, 20 or more and 24 or more, but can be used without any upper limit.
  • the number of persons included in the Pn data group can be, for example, 5 or more, 7 or more, but can be used without any upper limit.
  • the abundance ratio of the oral flora can be determined by analysis of restriction enzyme cleavage fragments for the 16S rRNA gene.
  • a known means can be used for analysis of a restriction enzyme cleavage fragment for 16S rRNA gene. For example, it can be performed by PCR amplification of the relevant site of the 16S rRNA gene using a known primer, cleaving the restriction enzyme, and analyzing the fragment.
  • restriction enzymes include HhaI (5′-GCG
  • Dental plaque (plaque) was collected from 24 oral cancer patients and 7 healthy individuals before the start of treatment. Dental plaque was collected from the tooth surface using a sterile cotton swab and stored at ⁇ 80 ° C. The bacterial flora from the dental plaque was taken as the oral bacterial flora.
  • the experimental protocol is summarized in FIG. A photograph showing the state of dental plaque collection is shown in FIG.
  • PCR amplification of 16S rDNA of dental plaque specimens was performed according to the method of Sakamoto et al. (Sakamoto et al., 2004). The PCR reaction was performed using a 2400 thermal cycler and Hot-Star Taq DNA polymerase (Qiagen, Tokyo, Japan). As the primer set, 6-FAM-labeled 27F (5′-AGAGTTTGATCCTGGCTCAG-3 ′) and 1492R (5′-GGTTACCTTTGTGACGTT-3 ′) were used.
  • T-RF fluorescently labeled terminal restriction fragment
  • ABI PRISM 3130xl gene analyzer Applied Biosystems
  • % AUC area under the curve
  • Bacteria were predicted for each taxon and the corresponding OTU was identified according to the report of Sakamoto et al. (Sakamoto et al., 2004).
  • the detected bacteria of the oral flora are shown in Table 3. Details of the experimental conditions are summarized in Table 4. Table 5 summarizes the composition of the bacteria in the oral flora thus obtained.
  • Statistical analysis As a statistical analysis, a discriminant analysis was performed by determining the Mahalanobis distance in order to examine the difference in the flora structure between different groups. Discriminant analysis is a multivariate analysis method used to discriminate subjects into specific groups based on many types of data and to examine data that strongly influence discrimination. For the discriminant analysis, statistical analysis software JMP ver 12.0 (manufactured by SAS Institute Japan) was used. The statistical analysis software JMP ver12.0 used default settings unless otherwise specified.
  • the following Mahalanobis distance was calculated by discriminant analysis using the Mahalanobis distance, and the group with the smaller distance was determined as the predicted value. That is, it was determined to belong to the group having the smaller Mahalanobis distance.
  • SqDist oral cancer patient group
  • SqDist healthy person group
  • Mahalanobis distance from the center of gravity of the healthy human group to each measured value
  • FIG. 3 shows the results of the examination of the occupation ratio of the oral bacterial flora in the untreated oral cancer patient group and the healthy person group by the discriminant analysis method.
  • the 95% confidence ellipse (dotted line) indicating the composition ratio of the oral bacterial flora of the untreated oral cancer patient group
  • the 95% confidence ellipse (solid line) indicating the composition ratio of the oral flora of the healthy group Therefore, the oral bacterial flora of the untreated oral cancer patients was significantly different from the composition ratio of the oral bacterial flora in the normal group, and was in a state of structural abnormality (dysbiosis).
  • Table 6 summarizes the results of discriminant analysis of reference data using the Mahalanobis distance.
  • the meanings of the terms at the top of Table 6 are as follows.
  • SqDist oral cancer patient
  • SqDist healthy person
  • Prob oral cancer patient
  • Prob Oral cancer patient group
  • Probability included in category Prob Yety person
  • Probability Pred column included in oral cancer patient group category 2 Group determined to have the highest probability of belonging
  • Table 7 The composition of the bacterial flora of the oral flora of nine new subjects is summarized in Table 7.
  • Table 8 summarizes the results of a judgment test performed on a new subject based on the composition of this flora.
  • the present invention provides a novel determination method that can be used for cancer detection.
  • the present invention is an industrially useful invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

被験者に由来する口腔内細菌叢を分析して、癌リスク群に属するかを判定する方法であって、複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法によって、癌の発見のために使用可能な、新規な判定方法を提供する。

Description

癌リスクの判定方法
 本発明は、被験者に由来する口腔内細菌叢を分析して、癌リスク群に属するかを判定する方法に関する。
 癌を早期に発見して治療することは、癌治療のために重要である。癌の発見のために、より負担が少なく、より簡便な検査方法やスクリーニング方法が求められている。
 口腔内の細菌叢が、虫歯や歯周病に対して影響があることが知られている。この観点から口腔内の細菌叢を、改善しようとする試みがなされている(特許文献1)。
特開2005-320275号公報
 本発明の目的は、癌の発見のために使用可能な、新規な判定方法を提供することにある。
 本発明者は、癌治療の臨床に携わり、長年の間、鋭意研究してきたところ、被験者に由来する口腔内の細菌叢に存在する細菌の組成を、後述の手段で解析すると、癌リスク群に属するか否かを高い信頼性で判定できることを見いだして、本発明に到達した。
 したがって、本発明は次の(1)以下を含む。
(1)
 被験者に由来する口腔内細菌叢を分析して、癌リスク群に属するかを判定する方法であって、
 口腔内細菌叢の菌の存在比(百分率)を特定し、得られた存在比の数列のデータを、菌叢比率Pとしたときに、
 癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、複数人の癌患者について得る工程、
 健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、複数人の健常人について得る工程、
 被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、
 複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、
 複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、
 DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法。
(2)
 (1)に記載の判定方法であって、
 口腔内細菌叢の菌について、次の分類に従ってその存在比(百分率)を特定し、
 Streptococcus             : pa
 Streptococcus,Eubacterium : pb
 Streptococcus,Veillonella : pc
 Parvimonas                : pd
 Fusobacterium,Neisseria   : pe
 Porphyromonas,Prevotella  : pf
 Filifactor                : pg
 Unknown                   : ph
 得られた数列(pa,pb,pc,pd,pe,pf,pg,ph)を、菌叢比率Pとしたときに、
 癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、複数人の癌患者について得る工程、
 健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、複数人の健常人について得る工程、
 被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、
 複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、
 複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、
 DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法。
(3)
 癌が、口腔癌である、(1)~(2)のいずれかに記載の判定方法。
(4)
 (2)~(3)のいずれかに記載の判定方法であって、
 癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、i人(ただし、iは20以上の整数)の癌患者について得る工程、
 健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、j人(ただし、jは5以上の整数)の健常人について得る工程、
 被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、
 i人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、
 j人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、
 DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法。
(5)
 iが、24以上の整数であり、jが、7以上の整数である、(4)に記載の判定方法。
(6)
 口腔内細菌叢の菌の存在比(百分率)の特定が、16SrRNA遺伝子に対する制限酵素切断断片の分析によって行われる、(1)~(5)のいずれかに記載の判定方法。
(7)
 制限酵素切断に使用される制限酵素が、以下の制限酵素からなる群から選択された制限酵素を含む、(6)に記載の判定方法:
 HhaI、Msp(I)、及びAlu(I)。
 本発明は、上述の判定方法を含む。さらに上述の工程を含む、癌のスクリーニング方法、検査方法、菌叢比率マハラノビス距離判定法、菌叢比率距離判定法、菌叢判別分析距離判定法、菌叢判別分析マハラノビス距離判定法をも含む。
 好適な実施の態様において、本発明は、上記の判定方法を含み、この判定方法からなる予測方法、推定方法、評価方法、検出方法、決定方法、分析方法、検査方法、診断方法、分類方法、分別方法、選別方法、識別方法、及び判別方法を含む。
 好適な実施の態様において、口腔内細菌叢の菌の存在比(百分率)の特定に先だって、癌患者及び健常人に由来する口腔内細菌叢を、分析のための試料として、癌患者の口腔内のプラークから採取する工程を行うことができる。
 本発明によれば、被験者に由来する口腔内細菌叢を分析して、癌リスク群に属するかを高い信頼性で判定することができる。口腔内細菌叢は、口腔内のプラークから採取して同定することができ、被験者の負担が少なく簡便に採取することができ、癌のスクリーニングのために、好適に使用することができる。
図1はデンタルプラーク採取からT-RFLPまでの実験プロトコールの流れを示す説明図である。 図2はデンタルプラーク採取の様子を示す説明画像である。 図3は判別分析法による未治療の口腔癌患者群と健常人群における口腔内細菌叢の占有率の検討の結果を示すグラフである。
 具体的な実施の形態をあげて、以下に本発明を詳細に説明する。本発明は、以下にあげる具体的な実施の形態に限定されるものではない。
[癌リスク群に属するかの判定方法]
 本発明によれば、口腔内細菌叢の菌の存在比(百分率)を特定し、得られた存在比の数列のデータを、菌叢比率Pとしたときに、癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、複数人の癌患者について得る工程、健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、複数人の健常人について得る工程、被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む方法によって、被験者に由来する口腔内細菌叢を分析して、癌リスク群に属するかを判定することができる。
 本発明の好適な実施の態様において、癌が口腔癌であり、癌患者が口腔癌患者であり、癌リスク群が口腔癌リスク群である。
[口腔内細菌叢の菌の存在比]
 好適な実施の態様において、口腔内細菌叢の菌について、次の分類に従ってその存在比(百分率)を特定し、
 Streptococcus              : pa 
 Streptococcus,Eubacterium  : pb 
 Streptococcus,Veillonella  : pc 
 Parvimonas                 : pd 
 Fusobacterium,Neisseria    : pe 
 Porphyromonas,Prevotella   : pf 
 Filifactor                 : pg 
 Unknown                    : ph 
 得られた数列(pa,pb,pc,pd,pe,pf,pg,ph)を、菌叢比率Pとして使用して、統計分析に供することができる。上記分類において、例えば、Streptococcusはこの比率paとして存在比が特定されるが、例えば、StreptococcusとEubacteriumとは、これらをあわせた比率pbとして、その存在比が特定される。Unknownの分類には、上記の菌として特定できなかったその他の菌が分類される。上記の細菌の分類に着目して、統計分析することによって、癌との関連が明らかにした先行研究は、これまでにない。特に、口腔癌患者特有の口腔内細菌叢の構造(比率)が存在していて、それが健常人の口腔内細菌叢の構造(比率)とは異なることを高い精度で判別できることを示した先行研究は、これまでにない。したがって、判別分析の手法として、上述したマハラノビス距離の算出と本質的に同じ対比を行って判別する技術もまた、本発明の範囲内にある。
 好適な実施の態様において、癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、i人(ただし、iは20以上の整数)の癌患者について得るものとすることができ、好ましくは、iは24以上の整数とすることができる。iは特に上限はないが、例えば1000以下、100以下とすることができる。
 好適な実施の態様において、健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、j人(ただし、jは5以上の整数)の健常人について得るものとすることができ、好ましくは、jは7以上の整数とすることができる。jは特に上限はないが、例えば1000以下、100以下とすることができる。
[マハラノビス距離]
 マハラノビス距離は、公知の手段によって算出することができ、例えば統計解析ソフトを用いて算出することができる。統計解析ソフトとして、例えばJMP ver12.0(SAS Instiute Japan株式会社製)をあげることができる。
 マハラノビス距離は、データ群のなかのあるデータが、そのデータ群の重心からどの程度の距離かを示す指標となっている。したがって、複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群について、その重心からの菌叢比率Ptのマハラノビス距離(Dp)を算出することで、Ptが癌患者由来菌叢比率にどの程度近いかを示す指標を算出することができる。同様に、複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群について、その重心からの菌叢比率Ptのマハラノビス距離(Dn)を算出することで、Ptが健常人由来菌叢比率にどの程度近いかを示す指標を算出することができる。本発明においては、このDpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する。
 一見して明らかであるように、このデータ群に含まれるデータ数が増加すればするほど、この判定の信頼性が高まってゆくことが期待される。そこで、Ppデータ群に含まれる人数は、例えば、20人以上、24人以上とすることができるが、上限なく使用することができる。また、Pnデータ群に含まれる人数は、例えば、5人以上、7人以上とすることができるが、上限なく使用することができる。
[口腔内細菌叢の菌の存在比の特定手段]
 好適な実施の態様において、口腔内細菌叢の菌の存在比の特定を、16SrRNA遺伝子に対する制限酵素切断断片の分析によって行うことができる。16SrRNA遺伝子に対する制限酵素切断断片の分析としては、公知の手段を用いることができる。例えば、16SrRNA遺伝子の該当部位を公知のプライマーを用いてPCR増幅を行って、制限酵素切断を行ってその断片を分析することで行うことができる。制限酵素としては、例えば、HhaI(5′-GCG|C-3′)、Msp(I)(C/CGG)(GGC/C)、Alu(I)(AG/CT)(TC/GA)をあげることができる。
 以下に実施例をあげて、本発明を詳細に説明する。本発明は、以下に例示する実施例に限定されるものではない。
[臨床研究]
 口腔内細菌叢の菌叢構造と、口腔癌との関連を検討するために、臨床研究を行った。
 癌患者の登録は、広島大学臨床研究倫理審査委員会承認臨床研究(許可番号C-102)、健常人の登録は同疫学研究(許可番号疫受-1979)に基づき、それぞれ同意を得た後に行った。
[口腔癌患者ならびに健常人の背景]
 口腔癌患者ならびに健常人の背景を、以下の表1及び表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[デンタルプラークの採取]
 治療開始前の口腔癌患者24名ならびに健常人7名よりデンタルプラーク(歯垢)を採取した。デンタルプラーク採取は滅菌綿棒を用いて歯面より採取し、-80℃にて保存した。なお、デンタルプラークからの細菌叢を口腔内細菌叢とした。この実験プロトコールを図1にまとめて示す。デンタルプラーク採取の様子を示す写真を図2に示す。
[T-RFLP法による菌叢比率の特定]
 デンタルプラーク検体から、以下の手順によって菌叢中の菌の存在比率を特定した。
 デンタルプラークのDNA抽出はMORA-EXTRACT kit(Kyokuto Pharmaceutrical,Japan)を用いて行い、ライシスバッファー200μL中に採取に用いた綿棒を浸漬した。液全量をビーズ充填チューブに移し、70℃、10分保ち溶菌を促進させた。ディスラプター・ジェニー(Scientific Industries)を用いて2分間破砕処理した。破砕処理後、SDS溶液200μLを加え、再び70℃、10分にて溶菌を促進させた。フェノール400μLを加え1分間Vortexした後、15,000rpmで3分間遠心、上清をDNA液として回収した。DNA精製はエタノール沈殿法により行った。
 デンタルプラーク検体の16SrDNAのPCR増幅はSakamotoらの方法に準じて行った(Sakamoto et al.,2004)。PCR反応は2400 thermal cyclerを用い、Hot-Star Taq DNAポリメラーゼ(Qiagen,Tokyo,Japan)を用いた。
 プライマーセットには6-FAM標識した27F(5′-AGAGTTTGATCCTGGCTCAG-3′)と1492R(5′-GGTTACCTTGTTACGACTT-3′)を用いた。プレヒーティング95℃で15分行い、95℃で30秒、50℃で30秒、72℃で90秒を1サイクルとした増幅反応を30サイクル行い、末端伸長反応を72℃で10分行いPCR産物を得た。PCR産物は、PEG沈殿法(Hiraishi et al.,1995)によって精製した。
 制限酵素はSakamotoらの方法に準じて選択した(Sakamoto et al.,2004)。20U/10μLのHhaI(5′-GCG|C-3′,Takara Shuzo)を37℃で3時間消化した。得られた蛍光標識された末端制限断片(T-RF)をABIPRISM 3130xl遺伝子解析装置(Applied Biosystems)で解析し、遺伝子型ソフトウェアGeneMapper 4.0(Applied Biosystems)を用いてその長さおよびピーク面積を決定した。OTUは、全OTU領域あたりの個々のOTUのパーセンテージとして定量化し、これは曲線下面積のパーセンテージ(%AUC)として表した。各分類単位について細菌を予測し、対応するOTUを坂本らの報告に従って同定した(Sakamoto et al.,2004)。
 上記検出された口腔内細菌叢の細菌を、表3に示す。
 上記実験条件の詳細を、表4にまとめて示す。
 上記得られた口腔内細菌叢の菌の組成を、表5にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[統計学的解析]
 統計学的解析として、異なる群間における菌叢構造の違いを検討するためマハラノビスの距離を求めて、判別分析を行った。判別分析は、多種類のデータに基づいて被検者を特定の群に判別することや、判別に強い影響を及ぼすデータを検討するのに用いられる多変量解析法である。判別分析は統計解析ソフトJMP ver12.0(SAS Instiute Japan株式会社製)を使用した。統計解析ソフトJMP ver12.0は、特に記載のない限り、デフォルトの設定を使用した。
 マハラノビス距離を用いた判別分析によって、以下のマハラノビス距離を算出し、距離が小さい群の方を予測値として判定した。すなわち、マハラノビス距離が小さい方の群に属すると判定した。
SqDist(口腔癌患者群): 口腔癌患者群の重心から各測定値までのマハラノビス距離
SqDist(健常人群): 健常人群の重心から各測定値までのマハラノビス距離
 判別分析法による未治療の口腔癌患者群と健常人群における口腔内細菌叢の占有率の検討の結果を、図3に示す。
 判別分析法において、未治療の口腔がん患者群の口腔内細菌叢の構成比率を示す95%信頼楕円(点線)と健常人群の口腔内細菌叢の構成比率を示す95%信頼楕円(実線)が重なっていないことから、未治療の口腔癌患者の口腔内細菌叢は、健常人群の口腔内細菌叢の構成比率とは有意に異なり、構造異常(dysbiosis)の状態であった。
 マハラノビス距離を用いた基準データの判別分析の結果を、表6にまとめて示す。表6の最上段の用語の意味は、次の通りである。
SqDist(口腔癌患者): 口腔癌患者群の重心から各測定値までのマハラノビス距離
SqDist(健常人): 健常人群の重心から各測定値までのマハラノビス距離
Prob(口腔癌患者): 口腔癌患者群カテゴリーに含まれる確率
Prob(健常人): 口腔癌患者群カテゴリーに含まれる確率
Pred列2: 属している確率が最も高いと判断された群
Figure JPOXMLDOC01-appb-T000006
[マハラノビス距離による新たな被験者の判定試験]
 31名(口腔癌患者24名、健常人7名)の口腔内細菌叢のデータから作成した判別分析が口腔癌患者の診断として有用かどうかを検討するために、31名(口腔癌患者24名、健常人7名)以外の新たな口腔癌患者の口腔内細菌叢のデータをマハラノビス距離にて判別分析で解析したところ、9人中8人を正しく判定することが可能であった。
 新たな被験者9名の口腔内細菌叢の菌叢の組成を、表7にまとめて示す。この菌叢の組成に基づいて、新たな被験者に対して行った判定試験の結果を、表8にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明は、癌の発見のために使用可能な、新規な判定方法を提供する。本発明は、産業上有用な発明である。

Claims (7)

  1.  被験者に由来する口腔内細菌叢を分析して、癌リスク群に属するかを判定する方法であって、
     口腔内細菌叢の菌の存在比(百分率)を特定し、得られた存在比の数列のデータを、菌叢比率Pとしたときに、
     癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、複数人の癌患者について得る工程、
     健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、複数人の健常人について得る工程、
     被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、
     複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、
     複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、
     DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法。
  2.  請求項1に記載の判定方法であって、
     口腔内細菌叢の菌について、次の分類に従ってその存在比(百分率)を特定し、
     Streptococcus             : pa
     Streptococcus,Eubacterium : pb
     Streptococcus,Veillonella : pc
     Parvimonas                : pd
     Fusobacterium,Neisseria   : pe
     Porphyromonas,Prevotella  : pf
     Filifactor                : pg
     Unknown                   : ph
     得られた数列(pa,pb,pc,pd,pe,pf,pg,ph)を、菌叢比率Pとしたときに、
     癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、複数人の癌患者について得る工程、
     健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、複数人の健常人について得る工程、
     被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、
     複数人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、
     複数人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、
     DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法。
  3.  癌が、口腔癌である、請求項1~2のいずれかに記載の判定方法。
  4.  請求項2~3のいずれかに記載の判定方法であって、
     癌患者に由来する口腔内細菌叢の菌についての菌叢比率Ppを、i人(ただし、iは20以上の整数)の癌患者について得る工程、
     健常人に由来する口腔内細菌叢の菌についての菌叢比率Pnを、j人(ただし、jは5以上の整数)の健常人について得る工程、
     被験者に由来する口腔内細菌叢の菌についての菌叢比率Ptを、得る工程、
     i人の癌患者由来菌叢比率Ppのデータ群(Ppデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dp)を算出する工程、
     j人の健常人由来の菌叢比率Pnのデータ群(Pnデータ群)に被験者由来の菌叢比率Ptのデータを加えたデータ群からの菌叢比率Ptのマハラノビス距離(Dn)を算出する工程、
     DpがDnよりも小さい場合に、被験者に由来する口腔内細菌叢の菌叢構造が、癌リスク群に属すると判定する工程、を含む、判定方法。
  5.  iが、24以上の整数であり、jが、7以上の整数である、請求項4に記載の判定方法。
  6.  口腔内細菌叢の菌の存在比(百分率)の特定が、16SrRNA遺伝子に対する制限酵素切断断片の分析によって行われる、請求項1~5のいずれかに記載の判定方法。
  7.  制限酵素切断に使用される制限酵素が、以下の制限酵素からなる群から選択された制限酵素を含む、請求項6に記載の判定方法:
     HhaI、Msp(I)、及びAlu(I)。
PCT/JP2019/017806 2018-04-25 2019-04-25 癌リスクの判定方法 WO2019208738A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515587A JP7399398B2 (ja) 2018-04-25 2019-04-25 癌リスクの判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018084480 2018-04-25
JP2018-084480 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208738A1 true WO2019208738A1 (ja) 2019-10-31

Family

ID=68294065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017806 WO2019208738A1 (ja) 2018-04-25 2019-04-25 癌リスクの判定方法

Country Status (2)

Country Link
JP (1) JP7399398B2 (ja)
WO (1) WO2019208738A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520176A (ja) * 2012-06-06 2015-07-16 シャンハイ ジャオ トン ユニバーシティ 腸内細菌叢集団を改善する方法および組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157715A1 (ko) * 2012-04-16 2013-10-24 전자부품연구원 저온 공정을 이용한 산화물 박막 제조방법, 산화물 박막 및 그 전자소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520176A (ja) * 2012-06-06 2015-07-16 シャンハイ ジャオ トン ユニバーシティ 腸内細菌叢集団を改善する方法および組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, H. ET AL.: "Variations in oral microbiota associated with oral cancer", SCI. REP., vol. 7, no. 11773, 2017, pages 1 - 10 *

Also Published As

Publication number Publication date
JPWO2019208738A1 (ja) 2021-04-30
JP7399398B2 (ja) 2023-12-18

Similar Documents

Publication Publication Date Title
Belstrøm et al. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMI NGS) technique
EP3483266A1 (en) Intraoral examination method
EP2994756B1 (en) Biomarker identifying method and system
EP2909336B1 (en) Determination of reduced gut bacterial diversity
CN102912036A (zh) 快速检测和鉴定生物物体的方法
Eghtedar Nejad et al. Molecular identification of Candida isolates by Real‐time PCR‐high‐resolution melting analysis and investigation of the genetic diversity of Candida species
Vidal et al. Crohn associated microbial communities associated to colonic mucosal biopsies in patients of the western Mediterranean
TW201814290A (zh) 一種鑑定樣本中腫瘤負荷的方法和系統
Mei et al. Evaluations and comparisons of microbial diversities in four types of body fluids based on two 16S rRNA gene sequencing methods
Kim et al. Comparison of the oral microbial composition between healthy individuals and periodontitis patients in different oral sampling sites using 16S metagenome profiling
EP3705580A1 (en) Intra-oral inspection method using information for bacteria groups associated with clinical indices
WO2019208738A1 (ja) 癌リスクの判定方法
WO2021201675A1 (en) Respiratory infectious disease triage
JP5756600B2 (ja) 歯周病リスクの評価方法
CN111261222B (zh) 口腔微生物群落检测模型的构建方法
Naik et al. Viability of human dental pulp in determination of sex of an individual by identifying srygene through DNA analysis: A single blind pilot study
KR102225447B1 (ko) 구강 세균의 군집을 이용한 알츠하이머 진단용 바이오마커 및 이의 용도
KR20180029776A (ko) 유전자 염기서열분석을 통한 폐암의 한의 진단 도구
Yu et al. Microbiome of periodontitis and peri‐implantitis before and after therapy: Long‐read 16S rRNA gene amplicon sequencing
CN101874119A (zh) 3.4kb线粒体DNA缺失用于检测癌症
CN112048552B (zh) 诊断重症肌无力的肠道菌群及其应用
WO2024090455A1 (ja) 多発性硬化症の診断方法及び診断用バイオマーカー
Relvas et al. Assessing the impact of dental and periodontal statuses on the salivary microbiome: a global oral health scale
Tierney et al. Sex identification of human remains from an Irish medieval population using biomolecular methods
Veenat et al. Assessing saliva microbiome collection and processing methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793976

Country of ref document: EP

Kind code of ref document: A1