WO2019208613A1 - Curable composition and pattern manufacturing method - Google Patents

Curable composition and pattern manufacturing method Download PDF

Info

Publication number
WO2019208613A1
WO2019208613A1 PCT/JP2019/017360 JP2019017360W WO2019208613A1 WO 2019208613 A1 WO2019208613 A1 WO 2019208613A1 JP 2019017360 W JP2019017360 W JP 2019017360W WO 2019208613 A1 WO2019208613 A1 WO 2019208613A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
mold
formula
acrylate
meth
Prior art date
Application number
PCT/JP2019/017360
Other languages
French (fr)
Japanese (ja)
Inventor
増渕 毅
実恵子 菊池
宮澤 覚
毅 小川
佑介 田中
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2020515510A priority Critical patent/JPWO2019208613A1/en
Publication of WO2019208613A1 publication Critical patent/WO2019208613A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • C08F12/24Phenols or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a polymerizable compound used for imprint applications and the like, and a curable composition containing the polymerizable compound and a polymerization initiator. Moreover, it is related with the imprint which forms a pattern using the said curable composition.
  • Imprinting is one of the fine processing methods required for manufacturing semiconductor integrated circuits. Imprint is a state in which a mold having a fine concavo-convex pattern is pressed against a curable composition applied to a substrate, the curable composition is cured by light, heat, etc. This is a method for producing “a member in which a cured film having a fine concavo-convex pattern shape is arranged on a substrate” (hereinafter sometimes referred to as a member with a pattern). In imprinting, the formation of a nano-sized uneven pattern (1 nm or more and 100 nm or less) is particularly called nanoimprinting.
  • Patent Document 1 discloses a (meth) acrylic acid ester monomer, vinyl ether compound, styrene derivative, propenyl having one or more (meth) acryloyl groups as a component (polymerizable compound) of a curable composition used for nanoimprinting. It is disclosed that ether or butenyl ether can be used.
  • Patent Document 2 describes that a specific divalent (meth) acrylic acid ester monomer having two benzene skeletons can be preferably used as a curable composition component of nanoimprint.
  • Patent Document 3 includes an amine compound (hydrogen donor) having a (poly) oxyalkylene group having a fluoroalkyl group in a nanoimprint curable composition containing various (meth) acrylic acid esters as monomer components. It is disclosed that when added as an agent, the curing sensitivity (curing speed) is remarkably improved when the curable composition is photocured.
  • (meth) acryl means acryl and methacryl
  • (meth) acrylate means acrylate and methacrylate
  • (meth) acryloyl means acryloyl and methacryloyl.
  • Imprint is composed of a plurality of processes, and among them, the time required for the “curing process” for curing the curable composition with light, heat, etc. greatly affects the overall imprint production efficiency.
  • Patent Document 1 4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) 1,3,5-triazine is used to improve photocurability.
  • chain transfer agents such as -2,4,6 (1H, 3H, 5H) -trione is disclosed.
  • Patent Document 3 as described above, a specific amine compound is allowed to coexist as an additive, and the photocuring rate has been successfully improved.
  • —C (CF 3 ) 2 OH group (hereinafter referred to as the “-C (CF 3 ) 2 OH group”) is maintained in the side chain while maintaining the basic skeleton (main chain structure) of these polymerizable compounds. It was found that the curing rate can be improved by using a novel curable composition containing a polymerizable compound into which a hexafluoroisopropanol group or a HFIP group is introduced).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group
  • R 3 is a divalent or trivalent aromatic group
  • m and n are integers of 1 to 2.
  • OH group HFIP group
  • the polymerizable compound represented by the formula (1) and the formula (2) is used in the curable composition (Example of the present specification)
  • the polymerizable compound having no HFIP group corresponding thereto is curable.
  • the curing rate of the former was significantly higher than that of the latter. That is, the “HFIP group at the side chain end” has an effect of significantly increasing the curing rate as a polymerizable compound.
  • the present inventors have also found a manufacturing method (pattern forming method) of “a member in which a cured film having a pattern shape is arranged on a substrate” using the curable composition thus found, and completed the invention. I came to let you.
  • the present invention includes the following inventions.
  • invention 1 The curable composition containing at least 1 sort (s) of the polymeric compound represented by following formula (1) or Formula (2), and a polymerization initiator.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group.
  • R 3 is a divalent or trivalent aromatic group, and m and n are integers of 1 to 2.
  • Invention 3 The curable composition of Invention 1 or Invention 2, wherein the polymerization initiator is a photopolymerization initiator.
  • [Invention 5] The manufacturing method of the member which arranged the cured film which has a pattern shape on a board
  • Arranging step A step of arranging the curable compositions of inventions 1 to 4 on a substrate.
  • Mold contact step a step of bringing a mold having a pattern shape into contact with the curable composition disposed on the substrate.
  • Curing step a step of curing the curable composition in contact with the mold with light or heat to form a cured film.
  • Mold release step a step of separating the mold from the cured film to obtain the patterned member.
  • the condensable gas in the contacting step is 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)) Cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1 , 3,3,3-tetrafluoropropene (HFO-1234ze (Z)).
  • a polymerizable compound having a high curing rate can be obtained, and by using it, a curable composition having a high curing rate that is particularly useful in imprinting can be provided. Moreover, there exists an effect that the pattern formation method in the imprint using the said curable composition of this invention is provided.
  • the curable composition containing the polymeric compound which has HFIP group as a structural component is the following. At least one polymerizable compound having an HFIP group represented by formula (1) or formula (2); And a polymerization initiator.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group
  • R 3 is a divalent or trivalent aromatic group, and m and n are integers of 1 to 2.
  • the polymerizable compound used in the curable composition of the present invention has an HFIP group at the side chain end.
  • the “HFIP group at the end of the side chain” of this polymerizable compound has an effect of significantly increasing the curing rate of the curable composition. The cause of this is not necessarily clear, but in view of the fact that there is no significant difference in the cure rate between benzyl acrylate (Comparative Example 1 in this specification) and 4-hydroxybenzyl acrylate (Comparative Example 2), “Existence” alone cannot explain the increase in cure rate.
  • the curing rate may be increased by adding various additives to the curable composition as disclosed in Patent Documents 1 and 3 above.
  • the curing rate may be adjustable depending on the basic skeleton of the polymerizable monomer (for example, an acrylic monomer generally has a higher curing rate than a styrene monomer).
  • an acrylic monomer generally has a higher curing rate than a styrene monomer.
  • it may be necessary to reduce the amount of additive used and there may be a demand for using a certain amount of a basic skeleton having a relatively slow polymerization as a polymerizable monomer. In that respect, it is significant that the curing rate can be significantly increased only by introducing the HFIP group into the side chain.
  • the curing rate is increased by introducing HFIP groups into the side chain of the polymerizable compound contained in the curable composition. If the curable composition of the present invention is used, it is not necessary to add an additive separately to complicate the composition profile in the system, and it is possible to contribute to productivity improvement such as imprint.
  • the curable composition of the present invention further includes, as an optional component, A polymerizable compound other than the polymerizable compound represented by the above formula (1) or formula (2) (sometimes referred to as “other polymerizable compound” in this specification); A sensitizer, A surfactant, A solvent, Any one or more selected from the group consisting of various additives may be included.
  • polymerizable compound represented by formula (1) or formula (2) and “other polymerizable compounds” are collectively described as “polymerizable compound”.
  • Other optional components will be described as “other additive components”.
  • the polymerizable compound is a generic term for “polymerizable compound represented by formula (1) or formula (2)” and “other polymerizable compounds” as described above.
  • the polymerizable compound is the main component of the curable composition for imprints.
  • the content of the polymerizable compound in the curable composition is usually 50% by mass or more, and typically 80% by mass or more. When a curable composition contains a solvent, it is not prevented that there is little content of a polymeric compound from this.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a divalent or trivalent aliphatic hydrocarbon group
  • the aliphatic hydrocarbon group is linear, branched or It is cyclic or a divalent or trivalent aromatic group
  • m is an integer of 1 to 2.
  • Examples of the divalent aliphatic hydrocarbon group that can be used for R 2 include linear or branched alkylene groups such as methylene, ethylene, isopropylene, and t-butylene, cyclobutene, cyclopropylene, cyclopentylene, and cyclohexylene. And cyclic structures such as norbornylene and adamantylene.
  • Examples of the trivalent aliphatic hydrocarbon group that can be used for R 2 include alkanetriyl groups such as methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, and pentanetriyl group, cyclobutanetriyl group, cyclohexane
  • Examples of the cyclic structure include cycloalkanetriyl groups such as propanetriyl group, cyclopentanetriyl group, and cyclohexanetriyl group, norbornanetriyl group, adamantanetriyl group, and norbornenetriyl group.
  • Examples of the divalent aromatic group that can be used for R 2 include a phenylene group, a benzylylene group, a naphthylene group, and an anthrylene group.
  • Examples of the trivalent aromatic group that can be used for R 2 include a benzenetriyl group, a naphthalenetriyl group, and an anthracentriyl group.
  • R 1 is a hydrogen atom or a methyl group
  • R 3 is a divalent or trivalent aromatic group
  • n is an integer of 1 to 2.
  • Examples of the divalent aromatic group that can be used for R 3 include a phenylene group, a benzylylene group, a naphthylene group, and an anthrylene group.
  • Examples of the trivalent aromatic group that can be used for R 3 include a benzenetriyl group, a naphthalenetriyl group, and an anthracentriyl group.
  • R 2 in formula (1) or R 3 in formula (2) is preferably an aromatic ring or alicyclic skeleton, more preferably a phenylene group, a benzylylene group, or a benzenetriyl group. This is because having an aromatic ring or an alicyclic skeleton improves the dry etching resistance, wet process resistance, mechanical strength, and the like of a cured film having a pattern shape obtained by curing the curable composition.
  • the polymerizable compound represented by the following formula (1a), formula (1b), formula (1c), formula (1d), and formula (2a) has a corresponding structure of “polymerization without HFIP group”.
  • the increase in the curing rate (polymerization rate) when compared with the “polymeric compound” is remarkable, and is a particularly preferable polymerizable compound.
  • the polymerizable compound of the formula (1) that is, the (meth) acrylic polymerizable compound is more polymerizable. It is advantageous over a compound, that is, a styrene-based polymerizable compound.
  • the “acrylic type (R 1 is a hydrogen atom)” has a higher curing rate than the “methacrylic type (R 1 is methyl)”. .
  • the polymerizable compound represented by the formula (1) or the formula (2) may be used alone.
  • “other polymerizable compounds” can be used in combination with the polymerizable compound represented by the formula (1) or the formula (2), so that the filling speed of the curable composition and the mechanical properties of the cured film can be increased. It may be possible to adjust the strength.
  • the “other polymerizable compounds” are not particularly limited as long as they are radically polymerizable compounds, but are preferably compounds having one or more acryloyl groups or methacryloyl groups, that is, (meth) acrylic compounds.
  • the proportion of the polymerizable compound of formula (1) or formula (2) to the total mass of the polymerizable compound is usually 10 It is at least 30% by mass, preferably at least 30% by mass.
  • the ratio is set to 60% by mass or more (including 100% by mass). This is particularly preferred.
  • the curability is improved by the contribution. Therefore, even when a smaller amount of the polymerizable compound represented by the formula (1) or the formula (2) is included, it is not excluded from the scope of the present invention.
  • monofunctional (meth) acrylic compounds having one acryloyl group or methacryloyl group include phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, and phenoxyethoxyethyl.
  • acrylic compounds Commercial products corresponding to these monofunctional (meth) acrylic compounds include trade names, Aronix M101, M102, M110, M111, M113, M117, M5700, TO-1317, M120, M150, M156 (above, Toagosei Co., Ltd.) Manufactured), MEDOL10, MIBDOL10, CHDOL10, MMDOL30, MEDOL30, MIBDOL30, CHDOL30, LA, IBXA, 2-MTA, HPA, Viscoat # 150, # 155, # 158, # 190, # 192, # 193, # 220, # 2000, # 2100, # 2150 (above Osaka Organic Chemical Co., Ltd.), light acrylate BO-A, EC-A, DMP-A, THF-A, HOP-A, HOA-MPE, HOA-MPL, PO -A, P-200A, NP 4EA, NP-8EA, epoxy ester M-600A (above, manufactured
  • polyfunctional (meth) acrylic compounds having two or more acryloyl groups or methacryloyl groups include trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and EO modification.
  • EO represents ethylene oxide
  • the EO-modified compound means that it has at least one ethyleneoxy group
  • PO represents propylene oxide
  • the PO-modified compound means having at least one propyleneoxy group.
  • vinyl compounds having one or more vinyl groups include styrene, 4-hydroxystyrene, ethylene glycol divinyl ether, ethylene glycol monovinyl ether, diethylene glycol divinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, Di- or trivinyl ether compounds such as dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexane dimethanol divinyl ether, hydroxyethyl monovinyl ether, hydroxynonyl monovinyl ether, trimethylolpropane trivinyl ether, ethyl vinyl ether, n- Butyl vinyl ether, iso Til vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether,
  • the above radical polymerizable compounds may be used alone or in combination of two or more.
  • the polymerization initiator includes a photopolymerization initiator and a thermal polymerization initiator.
  • the photopolymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by light stimulation. Specific examples include a photo radical generator that generates radicals by light stimulation.
  • photo radical generator examples include 2,4,5-triarylimidazole dimer which may have a substituent, benzophenone derivative, aromatic ketone derivative, quinones, benzoin ether derivative, benzoin derivative, benzyl derivative, acridine Derivatives, N-phenylglycine derivatives, acetophenone derivatives, thioxanthone derivatives, other photoradical generators, and commercial products thereof can be mentioned. Each is illustrated below.
  • the following photo radical generators may be used alone or in combination of two or more.
  • ⁇ 2,4,5-triarylimidazole dimer optionally having substituent> 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4 , 5-diphenylimidazole dimer, or 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer ⁇ benzophenone derivative> Benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 4-chlorobenzophenone 4,4′-dimethoxybenzophenone or 4,4′-diamino
  • the thermal polymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by thermal stimulation. Specific examples include thermal radical generators that generate radicals upon thermal stimulation.
  • thermal radical generator examples include azo compounds and organic peroxides.
  • Organic peroxide examples include dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, or paramentane hydroperoxide can do.
  • one polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination.
  • a photopolymerization initiator is used as the initiator
  • a thermal polymerization initiator is used as the initiator.
  • the content of the polymerization initiator contained in the curable composition is not particularly limited, but is preferably 0.01% by mass or more and 15% with respect to the mass (total mass) of the curable composition. It is below mass%. More preferably, they are 0.1 mass% or more and 7 mass% or less, Especially preferably, they are 1 mass% or more and 5 mass% or less. Within this range, both the curing rate of the curable composition and the strength (resin strength) of the film (cured film) are excellent.
  • the curable composition of the present invention may contain additional additive components in addition to the above-described components as long as the effects of the present invention are not impaired, according to various purposes.
  • additional additive components include mold release agents, surfactants, sensitizers, hydrogen donors, antioxidants, solvents, and polymer components.
  • the curable composition preferably contains a sensitizer. This will be described below.
  • sensitizer By including a sensitizer, there is a tendency that the polymerization reaction is accelerated and the reaction conversion rate is improved.
  • the sensitizer include a hydrogen donor and a sensitizing dye.
  • the content of the sensitizer is preferably 10% by mass or less with respect to the mass of the polymerizable compound. More preferably, it is 0.1 mass% or more and 5 mass% or less.
  • the content of the sensitizer is 0.1% by mass or more, the polymerization promoting effect can be effectively expressed.
  • content of a sensitizer is 10 mass% or less, there exists a tendency for solubility and storage stability to be excellent.
  • a hydrogen donor is a compound in which hydrogen is donated to an initiation radical generated from a polymerization initiator or a radical at a polymerization growth terminal, and the hydrogen donor itself generates a radical. If the polymerization initiator is a photoradical generator, the polymerization rate may be improved.
  • Examples of the hydrogen donor include amine compounds and mercapto compounds. Examples of these compounds that act as hydrogen donors are shown below, but are not limited thereto.
  • 4,4′-bis (dialkylamino) benzophenone include 4,4′-bis (diethylamin
  • sensitizing dye is a compound that is excited by absorbing light of a specific wavelength and acts on a photopolymerization initiator.
  • the action here refers to energy transfer or electron transfer from the sensitizing dye in the excited state to the photopolymerization initiator. If it is added when the photopolymerization initiator is a photoradical generator, the polymerization rate may be improved.
  • Sensitizing dyes include anthracene derivatives, anthraquinone derivatives, pyrene derivatives, perylene derivatives, carabazole derivatives, benzophenone derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, phenothiazine derivatives, camphorquinone derivatives, acridine dyes, thiopyrylium salt dyes, merocyanine
  • Examples of dyes include quinoline dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, and pyrylium salt dyes. However, it is not limited to these.
  • Sensitizers may be used alone or in combination of two or more.
  • the curable composition of the present invention may contain a polymer component.
  • the polymer component herein include the above 1-1.
  • (Meth) acrylic polymer (for example, polymethyl methacrylate) and vinyl polymer (for example, polystyrene) containing the repeating unit derived from the polymerizable compound described in the paragraph of (5) as a structural unit are included.
  • the polymer component may be a copolymer.
  • the curable composition of the present invention may contain a solvent.
  • the content of the solvent is preferably 3% by mass or less, more preferably 1% by mass or less, and particularly preferably not contained with respect to the mass of the entire composition.
  • Solvents that can be preferably used in the composition of the present invention include those commonly used in curable compositions for nanoimprints and photoresists, and those that dissolve and uniformly disperse the compounds used in the present invention. There is no particular limitation as long as it does not react with these components.
  • solvent examples include alcohols, ethers, glycol ethers, ethylene glycol alkyl ether acetates, diethylene glycols, propylene glycol alkyl ether acetates, aromatic hydrocarbons, ketones, or esters. Each is illustrated below.
  • the solvent is such that the curable composition containing the polymerizable compound of the present invention is in a liquid state or fluid even at a temperature (preferably 20 to 50 ° C.) of the “mold contact step” described later. It is not necessary to use it when showing the property.
  • the curable composition is solid at the temperature at which the “mold contact process” is performed and the fluidity is insufficient, the efficiency of the mold contact process can be easily improved by adding a solvent to increase the fluidity. ,preferable.
  • curable composition Preparation of curable composition
  • Tempoture when compounding curable composition When preparing a curable composition by mixing and dissolving a polymerizable compound and a polymerization initiator, it is carried out under a predetermined temperature condition. From workability etc., Preferably, they are 0 degreeC or more and 100 degrees C or less, More preferably, they are 10 degreeC or more and 50 degrees C or less.
  • the viscosity of the curable composition of the present invention is not critical to the practice of the present invention, but the viscosity at 23 ° C. of the mixture of components excluding the solvent is preferably 1 cP or more and 100 cP or less, more Preferably, it is 5 cP or more and 50 cP or less, More preferably, it is 6 cP or more and 20 cP or less. These may vary depending on the blend ratio of the polymerizable compound of the present invention and other polymerizable compounds, but can be adjusted by changing the blend ratio according to techniques of those skilled in the art.
  • the surface tension of the curable composition of the present invention is preferably 5 mN / m or more and 70 mN / m or less, more preferably 7 mN / m or more and 35 mN / m at 23 ° C. for the mixture of components excluding the solvent. m or less, more preferably 10 mN / m or more and 32 mN / m or less.
  • the surface tension is lower than 5 mN / m, when the curable composition is brought into contact with the mold, it may take a long time for the composition to fill the recesses in the fine pattern on the mold.
  • the curable composition of the present invention removes impurities such as particles as much as possible in order to prevent inadvertent irregularities in the photocured product due to particles mixed in the curable composition and pattern defects. Is desirable. Specifically, after mixing each component contained in the curable composition, it is preferable to filter with a filter having a pore diameter of 0.001 ⁇ m to 5.0 ⁇ m, for example. When performing filtration using a filter, it is more preferable to carry out in multiple stages or repeat many times. Moreover, you may filter the filtered liquid again.
  • a filter used for filtration a filter made of polyethylene resin, polypropylene resin, fluorine resin, nylon resin, or the like can be used, but is not particularly limited.
  • the impurity (metal impurity) containing a metal atom mixes in a curable composition. It is preferable to avoid this as much as possible. Therefore, the concentration of metal impurities contained in the curable composition of the present invention is preferably 10 ppm or less, and more preferably 100 ppb or less.
  • Still another aspect of the present invention is a method for producing a “patterned member in which a cured film having a pattern shape is arranged on a substrate” (D) by imprinting using the above-described curable composition (hereinafter referred to as “patterned member”) , Simply referred to as the pattern forming method of the present invention), and includes the following steps.
  • Arrangement step A step of arranging the above-mentioned curable composition on a substrate to obtain “a member in which the curable composition is arranged on the substrate” (A).
  • Mold contact step A mold having a pattern shape is brought into contact with the curable composition in (A), and “a substrate / pattern composition having a curable composition / mold joined in this order” (B ).
  • Curing step The curable composition in (B) is cured by light or heat to form a cured film, and “a member in which a substrate / patterned cured film / mold is joined in this order” (C) Obtaining step.
  • Mold release step a step of separating the mold from (C) to obtain the patterned member (D).
  • the imprint includes a light imprint that is cured by light and a heat imprint that is cured by heat.
  • the imprint is a method for producing “a member in which a cured film having a concavo-convex pattern shape of preferably 1 nm or more and 100 ⁇ m or less is arranged on a substrate”.
  • nanoimprint is a method for producing “a member provided with a cured film having a concavo-convex pattern shape of 1 nm or more and 100 nm or less”.
  • the pattern formation method of this invention can be used suitably for nanoimprint.
  • the “pattern forming method” is referred to here as “a member in which a cured film having a pattern shape is arranged on a substrate” described in [Invention 4] in imprinting (D).
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment in the film production method of the present invention.
  • the pattern forming method shown in FIG. 1 includes the following steps. [1] Step of arranging a curable composition on a substrate (arrangement step, FIG. 1 (a)) [2] Step of contacting the mold with the curable composition (mold contact step, FIGS. 1 (b-1) and (b-2)) [3] Step of producing a cured film by curing the curable composition with light or heat (curing step, FIG. 1 (c)) [4] A step of separating the mold from the cured film (mold release step, FIG. 1 (d)).
  • the cured product 5 and the electronic component (electronic device) or optical component having the cured product 5 can be obtained from the curable composition 1.
  • each step [1] to [4] will be described.
  • Step [1] (arrangement step; FIG. 1A) First, the curable composition 1 is placed (applied) on the substrate 2 to form a coating film (FIG. 1A).
  • the curable composition here is the curable composition of the present invention.
  • a silicon wafer is usually used, but is not limited thereto.
  • aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, silicon nitride, and other known semiconductor device substrates can be selected and used. be able to.
  • the substrate to be used is a substrate that has improved adhesion to the curable composition by surface treatment such as silane coupling treatment, silazane treatment, or organic thin film formation. It may be used as
  • Examples of the method for disposing the curable composition 1 on the substrate 2 include, for example, an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire barcode method, a gravure coating method, an extrusion coating method, A spin coat method, a slit scan method, or the like can be used.
  • the film thickness of the shape transfer layer (coating film) is, for example, from 0.01 ⁇ m to 100 ⁇ m, although it varies depending on the application used.
  • Step [2] die contact step; FIG. 1 (b1), (b2)
  • a step of bringing the mold 3 into contact with the coating film made of the curable composition 1 formed in the previous step (placement step) (a mold contact step, FIGS. 1B1 and 1B2) is performed. Since the mold 3 can be regarded as a seal, this process is also called a stamping process.
  • a coating film (part) 4 is formed on the uneven portion of the fine pattern formed on the mold 3. Is filled (FIG. 1 (b2)).
  • the mold 3 used in the mold contact process is made of a light transmissive material when the next process (curing process) is a photocuring process using light.
  • the constituent material of the mold 3 include optically transparent resins such as glass, quartz, PMMA, and polycarbonate resins, transparent metal vapor-deposited films, flexible films such as polydimethylsiloxane, photocured films, and metal films. Can do.
  • a transparent resin is used as the constituent material of the mold 3
  • Quartz is particularly preferred because of its low thermal expansion coefficient.
  • the curing step is a thermosetting step, there is no limitation on the transparency of the material, and the above-described materials can be used as the constituent material of the mold 3.
  • the mold 3 may be subjected to a surface treatment before this step (die contact step) in order to improve the peelability between the cured film 5 and the surface of the mold 3.
  • the surface treatment method include a method in which a release agent is applied to the surface of the mold 3 to form a release agent layer.
  • a mold release agent applied on the surface of the mold 3 a silicon mold release agent, a fluorine mold release agent, a polyethylene mold release agent, a polypropylene mold release agent, a paraffin mold release agent, a montan mold release agent Agents, carnauba release agents and the like.
  • a commercially available coating mold release agent such as a trade name, Optool DSX, manufactured by Daikin Industries, Ltd. can be suitably used.
  • a mold release agent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • a fluorine-type mold release agent is particularly preferable.
  • the pressure applied to the curable composition 1 is not particularly limited, but is usually 0.1 MPa or more. , 100 MPa or less. Among them, it is preferably 0.1 MPa or more and 50 MPa or less, more preferably 0.1 MPa or more and 30 MPa or less, and further preferably 0.1 MPa or more and 20 MPa or less.
  • the time for bringing the mold 3 into contact with the curable composition 1 in this step is not particularly limited, but is usually 0.1 seconds or longer and 600 seconds or shorter, and is 0.1 seconds or longer and 300 seconds or shorter. Preferably, it is 0.1 seconds or more and 180 seconds or less, and particularly preferably 0.1 seconds or more and 120 seconds or less.
  • the environment in which this step is performed includes an air atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere.
  • an air atmosphere a reduced pressure atmosphere
  • an inert gas atmosphere there is no restriction
  • inert gas When this step is performed in an inert gas atmosphere, examples of the inert gas used include nitrogen, carbon dioxide, helium, argon, various chlorofluorocarbons, and a mixed gas thereof. When used for nanoimprinting, helium is preferred.
  • the condensable gas refers to a gas that satisfies the following requirements (i) and (ii).
  • a gas that exists as a gas in the atmosphere before the curable composition 1 (shaped transfer layer) and the mold 3 are in contact with each other in this step (FIG. 1 (b1)).
  • the curable composition 1 and the mold 3 are in contact with each other in the atmosphere together with the coating film (part) 4 in the recesses of the fine pattern formed on the mold 3 and the gap between the mold and the substrate. Gas that is condensed and liquefied by the capillary pressure generated by the pressure at the time of filling.
  • the gas filled in the concave portions of the fine pattern of the mold 3 is liquefied, so that bubbles are less likely to be generated.
  • the condensable gas (at least a part thereof) may be dissolved in the curable composition.
  • the boiling point of the condensable gas is not particularly limited as long as it is equal to or lower than the environmental temperature of this step, but a gas having a low boiling point in the range of 5 ° C. or higher and 50 ° C. or lower from the environmental temperature is preferable. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven
  • the vapor pressure of the gas containing the condensable gas is not particularly limited as long as it is equal to or lower than the mold pressure at the time of imprinting in this step, but is preferably 0.1 MPa or more and 0.4 MPa or less. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven
  • the vapor pressure at the ambient temperature is larger than 0.4 MPa, there is a tendency that the effect of eliminating the bubbles cannot be sufficiently obtained.
  • the vapor pressure at ambient temperature is less than 0.1 MPa, pressure reduction is required, and the apparatus tends to be complicated.
  • the environmental temperature during this step is not particularly limited, but is preferably 20 ° C or higher and 50 ° C or lower.
  • condensable gases include chlorofluorocarbons (CFC), fluorocarbons (FC), hydrochlorofluoroolefins (HCFO), hydrofluoroolefins (HFO), hydrofluoroethers (HFE), and other fluorocarbons. To do.
  • Chlorofluorocarbon Chlorofluoromethane
  • HCFO Chlorofluoromethane
  • Hydrochlorofluoroolefin Trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)), cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans- 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (E)), cis-1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1213xa), trans-1-chloro- 1,3,3,3-tetrafluoropropene (HCFO-1224zb (E)), c
  • the enumeration is listed below from the viewpoint that the filling property of the curable composition 1 to the uneven portion of the fine pattern of the mold 3 is excellent when the environmental temperature of the mold contact process is 20 ° C. to 25 ° C. Are preferred.
  • Condensable gas may be used alone or in combination of two or more. These condensable gases may be used by mixing with non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon.
  • the non-condensable gas mixed with the condensable gas is preferably helium from the viewpoint of filling properties. When helium is used, even if it is used as a mixed gas formed by mixing a condensable gas and a non-condensable gas (helium), the filling property is excellent because helium penetrates the mold.
  • the curing process does not depend on the photocuring process or the thermal curing process, and the influence on the curing reaction by oxygen or moisture can be prevented, so that the reduced pressure atmosphere, inert gas atmosphere or condensable gas can be used.
  • An atmosphere is preferred.
  • Step [3] (Curing step; FIG. 1 (c))
  • the coating film is cured. Specifically, the coating film 4 is irradiated with light through the mold 3 (FIG. 1C), or the coating film 4 is heated. In the curing step, the cured film 5 is formed by curing the coating film 4 with light or heat.
  • the light applied to the curable composition 1 constituting the coating film 4 is selected according to the sensitivity wavelength of the curable composition 1, and specifically, 150 nm to It is preferable to select and use ultraviolet light having a wavelength of about 400 nm, X-rays, electron beams or the like as appropriate.
  • the light (irradiation light 6) applied to the curable composition 1 is particularly preferably ultraviolet light.
  • Examples of light sources that emit ultraviolet light include high pressure mercury lamps, ultra high pressure mercury lamps, low pressure mercury lamps, deep-UV lamps, carbon arc lamps, chemical lamps, metal halide lamps, xenon lamps, KrF excimer lasers, ArF excimer lasers, and F 2. Although an excimer laser etc. are mentioned, an ultrahigh pressure mercury lamp is especially preferable.
  • the number of light sources used may be one or plural.
  • the order of photocuring and thermal curing is not limited, and includes cases where thermal curing is performed after photocuring, photocuring is performed after thermal curing, and photocuring and thermal curing are performed simultaneously.
  • the heating atmosphere and the heating temperature are not particularly limited.
  • the curable composition 1 can be heated in the range of 40 ° C. or higher and 200 ° C. or lower under an inert atmosphere or under reduced pressure.
  • a hot plate, oven, furnace, etc. can be used.
  • Step [4] (Release step; FIG. 1 (d))
  • the mold 3 is separated from the cured film 5, and a process of forming a cured film having a predetermined pattern shape on the substrate 2 (mold release process, FIG. 1D) is performed.
  • This step is a step of peeling the mold 3 from the cured film 5, and a reverse pattern of the fine pattern formed on the mold 3 in the previous step (curing step) is obtained as the pattern of the cured film 5.
  • the method of separating the cured film 5 and the mold 3 is not particularly limited as long as a part of the cured film 5 is not physically damaged when being separated, and various conditions are not particularly limited.
  • the substrate 2 substrate to be processed
  • the mold 3 may be moved away from the substrate 2 to be separated, or the mold 3 may be fixed and the substrate 2 moved away from the mold to be separated.
  • both of them may be peeled by pulling in the opposite direction.
  • a cured film having a desired concavo-convex pattern shape (pattern shape due to the concavo-convex shape of the mold 3) can be obtained by the series of steps (manufacturing process) from the steps [1] to [4] described above.
  • the obtained cured film can also be used, for example, as an optical member (including a case where it is used as one member of an optical member) such as a Fresnel lens or a diffraction grating. In such a case, it can be set as the optical member which has the board
  • the curable composition of the present invention has a high curing rate, and thus has high productivity and is excellent for imprinting. Particularly, it is remarkably excellent for nanoimprinting for forming a nano-sized (1 to 100 nm) pattern.
  • Polymerization initiator diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (Lucrin TPO, hereinafter also referred to as LTPO) and 4,4′-diethylaminobenzophenone (hereinafter also referred to as DABP) are shown below. Prepared).
  • Curing Rate of Curable Composition The curing rate of the curable composition of the present invention was evaluated by the following examples.
  • the curable composition was put into a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model, X-DSC7000), and then irradiated with ultraviolet rays using an ultraviolet irradiation device (manufactured by Hayashi Watch Co., Ltd., model, LA-410UV). At this time, the irradiation light had a wavelength of 365 nm and an illuminance of 100 mW / cm 2 .
  • the calorific value when irradiated for 180 seconds (H 180 ) is defined as the total calorific value, and the reaction rate after irradiation for 18 seconds from the ratio of the calorific value for 18 seconds after the start of irradiation (H 18 ) to the total calorific value. (%) was calculated and the curing rates were compared. Since the photocuring reaction is an exothermic reaction, the higher the reaction rate, the higher the curing rate.
  • Example 1 The polymerizable compound [A] and the polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-1).
  • Table 1 shows the composition ratio of the curable composition (a-1).
  • Table 1 also shows the curable compositions (a-2) to (a-5) used in Examples 2 to 5 described later and the curable compositions (b-1) used in Comparative Examples 1 to 3. (B-3) and the composition ratio of the curable composition (c-1) used in Reference Example 1 are also shown.
  • the ratio of the total mol% of the polymerizable compound [A] to the total mol% of the polymerization initiator [B] is 96: 4.
  • the reaction rate of the curable composition (a-1) calculated by the above method was 95.6%.
  • the results are shown in Table 1. This value was larger than 88.5% of the curable composition (b-1) of Comparative Example 1 described later and 86.3% of the curable composition (b-2) of Comparative Example 2.
  • Example 2 In Example 1, 4-HFIP-phenyl acrylate was changed to 3,5-bis-HFIP-phenyl acrylate represented by the formula (1b) (the synthesis method is described in JP-A-2004-83900). A curable composition (a-2) was prepared in the same manner as in Example 1 except that.
  • This value was larger than 88.5% of the curable composition (b-1) of Comparative Example 1 described later and 86.3% of the curable composition (b-2) of Comparative Example 2. That is, the curable composition (a-1) and the curable composition (a-2) have a shorter ultraviolet irradiation time than the curable composition (b-1) and the curable composition (b-2). Since the composition is sufficiently cured, the nanoimprint using the curable composition (a-1) and the curable composition (a-2) has high productivity.
  • Example 3 A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-3).
  • Example 4 In Example 3, 4-HFIP-styrene is a polymerizable compound represented by the formula (1c), 4,4,4-trifluoro-3-hydroxy-1-methyl-3- (trifluoromethyl) butyl-2 A curable composition (a-4) was prepared in the same manner as in Example 3, except that it was changed to -acrylate (the synthesis method is described in JP-A-2005-239710).
  • Example 5 In Example 3, 4-HFIP-styrene was changed to a polymerizable compound represented by the formula (1d) (4,4,4-trifluoro-3-hydroxy-1-methyl-3- (trifluoromethyl) butyl-2.
  • a curable composition (a-5) was prepared in the same manner as in Example 3 except that the method was changed to -methacrylate) and JP-A-2005-239710, whose synthesis method is described.
  • the curing rate of the curable composition (a-5) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 31.6%.
  • Table 1 As a methacrylic monomer, which is said to have low polymerizability compared to an acrylic monomer, it has a relatively high curing rate.
  • a curable composition (b-1) was prepared in the same manner as in Example 1 except that 4-HFIP-phenyl acrylate was changed to phenyl acrylate represented by the following formula in the description of Example 1.
  • the curing rate of the curable composition (b-1) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 88.5%. The results are shown in Table 1.
  • Example 2 In the description of Example 1, the curable composition (b-2) was prepared in the same manner as in Example 1 except that 4-HFIP-phenyl acrylate was changed to 4-hydroxy-phenyl acrylate represented by the following formula. Prepared. When the curing rate of the curable composition (b-2) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 86.3%. The results are shown in Table 1.
  • Example 3 In the description of Example 3, a curable composition (b-3) was prepared in the same manner as in Example 3 except that 4-HFIP-styrene was changed to styrene represented by the following formula. When the curing rate of the curable composition (b-3) was evaluated in the same manner as in Example 1, the reaction rate was 5.6%. The results are shown in Table 1.
  • Example 3 a curable composition (c-1) was prepared in the same manner as in Example 3 except that 4-HFIP-styrene was changed to “diacrylate 1” represented by the following formula. .
  • the curing rate of the curable composition (c-1) was evaluated in the same manner as in Example 1, the reaction rate was 81.0%. The results are shown in Table 1.
  • a halogen light source (Mortex Co., Ltd., model, MUV351U) was used.
  • MUV351U a halogen light source
  • the quartz mold was separated from the photocured film at a speed of 0.0125 mm / s.
  • the force required for mold release was measured using a tension / compression dual-use compact load cell (manufactured by Kyowa Denki Co., Ltd., model, LUR-A-1KNSA1).
  • the release force measurement was performed five times under the same conditions, and the average value was calculated from the measurement data of each time.
  • Example 6 A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-6).
  • the average mold release force of the cured product obtained from the curable composition (a-6) was measured by the above method, and found to be 54.2 N.
  • the average release force 73.2N of the cured product obtained from (1) and the average release force 66.3N of the cured product obtained from the curable composition (b-5) of Comparative Example 5 were lower. .
  • Example 7 In Example 6, except that 4-HFIP-phenyl acrylate was changed to 3,5-bis-HFIP-phenyl acrylate represented by the formula (1b), the curable composition (a -7) was prepared.
  • the average mold release force of the cured product obtained from the curable composition (a-7) was measured in the same manner as in Example 6, the average mold release force was 54.1 N. This value was obtained from the average release force 73.2N of the cured product obtained from the curable composition (b-4) of Comparative Example 4 described later and the curable composition (b-5) of Comparative Example 5.
  • the average release force of the cured product was lower than 66.3N.
  • the cured product obtained from the curable composition (a-6) and the curable composition (a-7) was obtained from the curable composition (b-4) and the curable composition (b-5).
  • the mold can be released with a release force lower than that of the cured product, and in the nanoimprint method, pattern defects can be reduced and alignment accuracy can be improved.
  • Example 8 A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-8).
  • a curable composition (b-4) was prepared in the same manner as in Example 6, except that 4-HFIP-phenyl acrylate was changed to phenyl acrylate in Example 6.
  • the average mold release force of the cured product obtained from the curable composition (b-4) was measured by the above method in the same manner as in Example 6, the average mold release force was 73.2 N.
  • a curable composition (b-5) was prepared in the same manner as in Example 6 except that 4-HFIP-phenyl acrylate was changed to 4-hydroxy-phenyl acrylate in Example 6.
  • the average mold release force of the cured product obtained from the curable composition (b-5) was measured in the same manner as in Example 6, the average mold release force was 66.3 N.
  • the average mold release force of the cured product obtained by curing the curable composition of the present invention is a numerical value (equivalent level) that is comparable to that of the conventional polymerizable composition having no HFIP group (Comparative Example). It was found that the material was excellent in releasability.
  • the curable composition containing the polymerizable compound represented by the formula (1) or (2) obtained by the present invention has a property of a high curing rate, it is a semiconductor sealing material, underfill material, organic It can be used as a sealing material or bank material for EL elements and organic EL displays.

Abstract

The curable composition according to the present invention contains at least one type of polymerizable compound represented by formula (1) or formula (2), and a polymerization initiator. The curable composition has relatively fast photocuring speed, and can be suitably used in pattern formation using ink printing technology. (In the formulas, R1 is a hydrogen atom or a methyl group, R2 is a divalent or trivalent straight-chain, branched, or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group, R3 is a divalent or trivalent aromatic group, and m and n are the integer 1 or 2.)

Description

硬化性組成物およびパターンの製造方法CURABLE COMPOSITION AND METHOD FOR PRODUCING PATTERN
 本発明は、インプリント用途等に使用する重合性化合物と、その重合性化合物と重合開始剤とを含む硬化性組成物に関する。また、前記硬化性組成物を用いてパターンを形成するインプリントに関する。 The present invention relates to a polymerizable compound used for imprint applications and the like, and a curable composition containing the polymerizable compound and a polymerization initiator. Moreover, it is related with the imprint which forms a pattern using the said curable composition.
 半導体集積回路等の製造に必要とされる微細加工法の1つとしてインプリントが挙げられる。インプリントとは、微細な凹凸パターンが形成されたモールドを、基板に塗布した硬化性組成物に押し付けた状態で、光、熱等で硬化性組成物を硬化し、モールドの凹凸パターンを基板上の硬化性組成物に転写することで、「基板上に、微細な凹凸パターン形状を有する硬化膜を配した部材」(以下、パターン付き部材ということがある)を製造する方法である。インプリントにおいて、ナノサイズ(1nm以上、100nm以下)の凹凸パターンの形成は、特にナノインプリントと呼ばれる。 Imprinting is one of the fine processing methods required for manufacturing semiconductor integrated circuits. Imprint is a state in which a mold having a fine concavo-convex pattern is pressed against a curable composition applied to a substrate, the curable composition is cured by light, heat, etc. This is a method for producing “a member in which a cured film having a fine concavo-convex pattern shape is arranged on a substrate” (hereinafter sometimes referred to as a member with a pattern). In imprinting, the formation of a nano-sized uneven pattern (1 nm or more and 100 nm or less) is particularly called nanoimprinting.
 例えば特許文献1には、ナノインプリントに用いる硬化性組成物の構成成分(重合性化合物)として、(メタ)アクリロイル基を1個または複数有する(メタ)アクリル酸エステルモノマー、ビニルエーテル化合物、スチレン誘導体、プロペニルエーテル、またはブテニルエーテル等が使用可能であることが開示されている。 For example, Patent Document 1 discloses a (meth) acrylic acid ester monomer, vinyl ether compound, styrene derivative, propenyl having one or more (meth) acryloyl groups as a component (polymerizable compound) of a curable composition used for nanoimprinting. It is disclosed that ether or butenyl ether can be used.
 特許文献2には、ベンゼン骨格を2個有する特定の2価の(メタ)アクリル酸エステルモノマーが、ナノインプリントの硬化性組成物成分として好ましく利用できる旨が記されている。 Patent Document 2 describes that a specific divalent (meth) acrylic acid ester monomer having two benzene skeletons can be preferably used as a curable composition component of nanoimprint.
 特許文献3には、各種(メタ)アクリル酸エステルを単量体成分とするナノインプリントの硬化性組成物において、フルオロアルキル基を有する(ポリ)オキシアルキレン基を有するアミン化合物(水素供与体)を添加剤として加えると、該硬化性組成物を光硬化するにあたって、硬化感度(硬化速度)が顕著に向上すると開示されている。 Patent Document 3 includes an amine compound (hydrogen donor) having a (poly) oxyalkylene group having a fluoroalkyl group in a nanoimprint curable composition containing various (meth) acrylic acid esters as monomer components. It is disclosed that when added as an agent, the curing sensitivity (curing speed) is remarkably improved when the curable composition is photocured.
 なお、本明細書において、(メタ)アクリルは、アクリルおよびメタクリルを、(メタ)アクリレートは、アクリレートおよびメタクリレートを、(メタ)アクリロイルは、アクリロイルおよびメタクリロイルを意味する。 In this specification, (meth) acryl means acryl and methacryl, (meth) acrylate means acrylate and methacrylate, and (meth) acryloyl means acryloyl and methacryloyl.
 インプリントは、複数の工程から成り立つが、中でも、光、熱等で硬化性組成物を硬化する「硬化工程」に要する時間は、インプリントの生産効率全体に大きく影響する。前記特許文献1には、光硬化性向上のために、4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)1,3,5-トリアジン-2,4,6(1H、3H、5H)-トリオンなどの連鎖移動剤を添加することが開示されている。また特許文献3では、前述の通り、特定のアミン化合物を添加剤として共存させ、光硬化速度の向上に成功している。 Imprint is composed of a plurality of processes, and among them, the time required for the “curing process” for curing the curable composition with light, heat, etc. greatly affects the overall imprint production efficiency. In Patent Document 1, 4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) 1,3,5-triazine is used to improve photocurability. The addition of chain transfer agents such as -2,4,6 (1H, 3H, 5H) -trione is disclosed. In Patent Document 3, as described above, a specific amine compound is allowed to coexist as an additive, and the photocuring rate has been successfully improved.
特開2010-114209号公報JP 2010-114209 A 特開2007-084625号公報JP 2007-084625 A 特開2014-237632号公報JP 2014-237632 A
 本発明では、硬化速度が高い重合性化合物およびそれを構成成分とする硬化性組成物を得ることを課題とする。 In the present invention, it is an object to obtain a polymerizable compound having a high curing rate and a curable composition containing the polymerizable compound.
 硬化性組成物中の重合性化合物(モノマー)の分子構造が硬化性組成物の硬化速度に与える影響には、明らかでない点がある。例えば、本明細書の比較例1~3に示すように、アクリルモノマーとしてよく用いられるフェニルアクリレート、4-ヒドロキシフェニルアクリレート、またはスチレン系モノマーの代表であるスチレンを一定条件で硬化反応(重合反応)に付すと、硬化率には5.6%~88.5%の開きがあった。比較例1~3において、硬化性組成物の硬化率は、それが含むモノマーの基本骨格(アクリル系モノマー、またはスチレン系モノマーであるか等)に大きく依存していた。 The influence of the molecular structure of the polymerizable compound (monomer) in the curable composition on the curing rate of the curable composition is not clear. For example, as shown in Comparative Examples 1 to 3 in this specification, phenyl acrylate, 4-hydroxyphenyl acrylate, or styrene, which is a typical styrene monomer, is often used as an acrylic monomer. , The cure rate ranged from 5.6% to 88.5%. In Comparative Examples 1 to 3, the curing rate of the curable composition largely depended on the basic skeleton of the monomer (whether it is an acrylic monomer or a styrene monomer).
 本発明者らは、鋭意検討した結果、意外なことに、これらの重合性化合物の基本骨格(主鎖構造)を維持したまま、側鎖に「-C(CF32OH基」(以下、ヘキサフルオロイソプロパノール基、またはHFIP基とも呼ぶことがある)を導入した重合性化合物を含む新規な硬化性組成物を用いることで、硬化速度を向上させることができることがわかった。 As a result of intensive studies, the present inventors have surprisingly found that “—C (CF 3 ) 2 OH group” (hereinafter referred to as the “-C (CF 3 ) 2 OH group”) is maintained in the side chain while maintaining the basic skeleton (main chain structure) of these polymerizable compounds. It was found that the curing rate can be improved by using a novel curable composition containing a polymerizable compound into which a hexafluoroisopropanol group or a HFIP group is introduced).
 発明者らがさらに鋭意検討を行った結果、式(1)または式(2)で表される重合性化合物をインプリント用の硬化性組成物に供することによって、前記課題が解決することを見出した。
Figure JPOXMLDOC01-appb-C000007
(式中、R1は水素原子またはメチル基であり、R2は2価または3価の直鎖状、分岐鎖状または環状の脂肪族炭化水素基、または2価または3価の芳香族基であり、R3は2価または3価の芳香族基であり、m、nは1~2の整数である。)
As a result of further intensive studies by the inventors, it has been found that the above problem can be solved by providing the polymerizable compound represented by the formula (1) or the formula (2) to the curable composition for imprinting. It was.
Figure JPOXMLDOC01-appb-C000007
Wherein R 1 is a hydrogen atom or a methyl group, and R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group. R 3 is a divalent or trivalent aromatic group, and m and n are integers of 1 to 2.)
 すなわち、上記式(1)、式(2)で表される重合性単量体は、重合部位(C=C二重結合の部位)の側鎖の末端部に「-C(CF32OH基」(HFIP基)が導入されている点で共通する。式(1)および式(2)で表される重合性化合物を硬化性組成物に用いた場合(本明細書の実施例)と、これらに対応するHFIP基を有しない重合性化合物を硬化性組成物に用いた場合(本明細書の比較例)とを対比すると、前者の方が後者に比べて、硬化速度が有意に大きくなった。つまり、「側鎖末端部のHFIP基」には、重合性化合物として、硬化速度を有意に増大させる効果があった。 That is, the polymerizable monomer represented by the above formulas (1) and (2) has “—C (CF 3 ) 2 at the end of the side chain of the polymerization site (C = C double bond site). This is common in that “OH group” (HFIP group) is introduced. When the polymerizable compound represented by the formula (1) and the formula (2) is used in the curable composition (Example of the present specification), the polymerizable compound having no HFIP group corresponding thereto is curable. When compared with the case of using the composition (Comparative Example of the present specification), the curing rate of the former was significantly higher than that of the latter. That is, the “HFIP group at the side chain end” has an effect of significantly increasing the curing rate as a polymerizable compound.
 本発明者らはこのように見出した前記硬化性組成物を使用した、「基板上に、パターン形状を有する硬化膜を配した部材」の製造方法(パターン形成方法)をも見出し、発明を完成させるに至った。 The present inventors have also found a manufacturing method (pattern forming method) of “a member in which a cured film having a pattern shape is arranged on a substrate” using the curable composition thus found, and completed the invention. I came to let you.
 すなわち本発明は、次の各発明を含む。 That is, the present invention includes the following inventions.
 [発明1]
 下記式(1)または式(2)で表される重合性化合物の少なくとも1種と、重合開始剤と、を含む、硬化性組成物。
Figure JPOXMLDOC01-appb-C000008
(式中、R1は水素原子またはメチル基であり、R2は2価または3価の直鎖状、分岐鎖状または環状の脂肪族炭化水素基、または2価または3価の芳香族基であり、R3は2価または3価の芳香族基であり、m、nは1~2の整数である。)
[Invention 1]
The curable composition containing at least 1 sort (s) of the polymeric compound represented by following formula (1) or Formula (2), and a polymerization initiator.
Figure JPOXMLDOC01-appb-C000008
Wherein R 1 is a hydrogen atom or a methyl group, and R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group. R 3 is a divalent or trivalent aromatic group, and m and n are integers of 1 to 2.)
 [発明2]
 前記重合性化合物が、次の式(1a)、式(1b)、式(1c)、式(1d)、式(2a)で表されるいずれかの重合性化合物である、発明1の硬化性組成物。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[Invention 2]
Curability of Invention 1, wherein the polymerizable compound is any polymerizable compound represented by the following formula (1a), formula (1b), formula (1c), formula (1d), or formula (2a): Composition.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 [発明3]
 前記重合開始剤が、光重合開始剤であることを特徴とする、発明1または発明2の硬化性組成物。
[Invention 3]
The curable composition of Invention 1 or Invention 2, wherein the polymerization initiator is a photopolymerization initiator.
 [発明4]
 光ナノインプリント用組成物であることを特徴とする、発明1~発明3の硬化性組成物。
[Invention 4]
The curable composition according to any one of Inventions 1 to 3, wherein the composition is an optical nanoimprinting composition.
 [発明5]
 次の各工程を含む、基板上に、パターン形状を有する硬化膜を配した部材の製造方法。
配置工程:発明1~4の硬化性組成物を基板上に配置する工程。
型接触工程:前記基板上に配置された前記硬化性組成物に対し、パターン形状を有するモールドを接触させる工程。
硬化工程:前記モールドと接触した状態の前記硬化性組成物を、光または熱により硬化させて硬化膜とする工程。
離型工程:前記硬化膜から前記モールドを引き離し、前記パターン付き部材を得る工程。
[Invention 5]
The manufacturing method of the member which arranged the cured film which has a pattern shape on a board | substrate including the following each process.
Arranging step: A step of arranging the curable compositions of inventions 1 to 4 on a substrate.
Mold contact step: a step of bringing a mold having a pattern shape into contact with the curable composition disposed on the substrate.
Curing step: a step of curing the curable composition in contact with the mold with light or heat to form a cured film.
Mold release step: a step of separating the mold from the cured film to obtain the patterned member.
 [発明6]
 前記型接触工程が、凝縮性ガスを含む気体の雰囲気下で行われる、発明5のパターン付き部材の製造方法。
[Invention 6]
The manufacturing method of the member with a pattern of the invention 5 with which the said type | mold contact process is performed in the gas atmosphere containing a condensable gas.
 [発明7]
 前記接触工程の凝縮性ガスが1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、トランス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))のうち少なくとも1種類を含む、発明6のパターン付き部材の製造方法。
[Invention 7]
The condensable gas in the contacting step is 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)) Cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1 , 3,3,3-tetrafluoropropene (HFO-1234ze (Z)).
 本発明によれば、硬化速度の高い重合性化合物が得られ、また、それを用いることにより、特にインプリントにおいて有用な、硬化速度の高い、硬化性組成物を提供することができる。また、本発明の前記硬化性組成物を用いた、インプリントにおけるパターン形成方法が提供されるという効果を奏する。 According to the present invention, a polymerizable compound having a high curing rate can be obtained, and by using it, a curable composition having a high curing rate that is particularly useful in imprinting can be provided. Moreover, there exists an effect that the pattern formation method in the imprint using the said curable composition of this invention is provided.
本発明の膜パターン付き部材の製造方法(パターン形成方法)における実施形態の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of embodiment in the manufacturing method (pattern formation method) of the member with a film | membrane pattern of this invention.
 本発明について詳細に説明する。本発明は以下に説明する実施形態に限定されるものではない。当業者の通常の知識に基づいて本発明の趣旨を逸脱しない範囲で以下に説明する実施形態に対して適宜変更、改良等を加えたものも本発明に含まれる。 The present invention will be described in detail. The present invention is not limited to the embodiments described below. Based on the ordinary knowledge of those skilled in the art, the present invention includes those in which the embodiments described below are appropriately modified and improved without departing from the spirit of the present invention.
 本明細書では、次の順で説明を行う。
1.HFIP基を有する重合性化合物を構成成分として含む硬化性組成物について
2.パターン形成方法について
In this specification, description will be given in the following order.
1. 1. A curable composition containing a polymerizable compound having an HFIP group as a constituent component About pattern formation method
 1.HFIP基を有する重合性化合物を構成成分として含む硬化性組成物について
 本発明の硬化性組成物は、
 式(1)または式(2)で表されるHFIP基を有する重合性化合物の少なくとも1種と、
 重合開始剤と、を含む組成物である。
Figure JPOXMLDOC01-appb-C000014
(式中、R1は水素原子またはメチル基であり、R2は2価または3価の直鎖状、分岐鎖状または環状の脂肪族炭化水素基、または2価または3価の芳香族基であり、R3は2価または3価の芳香族基であり、m、nは1~2の整数である。)
1. About the curable composition containing the polymeric compound which has HFIP group as a structural component The curable composition of this invention is the following.
At least one polymerizable compound having an HFIP group represented by formula (1) or formula (2);
And a polymerization initiator.
Figure JPOXMLDOC01-appb-C000014
Wherein R 1 is a hydrogen atom or a methyl group, and R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group. R 3 is a divalent or trivalent aromatic group, and m and n are integers of 1 to 2.)
 式(1)、式(2)に示すように、本発明の硬化性組成物に用いる重合性化合物は、側鎖末端部にHFIP基を有する。前述の通り、この重合性化合物の「側鎖末端部のHFIP基」には、硬化性組成物の硬化速度を有意に増大させる効果があることがわかった。
 この原因は必ずしも明らかでないが、ベンジルアクリレート(本明細書の比較例1)と4-ヒドロキシベンジルアクリレート(比較例2)の間で、硬化速度に有意な差がないことからみて、「OH基の存在」だけでは、硬化速度の増大を説明できない。また、「CF3基を2つ有する一方で、OHを有しない単量体」(参考例1)の場合も、硬化速度はさほど大きいものではないから、「CF3基の存在」だけでも、硬化速度の増大を必ずしも説明できない。これらのことから、硬化速度を向上させる効果は、本発明の重合性単量体の持つ「CF3基とOH基を併せ持つ特異な骨格」に起因するものと推測される。
As shown in Formula (1) and Formula (2), the polymerizable compound used in the curable composition of the present invention has an HFIP group at the side chain end. As described above, it was found that the “HFIP group at the end of the side chain” of this polymerizable compound has an effect of significantly increasing the curing rate of the curable composition.
The cause of this is not necessarily clear, but in view of the fact that there is no significant difference in the cure rate between benzyl acrylate (Comparative Example 1 in this specification) and 4-hydroxybenzyl acrylate (Comparative Example 2), “Existence” alone cannot explain the increase in cure rate. Also, in the case of “a monomer having two CF 3 groups but not having OH” (Reference Example 1), the curing rate is not so high, so only “existence of CF 3 group” The increase in cure rate cannot always be explained. From these facts, it is speculated that the effect of improving the curing rate is attributed to the “unique skeleton having both the CF 3 group and the OH group” of the polymerizable monomer of the present invention.
 なお、硬化速度(重合速度)は、上記特許文献1、3に開示されたように、硬化性組成物中に各種添加剤を加えることによっても増大できる場合がある。また、重合性単量体の基本骨格によっても、硬化速度は調節できる場合がある(例えば、アクリル系のモノマーはスチレン系のモノマーに比べて、一般に硬化速度は大きい)。しかし、添加剤の使用量を抑制する必要が生じることはあるし、重合性単量体として、比較的重合の遅い基本骨格のものを一定量使う需要が生じる場合もある。その点、側鎖にHFIP基を導入するだけで、硬化速度を有意に高められるようになったことの意義は大きい。 The curing rate (polymerization rate) may be increased by adding various additives to the curable composition as disclosed in Patent Documents 1 and 3 above. Also, the curing rate may be adjustable depending on the basic skeleton of the polymerizable monomer (for example, an acrylic monomer generally has a higher curing rate than a styrene monomer). However, it may be necessary to reduce the amount of additive used, and there may be a demand for using a certain amount of a basic skeleton having a relatively slow polymerization as a polymerizable monomer. In that respect, it is significant that the curing rate can be significantly increased only by introducing the HFIP group into the side chain.
 硬化性組成物が含む重合性化合物の側鎖にHFIP基を導入することで硬化速度が高まるということは新規の知見である。本発明の硬化性組成物を用いれば、別途添加剤を加えて系内の組成物プロフィールを複雑にすることを要せず、インプリント等の生産性向上に寄与することができる。 It is a novel finding that the curing rate is increased by introducing HFIP groups into the side chain of the polymerizable compound contained in the curable composition. If the curable composition of the present invention is used, it is not necessary to add an additive separately to complicate the composition profile in the system, and it is possible to contribute to productivity improvement such as imprint.
 なお、式(1)、式(2)で表される化合物の合成方法は、特開2011-164345公報、特開2004-83900公報、特開2005-239710公報、Chem.Mater.2003.15.1512-1517に記載されている。 In addition, the synthesis method of the compound represented by Formula (1) and Formula (2) is disclosed in JP 2011-164345 A, JP 2004-83900 A, JP 2005-239710 A, Chem. Mater. 2003.15.1512- 1517.
 本発明の硬化性組成物は、さらに任意成分として、
 上記式(1)または式(2)で表される重合性化合物以外の重合性化合物(本明細書において「その他の重合性化合物」と呼ぶことがある)と、
 増感剤と、
 界面活性剤と、
 溶媒と、
 各種添加剤と、からなる群より選ばれるいずれか1つ、または複数のものを含むことができる。
The curable composition of the present invention further includes, as an optional component,
A polymerizable compound other than the polymerizable compound represented by the above formula (1) or formula (2) (sometimes referred to as “other polymerizable compound” in this specification);
A sensitizer,
A surfactant,
A solvent,
Any one or more selected from the group consisting of various additives may be included.
 以下、各成分について説明する。なお、説明の都合上、「式(1)または式(2)で表される重合性化合物」と「その他の重合性化合物」はまとめて「重合性化合物」として説明する。それ以外の任意成分を「その他の添加成分」として説明する。 Hereinafter, each component will be described. For convenience of explanation, “polymerizable compound represented by formula (1) or formula (2)” and “other polymerizable compounds” are collectively described as “polymerizable compound”. Other optional components will be described as “other additive components”.
 1-1.重合性化合物
 重合性化合物とは、上記の通り、「式(1)または式(2)で表される重合性化合物」と、「その他の重合性化合物」の総称である。重合性化合物はインプリント用の硬化性組成物の主成分である。当該硬化性組成物における重合性化合物の含量は通常50質量%以上であり、典型的には80質量%以上である。硬化性組成物が溶媒を含む場合は、これより重合性化合物の含量が少ないことも妨げられない。
1-1. Polymerizable Compound The polymerizable compound is a generic term for “polymerizable compound represented by formula (1) or formula (2)” and “other polymerizable compounds” as described above. The polymerizable compound is the main component of the curable composition for imprints. The content of the polymerizable compound in the curable composition is usually 50% by mass or more, and typically 80% by mass or more. When a curable composition contains a solvent, it is not prevented that there is little content of a polymeric compound from this.
 式(1)中、R1は水素原子、またはメチル基であり、R2は2価または3価の脂肪族炭化水素基であり、当該脂肪族炭化水素基は直鎖状、分岐鎖状または環状である、または2価または3価の芳香族基であり、mは1~2の整数である。 In Formula (1), R 1 is a hydrogen atom or a methyl group, R 2 is a divalent or trivalent aliphatic hydrocarbon group, and the aliphatic hydrocarbon group is linear, branched or It is cyclic or a divalent or trivalent aromatic group, and m is an integer of 1 to 2.
 上記R2に使用できる2価の脂肪族炭化水素基としては、メチレン、エチレン、イソプロピレン、t-ブチレンなどの直鎖または分岐を有するアルキレン基、シクロブテン、シクロプロピレン、シクロペンチレン、シクロへキシレン、ノルボルニレン、アダマンチレン等の環状構造を例示することができる。 Examples of the divalent aliphatic hydrocarbon group that can be used for R 2 include linear or branched alkylene groups such as methylene, ethylene, isopropylene, and t-butylene, cyclobutene, cyclopropylene, cyclopentylene, and cyclohexylene. And cyclic structures such as norbornylene and adamantylene.
 また、上記R2に使用できる3価の脂肪族炭化水素基としては、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基等のアルカントリイル基、シクロブタントリイル基、シクロプロパントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基等のシクロアルカントリイル基、ノルボルナントリイル基、アダマンタントリイル基、ノルボルネントリイル基等の環状構造を例示することができる。 Examples of the trivalent aliphatic hydrocarbon group that can be used for R 2 include alkanetriyl groups such as methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, and pentanetriyl group, cyclobutanetriyl group, cyclohexane Examples of the cyclic structure include cycloalkanetriyl groups such as propanetriyl group, cyclopentanetriyl group, and cyclohexanetriyl group, norbornanetriyl group, adamantanetriyl group, and norbornenetriyl group.
 上記R2に使用できる2価の芳香族基としては、フェニレン基、ベンジリレン基、ナフチレン基、アントリレン基を例示することができる。 Examples of the divalent aromatic group that can be used for R 2 include a phenylene group, a benzylylene group, a naphthylene group, and an anthrylene group.
 また、上記R2に使用できる3価の芳香族基としては、ベンゼントリイル基、ナフタレントリイル基、アントラセントリイル基を例示することができる。 Examples of the trivalent aromatic group that can be used for R 2 include a benzenetriyl group, a naphthalenetriyl group, and an anthracentriyl group.
 式(2)中、R1は水素原子、またはメチル基であり、R3は2価または3価の芳香族基であり、nは1~2の整数である。 In the formula (2), R 1 is a hydrogen atom or a methyl group, R 3 is a divalent or trivalent aromatic group, and n is an integer of 1 to 2.
 上記R3に使用できる2価の芳香族基としては、フェニレン基、ベンジリレン基、ナフチレン基、アントリレン基を例示することができる。 Examples of the divalent aromatic group that can be used for R 3 include a phenylene group, a benzylylene group, a naphthylene group, and an anthrylene group.
 また、上記R3に使用できる3価の芳香族基としては、ベンゼントリイル基、ナフタレントリイル基、アントラセントリイル基を例示することができる。 Examples of the trivalent aromatic group that can be used for R 3 include a benzenetriyl group, a naphthalenetriyl group, and an anthracentriyl group.
 式(1)中のR2または式(2)中のR3としては、芳香環や脂環式骨格が好ましく、フェニレン基、ベンジリレン基、ベンゼントリイル基がより好ましい。芳香環や脂環式骨格を有することにより、硬化性組成物を硬化させて得られるパターン形状を有する硬化膜のドライエッチング耐性やウェットプロセス耐性、機械的強度等が向上するからである。 R 2 in formula (1) or R 3 in formula (2) is preferably an aromatic ring or alicyclic skeleton, more preferably a phenylene group, a benzylylene group, or a benzenetriyl group. This is because having an aromatic ring or an alicyclic skeleton improves the dry etching resistance, wet process resistance, mechanical strength, and the like of a cured film having a pattern shape obtained by curing the curable composition.
 式(1)で表される重合性化合物としては、下記の構造を好ましいものとして、例示することができる。
Figure JPOXMLDOC01-appb-C000015
As a polymeric compound represented by Formula (1), the following structure can be illustrated as a preferable thing.
Figure JPOXMLDOC01-appb-C000015
 式(2)で表される重合性化合物としては、下記の構造を好ましいものとして、例示することができる。
Figure JPOXMLDOC01-appb-C000016
As a polymeric compound represented by Formula (2), the following structure can be illustrated as a preferable thing.
Figure JPOXMLDOC01-appb-C000016
 これらの中でも、次の式(1a)、式(1b)、式(1c)、式(1d)、式(2a)で表される重合性化合物は、対応する構造の「HFIP基を有しない重合性化合物」に比較したときの、硬化速度(重合速度)の増大が顕著であり、特に好ましい重合性化合物である。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Among these, the polymerizable compound represented by the following formula (1a), formula (1b), formula (1c), formula (1d), and formula (2a) has a corresponding structure of “polymerization without HFIP group”. The increase in the curing rate (polymerization rate) when compared with the “polymeric compound” is remarkable, and is a particularly preferable polymerizable compound.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 また、本明細書の実施例6~8に示した通り、これらの重合性化合物を重合(硬化)させて得た樹脂は、モールドからの離型性にも優れている。 In addition, as shown in Examples 6 to 8 of the present specification, resins obtained by polymerizing (curing) these polymerizable compounds are excellent in releasability from the mold.
 また、前記した通り、「硬化速度の大きさ」を殊更重視するのならば、式(1)の重合性化合物すなわち(メタ)アクリル系の重合性化合物の方が、式(2)の重合性化合物すなわちスチレン系の重合性化合物よりも、有利である。また、式(1)の重合性化合物の中では、「メタアクリル系のもの(R1がメチル)」よりも「アクリル系のもの(R1が水素原子)」の方が、硬化速度が大きい。すなわち、上記式(1a)~(1d)、式(2a)の重合性化合物のうちでは、式(1)の重合性化合物に属し、かつ「アクリル系のモノマー」に該当する式(1a)、式(1b)、式(1c)の重合性化合物は、特に好ましい(本明細書の実施例1~3を参照)。 Further, as described above, if the “magnification rate” is particularly emphasized, the polymerizable compound of the formula (1), that is, the (meth) acrylic polymerizable compound is more polymerizable. It is advantageous over a compound, that is, a styrene-based polymerizable compound. In addition, among the polymerizable compounds of the formula (1), the “acrylic type (R 1 is a hydrogen atom)” has a higher curing rate than the “methacrylic type (R 1 is methyl)”. . That is, among the polymerizable compounds of the formulas (1a) to (1d) and the formula (2a), the formula (1a) belonging to the polymerizable compound of the formula (1) and corresponding to the “acrylic monomer”, The polymerizable compounds of formula (1b) and formula (1c) are particularly preferred (see Examples 1 to 3 herein).
 尤も、どのような重合性化合物をどのような量用いるかは、硬化速度だけでなく、それ以外の物性とのバランスも考慮して決めるべきものである。その点、もともと重合速度が比較的低い式(2a)のようなスチレン系の単量体であっても、HFIP基を導入することによって、HFIP基を有しないスチレンと比べ硬化速度が有意に向上しているのは、本発明の注目すべき点である。 However, what type of polymerizable compound is used should be determined in consideration of not only the curing rate but also the balance with other physical properties. In that respect, even if the styrene monomer of the formula (2a), which has a relatively low polymerization rate, is introduced, the curing rate is significantly improved by introducing the HFIP group compared to styrene having no HFIP group. What is noted is the notable point of the present invention.
 重合性化合物としては、式(1)または式(2)で表される重合性化合物を単独で用いてもよい。しかし、式(1)または式(2)で表される重合性化合物と共に「その他の重合性化合物」を併用することができ、そうすることで硬化性組成物の充填速度や硬化膜の機械的強度を調整できることがある。「その他の重合性化合物」は、ラジカル重合性を有する化合物であれば特に限定されないが、アクリロイル基又はメタクリロイル基を1つ以上有する化合物、すなわち(メタ)アクリル化合物であることが好ましい。「式(1)または式(2)の重合性化合物」と「その他の重合性化合物」の総質量に対する、「式(1)または式(2)の重合性化合物」と「その他の重合性化合物中の(メタ)アクリル化合物」の質量の占める割合は90質量%以上であることが好ましい。 As the polymerizable compound, the polymerizable compound represented by the formula (1) or the formula (2) may be used alone. However, “other polymerizable compounds” can be used in combination with the polymerizable compound represented by the formula (1) or the formula (2), so that the filling speed of the curable composition and the mechanical properties of the cured film can be increased. It may be possible to adjust the strength. The “other polymerizable compounds” are not particularly limited as long as they are radically polymerizable compounds, but are preferably compounds having one or more acryloyl groups or methacryloyl groups, that is, (meth) acrylic compounds. "Polymerizable compound of formula (1) or formula (2)" and "other polymerizable compound" relative to the total mass of "polymerizable compound of formula (1) or formula (2)" and "other polymerizable compound" The proportion of the “(meth) acrylic compound” in the mass is preferably 90% by mass or more.
 重合性化合物の総質量に対する、式(1)または式(2)の重合性化合物の占める割合の下限は特にないが、式(1)または式(2)の重合性化合物の占める割合は通常10質量%以上であり、30質量%以上が好ましい。式(1)または式(2)の重合性化合物の持つ、優れた硬化性および離型性を重視する場合には、当該割合を60質量%以上(100質量%であることも含む)にすることは特に好ましい。一方、式(1)または式(2)で表される重合性化合物の含量がこれらより少量であっても、当該重合性化合物に起因して、比較的僅かな程度であっても、硬化性組成物の硬化性および離型性はその寄与の分だけ向上する。したがって、これらより少ない量の、式(1)または式(2)で表される重合性化合物が含まれる場合であっても、本発明の範囲から除外されることはない。 There is no particular lower limit of the proportion of the polymerizable compound of formula (1) or formula (2) to the total mass of the polymerizable compound, but the proportion of the polymerizable compound of formula (1) or formula (2) is usually 10 It is at least 30% by mass, preferably at least 30% by mass. When emphasizing the excellent curability and releasability of the polymerizable compound of formula (1) or formula (2), the ratio is set to 60% by mass or more (including 100% by mass). This is particularly preferred. On the other hand, even if the content of the polymerizable compound represented by the formula (1) or the formula (2) is less than these, even if the content is relatively small due to the polymerizable compound, the curability The curability and releasability of the composition is improved by the contribution. Therefore, even when a smaller amount of the polymerizable compound represented by the formula (1) or the formula (2) is included, it is not excluded from the scope of the present invention.
 「その他の重合性化合物」のうち、アクリロイル基又はメタクリロイル基を1つ有する単官能(メタ)アクリル化合物としては、フェノキシエチル(メタ)アクリレート、フェノキシ-2-メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、4-フェニルフェノキシエチル(メタ)アクリレート、3-(2-フェニルフェニル)-2-ヒドロキシプロピル(メタ)アクリレート、EO変性p-クミルフェノールの(メタ)アクリレート、2-ブロモフェノキシエチル(メタ)アクリレート、2,4-ジブロモフェノキシエチル(メタ)アクリレート、2,4,6-トリブロモフェノキシエチル(メタ)アクリレート、EO変性フェノキシ(メタ)アクリレート、PO変性フェノキシ(メタ)アクリレート、ポリオキシエチレンノニルフェニルエーテル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2―ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、t-オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、N,N-ジエチル(メタ)アクリルアミド、またはN,N-ジメチルアミノプロピル(メタ)アクリルアミドを例示することができるが、これらに限定されない。 Among the “other polymerizable compounds”, monofunctional (meth) acrylic compounds having one acryloyl group or methacryloyl group include phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, and phenoxyethoxyethyl. (Meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate, 4-phenylphenoxyethyl (meth) acrylate, 3- (2-phenylphenyl) -2-hydroxy Propyl (meth) acrylate, EO-modified p-cumylphenol (meth) acrylate, 2-bromophenoxyethyl (meth) acrylate, 2,4-dibromophenoxyethyl (meth) acrylate, 2,4,6-tribromophene Xylethyl (meth) acrylate, EO-modified phenoxy (meth) acrylate, PO-modified phenoxy (meth) acrylate, polyoxyethylene nonylphenyl ether (meth) acrylate, isobornyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2-methyl -2-Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) ) Acrylate, cyclohexyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropiyl (Meth) acrylate, 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) Acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, polyethylene Glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxyethylene glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, diacetone (meth) Acrylamide, isobutoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acryl Amide, t-octyl (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, N, N-diethyl (meth) acrylamide, Alternatively, N, N-dimethylaminopropyl (meth) acrylamide can be exemplified, but is not limited thereto.
 これら単官能(メタ)アクリル化合物に該当する市販品としては、商品名、アロニックスM101、M102,M110、M111、M113、M117、M5700、TO-1317、M120、M150、M156(以上、東亞合成株式会社製)、MEDOL10,MIBDOL10、CHDOL10,MMDOL30、MEDOL30、MIBDOL30,CHDOL30、LA、IBXA、2-MTA、HPA、ビスコート#150、#155、#158、#190、#192、#193、#220、#2000、#2100、#2150(以上、大阪有機化学工業株式会社製)、ライトアクリレートBO-A、EC-A、DMP-A、THF-A、HOP-A、HOA-MPE、HOA-MPL、PO-A、P-200A、NP-4EA、NP-8EA、エポキシエステルM-600A(以上、共栄社化学株式会社製)、KAYARAD TC110S、R-564、R-128H(以上、日本化薬株式会社製)、NKエステルAMP-10G、AMP-20G(以上、新中村化学工業株式会社製)、FA-511A、512A、513A(以上、日立化成株式会社製)、PHE、CEA、PHE-2、PHE-4、BR-31、BR-31M、BR-32(以上、第一工業製薬株式会社製)、VP(BASFジャパン株式会社製)、ACMO、DMAA、DMAPAA(以上、株式会社興人製)等が挙げられるが、これらに限定されない。 Commercial products corresponding to these monofunctional (meth) acrylic compounds include trade names, Aronix M101, M102, M110, M111, M113, M117, M5700, TO-1317, M120, M150, M156 (above, Toagosei Co., Ltd.) Manufactured), MEDOL10, MIBDOL10, CHDOL10, MMDOL30, MEDOL30, MIBDOL30, CHDOL30, LA, IBXA, 2-MTA, HPA, Viscoat # 150, # 155, # 158, # 190, # 192, # 193, # 220, # 2000, # 2100, # 2150 (above Osaka Organic Chemical Co., Ltd.), light acrylate BO-A, EC-A, DMP-A, THF-A, HOP-A, HOA-MPE, HOA-MPL, PO -A, P-200A, NP 4EA, NP-8EA, epoxy ester M-600A (above, manufactured by Kyoeisha Chemical Co., Ltd.), KAYARAD TC110S, R-564, R-128H (above, manufactured by Nippon Kayaku Co., Ltd.), NK ester AMP-10G, AMP- 20G (above, Shin-Nakamura Chemical Co., Ltd.), FA-511A, 512A, 513A (above, Hitachi Chemical Co., Ltd.), PHE, CEA, PHE-2, PHE-4, BR-31, BR-31M, BR-32 (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), VP (manufactured by BASF Japan Ltd.), ACMO, DMAA, DMAPAA (above, manufactured by Kojin Co., Ltd.) and the like are exemplified, but not limited thereto.
 「その他の重合性化合物」のうち、アクリロイル基又はメタクリロイル基を2つ以上有する多官能(メタ)アクリル化合物としては、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO,PO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(アクリロイルオキシ)イソシアヌレート、ビス(ヒドロキシメチル)トリシクロデカンジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、またはEO、PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパンを例示することができるが、これらに限定されるものではない。 Among the “other polymerizable compounds”, polyfunctional (meth) acrylic compounds having two or more acryloyl groups or methacryloyl groups include trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and EO modification. Trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, EO, PO-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethylene Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, tris (acryloyl) Oxy) isocyanurate, bis (hydroxymethyl) tricyclodecane di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, EO-modified 2,2-bis (4-((meta ) Acryloxy) phenyl) propane, PO-modified 2,2-bis (4-((meth) acryloxy) phenyl) propane, or EO, PO-modified 2,2-bis (4-((meth) acryloxy) phenyl) propane Can be exemplified But it is not limited thereto.
 なお、本明細書において、EOは、エチレンオキサイドを示し、EO変性された化合物とは、エチレンオキシ基を少なくとも1つ以上有することを意味する。また、POはプロピレンオキサイドを示し、PO変性された化合物とは、プロピレンオキシ基を少なくとも1つ以上有することを意味する。 In the present specification, EO represents ethylene oxide, and the EO-modified compound means that it has at least one ethyleneoxy group. PO represents propylene oxide, and the PO-modified compound means having at least one propyleneoxy group.
 多官能(メタ)アクリル化合物に該当する市販品としては、商品名、ユピマーUV SA1002、SA2007(以上、三菱ケミカル株式会社製)、ビスコート#195、#230、#215、#260、#335HP、#295、#300、#360、#700、GPT、3PA(以上、大阪有機化学工業株式会社製)、ライトアクリレート4EG-A、9EG-A、NP-A、DCP-A、BP-4EA、BP-4PA、TMP-A、PE-3A、PE-4A、DPE-6A(以上、共栄社化学株式会社製)、KAYARAD PET-30、TMPTA、R-604、DPHA、DPCA-20、-30、-60、-120、HX-620、D-310、D-330(以上、日本化薬株式会社製)、アロニックスM208、M210、M215、M220、M240、M305、M309、M310、M315、M325、M400(以上、東亞合成株式会社製)、またはリポキシVR-77、VR-60、VR-90(以上、昭和電工株式会社製)等が挙げられるが、これらに限定されるものではない。 Commercially available products corresponding to polyfunctional (meth) acrylic compounds include trade names, Iupimer UV SA1002, SA2007 (above, manufactured by Mitsubishi Chemical Corporation), Biscoat # 195, # 230, # 215, # 260, # 335HP, # 295, # 300, # 360, # 700, GPT, 3PA (above, manufactured by Osaka Organic Chemical Co., Ltd.), Light Acrylate 4EG-A, 9EG-A, NP-A, DCP-A, BP-4EA, BP- 4PA, TMP-A, PE-3A, PE-4A, DPE-6A (manufactured by Kyoeisha Chemical Co., Ltd.), KAYARAD PET-30, TMPTA, R-604, DPHA, DPCA-20, -30, -60, -120, HX-620, D-310, D-330 (Nippon Kayaku Co., Ltd.), Aronix M208, M210 M215, M220, M240, M305, M309, M310, M315, M325, M400 (above, manufactured by Toagosei Co., Ltd.) or Lipoxy VR-77, VR-60, VR-90 (above, manufactured by Showa Denko KK) However, it is not limited to these.
 ビニル基を一つ以上有するビニル化合物としては、スチレン、4-ヒドロキシスチレン、エチレングリコールジビニルエーテル、エチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシエチルモノビニルエーテル、ヒドロキシノニルモノビニルエーテル、トリメチロールプロパントリビニルエーテル等のジまたはトリビニルエーテル化合物、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、2―エチルヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテル-o-プロピレンカーボネート、ドデシルビニルエーテル、ジエチレングリコールモノビニルエーテル、オクタデシルビニルエーテル等のモノビニルエーテル化合物を例示することができる。 Examples of vinyl compounds having one or more vinyl groups include styrene, 4-hydroxystyrene, ethylene glycol divinyl ether, ethylene glycol monovinyl ether, diethylene glycol divinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, Di- or trivinyl ether compounds such as dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexane dimethanol divinyl ether, hydroxyethyl monovinyl ether, hydroxynonyl monovinyl ether, trimethylolpropane trivinyl ether, ethyl vinyl ether, n- Butyl vinyl ether, iso Til vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl ether-o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether And the like.
 以上のラジカル重合性化合物は、一種類を単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。 The above radical polymerizable compounds may be used alone or in combination of two or more.
 1-2.重合開始剤
 重合開始剤としては光重合開始剤および熱重合開始剤が含まれる。
1-2. Polymerization initiator The polymerization initiator includes a photopolymerization initiator and a thermal polymerization initiator.
 [光重合開始剤]
 光重合開始剤は、光刺激により、重合性化合物の重合反応を引き起こす反応種を発生させる物質である。具体的には、光刺激によりラジカルが発生する光ラジカル発生剤を挙げることができる。
[Photopolymerization initiator]
The photopolymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by light stimulation. Specific examples include a photo radical generator that generates radicals by light stimulation.
 光ラジカル発生剤としては、置換基を有してもよい2,4,5-トリアリールイミダゾール二量体、ベンゾフェノン誘導体、芳香族ケトン誘導体、キノン類、ベンゾインエーテル誘導体、ベンゾイン誘導体、ベンジル誘導体、アクリジン誘導体、N-フェニルグリシン誘導体、アセトフェノン誘導体、チオキサントン誘導体、またはその他光ラジカル発生剤、およびこれらの市販品を挙げることができる。以下に各々を例示する。以下の光ラジカル発生剤は一種類を単独で用いてもよいし、二種類以上を組み合わせて用いてもよい。
 <置換基を有してもよい2,4,5-トリアリールイミダゾール二量体>
 2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、あるいは2-(o-またはp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体
 <ベンゾフェノン誘導体>
 ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、または4,4’-ジアミノベンゾフェノン
 <芳香族ケトン誘導体>
 2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノ-プロパノン-1-オン
 <キノン類>
 2-エチルアントラキノン、フェナントレンキノン、2-t-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル-1,4-ナフトキノン、または2,3-ジメチルアントラキノン
 <ベンゾインエーテル誘導体>
 ベンゾインメチルエーテル、ベンゾインエチルエーテル、またはベンゾインフェニルエーテル
 <ベンゾイン誘導体>
 ベンゾイン、メチルベンゾイン、エチルベンゾイン、またはプロピルベンゾイン
 <ベンジル誘導体>
 ベンジルジメチルケタール
 <アクリジン誘導体>
 9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン
 <N-フェニルグリシン誘導体>
 N-フェニルグリシン
 <アセトフェノン誘導体>
 アセトフェノン、3-メチルアセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、または2,2-ジメトキシ-2-フェニルアセトフェノン
 <チオキサントン誘導体>
 チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、または2-クロロチオキサントン
 <その他光ラジカル発生剤>
 キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、またはビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド
 <市販品>
 商品名、Irgacure184、369、651、500、819、907、784、2959、CGI-1700、-1750、-1850、CG24-61、Darocur 1116、1173(以上、チバ・ジャパン株式会社製)、Lucirin TPO、LR8893、LR8970(以上、BASFジャパン株式会社製)、またはユベクリルP36(ユーシービージャパン株式会社)等が挙げられるが、これらに限定されない。
Examples of the photo radical generator include 2,4,5-triarylimidazole dimer which may have a substituent, benzophenone derivative, aromatic ketone derivative, quinones, benzoin ether derivative, benzoin derivative, benzyl derivative, acridine Derivatives, N-phenylglycine derivatives, acetophenone derivatives, thioxanthone derivatives, other photoradical generators, and commercial products thereof can be mentioned. Each is illustrated below. The following photo radical generators may be used alone or in combination of two or more.
<2,4,5-triarylimidazole dimer optionally having substituent>
2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4 , 5-diphenylimidazole dimer, or 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer <benzophenone derivative>
Benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 4- chlorobenzophenone 4,4′-dimethoxybenzophenone or 4,4′-diaminobenzophenone <Aromatic ketone derivative>
2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one <Quinones>
2-ethylanthraquinone, phenanthrenequinone, 2-t-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenantharaquinone, 2-methyl-1,4-naphthoquinone, or 2,3-dimethylanthraquinone <Benzoin ether derivative>
Benzoin methyl ether, benzoin ethyl ether, or benzoin phenyl ether <benzoin derivative>
Benzoin, methylbenzoin, ethylbenzoin, or propylbenzoin <Benzyl derivatives>
Benzyldimethyl ketal <acridine derivative>
9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane <N-phenylglycine derivative>
N-phenylglycine <acetophenone derivative>
Acetophenone, 3-methylacetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, or 2,2-dimethoxy-2-phenylacetophenone <thioxanthone derivative>
Thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, or 2-chlorothioxanthone <Other photoradical generator>
Xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropane -1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, or bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide <commercially available product>
Product name, Irgacure 184, 369, 651, 500, 819, 907, 784, 2959, CGI-1700, -1750, -1850, CG24-61, Darocur 1116, 1173 (above, manufactured by Ciba Japan Co., Ltd.), Lucirin TPO , LR8883, LR8970 (above, manufactured by BASF Japan Ltd.), Ubekrill P36 (UCB Japan Ltd.), and the like, but are not limited thereto.
 [熱重合開始剤]
 熱重合開始剤は、熱刺激により、重合性化合物の重合反応を引き起こす反応種を発生させる物質である。具体的には、熱刺激によりラジカルが発生する熱ラジカル発生剤等が挙げられる。
[Thermal polymerization initiator]
The thermal polymerization initiator is a substance that generates reactive species that cause a polymerization reaction of the polymerizable compound by thermal stimulation. Specific examples include thermal radical generators that generate radicals upon thermal stimulation.
 熱ラジカル発生剤としては、アゾ化合物および有機過酸化物を挙げることができる。
 <アゾ化合物>
 アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス-2-メチルブチロニトリル、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2,2’-アゾビス(メチルイソブチレート)、または2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリドを例示することができる。
 <有機過酸化物>
 ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、またはパラメンタンハイドロパーオキサイドを例示することができる。
Examples of the thermal radical generator include azo compounds and organic peroxides.
<Azo compound>
Azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (isobutyronitrile), 2,2′-azobis-2-methylbutyronitrile, Examples include 1,1′-azobis (1-cyclohexanecarbonitrile), 2,2′-azobis (methylisobutyrate), or 2,2′-azobis (2-amidinopropane) dihydrochloride.
<Organic peroxide>
Examples include dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, or paramentane hydroperoxide can do.
 本発明の硬化性組成物において、含まれる重合開始剤は、一種類を単独で用いてもよいし、二種類以上を併用して用いてもよい。ここで硬化性組成物を硬化する工程が光による場合では、開始剤として光重合開始剤が用いられ、熱による場合では、開始剤として熱重合開始剤が用いられる。これら開始剤のうち、半導体集積回路等の微細構造体となる膜を製造する際には、光重合開始剤を用いることが好ましい。光重合開始剤を用いると、硬化膜の製造プロセスにおいて、加熱や冷却の熱プロセスが不要となり、生産性が優れるからである。 In the curable composition of the present invention, one polymerization initiator may be used alone, or two or more polymerization initiators may be used in combination. Here, in the case where the step of curing the curable composition is based on light, a photopolymerization initiator is used as the initiator, and in the case where it is based on heat, a thermal polymerization initiator is used as the initiator. Among these initiators, it is preferable to use a photopolymerization initiator when manufacturing a film to be a microstructure such as a semiconductor integrated circuit. This is because when a photopolymerization initiator is used, a heat process such as heating or cooling is not required in the process for producing a cured film, and productivity is excellent.
 本発明において、硬化性組成物に含まれる重合開始剤の含有量は、特に制限が無いが、好ましくは、硬化性組成物の質量(総質量)に対して、0.01質量%以上、15質量%以下である。より好ましくは0.1質量%以上、7質量%以下であり、特に好ましくは、1質量%以上、5質量%以下である。この範囲であると硬化性組成物の硬化速度と膜(硬化膜)の強度(樹脂強度)が共に優れる。 In the present invention, the content of the polymerization initiator contained in the curable composition is not particularly limited, but is preferably 0.01% by mass or more and 15% with respect to the mass (total mass) of the curable composition. It is below mass%. More preferably, they are 0.1 mass% or more and 7 mass% or less, Especially preferably, they are 1 mass% or more and 5 mass% or less. Within this range, both the curing rate of the curable composition and the strength (resin strength) of the film (cured film) are excellent.
 1-3.その他の添加成分
 本発明の硬化性組成物は、前記した成分の他に、種々の目的に応じ、本発明の効果を損なわない範囲で、さらなる添加成分を含んでもよい。このような添加成分としては、離型剤、界面活性剤、増感剤、水素供与体、酸化防止剤、溶媒、ポリマー成分等が挙げられる。本発明においては、硬化性組成物が増感剤を含むことが好ましい。以下に説明する。
1-3. Other Additive Components The curable composition of the present invention may contain additional additive components in addition to the above-described components as long as the effects of the present invention are not impaired, according to various purposes. Examples of such additive components include mold release agents, surfactants, sensitizers, hydrogen donors, antioxidants, solvents, and polymer components. In the present invention, the curable composition preferably contains a sensitizer. This will be described below.
 [増感剤]
 増感剤を含むことにより、重合反応促進や反応転化率が向上する傾向がある。増感剤としては、水素供与体および増感色素を挙げることができる。
[Sensitizer]
By including a sensitizer, there is a tendency that the polymerization reaction is accelerated and the reaction conversion rate is improved. Examples of the sensitizer include a hydrogen donor and a sensitizing dye.
 本発明の硬化性組成物に増感剤が含まれる場合、増感剤の含有量は、重合性化合物の質量に対して10質量%以下であることが好ましい。より好ましくは0.1質量%以上、5質量%以下である。ここで増感剤の含有量を0.1質量%以上とすると、重合促進効果を効果的に発現することができる。また増感剤の含有量を10質量%以下とすると、溶解性や保存安定性が優れる傾向がある。 When the curable composition of the present invention contains a sensitizer, the content of the sensitizer is preferably 10% by mass or less with respect to the mass of the polymerizable compound. More preferably, it is 0.1 mass% or more and 5 mass% or less. Here, when the content of the sensitizer is 0.1% by mass or more, the polymerization promoting effect can be effectively expressed. Moreover, when content of a sensitizer is 10 mass% or less, there exists a tendency for solubility and storage stability to be excellent.
 [水素供与体]
 水素供与体は、重合開始剤から発生した開始ラジカルや、重合生長末端のラジカルに水素を供与して、水素供与体自身がラジカルを発生する化合物である。重合開始剤が光ラジカル発生剤である場合に添加すると、重合速度が向上する場合がある。
[Hydrogen donor]
A hydrogen donor is a compound in which hydrogen is donated to an initiation radical generated from a polymerization initiator or a radical at a polymerization growth terminal, and the hydrogen donor itself generates a radical. If the polymerization initiator is a photoradical generator, the polymerization rate may be improved.
 水素供与体としてはアミン化合物、メルカプト化合物を挙げることができる。以下に、水素供与体として作用するこれら化合物を例示するが、これらに限定されるものではない。
 <アミン化合物>
 N-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジルイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエタノールアミン、またはN-フェニルグリシンを例示することができ、4,4’-ビス(ジアルキルアミノ)ベンゾフェノンの具体例としては、4,4’-ビス(ジエチルアミノ)ベンゾフェノンを示すことができる。
 <メルカプト化合物>
 2-メルカプト-N-フェニルベンゾイミダゾール、メルカプトプロピオン酸エステルを例示することができる。
Examples of the hydrogen donor include amine compounds and mercapto compounds. Examples of these compounds that act as hydrogen donors are shown below, but are not limited thereto.
<Amine compound>
N-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzylisothiouronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate, triethylenetetramine, 4,4'-bis (Dialkylamino) benzophenone, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethanolamine, or N-phenylglycine Specific examples of 4,4′-bis (dialkylamino) benzophenone include 4,4′-bis (diethylamino) benzophenone.
<Mercapto compound>
Examples thereof include 2-mercapto-N-phenylbenzimidazole and mercaptopropionic acid ester.
 [増感色素]
 増感色素は、特定の波長の光を吸収することにより励起され、光重合開始剤へ作用する化合物である。ここでいう作用とは、励起状態の増感色素から光重合開始剤へのエネルギー移動や電子移動等である。光重合開始剤が光ラジカル発生剤である場合に添加すると、重合速度が向上する場合がある。
[Sensitizing dye]
A sensitizing dye is a compound that is excited by absorbing light of a specific wavelength and acts on a photopolymerization initiator. The action here refers to energy transfer or electron transfer from the sensitizing dye in the excited state to the photopolymerization initiator. If it is added when the photopolymerization initiator is a photoradical generator, the polymerization rate may be improved.
 増感色素としては、アントラセン誘導体、アントラキノン誘導体、ピレン誘導体、ペリレン誘導体、カラバゾール誘導体、ベンゾフェノン誘導体、キサントン誘導体、チオキサントン誘導体、クマリン誘導体、フェノチアジン誘導体、カンファキノン誘導体、アクリジン系色素、チオピリリウム塩系色素、メロシアニン系色素、キノリン系色素、スチリルキノリン系色素、ケトクマリン系色素、チオキサンテン系色素、キサンテン系色素、オキソノール系色素、シアニン系色素、ローダミン系色素、またはピリリウム塩系色素等を例示することができるが、これらに限定されるものではない。 Sensitizing dyes include anthracene derivatives, anthraquinone derivatives, pyrene derivatives, perylene derivatives, carabazole derivatives, benzophenone derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, phenothiazine derivatives, camphorquinone derivatives, acridine dyes, thiopyrylium salt dyes, merocyanine Examples of dyes include quinoline dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, and pyrylium salt dyes. However, it is not limited to these.
 増感剤は、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。 Sensitizers may be used alone or in combination of two or more.
 [ポリマー成分]
 本発明の硬化性組成物にはポリマー成分を含ませてもよい。ここでいうポリマー成分としては、上記1-1.の段落に記載の重合性化合物に由来する繰り返し単位を構成単位として含む(メタ)アクリルポリマー(例えば、ポリメタクリル酸メチル)、およびビニルポリマー(例えば、ポリスチレン)が含まれる。尚、ポリマー成分は共重合体でもよい。
[Polymer component]
The curable composition of the present invention may contain a polymer component. Examples of the polymer component herein include the above 1-1. (Meth) acrylic polymer (for example, polymethyl methacrylate) and vinyl polymer (for example, polystyrene) containing the repeating unit derived from the polymerizable compound described in the paragraph of (5) as a structural unit are included. The polymer component may be a copolymer.
 [溶媒]
 本発明の硬化性組成物には溶媒を含ませてもよい。前記溶媒の含有量は、全組成物の質量に対して、3質量%以下であることが好ましく、1質量%以下であることがさらに好ましく、含有しないことが特に好ましい。本発明の組成物に好ましく使用できる溶媒の種類としては、ナノインプリント用硬化性組成物やフォトレジストで一般的に用いられている溶媒であり、本発明で用いる化合物を溶解および均一分散させるものであればよく,かつこれらの成分と反応しないものであれば特に限定されない。
[solvent]
The curable composition of the present invention may contain a solvent. The content of the solvent is preferably 3% by mass or less, more preferably 1% by mass or less, and particularly preferably not contained with respect to the mass of the entire composition. Solvents that can be preferably used in the composition of the present invention include those commonly used in curable compositions for nanoimprints and photoresists, and those that dissolve and uniformly disperse the compounds used in the present invention. There is no particular limitation as long as it does not react with these components.
 前記溶媒としては、アルコール類、エーテル類、グリコールエーテル類、エチレングリコールアルキルエーテルアセテート類、ジエチレングリコール類、プロピレングリコールアルキルエーテルアセテート類、芳香族炭化水素類、ケトン類、またはエステル類を挙げることができる。以下に各々を例示する。
 <アルコール類>
 メタノールまたはエタノール
 <エーテル類>
 テトラヒドロフラン
 <グリコールエーテル類>
 エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、またはエチレングリコールモノエチルエーテル
 <エチレングリコールアルキルエーテルアセテート類>
 メチルセロソルブアセテート、またはエチルセロソルブアセテート
 <ジエチレングリコール類>
 ジエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテル、またはジエチレングリコールモノブチルエーテル
 <プロピレングリコールアルキルエーテルアセテート類>
 プロピレングリコールメチルエーテルアセテート、またはプロピレングリコールエチルエーテルアセテート
 <芳香族炭化水素類>
 トルエンまたはキシレン
 <ケトン類>
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン、または2-ヘプタノン
 <エステル類>
 2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸エチル、酢酸ブチル、乳酸メチル、または乳酸エチル
Examples of the solvent include alcohols, ethers, glycol ethers, ethylene glycol alkyl ether acetates, diethylene glycols, propylene glycol alkyl ether acetates, aromatic hydrocarbons, ketones, or esters. Each is illustrated below.
<Alcohols>
Methanol or ethanol <Ethers>
Tetrahydrofuran <Glycol ethers>
Ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, or ethylene glycol monoethyl ether <Ethylene glycol alkyl ether acetates>
Methyl cellosolve acetate or ethyl cellosolve acetate <Diethylene glycols>
Diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, or diethylene glycol monobutyl ether <Propylene glycol alkyl ether acetates>
Propylene glycol methyl ether acetate or propylene glycol ethyl ether acetate <Aromatic hydrocarbons>
Toluene or xylene <Ketone>
Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, or 2-heptanone <Esters>
Ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-2-methylbutanoate, 3-methoxy Methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl acetate, butyl acetate, methyl lactate, or ethyl lactate
 なお、溶媒は、本発明の重合性化合物を含む硬化性組成物が、後述の「型接触工程」の実施温度(好ましくは20~50℃)において、液状をなすか、固体であっても流動性を示す場合には、用いなくても良い。一方、「型接触工程」の実施温度において該硬化性組成物が固体であり、かつ流動性が不足しているときには、溶媒を加え流動性を上げると、型接触工程の効率が向上しやすいので、好ましい。 It should be noted that the solvent is such that the curable composition containing the polymerizable compound of the present invention is in a liquid state or fluid even at a temperature (preferably 20 to 50 ° C.) of the “mold contact step” described later. It is not necessary to use it when showing the property. On the other hand, when the curable composition is solid at the temperature at which the “mold contact process” is performed and the fluidity is insufficient, the efficiency of the mold contact process can be easily improved by adding a solvent to increase the fluidity. ,preferable.
 1-4.硬化性組成物の調製
 [硬化性組成物の配合時の温度]
 重合性化合物、重合開始剤を混合・溶解させることによって硬化性組成物を調製する際には所定の温度条件下で行う。作業性等から、好ましくは、0℃以上、100℃以下であり、より好ましくは、10℃以上、50℃以下である。
1-4. Preparation of curable composition [Temperature when compounding curable composition]
When preparing a curable composition by mixing and dissolving a polymerizable compound and a polymerization initiator, it is carried out under a predetermined temperature condition. From workability etc., Preferably, they are 0 degreeC or more and 100 degrees C or less, More preferably, they are 10 degreeC or more and 50 degrees C or less.
 [硬化性組成物の粘度]
 本発明の硬化性組成物の粘度は、本発明の実施に対して臨界的ではないが、溶媒を除く成分の混合物について23℃での粘度が、好ましくは、1cP以上、100cP以下であり、より好ましくは、5cP以上、50cP以下であり、さらに好ましくは、6cP以上、20cP以下である。これらは、本発明の重合性化合物とその他の重合性化合物とのブレンド比によって変わりうるが、当業者の技術によってブレンド比を変更することで調節できる。
[Viscosity of curable composition]
The viscosity of the curable composition of the present invention is not critical to the practice of the present invention, but the viscosity at 23 ° C. of the mixture of components excluding the solvent is preferably 1 cP or more and 100 cP or less, more Preferably, it is 5 cP or more and 50 cP or less, More preferably, it is 6 cP or more and 20 cP or less. These may vary depending on the blend ratio of the polymerizable compound of the present invention and other polymerizable compounds, but can be adjusted by changing the blend ratio according to techniques of those skilled in the art.
 [硬化性組成物の表面張力]
 本発明の硬化性組成物の表面張力は、溶媒を除く成分の混合物について23℃での表面張力が好ましくは5mN/m以上、70mN/m以下であり、より好ましくは7mN/m以上,35mN/m以下であり、さらに好ましくは10mN/m以上,32mN/m以下である。ここで表面張力が5mN/mより低いと、硬化性組成物をモールドに接触させる際にモールド上の微細パターンのうち凹部に組成物が充填するのに長い時間が必要となることがある。一方表面張力が70mN/mより高いと、表面平滑性が低くなることがある。これらも、本発明の重合性単量体とそれ以外の単量体とのブレンド比によって変わりうる物性であり、当業者の技術によってブレンド比を変更することで調節できる。
[Surface tension of curable composition]
The surface tension of the curable composition of the present invention is preferably 5 mN / m or more and 70 mN / m or less, more preferably 7 mN / m or more and 35 mN / m at 23 ° C. for the mixture of components excluding the solvent. m or less, more preferably 10 mN / m or more and 32 mN / m or less. Here, when the surface tension is lower than 5 mN / m, when the curable composition is brought into contact with the mold, it may take a long time for the composition to fill the recesses in the fine pattern on the mold. On the other hand, when the surface tension is higher than 70 mN / m, the surface smoothness may be lowered. These are also physical properties that can be changed depending on the blend ratio of the polymerizable monomer of the present invention and the other monomer, and can be adjusted by changing the blend ratio by a person skilled in the art.
 [硬化性組成物に混入しているパーティクル等の不純物]
 本発明の硬化性組成物は、硬化性組成物に混入したパーティクルによって光硬化物に不用意に凹凸が生じてパターンの欠陥が発生するのを防止するために、できる限りパーティクル等の不純物を取り除くのが望ましい。具体的には、硬化性組成物に含まれる各成分を混合した後、例えば、孔径0.001μm乃至5.0μmのフィルタで濾過することが好ましい。フィルタを用いた濾過を行う際には、多段階で行ったり、多数回繰り返したりすることがさらに好ましい。また、濾過した液を再度濾過してもよい。
[Impurities such as particles mixed in the curable composition]
The curable composition of the present invention removes impurities such as particles as much as possible in order to prevent inadvertent irregularities in the photocured product due to particles mixed in the curable composition and pattern defects. Is desirable. Specifically, after mixing each component contained in the curable composition, it is preferable to filter with a filter having a pore diameter of 0.001 μm to 5.0 μm, for example. When performing filtration using a filter, it is more preferable to carry out in multiple stages or repeat many times. Moreover, you may filter the filtered liquid again.
 濾過に使用するフィルタとしては、ポリエチレン樹脂製、ポリプロピレン樹脂製、フッ素樹脂製、ナイロン樹脂製等のフィルタを使用することができるが、特に限定されるものではない。 As a filter used for filtration, a filter made of polyethylene resin, polypropylene resin, fluorine resin, nylon resin, or the like can be used, but is not particularly limited.
 なお、本発明の硬化性組成物を、半導体集積回路製造に使用する場合、製品の動作を阻害しないようにするため、硬化性組成物中に金属原子を含有する不純物(金属不純物)が混入するのを極力避けることが好ましい。このため、本発明の硬化性組成物に含まれる金属不純物の濃度としては、10ppm以下が好ましく、100ppb以下にすることがさらに好ましい。 In addition, when using the curable composition of this invention for manufacture of a semiconductor integrated circuit, in order not to inhibit operation | movement of a product, the impurity (metal impurity) containing a metal atom mixes in a curable composition. It is preferable to avoid this as much as possible. Therefore, the concentration of metal impurities contained in the curable composition of the present invention is preferably 10 ppm or less, and more preferably 100 ppb or less.
 2.パターン形成方法について
 本発明の更に別の態様は、上述の硬化性組成物を用いたインプリントによる「基板上にパターン形状を有する硬化膜を配したパターン付き部材」(D)の製造方法(以下、単に本発明のパターン形成方法ということがある)であり、次の各工程を含む。
配置工程:上述の硬化性組成物を基板上に配置し、「基板上に硬化性組成物が配置された部材」(A)を得る工程。
型接触工程:前記(A)における前記硬化性組成物に対し、パターン形状を有するモールドを接触させて、「基板・パターン形状を有する硬化性組成物・モールドがこの順で接合した部材」(B)を得る工程。
硬化工程:前記(B)中の前記硬化性組成物を、光または熱により硬化させて硬化膜とし、「基板・パターン形状を有する硬化膜・モールドがこの順で接合した部材」(C)を得る工程。
離型工程:前記(C)から前記モールドを引き離し、前記パターン付き部材(D)を得る工程。
2. About Pattern Forming Method Still another aspect of the present invention is a method for producing a “patterned member in which a cured film having a pattern shape is arranged on a substrate” (D) by imprinting using the above-described curable composition (hereinafter referred to as “patterned member”) , Simply referred to as the pattern forming method of the present invention), and includes the following steps.
Arrangement step: A step of arranging the above-mentioned curable composition on a substrate to obtain “a member in which the curable composition is arranged on the substrate” (A).
Mold contact step: A mold having a pattern shape is brought into contact with the curable composition in (A), and “a substrate / pattern composition having a curable composition / mold joined in this order” (B ).
Curing step: The curable composition in (B) is cured by light or heat to form a cured film, and “a member in which a substrate / patterned cured film / mold is joined in this order” (C) Obtaining step.
Mold release step: a step of separating the mold from (C) to obtain the patterned member (D).
 本発明のパターン形成方法において、インプリントには、光により硬化する光インプリント、および熱により硬化する熱インプリントが含まれる。 In the pattern forming method of the present invention, the imprint includes a light imprint that is cured by light and a heat imprint that is cured by heat.
 本明細書において、インプリントとは「基板上に、好ましくは、1nm以上、100μm以下の凹凸パターン形状を有する硬化膜を配した部材」の製造方法である。その中で、ナノインプリントは、「1nm以上、100nm以下の凹凸パターン形状を有する硬化膜を配した部材」の製造方法である。本発明のパターン形成方法は、ナノインプリントに好適に用いることができる。
 なお、ここで「パターン形成方法」と呼んでいるのは、インプリントにおいては、上述の[発明4]で記載した、「基板上に、パターン形状を有する硬化膜を配した部材」(D)の製造方法、と同義であり、「配置工程」、「型接触工程」、「硬化工程」、「離型工程」の4つの工程を必須のものとして含む。以下の説明では、便宜上「配置工程」、「型接触工程」、「硬化工程」、「離型工程」をそれぞれ工程[1]~[4]とも称する。
In this specification, the imprint is a method for producing “a member in which a cured film having a concavo-convex pattern shape of preferably 1 nm or more and 100 μm or less is arranged on a substrate”. Among them, nanoimprint is a method for producing “a member provided with a cured film having a concavo-convex pattern shape of 1 nm or more and 100 nm or less”. The pattern formation method of this invention can be used suitably for nanoimprint.
The “pattern forming method” is referred to here as “a member in which a cured film having a pattern shape is arranged on a substrate” described in [Invention 4] in imprinting (D). And includes the four steps of “arrangement step”, “die contact step”, “curing step”, and “mold release step” as essential. In the following description, for convenience, the “placement step”, “die contact step”, “curing step”, and “mold release step” are also referred to as steps [1] to [4], respectively.
 図1は、本発明の膜の製造方法における実施形態の例を示す断面模式図である。図1に示されるパターン形成方法は、下記工程を含む。
[1]硬化性組成物を基板上に配置する工程(配置工程、図1(a))
[2]モールドと硬化性組成物とを接触させる工程(型接触工程、図1(b-1)、(b-2))
[3]硬化性組成物を光または熱により硬化して硬化膜を作製する工程(硬化工程、図1(c))
[4]硬化膜から前記モールドを引き離す工程(離型工程、図1(d))。
 以上[1]~[4]に示される工程を経ることで、硬化性組成物1から硬化物5、および硬化物5を有する電子部品(電子デバイス)あるいは光学部品を得ることができる。以下、各工程[1]~[4]について説明する。
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment in the film production method of the present invention. The pattern forming method shown in FIG. 1 includes the following steps.
[1] Step of arranging a curable composition on a substrate (arrangement step, FIG. 1 (a))
[2] Step of contacting the mold with the curable composition (mold contact step, FIGS. 1 (b-1) and (b-2))
[3] Step of producing a cured film by curing the curable composition with light or heat (curing step, FIG. 1 (c))
[4] A step of separating the mold from the cured film (mold release step, FIG. 1 (d)).
Through the steps shown in [1] to [4] above, the cured product 5 and the electronic component (electronic device) or optical component having the cured product 5 can be obtained from the curable composition 1. Hereinafter, each step [1] to [4] will be described.
 2-1.工程[1](配置工程;図1(a))
 まず硬化性組成物1を基板2に配置(塗布)して塗布膜を形成する(図1(a))。ここでいう硬化性組成物とは、本発明の硬化性組成物である。
2-1. Step [1] (arrangement step; FIG. 1A)
First, the curable composition 1 is placed (applied) on the substrate 2 to form a coating film (FIG. 1A). The curable composition here is the curable composition of the present invention.
 基板2に相当する被加工基板としては、通常、シリコンウエハが用いられるが、これに限定されるものではない。シリコンウエハ以外にも、アルミニウム、チタン-タングステン合金、アルミニウム-ケイ素合金、アルミニウム-銅-ケイ素合金、酸化ケイ素、窒化ケイ素等の半導体デバイス用基板として知られているものの中からも任意に選んで用いることができる。尚、使用される基板(被加工基板)には、シランカップリング処理、シラザン処理、有機薄膜の成膜、等の表面処理により硬化性組成物との密着性を向上させた基板を被加工基板として用いてもよい。 As the substrate to be processed corresponding to the substrate 2, a silicon wafer is usually used, but is not limited thereto. In addition to silicon wafers, aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, silicon nitride, and other known semiconductor device substrates can be selected and used. be able to. The substrate to be used (substrate to be processed) is a substrate that has improved adhesion to the curable composition by surface treatment such as silane coupling treatment, silazane treatment, or organic thin film formation. It may be used as
 硬化性組成物1を被加工基板2上に配置する方法としては、例えば、インクジェット法、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコード法、グラビアコート法、エクストルージョンコート法、スピンコート法、スリットスキャン法等を用いることができる。尚、被形状転写層(塗布膜)の膜厚は、使用する用途によっても異なるが、例えば、0.01μm~100μmである。 Examples of the method for disposing the curable composition 1 on the substrate 2 include, for example, an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire barcode method, a gravure coating method, an extrusion coating method, A spin coat method, a slit scan method, or the like can be used. The film thickness of the shape transfer layer (coating film) is, for example, from 0.01 μm to 100 μm, although it varies depending on the application used.
 2-2.工程[2](型接触工程;図1(b1)、(b2))
 次に、前工程(配置工程)で形成された硬化性組成物1からなる塗布膜にモールド3を接触させる工程(型接触工程、図1(b1)、(b2))を行う。尚、モールド3は印章と見立てることができるので、この工程は押印工程とも呼ばれる。本工程で、硬化性組成物1(被形状転写層)にモールド3を接触させる(図1(b1))と、モールド3に形成された微細パターンの凹凸部に塗布膜(の一部)4が充填される(図1(b2))。
2-2. Step [2] (die contact step; FIG. 1 (b1), (b2))
Next, a step of bringing the mold 3 into contact with the coating film made of the curable composition 1 formed in the previous step (placement step) (a mold contact step, FIGS. 1B1 and 1B2) is performed. Since the mold 3 can be regarded as a seal, this process is also called a stamping process. In this step, when the mold 3 is brought into contact with the curable composition 1 (shaped transfer layer) (FIG. 1 (b1)), a coating film (part) 4 is formed on the uneven portion of the fine pattern formed on the mold 3. Is filled (FIG. 1 (b2)).
 型接触工程で使用されるモールド3は、次の工程(硬化工程)が光による光硬化工程である場合、光透過性の材料で構成される。モールド3の構成材料として、具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂等の光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサン等の柔軟膜、光硬化膜、金属膜等を挙げることができる。ただしモールド3の構成材料として透明性樹脂を使用する場合は、硬化性組成物1に溶解しない樹脂を選択する必要がある。熱膨張係数が小さいことから、石英であることが特に好ましい。一方、硬化工程が熱硬化工程である場合、材料の透明性に制限は無く、モールド3の構成材料として上述した材料が使用できる。 The mold 3 used in the mold contact process is made of a light transmissive material when the next process (curing process) is a photocuring process using light. Specific examples of the constituent material of the mold 3 include optically transparent resins such as glass, quartz, PMMA, and polycarbonate resins, transparent metal vapor-deposited films, flexible films such as polydimethylsiloxane, photocured films, and metal films. Can do. However, when a transparent resin is used as the constituent material of the mold 3, it is necessary to select a resin that does not dissolve in the curable composition 1. Quartz is particularly preferred because of its low thermal expansion coefficient. On the other hand, when the curing step is a thermosetting step, there is no limitation on the transparency of the material, and the above-described materials can be used as the constituent material of the mold 3.
  モールド3には、硬化膜5とモールド3の表面との剥離性を向上させるために、本工程(型接触工程)の前に表面処理を行ってもよい。表面処理の方法としては、モールド3の表面に離型剤を塗布して離型剤層を形成する方法が挙げられる。ここで、モールド3の表面に塗布する離型剤としては、シリコン系離型剤、フッ素系離型剤、ポリエチレン系離型剤、ポリプロピレン系離型剤、パラフィン系離型剤、モンタン系離型剤、カルナバ系離型剤等が挙げられる。例えば、ダイキン工業株式会社製の、商品名、オプツールDSX等の市販の塗布型離型剤も好適に用いることができる。尚、離型剤は、一種類を単独で用いてもよいし、二種類以上を併用して用いてもよい。これらの中でも、フッ素系離型剤が特に好ましい。 The mold 3 may be subjected to a surface treatment before this step (die contact step) in order to improve the peelability between the cured film 5 and the surface of the mold 3. Examples of the surface treatment method include a method in which a release agent is applied to the surface of the mold 3 to form a release agent layer. Here, as a mold release agent applied on the surface of the mold 3, a silicon mold release agent, a fluorine mold release agent, a polyethylene mold release agent, a polypropylene mold release agent, a paraffin mold release agent, a montan mold release agent Agents, carnauba release agents and the like. For example, a commercially available coating mold release agent such as a trade name, Optool DSX, manufactured by Daikin Industries, Ltd. can be suitably used. In addition, a mold release agent may be used individually by 1 type, and may be used in combination of 2 or more types. Among these, a fluorine-type mold release agent is particularly preferable.
 型接触工程において、図1(b1)に示されるように、モールド3を硬化性組成物1に接触する際に、硬化性組成物1に加える圧力は特に限定されないが、通常、0.1MPa以上、100MPa以下である。その中でも0.1MPa以上、50MPa以下であることが好ましく、0.1MPa以上、30MPa以下であることがより好ましく、0.1MPa以上、20MPa以下であることがさらに好ましい。 In the mold contact step, as shown in FIG. 1 (b1), when the mold 3 is brought into contact with the curable composition 1, the pressure applied to the curable composition 1 is not particularly limited, but is usually 0.1 MPa or more. , 100 MPa or less. Among them, it is preferably 0.1 MPa or more and 50 MPa or less, more preferably 0.1 MPa or more and 30 MPa or less, and further preferably 0.1 MPa or more and 20 MPa or less.
 また、本工程においてモールド3を硬化性組成物1に接触させる時間は、特に限定されないが、通常0.1秒以上、600秒以下であり、0.1秒以上、300秒以下であることが好ましく、0.1秒以上、180秒以下であることがより好ましく、0.1秒以上120秒以下であることが特に好ましい。 In addition, the time for bringing the mold 3 into contact with the curable composition 1 in this step is not particularly limited, but is usually 0.1 seconds or longer and 600 seconds or shorter, and is 0.1 seconds or longer and 300 seconds or shorter. Preferably, it is 0.1 seconds or more and 180 seconds or less, and particularly preferably 0.1 seconds or more and 120 seconds or less.
 本工程を行う環境は、大気雰囲気下、減圧雰囲気下、不活性ガス雰囲気が挙げられる。ここで本工程を行う際に、雰囲気の圧力については特に制限は無く、例えば1.0133×10-5MPa以上、1.0133MPa以下の範囲で適宜設定が可能である。 The environment in which this step is performed includes an air atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere. Here, when performing this process, there is no restriction | limiting in particular about the pressure of atmosphere, For example, it can set suitably in the range of 1.0133 * 10 < -5 > MPa or more and 1.0133MPa or less.
 [不活性ガス]
 不活性ガス雰囲気下で本工程を行う場合、使用される不活性ガスとして、窒素、二酸化炭素、ヘリウム、アルゴン、各種フロンガス等、または、これらの混合ガスを例示することができる。ナノインプリントに用いる場合、ヘリウムが好ましい。
[Inert gas]
When this step is performed in an inert gas atmosphere, examples of the inert gas used include nitrogen, carbon dioxide, helium, argon, various chlorofluorocarbons, and a mixed gas thereof. When used for nanoimprinting, helium is preferred.
 不活性ガスとしてヘリウムを用いた場合、本工程においてモールド3上に形成された微細パターンの凹凸部に塗布膜4の一部と一緒に雰囲気中の当該不活性ガスが充填されたときに、当該不活性ガスはモールドを透過して抜けることができる。このため、モールド3凹凸部への硬化性組成物1の充填性に優れる。 When helium is used as the inert gas, when the uneven portion of the fine pattern formed on the mold 3 in this step is filled with the inert gas in the atmosphere together with a part of the coating film 4, The inert gas can escape through the mold. For this reason, it is excellent in the filling property of the curable composition 1 to the uneven part of the mold 3.
 [凝縮性ガス]
 また、本工程は、凝縮性ガスを含むガス雰囲気下で行ってもよい。本発明において、凝縮性ガスとは、下記(i)および(ii)の要件を満たすガスをいう。
(i)本工程において硬化性組成物1(被形状転写層)とモールド3が接触する前(図1(b1))の段階では雰囲気中に気体として存在するガス。
(ii)硬化性組成物1とモールド3とが接触して、モールド3上に形成された微細パターンの凹部、およびモールドと基板との間隙に塗布膜(の一部)4と一緒に雰囲気中のガスが充填されたときに、充填時の圧力により発生する毛細管圧力で凝縮して液化するガス。
[Condensable gas]
Moreover, you may perform this process in the gas atmosphere containing a condensable gas. In the present invention, the condensable gas refers to a gas that satisfies the following requirements (i) and (ii).
(I) A gas that exists as a gas in the atmosphere before the curable composition 1 (shaped transfer layer) and the mold 3 are in contact with each other in this step (FIG. 1 (b1)).
(Ii) The curable composition 1 and the mold 3 are in contact with each other in the atmosphere together with the coating film (part) 4 in the recesses of the fine pattern formed on the mold 3 and the gap between the mold and the substrate. Gas that is condensed and liquefied by the capillary pressure generated by the pressure at the time of filling.
 ここで、凝縮性ガス雰囲気下で型接触工程を行うと、モールド3の微細パターンの凹部に充填されたガスが液化することで気泡が発生しにくくなるため、充填性が優れる。尚、凝縮性ガス(の少なくとも一部)は、硬化性組成物中に溶解してもよい。 Here, when the mold contact process is performed in a condensable gas atmosphere, the gas filled in the concave portions of the fine pattern of the mold 3 is liquefied, so that bubbles are less likely to be generated. The condensable gas (at least a part thereof) may be dissolved in the curable composition.
 凝縮性ガスの沸点は、本工程の環境温度以下であれば特に制限が無いが、環境温度より5℃以上、50℃以下の範囲で沸点が低いガスが好ましい。この範囲内であれば、モールド3の微細パターン凹凸部への硬化性組成物1の充填性がさらに優れる。 The boiling point of the condensable gas is not particularly limited as long as it is equal to or lower than the environmental temperature of this step, but a gas having a low boiling point in the range of 5 ° C. or higher and 50 ° C. or lower from the environmental temperature is preferable. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven | corrugated | grooved part of the mold 3 will be further excellent.
 本工程において、凝縮性ガスを含む気体の蒸気圧は、本工程にて押印するときのモールド圧力以下であれば特に制限が無いが、0.1MPa以上、0.4MPa以下が好ましい。この範囲内であれば、モールド3の微細パターン凹凸部への硬化性組成物1の充填性がさらに優れる。ここで、環境温度での蒸気圧が0.4MPaより大きいと、気泡の消滅効果を十分に得ることができない傾向がある。一方、環境温度での蒸気圧が0.1MPaより小さいと、減圧が必要となり、装置が複雑になる傾向がある。 In this step, the vapor pressure of the gas containing the condensable gas is not particularly limited as long as it is equal to or lower than the mold pressure at the time of imprinting in this step, but is preferably 0.1 MPa or more and 0.4 MPa or less. If it exists in this range, the filling property of the curable composition 1 to the fine pattern uneven | corrugated | grooved part of the mold 3 will be further excellent. Here, when the vapor pressure at the ambient temperature is larger than 0.4 MPa, there is a tendency that the effect of eliminating the bubbles cannot be sufficiently obtained. On the other hand, if the vapor pressure at ambient temperature is less than 0.1 MPa, pressure reduction is required, and the apparatus tends to be complicated.
 本工程を行う際の環境温度は、特に制限が無いが、20℃以上、50℃以下が好ましい。 The environmental temperature during this step is not particularly limited, but is preferably 20 ° C or higher and 50 ° C or lower.
 凝縮性ガスとして、クロロフルオロカーボン(CFC)、フルオロカーボン(FC)、ハイドロクロロフルオロオレフィン(HCFO)、ハイドロフルオロオレフィン(HFO)、ハイドロフルオロエーテル(HFE)等のフロン類を挙げることができ、以下に例示する。
 <クロロフルオロカーボン(CFC)>
 クロロフルオロメタン
 <ハイドロクロロフルオロオレフィン(HCFO)>
 トランス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(E))、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(Z))、1,1-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223za)、1,1,2-トリクロロ-3,3,3-トリフルオロプロペン(HCFO-1213xa)、トランス-1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb(E))、シス-1-クロロ-1,3,3,3-テトラフルオロプロペン(HCFO-1224zb(Z))
 <ハイドロフルオロオレフィン(HFO)>
 トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))、シス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))
 <ハイドロフルオロカーボン(HFC)>
 1,1,1,3,3-ペンタフルオロプロパン(CHF2CH2CF3、HFC-245fa、PFP)
 <ハイドロフルオロエーテル(HFE)>
 ペンタフルオロエチルメチルエーテル(CF3CF2OCH3、HFE-245mc)、1,1,1,3,3,3-ヘキサフルオロ-2-メトキシプロパン(HFE-356mmz)
Examples of condensable gases include chlorofluorocarbons (CFC), fluorocarbons (FC), hydrochlorofluoroolefins (HCFO), hydrofluoroolefins (HFO), hydrofluoroethers (HFE), and other fluorocarbons. To do.
<Chlorofluorocarbon (CFC)>
Chlorofluoromethane <Hydrochlorofluoroolefin (HCFO)>
Trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)), cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans- 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (E)), cis-1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)), 1,1-dichloro-3,3,3-trifluoropropene (HCFO-1223za), 1,1,2-trichloro-3,3,3-trifluoropropene (HCFO-1213xa), trans-1-chloro- 1,3,3,3-tetrafluoropropene (HCFO-1224zb (E)), cis-1-chloro-1,3,3,3-tetrafluoropropene (HCFO-1224zb (Z))
<Hydrofluoroolefin (HFO)>
Trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)), cis-1,1,1,4,4,4-hexafluoro-2-butene ( HFO-1336mzz (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)) )
<Hydrofluorocarbon (HFC)>
1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 , HFC-245fa, PFP)
<Hydrofluoroether (HFE)>
Pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc), 1,1,1,3,3,3-hexafluoro-2-methoxypropane (HFE-356 mmz)
 これら凝縮性ガスのうち、型接触工程の環境温度が20℃乃至25℃である場合にモールド3の微細パターン凹凸部への硬化性組成物1の充填性が優れるという観点から、下記に列挙される化合物が好ましい。
・1,1,1,3,3-ペンタフルオロプロパン(23℃での蒸気圧0.14MPa、沸点15℃)
・トリクロロフルオロメタン(23℃での蒸気圧0.1056MPa、沸点24℃)
・トランス-1-クロロ-3,3,3-トリフルオロプロペン(沸点18℃)
・シス-1-クロロ-3,3,3-トリフルオロプロペン(沸点39℃)
・トランス-1,3,3,3-テトラフルオロプロペン(沸点-19℃)
・ペンタフルオロエチルメチルエーテル
 これらのうち、安全性が優れることから、1,1,1,3,3-ペンタフルオロプロパン、トランス-1-クロロ-3,3,3-トリフルオロプロペン、シス-1-クロロ-3,3,3-トリフルオロプロペン、トランス-1,3,3,3-テトラフルオロプロペンが特に好ましい。
Among these condensable gases, the enumeration is listed below from the viewpoint that the filling property of the curable composition 1 to the uneven portion of the fine pattern of the mold 3 is excellent when the environmental temperature of the mold contact process is 20 ° C. to 25 ° C. Are preferred.
・ 1,1,1,3,3-pentafluoropropane (vapor pressure at 23 ° C: 0.14 MPa, boiling point: 15 ° C)
・ Trichlorofluoromethane (vapor pressure 0.1056 MPa at 23 ° C., boiling point 24 ° C.)
・ Trans-1-chloro-3,3,3-trifluoropropene (boiling point 18 ° C)
・ Cis-1-chloro-3,3,3-trifluoropropene (boiling point 39 ° C.)
・ Trans-1,3,3,3-tetrafluoropropene (boiling point -19 ℃)
・ Pentafluoroethyl methyl ether Among these, 1,1,1,3,3-pentafluoropropane, trans-1-chloro-3,3,3-trifluoropropene, cis-1 -Chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene are particularly preferred.
 凝縮性ガスは、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。またこれら凝縮性ガスは、空気、窒素、二酸化炭素、ヘリウム、アルゴン等の非凝縮性ガスと混合して用いてもよい。凝縮性ガスと混合する非凝縮性ガスとしては、充填性の観点から、ヘリウムが好ましい。ヘリウムであると、凝縮性ガスと非凝縮性ガス(ヘリウム)とを混合してなる混合気体として使用しても、ヘリウムがモールドを透過するため充填性が優れる。 Condensable gas may be used alone or in combination of two or more. These condensable gases may be used by mixing with non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon. The non-condensable gas mixed with the condensable gas is preferably helium from the viewpoint of filling properties. When helium is used, even if it is used as a mixed gas formed by mixing a condensable gas and a non-condensable gas (helium), the filling property is excellent because helium penetrates the mold.
 これら雰囲気のうち、硬化工程が光硬化工程か熱硬化工程かに拠らず、酸素や水分による硬化反応への影響を防ぐことができるという理由から、減圧雰囲気、不活性ガス雰囲気又は凝縮性ガス雰囲気が好ましい。 Of these atmospheres, the curing process does not depend on the photocuring process or the thermal curing process, and the influence on the curing reaction by oxygen or moisture can be prevented, so that the reduced pressure atmosphere, inert gas atmosphere or condensable gas can be used. An atmosphere is preferred.
 2-3.工程[3](硬化工程;図1(c))
 次に、塗布膜を硬化する。具体的には、モールド3を介して塗布膜4に光を照射する(図1(c))、または塗布膜4を加熱する。硬化工程において、塗布膜4を、光又は熱によって硬化させることで硬化膜5を形成する。
2-3. Step [3] (Curing step; FIG. 1 (c))
Next, the coating film is cured. Specifically, the coating film 4 is irradiated with light through the mold 3 (FIG. 1C), or the coating film 4 is heated. In the curing step, the cured film 5 is formed by curing the coating film 4 with light or heat.
 [光硬化]
 光によって塗布膜4を硬化させる場合、塗布膜4を構成する硬化性組成物1に照射する光は、硬化性組成物1の感度波長に応じて選択されるが、具体的には、150nm~400nm程度の波長の紫外光、またはX線、電子線等を適宜選択して使用することが好ましい。ここで、光重合開始剤として市販されているものは、紫外光に感度を有する化合物が多い。このことから、硬化性組成物1に照射する光(照射光6)は、紫外光が特に好ましい。ここで紫外光を発する光源としては、例えば、高圧水銀灯、超高圧水銀灯、低圧水銀灯、Deep-UVランプ、炭素アーク灯、ケミカルランプ、メタルハライドランプ、キセノンランプ、KrFエキシマレーザ、ArFエキシマレーザ、F2エキシマレーザ等が挙げられるが、超高圧水銀灯が特に好ましい。使用する光源の数は1つでもよいし複数であってもよい。また、光照射を行う際には、硬化性組成物1の全面に行ってもよく、一部領域にのみ行ってもよい。また、光重合開始剤と熱重合開始剤とを併用する場合、光照射に加えて、加熱硬化をさらに行ってもよい。光硬化と熱硬化の順序は制限されず、光硬化の後に熱硬化を行う場合、熱硬化の後に光硬化を行う場合、光硬化と熱硬化とを同時に行う場合、が含まれる。
[Photocuring]
When the coating film 4 is cured by light, the light applied to the curable composition 1 constituting the coating film 4 is selected according to the sensitivity wavelength of the curable composition 1, and specifically, 150 nm to It is preferable to select and use ultraviolet light having a wavelength of about 400 nm, X-rays, electron beams or the like as appropriate. Here, many commercially available photopolymerization initiators are sensitive to ultraviolet light. For this reason, the light (irradiation light 6) applied to the curable composition 1 is particularly preferably ultraviolet light. Examples of light sources that emit ultraviolet light include high pressure mercury lamps, ultra high pressure mercury lamps, low pressure mercury lamps, deep-UV lamps, carbon arc lamps, chemical lamps, metal halide lamps, xenon lamps, KrF excimer lasers, ArF excimer lasers, and F 2. Although an excimer laser etc. are mentioned, an ultrahigh pressure mercury lamp is especially preferable. The number of light sources used may be one or plural. Moreover, when performing light irradiation, you may carry out to the whole surface of the curable composition 1, and may carry out only to a one part area | region. Moreover, when using together a photoinitiator and a thermal-polymerization initiator, in addition to light irradiation, you may further heat-harden. The order of photocuring and thermal curing is not limited, and includes cases where thermal curing is performed after photocuring, photocuring is performed after thermal curing, and photocuring and thermal curing are performed simultaneously.
 [熱硬化]
 熱により硬化する場合、加熱雰囲気および加熱温度等は特に限定されない。例えば、不活性雰囲気下または減圧下では、40℃以上、200℃以下の範囲で硬化性組成物1を加熱することができる。また被形状転写層(塗布膜4)を加熱する際には、ホットプレート、オーブン、ファーネス等を用いることができる。
[Heat curing]
In the case of curing by heat, the heating atmosphere and the heating temperature are not particularly limited. For example, the curable composition 1 can be heated in the range of 40 ° C. or higher and 200 ° C. or lower under an inert atmosphere or under reduced pressure. Moreover, when heating the to-be-shaped transfer layer (coating film 4), a hot plate, oven, furnace, etc. can be used.
 2-4.工程[4](離型工程;図1(d))
 次に硬化膜5からモールド3を離し、基板2上に所定のパターン形状を有する硬化膜を形成する工程(離型工程、図1(d))を行う。本工程は、硬化膜5からモールド3を剥離する工程であり、前の工程(硬化工程)において、モールド3上に形成された微細パターンの反転パターンが、硬化膜5のパターンとして得られる。
2-4. Step [4] (Release step; FIG. 1 (d))
Next, the mold 3 is separated from the cured film 5, and a process of forming a cured film having a predetermined pattern shape on the substrate 2 (mold release process, FIG. 1D) is performed. This step is a step of peeling the mold 3 from the cured film 5, and a reverse pattern of the fine pattern formed on the mold 3 in the previous step (curing step) is obtained as the pattern of the cured film 5.
 硬化膜5とモールド3とを引き離す方法としては、引き離す際に硬化膜5の一部が物理的に破損しなければ特に限定されず、各種条件等も特に限定されない。例えば、基板2(被加工基板)を固定してモールド3を基板2から遠ざかるように移動させて剥離してもよく、モールド3を固定して基板2をモールドから遠ざかるように移動させて剥離してもよく、これらの両方を正反対の方向で引っ張って剥離してもよい。 The method of separating the cured film 5 and the mold 3 is not particularly limited as long as a part of the cured film 5 is not physically damaged when being separated, and various conditions are not particularly limited. For example, the substrate 2 (substrate to be processed) may be fixed and the mold 3 may be moved away from the substrate 2 to be separated, or the mold 3 may be fixed and the substrate 2 moved away from the mold to be separated. Alternatively, both of them may be peeled by pulling in the opposite direction.
 また、凝縮性ガス雰囲気下で型接触工程を行った場合、離型工程にて硬化膜とモールドとを引き離す際に、硬化膜とモールドとが接触する界面の圧力が低下することに伴って凝縮性ガスが気化することで、離型力低減効果を発現する傾向がある。 In addition, when the mold contact process is performed in a condensable gas atmosphere, when the cured film and the mold are separated in the mold release process, condensation occurs as the pressure at the interface between the cured film and the mold decreases. When the property gas is vaporized, the release force reducing effect tends to be exhibited.
 以上説明した工程[1]~[4]までの一連の工程(製造プロセス)によって、所望の凹凸パターン形状(モールド3の凹凸形状に因むパターン形状)を有する硬化膜を得ることができる。得られた硬化膜は、例えば、フレネルレンズや回折格子等の光学部材(光学部材の一部材として用いる場合を含む。)として利用することもできる。このような場合、少なくとも、基板2と、この基板2の上に配置されたパターン形状を有する硬化膜5と、を有する光学部材とすることができる。 A cured film having a desired concavo-convex pattern shape (pattern shape due to the concavo-convex shape of the mold 3) can be obtained by the series of steps (manufacturing process) from the steps [1] to [4] described above. The obtained cured film can also be used, for example, as an optical member (including a case where it is used as one member of an optical member) such as a Fresnel lens or a diffraction grating. In such a case, it can be set as the optical member which has the board | substrate 2 and the cured film 5 which has the pattern shape arrange | positioned on this board | substrate 2 at least.
 以上より、本発明の硬化性組成物は硬化速度が大きいため、生産性が高く、インプリント用として優れている。特に、ナノサイズ(1nm~100nm)のパターンを形成するナノインプリント用として、著しく優れている。 From the above, the curable composition of the present invention has a high curing rate, and thus has high productivity and is excellent for imprinting. Particularly, it is remarkably excellent for nanoimprinting for forming a nano-sized (1 to 100 nm) pattern.
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲は以下に説明する実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to the examples described below.
 [重合性化合物]
 硬化性組成物の調製に用いるために、後述の実施例1~5、比較例1~3、参考例1に示す重合性化合物を用意した。
[Polymerizable compound]
For use in preparing the curable composition, the polymerizable compounds shown in Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example 1 described below were prepared.
 [重合開始剤]
 重合開始剤として、以下に示すジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(Lucrin TPO、以下、LTPOとも呼ぶことがある)および4,4‘-ジエチルアミノベンゾフェノン(以下、DABPとも呼ぶことがある)を用意した。
Figure JPOXMLDOC01-appb-C000022
[Polymerization initiator]
As polymerization initiators, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (Lucrin TPO, hereinafter also referred to as LTPO) and 4,4′-diethylaminobenzophenone (hereinafter also referred to as DABP) are shown below. Prepared).
Figure JPOXMLDOC01-appb-C000022
 1.硬化性組成物の硬化速度
 以下の実施例により、本発明の硬化性組成物の硬化速度を評価した。
1. Curing Rate of Curable Composition The curing rate of the curable composition of the present invention was evaluated by the following examples.
 [硬化速度の測定法]
 示差走査熱量計(株式会社日立ハイテクサイエンス製、型式、X-DSC7000)に硬化性組成物を投入後、紫外線照射装置(林時計株式会社製、型式、LA-410UV)で紫外線を照射した。このとき、照射光は波長365nm、照度100mW/cm2とした。下記計算式により、180秒間照射したときの発熱量(H180)を総発熱量とし、照射開始後18秒間の発熱量(H18)の総発熱量に占める割合から18秒間照射後の反応率(%)を算出し、硬化速度の比較を行った。当該光硬化反応は発熱反応であることから、反応率が高いほど硬化速度が大きい。
Figure JPOXMLDOC01-appb-C000023
[Measurement method of curing rate]
The curable composition was put into a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model, X-DSC7000), and then irradiated with ultraviolet rays using an ultraviolet irradiation device (manufactured by Hayashi Watch Co., Ltd., model, LA-410UV). At this time, the irradiation light had a wavelength of 365 nm and an illuminance of 100 mW / cm 2 . Based on the following calculation formula, the calorific value when irradiated for 180 seconds (H 180 ) is defined as the total calorific value, and the reaction rate after irradiation for 18 seconds from the ratio of the calorific value for 18 seconds after the start of irradiation (H 18 ) to the total calorific value. (%) Was calculated and the curing rates were compared. Since the photocuring reaction is an exothermic reaction, the higher the reaction rate, the higher the curing rate.
Figure JPOXMLDOC01-appb-C000023
 [実施例1]
 下記に示される重合性化合物[A]、重合開始剤[B]をそれぞれ括弧内に示す組成比で混合し、硬化性組成物(a-1)を調製した。
<重合性化合物[A]>
・式(1a)で表される4-HFIP-フェニルアクリレート、30.4質量%(19.2mol%)(特開2011-164345に合成方法が記載されている。)
・ベンジルアクリレート、62.7質量%(76.8mol%)
<重合性開始剤[B]>
・Lucirin TPO、5.3質量%(3.0mol%)
・4,4’-ジエチルアミノベンゾフェノン、1.6質量%(1.0mol%)
Figure JPOXMLDOC01-appb-C000024
[Example 1]
The polymerizable compound [A] and the polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-1).
<Polymerizable compound [A]>
4-HFIP-phenyl acrylate represented by the formula (1a), 30.4 mass% (19.2 mol%) (Japanese Patent Laid-Open No. 2011-164345 describes a synthesis method)
Benzyl acrylate, 62.7% by mass (76.8 mol%)
<Polymerizable initiator [B]>
・ Lucirin TPO, 5.3 mass% (3.0 mol%)
・ 4,4′-diethylaminobenzophenone, 1.6% by mass (1.0 mol%)
Figure JPOXMLDOC01-appb-C000024
 表1に、硬化性組成物(a-1)の組成比を示した。また、表1には、後述する実施例2~5で用いた硬化性組成物(a-2)~(a-5)、比較例1~3で用いた硬化性組成物(b-1)~(b-3)、参考例1で用いた硬化性組成物(c-1)の組成比を同様に示した。これらの硬化性組成物において、重合性化合物[A]の総mol%:重合開始剤[B]の総mol%の比は、96:4である。
Figure JPOXMLDOC01-appb-T000025
Table 1 shows the composition ratio of the curable composition (a-1). Table 1 also shows the curable compositions (a-2) to (a-5) used in Examples 2 to 5 described later and the curable compositions (b-1) used in Comparative Examples 1 to 3. (B-3) and the composition ratio of the curable composition (c-1) used in Reference Example 1 are also shown. In these curable compositions, the ratio of the total mol% of the polymerizable compound [A] to the total mol% of the polymerization initiator [B] is 96: 4.
Figure JPOXMLDOC01-appb-T000025
 上記の方法により硬化性組成物(a-1)の反応率を算出したところ、95.6%であった。結果を表1に示す。この値は、後述する比較例1の硬化性組成物(b-1)の88.5%および比較例2の硬化性組成物(b-2)の86.3%と比べて大きかった。 The reaction rate of the curable composition (a-1) calculated by the above method was 95.6%. The results are shown in Table 1. This value was larger than 88.5% of the curable composition (b-1) of Comparative Example 1 described later and 86.3% of the curable composition (b-2) of Comparative Example 2.
 [実施例2]
 実施例1において、4-HFIP-フェニルアクリレートを、式(1b)で表される3,5-bis-HFIP-フェニルアクリレート(特開2004-83900号公報に合成方法が記載されている)に変更した以外は、実施例1と同様の方法により硬化性組成物(a-2)を調製した。
Figure JPOXMLDOC01-appb-C000026
<重合性化合物[A]>
・式(1b)で表される3,5-bis-HFIP-フェニルアクリレート、40.0質量%(19.2mol%)
・ベンジルアクリレート、54.1質量%(76.8mol%、)
<重合性開始剤[B]>
・Lucirin TPO、4.5質量%(3.0mol%、)
・4,4’-ジエチルアミノベンゾフェノン、1.4質量%(1.0mol%、)
 実施例1と同様に上記の方法により、硬化性組成物(a-2)の硬化速度を評価したところ、反応率は98.3%であった。結果を表1に示す。この値は、後述する比較例1の硬化性組成物(b-1)の88.5%および比較例2の硬化性組成物(b-2)の86.3%と比べて大きかった。つまり、硬化性組成物(a-1)および硬化性組成物(a-2)は硬化性組成物(b-1)および硬化性組成物(b-2)よりも紫外線の照射時間が短くとも十分に硬化するため、硬化性組成物(a-1)および硬化性組成物(a-2)を用いたナノインプリントは生産性が高い。
[Example 2]
In Example 1, 4-HFIP-phenyl acrylate was changed to 3,5-bis-HFIP-phenyl acrylate represented by the formula (1b) (the synthesis method is described in JP-A-2004-83900). A curable composition (a-2) was prepared in the same manner as in Example 1 except that.
Figure JPOXMLDOC01-appb-C000026
<Polymerizable compound [A]>
-3,5-bis-HFIP-phenyl acrylate represented by the formula (1b), 40.0 mass% (19.2 mol%)
Benzyl acrylate, 54.1% by mass (76.8 mol%)
<Polymerizable initiator [B]>
・ Lucirin TPO, 4.5 mass% (3.0 mol%)
・ 4,4′-diethylaminobenzophenone, 1.4% by mass (1.0 mol%)
When the curing rate of the curable composition (a-2) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 98.3%. The results are shown in Table 1. This value was larger than 88.5% of the curable composition (b-1) of Comparative Example 1 described later and 86.3% of the curable composition (b-2) of Comparative Example 2. That is, the curable composition (a-1) and the curable composition (a-2) have a shorter ultraviolet irradiation time than the curable composition (b-1) and the curable composition (b-2). Since the composition is sufficiently cured, the nanoimprint using the curable composition (a-1) and the curable composition (a-2) has high productivity.
 [実施例3]
 下記に示される重合性化合物[A]、重合開始剤[B]をそれぞれ括弧内に示す組成比で混合し、硬化性組成物(a-3)を調製した。
<重合性化合物[A]>
・式(2a)で表される4-HFIP-スチレン、95.0質量%(96mol%)(Chem.Mater.2003.15.1512-1517頁に合成方法が記載されている。)
<重合性開始剤[B]>
・Lucirin TPO、3.8質量%(3mol%)
・4,4’-ジエチルアミノベンゾフェノン、1.2質量%(1mol%)
Figure JPOXMLDOC01-appb-C000027
 実施例1と同様に上記の方法により、硬化性組成物(a-3)の硬化速度を評価したところ、反応率は10.7%であった。結果を表1に示す。本実施例はスチレン系の重合性化合物の重合であるため、硬化速度は、他の実施例の値に比べると小さいが、後述する比較例3の硬化性組成物(b-3)の5.6%と比べて大きかった。すなわち、側鎖にHFIP基を導入することによる硬化速度の向上は、本実施例でも明らかである。
[Example 3]
A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-3).
<Polymerizable compound [A]>
-4-HFIP-styrene represented by the formula (2a), 95.0 mass% (96 mol%) (Chem. Mater. 2003.15.1512-1517 describes the synthesis method)
<Polymerizable initiator [B]>
・ Lucirin TPO, 3.8% by mass (3 mol%)
・ 4,4′-diethylaminobenzophenone, 1.2% by mass (1 mol%)
Figure JPOXMLDOC01-appb-C000027
When the curing rate of the curable composition (a-3) was evaluated in the same manner as in Example 1, the reaction rate was 10.7%. The results are shown in Table 1. Since this example is a polymerization of a styrene-based polymerizable compound, the curing rate is small compared to the values of other examples, but the curable composition (b-3) of Comparative Example 3 described later is 5. Compared to 6%. That is, the improvement in the curing rate by introducing the HFIP group into the side chain is also apparent in this example.
 [実施例4]
 実施例3において、4-HFIP-スチレンを式(1c)で表される重合性化合物、4,4,4-トリフルオロ-3-ヒドロキシ-1-メチル-3-(トリフルオロメチル)ブチル-2-アクリレート(特開2005-239710に合成方法が記載されている)に変更した以外は、実施例3と同様の方法により硬化性組成物(a-4)を調製した。
Figure JPOXMLDOC01-appb-C000028
<重合性化合物[A]>
・式(1c)で表される化合物、95.2質量%(96mol%)
<重合性開始剤[B]>
・Lucirin TPO、3.7質量%(3mol%、)
・4,4’-ジエチルアミノベンゾフェノン、1.1質量%(1mol%)
 実施例1と同様に上記の方法により、硬化性組成物(a-4)の硬化速度を評価したところ、反応率は98.3%であった。結果を表1に示す。実施例1および実施例2の硬化性組成物の硬化速度と、同等の結果を得た。
[Example 4]
In Example 3, 4-HFIP-styrene is a polymerizable compound represented by the formula (1c), 4,4,4-trifluoro-3-hydroxy-1-methyl-3- (trifluoromethyl) butyl-2 A curable composition (a-4) was prepared in the same manner as in Example 3, except that it was changed to -acrylate (the synthesis method is described in JP-A-2005-239710).
Figure JPOXMLDOC01-appb-C000028
<Polymerizable compound [A]>
Compound represented by formula (1c), 95.2% by mass (96 mol%)
<Polymerizable initiator [B]>
・ Lucirin TPO, 3.7% by mass (3 mol%)
・ 4,4′-diethylaminobenzophenone, 1.1% by mass (1 mol%)
When the curing rate of the curable composition (a-4) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 98.3%. The results are shown in Table 1. The curing rate of the curable compositions of Example 1 and Example 2 and equivalent results were obtained.
 [実施例5]
 実施例3において、4-HFIP-スチレンを式(1d)で表される重合性化合物(4,4,4-トリフルオロ-3-ヒドロキシ-1-メチル-3-(トリフルオロメチル)ブチル-2-メタクリレート)、特開2005-239710に合成方法が記載されている)に変更した以外は、実施例3と同様の方法により硬化性組成物(a-5)を調製した。
Figure JPOXMLDOC01-appb-C000029
 実施例1と同様に上記の方法により、硬化性組成物(a-5)の硬化速度を評価したところ、反応率は31.6%であった。結果を表1に示す。アクリル系モノマーに比べると重合性が低いと言われるメタクリル系モノマーとしては、比較的高い硬化速度である。
[Example 5]
In Example 3, 4-HFIP-styrene was changed to a polymerizable compound represented by the formula (1d) (4,4,4-trifluoro-3-hydroxy-1-methyl-3- (trifluoromethyl) butyl-2. A curable composition (a-5) was prepared in the same manner as in Example 3 except that the method was changed to -methacrylate) and JP-A-2005-239710, whose synthesis method is described.
Figure JPOXMLDOC01-appb-C000029
When the curing rate of the curable composition (a-5) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 31.6%. The results are shown in Table 1. As a methacrylic monomer, which is said to have low polymerizability compared to an acrylic monomer, it has a relatively high curing rate.
 [比較例1]
 実施例1の記載において、4-HFIP-フェニルアクリレートを次式で表されるフェニルアクリレートに変更した以外は、実施例1と同様の方法により硬化性組成物(b-1)を調製した。
Figure JPOXMLDOC01-appb-C000030
 実施例1と同様に上記の方法により、硬化性組成物(b-1)の硬化速度を評価したところ、反応率は88.5%であった。結果を表1に示す。
[Comparative Example 1]
A curable composition (b-1) was prepared in the same manner as in Example 1 except that 4-HFIP-phenyl acrylate was changed to phenyl acrylate represented by the following formula in the description of Example 1.
Figure JPOXMLDOC01-appb-C000030
When the curing rate of the curable composition (b-1) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 88.5%. The results are shown in Table 1.
 [比較例2]
 実施例1の記載において、4-HFIP-フェニルアクリレートを次式で表される4-ヒドロキシ-フェニルアクリレートに変更した以外は、実施例1と同様の方法により硬化性組成物(b-2)を調製した。
Figure JPOXMLDOC01-appb-C000031
 実施例1と同様に上記の方法により、硬化性組成物(b-2)の硬化速度を評価したところ、反応率は86.3%であった。結果を表1に示す。
[Comparative Example 2]
In the description of Example 1, the curable composition (b-2) was prepared in the same manner as in Example 1 except that 4-HFIP-phenyl acrylate was changed to 4-hydroxy-phenyl acrylate represented by the following formula. Prepared.
Figure JPOXMLDOC01-appb-C000031
When the curing rate of the curable composition (b-2) was evaluated by the above method in the same manner as in Example 1, the reaction rate was 86.3%. The results are shown in Table 1.
 [比較例3]
 実施例3の記載において、4-HFIP-スチレンを次式で表されるスチレンに変更した以外は、実施例3と同様の方法により硬化性組成物(b-3)を調製した。
Figure JPOXMLDOC01-appb-C000032
 実施例1と同様に上記の方法により、硬化性組成物(b-3)の硬化速度を評価したところ、反応率は5.6%であった。結果を表1に示す。
[Comparative Example 3]
In the description of Example 3, a curable composition (b-3) was prepared in the same manner as in Example 3 except that 4-HFIP-styrene was changed to styrene represented by the following formula.
Figure JPOXMLDOC01-appb-C000032
When the curing rate of the curable composition (b-3) was evaluated in the same manner as in Example 1, the reaction rate was 5.6%. The results are shown in Table 1.
 [参考例1]
 実施例3の記載において、4-HFIP-スチレンを次式で表される「ジアクリレート1」に変更した以外は、実施例3と同様の方法により硬化性組成物(c-1)を調製した。
Figure JPOXMLDOC01-appb-C000033
 実施例1と同様に上記の方法により、硬化性組成物(c-1)の硬化速度を評価したところ、反応率は81.0%であった。結果を表1に示す。
[Reference Example 1]
In the description of Example 3, a curable composition (c-1) was prepared in the same manner as in Example 3 except that 4-HFIP-styrene was changed to “diacrylate 1” represented by the following formula. .
Figure JPOXMLDOC01-appb-C000033
When the curing rate of the curable composition (c-1) was evaluated in the same manner as in Example 1, the reaction rate was 81.0%. The results are shown in Table 1.
 2.硬化膜の離型性
 以下の実施例により、本発明の硬化性組成物を硬化させた後の「離型工程」における離型性を評価した。
2. Release property of cured film The following example evaluated the release property in the "release process" after hardening the curable composition of this invention.
 [離型力の測定]
 下記に示される手順により、離型力を測定した。
 <配置工程>
 密着促進層が形成されたシリコンウエハ上に、硬化性組成物の液滴を滴下した。
 <型接触工程>
 次に、上記シリコンウエハ上の硬化性組成物に対して、ナノインプリント用フッ素系コーテイング剤(ダイキン工業株式会社製、品名、オプツールHD-1100)により表面処理されたパターンのない石英モールド(縦24mm、横24mm)を接触させた。
 <照射工程>
 次に、石英モールドを接触させてから、石英モールド越しにUV光を硬化性組成物に120秒照射した。尚、光源として、ハロゲン光源(株式会社モリテックス製、型式、MUV351U)を用いた。
 <離型工程>
 次に、石英モールドを、0.0125mm/sの速度で光硬化膜から離した。引張圧縮両用型小型ロードセル(株式会社共和電業製、型式、LUR-A-1KNSA1)を用いて、離型に要した力を測定した。実際に測定を行う際は、同一条件で離型力測定を5回行い、各回の測定データから平均値を算出した。
[Measurement of mold release force]
The release force was measured according to the procedure shown below.
<Arrangement process>
A droplet of the curable composition was dropped on the silicon wafer on which the adhesion promoting layer was formed.
<Mold contact process>
Next, with respect to the curable composition on the silicon wafer, a quartz mold (24 mm in length, having a surface treatment with a fluorine-based coating agent for nanoimprinting (product name, OPTOOL HD-1100, manufactured by Daikin Industries, Ltd.) 24 mm wide) was brought into contact.
<Irradiation process>
Next, after contacting the quartz mold, UV light was irradiated to the curable composition through the quartz mold for 120 seconds. As the light source, a halogen light source (Mortex Co., Ltd., model, MUV351U) was used.
<Mold release process>
Next, the quartz mold was separated from the photocured film at a speed of 0.0125 mm / s. The force required for mold release was measured using a tension / compression dual-use compact load cell (manufactured by Kyowa Denki Co., Ltd., model, LUR-A-1KNSA1). When actually performing the measurement, the release force measurement was performed five times under the same conditions, and the average value was calculated from the measurement data of each time.
 [実施例6]
 下記に示される重合性化合物[A]、重合開始剤[B]をそれぞれ括弧内に示す組成比で混合し、硬化性組成物(a-6)を調製した。
<重合性化合物[A]>
・4-HFIP-フェニルアクリレート(式(1a)で表される重合性化合物)(40質量部)
・イソボルニルアクリレート(10質量部)
・ネオペンチルジアクリレート(45質量部)
<重合性開始剤[B]>
・Lucirin TPO(4質量部)
・4,4’-ジエチルアミノベンゾフェノン(1質量部)
[Example 6]
A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-6).
<Polymerizable compound [A]>
4-HFIP-phenyl acrylate (polymerizable compound represented by formula (1a)) (40 parts by mass)
・ Isobornyl acrylate (10 parts by mass)
・ Neopentyl diacrylate (45 parts by mass)
<Polymerizable initiator [B]>
・ Lucirin TPO (4 parts by mass)
・ 4,4'-diethylaminobenzophenone (1 part by mass)
 上記の方法により、硬化性組成物(a-6)から得られた硬化物の平均離型力を測定したところ、54.2Nであり、後述する比較例4の硬化性組成物(b-4)から得られた硬化物の平均離型力73.2Nおよび比較例5の硬化性組成物(b-5)から得られた硬化物の平均離型力66.3Nよりも低い値であった。 The average mold release force of the cured product obtained from the curable composition (a-6) was measured by the above method, and found to be 54.2 N. The curable composition (b-4) of Comparative Example 4 described below. The average release force 73.2N of the cured product obtained from (1) and the average release force 66.3N of the cured product obtained from the curable composition (b-5) of Comparative Example 5 were lower. .
 [実施例7]
 実施例6において、4-HFIP-フェニルアクリレートを式(1b)で表される3,5-bis-HFIP-フェニルアクリレートに変更した以外は、実施例6と同様の方法により硬化性組成物(a-7)を調製した。
 実施例6と同様に上記の方法により、硬化性組成物(a-7)から得られた硬化物の平均離型力を測定したところ、平均離型力は54.1Nであった。この値は、後述する比較例4の硬化性組成物(b-4)から得られた硬化物の平均離型力73.2Nおよび比較例5の硬化性組成物(b-5)から得られた硬化物の平均離型力66.3Nよりも低い値であった。つまり、硬化性組成物(a-6)および硬化性組成物(a-7)から得られた硬化物は、硬化性組成物(b-4)および硬化性組成物(b-5)から得られた硬化物より低い離型力で離型することができ、ナノインプリント法において、パターン欠陥の低減や位置合わせ精度の向上が期待できる。
[Example 7]
In Example 6, except that 4-HFIP-phenyl acrylate was changed to 3,5-bis-HFIP-phenyl acrylate represented by the formula (1b), the curable composition (a -7) was prepared.
When the average mold release force of the cured product obtained from the curable composition (a-7) was measured in the same manner as in Example 6, the average mold release force was 54.1 N. This value was obtained from the average release force 73.2N of the cured product obtained from the curable composition (b-4) of Comparative Example 4 described later and the curable composition (b-5) of Comparative Example 5. The average release force of the cured product was lower than 66.3N. That is, the cured product obtained from the curable composition (a-6) and the curable composition (a-7) was obtained from the curable composition (b-4) and the curable composition (b-5). The mold can be released with a release force lower than that of the cured product, and in the nanoimprint method, pattern defects can be reduced and alignment accuracy can be improved.
 [実施例8]
 下記に示される重合性化合物[A]、重合開始剤[B]をそれぞれ括弧内に示す組成比で混合し、硬化性組成物(a-8)を調製した。
<重合性化合物[A]>
・式(1c)で表される重合性化合物(20質量部)
・イソボルニルアクリレート(10質量部)
・ベンジルアクリレート(20質量部)
・ネオペンチルジアクリレート(45質量部)
<重合性開始剤[B]>
・Lucirin TPO(4質量部)
・4,4’-ジエチルアミノベンゾフェノン(1質量部)
 実施例6と同様に上記の方法により、硬化性組成物(a-8)から得られた硬化物の平均離型力を測定したところ、平均離型力は68.3Nであった。
[Example 8]
A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (a-8).
<Polymerizable compound [A]>
-Polymerizable compound represented by formula (1c) (20 parts by mass)
・ Isobornyl acrylate (10 parts by mass)
・ Benzyl acrylate (20 parts by mass)
・ Neopentyl diacrylate (45 parts by mass)
<Polymerizable initiator [B]>
・ Lucirin TPO (4 parts by mass)
・ 4,4'-diethylaminobenzophenone (1 part by mass)
When the average mold release force of the cured product obtained from the curable composition (a-8) was measured in the same manner as in Example 6, the average mold release force was 68.3 N.
 [比較例4]
 実施例6において、4-HFIP-フェニルアクリレートをフェニルアクリレートに変更した以外は、実施例6と同様の方法により硬化性組成物(b-4)を調製した。
 実施例6と同様に上記の方法により、硬化性組成物(b-4)から得られた硬化物の平均離型力を測定したところ、平均離型力は73.2Nであった。
[Comparative Example 4]
A curable composition (b-4) was prepared in the same manner as in Example 6, except that 4-HFIP-phenyl acrylate was changed to phenyl acrylate in Example 6.
When the average mold release force of the cured product obtained from the curable composition (b-4) was measured by the above method in the same manner as in Example 6, the average mold release force was 73.2 N.
 [比較例5]
 実施例6において、4-HFIP-フェニルアクリレートを4-ヒドロキシ-フェニルアクリレートに変更した以外は、実施例6と同様の方法により硬化性組成物(b-5)を調製した。
 実施例6と同様に上記の方法により、硬化性組成物(b-5)から得られた硬化物の平均離型力を測定したところ、平均離型力は66.3Nであった。
[Comparative Example 5]
A curable composition (b-5) was prepared in the same manner as in Example 6 except that 4-HFIP-phenyl acrylate was changed to 4-hydroxy-phenyl acrylate in Example 6.
When the average mold release force of the cured product obtained from the curable composition (b-5) was measured in the same manner as in Example 6, the average mold release force was 66.3 N.
 [参考例2]
 下記に示される重合性化合物[A]、重合開始剤[B]をそれぞれ括弧内に示す組成比で混合し、硬化性組成物(c-2)を調製した。
<重合性化合物[A]>
・ジアクリレート1(45質量部)
・イソボルニルアクリレート(10質量部)
・ベンジルアクリレート(40質量部)
<重合性開始剤[B]>
・Lucirin TPO(4質量部)
・4,4’-ジエチルアミノベンゾフェノン(1質量部)
 実施例6と同様に上記の方法により、硬化性組成物(c-2)から得られた硬化物の平均離型力を測定したところ、平均離型力は56.6Nであった。
[Reference Example 2]
A polymerizable compound [A] and a polymerization initiator [B] shown below were mixed at a composition ratio shown in parentheses to prepare a curable composition (c-2).
<Polymerizable compound [A]>
・ Diacrylate 1 (45 parts by mass)
・ Isobornyl acrylate (10 parts by mass)
・ Benzyl acrylate (40 parts by mass)
<Polymerizable initiator [B]>
・ Lucirin TPO (4 parts by mass)
・ 4,4'-diethylaminobenzophenone (1 part by mass)
When the average mold release force of the cured product obtained from the curable composition (c-2) was measured in the same manner as in Example 6, the average mold release force was 56.6 N.
 このように、本発明の硬化性組成物が硬化してなる硬化物の平均離型力は、HFIP基を持たない従来技術の重合性組成物(比較例)に比べて遜色ない数値(同等レベルかより小さい値)を示しており、離型性にも優れた材料であることが判明した。 Thus, the average mold release force of the cured product obtained by curing the curable composition of the present invention is a numerical value (equivalent level) that is comparable to that of the conventional polymerizable composition having no HFIP group (Comparative Example). It was found that the material was excellent in releasability.
 本発明によって得られる式(1)または(2)で表される重合性化合物を含む硬化性組成物は、硬化速度が大きい性質を有することから、半導体用の封止材やアンダーフィル材、有機EL素子や有機ELディスプレイ用の封止材、バンク材として用いることができる。 Since the curable composition containing the polymerizable compound represented by the formula (1) or (2) obtained by the present invention has a property of a high curing rate, it is a semiconductor sealing material, underfill material, organic It can be used as a sealing material or bank material for EL elements and organic EL displays.
 1:硬化性組成物、2:基板、3:モールド、4:塗布膜、5:硬化膜、6:照射光 1: curable composition, 2: substrate, 3: mold, 4: coating film, 5: cured film, 6: irradiation light

Claims (7)

  1.  下記式(1)または式(2)で表される重合性化合物の少なくとも1種と、
     重合開始剤と、
    を含む、硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子またはメチル基であり、R2は2価または3価の直鎖状、分岐鎖状または環状の脂肪族炭化水素基、または2価または3価の芳香族基であり、R3は2価または3価の芳香族基であり、m、nは1~2の整数である。)
    At least one polymerizable compound represented by the following formula (1) or formula (2);
    A polymerization initiator;
    A curable composition comprising:
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is a hydrogen atom or a methyl group, and R 2 is a divalent or trivalent linear, branched or cyclic aliphatic hydrocarbon group, or a divalent or trivalent aromatic group. R 3 is a divalent or trivalent aromatic group, and m and n are integers of 1 to 2.)
  2.  前記重合性化合物が、次の式(1a)、式(1b)、式(1c)、式(1d)、式(2a)で表されるいずれかの重合性化合物である、請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    2. The polymerizable compound according to claim 1, wherein the polymerizable compound is any polymerizable compound represented by the following formula (1a), formula (1b), formula (1c), formula (1d), or formula (2a): Curable composition.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  3.  前記重合開始剤が、光重合開始剤であることを特徴とする、請求項1または請求項2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the polymerization initiator is a photopolymerization initiator.
  4.  光ナノインプリント用組成物であることを特徴とする、請求項1乃至請求項3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the curable composition is an optical nanoimprint composition.
  5.  次の各工程を含む、基板上に、パターン形状を有する硬化膜を配したパターン付き部材の製造方法。
    配置工程:請求項1乃至請求項4のいずれか1項に記載の硬化性組成物を基板上に配置する工程。
    型接触工程:前記基板上に配置された前記硬化性組成物に対し、パターン形状を有するモールドを接触させる工程。
    硬化工程:前記モールドと接触した状態の前記硬化性組成物を、光または熱により硬化させて硬化膜とする工程。
    離型工程:前記硬化膜から前記モールドを引き離し、前記パターン付き部材を得る工程。
    The manufacturing method of the member with a pattern which arranged the cured film which has a pattern shape on the board | substrate including the following each process.
    Arrangement process: The process of arrange | positioning the curable composition of any one of Claim 1 thru | or 4 on a board | substrate.
    Mold contact step: a step of bringing a mold having a pattern shape into contact with the curable composition disposed on the substrate.
    Curing step: a step of curing the curable composition in contact with the mold with light or heat to form a cured film.
    Mold release step: a step of separating the mold from the cured film to obtain the patterned member.
  6.  前記型接触工程が、凝縮性ガスを含む気体の雰囲気下で行われる、請求項5に記載のパターン付き部材の製造方法。 The method for producing a patterned member according to claim 5, wherein the mold contact step is performed in a gas atmosphere containing a condensable gas.
  7.  前記接触工程の凝縮性ガスが1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、トランス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))、シス-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))のうち1種類以上を含むことを特徴とする、請求項6に記載のパターン付き部材の製造方法。 The condensable gas in the contacting step is 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (E)) Cis-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1 The method for producing a patterned member according to claim 6, comprising one or more of, 3,3,3-tetrafluoropropene (HFO-1234ze (Z)).
PCT/JP2019/017360 2018-04-27 2019-04-24 Curable composition and pattern manufacturing method WO2019208613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515510A JPWO2019208613A1 (en) 2018-04-27 2019-04-24 Method for Producing Curable Compositions and Patterns

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086220 2018-04-27
JP2018-086220 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208613A1 true WO2019208613A1 (en) 2019-10-31

Family

ID=68295455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017360 WO2019208613A1 (en) 2018-04-27 2019-04-24 Curable composition and pattern manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2019208613A1 (en)
WO (1) WO2019208613A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259748A1 (en) * 2021-06-09 2022-12-15 キヤノン株式会社 Curable composition, film formation method, and article manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046541A (en) * 2006-08-21 2008-02-28 Jsr Corp Resin for upper layer film forming composition, upper layer film forming composition and photoresist pattern forming method
JP2009051017A (en) * 2007-08-23 2009-03-12 Fujifilm Corp Photocurable composition for photo-nanoimprint lithography and manufacturing method of substrate with pattern
JP2010114209A (en) * 2008-11-05 2010-05-20 Fujifilm Corp Curable composition for optical nanoimprint, curing material and method for manufacturing it
JP2010250074A (en) * 2009-04-15 2010-11-04 Fujifilm Corp Active light sensitive or radiation sensitive resin composition, and pattern forming method using the same
WO2011125800A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Curable composition for nanoimprint, semiconductor element, and nanoimprint method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046541A (en) * 2006-08-21 2008-02-28 Jsr Corp Resin for upper layer film forming composition, upper layer film forming composition and photoresist pattern forming method
JP2009051017A (en) * 2007-08-23 2009-03-12 Fujifilm Corp Photocurable composition for photo-nanoimprint lithography and manufacturing method of substrate with pattern
JP2010114209A (en) * 2008-11-05 2010-05-20 Fujifilm Corp Curable composition for optical nanoimprint, curing material and method for manufacturing it
JP2010250074A (en) * 2009-04-15 2010-11-04 Fujifilm Corp Active light sensitive or radiation sensitive resin composition, and pattern forming method using the same
WO2011125800A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Curable composition for nanoimprint, semiconductor element, and nanoimprint method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259748A1 (en) * 2021-06-09 2022-12-15 キヤノン株式会社 Curable composition, film formation method, and article manufacturing method

Also Published As

Publication number Publication date
JPWO2019208613A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6983757B2 (en) Pattern formation method, processed circuit board manufacturing method, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, imprint mold manufacturing method
JP7086841B2 (en) Pattern forming method, processed circuit board manufacturing method, optical component manufacturing method, circuit board manufacturing method, electronic component manufacturing method, imprint mold manufacturing method
US10073341B2 (en) Adhesion layer composition, method for forming film by nanoimprinting, methods for manufacturing optical component, circuit board and electronic apparatus
JP7094878B2 (en) Pattern formation method, processed substrate manufacturing method, optical component manufacturing method, quartz mold replica manufacturing method, semiconductor element manufacturing method
JP7066674B2 (en) Pattern formation method, imprint pretreatment coating material, and substrate pretreatment method
JP6328001B2 (en) Curable composition for imprint, film, method for producing film
WO2018164017A1 (en) Production method for cured product pattern, production method for optical component, circuit board and quartz mold replica, and imprint pretreatment coating material and cured product thereof
JP6632340B2 (en) Adhesive layer forming composition, method for producing cured product pattern, method for producing optical component, method for producing circuit board, method for producing imprint mold, and device component
KR20190117751A (en) A method of forming a pattern, and a method of manufacturing a processed substrate, an optical component and a quartz mold replica, and a set of an imprint pretreatment coating material and an imprint resist
TWI576403B (en) Adhesion layer composition, methods for forming adhesion layer and cured product pattern, and methods for manufacturing optical component, circuit board, imprinting mold and device component
JP6327948B2 (en) Photocurable composition, cured product, film manufacturing method, optical component manufacturing method, circuit board manufacturing method, and electronic component manufacturing method using the same
JP6324363B2 (en) Photocurable composition for imprint, method for producing film using the same, method for producing optical component, method for producing circuit board, method for producing electronic component
US11119406B2 (en) Photo-curable composition and patterning method
JP6333050B2 (en) Compound, photocurable composition, cured product, method for producing film having pattern shape, method for producing optical component, method for producing circuit board, method for producing electronic component using the same
JP2016030829A (en) Photocurable composition, method of producing cured product pattern using the same, method of manufacturing optical component, and method of manufacturing circuit board
JP6860804B2 (en) Fluorine-containing polymer and method for producing a fluorine-containing polymer
US10593547B2 (en) Photocurable composition, and methods using the same for forming cured product pattern and for manufacturing optical component, circuit board and imprinting mold
JP2015127384A (en) Photocurable composition, and method for producing film, method for manufacturing optical component, method for manufacturing circuit board, method for manufacturing electronic component, and cured product using the photocurable composition
WO2019208613A1 (en) Curable composition and pattern manufacturing method
WO2016120944A1 (en) Adhesion layer-forming composition, method of manufacturing cured product pattern, method of manufacturing optical component, method of manufacturing circuit board, method of manufacturing imprinting mold, and device component
JP6584578B2 (en) Photo-curable composition for imprint, method for producing film and method for producing semiconductor element
JP2016119457A (en) Optical curable composition for imprinting, manufacturing method of curable film, manufacturing method of optical component, manufacturing method of circuit board and manufacturing method of electronic component
WO2016098314A1 (en) Adhesion layer composition, methods for forming adhesion layer and cured product pattern, and methods for manufacturing optical component, circuit board, imprinting mold and device component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792315

Country of ref document: EP

Kind code of ref document: A1