WO2019208577A1 - Heat dissipation substrate and electronic device - Google Patents

Heat dissipation substrate and electronic device Download PDF

Info

Publication number
WO2019208577A1
WO2019208577A1 PCT/JP2019/017266 JP2019017266W WO2019208577A1 WO 2019208577 A1 WO2019208577 A1 WO 2019208577A1 JP 2019017266 W JP2019017266 W JP 2019017266W WO 2019208577 A1 WO2019208577 A1 WO 2019208577A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
heat dissipation
hole
metal material
thermal conductivity
Prior art date
Application number
PCT/JP2019/017266
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 冨田
久樹 増田
敏晴 小森
憲正 上田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/050,643 priority Critical patent/US20210066159A1/en
Priority to JP2020515490A priority patent/JPWO2019208577A1/en
Priority to CN201980027628.1A priority patent/CN112005366A/en
Publication of WO2019208577A1 publication Critical patent/WO2019208577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials

Definitions

  • the present invention relates to a heat dissipation board on which a semiconductor element is mounted and an electronic device using the same.
  • a heat dissipating board in which a metal body including a material having high thermal conductivity is fitted into a part of the substrate on which a semiconductor element or the like is mounted to improve the heat dissipating property (special feature). (See Kaikai 2018-18976).
  • the heat dissipation substrate includes a substrate, a first part, a second part, a third part, and a bonding material.
  • the substrate has at least one through hole and includes a metal material.
  • the first part is located in the through hole, has a thermal conductivity higher than that of the substrate, and includes a metal material.
  • the second part is located on the upper surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material.
  • the third part is located on the lower surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material.
  • the bonding material is located between the substrate and the second part and between the substrate and the third part.
  • the first part is at least partially continuous with the second part and the third part via the bonding material.
  • the heat dissipation board includes a substrate, a first part, a second part, and a third part.
  • the substrate has at least one through hole and includes a metal material.
  • the first part is located in the through hole and includes a metal material having a thermal conductivity higher than that of the substrate.
  • the second part is located on the upper surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material.
  • the third part is located on the lower surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material.
  • the first part and the second part, and the first part and the third part are at least partially continuous, and are bonded between the substrate and the second part and between the substrate and the third part, respectively. Has a layer.
  • FIG. 1 is a cross-sectional view showing a part of a heat dissipation board according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a heat dissipation board according to an embodiment of the present invention.
  • FIG. 3 is an exploded plan view showing a heat dissipation board according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing a heat dissipation board according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an electronic device according to an embodiment of the present invention.
  • FIG. 6 is a side view showing a heat dissipation board according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a part of a heat dissipation board according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a heat dissipation board according to an embodiment of the present invention.
  • FIG. 3
  • FIG. 7 is a cross-sectional view showing a part of a heat dissipation board according to another embodiment of the present invention.
  • FIG. 8 is an exploded perspective view showing a heat dissipation board according to another embodiment of the present invention.
  • FIG. 9 is a perspective view showing an electronic device according to an embodiment of the present invention.
  • FIG. 10 is a perspective view showing an electronic device according to an embodiment of the present invention.
  • the heat dissipation substrate 1 according to the embodiment of the present invention includes a substrate 2, a first part 3, a second part 4, and a third part 5.
  • the heat dissipation substrate 1 according to the embodiment of the present invention includes the bonding material 6 or the bonding layer 7.
  • the frame body 9 and the input / output terminal 10 may be provided.
  • the substrate 2 has a through hole 21, and the first portion 3 is fitted into the through hole 21.
  • substrate 2 in one Embodiment of this invention is rectangular shape, for example.
  • the substrate 2 is made of, for example, a metal material.
  • An example of the metal material is molybdenum.
  • the thermal expansion coefficient of the substrate 2 is about 5 ⁇ 10 ⁇ 6 / K.
  • iron, nickel, chromium, cobalt, tungsten, or an alloy made of these metals can be used.
  • substrate 2 is producible by giving metal processing methods, such as a rolling method and a punching method, to such an ingot of a metal material.
  • the substrate 2 has a through hole 21 at a position overlapping an area where an electronic component described later is mounted.
  • the substrate 2 has a rectangular shape, and its size is, for example, 5 mm ⁇ 5 mm to 40 mm ⁇ 40 mm.
  • the through hole 21 has, for example, a circular shape in plan view.
  • the size of the through hole 21 is, for example, ⁇ 0.5 mm to 5 mm in plan view.
  • the thickness is 0.1 mm to 3 mm.
  • the through hole 21 may be 1 to 20% of the area of the substrate 2 in plan view. If it is 2% or more, the heat dissipation can be further improved, and if it is 20% or less, the deformation of the substrate 2 can be reduced.
  • the first part 3 is fitted in the through hole 21 of the substrate 2. Since the first part 3 is fitted into the through hole 21, the first part 3 has an outer shape smaller than at least the through hole 21. At this time, the first part 3 is smaller than the through hole 21 because the first part 3 and the through hole 21 are substantially the same size, the through hole 21 is larger, and the gap is filled with the bonding material. included. Therefore, for example, when the first part 3 is circular in plan view, the first part 3 has a diameter of 0.5 mm to 5 mm, and the first part 3 has a thickness of 0.1 mm to 3 mm. The first part 3 has a lower surface that coincides with the lower surface of the substrate 2. Alternatively, the first part 3 may protrude at least from the lower surface of the substrate 2.
  • the first part 3 contains, for example, copper. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 ⁇ 10 ⁇ 6 / K.
  • the first part 3 may be a metal material having excellent heat dissipation, such as copper. For example, an alloy made of copper and tungsten or molybdenum can be used. In this case, the first part 3 has, for example, a thermal expansion coefficient of 10 ⁇ 10 ⁇ 6 / K to 20 ⁇ 10 ⁇ 6 / K.
  • the first part 3 Since the first part 3 is positioned so as to overlap the mounting area, heat generated from the electronic component 12 mounted in the mounting area is transferred to the first part 3 via the second part, and further, the first part 3 It plays a role of radiating heat from the electronic component 12 to the outside of the heat radiating board 1 through the heat sink.
  • a plurality of through holes 21 and first parts 3 may be arranged below the electronic component 12.
  • the sizes of the through hole 21 and the first part 3 can be freely designed according to the size of the electronic component, the processing of the substrate 2 is facilitated, and the productivity can be improved.
  • the second part 4 is located on the upper surfaces of the substrate 2 and the first part 3.
  • the second part 4 is, for example, the same size as the substrate 2 in a plan view, and is 5 mm ⁇ 5 mm to 40 mm ⁇ 40 mm in the plan view, and the second part 4 has a thickness of 0.1 mm to 3 mm.
  • the 2nd part 4 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 ⁇ 10 ⁇ 6 / K. Moreover, the 2nd part 4 should just be a metal material excellent in heat dissipation like copper. For example, an alloy made of copper and tungsten or molybdenum can be used. In this case, the second part 4 has, for example, a thermal expansion coefficient of 10 ⁇ 10 ⁇ 6 / K to 20 ⁇ 10 ⁇ 6 / K. Since the second part 4 is positioned so as to overlap the mounting area, heat generated from the electronic component 12 mounted in the mounting area is transferred to the first part 3 via the second part 4.
  • the third part 5 is located on the lower surface of the substrate 2 and the first part 3.
  • the third part 5 is, for example, the same size as the substrate 2 in plan view, and is 5 mm ⁇ 5 mm to 40 mm ⁇ 40 mm in plan view, and the third part 5 has a thickness of 0.1 mm to 3 mm.
  • the 3rd part 5 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 ⁇ 10 ⁇ 6 / K. Moreover, the 3rd part 5 should just be a metal material excellent in heat dissipation like copper. For example, an alloy made of copper and tungsten or molybdenum can be used. In this case, for example, the third part 5 has a thermal expansion coefficient of 10 ⁇ 10 ⁇ 6 / K to 20 ⁇ 10 ⁇ 6 / K. Since the third part 5 is positioned so as to overlap the mounting area, heat generated from the electronic component 12 mounted in the mounting area is transferred to the third part 5 via the second part 4 and the first part 3. The At this time, the thickness of the third part 5 may be the same as the thickness of the second part 4 or may be thinner than the thickness of the second part 4.
  • first part 3, the second part 4, and the third part 5 may be made of the same material.
  • productivity of the heat dissipation substrate 1 is improved, which is economically advantageous.
  • thermal expansion coefficients of the second part 4 and the third part 5 are the same, there is a possibility that warpage of the heat dissipation substrate 1 due to heat generation can be reduced.
  • a substrate made of copper simply increases the thermal stress with the electronic component, and a substrate made of a material with a low coefficient of thermal expansion to reduce the thermal stress may not be able to dissipate the heat generated from the electronic component and may cause problems. .
  • the use of materials having different thermal expansion coefficients as described above can also reduce problems that may occur in electronic components.
  • the mounting region of the second part 4 on which the electronic component 12 is mounted is coupled to the first part and the third part having higher thermal conductivity than the substrate 2 so as to overlap in the vertical direction. Therefore, the heat generated from the electronic component 12 can be easily radiated to the outside without being blocked by the substrate 2. As a result, the reliability of the electronic component can be improved.
  • a bonding layer 7 may be provided between the first part 3 and the substrate 2 and the second part 4 and between the first part 3 and the substrate 2 and the third part 5.
  • This is an alloy layer formed when a chemical reaction is caused by thermocompression bonding.
  • the bonding of the substrate 2, the first part 3, and the second part 4 can be strengthened and the durability of the heat dissipation substrate 1 can be improved, while the second part, the first part, The heat dissipation in the vertical direction of the third part can be further improved.
  • a bonding material 6 may be provided between the first part 3 and the substrate 2 and the second part 4 and between the first part 3 and the substrate 2 and the third part 5.
  • the bonding material is, for example, a brazing material such as silver brazing, and the first portion 3 and the substrate 2, the second portion 4, the first portion 3 and the substrate 2, and the third portion 5 are bonded by the brazing material.
  • the plating layer 8 may be provided on the surface of the substrate 2 including the inner surface of the through hole 21 as shown in FIG.
  • the plating layer 8 is, for example, nickel.
  • the first part 3, the second part 4, and the third part 5 are preferably at least partially continuous via the bonding material 6 or the bonding layer 7. Thereby, a heat path can be secured.
  • the first part 3, the second part 4, and the third part 5 may all be continuous via the bonding material 6 or the bonding layer 7. In this case, heat dissipation is further improved as compared with a case where a part of the heat is continuous.
  • at least a part of the first part 3, the second part 4, and the third part 5 may be continuous. Thereby, a heat path can be secured.
  • the fourth part 15 and the fifth part 16 may all be continuous via the bonding material 6 or the bonding layer 7, and the first part 3, the second part 4 and the third part 5 are joined together. All may be continuous through the material 6 or the bonding layer 7. In this case, heat dissipation is further improved as compared with a case where a part of the heat is continuous.
  • the heat dissipation board 1 in another embodiment of the present invention further includes a second substrate 13, a fourth part 15, and a fifth part 16 on the upper surface of the second part 4 or the lower surface of the third part. You may do it. That is, the heat dissipation substrate may have a five-layer structure.
  • the second substrate 13 has a rectangular shape, for example.
  • the second substrate 13 is made of, for example, a metal material.
  • An example of the metal material is molybdenum.
  • the thermal expansion coefficient of the second substrate 13 is about 5 ⁇ 10 ⁇ 6 / K.
  • iron, nickel, chromium, cobalt, tungsten, or an alloy made of these metals can be used.
  • a metal processing method such as a rolling method or a punching method to such an ingot of a metal material, a metal member constituting the second substrate 13 can be manufactured. That is, the same shape and the same material as the substrate 2 may be used.
  • the second substrate 13 has a second through hole 14 at a position overlapping with a region where the electronic component is mounted.
  • the second through hole 14 has, for example, a circular shape or a plan view.
  • the size of the second through hole 14 is, for example, ⁇ 0.5 mm to 5 mm in plan view.
  • the thickness is 0.1 mm to 3 mm.
  • the fourth part 15 is fitted in the second through hole 14 of the second substrate 13. Since the fourth portion 15 is fitted into the second through hole 14, the fourth portion 15 has an outer shape smaller than at least the second through hole 14. At this time, the fourth portion 15 is smaller than the second through-hole 14 because the fourth through-hole 14 is larger than the second through-hole 14 because the fourth portion 15 and the second through-hole 14 are substantially the same size. It includes even those filled with bonding material. Therefore, for example, when the fourth portion 15 has a circular shape in plan view, the fourth portion 15 has a diameter of 0.5 mm to 5 mm, and the fourth portion 15 has a thickness of 0.1 mm to 3 mm. The lower surface of the fourth portion 15 coincides with the lower surface of the second substrate 13. Alternatively, the fourth portion 15 may protrude at least from the lower surface of the second substrate 13.
  • the 4th part 15 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 ⁇ 10 ⁇ 6 / K.
  • the fourth portion 15 may be a metal material having excellent heat dissipation, such as copper. For example, an alloy made of copper and tungsten or molybdenum can be used.
  • the fourth portion 15 has a thermal expansion coefficient of 10 ⁇ 10 ⁇ 6 / K to 20 ⁇ 10 ⁇ 6 / K. That is, the fourth part 15 may have the same shape and the same material as the first part 3.
  • the fifth part 16 is located on the upper surface or the lower surface of the second substrate 13.
  • the fifth portion 16 is, for example, the same size as the substrate 2 in a plan view, and is 5 mm ⁇ 5 mm to 40 mm ⁇ 40 mm in the plan view, and the fifth portion 16 has a thickness of 0.5 mm to 3 mm.
  • the electronic component 12 is mounted on the upper surface of the fifth part.
  • the 5th part 16 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 ⁇ 10 ⁇ 6 / K.
  • the fifth portion 16 may be a metal material having excellent heat dissipation, such as copper. For example, an alloy made of copper and tungsten or molybdenum can be used.
  • the fifth part 16 has, for example, a thermal expansion coefficient of 10 ⁇ 10 ⁇ 6 / K to 20 ⁇ 10 ⁇ 6 / K. That is, the fifth portion 16 may have the same shape and the same material as the second portion 4 or the third portion 5.
  • the second substrate and the fourth and fifth portions may be alternately stacked on the heat dissipation substrate, and the number of layers of the heat dissipation substrate may be further increased to 7 layers and 9 layers. In this case, the durability of the heat dissipation substrate improves as the number of layers increases.
  • the frame body 9 may be located on the upper surface of the heat dissipation substrate 1. Further, the input / output terminal 10 may be bonded and fixed to the frame body 9. At this time, the 1st part 3 is circular, for example, and exists in the position which does not overlap with the frame 9.
  • the input / output terminal 10 is provided on the frame 9 in the long side direction of the heat dissipation board 1. Since the first part 3 and the frame body 9 do not overlap, the stress caused by the difference in thermal expansion coefficient acting between the heat dissipation substrate 1, the frame body 9 and the input / output terminal 10 can be reduced. As a result, the heat dissipation substrate 1 can suppress cracks and cracks generated in the frame body 9 and suppress the occurrence of defects in the electronic device 20.
  • the electronic device 20 in one embodiment of the present invention includes a heat dissipation substrate 1, a frame body 9, an input / output terminal 10, and an electronic component 12.
  • the frame body 9 is positioned so as to surround the mounting area of the heat dissipation board 1 and is joined to the upper surface of the heat dissipation board 1.
  • the frame body 9 has a rectangular outer edge and inner edge in plan view, and is constituted by four side walls.
  • the frame body 9 is bonded to the upper surface of the heat dissipation substrate 1 via a bonding material such as silver solder.
  • the frame body 9 has an outer edge size in a plan view of, for example, 5 mm ⁇ 5 mm to 40 mm ⁇ 40 mm, and an inner edge size of 4 mm ⁇ 4 mm to 35 mm ⁇ 35 mm.
  • the thickness of the frame body 9 indicated by the width between the outer edge and the inner edge is, for example, 1 mm to 5 mm.
  • the height of the frame body 9 is 1 mm to 10 mm.
  • a ceramic material can be used as the frame body 9.
  • the ceramic material include an aluminum oxide sintered body and an aluminum nitride sintered body.
  • a resin material an epoxy resin etc. are used.
  • a metal material can be used as the metal material.
  • a metal material such as iron, copper, nickel, chromium, cobalt, molybdenum, and tungsten, or an alloy made of these metal materials can be used.
  • an input / output terminal 10 may be attached to the frame body 9.
  • the input / output terminals may be provided by being bonded to the upper surface of the frame body 9 by a bonding material such as gold-tin solder or a resin bonding material.
  • the input / output terminal 10 is electrically connected to an electronic component 12 mounted in the mounting region via a bonding wire or the like, and is electrically connected to an external mounting board, circuit board, power supply, or the like.
  • the input / output terminal 10 is made of, for example, an alloy made of iron, nickel, cobalt, an alloy made of iron, nickel, or the like.
  • the end portion of the first portion 3 and the frame body 9 do not have to overlap in a plan view. Since the end portion of the first portion 3 does not overlap the frame body 9, when the manufacturing process of the heat dissipation substrate 1 and the electronic device 20 are operated, the substrate 2 and the frame body 9 in the vicinity of the end portion of the first portion 3 It is possible to suppress stress generated in the joint portion. That is, in the plan view of the heat radiating substrate 1, the positions of the bonding portion between the substrate 2 and the frame body 9 and the bonding portion between the substrate 2 and the first portion 3 do not overlap with each other.
  • the heat dissipation substrate 1 can suppress cracks and cracks that occur at the joint between the end surfaces of the substrate 2 and the first portion 3.
  • the input / output terminal 10 may be positioned by being inserted and fixed in a notch provided in the center of the side surface of the frame body 9 in plan view.
  • the input / output terminal 10 is, for example, a lead terminal made of a metal material, and has a smaller thermal expansion coefficient than the metal having good thermal conductivity used for the first portion 3. For this reason, when the heat dissipation substrate 1, the frame body 9, and the input / output terminal 10 are joined, thermal stress is generated due to the difference in thermal expansion coefficient between them, and a load due to the thermal stress is applied to the frame body 9. On the other hand, by reducing at least the thermal expansion of the heat dissipation board 1, the load due to the thermal stress on the frame body 9 can be reduced.
  • the end of the first portion 3 and the frame body 9 do not have to overlap in plan view.
  • the end portion of the first portion 3 and the frame body 9 may overlap in a plan view. Since the first part 3 overlaps with the frame body 9, the heat generated in the electronic component 12 can be released to the outside through the frame body 9 as well as the substrate 2 and the external mounting substrate.
  • the shape of the end portion of the first portion 3 and the end portion of the through hole 21 may be a curved surface protruding outward in a plan view.
  • the heat dissipation substrate 1 is a joint portion between the substrate 2 and the end portion of the first portion 3 when the manufacturing process of the heat dissipation substrate 1 and the electronic device 20 are operated. It is possible to suppress the thermal stress generated in Moreover, it can suppress that a thermal stress arises locally.
  • the first part 3 and the substrate 2 are thermally expanded by this heat.
  • the first part 3 has a larger thermal expansion coefficient than that of the substrate 2, and therefore may contact the inner surface of the through hole 21 of the substrate 2. In this case, if the end of the first part 3 and the end of the through hole 21 are curved, it is possible to suppress the occurrence of cracks at the end of the first part 3 and the end of the through hole 21. .
  • the heat dissipation substrate 1 can suppress cracks and cracks generated at the joint between the end surface of the substrate 2 and the first portion 3. That is, it is possible not only to suppress the warpage of the substrate 2 while improving the heat dissipation, but also to prevent the first part 3 and the substrate 2 from cracking.
  • the substrate 2 is made of a metal material
  • the substrate 2 is made of molybdenum
  • the central portion of the substrate 2 has a rectangular shape whose long side is parallel to the long side direction of the first portion 3 in a sectional view.
  • the through hole 21 is provided, and the first portion 3 is fitted into the through hole 21.
  • the inner peripheral surface of the through-hole 21 and the side surface of the first part 3 facing the inner peripheral surface are joined by brazing or pressing from the upper and lower surface directions.
  • the first part 3 is made of copper, for example, of a metal material.
  • the side surface of the first part 3 and the inner periphery of the through hole 21 are used. It is formed so as to provide a gap that can be joined to the surface with a joining material such as a brazing material.
  • the second part 4 and the third part 5 are prepared.
  • the 2nd part 4 and the 3rd part 5 consist of copper, for example, it shape
  • substrate 2 which joined the 1st part 3 is laminated
  • joining materials such as thermocompression bonding or a brazing material.
  • the third part 5 are joined together.
  • the frame body 9 is made of, for example, an aluminum oxide sintered body
  • a solvent is added to alumina powder to which an appropriate amount of a sintering aid such as magnesia, silica, calcia is added, and the mixture is sufficiently kneaded and defoamed.
  • a sintering aid such as magnesia, silica, calcia
  • make a slurry Thereafter, a roll-shaped ceramic green sheet is formed by a doctor blade method or the like and cut into an appropriate size.
  • a signal line such as a wiring pattern to which the input / output terminal 10 is connected and fixed is cut on a ceramic green sheet produced by cutting. Thereafter, it is formed by firing in a reducing atmosphere at about 1600 ° C. At this time, a plurality of ceramic green sheets may be laminated before firing.
  • the input / output terminal 10 is bonded to the upper surface by a brazing material or the like, and the frame 9 is bonded to the upper surface of the heat dissipation substrate 1 by gold-tin solder or the like so as to surround the mounting region.
  • the substrate 2 and the second substrate 13 are made of a ceramic material
  • the same material as that of the frame body 9 may be used.
  • the substrate 2 and the second substrate 13 are made of an aluminum oxide sintered body, magnesia, silica, calcia, or the like can be used.
  • a solvent is added to the alumina powder to which an appropriate amount of sintering aid is added, and the mixture is sufficiently kneaded and defoamed to prepare a slurry.
  • a roll-shaped ceramic green sheet is formed by a doctor blade method or the like and cut into an appropriate size.
  • the ceramic green sheet produced by cutting is fired in a reducing atmosphere at about 1600 ° C. to form. At this time, a plurality of ceramic green sheets may be laminated before firing.
  • the heat dissipation substrate 1 according to the embodiment of the present invention can be manufactured.
  • the process order mentioned above is not designated.
  • an electronic device 20 according to an embodiment of the present invention includes a heat dissipation board 1, a frame body 9, an input / output terminal 10, and a heat dissipation board 1 represented by the above-described embodiment. And an electronic component 12 mounted in the mounting area.
  • the electronic component 12 is mounted in the mounting region of the heat dissipation board 1.
  • the electronic component 12 is electrically connected to the signal line of the input / output terminal 10 via a bonding wire or the like.
  • a desired input / output can be obtained from the electronic component 12 by inputting / outputting an external signal to / from the electronic component 12 via a signal line or the like.
  • Examples of the electronic component 12 include a semiconductor device for a power device in addition to an IC or an LSI. Then, a lid or the like is attached to the upper surface of the frame body 9. The electronic component 12 is sealed in a space surrounded by the heat dissipation substrate 1, the frame body 9, and the lid. By sealing the electronic component 12 in this way, deterioration of the electronic component 12 due to external factors such as humidity can be suppressed.
  • a metal member such as iron, copper, nickel, chromium, cobalt and tungsten, or an alloy made of these metals can be used.
  • the frame body 9 and the lid body can be joined by, for example, a seam welding method. Further, the frame body 9 and the lid body may be joined using, for example, gold-tin solder.
  • thermal radiation board 1 of each embodiment and the electronic apparatus 20 provided with this have been demonstrated, this invention is not limited to the above-mentioned embodiment. In other words, various modifications and combinations of embodiments may be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A heat dissipation substrate according to one embodiment of the present invention is provided with a substrate, a first part, a second part, a third part and bonding materials. The substrate has at least one through hole, and contains a metal material. The first part is positioned in the through hole, and has a thermal conductivity that is higher than the thermal conductivity of the substrate, while containing a metal material. The second part is positioned on the upper surface of the substrate, and has a thermal conductivity that is higher than the thermal conductivity of the substrate, while containing a metal material. The third part is positioned on the lower surface of the substrate, and has a thermal conductivity that is higher than the thermal conductivity of the substrate, while containing a metal material. The bonding materials are respectively positioned between the substrate and the second part and between the substrate and the third part. The first part is at least partially continued to the second part and the third part, with the bonding materials or bonding layers being interposed therebetween.

Description

放熱基板および電子装置Heat dissipation board and electronic device
 本発明は、半導体素子が実装される放熱基板およびこれを用いた電子装置に関する。 The present invention relates to a heat dissipation board on which a semiconductor element is mounted and an electronic device using the same.
 近年、高周波の信号で作動する半導体素子等の電子部品を収容する半導体パッケージが知られている。このような半導体素子等は、作動する際に熱が生じる。この熱を外部に放熱させるために、半導体素子等を実装する基板の一部により熱伝導率の高い材料を含む金属体を嵌め込んで放熱性を向上させた放熱基板が開示されている(特開2018-18976号公報参照)。 In recent years, semiconductor packages containing electronic components such as semiconductor elements that operate with high-frequency signals are known. Such a semiconductor element or the like generates heat when operating. In order to dissipate this heat to the outside, a heat dissipating board is disclosed in which a metal body including a material having high thermal conductivity is fitted into a part of the substrate on which a semiconductor element or the like is mounted to improve the heat dissipating property (special feature). (See Kaikai 2018-18976).
 特開2018-18976号公報では、金属体の一部が溶融されて接合され、放熱基板が形成されている。このとき、放熱基板と実装される電子部品との熱膨張差の低減を図っている。しかしながら、特許文献1では、溶融させる熱によって基板が変形するおそれがあった。 In Japanese Patent Application Laid-Open No. 2018-18976, a part of a metal body is melted and joined to form a heat dissipation substrate. At this time, the thermal expansion difference between the heat dissipation board and the mounted electronic component is reduced. However, in Patent Document 1, the substrate may be deformed by heat to be melted.
 本発明の一実施形態に係る放熱基板は、基板と、第1部と、第2部と、第3部と、接合材とを備えている。基板は、少なくとも1つの貫通孔を有するとともに、金属材料を含む。第1部は、貫通孔に位置するとともに、基板の熱膨張率よりも熱伝導率が高く、金属材料を含む。第2部は、基板の上面に位置するとともに、基板の熱膨張率よりも熱伝導率が高く、金属材料を含む。第3部は、基板の下面に位置するとともに、基板の熱膨張率よりも熱伝導率が高く、金属材料を含む。接合材は、基板と第2部との間および基板と第3部との間のそれぞれに位置している。第1部は、第2部および第3部と、接合材を介して少なくとも一部が連続している。 The heat dissipation substrate according to an embodiment of the present invention includes a substrate, a first part, a second part, a third part, and a bonding material. The substrate has at least one through hole and includes a metal material. The first part is located in the through hole, has a thermal conductivity higher than that of the substrate, and includes a metal material. The second part is located on the upper surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material. The third part is located on the lower surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material. The bonding material is located between the substrate and the second part and between the substrate and the third part. The first part is at least partially continuous with the second part and the third part via the bonding material.
 本発明の一実施形態に係る放熱基板は、基板と、第1部と、第2部と、第3部とを備えている。基板は、少なくとも1つの貫通孔を有するとともに、金属材料を含む。第1部は、貫通孔に位置するとともに、基板の熱膨張率よりも熱伝導率が高く金属材料を含む。第2部は、基板の上面に位置するとともに、基板の熱膨張率よりも熱伝導率が高く、金属材料を含む。第3部は、基板の下面に位置するとともに、基板の熱膨張率よりも熱伝導率が高く、金属材料を含む。第1部と第2部および第1部と第3部とは、少なくとも一部が連続しており、基板と第2部との間および基板と第3部との間のそれぞれには、接合層を有している。 The heat dissipation board according to an embodiment of the present invention includes a substrate, a first part, a second part, and a third part. The substrate has at least one through hole and includes a metal material. The first part is located in the through hole and includes a metal material having a thermal conductivity higher than that of the substrate. The second part is located on the upper surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material. The third part is located on the lower surface of the substrate, has a thermal conductivity higher than that of the substrate, and includes a metal material. The first part and the second part, and the first part and the third part are at least partially continuous, and are bonded between the substrate and the second part and between the substrate and the third part, respectively. Has a layer.
本発明の一実施形態に係る放熱基板の一部を示す断面図である。It is sectional drawing which shows a part of heat dissipation board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放熱基板を示す断面図である。It is sectional drawing which shows the thermal radiation board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放熱基板を示す分解平面図である。It is a disassembled plan view which shows the thermal radiation board | substrate which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放熱基板を示す分解斜視図である。It is a disassembled perspective view which shows the thermal radiation board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子装置を示す断面図である。It is sectional drawing which shows the electronic device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る放熱基板を示す側面図である。It is a side view which shows the thermal radiation board | substrate which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る放熱基板の一部を示す断面図である。It is sectional drawing which shows a part of heat dissipation board which concerns on other embodiment of this invention. 本発明の他の実施形態に係る放熱基板を示す分解斜視図である。It is a disassembled perspective view which shows the thermal radiation board | substrate which concerns on other embodiment of this invention. 本発明の一実施形態に係る電子装置を示す斜視図である。It is a perspective view showing an electronic device concerning one embodiment of the present invention. 本発明の一実施形態に係る電子装置を示す斜視図である。It is a perspective view showing an electronic device concerning one embodiment of the present invention.
 以下、各実施形態の半導体パッケージおよびこれを備えた電子装置について、図面を用いて詳細に説明する。 Hereinafter, the semiconductor package of each embodiment and the electronic device including the semiconductor package will be described in detail with reference to the drawings.
  <放熱基板の構成>
 図1は本発明の一実施形態に係る放熱基板の一部を示す断面図である。図2は、本発明の一実施形態に係る放熱基板を示す断面図である。図3は、本発明の一実施形態に係る放熱基板を示す分解平面図である。図4は、本発明の一実施形態に係る放熱基板を示す分解斜視図である。図5は、本発明の一実施形態に係る電子装置を示す断面図である。図6は、本発明の一実施形態に係る放熱基板を示す側面図である。図7は、本発明の他の実施形態に係る放熱基板の一部を示す断面図である。図8は、本発明の他の実施形態に係る放熱基板を示す分解斜視図である。図9は、本発明の一実施形態に係る電子装置を示す斜視図である。図10は、本発明の一実施形態に係る電子装置を示す斜視図である。これらの図において、本発明の実施形態に係る放熱基板1は、基板2と、第1部3と、第2部4と、第3部5とを備えている。また、本発明の一実施形態に係る放熱基板1では、接合材6または接合層7を有している。また、枠体9と、入出力端子10とを備えていてもよい。基板2は、貫通孔21を有しており、この貫通孔21に第1部3が嵌め込まれている。
<Configuration of heat dissipation board>
FIG. 1 is a cross-sectional view showing a part of a heat dissipation board according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a heat dissipation board according to an embodiment of the present invention. FIG. 3 is an exploded plan view showing a heat dissipation board according to an embodiment of the present invention. FIG. 4 is an exploded perspective view showing a heat dissipation board according to an embodiment of the present invention. FIG. 5 is a cross-sectional view showing an electronic device according to an embodiment of the present invention. FIG. 6 is a side view showing a heat dissipation board according to an embodiment of the present invention. FIG. 7 is a cross-sectional view showing a part of a heat dissipation board according to another embodiment of the present invention. FIG. 8 is an exploded perspective view showing a heat dissipation board according to another embodiment of the present invention. FIG. 9 is a perspective view showing an electronic device according to an embodiment of the present invention. FIG. 10 is a perspective view showing an electronic device according to an embodiment of the present invention. In these drawings, the heat dissipation substrate 1 according to the embodiment of the present invention includes a substrate 2, a first part 3, a second part 4, and a third part 5. In addition, the heat dissipation substrate 1 according to the embodiment of the present invention includes the bonding material 6 or the bonding layer 7. Moreover, the frame body 9 and the input / output terminal 10 may be provided. The substrate 2 has a through hole 21, and the first portion 3 is fitted into the through hole 21.
 図3に示すように、本発明の一実施形態における基板2は、例えば矩形状である。また基板2は、例えば金属材料から成る。金属材料としては、例えばモリブデンである。このとき、基板2の熱膨張係数は5×10-6/K程度である。また、鉄、ニッケル、クロム、コバルトおよびタングステン、あるいはこれらの金属からなる合金を用いることができる。このような金属材料のインゴットに圧延加工法、打ち抜き加工法のような金属加工法を施すことによって基板2を構成する金属部材を作製することができる。 As shown in FIG. 3, the board | substrate 2 in one Embodiment of this invention is rectangular shape, for example. The substrate 2 is made of, for example, a metal material. An example of the metal material is molybdenum. At this time, the thermal expansion coefficient of the substrate 2 is about 5 × 10 −6 / K. Further, iron, nickel, chromium, cobalt, tungsten, or an alloy made of these metals can be used. The metal member which comprises the board | substrate 2 is producible by giving metal processing methods, such as a rolling method and a punching method, to such an ingot of a metal material.
 基板2は、後述する電子部品が実装される領域と重なる位置に貫通孔21を有している。基板2は矩形状であり、その大きさは例えば5mm×5mm~40mm×40mmである。貫通孔21は、平面視において例えば円形状である。貫通孔21の大きさは、たとえば平面視においてφ0.5mm~5mmである。また、厚さは0.1mm~3mmである。貫通孔21は、平面視において基板2の面積に対して、1~20%であってもよい。2%以上あれば、より放熱性を向上させることができ、20%以下であれば、基板2の変形を低減させることができる。 The substrate 2 has a through hole 21 at a position overlapping an area where an electronic component described later is mounted. The substrate 2 has a rectangular shape, and its size is, for example, 5 mm × 5 mm to 40 mm × 40 mm. The through hole 21 has, for example, a circular shape in plan view. The size of the through hole 21 is, for example, φ0.5 mm to 5 mm in plan view. The thickness is 0.1 mm to 3 mm. The through hole 21 may be 1 to 20% of the area of the substrate 2 in plan view. If it is 2% or more, the heat dissipation can be further improved, and if it is 20% or less, the deformation of the substrate 2 can be reduced.
 図1に示すように、第1部3は、基板2の貫通孔21に嵌め込まれている。第1部3は、貫通孔21に嵌め込まれることから、少なくとも貫通孔21よりも小さい外形である。このとき、第1部3が貫通孔21よりも小さいというのは、第1部3と貫通孔21がほぼ同じ寸法のものから、貫通孔21の方が大きく、隙間を接合材で埋めるものまで含まれる。このため、第1部3は、たとえば平面視において円形状である場合、φ0.5mm~5mmであり、また、第1部3は、厚さが0.1mm~3mmである。第1部3は、下面が基板2の下面と一致している。または、第1部3は、基板2の下面より少なくとも突出していてもよい。 As shown in FIG. 1, the first part 3 is fitted in the through hole 21 of the substrate 2. Since the first part 3 is fitted into the through hole 21, the first part 3 has an outer shape smaller than at least the through hole 21. At this time, the first part 3 is smaller than the through hole 21 because the first part 3 and the through hole 21 are substantially the same size, the through hole 21 is larger, and the gap is filled with the bonding material. included. Therefore, for example, when the first part 3 is circular in plan view, the first part 3 has a diameter of 0.5 mm to 5 mm, and the first part 3 has a thickness of 0.1 mm to 3 mm. The first part 3 has a lower surface that coincides with the lower surface of the substrate 2. Alternatively, the first part 3 may protrude at least from the lower surface of the substrate 2.
 また、第1部3は、たとえば銅を含んでいる。また、銅から成っていてもよい。このとき、基板2の熱膨張係数は16×10-6/K程度である。また、第1部3は、銅のように、放熱性に優れた金属材料であれば構わない。たとえば、銅とタングステンまたはモリブデンからなる合金を用いることができる。この場合第1部3は、たとえば熱膨張係数が10×10-6/K~20×10-6/Kである。第1部3は、実装領域と重なって位置していることにより、実装領域に実装される電子部品12から生じる熱が第2部を介して第1部3に伝達され、さらに第1部3を介して電子部品12からの熱を放熱基板1の外部に放熱する役割を果たす。 The first part 3 contains, for example, copper. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 × 10 −6 / K. The first part 3 may be a metal material having excellent heat dissipation, such as copper. For example, an alloy made of copper and tungsten or molybdenum can be used. In this case, the first part 3 has, for example, a thermal expansion coefficient of 10 × 10 −6 / K to 20 × 10 −6 / K. Since the first part 3 is positioned so as to overlap the mounting area, heat generated from the electronic component 12 mounted in the mounting area is transferred to the first part 3 via the second part, and further, the first part 3 It plays a role of radiating heat from the electronic component 12 to the outside of the heat radiating board 1 through the heat sink.
 また、貫通孔21および第1部3は電子部品12の下方に複数配置されておいてもよい。複数配置する場合は、電子部品の大きさによって、貫通孔21および第1部3の大きさを自由に設計することができ、基板2の加工が容易となり、生産性を向上させることができる。 Moreover, a plurality of through holes 21 and first parts 3 may be arranged below the electronic component 12. In the case of arranging a plurality, the sizes of the through hole 21 and the first part 3 can be freely designed according to the size of the electronic component, the processing of the substrate 2 is facilitated, and the productivity can be improved.
 図2に示すように、第2部4は、基板2および第1部3の上面に位置している。このとき、第2部4は、たとえば平面視において基板2と同じ大きさであり、平面視において5mm×5mm~40mm×40mmであり、また、第2部4は、厚さが0.1mm~3mmである。 As shown in FIG. 2, the second part 4 is located on the upper surfaces of the substrate 2 and the first part 3. At this time, the second part 4 is, for example, the same size as the substrate 2 in a plan view, and is 5 mm × 5 mm to 40 mm × 40 mm in the plan view, and the second part 4 has a thickness of 0.1 mm to 3 mm.
 また、第2部4は、たとえば銅を含んでいる。また、銅から成っていてもよい。このとき、基板2の熱膨張係数は16×10-6/K程度である。また、第2部4は、銅のように、放熱性に優れた金属材料であれば構わない。たとえば、銅とタングステンまたはモリブデンからなる合金を用いることができる。この場合第2部4は、たとえば熱膨張係数が10×10-6/K~20×10-6/Kである。第2部4は、実装領域と重なって位置していることにより、実装領域に実装される電子部品12から生じる熱が第2部4を介して第1部3に伝達される。 Moreover, the 2nd part 4 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 × 10 −6 / K. Moreover, the 2nd part 4 should just be a metal material excellent in heat dissipation like copper. For example, an alloy made of copper and tungsten or molybdenum can be used. In this case, the second part 4 has, for example, a thermal expansion coefficient of 10 × 10 −6 / K to 20 × 10 −6 / K. Since the second part 4 is positioned so as to overlap the mounting area, heat generated from the electronic component 12 mounted in the mounting area is transferred to the first part 3 via the second part 4.
 図2に示すように、第3部5は、基板2および第1部3の下面に位置している。このとき、第3部5は、たとえば平面視において基板2と同じ大きさであり、平面視において5mm×5mm~40mm×40mmであり、また、第3部5は、厚さが0.1mm~3mmである。 As shown in FIG. 2, the third part 5 is located on the lower surface of the substrate 2 and the first part 3. At this time, the third part 5 is, for example, the same size as the substrate 2 in plan view, and is 5 mm × 5 mm to 40 mm × 40 mm in plan view, and the third part 5 has a thickness of 0.1 mm to 3 mm.
 また、第3部5は、たとえば銅を含んでいる。また、銅から成っていてもよい。このとき、基板2の熱膨張係数は16×10-6/K程度である。また、第3部5は、銅のように、放熱性に優れた金属材料であれば構わない。たとえば、銅とタングステンまたはモリブデンからなる合金を用いることができる。この場合第3部5は、たとえば熱膨張係数が10×10-6/K~20×10-6/Kである。第3部5は、実装領域と重なって位置していることにより、実装領域に実装される電子部品12から生じる熱が第2部4および第1部3を介して第3部5に伝達される。このとき、第3部5の厚みは、第2部4の厚みと同じであってもよいし、第2部4の厚みよりも薄くてもよい。 Moreover, the 3rd part 5 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 × 10 −6 / K. Moreover, the 3rd part 5 should just be a metal material excellent in heat dissipation like copper. For example, an alloy made of copper and tungsten or molybdenum can be used. In this case, for example, the third part 5 has a thermal expansion coefficient of 10 × 10 −6 / K to 20 × 10 −6 / K. Since the third part 5 is positioned so as to overlap the mounting area, heat generated from the electronic component 12 mounted in the mounting area is transferred to the third part 5 via the second part 4 and the first part 3. The At this time, the thickness of the third part 5 may be the same as the thickness of the second part 4 or may be thinner than the thickness of the second part 4.
 また、第1部3、第2部4、第3部5は同じ材料からなっていてよい。この場合、放熱基板1の生産性が向上し、経済的に有利となる。また、第2部4と第3部5の熱膨張係数が同じとなるため、発熱による放熱基板1の反りを低減できる可能性がある。単に銅から成る基板では電子部品との熱応力が大きくなり、熱応力を低減させるために熱膨張係数の小さい材料から成る基板では、電子部品から生じる熱を放熱できずに不具合を起こすおそれがある。このため、上述するように熱膨張係数が異なる材料を用いることで、電子部品に生じるおそれのある不具合も低減させることができる。 Further, the first part 3, the second part 4, and the third part 5 may be made of the same material. In this case, the productivity of the heat dissipation substrate 1 is improved, which is economically advantageous. In addition, since the thermal expansion coefficients of the second part 4 and the third part 5 are the same, there is a possibility that warpage of the heat dissipation substrate 1 due to heat generation can be reduced. A substrate made of copper simply increases the thermal stress with the electronic component, and a substrate made of a material with a low coefficient of thermal expansion to reduce the thermal stress may not be able to dissipate the heat generated from the electronic component and may cause problems. . For this reason, the use of materials having different thermal expansion coefficients as described above can also reduce problems that may occur in electronic components.
 これにより、図5に示すように、電子部品12が実装される第2部4の実装領域が、基板2よりも熱伝導率の高い第1部、第3部に鉛直方向に重なって結合されるため、電子部品12から生じる熱を基板2に遮られることなく、外部に放熱しやすくすることが可能となる。この結果、電子部品の信頼性を向上させることができる。 As a result, as shown in FIG. 5, the mounting region of the second part 4 on which the electronic component 12 is mounted is coupled to the first part and the third part having higher thermal conductivity than the substrate 2 so as to overlap in the vertical direction. Therefore, the heat generated from the electronic component 12 can be easily radiated to the outside without being blocked by the substrate 2. As a result, the reliability of the electronic component can be improved.
 また、第1部3および基板2と、第2部4との間ならびに、第1部3および基板2と、第3部5との間には、接合層7を有していてもよい。これは、熱圧着によって、化学反応を起こした際にできる合金層である。合金層が形成されることにより、基板2、第1部3、第2部4の結合がより強固となり放熱基板1の耐久性を向上させることができると同時に、第2部、第1部、第3部の鉛直方向の放熱性をより向上させることができる。 Further, a bonding layer 7 may be provided between the first part 3 and the substrate 2 and the second part 4 and between the first part 3 and the substrate 2 and the third part 5. This is an alloy layer formed when a chemical reaction is caused by thermocompression bonding. By forming the alloy layer, the bonding of the substrate 2, the first part 3, and the second part 4 can be strengthened and the durability of the heat dissipation substrate 1 can be improved, while the second part, the first part, The heat dissipation in the vertical direction of the third part can be further improved.
 また、第1部3および基板2と、第2部4との間ならびに、第1部3および基板2と、第3部5との間には、接合材6を有していてもよい。接合材は例えば、銀ろうなどのろう材であり、ろう材により第1部3および基板2と、第2部4ならびに、第1部3および基板2と、第3部5が接合される。また、このとき、図7に示すように貫通孔21の内表面を含む基板2の表面にめっき層8を有していてもよい。めっき層8はたとえば、ニッケル等である。めっき層を有している場合には、めっき層と接合材とがより強固に結びつき、放熱基板1の耐久性を向上せることができる。 Further, a bonding material 6 may be provided between the first part 3 and the substrate 2 and the second part 4 and between the first part 3 and the substrate 2 and the third part 5. The bonding material is, for example, a brazing material such as silver brazing, and the first portion 3 and the substrate 2, the second portion 4, the first portion 3 and the substrate 2, and the third portion 5 are bonded by the brazing material. At this time, the plating layer 8 may be provided on the surface of the substrate 2 including the inner surface of the through hole 21 as shown in FIG. The plating layer 8 is, for example, nickel. When the plating layer is provided, the plating layer and the bonding material are more firmly connected, and the durability of the heat dissipation substrate 1 can be improved.
 なお、第1部3、第2部4および第3部5は、接合材6または接合層7を介して少なくとも一部が連続しているのがよい。このことによって、熱経路を確保することができる。また、第1部3、第2部4および第3部5は、接合材6または接合層7を介してすべてが連続していてもよい。この場合には、一部が連続している場合と比較して、放熱性がさらに向上する。また、後述する第4部15および第5部16についても同様で、接合材6または接合層7を介して少なくとも一部が連続しているのがよい。さらに、第1部3、第2部4および第3部5と少なくとも一部が連続していてもよい。このことによって、熱経路を確保することができる。また、第4部15および第5部16は、接合材6または接合層7を介してすべてが連続していてもよいし、第1部3、第2部4および第3部5とも、接合材6または接合層7を介してすべてが連続していてもよい。この場合には、一部が連続している場合と比較して、放熱性がさらに向上する。 The first part 3, the second part 4, and the third part 5 are preferably at least partially continuous via the bonding material 6 or the bonding layer 7. Thereby, a heat path can be secured. The first part 3, the second part 4, and the third part 5 may all be continuous via the bonding material 6 or the bonding layer 7. In this case, heat dissipation is further improved as compared with a case where a part of the heat is continuous. The same applies to a fourth part 15 and a fifth part 16 described later, and at least a part of the fourth part 15 and the fifth part 16 are preferably continuous via the bonding material 6 or the bonding layer 7. Furthermore, at least a part of the first part 3, the second part 4, and the third part 5 may be continuous. Thereby, a heat path can be secured. Further, the fourth part 15 and the fifth part 16 may all be continuous via the bonding material 6 or the bonding layer 7, and the first part 3, the second part 4 and the third part 5 are joined together. All may be continuous through the material 6 or the bonding layer 7. In this case, heat dissipation is further improved as compared with a case where a part of the heat is continuous.
 本発明の他の実施形態における放熱基板1は、図8に示すように第2部4の上面または、第3部の下面にさらに第2基板13、第4部15および第5部16を有していてもよい。つまり、放熱基板が5層構造となっていてもよい。 As shown in FIG. 8, the heat dissipation board 1 in another embodiment of the present invention further includes a second substrate 13, a fourth part 15, and a fifth part 16 on the upper surface of the second part 4 or the lower surface of the third part. You may do it. That is, the heat dissipation substrate may have a five-layer structure.
 第2基板13は、例えば矩形状である。また第2基板13は、例えば金属材料から成る。金属材料としては、例えばモリブデンである。このとき、第2基板13の熱膨張係数は5×10-6/K程度である。また、鉄、ニッケル、クロム、コバルトおよびタングステン、あるいはこれらの金属からなる合金を用いることができる。このような金属材料のインゴットに圧延加工法、打ち抜き加工法のような金属加工法を施すことによって第2基板13を構成する金属部材を作製することができる。つまり、基板2と同様の形状、同様の材質でもよい。 The second substrate 13 has a rectangular shape, for example. The second substrate 13 is made of, for example, a metal material. An example of the metal material is molybdenum. At this time, the thermal expansion coefficient of the second substrate 13 is about 5 × 10 −6 / K. Further, iron, nickel, chromium, cobalt, tungsten, or an alloy made of these metals can be used. By applying a metal processing method such as a rolling method or a punching method to such an ingot of a metal material, a metal member constituting the second substrate 13 can be manufactured. That is, the same shape and the same material as the substrate 2 may be used.
 第2基板13は、電子部品が実装される領域と重なる位置に第2貫通孔14を有している。第2貫通孔14は、平面視において例えば円形状またはである。第2貫通孔14の大きさは、たとえば平面視においてφ0.5mm~5mmである。また、厚さは0.1mm~3mmである。 The second substrate 13 has a second through hole 14 at a position overlapping with a region where the electronic component is mounted. The second through hole 14 has, for example, a circular shape or a plan view. The size of the second through hole 14 is, for example, φ0.5 mm to 5 mm in plan view. The thickness is 0.1 mm to 3 mm.
 第4部15は、第2基板13の第2貫通孔14に嵌め込まれている。第4部15は、第2貫通孔14に嵌め込まれることから、少なくとも第2貫通孔14よりも小さい外形である。このとき、第4部15が第2貫通孔14よりも小さいというのは、第4部15と第2貫通孔14がほぼ同じ寸法のものから、第2貫通孔14の方が大きく、隙間を接合材で埋めるものまで含まれる。このため、第4部15は、たとえば平面視において円形状である場合、φ0.5mm~5mmであり、また、第4部15は、厚さが0.1mm~3mmである。第4部15は、下面が第2基板13の下面と一致している。または、第4部15は、第2基板13の下面より少なくとも突出していてもよい。 The fourth part 15 is fitted in the second through hole 14 of the second substrate 13. Since the fourth portion 15 is fitted into the second through hole 14, the fourth portion 15 has an outer shape smaller than at least the second through hole 14. At this time, the fourth portion 15 is smaller than the second through-hole 14 because the fourth through-hole 14 is larger than the second through-hole 14 because the fourth portion 15 and the second through-hole 14 are substantially the same size. It includes even those filled with bonding material. Therefore, for example, when the fourth portion 15 has a circular shape in plan view, the fourth portion 15 has a diameter of 0.5 mm to 5 mm, and the fourth portion 15 has a thickness of 0.1 mm to 3 mm. The lower surface of the fourth portion 15 coincides with the lower surface of the second substrate 13. Alternatively, the fourth portion 15 may protrude at least from the lower surface of the second substrate 13.
 また、第4部15は、たとえば銅を含んでいる。また、銅から成っていてもよい。このとき、基板2の熱膨張係数は16×10-6/K程度である。また、第4部15は、銅のように、放熱性に優れた金属材料であれば構わない。たとえば、銅とタングステンまたはモリブデンからなる合金を用いることができる。第4部15は、たとえば熱膨張係数が10×10-6/K~20×10-6/Kである。つまり、第4部15は第1部3と同様の形状、同様の材質でもよい。 Moreover, the 4th part 15 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 × 10 −6 / K. The fourth portion 15 may be a metal material having excellent heat dissipation, such as copper. For example, an alloy made of copper and tungsten or molybdenum can be used. For example, the fourth portion 15 has a thermal expansion coefficient of 10 × 10 −6 / K to 20 × 10 −6 / K. That is, the fourth part 15 may have the same shape and the same material as the first part 3.
 第5部16は、第2基板13の上面または下面に位置している。このとき、第5部16は、たとえば平面視において基板2と同じ大きさであり、平面視において5mm×5mm~40mm×40mmであり、また、第5部16は、厚さが0.5mm~3mmである。第5部が第2基板13の上面に配置される場合は、電子部品12は第5部の上面に実装されることとなる。 The fifth part 16 is located on the upper surface or the lower surface of the second substrate 13. At this time, the fifth portion 16 is, for example, the same size as the substrate 2 in a plan view, and is 5 mm × 5 mm to 40 mm × 40 mm in the plan view, and the fifth portion 16 has a thickness of 0.5 mm to 3 mm. When the fifth part is disposed on the upper surface of the second substrate 13, the electronic component 12 is mounted on the upper surface of the fifth part.
 また、第5部16は、たとえば銅を含んでいる。また、銅から成っていてもよい。このとき、基板2の熱膨張係数は16×10-6/K程度である。また、第5部16は、銅のように、放熱性に優れた金属材料であれば構わない。たとえば、銅とタングステンまたはモリブデンからなる合金を用いることができる。第5部16は、たとえば熱膨張係数が10×10-6/K~20×10-6/Kである。つまり、第5部16は第2部4または第3部5と同様の形状、同様の材質でもよい。 Moreover, the 5th part 16 contains copper, for example. Moreover, you may consist of copper. At this time, the thermal expansion coefficient of the substrate 2 is about 16 × 10 −6 / K. The fifth portion 16 may be a metal material having excellent heat dissipation, such as copper. For example, an alloy made of copper and tungsten or molybdenum can be used. The fifth part 16 has, for example, a thermal expansion coefficient of 10 × 10 −6 / K to 20 × 10 −6 / K. That is, the fifth portion 16 may have the same shape and the same material as the second portion 4 or the third portion 5.
 このように放熱基板1にさらに第2基板13および第4部15と第5部16を重ねることにより、より耐久性に優れた放熱基板とすることができると同時に、電子部品12が実装される実装領域が、熱伝導率の高い第2部、第1部、第3部、第4部、第5部に鉛直方向に重なって結合されるため、電子部品12から生じる熱を基板2および第2基板13に遮られることなく、外部に放熱しやすくすることが可能となる。 In this way, by further overlapping the second substrate 13 and the fourth portion 15 and the fifth portion 16 on the heat dissipation substrate 1, a heat dissipation substrate with higher durability can be obtained, and at the same time, the electronic component 12 is mounted. Since the mounting region is coupled to the second part, the first part, the third part, the fourth part, and the fifth part having high thermal conductivity so as to overlap in the vertical direction, the heat generated from the electronic component 12 is transferred to the substrate 2 and the first part. It is possible to easily dissipate heat to the outside without being blocked by the two substrates 13.
 またさらに第2基板および第4部と第5部を交互に放熱基板に重ねていき、放熱基板の層数を7層、9層とさらに多層にしてもよい。この場合、層数が増加するごとに放熱基板の耐久性が向上する。 Further, the second substrate and the fourth and fifth portions may be alternately stacked on the heat dissipation substrate, and the number of layers of the heat dissipation substrate may be further increased to 7 layers and 9 layers. In this case, the durability of the heat dissipation substrate improves as the number of layers increases.
 図9に示すように、本発明の一実施形態に係る電子装置20は、放熱基板1の上面に枠体9が位置していてもよい。さらに枠体9に、入出力端子10が接合固定されてもよい。このとき、第1部3は例えば円形状であり、枠体9と重ならない位置にある。また、入出力端子10は、放熱基板1の長辺方向の枠体9に設けられる。第1部3と枠体9とが重ならないことによって、放熱基板1、枠体9および入出力端子10との間に働く熱膨張係数差によって生じる応力を低減させることができる。その結果、放熱基板1は、枠体9に生じるクラックおよび割れを抑制することができ、電子装置20の不良の発生を抑制することができる。 As shown in FIG. 9, in the electronic device 20 according to an embodiment of the present invention, the frame body 9 may be located on the upper surface of the heat dissipation substrate 1. Further, the input / output terminal 10 may be bonded and fixed to the frame body 9. At this time, the 1st part 3 is circular, for example, and exists in the position which does not overlap with the frame 9. The input / output terminal 10 is provided on the frame 9 in the long side direction of the heat dissipation board 1. Since the first part 3 and the frame body 9 do not overlap, the stress caused by the difference in thermal expansion coefficient acting between the heat dissipation substrate 1, the frame body 9 and the input / output terminal 10 can be reduced. As a result, the heat dissipation substrate 1 can suppress cracks and cracks generated in the frame body 9 and suppress the occurrence of defects in the electronic device 20.
 図9および図10に示すように、本発明の一実施形態における電子装置20は、放熱基板1、枠体9、入出力端子10および電子部品12を備えている。枠体9は、放熱基板1の実装領域を取り囲んで位置しており、放熱基板1の上面に接合される。枠体9は、平面視において、外縁および内縁が矩形状であり、4つの側壁によって構成されている。枠体9は、銀ロウ等の接合材を介して放熱基板1の上面に接合されている。 As shown in FIG. 9 and FIG. 10, the electronic device 20 in one embodiment of the present invention includes a heat dissipation substrate 1, a frame body 9, an input / output terminal 10, and an electronic component 12. The frame body 9 is positioned so as to surround the mounting area of the heat dissipation board 1 and is joined to the upper surface of the heat dissipation board 1. The frame body 9 has a rectangular outer edge and inner edge in plan view, and is constituted by four side walls. The frame body 9 is bonded to the upper surface of the heat dissipation substrate 1 via a bonding material such as silver solder.
 枠体9は、平面視における外縁の大きさが、たとえば5mm×5mm~40mm×40mm、内縁の大きさが4mm×4mm~35mm×35mmである。また、外縁と内縁との間の幅で示される枠体9の厚みは、たとえば1mm~5mmである。また、枠体9の高さは、1mm~10mmである。 The frame body 9 has an outer edge size in a plan view of, for example, 5 mm × 5 mm to 40 mm × 40 mm, and an inner edge size of 4 mm × 4 mm to 35 mm × 35 mm. The thickness of the frame body 9 indicated by the width between the outer edge and the inner edge is, for example, 1 mm to 5 mm. The height of the frame body 9 is 1 mm to 10 mm.
 枠体9としては、例えば、セラミック材料を用いることができる。セラミック材料としては、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体等である。また、樹脂材料を用いる場合には、エポキシ樹脂等が用いられる。他にも、金属材料を用いることができる。金属材料としては、例えば、鉄、銅、ニッケル、クロム、コバルト、モリブデンおよびタングステンのような金属材料、あるいはこれらの金属材料からなる合金を用いることができる。 As the frame body 9, for example, a ceramic material can be used. Examples of the ceramic material include an aluminum oxide sintered body and an aluminum nitride sintered body. Moreover, when using a resin material, an epoxy resin etc. are used. In addition, a metal material can be used. As the metal material, for example, a metal material such as iron, copper, nickel, chromium, cobalt, molybdenum, and tungsten, or an alloy made of these metal materials can be used.
 図9に示すように、枠体9に入出力端子10が取り付けられていてもよい。入出力端子は金-錫はんだや樹脂接合材等の接合材によって枠体9の上面に接合され、設けられていてもよい。入出力端子10は、ボンディングワイヤ等を介して実装領域に実装される電子部品12と電気的に接続されて、外部の実装基板や回路基板、電源等と電気的に接続される。入出力端子10は、例えば、鉄、ニッケル、コバルトからなる合金や、鉄、ニッケルからなる合金等から成る。 As shown in FIG. 9, an input / output terminal 10 may be attached to the frame body 9. The input / output terminals may be provided by being bonded to the upper surface of the frame body 9 by a bonding material such as gold-tin solder or a resin bonding material. The input / output terminal 10 is electrically connected to an electronic component 12 mounted in the mounting region via a bonding wire or the like, and is electrically connected to an external mounting board, circuit board, power supply, or the like. The input / output terminal 10 is made of, for example, an alloy made of iron, nickel, cobalt, an alloy made of iron, nickel, or the like.
 また、図9に示すように、本発明の一実施形態に係る電子装置20は、平面視において第1部3の端部と枠体9とが重ならなくてもよい。第1部3の端部が枠体9と重なっていないことにより、放熱基板1の製造工程および電子装置20を作動させる際に、第1部3の端部付近における基板2と枠体9との接合部に生じる応力を抑制することができる。すなわち、放熱基板1の平面視において、基板2と枠体9の接合部と、基板2と第1部3の接合部の位置が重ならないことにより、基板2、第1部3および枠体9の熱膨張係数差によって生じる応力が基板2と枠体9との接合部に集中することを抑制できる。その結果、放熱基板1は、基板2と第1部3の端面の接合部に生じるクラックおよび割れを抑制することができる。 Further, as shown in FIG. 9, in the electronic device 20 according to the embodiment of the present invention, the end portion of the first portion 3 and the frame body 9 do not have to overlap in a plan view. Since the end portion of the first portion 3 does not overlap the frame body 9, when the manufacturing process of the heat dissipation substrate 1 and the electronic device 20 are operated, the substrate 2 and the frame body 9 in the vicinity of the end portion of the first portion 3 It is possible to suppress stress generated in the joint portion. That is, in the plan view of the heat radiating substrate 1, the positions of the bonding portion between the substrate 2 and the frame body 9 and the bonding portion between the substrate 2 and the first portion 3 do not overlap with each other. It is possible to suppress the stress caused by the difference in thermal expansion coefficient from concentrating on the joint portion between the substrate 2 and the frame body 9. As a result, the heat dissipation substrate 1 can suppress cracks and cracks that occur at the joint between the end surfaces of the substrate 2 and the first portion 3.
 また、本発明の他の実施形態に係る電子装置20は、平面視において入出力端子10は、枠体9の側面の中央に設けられた切欠き部に挿入固定されて位置していてもよい。入出力端子10は、例えば、金属材料からなるリード端子のようなものであり、第1部3に用いる熱伝導性のよい金属に比べて熱膨張係数が小さい。このため、放熱基板1、枠体9および入出力端子10が接合されると、それぞれの熱膨張係数の差によって熱応力が生じ、枠体9に熱応力による負荷がかかってしまう。これに対して、少なくとも放熱基板1の熱膨張を低減させることによって、枠体9への熱応力による負荷を低減させることができる。 In the electronic device 20 according to another embodiment of the present invention, the input / output terminal 10 may be positioned by being inserted and fixed in a notch provided in the center of the side surface of the frame body 9 in plan view. . The input / output terminal 10 is, for example, a lead terminal made of a metal material, and has a smaller thermal expansion coefficient than the metal having good thermal conductivity used for the first portion 3. For this reason, when the heat dissipation substrate 1, the frame body 9, and the input / output terminal 10 are joined, thermal stress is generated due to the difference in thermal expansion coefficient between them, and a load due to the thermal stress is applied to the frame body 9. On the other hand, by reducing at least the thermal expansion of the heat dissipation board 1, the load due to the thermal stress on the frame body 9 can be reduced.
 なお、上述したように、本発明の一実施形態に係る電子装置20では、平面視において、第1部3の端部と枠体9とが重ならなくてもよいとしたが、本発明の他の実施形態に係る電子装置20は、平面視において第1部3の端部と枠体9とが重なっていてもよい。第1部3が枠体9と重なっていることによって、電子部品12で生じた熱を基板2および外部の実装基板だけでなく、枠体9を介して外部に逃がすことができる。 As described above, in the electronic device 20 according to the embodiment of the present invention, the end of the first portion 3 and the frame body 9 do not have to overlap in plan view. In the electronic device 20 according to another embodiment, the end portion of the first portion 3 and the frame body 9 may overlap in a plan view. Since the first part 3 overlaps with the frame body 9, the heat generated in the electronic component 12 can be released to the outside through the frame body 9 as well as the substrate 2 and the external mounting substrate.
 また、本発明の他の実施形態に係る放熱基板1は、平面視において第1部3の端部および貫通孔21の端部の形状が外側に突状の曲面状であってもよい。第1部3の端部が曲面状であることによって、放熱基板1は、放熱基板1の製造工程および電子装置20を作動させる際に、基板2と第1部3の端部との接合部に生じる熱応力を抑制することができる。また、熱応力が局所に生じることを抑制することができる。 Further, in the heat dissipation board 1 according to another embodiment of the present invention, the shape of the end portion of the first portion 3 and the end portion of the through hole 21 may be a curved surface protruding outward in a plan view. When the end portion of the first portion 3 is curved, the heat dissipation substrate 1 is a joint portion between the substrate 2 and the end portion of the first portion 3 when the manufacturing process of the heat dissipation substrate 1 and the electronic device 20 are operated. It is possible to suppress the thermal stress generated in Moreover, it can suppress that a thermal stress arises locally.
 これは、電子部品12の動作させる際には熱が生じ、この熱によって第1部3および基板2が熱膨張する。第1部3および基板2が熱膨張する際に、第1部3は基板2よりも熱膨張係数が大きいため、基板2の貫通孔21の内面に接触する場合がある。この場合に、第1部3の端部および貫通孔21の端部が曲面状であれば、第1部3の端部および貫通孔21の端部にクラックが生じるのを抑制することができる。 This is because heat is generated when the electronic component 12 is operated, and the first part 3 and the substrate 2 are thermally expanded by this heat. When the first part 3 and the substrate 2 are thermally expanded, the first part 3 has a larger thermal expansion coefficient than that of the substrate 2, and therefore may contact the inner surface of the through hole 21 of the substrate 2. In this case, if the end of the first part 3 and the end of the through hole 21 are curved, it is possible to suppress the occurrence of cracks at the end of the first part 3 and the end of the through hole 21. .
 この結果、本発明の他の実施形態に係る放熱基板1は、基板2と第1部3の端面の接合部に生じるクラックおよび割れを抑制することができる。つまり、放熱性を向上させつつ、基板2の反りを抑制するだけでなく、第1部3および基板2にクラックが生じるのを抑制することができる。 As a result, the heat dissipation substrate 1 according to another embodiment of the present invention can suppress cracks and cracks generated at the joint between the end surface of the substrate 2 and the first portion 3. That is, it is possible not only to suppress the warpage of the substrate 2 while improving the heat dissipation, but also to prevent the first part 3 and the substrate 2 from cracking.
  <放熱基板の製造方法>
 基板2は、例えば金属材料からなる場合には、モリブデンからなり、また、基板2の中央部には、断面視にて、長辺が第1部3の長辺方向と平行となる矩形状の貫通孔21を設けて、第1部3を貫通孔21に嵌め込む。次に、貫通孔21の内周面と、この内周面と向かい合う第1部3の側面とをろう付けまたは上下面方向からの加圧によって接合する。
<Method for manufacturing heat dissipation substrate>
For example, when the substrate 2 is made of a metal material, the substrate 2 is made of molybdenum, and the central portion of the substrate 2 has a rectangular shape whose long side is parallel to the long side direction of the first portion 3 in a sectional view. The through hole 21 is provided, and the first portion 3 is fitted into the through hole 21. Next, the inner peripheral surface of the through-hole 21 and the side surface of the first part 3 facing the inner peripheral surface are joined by brazing or pressing from the upper and lower surface directions.
 なお、第1部3は、例えば金属材料のうち銅からなり、第1部3を貫通孔21に嵌め込んでろう材で接合する際に、第1部3の側面と貫通孔21の内周面とをろう材等の接合材で接合できる程度の隙間が設けられるように形成される。 The first part 3 is made of copper, for example, of a metal material. When the first part 3 is fitted into the through hole 21 and joined with the brazing material, the side surface of the first part 3 and the inner periphery of the through hole 21 are used. It is formed so as to provide a gap that can be joined to the surface with a joining material such as a brazing material.
 次に第2部4と第3部5を準備する。第2部4と第3部5が例えば銅からなる場合、金型を用いた打ち抜き加工や切削加工により所定の大きさに成形する。その後、第1部3を接合した基板2を第2部4と第3部5の間に積層し、熱圧着またはろう材等の接合材を用いることで第2部4と基板2、基板2と第3部5をそれぞれ接合する。 Next, the second part 4 and the third part 5 are prepared. When the 2nd part 4 and the 3rd part 5 consist of copper, for example, it shape | molds to a predetermined magnitude | size by the punching process and cutting which used the metal mold | die. Then, the board | substrate 2 which joined the 1st part 3 is laminated | stacked between the 2nd part 4 and the 3rd part 5, and the 2nd part 4 and the board | substrate 2 and the board | substrate 2 are used by using joining materials, such as thermocompression bonding or a brazing material. And the third part 5 are joined together.
 また、枠体9は例えば酸化アルミニウム焼結体から成る場合には、マグネシア、シリカ、カルシア等の焼結助剤を適当量加えたアルミナ粉末に溶剤を加え、十分に混練し、脱泡させてスラリーを作製する。この後、ドクターブレード法等によってロール状のセラミックグリーンシートを形成して、適当なサイズにカットする。カットして作製したセラミックグリーンシートに入出力端子10が接続固定される配線パターン等の信号線路をスクリーン印刷する。この後、約1600℃の還元雰囲気中で焼成して形成する。このとき、焼成前に複数のセラミックグリーンシートを積層してもよい。枠体9は、例えば、入出力端子10がろう材等によって上面に接合されるとともに、実装領域を取り囲むように金-錫はんだ等で放熱基板1の上面に接合される。 Further, when the frame body 9 is made of, for example, an aluminum oxide sintered body, a solvent is added to alumina powder to which an appropriate amount of a sintering aid such as magnesia, silica, calcia is added, and the mixture is sufficiently kneaded and defoamed. Make a slurry. Thereafter, a roll-shaped ceramic green sheet is formed by a doctor blade method or the like and cut into an appropriate size. A signal line such as a wiring pattern to which the input / output terminal 10 is connected and fixed is cut on a ceramic green sheet produced by cutting. Thereafter, it is formed by firing in a reducing atmosphere at about 1600 ° C. At this time, a plurality of ceramic green sheets may be laminated before firing. For example, the input / output terminal 10 is bonded to the upper surface by a brazing material or the like, and the frame 9 is bonded to the upper surface of the heat dissipation substrate 1 by gold-tin solder or the like so as to surround the mounting region.
 また、例えば基板2および第2基板13がセラミック材料から成る場合には、枠体9と同様の材質であってもよい。基板2および第2基板13が酸化アルミニウム焼結体から成る場合には、マグネシア、シリカ、カルシア等を用いることができる。これに焼結助剤を適当量加えたアルミナ粉末に溶剤を加え、十分に混練し、脱泡させてスラリーを作製する。この後、ドクターブレード法等によってロール状のセラミックグリーンシートを形成して、適当なサイズにカットする。カットして作製したセラミックグリーンシートを約1600℃の還元雰囲気中で焼成して形成する。このとき、焼成前に複数のセラミックグリーンシートを積層してもよい。 For example, when the substrate 2 and the second substrate 13 are made of a ceramic material, the same material as that of the frame body 9 may be used. When the substrate 2 and the second substrate 13 are made of an aluminum oxide sintered body, magnesia, silica, calcia, or the like can be used. A solvent is added to the alumina powder to which an appropriate amount of sintering aid is added, and the mixture is sufficiently kneaded and defoamed to prepare a slurry. Thereafter, a roll-shaped ceramic green sheet is formed by a doctor blade method or the like and cut into an appropriate size. The ceramic green sheet produced by cutting is fired in a reducing atmosphere at about 1600 ° C. to form. At this time, a plurality of ceramic green sheets may be laminated before firing.
 以上のようにして、本発明の実施形態に係る放熱基板1を作製することができる。なお、上述した工程順番は指定されない。 As described above, the heat dissipation substrate 1 according to the embodiment of the present invention can be manufactured. In addition, the process order mentioned above is not designated.
  <電子装置の構成>
 次に、本発明の一実施形態に係る電子装置20について、図面を用いて詳細に説明する。図9および図10は、本発明の一実施形態に係る電子装置20を示す斜視図である。図9および図10に示すように、本実施形態の一実施形態に係る電子装置20は、上述した実施形態に代表される放熱基板1と枠体9と入出力端子10と、放熱基板1の実装領域に実装された電子部品12とを備えている。
<Configuration of electronic device>
Next, the electronic device 20 according to an embodiment of the present invention will be described in detail with reference to the drawings. 9 and 10 are perspective views showing an electronic device 20 according to an embodiment of the present invention. As shown in FIGS. 9 and 10, an electronic device 20 according to an embodiment of the present embodiment includes a heat dissipation board 1, a frame body 9, an input / output terminal 10, and a heat dissipation board 1 represented by the above-described embodiment. And an electronic component 12 mounted in the mounting area.
 本発明の一実施形態に係る電子装置20においては、放熱基板1の実装領域に電子部品12が実装されている。電子部品12は、ボンディングワイヤ等を介して入出力端子10の信号線路に電気的に接続される。この電子部品12に信号線路などを介して外部信号を入出力することによって電子部品12から所望の入出力を得ることができる。 In the electronic device 20 according to an embodiment of the present invention, the electronic component 12 is mounted in the mounting region of the heat dissipation board 1. The electronic component 12 is electrically connected to the signal line of the input / output terminal 10 via a bonding wire or the like. A desired input / output can be obtained from the electronic component 12 by inputting / outputting an external signal to / from the electronic component 12 via a signal line or the like.
 電子部品12としては、例えばICまたはLSIの他、パワーデバイス用の半導体素子等が挙げられる。そして、枠体9の上面に蓋体等を取り付ける。放熱基板1、枠体9および蓋体で囲まれた空間において電子部品12を封止する。このように電子部品12を封止することによって、湿度等の外部要因による電子部品12の劣化を抑制することができる。 Examples of the electronic component 12 include a semiconductor device for a power device in addition to an IC or an LSI. Then, a lid or the like is attached to the upper surface of the frame body 9. The electronic component 12 is sealed in a space surrounded by the heat dissipation substrate 1, the frame body 9, and the lid. By sealing the electronic component 12 in this way, deterioration of the electronic component 12 due to external factors such as humidity can be suppressed.
 蓋体としては、例えば、鉄、銅、ニッケル、クロム、コバルトおよびタングステンのような金属部材、あるいはこれらの金属からなる合金を用いることができる。また、枠体9と蓋体は、例えばシーム溶接法によって接合することができる。また、枠体9と蓋体は、例えば、金-錫ロウを用いて接合してもよい。 As the lid, for example, a metal member such as iron, copper, nickel, chromium, cobalt and tungsten, or an alloy made of these metals can be used. The frame body 9 and the lid body can be joined by, for example, a seam welding method. Further, the frame body 9 and the lid body may be joined using, for example, gold-tin solder.
 以上、各実施形態の放熱基板1およびこれを備えた電子装置20について説明してきたが、本発明は上述の実施形態に限定されるものではない。すなわち、本発明の要旨を逸脱しない範囲内であれば種々の変更および実施形態の組み合わせを施すことは何等差し支えない。 As mentioned above, although the thermal radiation board 1 of each embodiment and the electronic apparatus 20 provided with this have been demonstrated, this invention is not limited to the above-mentioned embodiment. In other words, various modifications and combinations of embodiments may be made without departing from the scope of the present invention.
1 放熱基板
2 基板
21 貫通孔
3 第1部
4 第2部
5 第3部
6 接合材
7 接合層
8 めっき層
9 枠体
10 入出力端子
12 電子部品
13 第2基板
14 第2貫通孔
15 第4部
16 第5部
20 電子装置
DESCRIPTION OF SYMBOLS 1 Heat dissipation board 2 Board | substrate 21 Through-hole 3 1st part 4 2nd part 5 3rd part 6 Joining material 7 Joining layer 8 Plating layer 9 Frame 10 Input / output terminal 12 Electronic component 13 2nd board | substrate 14 2nd through-hole 15 1st 4 part 16 5th part 20 Electronic device

Claims (8)

  1.  少なくとも1つの貫通孔を有するとともに、金属材料を含む基板と、
    前記貫通孔に位置するとともに、前記基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第1部と、
    前記基板の上面に位置するとともに、前記基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第2部と、
    前記基板の下面に位置するとともに、前記基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第3部と、
    前記基板と前記第2部との間および前記基板と前記第3部との間のそれぞれに位置した、接合材とを備えており、
    前記基板および前記第1部は、前記第2部および前記第3部と、前記接合材を介して少なくとも一部が連続していることを特徴とする放熱基板。
    A substrate having at least one through hole and including a metal material;
    A first part that is located in the through hole and has a thermal conductivity higher than that of the substrate and includes a metal material;
    A second part located on the upper surface of the substrate and having a thermal conductivity higher than the thermal conductivity of the substrate, comprising a metal material;
    A third part located on the lower surface of the substrate and having a thermal conductivity higher than the thermal conductivity of the substrate, comprising a metal material;
    A bonding material positioned between the substrate and the second part and between the substrate and the third part, and
    The substrate and the first part are at least partially continuous with the second part and the third part via the bonding material.
  2.  少なくとも1つの貫通孔を有するとともに、金属材料を含む基板と、
    前記貫通孔に位置するとともに、前記基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第1部と、
    前記基板の上面に位置するとともに、前記基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第2部と、
    前記基板の下面に位置するとともに、前記基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第3部と、を備えており、
    前記第1部と前記第2部および前記第1部と前記第3部とは、少なくとも一部が連続しており、前記基板と前記第2部との間および前記基板と前記第3部との間のそれぞれには、接合層を有していることを特徴とする放熱基板。
    A substrate having at least one through hole and including a metal material;
    A first part that is located in the through hole and has a thermal conductivity higher than that of the substrate and includes a metal material;
    A second part located on the upper surface of the substrate and having a thermal conductivity higher than the thermal conductivity of the substrate, comprising a metal material;
    A third part located on the lower surface of the substrate and having a thermal conductivity higher than the thermal conductivity of the substrate and including a metal material,
    The first part, the second part, and the first part and the third part are at least partially continuous, between the substrate and the second part, and between the substrate and the third part. A heat dissipation board having a bonding layer between each of the two.
  3.  前記基板は、モリブデンを含んでおり、前記第1部、前記第2部および前記第3部は、銅を含んでいることを特徴とする請求項1または請求項2に記載の放熱基板。 The heat dissipation substrate according to claim 1 or 2, wherein the substrate contains molybdenum, and the first part, the second part, and the third part contain copper.
  4.  前記基板の表面および前記貫通孔の内表面には、めっき層を有することを特徴とする請求項1~3のいずれか1つに記載の放熱基板。 The heat dissipation substrate according to any one of claims 1 to 3, wherein a plating layer is provided on a surface of the substrate and an inner surface of the through hole.
  5.  前記貫通孔は平面視において円形状であることを特徴とする請求項1~4のいずれか1つに記載の放熱基板。 The heat dissipation substrate according to any one of claims 1 to 4, wherein the through hole has a circular shape in plan view.
  6.  前記第1部を構成する材料、前記第2部を構成する材料および前記第3部を構成する材料は、互いに全て同じであることを特徴とする請求項1~5のいずれか1つに記載の放熱基板。 6. The material constituting the first part, the material constituting the second part, and the material constituting the third part are all the same as each other. Heat dissipation board.
  7.  少なくとも1つの第2貫通孔を有するとともに、前記第2部または前記第3部の、それぞれ上面または下面に位置した、金属材料を含む第2基板と、
    前記第2貫通孔に位置するとともに、前記第2基板の熱伝導率よりも熱伝導率が高く、金属材料を含む第4部と、
    前記第2基板の熱伝導率よりも熱伝導率が高く、金属材料を含むとともに、前記第2基板の上面または下面に位置した第5部とをさらに備えていることを特徴とする請求項1~6のいずれか1つに記載の放熱基板。
    A second substrate including at least one second through-hole and including a metal material located on an upper surface or a lower surface of the second part or the third part, respectively.
    A fourth part located in the second through-hole and having a thermal conductivity higher than that of the second substrate and including a metal material;
    The thermal conductivity of the second substrate is higher than that of the second substrate, includes a metal material, and further includes a fifth portion located on the upper surface or the lower surface of the second substrate. 7. The heat dissipation board according to any one of items 6 to 6.
  8.  請求項1~7のいずれか1つに記載の放熱基板と、
    前記放熱基板の上面に実装されるとともに、平面視において前記貫通孔と重なって位置した電子部品とを備えたことを特徴とする電子装置。
     
     
    A heat dissipation board according to any one of claims 1 to 7,
    An electronic device comprising: an electronic component mounted on an upper surface of the heat dissipation substrate and positioned so as to overlap the through hole in a plan view.

PCT/JP2019/017266 2018-04-26 2019-04-23 Heat dissipation substrate and electronic device WO2019208577A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/050,643 US20210066159A1 (en) 2018-04-26 2019-04-23 Heat dissipation board and electronic apparatus
JP2020515490A JPWO2019208577A1 (en) 2018-04-26 2019-04-23 Heat dissipation board and electronic device
CN201980027628.1A CN112005366A (en) 2018-04-26 2019-04-23 Heat dissipation substrate and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018085130 2018-04-26
JP2018-085130 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019208577A1 true WO2019208577A1 (en) 2019-10-31

Family

ID=68294515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017266 WO2019208577A1 (en) 2018-04-26 2019-04-23 Heat dissipation substrate and electronic device

Country Status (4)

Country Link
US (1) US20210066159A1 (en)
JP (1) JPWO2019208577A1 (en)
CN (1) CN112005366A (en)
WO (1) WO2019208577A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030197A1 (en) * 2020-08-06 2022-02-10 住友電気工業株式会社 Compoiste material, heat spreader and semiconductor package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091361A (en) * 1995-06-16 1997-01-07 Sumitomo Special Metals Co Ltd Manufacture of heat-conductive composite material
JPH0924500A (en) * 1995-07-13 1997-01-28 Sumitomo Special Metals Co Ltd Production of thermally conductive composite material
JPH0982858A (en) * 1995-09-19 1997-03-28 Hitachi Ltd Semiconductor device and metal support plate thereof
JP2018018976A (en) * 2016-07-28 2018-02-01 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method for manufacturing heat dissipation substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013420A (en) * 2004-01-28 2006-01-12 Kyocera Corp Package for electronic component housing, and electronic device
JP2005277382A (en) * 2004-02-23 2005-10-06 Kyocera Corp Package for storing electronic component, and electronic device
JP2010171157A (en) * 2009-01-22 2010-08-05 Sanyo Electric Co Ltd Package for electron element and electronic component
JP2010238941A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Light emitting device
JP2012253048A (en) * 2010-02-26 2012-12-20 Sanyo Electric Co Ltd Electronic device
TW201138165A (en) * 2010-04-23 2011-11-01 yi-zhang Chen High heat-dissipation LED non-metal substrate and manufacturing method thereof and high heat-dissipation LED component and manufacturing method thereof
JP5665479B2 (en) * 2010-10-28 2015-02-04 京セラ株式会社 Circuit board and electronic device
JP6549502B2 (en) * 2016-02-26 2019-07-24 京セラ株式会社 Heat dissipation substrate, semiconductor package and semiconductor module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091361A (en) * 1995-06-16 1997-01-07 Sumitomo Special Metals Co Ltd Manufacture of heat-conductive composite material
JPH0924500A (en) * 1995-07-13 1997-01-28 Sumitomo Special Metals Co Ltd Production of thermally conductive composite material
JPH0982858A (en) * 1995-09-19 1997-03-28 Hitachi Ltd Semiconductor device and metal support plate thereof
JP2018018976A (en) * 2016-07-28 2018-02-01 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method for manufacturing heat dissipation substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030197A1 (en) * 2020-08-06 2022-02-10 住友電気工業株式会社 Compoiste material, heat spreader and semiconductor package

Also Published As

Publication number Publication date
JPWO2019208577A1 (en) 2021-04-22
CN112005366A (en) 2020-11-27
US20210066159A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP5730038B2 (en) Semiconductor element storage package and semiconductor device including the same
US9883589B2 (en) Wiring board, and electronic device
JP2012094627A (en) Package for housing element and electronic apparatus with the same
JP2009158611A (en) Circuit substrate, package using same, and electronic device
JP5669494B2 (en) Package for element storage and electronic device provided with the same
JP5837187B2 (en) Semiconductor element storage package, semiconductor device, and mounting structure
WO2019208577A1 (en) Heat dissipation substrate and electronic device
JP4511376B2 (en) Connection terminal and electronic component storage package and electronic device using the same
JP5791283B2 (en) Electronic component storage package and electronic device including the same
JP7379515B2 (en) Lid, electronic component housing package, and electronic device
JP6680589B2 (en) Package for storing semiconductor element and semiconductor device
JP2011228591A (en) Element housing package and electronic device equipped with the same
JP6809914B2 (en) Semiconductor packages and semiconductor devices
WO2018096826A1 (en) Semiconductor package and semiconductor device
JP6258748B2 (en) Semiconductor element storage package and semiconductor device
WO2017082416A1 (en) Electronic component package
CN112352309B (en) Substrate and semiconductor device
WO2020045563A1 (en) Semiconductor package and semiconductor device provided with same
JP7019021B2 (en) Manufacturing method of semiconductor package, semiconductor device and semiconductor package
JP2009277794A (en) Package for semiconductor element storage
JP6698492B2 (en) Semiconductor package and semiconductor device
JP2005244146A (en) Electronic-component housing package, electronic device, and mounting structure of electronic device
JP5865783B2 (en) Electronic component storage container and electronic device
JP2008198809A (en) Method of manufacturing package for housing electronic-component
JP2011035340A (en) High heat dissipation-type package for housing electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791570

Country of ref document: EP

Kind code of ref document: A1