WO2019208546A1 - Method for producing fluorine-containing unsaturated hydrocarbon - Google Patents

Method for producing fluorine-containing unsaturated hydrocarbon Download PDF

Info

Publication number
WO2019208546A1
WO2019208546A1 PCT/JP2019/017160 JP2019017160W WO2019208546A1 WO 2019208546 A1 WO2019208546 A1 WO 2019208546A1 JP 2019017160 W JP2019017160 W JP 2019017160W WO 2019208546 A1 WO2019208546 A1 WO 2019208546A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
reaction
aqueous solution
production method
compound
Prior art date
Application number
PCT/JP2019/017160
Other languages
French (fr)
Japanese (ja)
Inventor
真理 市野川
高木 洋一
敦司 藤本
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020515473A priority Critical patent/JP7310803B2/en
Publication of WO2019208546A1 publication Critical patent/WO2019208546A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for efficiently producing a fluorine-containing unsaturated hydrocarbon, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin or a chlorofluoroolefin in a liquid phase.
  • fluorine-containing saturated hydrocarbons have been used for cleaning agents, refrigerants, foaming agents, solvents, aerosols and the like. However, it has been pointed out that these compounds may cause global warming. Therefore, fluorine-containing unsaturated hydrocarbons have attracted attention as compounds having a low global warming potential.
  • fluorine-containing saturated hydrocarbons having a structure in which a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms are removed. Reactions of hydrogen chloride or dehydrofluorination are known.
  • Patent Document 1 discloses a reaction in which XCF 2 CF 2 CHClY is dehydrofluorinated to obtain XCF 2 CF ⁇ CClY (X and Y are fluorine atoms or chlorine atoms), and 1,1 1,2,2,3,3-hexafluoro-3-chloropropane is dehydrochlorinated to give hexafluoropropene.
  • Patent Document 2 describes a method for producing 1-chloro-2,3,3-trifluoropropene by dehydrofluorinating 1-chloro-2,2,3,3-tetrafluoropropane.
  • Patent Document 3 1,1-dichloro-2,2,3,3,3-pentafluoropropane is subjected to dehydrofluorination to produce 1,1-dichloro-2,3,3,3-tetrafluoro.
  • a method for obtaining propene is described.
  • the present invention has been made from the above viewpoint, and in a short reaction time by liquid phase reaction, more efficiently from fluorine-containing saturated hydrocarbon to fluorine-containing unsaturated hydrocarbon, specifically, hydrofluoroolefin, perfluoro
  • the object is to provide a method for producing an olefin, hydrochlorofluoroolefin or chlorofluoroolefin.
  • Fluorine-containing saturated carbonization having a structure having 3 to 7 carbon atoms, wherein one of adjacent two carbon atoms is bonded to a hydrogen atom, and the other carbon atom is bonded to a fluorine atom or a chlorine atom.
  • a method for producing a fluorinated unsaturated hydrocarbon by contacting hydrogen with an alkaline aqueous solution to dehydrochlorinate or dehydrofluorinate, wherein either one of the fluorinated saturated hydrocarbon and the alkaline aqueous solution is an average solution.
  • a method for producing a fluorine-containing unsaturated hydrocarbon wherein a droplet having a droplet diameter of 1500 ⁇ m or less is brought into contact with the droplet.
  • the fluorine-containing saturated hydrocarbon is 1-chloro-2,2,3,3-tetrafluoropropane
  • the fluorine-containing unsaturated hydrocarbon is 1-chloro-2,3,3-trifluoropropene.
  • the fluorine-containing saturated hydrocarbon is 1,1-dichloro-2,2,3,3,3-pentafluoropropane
  • the fluorine-containing unsaturated hydrocarbon is 1,1-dichloro-2,3,
  • the phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the fluorine-containing saturated hydrocarbon.
  • the alkaline aqueous solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxides, metal oxides and metal carbonates is dissolved in water.
  • Manufacturing method [11] The production method according to any one of [1] to [10], wherein the content of the base in the alkaline aqueous solution is 0.5 to 48% by mass with respect to the total amount of the alkaline aqueous solution.
  • a liquid phase reaction can be carried out more efficiently in a short reaction time, and more efficiently from a fluorine-containing saturated hydrocarbon to a fluorine-containing unsaturated hydrocarbon, specifically, hydrofluoroolefin, perfluoroolefin, hydrochlorofluoroolefin or chloro Fluoroolefins can be produced.
  • a reactor smaller than a gas phase reaction can be employed, which is industrially advantageous.
  • Hydrofluorocarbon is a compound in which a part of hydrogen atoms in a saturated hydrocarbon compound is replaced with a fluorine atom
  • hydrochlorofluorocarbon is a compound in which a part of hydrogen atoms in a saturated hydrocarbon compound is replaced with a fluorine atom and a chlorine atom.
  • a compound having a carbon-carbon double bond and comprising a carbon atom, a fluorine atom and a hydrogen atom is a hydrofluoroolefin (HFO), having a carbon-carbon double bond, a carbon atom, a chlorine atom, a fluorine
  • HFO hydrofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • PFO perfluoroolefin
  • CFO chloro fluoroolefin
  • reaction (1) The reaction represented by the reaction formula (1) is referred to as reaction (1).
  • reaction (2) The same applies to reactions represented by other formulas.
  • compound (A) The compound represented by formula (A).
  • compound (A) The same applies to compounds represented by other formulas.
  • Each of “ ⁇ ” representing a numerical range includes an upper limit value and a lower limit value.
  • pressure “MPa” represents “absolute pressure”
  • MPaG” represents “gauge pressure”.
  • the production method of the present invention has 3 to 7 carbon atoms, and fluorine-containing saturated carbonization having a structure in which a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms in the molecule.
  • Hydrogen specifically, hydrofluorocarbon (HFC) or hydrochlorofluorocarbon (HCFC) is brought into contact with an alkaline aqueous solution in a liquid phase, and the HFC or HCFC is dehydrochlorinated or dehydrofluorinated to produce a hydrofluoroolefin ( HFO), perfluoroolefin (PFO), hydrochlorofluoroolefin (HCFO), and chlorofluoroolefin (CFO).
  • HFO hydrofluoroolefin
  • PFO perfluoroolefin
  • HCFO hydrochlorofluoroolefin
  • CFO chlorofluoroolefin
  • the HF Or average drop
  • reaction to which the production method of the present invention can be applied is specifically a reaction shown in the following reaction formula (1).
  • the fluorine-containing saturated hydrocarbon of the starting material (raw material) is represented by the formula (A)
  • the fluorine-containing unsaturated hydrocarbon of the target product is represented by the formula (B).
  • Formula (C) is hydrogen chloride or hydrogen fluoride.
  • X 1 and X 2 are a hydrogen atom, and the other is a fluorine atom or a chlorine atom.
  • Y 1 and Y 2 are each independently a hydrogen atom, a fluorine atom or a chlorine atom.
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms (however, part or all of the hydrogen atoms are chlorine atoms or fluorine atoms) And the total number of carbon atoms of R 1 and R 2 is 1-5.
  • One of Y 1 , Y 2 , R 1 and R 2 has a fluorine atom.
  • reaction (1) when compound (A) is brought into contact with an alkaline aqueous solution in the liquid phase, as shown in reaction (1), hydrogen chloride or hydrogen fluoride is eliminated from compound (A) to obtain compound (B).
  • This reaction is carried out in a two-phase state of an organic phase mainly composed of the compound (A) and an aqueous phase mainly composed of an alkaline aqueous solution, and even if mixing is carried out for efficient contact between the two phases by stirring or the like.
  • Increasing speed and improving productivity has not been easy. This is because there is no standard index, and it is not easy to determine the condition setting for bringing the two-phase contact into an optimum state for each apparatus.
  • the present inventors made contact with either one of the compound (A) and the aqueous alkaline solution as droplets having an average droplet diameter of 1500 ⁇ m or less, thereby making it more efficient in a short reaction time. It discovered that a compound (B) can be manufactured and completed this invention.
  • the compound (A) and the alkaline aqueous solution when the compound (A) mainly composed of the organic phase and the alkaline aqueous solution mainly composed of the aqueous phase are brought into contact with each other by stirring due to the difference in surface tension.
  • reaction to which the production method of the present invention can be applied Specific examples of reactions to which the production method of the present invention can be applied will be described below.
  • fluorine-containing unsaturated carbonization represented by the reactions of the following formulas (1-1) to (12-2), (15-1) and (15-2) Examples of hydrogen production are given.
  • Examples of the case of 4 carbon atoms include production examples of fluorine-containing unsaturated hydrocarbons represented by the reactions of the following formulas (13-1) and (13-2).
  • An example of the case of 5 carbon atoms is a production example of a fluorine-containing unsaturated hydrocarbon represented by the reaction of the following formulas (14-1) and (14-2).
  • Formula (1-1) is 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and / or 1,1-dichloro-1,2,3,3,3-
  • a reaction formula for obtaining 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya) from pentafluoropropane (HCFC-225ea) by dehydrofluorination (hereinafter also referred to as deHF). is there.
  • Formula (1-2) is 2,3,3-trichloro-1,1,1,2-tetrafluoropropane (HCFC-224ba) and / or 1,1,1-trichloro-2,3,3,3
  • Formula (2-1) represents 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and / or 1,1,1,2,3,3,3-heptafluoropropane.
  • This is a reaction formula for obtaining hexafluoropropene (PFO-1216) from (HFC-227ea) by deHF.
  • Formula (2-2) is 2-chloro-1,1,1,2,3,3-hexafluoropropane (HCFC-226ba) and / or 1-chloro-1,1,2,3,3,3
  • Formula (3-1) represents 3-chloro-1,1,1,2,2-pentafluoropropane (HCFC-235cb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane
  • deHF from (HCFC-235ea) (Z) -1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd (Z)) and / or (E) -1-chloro-2,3 , 3,3-tetrafluoropropene (HCFO-1224yd (E)).
  • Formula (3-2) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane This is a reaction formula for obtaining HCFO-1224yd (Z) and / or HCFO-1224yd (E) from (HCFC-234ea) by removing HCl.
  • Formula (4-1) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db).
  • HCFC-244bb 2-chloro-1,1,1,3-tetrafluoropropane
  • HCFC-244db 2-chloro-3,3,3-trifluoropropene
  • Formula (4-2) is a compound represented by 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243xb) and / or 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db). Is a reaction formula for obtaining HCFO-1233xf from HCl by dehydrochlorination.
  • Formula (5-1) is a compound represented by the following formula: 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) and / or 1-chloro-1,2,3,3-tetrafluoropropane (HCFC-244ea) ) To (Z) -1-chloro-2,3,3-trifluoropropene (HCFO-1233yd (Z)) and / or (E) -1-chloro-2,3,3-trifluoropropene This is a reaction formula for obtaining (HCFO-1233yd (E)).
  • Formula (5-2) is a compound represented by 2,3-dichloro-1,1,2-trifluoropropane (HCFC-243ba) and / or 1,1-dichloro-2,3,3-trifluoropropane (HCFC-243eb).
  • Formula (6-1) is a compound represented by the following formula: 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa).
  • HCFC-244eb 3-chloro-1,1,1,2-tetrafluoropropane
  • HCFC-244fa 3-chloro-1,1,1,3-tetrafluoropropane
  • Formula (6-2) is a compound represented by 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db) and / or 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa).
  • Formula (7-1) is obtained by removing HF from 1,1,1,2,2-pentafluoropropane (HFC-245cb) and / or 1,1,1,2,3-pentafluoropropane (HFC-245eb). Is a reaction formula for obtaining 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • Formula (7-2) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb). ) To obtain HFO-1234yf by deHCl.
  • Formula (8-1) is obtained by removing HF from 1,1,1,2,3-pentafluoropropane (HFC-245eb) and / or 1,1,1,3,3-pentafluoropropane (HFC-245fa).
  • Is a reaction formula to obtain Formula (8-2) is a compound represented by 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa).
  • Formula (9-1) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 2,3-dichloro-1,1,1,3-tetrafluoropropane (HC) -234da) to (Z) -1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)) and / or (E) -1,2-dichloro-3 , 3,3-trifluoropropene (HCFO-1223xd (E)).
  • Formula (9-2) represents 2,2,3-trichloro-1,1,1-trifluoropropane (HCFC-233ab) and / or 2,3,3-trichloro-1,1,1-trifluoropropane This is a reaction formula for obtaining HCFO-1223xd (Z) and / or HCFO-1223xd (E) from (HCFC-233da) by de-HCl.
  • Formula (10-1) is represented by 1,1,1,2,2,3-hexafluoropropane (HFC-236cb) and / or 1,1,1,2,3,3-hexafluoropropane (HFC-236eb).
  • HFC-236cb 1,1,1,2,3,3-hexafluoropropane
  • HFC-236eb 1,1,1,2,3,3-hexafluoropropane
  • Formula (10-2) is 2-chloro-1,1,1,2,3-pentafluoropropane (HCFC-235bb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane This is a reaction formula for obtaining HFO-1225ye (Z) and / or HFO-1225ye (E) by removing HCl from (HCFC-235ea).
  • Formula (11-1) can be obtained by removing HF from 1,1,1,2-tetrafluoropropane (HFC-254eb) and / or 1,1,1,3-tetrafluoropropane (HFC-254fb) to form 3,3 , 3-trifluoropropene (HFO-1243zf) is obtained.
  • Formula (11-2) is obtained by removing HCl from 2-chloro-1,1,1-trifluoropropane (HCFC-253db) and / or 3-chloro-1,1,1-trifluoropropane (HCFC-244eb). Is a reaction formula for obtaining HFO-1243zf.
  • Formula (12-1) is obtained by removing 3,1,3-difluoropropene (HFC-263eb) and / or 1,1,3-trifluoropropane (HFC-263fa) by deHF. This is a reaction formula to obtain HFO-1252zf).
  • Formula (12-2) yields HFO-1252zf from 2-chloro-1,1-difluoropropane (HCFC-262db) and / or 3-chloro-1,1-difluoropropane (HCFC-262fa) by de-HCl It is a reaction formula.
  • Formula (13-1) is obtained by removing HF from 1,1,1,2,4,4-heptafluorobutane (HFC-347mef) and (Z) -1,1,1,4,4,4- Reaction to obtain hexafluoro-2-butene (HFO-1336mzz (Z)) and / or (E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)) It is a formula.
  • Formula (13-2) is obtained by removing HFO-1336mzz (Z) or HFO-1336mzz (E) from 2-chloro-1,1,1,4,4,4-hexafluorobutane (HCFC-346mdf) by removing HCl. It is the reaction formula to be obtained.
  • Formula (14-1) is a compound represented by the following formula: 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane (HCFC-448occc) and / or 5-chloro-1,1,2,2 (Z) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HC), 3,4,5-octafluoropentane (HCFC-448 pcce) by deHF Reaction formula to obtain HCFO-1437 dycc (Z)) and / or (E) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc (E)) It is.
  • Formula (14-2) is a compound represented by 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane (HCFC-447 obscc) and / or 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane (HCFC-447necc) to remove HCFO-1437 dycc (Z) and / or HCFO-1437 dycc (E) by removing HCl.
  • HCFC-447 obscc 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane
  • HCFC-447necc 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane
  • Formula (15-1) is a compound represented by the following formula: 3-chloro-1,1,1,2,2,3-hexafluoropropane (HCFC-226ca) and / or 1-chloro-1,1,2,3,3,3 By deHF from hexafluoropropane (HCFC-226ea) (Z) -1-chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (Z)) and / or (E) -1 This is a reaction formula for obtaining -chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (E)).
  • Formula (15-2) is a compound represented by 2,3-dichloro-1,1,1,2,3-pentafluoropropane (HCFC-225ba) and / or 1,1-dichloro-1,2,3,3,3.
  • reaction rate can be improved and the reaction can be efficiently carried out.
  • 225 ca is removed by HF to 1214 ya.
  • reaction (5-1) 1233yd (Z) and / or 1233yd (E) is obtained from 244ca by deHF, and 1233xf is obtained from 243db by deHCl in reaction (4-2).
  • reaction (6-2) 1233zd (Z) is obtained by removing HCl from 243fa
  • reaction (9-2) 1223xd (Z) and / or 1223xd (E) is obtained by removing HCl from 233da
  • the reaction to obtain is mentioned.
  • reaction (1-1) a reaction to obtain 1214ya from 225ca by deHF
  • reaction (5-1) a reaction to obtain 1233yd (Z) and / or 1233yd (E) from 244ca by deHF
  • reaction (9-2) is more preferably a reaction in which 1223xd (Z) and / or 1223xd (E) is obtained from 233da by deHCl.
  • the reaction since the compound produced by the dehydrohalogenation reaction does not volatilize at room temperature, the produced compound becomes bubbles and the reaction is efficiently performed without inhibiting the contact between the alkaline aqueous solution and the raw material. Can be implemented. Furthermore, from the viewpoint that the reaction can be carried out efficiently, among the reaction (1-1), the reaction to obtain 1214ya from 225ca by deHF, and among the reaction (5-1), 1233yd (Z) and from 244ca by deHF Or the reaction which obtains 1233yd (E) is more preferable.
  • the compound (A) is in a liquid phase as an organic phase and is in physical contact with an alkaline aqueous solution, more specifically, by contacting with a base in the alkaline aqueous solution.
  • DeHF or deHCl reaction occurs to produce compound (B).
  • either the compound (A) or the alkaline aqueous solution in the form of droplets, and the average droplet diameter of the droplets is 1500 ⁇ m or less.
  • the compound (A) may be a droplet, and an alkaline aqueous solution may be a droplet. Any one of them is appropriately selected depending on the type and amount of the compound (A) and the aqueous alkali solution to form droplets. From the viewpoint of increasing the reaction rate, the compound (A) is preferably brought into contact with an alkaline aqueous solution as droplets.
  • the average droplet diameter of the droplet is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, and even more preferably 400 ⁇ m or less.
  • the average droplet diameter of the droplets is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, preferably 30 ⁇ m or more, and most preferably 50 ⁇ m or more.
  • the average droplet diameter is less than 1 ⁇ m, the entire reaction solution is emulsified, and it may be difficult to separate the target product compound (B) from the reaction solution.
  • Examples of the method of setting the average droplet diameter of either the compound (A) or the alkaline aqueous solution to 1500 ⁇ m or less include a method using a conventionally known apparatus.
  • Examples of such an apparatus include a stirring blade, a line mixer, a homogenizer, an ultrasonic generator, a microbubble generator, and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type as needed.
  • the droplets having an average droplet diameter of the size specified above are batch-type, semi-continuous type Or it is preferable to make it produce
  • the stirring blade include a 4-paddle blade, an anchor blade, a gate blade, a 3-propeller, a ribbon blade, and a 6-turbine blade.
  • the average droplet diameter d p (m) of the compound (A) or the aqueous alkali solution formed in the stirring tank is represented by the following formula (16).
  • d p / d i C * We ⁇ 0.6
  • d i is the inner diameter (m) of the stirring blade
  • We is the Weber number
  • C is a constant.
  • We ⁇ * N 2 * d i 3 / ⁇ .
  • is the density of the droplet component (kg / m 3 )
  • N is the rotational speed (rps) of stirring
  • is the difference in surface tension (Nm ⁇ 1 ) between the compound (A) and the alkaline aqueous solution. .
  • C is for correcting the influence on the average droplet diameter, and can be experimentally obtained from the correlation between the number of rotations of stirring and the droplet diameter in the stirring tank. That is, when the relationship between the number of rotations of stirring and the droplet diameter is plotted, it is almost linear, and the slope is C. Further, for example, the value of C obtained from the experimental results described in Non-Patent Document 1 (Calderbank, PH, Trans. Inst. Chem. Engrs., 36, 443) may be referred to. C is usually 0.052 to 0.17.
  • C is usually 0.052 to 0.17, preferably 0.055 to 0.070.
  • the compound (A) and an aqueous alkali solution are usually introduced into a reactor, and droplets are generated using the apparatus for generating the droplets.
  • the material of the reactor is not particularly limited as long as it is inert to the compound (A), a phase transfer catalyst described later, an alkaline aqueous solution, a reaction solution component containing a reaction product, and the like, and is a corrosion-resistant material.
  • glass, iron, nickel, an alloy such as stainless steel mainly containing iron, or the like can be given.
  • the reaction in the present invention may be performed by a batch method, a semi-continuous method, or a continuous flow method. Compared to the case where the average droplet diameter is not adjusted within the scope of the present invention, the reaction time can be shortened in any manner.
  • either the compound (A) or the alkaline aqueous solution is present as droplets at any location in the reactor, and the average droplet diameter of the droplets May be 1500 ⁇ m or less.
  • the compound (A) or the aqueous alkaline solution is present as droplets, and the average droplet diameter of the droplets is 1500 ⁇ m or less.
  • the droplet diameter is either a compound (A) or an alkaline aqueous solution at any time during the reaction, and the average droplet diameter of the droplet is 1500 ⁇ m or less. If it is.
  • the compound (A) or the alkaline aqueous solution is present as droplets, and the average droplet diameter of the droplets is 1500 ⁇ m or less.
  • the ratio of the compound (A) to be introduced into the reactor and the aqueous alkali solution is not particularly limited as long as either of them is a ratio within which the droplets are within the above regulations.
  • the alkaline aqueous solution is preferably 10 to 400% by volume, more preferably 50 to 300% by volume with respect to 100% by volume of the compound (A).
  • the volume ratio of the compound (A) and the aqueous alkaline solution is the compound (A) and the alkali to be combined in consideration of the preferable use amount of the base with respect to the compound (A), the preferable content of the base in the aqueous alkaline solution, etc. It adjusts suitably according to the kind of aqueous solution.
  • the alkaline aqueous solution used in the production method of the present invention refers to an aqueous solution in which a base is dissolved in water.
  • the base is not particularly limited as long as the above reaction (1) can be performed.
  • the base preferably contains at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
  • examples include alkaline earth metal hydroxides and alkali metal hydroxides.
  • examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide.
  • examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • examples of the metal constituting the metal oxide include an alkali metal element, an alkaline earth metal element, a transition metal element, a Group 12 metal element, and a Group 13 metal element.
  • alkali metal elements, alkaline earth metal elements, Group 6 metal elements, Group 8 metal elements, Group 10 metal elements, Group 12 metal elements, or Group 13 metal elements are preferable, and sodium, calcium, chromium More preferred are iron, zinc, or aluminum.
  • the metal oxide may be an oxide containing one kind of metal or a complex oxide of two or more kinds of metals.
  • sodium oxide, calcium oxide, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide and the like are preferable from the viewpoint of reaction time and reaction yield, and alumina or chromia is more preferable.
  • examples include alkaline earth metal carbonates and alkali metal carbonates.
  • alkaline earth metal carbonate include carbonates of metals such as beryllium, magnesium, calcium, strontium, barium, and radium.
  • alkali metal carbonate include metal carbonates such as lithium, sodium, potassium, rubidium, cesium, and francium.
  • the base used in the production method of the present invention is preferably a metal hydroxide from the viewpoint of reaction time and reaction yield, and particularly preferably at least one selected from the group consisting of potassium hydroxide and sodium hydroxide.
  • a metal hydroxide may be used individually by 1 type and may use 2 or more types together.
  • the content of the base in the alkaline aqueous solution is preferably such that the ratio (unit%) of the mass of the base to the total amount (mass) of the alkaline aqueous solution is 0.5 to 48% by mass from the viewpoint of reaction rate, and 20 to 45% by mass. % Is more preferable, and 30 to 40% by mass is further preferable. If the amount of base is less than the above range, a sufficient reaction rate may not be obtained. On the other hand, when the amount of the base exceeds the above range, the amount of by-products generated increases, and the selectivity for the target substance (compound (B)) may decrease.
  • the amount of base used in the production method of the present invention depends on the type of reaction (1).
  • the amount of base used is preferably 0.5 to 10.0 moles with respect to 1 mole of 244ca from the viewpoint of the reaction yield and the selectivity of 1233yd. 0.5 to 5.0 mol is more preferable, and 0.8 to 3.0 mol is more preferable.
  • the amount of the base used is preferably 0.5 to 2.0 mol with respect to 1 mol of 225ca from the viewpoint of the reaction yield and the selectivity of 1214ya.
  • 0.5 to 1.8 mol is more preferable, and 1.0 to 1.5 mol is more preferable.
  • reaction conditions other than those described above in the reaction (1) for example, temperature, pressure, etc., can be generally the same as the reaction conditions when the alkaline aqueous solution and the compound (A) are contacted in the liquid phase to cause deHF or deHCl reaction. .
  • the contact temperature between 244ca and the base is preferably 5 to 90 ° C, more preferably 10 to 85 ° C, from the viewpoint of the reaction activity and the selectivity of 1233yd. 15 to 80 ° C. is more preferable, and 30 to 80 ° C. is particularly preferable.
  • the reaction temperature does not reach the above range, the reaction rate and the reaction yield may be reduced.
  • separation from 1233yd may be difficult.
  • 1233yd may further increase the amount of 1-chloro-3,3-difluoropropyne produced by dehydrofluorination and the selectivity of 1233yd may decrease. There is sex.
  • reaction to obtain 1214ya from 225ca by deHF from the viewpoint of reaction activity and target product selectivity, 0 to 90 ° C is preferable, 5 to 80 ° C is more preferable, and 10 to 70 ° C is more preferable. Most preferred is 15-60 ° C.
  • a compound (A) may be used with the by-product and unreacted raw material byproduced at the time of manufacture of a compound (A).
  • it can use for the manufacturing method of this invention as a composition of a compound (A) whose purity is 99.5 mass% or more.
  • 225ca may be used as an isomer mixture of dichloropentafluoropropane (HCFC-225) containing 225ca, in which case the total amount of HCFC-225 The proportion of 225ca may be 10-99.5 mol%.
  • the reaction temperature is preferably 0 to 25 ° C. from the viewpoint of suppressing the formation of by-products.
  • a phase transfer catalyst is preferably present.
  • phase transfer catalyst examples include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc., and are quaternary from the viewpoint of industrial availability, price, and ease of handling. Ammonium salts are preferred.
  • TBAC tetra-n-butylammonium chloride
  • TBAB tetra-n-butylammonium bromide
  • TOMAC methyltri-n-octylammonium chloride
  • TBAC tetra-n-butylammonium chloride
  • TBAC tetra-n-butylammonium bromide
  • TOMAC methyltri-n-octylammonium chloride
  • TBAC tetra-n-butylammonium chloride
  • TBAB tetra-n-butylammonium bromide
  • TBAC tetra-n-butylammonium bromide
  • TBAC tetra-n-butylammonium chloride
  • TBAC tetra-n-butylammonium chloride
  • TOMAC methyltri-n-octylammonium chloride
  • the amount of the phase transfer catalyst is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the compound (A). . If the amount of the phase transfer catalyst is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount used cannot be obtained, which is disadvantageous in terms of cost.
  • the phase transfer catalyst exists both in the organic phase and in the alkaline aqueous solution. Even when a phase transfer catalyst is present, the reaction liquid is composed of an organic phase mainly composed of the compound (A) and an aqueous phase composed of an alkaline aqueous solution, and any of the phases has a liquid droplet diameter as defined above. By using droplets, the reaction time is shortened and productivity is improved.
  • the reaction rate can be improved by setting the droplet diameter of the compound (A) or the aqueous alkali solution within the above specified range, the amount of the phase transfer catalyst used can be reduced accordingly. Even in this respect, the manufacturing cost can be reduced.
  • the amount of the phase transfer catalyst can be sufficiently reacted even with 0.001 to 1 part by mass with respect to 100 parts by mass of the compound (A).
  • the reaction solution is left to separate into an organic phase and an aqueous phase.
  • an unreacted compound (A), a by-product and the like may be contained in addition to the target product compound (B).
  • a separation and purification method such as general distillation.
  • the compound (A) when the unreacted compound (A) remains in the reaction solution, the compound (A) can be concentrated by distillation and recycled as the raw material of the present invention.
  • the aqueous phase separated from the organic phase can be reused by taking out only this amount and adding a base again so as to obtain an appropriate concentration.
  • the purified compound (B) containing the compound (B) with high purity can be obtained by separating and purifying the compound (B) obtained by the production method of the present invention as described above.
  • the purified compound (B) thus obtained contains an acid content such as HF or HCl, or an impurity such as water or oxygen, the equipment corrodes during its use, and the stability of the compound (B) decreases. There is a risk of. Therefore, it is preferable to remove these impurities by a conventionally known method to such an extent that there is no problem with corrosion and stability.
  • 244ca was produced by the following method and used in Examples 1 to 7 and Comparative Example 1.
  • the following method is a method of obtaining 244ca by chlorinating 2,2,3,3-tetrafluoropropanol (TFPO) with thionyl chloride as shown in the following formula (2).
  • Example 1 In a 200 mL autoclave (reactor, 200 ml AC) made of SUS304 equipped with four paddle blades, a stirrer, and a pressure meter, 171 g of 34.0 mass% potassium hydroxide (KOH) aqueous solution was placed and heated to 50 ° C. Further, 0.78 g of tetra-n-butylammonium bromide (TBAB) was dissolved in 76.4 g of 244ca, filled into a cylinder, and heated to 50 ° C. When the internal temperature of the reactor reached 50 ° C., the 244ca solution in the cylinder was charged into the reactor. Thereafter, stirring was continued for 45 hours until the conversion of 244ca reached 99.8% or more, and the organic layer and the aqueous layer were recovered.
  • KOH 34.0 mass% potassium hydroxide
  • TBAB tetra-n-butylammonium bromide
  • Table 1 shows the dimensions of the reactor, reaction conditions, and results.
  • the conversion rate is the ratio (unit:%) of the molar amount of the raw material (244ca) consumed in the reaction to the molar amount of the raw material (244ca) used in the reaction. Show.
  • the reaction time in Table 1 is the time required from the start of the reaction until the conversion rate of 244ca reaches 99.8% or more.
  • Example 2 A glass 500 ml separable flask (reactor) equipped with a gate blade, a stirrer, and a Dimroth condenser was charged with 333 g of 34 mass% KOH aqueous solution, 156 g of 244ca, and 1.59 g of TBAB. The reactor was heated to 50 ° C. and stirring was continued. The reaction was terminated after 30 hours from the start of stirring, and collection and analysis were conducted in the same manner as in Example 1. As a result, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
  • Example 3 The reaction was carried out in the same procedure as in Example 2 except that the reactor was changed to a glass 500 ml separable flask equipped with three propellers, a stirrer and a Dimroth condenser, and the reaction conditions were changed to the conditions shown in Table 1. went. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
  • Examples 4 to 6 The reaction was performed in the same reactor and procedure as in Example 3 except that the reaction conditions were changed to those shown in Table 1. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
  • Example 7 Into a 2500 mL autoclave (reactor, 2500 ml AC) manufactured by HC276C equipped with four paddle blades, a stirrer, and a pressure meter, 988 g of 34 mass% potassium hydroxide (KOH) aqueous solution was placed, and the reactor was heated to 70 ° C. Further, 3.87 g of tetra-n-butylammonium chloride (TBAC) was dissolved in 450 g of 244ca, filled into a cylinder, and heated to 70 ° C. When the reactor internal temperature reached 70 ° C., the 244ca solution in the cylinder was charged into the reactor.
  • KOH potassium hydroxide
  • TBAC tetra-n-butylammonium chloride
  • Example 8 The raw material was changed to 225ca (Asahi Glass Co., Ltd., purity 100%, the same applies to the following), the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. The reaction was carried out in the same reactor and procedure as in Example 1. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
  • KOH potassium hydroxide
  • the conversion rate indicates the ratio (unit:%) of the molar amount of the raw material (225ca) consumed in the reaction to the molar amount of the raw material (225ca) used in the reaction.
  • the reaction time in Table 2 is the time required from the start of the reaction until the conversion of 225ca reaches 99.8% or more.
  • Example 9 The reaction was carried out in the same reactor and procedure as in Example 2 except that the raw material was changed to 225ca, the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. It was. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
  • KOH potassium hydroxide
  • Example 10 and 11 The reaction was carried out in the same reactor and procedure as in Example 3, except that the raw material was changed to 225ca, the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. It was. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
  • KOH potassium hydroxide
  • Example 2 The reaction was carried out in the same reactor and procedure as in Example 3, except that the raw material was changed to 225ca, the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. It was. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
  • KOH potassium hydroxide

Abstract

The present invention provides a method for producing a fluorine-containing unsaturated hydrocarbon, specifically a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin or a chlorofluoroolefin from a fluorine-containing saturated hydrocarbon more efficiently by means of a liquid phase reaction in a shorter reaction time. A method for producing a fluorine-containing unsaturated hydrocarbon through dehydrochlorination or hydrogen fluoride elimination by bringing a fluorine-containing saturated hydrocarbon, which has 3-7 carbon atoms and has a structure wherein one of two adjacent carbon atoms is bonded with a hydrogen atom and the other is bonded with a fluorine atom or a chlorine atom, into contact with an aqueous alkaline solution. This method for producing a fluorine-containing unsaturated hydrocarbon is characterized in that either one of the fluorine-containing saturated hydrocarbon and the aqueous alkaline solution is brought into contact with the other in the form of droplets having an average droplet diameter of 1,500 μm or less.

Description

含フッ素不飽和炭化水素の製造方法Method for producing fluorine-containing unsaturated hydrocarbon
 本発明は、含フッ素不飽和炭化水素、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを液相において効率的に製造する方法に関する。 The present invention relates to a method for efficiently producing a fluorine-containing unsaturated hydrocarbon, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin or a chlorofluoroolefin in a liquid phase.
 近年、洗浄剤、冷媒、発泡剤、溶剤、エアゾール用途等に含フッ素飽和炭化水素が用いられている。しかしながら、これらの化合物は、地球温暖化の原因となる可能性が指摘されている。そこで、地球温暖化係数の小さい化合物として含フッ素不飽和炭化水素が注目されている。 In recent years, fluorine-containing saturated hydrocarbons have been used for cleaning agents, refrigerants, foaming agents, solvents, aerosols and the like. However, it has been pointed out that these compounds may cause global warming. Therefore, fluorine-containing unsaturated hydrocarbons have attracted attention as compounds having a low global warming potential.
 含フッ素不飽和炭化水素の製造方法の一つとして、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有する含フッ素飽和炭化水素を脱塩化水素または脱フッ化水素させる反応が知られている。 As one of the methods for producing fluorine-containing unsaturated hydrocarbons, fluorine-containing saturated hydrocarbons having a structure in which a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms are removed. Reactions of hydrogen chloride or dehydrofluorination are known.
 例えば、特許文献1には、XCFCFCHClYを脱フッ化水素させて、XCFCF=CClY(X、Yは、フッ素原子または塩素原子である。)を得る反応、および、1,1,1,2,3,3-ヘキサフルオロ-3-クロロプロパンを脱塩化水素させ、ヘキサフルオロプロペンを得る反応が記載されている。 For example, Patent Document 1 discloses a reaction in which XCF 2 CF 2 CHClY is dehydrofluorinated to obtain XCF 2 CF═CClY (X and Y are fluorine atoms or chlorine atoms), and 1,1 1,2,2,3,3-hexafluoro-3-chloropropane is dehydrochlorinated to give hexafluoropropene.
 特許文献2には1-クロロ-2,2,3,3-テトラフルオロプロパンを脱フッ化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを製造する方法が記載されており、特許文献3には、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンを脱フッ化水素反応させて1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを得る方法が記載されている。 Patent Document 2 describes a method for producing 1-chloro-2,3,3-trifluoropropene by dehydrofluorinating 1-chloro-2,2,3,3-tetrafluoropropane. In Patent Document 3, 1,1-dichloro-2,2,3,3,3-pentafluoropropane is subjected to dehydrofluorination to produce 1,1-dichloro-2,3,3,3-tetrafluoro. A method for obtaining propene is described.
 これらの特許文献1~3のいずれにおいても、含フッ素飽和炭化水素の脱塩化水素または脱フッ化水素反応は、液相反応でアルカリ水溶液を用いて行う例が記載されている。これらの反応においては、反応時間が長く、そのため、相間移動触媒を使用する等の改良がなされているものの、より効率的に生産できる方法が求められていた。 In any of these Patent Documents 1 to 3, an example is described in which the dehydrochlorination or dehydrofluorination reaction of a fluorine-containing saturated hydrocarbon is performed using an aqueous alkali solution in a liquid phase reaction. In these reactions, the reaction time is long. Therefore, although improvements such as the use of a phase transfer catalyst have been made, a method capable of producing more efficiently has been demanded.
日本特許第3778298号公報Japanese Patent No. 3778298 国際公開第2017/018412号International Publication No. 2017/018412 国際公開第2010/074254号International Publication No. 2010/074254
 本発明は、上記観点からなされたものであって、液相反応により短い反応時間で、より効率的に含フッ素飽和炭化水素から含フッ素不飽和炭化水素、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを製造する方法の提供を目的とする。 The present invention has been made from the above viewpoint, and in a short reaction time by liquid phase reaction, more efficiently from fluorine-containing saturated hydrocarbon to fluorine-containing unsaturated hydrocarbon, specifically, hydrofluoroolefin, perfluoro The object is to provide a method for producing an olefin, hydrochlorofluoroolefin or chlorofluoroolefin.
 本発明は、上記目的を達成するものであり、下記の態様を有する。
[1]炭素数が3~7であり、隣り合う2つの炭素原子の一方の炭素原子が水素原子と結合し、他方の炭素原子がフッ素原子または塩素原子と結合した構造を有する含フッ素飽和炭化水素を、アルカリ水溶液と接触させて脱塩化水素または脱フッ化水素することにより含フッ素不飽和炭化水素を製造する方法であって、前記含フッ素飽和炭化水素およびアルカリ水溶液のいずれか一方を平均液滴径が1500μm以下の液滴にして接触させることを特徴とする、含フッ素不飽和炭化水素の製造方法。
The present invention achieves the above object and has the following aspects.
[1] Fluorine-containing saturated carbonization having a structure having 3 to 7 carbon atoms, wherein one of adjacent two carbon atoms is bonded to a hydrogen atom, and the other carbon atom is bonded to a fluorine atom or a chlorine atom. A method for producing a fluorinated unsaturated hydrocarbon by contacting hydrogen with an alkaline aqueous solution to dehydrochlorinate or dehydrofluorinate, wherein either one of the fluorinated saturated hydrocarbon and the alkaline aqueous solution is an average solution. A method for producing a fluorine-containing unsaturated hydrocarbon, wherein a droplet having a droplet diameter of 1500 μm or less is brought into contact with the droplet.
[2]前記含フッ素飽和炭化水素の平均液滴径を800μm以下の液滴にして、アルカリ水溶液と接触させる、[1]の製造方法。
[3]前記液滴を撹拌翼、ラインミキサー、ホモジナイザー、超音波発生器、およびマイクロバブル発生器から選ばれる少なくとも1種の装置を用いて生成させる、[1]または[2]の製造方法。
[4]前記液滴を撹拌翼で撹拌させることにより生成させる、[1]~[3]のいずれかの製造方法。
[5]前記液滴の平均液滴径を1μm以上400μm以下とする、[1]~[4]のいずれかの製造方法。
[6]前記含フッ素飽和炭化水素が1-クロロ-2,2,3,3-テトラフルオロプロパンであり、前記含フッ素不飽和炭化水素が1-クロロ-2,3,3-トリフルオロプロペンである、[1]~[5]のいずれかの製造方法。
[2] The method according to [1], wherein the fluorine-containing saturated hydrocarbon has an average droplet diameter of 800 μm or less and is brought into contact with an alkaline aqueous solution.
[3] The method according to [1] or [2], wherein the droplets are generated using at least one device selected from a stirring blade, a line mixer, a homogenizer, an ultrasonic generator, and a microbubble generator.
[4] The method according to any one of [1] to [3], wherein the droplets are generated by stirring with a stirring blade.
[5] The method according to any one of [1] to [4], wherein an average droplet diameter of the droplets is 1 μm or more and 400 μm or less.
[6] The fluorine-containing saturated hydrocarbon is 1-chloro-2,2,3,3-tetrafluoropropane, and the fluorine-containing unsaturated hydrocarbon is 1-chloro-2,3,3-trifluoropropene. A production method according to any one of [1] to [5].
[7]前記含フッ素飽和炭化水素が1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンであり、前記含フッ素不飽和炭化水素が1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンである、[1]~[5]のいずれかの製造方法。
[8]前記含フッ素飽和炭化水素を、相間移動触媒の存在下にアルカリ水溶液と接触させる、[1]~[7]のいずれかの製造方法。
[9]前記相間移動触媒を、前記含フッ素飽和炭化水素の100質量部に対して、0.001~10質量部の割合で存在させる、[8]の製造方法。
[10]前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、[1]~[9]のいずれかの製造方法。
[11]前記アルカリ水溶液における塩基の含有量は、アルカリ水溶液の全量に対して0.5~48質量%となる量である、[1]~[10]のいずれかの製造方法。
[7] The fluorine-containing saturated hydrocarbon is 1,1-dichloro-2,2,3,3,3-pentafluoropropane, and the fluorine-containing unsaturated hydrocarbon is 1,1-dichloro-2,3, The production method of any one of [1] to [5], which is 3,3-tetrafluoropropene.
[8] The production method of any one of [1] to [7], wherein the fluorine-containing saturated hydrocarbon is brought into contact with an alkaline aqueous solution in the presence of a phase transfer catalyst.
[9] The production method of [8], wherein the phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the fluorine-containing saturated hydrocarbon.
[10] Any of [1] to [9], wherein the alkaline aqueous solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxides, metal oxides and metal carbonates is dissolved in water. Manufacturing method.
[11] The production method according to any one of [1] to [10], wherein the content of the base in the alkaline aqueous solution is 0.5 to 48% by mass with respect to the total amount of the alkaline aqueous solution.
 本発明によれば、液相反応により短い反応時間で、より効率的に含フッ素飽和炭化水素から含フッ素不飽和炭化水素、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを製造できる。
 また、本発明の製造方法は液相反応で実施することから、気相反応に比して小さな反応器を採用でき、工業上有利である。
According to the present invention, a liquid phase reaction can be carried out more efficiently in a short reaction time, and more efficiently from a fluorine-containing saturated hydrocarbon to a fluorine-containing unsaturated hydrocarbon, specifically, hydrofluoroolefin, perfluoroolefin, hydrochlorofluoroolefin or chloro Fluoroolefins can be produced.
In addition, since the production method of the present invention is carried out by a liquid phase reaction, a reactor smaller than a gas phase reaction can be employed, which is industrially advantageous.
 本明細書における用語の意味、及び記載の仕方は下記のとおりである。
 ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1224yd」においては「1224yd」)を用いることがある。さらに、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。
The meaning of terms in this specification and the way of description are as follows.
As for the halogenated hydrocarbon, the abbreviation of the compound is described in parentheses after the compound name, but the abbreviation is used instead of the compound name as necessary. In addition, as abbreviations, only numbers after the hyphen (-) and lower-case alphabetic characters (for example, "1224yd" in "HCFO-1224yd") may be used. Furthermore, (E) attached to the names of compounds having geometric isomers and their abbreviations indicate E form (trans form), and (Z) indicates Z form (cis form). In the names and abbreviations of the compounds, when the E-form and Z-form are not specified, the names and abbreviations are generic names including E-form, Z-form, and a mixture of E-form and Z-form.
 飽和炭化水素化合物の水素原子の一部をフッ素原子に置き換えた化合物をハイドロフルオロカーボン(HFC)、飽和炭化水素化合物の水素原子の一部をフッ素原子および塩素原子に置き換えた化合物をハイドロクロロフルオロカーボン(HCFC)、炭素-炭素二重結合を有し、炭素原子、フッ素原子および水素原子から構成される化合物をハイドロフルオロオレフィン(HFO)、炭素-炭素二重結合を有し、炭素原子、塩素原子、フッ素原子および水素原子から構成される化合物をハイドロクロロフルオロオレフィン(HCFO)といい、炭素-炭素二重結合を有し、炭素原子およびフッ素原子から構成される化合物をペルフルオロオレフィン(PFO)といい、炭素-炭素二重結合を有し、炭素原子、塩素原子およびフッ素原子から構成される化合物をクロロフルオロオレフィン(CFO)という。 Hydrofluorocarbon (HFC) is a compound in which a part of hydrogen atoms in a saturated hydrocarbon compound is replaced with a fluorine atom, and hydrochlorofluorocarbon (HCFC) is a compound in which a part of hydrogen atoms in a saturated hydrocarbon compound is replaced with a fluorine atom and a chlorine atom. ), A compound having a carbon-carbon double bond and comprising a carbon atom, a fluorine atom and a hydrogen atom is a hydrofluoroolefin (HFO), having a carbon-carbon double bond, a carbon atom, a chlorine atom, a fluorine A compound composed of atoms and hydrogen atoms is called hydrochlorofluoroolefin (HCFO), a compound having a carbon-carbon double bond and composed of carbon atoms and fluorine atoms is called perfluoroolefin (PFO), carbon -Having a carbon double bond, carbon atom, chlorine atom or fluorine atom Configured compound of chloro fluoroolefin (CFO).
 反応式(1)で示される反応を、反応(1)という。他の式で表される反応も同様である。式(A)で示される化合物を化合物(A)という。他の式で表される化合物も同様である。数値範囲を表す「~」では、いずれも、上限値および下限値を含む。
 「圧力」について、「MPa」は「絶対圧」を、「MPaG」は「ゲージ圧」を表す。
The reaction represented by the reaction formula (1) is referred to as reaction (1). The same applies to reactions represented by other formulas. The compound represented by formula (A) is referred to as compound (A). The same applies to compounds represented by other formulas. Each of “˜” representing a numerical range includes an upper limit value and a lower limit value.
Regarding “pressure”, “MPa” represents “absolute pressure”, and “MPaG” represents “gauge pressure”.
 本発明の製造方法は、炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有する含フッ素飽和炭化水素、具体的には、ハイドロフルオロカーボン(HFC)またはハイドロクロロフルオロカーボン(HCFC)を、液相でアルカリ水溶液と接触させ、前記HFCまたはHCFCを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン(HFO)、ペルフルオロオレフィン(PFO)、ハイドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)から選ばれる含フッ素不飽和炭化水素を得る、含フッ素不飽和炭化水素の製造方法であって、前記脱塩化水素または脱フッ化水素させる反応において、前記HFCまたはHCFCおよびアルカリ水溶液のいずれか一方を平均液滴径が1500μm以下の液滴にして接触させることを特徴とする。 The production method of the present invention has 3 to 7 carbon atoms, and fluorine-containing saturated carbonization having a structure in which a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms in the molecule. Hydrogen, specifically, hydrofluorocarbon (HFC) or hydrochlorofluorocarbon (HCFC) is brought into contact with an alkaline aqueous solution in a liquid phase, and the HFC or HCFC is dehydrochlorinated or dehydrofluorinated to produce a hydrofluoroolefin ( HFO), perfluoroolefin (PFO), hydrochlorofluoroolefin (HCFO), and chlorofluoroolefin (CFO). In the reaction of hydrogen chloride or dehydrofluorination, the HF Or average droplet size one of HCFC and alkaline aqueous solution and wherein the contacting in the following droplet 1500 .mu.m.
(本発明の製造方法が適用可能な反応)
 本発明の製造方法が適用される反応は、具体的には、下記反応式(1)に示す反応である。式(1)中、出発物質(原料)の含フッ素飽和炭化水素は式(A)で示され、目的生成物の含フッ素不飽和炭化水素は式(B)で示される。式(C)は塩化水素またはフッ化水素である。
(Reaction to which the production method of the present invention can be applied)
The reaction to which the production method of the present invention is applied is specifically a reaction shown in the following reaction formula (1). In the formula (1), the fluorine-containing saturated hydrocarbon of the starting material (raw material) is represented by the formula (A), and the fluorine-containing unsaturated hydrocarbon of the target product is represented by the formula (B). Formula (C) is hydrogen chloride or hydrogen fluoride.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ただし、式(1)中の記号は以下のとおりである。
 X、Xは、一方が水素原子であり、他方がフッ素原子または塩素原子である。
 Y、Yは、それぞれ独立して、水素原子、フッ素原子または塩素原子である。
 R、Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子または炭素原子数1~5の脂肪族飽和炭化水素基(ただし、水素原子の一部または全部が塩素原子またはフッ素原子で置換されてもよい。)であり、RとRの合計の炭素原子数は1~5である。
 Y、Y、RおよびRのいずれかにフッ素原子を有する。
However, the symbols in formula (1) are as follows.
One of X 1 and X 2 is a hydrogen atom, and the other is a fluorine atom or a chlorine atom.
Y 1 and Y 2 are each independently a hydrogen atom, a fluorine atom or a chlorine atom.
R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms (however, part or all of the hydrogen atoms are chlorine atoms or fluorine atoms) And the total number of carbon atoms of R 1 and R 2 is 1-5.
One of Y 1 , Y 2 , R 1 and R 2 has a fluorine atom.
 従来から、化合物(A)を液相でアルカリ水溶液と接触させると、反応(1)に示すように化合物(A)から塩化水素またはフッ化水素が脱離して化合物(B)が得られることが知られている。この反応は、化合物(A)を主体とする有機相とアルカリ水溶液を主体とする水相の2相状態で行われ、撹拌等により2相の接触を効率よく行うための混合を行っても反応速度を上げて、生産性を向上させることは容易でなかった。これは、基準となる指標がないために、装置毎に2相の接触を最適な状態にするための条件設定を確定するのが容易でないことに起因していた。 Conventionally, when compound (A) is brought into contact with an alkaline aqueous solution in the liquid phase, as shown in reaction (1), hydrogen chloride or hydrogen fluoride is eliminated from compound (A) to obtain compound (B). Are known. This reaction is carried out in a two-phase state of an organic phase mainly composed of the compound (A) and an aqueous phase mainly composed of an alkaline aqueous solution, and even if mixing is carried out for efficient contact between the two phases by stirring or the like. Increasing speed and improving productivity has not been easy. This is because there is no standard index, and it is not easy to determine the condition setting for bringing the two-phase contact into an optimum state for each apparatus.
 本発明者らは、上記反応(1)において、化合物(A)およびアルカリ水溶液のいずれか一方を平均液滴径1500μm以下の液滴にして接触させることにより、短い反応時間で、より効率的に化合物(B)が製造できることを見出し、本発明を完成させた。本発明では、有機相を主体とする化合物(A)と、水相を主体とするアルカリ水溶液との表面張力の違いにより、両者を攪拌などにより接触させた場合における、化合物(A)およびアルカリ水溶液のいずれか一方が液滴になる現象を利用し、この液滴の平均液滴径というファクターを調整することにより、装置の種類や規模によらず上記反応(1)の反応時間を短縮でき、化合物(B)を生産性よく製造できる。 In the above reaction (1), the present inventors made contact with either one of the compound (A) and the aqueous alkaline solution as droplets having an average droplet diameter of 1500 μm or less, thereby making it more efficient in a short reaction time. It discovered that a compound (B) can be manufactured and completed this invention. In the present invention, the compound (A) and the alkaline aqueous solution when the compound (A) mainly composed of the organic phase and the alkaline aqueous solution mainly composed of the aqueous phase are brought into contact with each other by stirring due to the difference in surface tension. By using the phenomenon that any one of the droplets becomes a droplet and adjusting the factor of the average droplet diameter of the droplet, the reaction time of the reaction (1) can be shortened regardless of the type and scale of the apparatus, Compound (B) can be produced with high productivity.
(本発明の製造方法が適用可能な反応)
 本発明の製造方法が適用可能な反応の具体例を以下に説明する。炭素原子数3の場合の例として、以下の式(1-1)~式(12-2)、式(15-1)、式(15-2)の反応に示される、含フッ素不飽和炭化水素の製造例が挙げられる。炭素原子数4の場合の例として、以下の式(13-1)および式(13-2)の反応に示される、含フッ素不飽和炭化水素の製造例が挙げられる。炭素原子数5の場合の例として、以下の式(14-1)および式(14-2)の反応に示される、含フッ素不飽和炭化水素の製造例が挙げられる。
(Reaction to which the production method of the present invention can be applied)
Specific examples of reactions to which the production method of the present invention can be applied will be described below. As an example in the case of 3 carbon atoms, fluorine-containing unsaturated carbonization represented by the reactions of the following formulas (1-1) to (12-2), (15-1) and (15-2) Examples of hydrogen production are given. Examples of the case of 4 carbon atoms include production examples of fluorine-containing unsaturated hydrocarbons represented by the reactions of the following formulas (13-1) and (13-2). An example of the case of 5 carbon atoms is a production example of a fluorine-containing unsaturated hydrocarbon represented by the reaction of the following formulas (14-1) and (14-2).
 式(1-1)は3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)および/または1,1-ジクロロ-1,2,3,3,3-ペンタフルオロプロパン(HCFC-225ea)を脱フッ化水素(以下、脱HFともいう。)により1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)を得る反応式である。式(1-2)は、2,3,3-トリクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-224ba)および/または1,1,1-トリクロロ-2,3,3,3-テトラフルオロプロパン(HCFC-224eb)を脱塩化水素(以下、脱HClともいう。)することによりCFO-1214yaを得る反応式である。 Formula (1-1) is 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and / or 1,1-dichloro-1,2,3,3,3- A reaction formula for obtaining 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya) from pentafluoropropane (HCFC-225ea) by dehydrofluorination (hereinafter also referred to as deHF). is there. Formula (1-2) is 2,3,3-trichloro-1,1,1,2-tetrafluoropropane (HCFC-224ba) and / or 1,1,1-trichloro-2,3,3,3 A reaction formula for obtaining CFO-1214ya by dehydrochlorinating (hereinafter also referred to as deHCl) of tetrafluoropropane (HCFC-224eb).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2-1)は、1,1,1,2,2,3,3-ヘプタフルオロプロパン(HFC-227ca)および/または1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)から脱HFによりヘキサフルオロプロペン(PFO-1216)を得る反応式である。式(2-2)は、2-クロロ-1,1,1,2,3,3-ヘキサフルオロプロパン(HCFC-226ba)および/または1-クロロ-1,1,2,3,3,3-ヘキサフルオロプロパン(HCFC-226ea)から脱HClによりPFO-1216を得る反応式である。 Formula (2-1) represents 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and / or 1,1,1,2,3,3,3-heptafluoropropane. This is a reaction formula for obtaining hexafluoropropene (PFO-1216) from (HFC-227ea) by deHF. Formula (2-2) is 2-chloro-1,1,1,2,3,3-hexafluoropropane (HCFC-226ba) and / or 1-chloro-1,1,2,3,3,3 A reaction formula for obtaining PFO-1216 from hexafluoropropane (HCFC-226ea) by deHCl.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3-1)は、3-クロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-235cb)および/または3-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235ea)から脱HFにより(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))および/または(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))を得る反応式である。式(3-2)は、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)および/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234ea)から脱HClによりHCFO-1224yd(Z)および/またはHCFO-1224yd(E)を得る反応式である。 Formula (3-1) represents 3-chloro-1,1,1,2,2-pentafluoropropane (HCFC-235cb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane By deHF from (HCFC-235ea) (Z) -1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd (Z)) and / or (E) -1-chloro-2,3 , 3,3-tetrafluoropropene (HCFO-1224yd (E)). Formula (3-2) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane This is a reaction formula for obtaining HCFO-1224yd (Z) and / or HCFO-1224yd (E) from (HCFC-234ea) by removing HCl.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(4-1)は、2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または2-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244db)から脱HFにより2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)を得る反応式である。式(4-2)は、2,2-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243xb)および/または2,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db)から脱HClによりHCFO-1233xfを得る反応式である。 Formula (4-1) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db). ) To give 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) by deHF. Formula (4-2) is a compound represented by 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243xb) and / or 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db). Is a reaction formula for obtaining HCFO-1233xf from HCl by dehydrochlorination.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5-1)は、3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca)および/または1-クロロ-1,2,3,3-テトラフルオロプロパン(HCFC-244ea)から脱HFにより(Z)-1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd(Z))および/または(E)-1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd(E))を得る反応式である。式(5-2)は、2,3-ジクロロ-1,1,2-トリフルオロプロパン(HCFC-243ba)および/または1,1-ジクロロ-2,3,3-トリフルオロプロパン(HCFC-243eb)から脱HClによりHCFO-1233yd(Z)および/またはHCFO-1233yd(E)を得る反応式である。 Formula (5-1) is a compound represented by the following formula: 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) and / or 1-chloro-1,2,3,3-tetrafluoropropane (HCFC-244ea) ) To (Z) -1-chloro-2,3,3-trifluoropropene (HCFO-1233yd (Z)) and / or (E) -1-chloro-2,3,3-trifluoropropene This is a reaction formula for obtaining (HCFO-1233yd (E)). Formula (5-2) is a compound represented by 2,3-dichloro-1,1,2-trifluoropropane (HCFC-243ba) and / or 1,1-dichloro-2,3,3-trifluoropropane (HCFC-243eb). HCHC-1233yd (Z) and / or HCFO-1233yd (E) by dehydrochlorination from HCl.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(6-1)は、3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)および/または3-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244fa)から脱HFにより(Z)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))および/または(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))を得る反応式である。式(6-2)は、2,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db)および/または3,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243fa)から脱HClによりHCFO-1233zd(Z)および/またはHCFO-1233zd(E)を得る反応式である。 Formula (6-1) is a compound represented by the following formula: 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa). ) To (Z) -1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)) and / or (E) -1-chloro-3,3,3-trifluoropropene This is a reaction formula to obtain (HCFO-1233zd (E)). Formula (6-2) is a compound represented by 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db) and / or 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa). HCHC-1233zd (Z) and / or HCFO-1233zd (E) by dehydrochlorination from HCl.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(7-1)は、1,1,1,2,2-ペンタフルオロプロパン(HFC-245cb)および/または1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)から脱HFにより2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を得る反応式である。式(7-2)は、2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)から脱HClによりHFO-1234yfを得る反応式である。 Formula (7-1) is obtained by removing HF from 1,1,1,2,2-pentafluoropropane (HFC-245cb) and / or 1,1,1,2,3-pentafluoropropane (HFC-245eb). Is a reaction formula for obtaining 2,3,3,3-tetrafluoropropene (HFO-1234yf). Formula (7-2) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb). ) To obtain HFO-1234yf by deHCl.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(8-1)は、1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)および/または1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)から脱HFにより(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))および/または(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))を得る反応式である。式(8-2)は、2-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244db)および/または3-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244fa)から脱HClによりHFO-1234ze(Z)および/またはHFO-1234ze(E)を得る反応式である。 Formula (8-1) is obtained by removing HF from 1,1,1,2,3-pentafluoropropane (HFC-245eb) and / or 1,1,1,3,3-pentafluoropropane (HFC-245fa). (Z) -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)) and / or (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)) Is a reaction formula to obtain Formula (8-2) is a compound represented by 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa). ) To obtain HFO-1234ze (Z) and / or HFO-1234ze (E) by deHCl.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(9-1)は、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)および/または2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン(HCFC-234da)から脱HFにより(Z)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(Z))および/または(E)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(E))を得る反応式である。式(9-2)は、2,2,3-トリクロロ-1,1,1-トリフルオロプロパン(HCFC-233ab)および/または2,3,3-トリクロロ-1,1,1-トリフルオロプロパン(HCFC-233da)から脱HClによりHCFO-1223xd(Z)および/またはHCFO-1223xd(E)を得る反応式である。 Formula (9-1) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 2,3-dichloro-1,1,1,3-tetrafluoropropane (HC) -234da) to (Z) -1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)) and / or (E) -1,2-dichloro-3 , 3,3-trifluoropropene (HCFO-1223xd (E)). Formula (9-2) represents 2,2,3-trichloro-1,1,1-trifluoropropane (HCFC-233ab) and / or 2,3,3-trichloro-1,1,1-trifluoropropane This is a reaction formula for obtaining HCFO-1223xd (Z) and / or HCFO-1223xd (E) from (HCFC-233da) by de-HCl.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(10-1)は、1,1,1,2,2,3-ヘキサフルオロプロパン(HFC-236cb)および/または1,1,1,2,3,3-ヘキサフルオロプロパン(HFC-236eb)から脱HFにより(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))および/または(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))を得る反応式である。式(10-2)は、2-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235bb)および/または3-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235ea)から脱HClによりHFO-1225ye(Z)および/またはHFO-1225ye(E)を得る反応式である。 Formula (10-1) is represented by 1,1,1,2,2,3-hexafluoropropane (HFC-236cb) and / or 1,1,1,2,3,3-hexafluoropropane (HFC-236eb). ) To (Z) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)) and / or (E) -1,2,3,3,3-pentafluoropropene This is a reaction formula to obtain (HFO-1225ye (E)). Formula (10-2) is 2-chloro-1,1,1,2,3-pentafluoropropane (HCFC-235bb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane This is a reaction formula for obtaining HFO-1225ye (Z) and / or HFO-1225ye (E) by removing HCl from (HCFC-235ea).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(11-1)は、1,1,1,2-テトラフルオロプロパン(HFC-254eb)および/または1,1,1,3-テトラフルオロプロパン(HFC-254fb)から脱HFにより3,3,3-トリフルオロプロペン(HFO-1243zf)を得る反応式である。式(11-2)は、2-クロロ-1,1,1-トリフルオロプロパン(HCFC-253db)および/または3-クロロ-1,1,1-トリフルオロプロパン(HCFC-244eb)から脱HClによりHFO-1243zfを得る反応式である。 Formula (11-1) can be obtained by removing HF from 1,1,1,2-tetrafluoropropane (HFC-254eb) and / or 1,1,1,3-tetrafluoropropane (HFC-254fb) to form 3,3 , 3-trifluoropropene (HFO-1243zf) is obtained. Formula (11-2) is obtained by removing HCl from 2-chloro-1,1,1-trifluoropropane (HCFC-253db) and / or 3-chloro-1,1,1-trifluoropropane (HCFC-244eb). Is a reaction formula for obtaining HFO-1243zf.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(12-1)は、1,1,2-トリフルオロプロパン(HFC-263eb)および/または1,1,3-トリフルオロプロパン(HFC-263fa)から脱HFにより3,3-ジフルオロプロペン(HFO-1252zf)を得る反応式である。式(12-2)は、2-クロロ-1,1-ジフルオロプロパン(HCFC-262db)および/または3-クロロ-1,1-ジフルオロプロパン(HCFC-262fa)から脱HClによりHFO-1252zfを得る反応式である。 Formula (12-1) is obtained by removing 3,1,3-difluoropropene (HFC-263eb) and / or 1,1,3-trifluoropropane (HFC-263fa) by deHF. This is a reaction formula to obtain HFO-1252zf). Formula (12-2) yields HFO-1252zf from 2-chloro-1,1-difluoropropane (HCFC-262db) and / or 3-chloro-1,1-difluoropropane (HCFC-262fa) by de-HCl It is a reaction formula.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(13-1)は、1,1,1,2,4,4,4-ヘプタフルオロブタン(HFC-347mef)から脱HFにより(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))および/または(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))を得る反応式である。式(13-2)は、2-クロロ-1,1,1,4,4,4-ヘキサフルオロブタン(HCFC-346mdf)から脱HClによりHFO-1336mzz(Z)またはHFO-1336mzz(E)を得る反応式である。 Formula (13-1) is obtained by removing HF from 1,1,1,2,4,4,4-heptafluorobutane (HFC-347mef) and (Z) -1,1,1,4,4,4- Reaction to obtain hexafluoro-2-butene (HFO-1336mzz (Z)) and / or (E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)) It is a formula. Formula (13-2) is obtained by removing HFO-1336mzz (Z) or HFO-1336mzz (E) from 2-chloro-1,1,1,4,4,4-hexafluorobutane (HCFC-346mdf) by removing HCl. It is the reaction formula to be obtained.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(14-1)は、5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(HCFC-448occc)および/または5-クロロ-1,1,2,2,3,3,4,5-オクタフルオロペンタン(HCFC-448pcce)から脱HFにより(Z)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(Z))および/または(E)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(E))を得る反応式である。式(14-2)は、4,5-ジクロロ-1,1,2,2,3,3,4-ヘプタフルオロペンタン(HCFC-447obcc)および/または5,5-ジクロロ-1,1,2,2,3,3,4-ヘプタフルオロペンタン(HCFC-447necc)から脱HClによりHCFO-1437dycc(Z)および/またはHCFO-1437dycc(E)を得る反応式である。 Formula (14-1) is a compound represented by the following formula: 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane (HCFC-448occc) and / or 5-chloro-1,1,2,2 (Z) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HC), 3,4,5-octafluoropentane (HCFC-448 pcce) by deHF Reaction formula to obtain HCFO-1437 dycc (Z)) and / or (E) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc (E)) It is. Formula (14-2) is a compound represented by 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane (HCFC-447 obscc) and / or 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane (HCFC-447necc) to remove HCFO-1437 dycc (Z) and / or HCFO-1437 dycc (E) by removing HCl.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(15-1)は、3-クロロ-1,1,1,2,2,3-ヘキサフルオロプロパン(HCFC-226ca)および/または1-クロロ-1,1,2,3,3,3-ヘキサフルオロプロパン(HCFC-226ea)から脱HFにより(Z)-1-クロロ-1,2,3,3,3-ペンタフルオロプロペン(CFO-1215yb(Z))および/または(E)-1-クロロ-1,2,3,3,3-ペンタフルオロプロペン(CFO-1215yb(E))を得る反応式である。式(15-2)は、2,3-ジクロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-225ba)および/または1,1-ジクロロ-1,2,3,3,3-ペンタフルオロプロパン(HCFC-225eb)から脱HClによりCFO-1215yb(Z)および/またはCFO-1215yb(E)を得る反応式である。 Formula (15-1) is a compound represented by the following formula: 3-chloro-1,1,1,2,2,3-hexafluoropropane (HCFC-226ca) and / or 1-chloro-1,1,2,3,3,3 By deHF from hexafluoropropane (HCFC-226ea) (Z) -1-chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (Z)) and / or (E) -1 This is a reaction formula for obtaining -chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (E)). Formula (15-2) is a compound represented by 2,3-dichloro-1,1,1,2,3-pentafluoropropane (HCFC-225ba) and / or 1,1-dichloro-1,2,3,3,3. A reaction formula for obtaining CFO-1215yb (Z) and / or CFO-1215yb (E) from pentafluoropropane (HCFC-225eb) by deHCl.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記各反応において、特に本発明の製造方法が好適に用いられる反応として、反応速度を向上させて反応を効率的に実施できる点から、反応(1-1)のうち、225caから脱HFにより1214yaを得る反応、反応(5-1)のうち、244caから脱HFにより1233yd(Z)および/または1233yd(E)を得る反応、反応(4-2)のうち、243dbから脱HClにより1233xfを得る反応、反応(6-2)のうち、243faから脱HClにより1233zd(Z)を得る反応、および反応(9-2)のうち、233daから脱HClにより1223xd(Z)および/または1223xd(E)を得る反応が挙げられる。 In each of the above reactions, particularly as a reaction in which the production method of the present invention is suitably used, the reaction rate can be improved and the reaction can be efficiently carried out. From the reaction (1-1), 225 ca is removed by HF to 1214 ya. Of reaction (5-1), 1233yd (Z) and / or 1233yd (E) is obtained from 244ca by deHF, and 1233xf is obtained from 243db by deHCl in reaction (4-2). Of the reaction, reaction (6-2), 1233zd (Z) is obtained by removing HCl from 243fa, and of reaction (9-2), 1223xd (Z) and / or 1223xd (E) is obtained by removing HCl from 233da The reaction to obtain is mentioned.
 なかでも、反応(1-1)のうち、225caから脱HFにより1214yaを得る反応、反応(5-1)のうち、244caから脱HFにより1233yd(Z)および/または1233yd(E)を得る反応、および反応(9-2)のうち、233daから脱HClにより1223xd(Z)および/または1223xd(E)を得る反応がより好ましい。 Among them, among the reaction (1-1), a reaction to obtain 1214ya from 225ca by deHF, and among the reaction (5-1), a reaction to obtain 1233yd (Z) and / or 1233yd (E) from 244ca by deHF And reaction (9-2) is more preferably a reaction in which 1223xd (Z) and / or 1223xd (E) is obtained from 233da by deHCl.
 上記のより好ましい反応においては、脱ハロゲン化水素反応により生成する化合物は室温では揮発しないため、生成した化合物が気泡となってアルカリ水溶液と原料との接触を阻害することがなく反応を効率的に実施できる。さらに反応を効率的に実施できる点から、反応(1-1)のうち、225caから脱HFにより1214yaを得る反応、および反応(5-1)のうち、244caから脱HFにより1233yd(Z)およびまたは1233yd(E)を得る反応がより好ましい。 In the above preferred reaction, since the compound produced by the dehydrohalogenation reaction does not volatilize at room temperature, the produced compound becomes bubbles and the reaction is efficiently performed without inhibiting the contact between the alkaline aqueous solution and the raw material. Can be implemented. Furthermore, from the viewpoint that the reaction can be carried out efficiently, among the reaction (1-1), the reaction to obtain 1214ya from 225ca by deHF, and among the reaction (5-1), 1233yd (Z) and from 244ca by deHF Or the reaction which obtains 1233yd (E) is more preferable.
 本発明の製造方法に係る反応(1)において、化合物(A)は有機相として液相で、アルカリ水溶液と物理的に接触する、より具体的には、アルカリ水溶液中の塩基と接触することで、脱HFまたは脱HCl反応が生起し化合物(B)が生成する。 In the reaction (1) according to the production method of the present invention, the compound (A) is in a liquid phase as an organic phase and is in physical contact with an alkaline aqueous solution, more specifically, by contacting with a base in the alkaline aqueous solution. , DeHF or deHCl reaction occurs to produce compound (B).
 本発明においては、上記接触において、化合物(A)またはアルカリ水溶液のいずれかを液滴の形態とし、かつ液滴の平均液滴径を1500μm以下とする。本発明において、化合物(A)を液滴としてもよく、アルカリ水溶液を液滴としてもよい。化合物(A)およびアルカリ水溶液の種類や量によりそれらのいずれかが適宜選択され、液滴化される。反応速度を上げる観点から化合物(A)を液滴としてアルカリ水溶液と接触させるのが好ましい。 In the present invention, in the contact, either the compound (A) or the alkaline aqueous solution is in the form of droplets, and the average droplet diameter of the droplets is 1500 μm or less. In the present invention, the compound (A) may be a droplet, and an alkaline aqueous solution may be a droplet. Any one of them is appropriately selected depending on the type and amount of the compound (A) and the aqueous alkali solution to form droplets. From the viewpoint of increasing the reaction rate, the compound (A) is preferably brought into contact with an alkaline aqueous solution as droplets.
 化合物(A)を液滴とする場合でもアルカリ水溶液を液滴とする場合でも、液滴の平均液滴径は、800μm以下が好ましく、600μm以下がより好ましく、400μm以下がさらに好ましい。また、液滴の平均液滴径は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、30μm以上が好ましく、50μm以上が最も好ましい。平均液滴径が1μm未満では、反応液全体が乳化した状態となり、反応液から目的生成物である化合物(B)を分離しにくい場合がある。 Whether the compound (A) is a droplet or an alkaline aqueous solution, the average droplet diameter of the droplet is preferably 800 μm or less, more preferably 600 μm or less, and even more preferably 400 μm or less. The average droplet diameter of the droplets is preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, preferably 30 μm or more, and most preferably 50 μm or more. When the average droplet diameter is less than 1 μm, the entire reaction solution is emulsified, and it may be difficult to separate the target product compound (B) from the reaction solution.
 化合物(A)またはアルカリ水溶液のいずれかの平均液滴径を1500μm以下とする方法としては、従来公知の装置を用いる方法が挙げられる。このような装置としては、撹拌翼、ラインミキサー、ホモジナイザー、超音波発生器、マイクロバブル発生器等が挙げられる。これらは、1種を単独で用いてもよく、必要に応じて2種以上を組み合わせて用いてもよい。 Examples of the method of setting the average droplet diameter of either the compound (A) or the alkaline aqueous solution to 1500 μm or less include a method using a conventionally known apparatus. Examples of such an apparatus include a stirring blade, a line mixer, a homogenizer, an ultrasonic generator, a microbubble generator, and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type as needed.
 本発明の製造方法においては、工業的に目的の含フッ素不飽和炭化水素を大量に生産する観点から、上記で規定する大きさの平均液滴径を有する液滴は、バッチ式、半連続式または連続式の反応器に撹拌翼を設置し、それを撹拌させることにより生成させることが好ましい。撹拌翼としては、4枚パドル翼、アンカー翼、ゲート翼、3枚プロペラ、リボン翼、6枚タービン翼等が挙げられ、 In the production method of the present invention, from the viewpoint of producing a large amount of industrially intended fluorine-containing unsaturated hydrocarbons, the droplets having an average droplet diameter of the size specified above are batch-type, semi-continuous type Or it is preferable to make it produce | generate by installing a stirring blade in a continuous reactor and stirring it. Examples of the stirring blade include a 4-paddle blade, an anchor blade, a gate blade, a 3-propeller, a ribbon blade, and a 6-turbine blade.
 撹拌槽において形成される、化合物(A)またはアルカリ水溶液の平均液滴径d(m)は、以下の式(16)で表される。
    d/d=C*We-0.6     …(16)
式(16)中、diは撹拌翼の内径(m)であり、Weはウェーバー数であり、Cは定数である。
ここで、We=ρ*N*d /σである。
ρは液滴成分の密度(kg/m)であり、Nは撹拌の回転数(rps)であり、σは化合物(A)とアルカリ水溶液との表面張力の差(Nm-1)である。
 Cは、平均液滴径に及ぼす影響を補正するためのものであり、撹拌槽において、撹拌の回転数と液滴径との相関から実験的に求めることができる。すなわち、撹拌の回転数と液滴径との関係をプロットするとほぼ直線状になり、その傾きがCである。また、例えば非特許文献1(Calderbank,P.H.,Trans.Inst.Chem.Engrs.,36,443)等に記載の実験結果から求められるCの値を参照してもよい。Cは通常0.052~0.17である。
The average droplet diameter d p (m) of the compound (A) or the aqueous alkali solution formed in the stirring tank is represented by the following formula (16).
d p / d i = C * We −0.6 (16)
In formula (16), d i is the inner diameter (m) of the stirring blade, We is the Weber number, and C is a constant.
Here, We = ρ * N 2 * d i 3 / σ.
ρ is the density of the droplet component (kg / m 3 ), N is the rotational speed (rps) of stirring, and σ is the difference in surface tension (Nm −1 ) between the compound (A) and the alkaline aqueous solution. .
C is for correcting the influence on the average droplet diameter, and can be experimentally obtained from the correlation between the number of rotations of stirring and the droplet diameter in the stirring tank. That is, when the relationship between the number of rotations of stirring and the droplet diameter is plotted, it is almost linear, and the slope is C. Further, for example, the value of C obtained from the experimental results described in Non-Patent Document 1 (Calderbank, PH, Trans. Inst. Chem. Engrs., 36, 443) may be referred to. C is usually 0.052 to 0.17.
 本発明の製造方法において、撹拌槽内に化合物(A)またはアルカリ水溶液の液滴を均等に分散させるために充分撹拌させる必要がある。このような条件において、Cは、通常0.052~0.17であり、好ましくは0.055~0.070である。 In the production method of the present invention, it is necessary to sufficiently stir in order to disperse the droplets of the compound (A) or the alkaline aqueous solution uniformly in the stirring tank. Under such conditions, C is usually 0.052 to 0.17, preferably 0.055 to 0.070.
 本発明の製造方法は、通常、反応器内に化合物(A)およびアルカリ水溶液を導入し、上記液滴を生成するための装置を用いて液滴を生成させる。反応器の材質としては、化合物(A)、後述の相間移動触媒、アルカリ水溶液、ならびに反応生成物を含む反応液成分等に不活性であり、耐蝕性の材質であれば特に制限されない。例えば、ガラス、鉄、ニッケル、または鉄等を主成分とするステンレス鋼等の合金などが挙げられる。 In the production method of the present invention, the compound (A) and an aqueous alkali solution are usually introduced into a reactor, and droplets are generated using the apparatus for generating the droplets. The material of the reactor is not particularly limited as long as it is inert to the compound (A), a phase transfer catalyst described later, an alkaline aqueous solution, a reaction solution component containing a reaction product, and the like, and is a corrosion-resistant material. For example, glass, iron, nickel, an alloy such as stainless steel mainly containing iron, or the like can be given.
 本発明における反応は、バッチ式で行ってもよいし、半連続式、または連続流通式で行ってもよい。平均液滴径が本発明の範囲内に調整されない場合に比べて、いずれの様式で行っても反応時間の短縮が可能である。 The reaction in the present invention may be performed by a batch method, a semi-continuous method, or a continuous flow method. Compared to the case where the average droplet diameter is not adjusted within the scope of the present invention, the reaction time can be shortened in any manner.
 本発明の製造方法においては、反応様式は問わず、反応器内の任意の箇所で、化合物(A)またはアルカリ水溶液のいずれかが液滴となって存在し、該液滴の平均液滴径が1500μm以下であればよい。好ましくは、反応器内のいずれの箇所においても、化合物(A)またはアルカリ水溶液のいずれかが液滴となって存在し、該液滴の平均液滴径が1500μm以下である。 In the production method of the present invention, regardless of the reaction mode, either the compound (A) or the alkaline aqueous solution is present as droplets at any location in the reactor, and the average droplet diameter of the droplets May be 1500 μm or less. Preferably, at any location in the reactor, either the compound (A) or the aqueous alkaline solution is present as droplets, and the average droplet diameter of the droplets is 1500 μm or less.
 また、液滴径は、いずれの反応様式においても反応中の任意の時点で化合物(A)またはアルカリ水溶液のいずれかが液滴となって存在し、該液滴の平均液滴径が1500μm以下であればよい。好ましくは、反応中のいずれの時点においても化合物(A)またはアルカリ水溶液のいずれかが液滴となって存在し、該液滴の平均液滴径が1500μm以下である。 In addition, in any reaction mode, the droplet diameter is either a compound (A) or an alkaline aqueous solution at any time during the reaction, and the average droplet diameter of the droplet is 1500 μm or less. If it is. Preferably, at any time during the reaction, either the compound (A) or the alkaline aqueous solution is present as droplets, and the average droplet diameter of the droplets is 1500 μm or less.
 反応器に導入する化合物(A)とアルカリ水溶液の割合は、両者のいずれかが上記の規定内の液滴となる割合であれば、特に制限されない。互いに十分な接触が得られる観点から、概ね、化合物(A)の100体積%に対してアルカリ水溶液が10~400体積%であるのが好ましく、50~300体積%がより好ましい。なお、化合物(A)とアルカリ水溶液の体積割合は、以下に説明する、化合物(A)に対する塩基の好ましい使用量、アルカリ水溶液における塩基の好ましい含有量等を考慮して化合物(A)や組み合わせるアルカリ水溶液の種類に応じて適宜調整される。 The ratio of the compound (A) to be introduced into the reactor and the aqueous alkali solution is not particularly limited as long as either of them is a ratio within which the droplets are within the above regulations. From the viewpoint of obtaining sufficient contact with each other, the alkaline aqueous solution is preferably 10 to 400% by volume, more preferably 50 to 300% by volume with respect to 100% by volume of the compound (A). In addition, the volume ratio of the compound (A) and the aqueous alkaline solution is the compound (A) and the alkali to be combined in consideration of the preferable use amount of the base with respect to the compound (A), the preferable content of the base in the aqueous alkaline solution, etc. It adjusts suitably according to the kind of aqueous solution.
 本発明の製造方法に用いるアルカリ水溶液とは、塩基を水に溶解させた水溶液をいう。塩基は、上記反応(1)が実行可能な塩基であれば特に限定されない。塩基は、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種を含むことが好ましい。 The alkaline aqueous solution used in the production method of the present invention refers to an aqueous solution in which a base is dissolved in water. The base is not particularly limited as long as the above reaction (1) can be performed. The base preferably contains at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
 塩基が金属水酸化物である場合、アルカリ土類金属水酸化物、アルカリ金属水酸化物などが挙げられる。アルカリ土類金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムが挙げられる。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられる。 When the base is a metal hydroxide, examples include alkaline earth metal hydroxides and alkali metal hydroxides. Examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
 塩基が金属酸化物である場合、該金属酸化物を構成する金属としては、アルカリ金属元素、アルカリ土類金属元素、遷移金属元素、第12族金属元素、第13族金属元素が挙げられる。中でも、アルカリ金属元素、アルカリ土類金属元素、第6族金属元素、第8族金属元素、第10族金属元素、第12族金属元素、または第13族金属元素が好ましく、ナトリウム、カルシウム、クロム、鉄、亜鉛、またはアルミニウムがさらに好ましい。金属酸化物は、金属の1種を含む酸化物であってもよく、2種以上の金属の複合酸化物であってもよい。金属酸化物としては、反応時間および反応収率の点から、酸化ナトリウム、酸化カルシウム、酸化クロム(クロミア)、酸化アルミニウム(アルミナ)、酸化亜鉛等が好ましく、アルミナまたはクロミアがより好ましい。 When the base is a metal oxide, examples of the metal constituting the metal oxide include an alkali metal element, an alkaline earth metal element, a transition metal element, a Group 12 metal element, and a Group 13 metal element. Among them, alkali metal elements, alkaline earth metal elements, Group 6 metal elements, Group 8 metal elements, Group 10 metal elements, Group 12 metal elements, or Group 13 metal elements are preferable, and sodium, calcium, chromium More preferred are iron, zinc, or aluminum. The metal oxide may be an oxide containing one kind of metal or a complex oxide of two or more kinds of metals. As the metal oxide, sodium oxide, calcium oxide, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide and the like are preferable from the viewpoint of reaction time and reaction yield, and alumina or chromia is more preferable.
 塩基が金属炭酸塩である場合、アルカリ土類金属炭酸塩、アルカリ金属炭酸塩などが挙げられる。アルカリ土類金属炭酸塩としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム等の金属の炭酸塩が挙げられる。アルカリ金属炭酸塩としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム等の金属の炭酸塩が挙げられる。 When the base is a metal carbonate, examples include alkaline earth metal carbonates and alkali metal carbonates. Examples of the alkaline earth metal carbonate include carbonates of metals such as beryllium, magnesium, calcium, strontium, barium, and radium. Examples of the alkali metal carbonate include metal carbonates such as lithium, sodium, potassium, rubidium, cesium, and francium.
 本発明の製造方法に用いる塩基としては、反応時間および反応収率の点から、金属水酸化物が好ましく、水酸化カリウムおよび水酸化ナトリウムからなる群より選ばれる少なくとも1種が特に好ましい。金属水酸化物は、1種を単独に用いてもよく、2種以上を併用してもよい。 The base used in the production method of the present invention is preferably a metal hydroxide from the viewpoint of reaction time and reaction yield, and particularly preferably at least one selected from the group consisting of potassium hydroxide and sodium hydroxide. A metal hydroxide may be used individually by 1 type and may use 2 or more types together.
 アルカリ水溶液における塩基の含有量は、反応速度の点から、アルカリ水溶液全量(質量)に対する塩基の質量の割合(単位%)が、0.5~48質量%となる量が好ましく、20~45質量%がより好ましく、30~40質量%がさらに好ましい。塩基量が上記範囲未満であると、十分な反応速度が得られないことがある。一方、塩基量が上記範囲を超えると、副生物の生成量が増え、目的物質(化合物(B))の選択率が減少する可能性がある。 The content of the base in the alkaline aqueous solution is preferably such that the ratio (unit%) of the mass of the base to the total amount (mass) of the alkaline aqueous solution is 0.5 to 48% by mass from the viewpoint of reaction rate, and 20 to 45% by mass. % Is more preferable, and 30 to 40% by mass is further preferable. If the amount of base is less than the above range, a sufficient reaction rate may not be obtained. On the other hand, when the amount of the base exceeds the above range, the amount of by-products generated increases, and the selectivity for the target substance (compound (B)) may decrease.
 本発明の製造方法に用いる塩基の使用量は、反応(1)の種類による。例えば、244caから脱HFにより1233ydを得る反応においては、反応収率、および1233ydの選択率の観点から、塩基の使用量は244caの1モルに対して、0.5~10.0モルが好ましく、0.5~5.0モルがより好ましく、0.8~3.0モルがさらに好ましい。 The amount of base used in the production method of the present invention depends on the type of reaction (1). For example, in the reaction of obtaining 1233yd from 244ca by deHF, the amount of base used is preferably 0.5 to 10.0 moles with respect to 1 mole of 244ca from the viewpoint of the reaction yield and the selectivity of 1233yd. 0.5 to 5.0 mol is more preferable, and 0.8 to 3.0 mol is more preferable.
 例えば、225caから脱HFにより1214yaを得る反応においては、反応収率、および1214yaの選択率の観点から、塩基の使用量は225caの1モルに対して、0.5~2.0モルが好ましく、0.5~1.8モルがより好ましく、1.0~1.5モルがさらに好ましい。 For example, in the reaction to obtain 1214ya from 225ca by deHF, the amount of the base used is preferably 0.5 to 2.0 mol with respect to 1 mol of 225ca from the viewpoint of the reaction yield and the selectivity of 1214ya. 0.5 to 1.8 mol is more preferable, and 1.0 to 1.5 mol is more preferable.
 反応(1)における上記以外の反応条件、例えば、温度、圧力等は、通常、アルカリ水溶液と化合物(A)を液相で接触させ脱HFや脱HCl反応させる際の、反応条件と同様にできる。 The reaction conditions other than those described above in the reaction (1), for example, temperature, pressure, etc., can be generally the same as the reaction conditions when the alkaline aqueous solution and the compound (A) are contacted in the liquid phase to cause deHF or deHCl reaction. .
 例えば、244caから脱HFにより1233ydを得る反応において、244caと塩基との接触温度としては、反応活性、および1233ydの選択率の観点から、5~90℃が好ましく、10~85℃がより好ましく、15~80℃がさらに好ましく、30~80℃が特に好ましい。反応温度が上記範囲に達しない場合、反応速度、反応収率が低下する可能性があり、未反応の244caが過剰に残っている場合、1233ydとの分離が困難になりうる。また、反応温度が上記範囲を超える場合、1233ydがさらに脱弗化水素して生成する1-クロロ-3,3-ジフルオロプロピンの生成量が増える可能性や、1233ydの選択率が低下する可能性がある。 For example, in the reaction for obtaining 1233yd from 244ca by deHF, the contact temperature between 244ca and the base is preferably 5 to 90 ° C, more preferably 10 to 85 ° C, from the viewpoint of the reaction activity and the selectivity of 1233yd. 15 to 80 ° C. is more preferable, and 30 to 80 ° C. is particularly preferable. When the reaction temperature does not reach the above range, the reaction rate and the reaction yield may be reduced. When excessive unreacted 244ca remains, separation from 1233yd may be difficult. Also, when the reaction temperature exceeds the above range, 1233yd may further increase the amount of 1-chloro-3,3-difluoropropyne produced by dehydrofluorination and the selectivity of 1233yd may decrease. There is sex.
 例えば、225caから脱HFにより1214yaを得る反応においては、反応活性及び目的生成物の選択性の観点から、0~90℃が好ましく、5~80℃がより好ましく、10~70℃がさらに好ましく、15~60℃が最も好ましい。 For example, in the reaction to obtain 1214ya from 225ca by deHF, from the viewpoint of reaction activity and target product selectivity, 0 to 90 ° C is preferable, 5 to 80 ° C is more preferable, and 10 to 70 ° C is more preferable. Most preferred is 15-60 ° C.
 なお、本発明の製造方法において、化合物(A)は、化合物(A)の製造時において副生する副生物や未反応原料と共に用いられてもよい。例えば、純度が99.5質量%以上の化合物(A)の組成物として、本発明の製造方法に用いることができる。また、例えば、225caから脱HFにより1214yaを得る反応においては、225caは、225caを含むジクロロペンタフルオロプロパン(HCFC-225)の異性体混合物として使用されてもよく、その場合HCFC-225の全量に対する225caの割合は10~99.5モル%であってよい。また、異性体混合物を用いる場合、副生物の生成を抑制する観点からは、反応温度は0~25℃が好ましい。 In addition, in the manufacturing method of this invention, a compound (A) may be used with the by-product and unreacted raw material byproduced at the time of manufacture of a compound (A). For example, it can use for the manufacturing method of this invention as a composition of a compound (A) whose purity is 99.5 mass% or more. Also, for example, in the reaction to obtain 1214ya from 225ca by deHF, 225ca may be used as an isomer mixture of dichloropentafluoropropane (HCFC-225) containing 225ca, in which case the total amount of HCFC-225 The proportion of 225ca may be 10-99.5 mol%. When an isomer mixture is used, the reaction temperature is preferably 0 to 25 ° C. from the viewpoint of suppressing the formation of by-products.
 本発明の製造方法において、反応系中に反応をより促進する目的で、本発明の効果を損なわない他の物質を存在させてもよく、例えば、相間移動触媒を存在させるのが好ましい。 In the production method of the present invention, for the purpose of further promoting the reaction in the reaction system, another substance that does not impair the effects of the present invention may be present. For example, a phase transfer catalyst is preferably present.
 相間移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルなどが挙げられ、工業的入手容易さや価格、扱いやすさの点から第4級アンモニウム塩が好ましい。 Examples of the phase transfer catalyst include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc., and are quaternary from the viewpoint of industrial availability, price, and ease of handling. Ammonium salts are preferred.
 4級アンモニウム塩として、具体的には、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)等が好ましい。なかでも、反応をより促進できる点から、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)が好ましく、入手性の点からはテトラ-n-ブチルアンモニウムブロミド(TBAB)がより好ましく、反応性の点からはテトラ-n-ブチルアンモニウムクロリド(TBAC)がより好ましい。 Specifically, tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB), methyltri-n-octylammonium chloride (TOMAC) and the like are preferable as the quaternary ammonium salt. Of these, tetra-n-butylammonium chloride (TBAC) and tetra-n-butylammonium bromide (TBAB) are preferable because the reaction can be further promoted, and tetra-n-butylammonium bromide (TBAB) is preferable from the viewpoint of availability. And tetra-n-butylammonium chloride (TBAC) is more preferable from the viewpoint of reactivity.
 相間移動触媒の量は、化合物(A)の100質量部に対して、0.001~10質量部が好ましく、0.01~5質量部がより好ましく、0.01~3質量部がさらに好ましい。相間移動触媒の量が少なすぎると、十分な反応速度が得られないことがあり、多く用いても、使用量に応じた反応促進効果は得られず、コスト面で不利である。 The amount of the phase transfer catalyst is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the compound (A). . If the amount of the phase transfer catalyst is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount used cannot be obtained, which is disadvantageous in terms of cost.
 なお、反応液が相間移動触媒を含有する場合、相間移動触媒は、有機相中およびアルカリ水溶液中の両方に存在する。相間移動触媒が存在する場合であっても、反応液は化合物(A)を主体とする有機相とアルカリ水溶液からなる水相で構成され、いずれかの相を上記規定の液滴径を有する液滴とすることで、反応時間は短縮され、生産性が向上する。 When the reaction solution contains a phase transfer catalyst, the phase transfer catalyst exists both in the organic phase and in the alkaline aqueous solution. Even when a phase transfer catalyst is present, the reaction liquid is composed of an organic phase mainly composed of the compound (A) and an aqueous phase composed of an alkaline aqueous solution, and any of the phases has a liquid droplet diameter as defined above. By using droplets, the reaction time is shortened and productivity is improved.
 本発明の製造方法によれば、化合物(A)またはアルカリ水溶液の液滴径を上記規定の範囲にすることで反応速度を向上できるため、その分、相間移動触媒の使用量を減らすことができ、その点にいても製造コストの低減が可能である。 According to the production method of the present invention, since the reaction rate can be improved by setting the droplet diameter of the compound (A) or the aqueous alkali solution within the above specified range, the amount of the phase transfer catalyst used can be reduced accordingly. Even in this respect, the manufacturing cost can be reduced.
 本発明の製造方法によれば、例えば、相間移動触媒の量を化合物(A)の100質量部に対して、0.001~1質量部でも十分に反応させることができる。 According to the production method of the present invention, for example, the amount of the phase transfer catalyst can be sufficiently reacted even with 0.001 to 1 part by mass with respect to 100 parts by mass of the compound (A).
 本発明の製造方法において、反応終了後に反応液を放置して、有機相と水相に分離させる。有機相中には、目的生成物である化合物(B)以外に、未反応の化合物(A)や副生物等が含まれうる。これらを含む有機相中から化合物(B)を回収する際には、一般的な蒸留等による分離精製方法を採用するのが好ましい。 In the production method of the present invention, after completion of the reaction, the reaction solution is left to separate into an organic phase and an aqueous phase. In the organic phase, an unreacted compound (A), a by-product and the like may be contained in addition to the target product compound (B). When recovering the compound (B) from the organic phase containing these, it is preferable to employ a separation and purification method such as general distillation.
 なお、反応液中に未反応の化合物(A)が残っている場合、蒸留によって化合物(A)を濃縮し、本発明の原料としてリサイクルすることも可能である。 In addition, when the unreacted compound (A) remains in the reaction solution, the compound (A) can be concentrated by distillation and recycled as the raw material of the present invention.
 一方、上記有機相と分離した水相は、これだけ取り出して再度適当な濃度となるように塩基を加えれば、再利用が可能である。 On the other hand, the aqueous phase separated from the organic phase can be reused by taking out only this amount and adding a base again so as to obtain an appropriate concentration.
 本発明の製造方法により得られる化合物(B)を上記のように分離精製して回収することで、化合物(B)を高純度に含有する精製化合物(B)が得られる。このようにして得られる精製化合物(B)に、HFやHCl等の酸分や水、酸素等の不純物が含まれると、その使用に際して設備が腐食する、化合物(B)の安定性が低下する等のおそれがある。したがって、従来公知の方法で、これら不純物を腐食や安定性に関し問題がない程度まで除去することが好ましい。 The purified compound (B) containing the compound (B) with high purity can be obtained by separating and purifying the compound (B) obtained by the production method of the present invention as described above. When the purified compound (B) thus obtained contains an acid content such as HF or HCl, or an impurity such as water or oxygen, the equipment corrodes during its use, and the stability of the compound (B) decreases. There is a risk of. Therefore, it is preferable to remove these impurities by a conventionally known method to such an extent that there is no problem with corrosion and stability.
 以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[ガスクロマトグラフィーの条件]
 以下の各種化合物の製造において、得られた反応組成物の組成分析はガスクロマトグラフィー(GC)を用いて行った。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー社製)を用いた。
[平均液滴径の算出方法]
 式(16)により、平均液滴径を算出した。なお、定数Cは0.060であった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Conditions for gas chromatography]
In the production of the following various compounds, the composition analysis of the obtained reaction composition was performed using gas chromatography (GC). DB-1301 (length 60 m × inner diameter 250 μm × thickness 1 μm, manufactured by Agilent Technologies) was used as the column.
[Calculation method of average droplet diameter]
The average droplet diameter was calculated from equation (16). The constant C was 0.060.
[244caの製造例1]
 244caを以下の方法によって製造し、実施例1~7、比較例1で用いた。以下の方法は、下記式(2)に示すように2,2,3,3-テトラフルオロプロパノール(TFPO)を塩化チオニルによって塩素化して244caを得る方法である。
[Production Example 1 of 244ca]
244ca was produced by the following method and used in Examples 1 to 7 and Comparative Example 1. The following method is a method of obtaining 244ca by chlorinating 2,2,3,3-tetrafluoropropanol (TFPO) with thionyl chloride as shown in the following formula (2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<244caの合成>
 撹拌機、ジムロート、冷却器、およびラシヒリングを充填したガラス蒸留塔(段数測定値5段)を取付けた2リットル四つ口フラスコ(反応器)に、TFPOの1204g(9.12モル)およびN,N-ジメチルホルムアミド(DMF)の12g(0.17モル)を加えた。塩化チオニルの1078g(0.12モル)を滴下し、室温で12時間撹拌した。その後、反応器を100℃に加熱し、還流タイマーにより還流時間/留出時間の比を5/1で反応蒸留を行った。留出した244caは20質量%水酸化カリウム水溶液で中和した。回収した244ca(純度100%)は、979g(6.50モル)であった。同様の方法で必要量の244caを製造した。
<Synthesis of 244ca>
A 2 liter four-necked flask (reactor) equipped with a stirrer, a Dimroth, a condenser, and a glass distillation column (5 stage number measurement) packed with Raschig rings was charged with 1204 g (9.12 mol) of TFPO and N, 12 g (0.17 mol) of N-dimethylformamide (DMF) was added. 1078 g (0.12 mol) of thionyl chloride was added dropwise and stirred at room temperature for 12 hours. Thereafter, the reactor was heated to 100 ° C., and reactive distillation was performed with a reflux timer at a ratio of reflux time / distillation time of 5/1. Distilled 244ca was neutralized with a 20 mass% aqueous potassium hydroxide solution. The recovered 244ca (100% purity) was 979 g (6.50 mol). The required amount of 244ca was produced in the same manner.
[実施例1]
 4枚パドル翼、撹拌機、および圧力メーターを取付けたSUS304製200mLオートクレーブ(反応器、200mlAC)に、34.0質量%水酸化カリウム(KOH)水溶液を171g入れ、50℃に加熱した。また、244caの76.4gにテトラ-n-ブチルアンモニウムブロミド(TBAB)を0.78g溶解させ、シリンダーに充填して50℃に加熱した。反応器の内温が50℃に達したところで、シリンダー内の244ca溶液を反応器に投入した。その後、244caの転化率が99.8%以上となるまで、45時間撹拌を続け、有機層および水層を回収した。
[Example 1]
In a 200 mL autoclave (reactor, 200 ml AC) made of SUS304 equipped with four paddle blades, a stirrer, and a pressure meter, 171 g of 34.0 mass% potassium hydroxide (KOH) aqueous solution was placed and heated to 50 ° C. Further, 0.78 g of tetra-n-butylammonium bromide (TBAB) was dissolved in 76.4 g of 244ca, filled into a cylinder, and heated to 50 ° C. When the internal temperature of the reactor reached 50 ° C., the 244ca solution in the cylinder was charged into the reactor. Thereafter, stirring was continued for 45 hours until the conversion of 244ca reached 99.8% or more, and the organic layer and the aqueous layer were recovered.
 回収した有機層を水洗した後、ガスクロマトグラフィーを用いて分析したところ、有機相中に目的物質である1233ydが生成することを確認した。反応装置の寸法、反応条件および結果を表1に示す。
なお、実施例1~7、比較例1において転化率とは、反応に使用した原料(244ca)のモル量に対する、反応で消費された原料(244ca)のモル量の割合(単位:%)を示す。なお、表1中の反応時間は、反応開始から244caの転化率が99.8%以上となるまでに要した時間である。
The collected organic layer was washed with water and then analyzed using gas chromatography. As a result, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
In Examples 1 to 7 and Comparative Example 1, the conversion rate is the ratio (unit:%) of the molar amount of the raw material (244ca) consumed in the reaction to the molar amount of the raw material (244ca) used in the reaction. Show. In addition, the reaction time in Table 1 is the time required from the start of the reaction until the conversion rate of 244ca reaches 99.8% or more.
[実施例2]
 ゲート翼、撹拌機、およびジムロート冷却器を取付けたガラス製500ミリリットルセパラブルフラスコ(反応器)に、34質量%KOH水溶液を333g、244caを156g、およびTBABを1.59g投入した。反応器を50℃に加熱し、撹拌を継続した。撹拌を開始してから30時間たったところで反応を終了し、実施例1同様に回収および分析を行ったところ、有機相中に目的物質である1233ydが生成することを確認した。反応装置の寸法、反応条件および結果を表1に示す。
[Example 2]
A glass 500 ml separable flask (reactor) equipped with a gate blade, a stirrer, and a Dimroth condenser was charged with 333 g of 34 mass% KOH aqueous solution, 156 g of 244ca, and 1.59 g of TBAB. The reactor was heated to 50 ° C. and stirring was continued. The reaction was terminated after 30 hours from the start of stirring, and collection and analysis were conducted in the same manner as in Example 1. As a result, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
[実施例3]
 反応器を3枚プロペラ、撹拌機およびジムロート冷却器を取付けたガラス製500ミリリットルセパラブルフラスコに変え、かつ反応条件を表1に示す条件に変更した以外は実施例2と同様の手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1233ydが生成することを確認した。反応装置の寸法、反応条件および結果を表1に示す。
[Example 3]
The reaction was carried out in the same procedure as in Example 2 except that the reactor was changed to a glass 500 ml separable flask equipped with three propellers, a stirrer and a Dimroth condenser, and the reaction conditions were changed to the conditions shown in Table 1. went. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
[実施例4~6]
 反応条件を表1に示す条件に変更した以外は実施例3と同様の反応器および手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1233ydが生成することを確認した。反応装置の寸法、反応条件および結果を表1に示す。
[Examples 4 to 6]
The reaction was performed in the same reactor and procedure as in Example 3 except that the reaction conditions were changed to those shown in Table 1. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
[実施例7]
 4枚パドル翼、撹拌機、および圧力メーターを取付けたHC276C製2500mLオートクレーブ(反応器、2500mlAC)に、34質量%水酸化カリウム(KOH)水溶液を988g入れ、反応器を70℃に加熱した。また、244caの450gにテトラ-n-ブチルアンモニウムクロリド(TBAC)を3.87g溶解させ、シリンダーに充填して70℃に加熱した。反応器内温が70℃に達したところで、シリンダー内の244ca溶液を反応器に投入した。その後、244caの転化率が99.8%以上となるまで、3時間撹拌を続け、有機層および水層を回収した。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1233ydが生成することを確認した。反応装置の寸法、反応条件および結果を表1に示す。
[Example 7]
Into a 2500 mL autoclave (reactor, 2500 ml AC) manufactured by HC276C equipped with four paddle blades, a stirrer, and a pressure meter, 988 g of 34 mass% potassium hydroxide (KOH) aqueous solution was placed, and the reactor was heated to 70 ° C. Further, 3.87 g of tetra-n-butylammonium chloride (TBAC) was dissolved in 450 g of 244ca, filled into a cylinder, and heated to 70 ° C. When the reactor internal temperature reached 70 ° C., the 244ca solution in the cylinder was charged into the reactor. Thereafter, stirring was continued for 3 hours until the conversion of 244ca reached 99.8% or more, and the organic layer and the aqueous layer were recovered. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
[比較例1]
 反応条件を表1に示す条件に変更した以外は実施例3と同様の反応器および手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1233ydが生成することを確認した。反応装置の寸法、反応条件および結果を表1に示す。
[Comparative Example 1]
The reaction was performed in the same reactor and procedure as in Example 3 except that the reaction conditions were changed to those shown in Table 1. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1233yd, which is the target substance, was produced in the organic phase. Table 1 shows the dimensions of the reactor, reaction conditions, and results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1に示す結果から、平均液滴径が小さくなるにしたがって反応時間が短縮されていることがわかる。さらに、実施例1~7と比較例1を比較すると、平均液滴径を1500μm以下にすることにより、効果的に反応時間を短縮することができた。 From the results shown in Table 1, it can be seen that the reaction time decreases as the average droplet diameter decreases. Further, when Examples 1 to 7 and Comparative Example 1 were compared, the reaction time could be effectively shortened by setting the average droplet diameter to 1500 μm or less.
[実施例8]
 原料を225ca(旭硝子社製、純度100%、以下も同様である)に変え、アルカリ溶液を40質量%水酸化カリウム(KOH)水溶液に変え、かつ反応条件を表2に示す条件に変更した以外は実施例1と同様の反応器および手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1214yaが生成することを確認した。反応装置の寸法、反応条件および結果を表2に示す。実施例8~11、比較例2において転化率は、反応に使用した原料(225ca)のモル量に対する、反応で消費された原料(225ca)のモル量の割合(単位:%)を示す。なお、表2中の反応時間は、反応開始から225caの転化率が99.8%以上となるまでに要した時間である。
[Example 8]
The raw material was changed to 225ca (Asahi Glass Co., Ltd., purity 100%, the same applies to the following), the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. The reaction was carried out in the same reactor and procedure as in Example 1. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results. In Examples 8 to 11 and Comparative Example 2, the conversion rate indicates the ratio (unit:%) of the molar amount of the raw material (225ca) consumed in the reaction to the molar amount of the raw material (225ca) used in the reaction. In addition, the reaction time in Table 2 is the time required from the start of the reaction until the conversion of 225ca reaches 99.8% or more.
[実施例9]
 原料を225caに変え、アルカリ溶液を40質量%水酸化カリウム(KOH)水溶液に変え、かつ反応条件を表2に示す条件に変更した以外は実施例2と同様の反応器および手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1214yaが生成することを確認した。反応装置の寸法、反応条件および結果を表2に示す。
[Example 9]
The reaction was carried out in the same reactor and procedure as in Example 2 except that the raw material was changed to 225ca, the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. It was. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
[実施例10、11]
 原料を225caに変え、アルカリ溶液を40質量%水酸化カリウム(KOH)水溶液に変え、かつ反応条件を表2に示す条件に変更した以外は実施例3と同様の反応器および手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1214yaが生成することを確認した。反応装置の寸法、反応条件、および結果を表2に示す。
[Examples 10 and 11]
The reaction was carried out in the same reactor and procedure as in Example 3, except that the raw material was changed to 225ca, the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. It was. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
[比較例2]
 原料を225caに変え、アルカリ溶液を40質量%水酸化カリウム(KOH)水溶液に変え、かつ反応条件を表2に示す条件に変更した以外は実施例3と同様の反応器および手順で反応を行った。実施例1と同様に回収および分析を行ったところ、有機相中に目的物質である1214yaが生成することを確認した。反応装置の寸法、反応条件および結果を表2に示す。
[Comparative Example 2]
The reaction was carried out in the same reactor and procedure as in Example 3, except that the raw material was changed to 225ca, the alkaline solution was changed to a 40 mass% potassium hydroxide (KOH) aqueous solution, and the reaction conditions were changed to the conditions shown in Table 2. It was. When recovery and analysis were performed in the same manner as in Example 1, it was confirmed that 1214ya which is the target substance was produced in the organic phase. Table 2 shows reactor dimensions, reaction conditions, and results.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2に示す結果から、平均液滴径が小さくなるにしたがって反応時間が短縮されていることがわかる。さらに、実施例8~11と比較例2を比較すると、液滴径を1500μm以下にすることにより、効果的に反応時間を短縮することができた。 From the results shown in Table 2, it can be seen that the reaction time decreases as the average droplet diameter decreases. Further, when Examples 8 to 11 and Comparative Example 2 were compared, the reaction time could be effectively shortened by setting the droplet diameter to 1500 μm or less.
 なお、2018年4月23日に出願された日本特許出願2018-082280号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-082280 filed on April 23, 2018 are cited herein as disclosure of the specification of the present invention. Incorporate.

Claims (11)

  1.  炭素数が3~7であり、隣り合う2つの炭素原子の一方の炭素原子が水素原子と結合し、他方の炭素原子がフッ素原子または塩素原子と結合した構造を有する含フッ素飽和炭化水素を、アルカリ水溶液と接触させて脱塩化水素または脱フッ化水素することにより含フッ素不飽和炭化水素を製造する方法であって、
     前記含フッ素飽和炭化水素およびアルカリ水溶液のいずれか一方を平均液滴径が1500μm以下の液滴にして接触させることを特徴とする、含フッ素不飽和炭化水素の製造方法。
    A fluorine-containing saturated hydrocarbon having a structure of 3 to 7 carbon atoms and having a structure in which one carbon atom of two adjacent carbon atoms is bonded to a hydrogen atom and the other carbon atom is bonded to a fluorine atom or a chlorine atom, A method for producing a fluorinated unsaturated hydrocarbon by contacting with an alkaline aqueous solution to dehydrochlorinate or dehydrofluoride,
    One of the fluorine-containing saturated hydrocarbon and the aqueous alkali solution is brought into contact with droplets having an average droplet diameter of 1500 μm or less.
  2.  前記含フッ素飽和炭化水素の平均液滴径を800μm以下の液滴にして、アルカリ水溶液と接触させる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the fluorine-containing saturated hydrocarbon has an average droplet diameter of 800 µm or less and is brought into contact with an alkaline aqueous solution.
  3.  前記液滴を撹拌翼、ラインミキサー、ホモジナイザー、超音波発生器、およびマイクロバブル発生器から選ばれる少なくとも1種の装置を用いて生成させる、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the droplets are generated using at least one device selected from a stirring blade, a line mixer, a homogenizer, an ultrasonic generator, and a microbubble generator.
  4.  前記液滴を撹拌翼で撹拌させることにより生成させる、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the droplets are generated by stirring with a stirring blade.
  5.  前記液滴の平均液滴径を1μm以上400μm以下とする、請求項1~4のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein an average droplet diameter of the droplets is 1 μm or more and 400 μm or less.
  6.  前記含フッ素飽和炭化水素が1-クロロ-2,2,3,3-テトラフルオロプロパンであり、前記含フッ素不飽和炭化水素が1-クロロ-2,3,3-トリフルオロプロペンである、請求項1~5のいずれか1項に記載の製造方法。 The fluorine-containing saturated hydrocarbon is 1-chloro-2,2,3,3-tetrafluoropropane, and the fluorine-containing unsaturated hydrocarbon is 1-chloro-2,3,3-trifluoropropene. Item 6. The production method according to any one of Items 1 to 5.
  7.  前記含フッ素飽和炭化水素が1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンであり、前記含フッ素不飽和炭化水素が1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンである、請求項1~5のいずれか1項に記載の製造方法。 The fluorine-containing saturated hydrocarbon is 1,1-dichloro-2,2,3,3,3-pentafluoropropane, and the fluorine-containing unsaturated hydrocarbon is 1,1-dichloro-2,3,3,3. The production method according to any one of claims 1 to 5, which is tetrafluoropropene.
  8.  前記含フッ素飽和炭化水素を、相間移動触媒の存在下にアルカリ水溶液と接触させる、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the fluorine-containing saturated hydrocarbon is brought into contact with an alkaline aqueous solution in the presence of a phase transfer catalyst.
  9.  前記相間移動触媒を、前記含フッ素飽和炭化水素の100質量部に対して、0.001~10質量部の割合で存在させる、請求項8に記載の製造方法。 The production method according to claim 8, wherein the phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the fluorine-containing saturated hydrocarbon.
  10.  前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、請求項1~9に記載の製造方法。 10. The production method according to claim 1, wherein the aqueous alkaline solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxide, metal oxide and metal carbonate is dissolved in water.
  11.  前記アルカリ水溶液における塩基の含有量は、アルカリ水溶液の全量に対して0.5~48質量%となる量である、請求項1~10のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the content of the base in the alkaline aqueous solution is an amount of 0.5 to 48 mass% with respect to the total amount of the alkaline aqueous solution.
PCT/JP2019/017160 2018-04-23 2019-04-23 Method for producing fluorine-containing unsaturated hydrocarbon WO2019208546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515473A JP7310803B2 (en) 2018-04-23 2019-04-23 Method for producing fluorine-containing unsaturated hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-082280 2018-04-23
JP2018082280 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019208546A1 true WO2019208546A1 (en) 2019-10-31

Family

ID=68294306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017160 WO2019208546A1 (en) 2018-04-23 2019-04-23 Method for producing fluorine-containing unsaturated hydrocarbon

Country Status (2)

Country Link
JP (1) JP7310803B2 (en)
WO (1) WO2019208546A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268090A (en) * 1994-03-29 1995-10-17 Idemitsu Petrochem Co Ltd Production of polycarbonate
JP2004018624A (en) * 2002-06-14 2004-01-22 Teijin Chem Ltd Method and apparatus for producing aromatic polycarbonate resin
WO2010074254A1 (en) * 2008-12-25 2010-07-01 旭硝子株式会社 Processes for production of 1,1-dichloro-2,3,3,3-tetra- fluoropropene and 2,3,3,3-tetrafluoropropene
WO2011162336A1 (en) * 2010-06-23 2011-12-29 旭硝子株式会社 Production method for 1,1-dichloro-2,3,3,3-tetra-fluoropropene and 2,3,3,3-tetrafluoropropene
JP2013519631A (en) * 2010-02-19 2013-05-30 ダイキン工業株式会社 Process for producing 2-chloro-3,3,3-trifluoropropene
JP2016079101A (en) * 2014-10-10 2016-05-16 旭硝子株式会社 Producing method of 1,1-dichloro-3,3,3-trifluoropropene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169850A (en) * 1994-12-16 1996-07-02 Daikin Ind Ltd Production of 1,1,1,2,3,3-hexafluoropropane
JP3778298B2 (en) * 1995-01-13 2006-05-24 ダイキン工業株式会社 Method for producing hexafluoropropene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268090A (en) * 1994-03-29 1995-10-17 Idemitsu Petrochem Co Ltd Production of polycarbonate
JP2004018624A (en) * 2002-06-14 2004-01-22 Teijin Chem Ltd Method and apparatus for producing aromatic polycarbonate resin
WO2010074254A1 (en) * 2008-12-25 2010-07-01 旭硝子株式会社 Processes for production of 1,1-dichloro-2,3,3,3-tetra- fluoropropene and 2,3,3,3-tetrafluoropropene
JP2013519631A (en) * 2010-02-19 2013-05-30 ダイキン工業株式会社 Process for producing 2-chloro-3,3,3-trifluoropropene
WO2011162336A1 (en) * 2010-06-23 2011-12-29 旭硝子株式会社 Production method for 1,1-dichloro-2,3,3,3-tetra-fluoropropene and 2,3,3,3-tetrafluoropropene
JP2016079101A (en) * 2014-10-10 2016-05-16 旭硝子株式会社 Producing method of 1,1-dichloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
JP7310803B2 (en) 2023-07-19
JPWO2019208546A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6620815B2 (en) Process for producing 1-chloro-2,3,3-trifluoropropene
JP6157568B2 (en) Method for producing tetrafluoropropene
JP6132042B2 (en) Process for producing 1-chloro-2,3,3-trifluoropropene
JP5439177B2 (en) Method for separating fluoroolefins from hydrogen fluoride by azeotropic distillation
WO2019203318A1 (en) Method for producing fluoroolefin
JPWO2019003896A1 (en) Method for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3-tetrafluoropropene Production method
KR102234857B1 (en) A method for mitigating hfc-245cb formation during hcfo-1233xf hydrofluorination to hcfc-244bb
JP6367410B2 (en) Integrated process for producing fluorinated olefins
KR20180039665A (en) New Fluorination of Chloroalkanes
WO2016194617A1 (en) Method for producing fluorine-containing compounds
JP2014533276A (en) Catalytic fluorination process to produce hydrohaloalkanes
WO2019189024A1 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
WO2019203319A1 (en) Method for producing fluoroolefin
US10364201B2 (en) Process for the manufacture of fluorinated olefins
JP7310803B2 (en) Method for producing fluorine-containing unsaturated hydrocarbon
JPWO2019230456A1 (en) Fluorine-containing propene manufacturing method
JP2022539588A (en) Compositions and methods for the synthesis of 2,3-dichloro-1,1,1,2-tetrafluoropropane and 2,3,3,3-tetrafluoropropene
US20210323898A1 (en) Compositions and processes for producing chlorofluoroalkenes
JP7371738B2 (en) Method for removing 2-chloro-1,3,3,3-tetrafluoropropene and method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792311

Country of ref document: EP

Kind code of ref document: A1