JP2004018624A - Method and apparatus for producing aromatic polycarbonate resin - Google Patents

Method and apparatus for producing aromatic polycarbonate resin Download PDF

Info

Publication number
JP2004018624A
JP2004018624A JP2002173993A JP2002173993A JP2004018624A JP 2004018624 A JP2004018624 A JP 2004018624A JP 2002173993 A JP2002173993 A JP 2002173993A JP 2002173993 A JP2002173993 A JP 2002173993A JP 2004018624 A JP2004018624 A JP 2004018624A
Authority
JP
Japan
Prior art keywords
reaction
solution
polycarbonate resin
tubular reactor
emulsified state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173993A
Other languages
Japanese (ja)
Other versions
JP3958634B2 (en
Inventor
Takashi Kaneko
金子 隆
Hiroyuki Muneta
棟田 寛之
Hidenori Nakagawa
中川 秀則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2002173993A priority Critical patent/JP3958634B2/en
Publication of JP2004018624A publication Critical patent/JP2004018624A/en
Application granted granted Critical
Publication of JP3958634B2 publication Critical patent/JP3958634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polycarbonate resin which has an excellent reaction yield, reduced amounts of terminal chloroformate group and terminal OH group as qualities of obtained polycarbonate, excellent heat stability during molding and dry-heat discoloration resistance of molding by completing a condensation polymerization reaction by a simple method and facilities in a short time and facilities therefor. <P>SOLUTION: In the method for continuously producing the polycarbonate resin by reacting an alkaline aqueous solution of dihydric phenol with phosgene in the presence of an organic solvent to form a carbonate oligomer reaction solution and then carrying out an interfacial condensation polymerization reaction, the oligomer reaction solution is made into a water-in-oil type emulsified state, the interfacial condensation polymerization reaction is carried out while maintaining the emulsified state in a laminar flow by a tubular reactor and a condensation polymerization catalyst is added in the middle of the tubular reactor. The production apparatus comprises facilities for mixing molecular weight adjuster with the alkaline aqueous solution, emulsion facilities for emulsifying the reaction solution in a highly emulsified state and the tubular reactor with a heat insulating material equipped with a device for adding and mixing the catalyst in the middle of the facilities. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は芳香族ポリカーボネートの製造方法およびその製造装置に関し、さらに詳しくは耐熱性の優れた高分子量ポリカーボネート樹脂の効率的な製造方法およびその製造装置に関する。
【0002】
【従来の技術】
高分子量ポリカーボネート樹脂を重合反応する際に、乳化状態で重合する方法は良く知られている。
【0003】
例えば特公昭37−2198号公報に開示されている。この方法ではオリゴマー溶液を乳化させた後、攪拌機付反応槽で120〜300rpmの攪拌下に乳化状態で重合反応を行っており、非乳化状態での重合反応に比べ、迅速に高分子量ポリカーボネートを形成する利点を有する反面、極めて安定な乳化状態を形成するため、反応終了後のポリマー溶液から不純物を分離し精製するために多くの労力を要し、また得られる製品はポリマー末端OH基が多く残り、耐乾熱特性が劣る欠点を有する。重合時間は2〜3Hrで長時間を要する欠点もある。
【0004】
オリゴマー溶液を乳化させた後、無攪拌で静置することによって乳化状態を良好に維持し、重合反応を進行させポリカーボネート樹脂を得る方法が、特開平4−277521号公報(特許2535457号)に開示されている。この方法は二価フェノールのアルカリ水溶液とホスゲンとを有機溶媒の存在下で反応させて得られたオリゴマー溶液に分子量調節剤を加えた後、該反応混合物を攪拌し乳化状態とした後、静置することによって乳化状態を良好に維持し重合する方法で、赤外分光光度計によるポリマー末端のOH基と主鎖のCO基の吸光度比で算出したOH/COの値が0.12〜0.20のPCが得られ、反応終了時の水相中の未反応ビスフェノールA濃度は0.6〜1.2g/Lであったことが記されている。
【0005】
しかしながらかかる重合方法は、重合に要する反応時間が2時間と長く、ポリマー末端OH基や水相中未反応ビスフェノールA濃度は、まだ充分とは言えずポリマーの耐乾熱性など改善の余地があり、またバッチ式反応であり生産性に欠けるなど多くの問題点を有している。
【0006】
予め作成したカーボネートオリゴマーの塩化メチレン溶液と二価フェノールのアルカリ溶液とを、多段オリフィス等混合手段を備えた混相流形成域で重合反応を進め、反応液の粘度が上がった時点でオリフィスを有しない層流形成域を層流で流し反応を終了する連続製造方法および装置が特開昭50−22089号公報(特公昭52−36554号公報)に開示されている。具体的には、実施例のすべてが触媒であるトリエチルアミンを重合反応の前にオリゴマー混合液に添加しており、その後に混相流として重合反応を行なっている。分子量分布が狭くなる記述はあるが、末端クロロホーメート基や末端OH基など耐熱性に関係する特性値の具体的、定量的記述が見られない。触媒の添加時期が早いためアルカリによるクロロホーメート基の分解反応が多く発生し、ポリマー末端OH基が多くなり耐乾熱性を悪化させる。またアミンとクロロホーメートとの副反応生成物による熱安定性悪化も問題である。さらに冷却装置の設置は設備・運転の費用負担を増している。
【0007】
また特開平04−255718号公報(特公平7−49475号公報)では、末端停止剤、塩基、水及び有機溶媒、触媒、カーボネートオリゴマーの混合液を、静的ミキサーで微細な分散液を形成し、滞留ゾーンで反応し、この工程を繰り返すポリカーボネートの製造方法が開示されている。この方法の特徴は静的ミキサーと滞留ゾーンの組合わせで、積極的に混ぜ合わせて次に滞留させ、これを繰り返して反応を進めること、および重合反応より前に触媒を添加する点である。
【0008】
この方法は重合反応時間が3.5分と短いこと、ビスフェノールAおよびフェノールの転化率が良いことなど、効率的であることが記述されているが、末端クロロホーメート基や末端OH基など耐熱性に関係する特性値の具体的、定量的記述が見られない。触媒の添加時期が早いためアルカリによるクロロホーメート基の分解反応が多く発生し、ポリマー末端OH基が多くなり耐乾熱性に悪影響を与える。またアミンとクロロホーメートの副反応によるウレタン結合の形成、およびポリマー中の遊離ビスフェノールAの多い点などはポリカーボネートの高温成形時の着色など熱安定性に問題を残す。
【0009】
また特開平08−325371号公報では、カーボネートオリゴマー反応液を油中水型乳化状態とし、オリフィス孔通過と配管内滞留を繰り返した後、触媒を添加し、さらにオリフィス孔通過と滞留を繰り返して重合反応を行う方法が開示されており、オリフィス孔通過により反応液に強力な攪拌混合を与え反応させる所に特徴がある。しかしこの方法は強力な攪拌混合によって、むしろ分散液滴の衝突による合一作用が働き、液滴のサイズアップや乳化状態の破壊すなわち水相・有機相間界面積の大幅減少につながり、界面重合反応は進み難くなり、またオリフィスによる間仕切り効果は反応液の部分滞留とショートパスにつながり、品質が不安定になり易い。また多くのオリフィスを設置するため、装置が複雑で液・ガス漏れの防止対策など設備コストが高くつく。
【0010】
【発明が解決しようとする課題】
本発明はポリマー中の残存クロロホーメート基量や末端OH基量が少なく、耐熱性が優れたポリカーボネート樹脂を簡単な設備でかつ効率良く製造する方法を提供せんとするものである。
【0011】
本発明者らは、カーボネートオリゴマー反応液を乳化させた後に槽内で無攪拌で静置することによって乳化を維持し反応を進める方法とは異なり、或いはまた静的ミキサーと滞留ゾーンを組合わせた工程中に、カーボネートオリゴマー反応液を連続的に積極的な混合と滞留を繰り返して反応を進める方法とも異なり、本発明ではカーボネートオリゴマー反応液を連続的に乳化させた後に、攪拌機能のない管型反応器中を層流で流し乳化状態を維持しながら縮重合反応を行い、かつ管型反応器の途中で触媒を添加する方法によって、極めて短時間に縮重合反応を完了させ、かつポリマー中の残存クロロホーメート基量や末端OH基量が少なく、耐熱性に優れたポリカーボネート樹脂が得られ、その収率も向上するという驚くべき事実を究明し、本発明に到達した。
【0012】
【課題を解決するための手段】
本発明は成形時に着色の少ない熱安定性および耐乾熱性の優れた高分子量ポリカーボネート樹脂を簡単な設備で効率よく製造する方法および製造装置を提供するものである。
【0013】
すなわち本発明の要旨は、二価フェノールのアルカリ水溶液とホスゲンとを有機溶媒の存在下で反応させてカーボネートオリゴマー反応液を形成後、界面縮重合反応を行いポリカーボネート樹脂を連続的に製造する方法において、該オリゴマー反応液を油中水型の乳化状態とした後に、管型反応器を用いて層流で乳化状態を維持しながら界面縮重合反応を行い、かつ該管型反応器の導入口から該管型反応器の全容量の3分の2の容量の位置までの間に縮重合触媒を添加することを特徴とするポリカーボネート樹脂の連続製造方法にある。
【0014】
本発明によれば、ポリマー中の残存クロロホーメート基量や末端OH基量が少なく、熱安定性、耐乾熱性の優れたポリカーボネート樹脂を簡単な設備で効率よく製造することができる。
【0015】
以下、本発明を更に詳しく説明する。
【0016】
本発明において使用する二価フェノールは、例えば2,2−ビス(4−ヒドロキシフェニル)プロパン(以下ビスフェノールAと称す)をはじめとするジオキシジフェニルアルカン類、ジオキシジフェニルシクロアルカン類、ジオキシジフェニルアリールアルカン類、ジオキシジフェニルエーテル類、ジオキシジフェニル類、ジオキシジフェニルスルホン類、ジオキシジフェニルスルフィド類、ジオキシジフェニルスルホキシド類、ジオキシジフェニルカルボニル類、ジオキシジフェニルカルボキシル類、ジオキシジフェニルフルオレン類、およびこれらのハロゲンまたはアルキル置換誘導体、またはこれらの混合物である。また、これらの二価フェノールの一部をフロログルシン、トリスフェノール、2,4−ジヒドロキシ安息香酸、ジフェノール酸等の多官能性化合物に置き換えて用いることもできる。
【0017】
これらの二価フェノールはアルカリ水溶液に溶解させて使用される。この場合アルカリとしては苛性ソーダ、苛性カリなどのアルカリ金属水酸化物が好ましく用いられ、また水溶液中のアルカリ濃度は5〜10重量%が好ましい。溶解させる二価フェノールとアルカリのモル比は1:1.8〜1:3.5が好ましく、さらに1:2.0〜1:3.2がより好ましい。二価フェノールのアルカリ水溶液濃度は溶解度から150〜180g/Lが好ましい。またアルカリはその一部をホスゲン化反応の後に添加使用することも可能である。二価フェノールの酸化着色を防止するために窒素雰囲気下で行うか、酸化防止剤として重亜硫酸ソーダ、ハイドロサルファイトなどの還元剤を添加しても良い。
【0018】
さらにホスゲン化反応および重合反応を容易にするために有機溶剤を用いる。使用される有機溶剤は、水に対して実質的に不溶でかつ反応に対して不活性であり、しかもホスゲンおよびポリカーボネートを溶解する有機化合物である。例えば、ジクロルメタン(塩化メチレンとも言う)、テトラクロルエタン、1,2−ジクロルエチレン、クロロホルム、トリクロルエタン、ジクロルエタン等の塩素化脂肪族炭化水素;クロルベンゼン、ジクロルベンゼン、クロルトルエン等の塩素化芳香族炭化水素;アセトフェノン、シクロヘキサン、アニソール等が挙げられ、これらの溶剤の単独または混合物を使用することができる。これらのうちジクロルメタン(塩化メチレン)が最も好ましく、また一般的である。溶剤の使用量は特に制限されないが、生成するポリカーボネートの濃度が8〜30重量%になる程度である。
【0019】
生成するポリカーボネートの分子量調節を目的として、一般に分子量調節剤が使用される。この分子量調節剤としては、例えばフェノール、p−クレゾール、p−ターシャリーブチルフェノール、クミルフェノール等の一価フェノール;メタノール、エタノール、シクロヘキサノール等の一価アルコールが挙げられ、反応系への添加時期は、ホスゲン化反応の終了以後が好ましく、またその添加量は、目的とする分子量によって変化するが、通常は二価フェノール1モルに対し0.001〜0.2モル程度である。
【0020】
本発明によって得られるポリカーボネートの粘度平均分子量は10000〜100000であり、好ましくは12000〜50000であり、より好ましくは13000〜40000である。また本発明でカーボネートオリゴマーと称するものは相対粘度ηrelでおよそ1.15以下のものである。(粘度平均分子量および相対粘度については後述の実施例において説明する)。
【0021】
ホスゲンを導入してのホスゲン化反応によりカーボネートオリゴマーを得る方法は、従来から良く知られた条件下で行うことが出来る。例えば、二価フェノールのアルカリ水溶液と非混和性有機溶剤の攪拌下ホスゲンを導入し反応させる方法(特公昭37−2198号公報)、二価フェノールのアルカリ水溶液と有機溶剤を管型反応器に導入し混相流を形成せしめ、これにホスゲンを導入し反応させる方法(特公昭46−21460号公報)、二価フェノールが特定の濃度となる様に、二価フェノールのアルカリ水溶液、有機溶剤、ホスゲンを冷却された循環反応混合物に供給反応させる方法(特公平6−55810号公報)、等の方法によりカーボネートオリゴマーを得ることが可能である。
【0022】
導入するホスゲンは液状またはガス状で、また単独あるいは有機溶剤の溶液として使用される。連続ホスゲン化反応における好ましい使用量は、反応条件、とくにホスゲン化反応温度の影響および二価フェノールのアルカリ水溶液の濃度の影響を受け、該温度が25℃を超える時や該濃度が55g/L未満の時は、二価フェノール1モルに対するホスゲンのモル数は1.2モルを超え、しばしば1.3モルを超えることがあるが、通常条件下では1.0〜1.2モルで充分であり、さらには1.05〜1.15モルがより好ましい。
【0023】
また分子量調節剤の反応系への添加時期は、該分子量調節剤とホスゲン、或いはビスフェノールAのクロロホーメート化合物との反応による低分子量化合物の生成を抑えるために、ホスゲン化反応終了後から縮重合反応初期の間に添加することが好ましい。
【0024】
本発明方法においては、ホスゲン化反応によってカーボネートオリゴマーを形成し、次いで該オリゴマー反応液に必要により分子量調節剤および/またはアルカリ水溶液を加えた後に、該反応液を連続的に乳化設備によって油中水型の乳化でかつ分散水相の液滴サイズの小さい高度の乳化状態とするが、この際、良好な乳化状態を得るための重要な条件として、反応液中の有機相と水相との比率があり、この比率は通常体積比で有機相1.0に対して水相0.1〜3.0が好適であり、さらに0.5〜2.5がより好適である。
【0025】
反応液を油中水型の乳化状態にさせる方法としては、攪拌下にアルカリ水溶液を添加する方法、攪拌速度を変化させる方法、攪拌下の有機相中に反応液を注入する方法など種々がある。単純な攪拌機(プロペラ、タービン、錨型翼、カイ型翼など)を用いて、その回転速度を高くして乳化させることも可能であるが乳化の程度に限界がある。さらに高度の乳化状態を得るための装置としては、ホモジナイザー、ミキサー、ホモミキサー、コロイドミル、フロージェットミキサーなどの高速攪拌を行う動的乳化機、およびスタティックミキサー、オリフィスミキサー、超音波乳化装置などの静的乳化機が適しており、これらを用いると単純な攪拌機で得られる液滴径の乳化状態に比べて微細な液滴径の高度の乳化状態が得られる。本発明の方法においては後者の高度乳化装置を単独或いは複数用いて、また必要に応じて前段で単純な攪拌機も併用して、反応液を連続的にこれらの乳化設備に流すことで、高度の乳化状態を得ることが出来る。
【0026】
乳化設備によって得られる油中水型乳化液の分散水相の平均液滴径は5μm〜50μmが好ましく、さらに10μm〜40μmがより好ましい。即ち、分散水相の平均液滴径と、水相・有機相間の全界面積はほぼ反比例の関係が成立つので、平均液滴径の微小化は、界面反応であるポリカーボネートの縮重合反応の速度に直接的に影響してくる。
【0027】
界面縮重合反応速度を向上させるためには、該液滴径を50μm以下とすることが好ましく、さらに40μm以下とするとより好ましい。しかしながら該液滴径の微小化には問題点があり、5μmより小さい場合には反応速度が速すぎまた副反応が増加し、縮重合反応のコントロールが困難となり、得られる製品品質(例えば平均分子量など)のバラツキが大きくなり、また微小化するためには反応液を攪拌する動力が必要であり、5μmより小さい場合には単位容量当りの攪拌エネルギーが過大なものとなる。従って該液滴径は5μm以上とすることが好ましく、10μm以上とすることがより好ましい。
【0028】
次に、高度の乳化状態となった反応液は、従来公知の重合方法では、反応槽でそのまま攪拌を続ける方法、反応槽で攪拌せず静置して重合する方法、連続多段反応槽で攪拌して重合する方法、微細な分散液を形成しスタティックミキサーと滞留ゾーンを組合わせた管式反応器に連続的に流すことによって重合する方法などがあった。しかし本発明の方法は、高度の乳化状態となった反応液を攪拌機能のない管型反応器の中を連続的に層流で流し縮重合反応を行う方法である。
【0029】
また従来公知の連続管式反応器による重合方法がスタティックミキサー等を用い、強制的に攪拌を行い水相と有機相の接触を向上させることを意図しているが、この強制的な攪拌はむしろ液滴の合一作用や乳化状態を破壊する効果が大きく、分散水相の液滴サイズ、量に起因する水相・有機相間の反応界面積の減少に通じ、界面縮重合反応を円滑に進めることが出来ない。
【0030】
一方、本発明の連続管型反応器による縮重合方法の特徴は、上述の如く、攪拌機能のない管型反応器の中を連続的に層流で流し重合反応を進める方法である。即ち、攪拌を排除することによって高度の乳化状態を維持することが可能となり、分散水相の液滴サイズ、量に起因する水相・有機相間の反応界面積維持が可能となり、界面縮重合反応を円滑に進めることが出来る。
【0031】
次に管型反応器の形状は最も単純には断面が円形の管で良く、また断面が四角形、六角形など角形の管でも良い。乳化状態の反応液をピストンフロー方式で流し、かつ設備効率を上げるために、管型反応器の管の直径と管の長さの比率は1:150〜1:7000が好ましく、さらには1:500〜1:3000がより好ましい。またピストンフロー方式で流すために、滞留部分のない単純な管型反応器で良いが、実質的に本発明の効果の発現を妨げない範囲、即ちRe数2000以下の層流範囲で使用する邪魔板、仕切り板などの管型反応器内への設置は可能である。また該反応器を構成する材料の材質はSUS304ステンレス鋼、グラスライニング鋼材など通常使用される物で良い。
【0032】
本発明においては縮重合反応温度の制御について効率的な方法を提案している。従来の重合反応温度制御の方法は、重合設備にジャケット等を設置し冷却または加温する方法が一般的であるが、本発明の方法は原料温度を所定温度に制御し、ジャケット等の代わりに保温材を用いる方法である。即ち、オリゴマー反応液の温度を制御して、次いで行われる界面縮重合反応において、反応の発熱と送液ポンプおよび乳化機等の動力エネルギーによる発熱の昇温によって目標の温度に到らしめ、ジャケット等による外部からの強制的な冷却および/または加温を実施せず、保温のみで縮重合反応温度を所定範囲に維持する方法である。ポリカーボネートの縮重合反応において、一定の反応条件において、重合反応の発熱および動力エネルギーによる発熱はほぼ一定であり、原料系の温度を一定にすれば、管型重合反応器に保温材による適切な保温を実施することによって、放熱量または吸熱量を少なくかつほぼ一定に押さえ、結果として途中および最終の重合反応温度は一定の温度範囲に維持することが可能である。
【0033】
一態様として温度20℃のホスゲン化反応終了時のオリゴマー反応液に分子量調節剤およびアルカリ水溶液を混合した際に温度24℃となり、本発明の重合反応の終了時に目標の30±1℃に維持できる。
【0034】
本発明における縮重合反応の温度範囲は20〜40℃で可能であり、好ましくは24〜36℃であり、より好ましくは28〜34℃である。この温度を達成するためにオリゴマー反応液は10〜30℃、分子量調節剤およびアルカリ水溶液を加えた反応液の温度は15℃〜35℃とすることが適当である。
【0035】
放熱または吸熱を防止する保温材の材質はケイ酸カルシウム、ロックウール、ガラスウール、或いはウレタンフォーム、ポリスチレンフォームなどがあり、これらを利用できる。
【0036】
この反応温度維持方式を採用することによって、ジャケット、加熱・冷却設備など設備費が不要(保温設備費用は必要)となり、また加熱・冷却の運転動力費も不要となり、大きなコストメリットが得られる。
【0037】
乳化状態の反応液を管型反応器の内部に流し、その乳化状態を維持するためには層流が必要である。即ち、該反応液の流動状態を表わす無次元数であるRe数が2000以下の層流とすることが必要である。Re数については成書における記述も多く、良く知られた指標であるが、次式で表わされる。
Re数=ρud/μ
ここで、  ρ〔kg/m3〕:流体密度
u〔m/s〕:流体代表速度
d〔m〕:代表長さ(管の直径)
μ〔Pa・s〕:流体粘度
【0038】
Re数が4000以上の乱流の場合は流れの乱れが激しく、分散水相の液滴は互いに衝突を起こし、液滴の破壊、サイズアップが生じ、乳化状態は高度から弱い状態、そしてさらに非乳化の状態となって行く。
【0039】
2000<Re数<4000の遷移流の場合も乱流に比べ、流れの乱れの程度は弱いが好ましくない。
【0040】
Re数は2000以下とすることが必要であるが、Re数の好ましい範囲は1000以下であり、より好ましい範囲は500以下である。また、流動性の点からRe数は1以上が好ましい。
【0041】
本発明の方法では、反応速度向上のため縮重合触媒を使用する。添加する縮重合触媒はトリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン等の第三級アミン、およびトリメチルベンジルアンモニウムクロライド等の第四級アミンが単独または併用して用いられるが、容易に入手可能で触媒効果の優れているトリエチルアミンが最も好ましい。縮重合触媒の使用量は、二価フェノールの使用モル数に対して0.002〜2.0モル%の量が好ましく、さらに0.05〜0.5モル%の量がより好ましい。使用量が0.002モル%より少ない触媒量では触媒効果が現れ難く、反応時間が短縮できず、また2.0モル%より多い触媒量ではクロロホーメート基およびカーボネート結合の分解作用が起こり易く、洗浄工程での縮重合触媒の除去、回収に多くの労力を費やすこととなる。
【0042】
縮重合触媒の添加設備および添加方法は、管型反応器の途中にパイプノズルを設置して触媒を圧入する方法(図−5参照)、あるいは管型反応器の途中にポットを設置して、そのポット中に反応液と共に触媒を添加する方法(図−6参照)など、種々の方法が選べる。触媒はそのまま或いは溶媒で希釈した溶液として添加使用できるが、反応液の有機相に拡散し易い塩化メチレンの溶液が最も好ましい。
【0043】
縮重合触媒の添加位置は、乳化設備によって反応液が高度に乳化された後に、縮重合反応を行う反応器である管型反応器の導入口から、該管型反応器の全容量の3分の2の容量の位置までの間に、乳化液に触媒を添加することが必要であり、導入口側の管型反応器全容量の1/10から6/10容量の間の位置とすることが好ましく、さらに導入口側の管型反応器全容量の1/4から1/2容量の間の位置とすることがより好ましい。
【0044】
管型反応器の導入口より前、すなわち乳化設備以前において反応混合液に触媒を添加することは、乳化設備中で高乳化と同時に重合反応が急激に進み、分離水が発生し非乳化状態となり反応後のポリカーボネート樹脂に末端クロロホーメート基が残り易く、かつまたアルカリとクロロホーメートの副反応の増大によりポリカーボネート樹脂の末端OH基量が増加し耐熱性に劣り好ましくない。
【0045】
また、該管型反応器の全容量の3分の2の容量の位置よりも後部で、乳化液に触媒を添加することは、所定の時間に反応を完結する事が難しくなり、また得られるポリカーボネート樹脂の残存クロロホーメート基量の増加となり好ましくない。
【0046】
本発明の縮重合反応の反応時間は、原材料使用モル比、反応温度、乳化の度合、触媒使用量などの反応条件によって変ってくるが、概ね5分〜30分であり、好ましくは10分〜20分である。
【0047】
本発明における芳香族ポリカーボネートの製造装置は、予め二価フェノールのアルカリ水溶液とホスゲンとを有機溶媒の存在下で反応させて得られたカーボネートオリゴマー反応液に、分子量調節剤およびアルカリ水溶液を混合する設備と、その混合した反応液を高度な乳化状態にする乳化設備、さらにそれに続き触媒の添加混合用具を設備の途中に備えた保温材付き管型反応器よりなることを特徴とするポリカーボネート連続製造装置であり、この概念の一例を示すと図−2のようになる。
【0048】
また、本発明には複数の並列の管型反応器より成る次の装置も含まれる。即ち、オリゴマー反応液に分子量調節剤およびアルカリ水溶液を混合する設備一基に対し、乳化設備を一基または複数基および管型反応器(触媒の添加混合用具含む)一基または複数基より構成されるポリカーボネート連続製造装置である。ここで、乳化設備および管型反応器の複数とは2〜16であり、好ましくは2〜8である。この概念の一例を示すと図−4のようになる。
【0049】
さらにまた、本発明においては縮重合反応温度を目標値に維持するために、管型反応器が、外部冷却設備および又は外部加温設備の代わりに、確実に保温効果を有する保温材等を備えていることが必要である。但し、この場合保温効果を有すれば保温材に拘らない、外気を遮断する密閉された室内など、外気の直接の影響を受けない状況であっても良い。
【0050】
【実施例】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はその要旨の範囲を越えない限り、これらに限定されるものではない。
(試験・分析方法)
(A)乳化液の分散水相平均液滴径の測定
乳化液をスライドグラス上に取り、キーエンス(株)デジタルHDマイクロスコープVH−7000型を用いて撮影し、分散水相の平均液滴径を求めた。
【0051】
(B)反応乳化液の粘度測定とRe数の算出
管型反応器内の乳化反応液をサンプリング配管により粘度計に導き、粘度を測定し、前述の関係式よりRe数を求めた(Re数=ρud/μ)。粘度計は山一電機(株)製 FVM−80A振動式粘度計を用いた。
またスタティックミキサー内の液体のRe数については東レエンジニアリング(株)Hi−Mixer技術資料(カタログ)に記載されており、次の関係式より求めた。(Re数=277ρud/μ)。ここで用語は上記に同じである。またHi−Mixerにおいて実験的に定義されたRe数と流動状況の関係は次の通りである。層流域:Re数<80、遷移域:80<Re数<800、乱流域:800<Re数
【0052】
(C)反応液の水相中のビスフェノールA濃度
重合反応終了時の反応液をサンプリングし、該反応液に同量の塩化メチレンを加え、遠心分離機にかけ水相を取り出す。この水相の一定量を希アルカリ水溶液で希釈し、UV分光光度計(日立製作所製 U−3000型)にて、波長294nmおよび330nmの吸光度を測定し、次式よりビスフェノールA濃度を求めた。
ビスフェノールA濃度(g/L)=(A−A)×n×1/22
但し、ここでA、Aはそれぞれ294nmおよび330nmの吸光度、nは希釈倍率である。
【0053】
(D)オリゴマーの相対粘度
ホスゲン化反応終了時などの反応液をサンプリングし、有機相を分離し精製処理を行ない、有機相から溶剤を蒸発し、減圧乾燥しカーボネートオリゴマーを得た。該オリゴマーの0.700gを塩化メチレン100mlに溶解し、オストワルド粘度計にて20℃で測定する。オリゴマーの相対粘度は次式で求めた。
オリゴマーの相対粘度ηrel=t/t
但し、ここでt、tはそれぞれ、溶液および溶媒の測定秒数である。
【0054】
(E)ポリカーボネートの粘度平均分子量(Mv)
0.700gのポリカーボネートを100mlの塩化メチレンに溶解し、オストワルド粘度計にて20℃で測定して比粘度(ηsp)を求め、次式に挿入した。
ηsp/c=[η]+0.45×[η]
[η]=1.23×10−4×(Mv)0.83
ここで、[η]は極限粘度、ηsp=ηrel−1、c=0.7である。
【0055】
(F)末端塩素量(ポリカーボネート末端クロロホーメート基由来の塩素量)20mlメスフラスコに試料ポリカーボネート約1gを精秤し、塩化メチレンを加えて溶解し、これに4−(p−ニトロベンジル)ピリジンの0.50g/L塩化メチレン溶液を2ml加えて発色させて20mlに調整した後、分光光度計(日立製作所製 U−3000型)を使用し波長440nmの吸光度を測定した。別にクロロ炭酸フェニルを用いて作成した検量線を用い、試料中の末端塩素量を定量した。定量下限は試料中塩素量換算で0.1ppmであった。
末端塩素は耐熱性悪化の要因であり、0.3ppm以下が好ましい。
【0056】
(G)末端OH基量(ポリカーボネート末端OH基量)
試料ポリカーボネート28mgを重クロロホルム0.5mlに溶解して、核磁気共鳴スペクトルメーター(Varian製UNITY300(300MHz))を用いて、H−NMRを測定し、OH価(eq/ton)を求めた。
末端OH基は耐乾熱性悪化の要因であり、3.0eq/t以下が好ましい。
【0057】
(H)成形滞留焼け
ポリカーボネートの乾燥ペレットを射出成形機(日本製鋼所(株)製J85ELII型)を用い、340℃で可塑化シリンダー内で45sec保持して厚さ2mmの50mm角の見本板を成形した。次に、可塑化シリンダー内で340℃で10分間滞留させて同見本板を成形した。色差計(日本電色(株)色差計Z−1001DP型)を使用しC光源で、見本板の色相(L値、a値、b値)を測定した。滞留前後の見本板の色相の差(ΔL値、Δa値、Δb値)よりΔE(次式)を求め、成形滞留焼けを評価した。
ΔE=[(ΔL)+(Δa)+(Δb)1/2
ΔEは0.2以下が好ましい。
【0058】
(I)乾熱試験
前記(H)における滞留前の見本板を20日間、150℃で熱風乾燥器で処理し、前記色差計で見本板の黄色度YIを測った。熱処理前後の黄色度差ΔYIを求め耐乾熱性を評価した。
ΔYIは2.0以下が好ましい。
【0059】
[参考例1](カーボネートオリゴマーの製造)
ビスフェノールA1500kgとハイドロサルファイト3kgを7.2重量%の苛性ソーダ水溶液8070kgに30℃で溶解して170g/LのビスフェノールAの苛性ソーダ水溶液を調整した。カーボネートオリゴマー製造のフローおよび主な機器は図−1に示す。即ち、冷却ジャケットおよび攪拌機付き実容量15Lの第1反応器(1)にビスフェノールAの苛性ソーダ水溶液530L/hr、メチレンクロライド220L/hr、ホスゲン43kg/hrを連続的に仕込み、液温18℃でホスゲン化反応を行う。実容量100Lの攪拌機付き第2反応器(2)の反応液は約5000L/hrの流量でポンプ循環され、熱交換器(4)に通され冷却され、第2反応器に戻る(配管11経由)が、そのうち1/10容量の約500L/hrは第1反応器に送られ(配管7経由)、原料液と混合されホスゲン化反応に供される。第1反応器をオーバーフローする反応液は第2反応器に流入し、第2反応器において液温20℃でホスゲン化反応を完了しカーボネートオリゴマーを生成し、第2反応器をオーバーフローする(配管6経由)。
【0060】
第2反応器のオーバーフロー排出口より排出されたオリゴマー反応液を、定常状態となった時点で5回サンプリングして、前記の方法で分析したところ、オリゴマーの相対粘度は1.033〜1.037、オリゴマー末端クロロホーメート由来の末端塩素は7.0〜7.5%、水相のpHは13以上、ビスフェノールAの濃度は26〜27g/Lと何れも安定した値を示していた。
【0061】
[実施例および比較例の設備概要]
本発明のフローおよび主な機器は図−2に示す(なお、以後( )内の数字等は図面上の符号を表すものとする)が、受け容器(21)、ポンプ(22)、乳化機(23)、保温材を備えた管型重合反応装置(24)(管内径55mmφ、管長50m)、縮重合触媒添加装置(27)(管型重合反応器全長50mのうちの管長10%、50%、65%、80%の位置に設置、ここで管長%は管容量%に対応する)、塩化メチレン希釈液注入部(31)(反応終了後にポリマー溶液の濃度を下げる)から成る。
【0062】
一方、比較例のフローおよび主な機器は図―3に示すが、受け容器(21)、ポンプ(22)、乳化機(23)、保温材を備えた管型重合反応装置(24)(管内径55mmφ、管長50m)、スタティックミキサー(25)(東レHi−Mixer 公称径50mm、エレメント数5ケ/1組、管型重合反応器の全長50m中に10組をほぼ等間隔に設置)、縮重合触媒添加装置(27)(管型重合反応器全長50mのうちの10%、50%、65%の位置に設置、ここで管長%は管容量%に対応する)、塩化メチレン希釈液注入部(31)から成る。
【0063】
すなわち両者の違いは、比較例においては攪拌機能を目的とする複数のスタティックミキサー(25)(以後スタティックミキサーをSMと略記することがある)を有するが、一方、本発明はスタティックミキサーをすべて排除した攪拌機能のない管型重合反応装置である。
【0064】
さらに、複数の乳化機および複数の管型重合反応器を有する本発明のフローおよび主な機器は図−4に示すが、受け容器(21)、ポンプ(22)、乳化機(23)2基、保温材を備えた管型重合反応装置(24)(管径55mmφ、管長50m)2基、触媒添加装置(27)(管型重合反応器全長50mのうちの50%の位置に設置)2基、塩化メチレン希釈液注入部(31)(反応終了後にポリマー溶液の濃度を下げる)から成る。
【0065】
[実施例1]
本発明の連続無攪拌管型重合の例であり、図−2に示す装置を使用した。受け容器(21)に参考例1におけるホスゲン化反応で生成したカーボネートオリゴマー反応液375L/hr(配管15経由)、分子量調節剤p−ターシャリーブチルフェノールの塩化メチレン(11wt%)溶液6.0L/hr(配管16経由)、および48%苛性ソーダ水溶液5.2L/hr(配管17経由)を連続的に仕込み、該混合液をポンプ(22)で送液し、乳化機(23)として2組のスタティックミキサー(東レHi−Mixer 公称径10mm、エレメント数5ケ/1組)(23−1)を用いて油中水型の高度の乳化状態となし(この際、乳化機出口部の乳化液の分散水相の平均液滴サイズは15μmであった。また同液中のオリゴマーの相対粘度ηrelは1.095であった。)、次に該乳化液を内径55mmの管型重合反応器(24)に通し、その全長50m中を層流で流し、かつ途中の触媒添加位置B点(27B)(容量50%点)において縮重合触媒であるトリエチルアミンの塩化メチレン溶液(1.0vol%)6.0L/hrを連続的に添加し、到達反応温度30±1℃で縮重合反応を実施した。所要重合反応時間は20分であった。反応終了まで乳化状態を維持しており、乳化液より分離した水分は少量であった。途中、サンプリングノズル(30−1および30−2)より反応液を採取し粘度を測定した。反応管最前部の反応乳化液の粘度は0.05Pa・sであり、Re数は70であった。また反応管中間部(60%点)で粘度は0.40Pa・sであり、Re数は8.6であった。両者ともRe数<2000で層流範囲を確認できた。反応終了時の反応液の水相中のビスフェノールA濃度を測定し0.11g/L(反応収率99.94%に相当)であった。反応終了時の反応液は連続的に塩化メチレン236L/hrを注加し、塩化メチレン層中のポリカーボネート濃度を10wt%とした。
【0066】
次に該希釈混合液をろ過層に通し水層分を分離除去した後、水洗分離1回、塩酸処理1回、水洗分離2回を行なって塩類、アルカリ、触媒等を除去し、精製ポリカーボネート溶液を得た。次いでこのポリカーボネート溶液を50℃温水入りニーダーに仕込み、溶媒を除去してポリカーボネートの粉粒体を造り、さらに脱水後、熱風乾燥機で140℃で12hr乾燥した後、押出機により280℃でペレット化した。このペレットの平均分子量、末端塩素量(クロロホーメート基由来の塩素)、末端OH基量を測定し、結果を表1に示した。
【0067】
次にこのペレットを射出成形機(日本製鋼所(株)製J85ELII型)を用い340℃で可塑化シリンダー内で45sec保持して厚さ2mm、50mm角の見本板を成形した。また、可塑化シリンダー内で340℃で10分間滞留させて同見本板を成形した。滞留前後の見本板の色相の差(ΔE)より成形滞留焼けを評価した。さらに、滞留前の見本板を20日間、150℃で乾熱処理し、処理前後の黄色度差(ΔYI)より耐乾熱性を評価した。その結果を表1に示した。
【0068】
本実施例1は反応収率が良好で、末端塩素量、末端OH基量ともに低く、成形滞留焼け、耐乾熱性とも優れていた。
【0069】
[比較例1]
図−3に示す装置を使用した。受け容器(21)に参考例1におけるホスゲン化反応で生成したカーボネートオリゴマー反応液(15経由)、分子量調節剤p−ターシャリーブチルフェノールの塩化メチレン(11wt%)溶液(16経由)、および48%苛性ソーダ水溶液(17経由)の各々について実施例1と同量を連続的に仕込み、該混合液をポンプ(22)で送液し、乳化機(23)として2組のスタティックミキサー(23−1)(東レHi−Mixer 公称径10mm、エレメント数5ケ/1組)を用いて油中水型の高度の乳化状態となし(この際、乳化機出口部の乳化液の分散水相の平均液滴サイズは15μmであった。また同液中のオリゴマーの相対粘度ηrelは1.094であった。)、次に該乳化液を管型重合反応器(24)に通し、全長50m中に設置した10組のSM(スタティックミキサー)(25)で攪拌を行ない、さらに途中の触媒添加位置B点(27B)(容量50%点)において触媒トリエチルアミンの塩化メチレン溶液(1.0vol%)6.0L/hrを連続的に添加し、到達反応温度30±1℃で重合反応を実施した。所要重合反応時間は20分であった。覗流器(図示していない)で見ると、前方から6組目のSMの後部(触媒添加部の後方1組目のSMの後部)では、乳化液から多量の水分が分離していた。反応管最前部の反応乳化液の測定粘度は0.05Pa・sであり、Re数は70であった。また反応管中間部(60%点)では測定粘度は0.25〜0.45Pa・sと変動し、Re数は11.4〜6.9であった。変動は分離水分の影響があった。両者ともRe数<2000で層流範囲であった。一方、両者に隣接する位置のSM内部での反応液のRe数は18000および2600の乱流域の値であった。反応終了時の反応液の水相中のビスフェノールA濃度を測定し0.31g/L(反応収率99.84%に相当)であった。反応終了時の反応液は連続的に塩化メチレン236L/hrを注加し(31経由)、塩化メチレン相中のポリカーボネート濃度を10wt%とした。
【0070】
以後の精製、造粒、乾燥、押出しの操作は実施例1と同様に行ないペレットを得た。このペレットの品質測定を行ない、結果を表1に示した。また、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0071】
比較例1のサンプルは実施例1に比べ、末端塩素量および末端OH基量が多く、成形滞留焼けおよび耐乾熱性が劣っていた。SMの攪拌効果で乳化が弱まり、縮重合反応が遅く未完結であったためである。
【0072】
[実施例2]
実施例1において、触媒添加位置をB点からA点(27A)(容量10%点)に変更した以外はすべて同一条件で行なった。反応終了まで乳化状態を維持しており、乳化液より分離した水分は少量であった。
【0073】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0074】
本実施例2は実施例1と同様に反応収率が良好で、末端塩素量、末端OH基量ともに低く、成形滞留焼け、耐乾熱性とも優れていた。
【0075】
[比較例2]
比較例1において、触媒添加位置をB点からA点(27A)(容量10%点)に変更した以外はすべて同一条件で行なった。覗流器で見ると、前方から3組目のSMの後部(触媒添加部の後方2組目のSMの後部)で乳化液から多量の水分が分離していた。
【0076】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も比較例1と同様に行ない、結果を表1に示した。
【0077】
比較例2のサンプルは実施例2に比べ、末端塩素量および末端OH基量が多く、成形滞留焼けおよび耐乾熱性が劣っていた。SMの攪拌効果で乳化が弱まり、縮重合反応が遅く未完結であったためである。
【0078】
[実施例3]
実施例1において、触媒添加位置をB点からC点(27C)(容量65%点)に変更した以外はすべて同一条件で行なった。反応終了まで乳化状態を維持しており、乳化液から分離した水分は少量であった。
【0079】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0080】
本実施例3は実施例1と同様に反応収率が良好で、末端塩素量、末端OH基量ともに低く、成形滞留焼け、耐乾熱性とも優れていた。
【0081】
[比較例3]
比較例1において、触媒添加位置をB点からC点(27C)(容量65%点)に変更した以外はすべて同一条件で行なった。覗流器で見ると、前方から8組目のSMの後部(触媒添加部の後方1組目のSMの後部)で乳化液から多量の水分が分離していた。
【0082】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も比較例1と同様に行ない、結果を表1に示した。
【0083】
比較例3のサンプルは実施例3に比べ、末端塩素量および末端OH基量が多く、成形滞留焼けおよび耐乾熱性が劣っていた。SMの攪拌効果で乳化が弱まり、縮重合反応が遅く未完結であったためである。
【0084】
[比較例4]
実施例1(図−2に示す装置を使用)において、触媒添加位置をB点からD点(27D)(容量80%点)に変更した以外はすべて同一条件で行なった。反応終了まで乳化状態を維持しており、乳化液から分離した水分は少量であった。
【0085】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0086】
比較例4のサンプルは末端塩素量が多く、成形滞留焼けが劣っていた。触媒添加時期が遅いため反応が未完結であった。
【0087】
[比較例5]
実施例1(図−2に示す装置を使用)において、触媒添加位置をB点から受け容器(21)に変更し配管16を経由して触媒を添加した以外はすべて同一条件で行なった。乳化機出口部の乳化液の分散水相の平均液滴サイズは、分離水の発生があり測定できなかった。反応終了時には多量の水分が分離していた。
【0088】
精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0089】
比較例5のサンプルは末端塩素量および末端OH基量が多く、成形滞留焼けおよび耐乾熱性が劣っていた。触媒添加時期が乳化機より前であるため、乳化機出口部の乳化液に分離水があり、分離した水分が多い状態で縮重合反応が行なわれ、反応が遅く未完結であったためである。
【0090】
[比較例6]
比較例1(図−3に示す装置を使用)において、触媒添加位置をB点から受け容器(21)に変更し配管16を経由して触媒を添加した以外はすべて同一条件で行なった。乳化機出口部の乳化液の分散水相の平均液滴サイズは、分離水の発生があり測定できなかった。反応終了時には多量の水分が分離していた。
【0091】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も比較例1と同様に行ない、結果を表1に示した。
【0092】
比較例6のサンプルは末端塩素量および末端OH基量が多く、成形滞留焼けおよび耐乾熱性が劣っていた。触媒添加時期が乳化機より前であるため、乳化機出口部の乳化液に分離水があり、分離した水分が多い状態で縮重合反応が行なわれ、反応が遅く未完結であったためである。
【0093】
[実施例4]
本発明の複数の乳化機、複数の管型重合反応器を有する連続反応装置の実施例であり、図−4に示す装置を使用した。受け容器(21)に参考例1におけるホスゲン化反応で生成したカーボネートオリゴマー反応液750L/hr(配管15経由)、分子量調節剤p−ターシャリーブチルフェノールの塩化メチレン(11wt%)溶液12.0L/hr(配管16経由)、および48%苛性ソーダ水溶液10.4L/hr(配管17経由)を連続的に仕込み、該混合液をポンプ(22)で送液し、その内の1/2量を一方の流路(a)に流し、乳化機(23a)として2組のスタティックミキサー(東レHi−Mixer 公称径10mm、エレメント数5ケ/1組)(23−1)を用いて油中水型の高度の乳化状態となし(この際、乳化機出口部の乳化液の分散水相の平均液滴サイズは15μmであった。結果は表1に記載)、次に該乳化液を内径55mmの管型重合反応器(24)に通し、その全長50m中を層流で流し、かつ途中の触媒添加位置B点(27B)(容量50%点)において触媒トリエチルアミンの塩化メチレン溶液(1.0vol%)6.0L/hrを連続的に添加し、到達の反応温度30±1℃で重合反応を実施した。ポンプ出口の残量(全体の1/2量)を他方の流路(b)に流し、流路(a)と同様に重合反応を実施した(乳化機出口部の平均液滴サイズは16μmであった)。両者とも反応終了まで乳化状態を維持しており、乳化液より分離した水分は少量であった。重合反応終了時の両者の反応混合液は連続的に塩化メチレン472L/hrを注加し、塩化メチレン層中のポリカーボネート濃度を10wt%とした。
【0094】
また、精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0095】
本実施例4は実施例1と同様に反応収率が良好で、末端塩素量、末端OH基量ともに低く、成形滞留焼け、耐乾熱性とも優れていた。
【0096】
[実施例5]
実施例1において、乳化機として2組のスタティックミキサー(東レHi−Mixer 公称径10mm、エレメント数5ケ/1組)の代わりに、ホモミキサー(特殊機化工業(株)製、T.K.ホモミックラインフロー500型)を用いてタービン翼回転数3600rpmで運転し、油中水型の高度の乳化状態とした(この際、乳化機出口部の乳化液の分散水相の平均液滴サイズは16μmであった。また同液中のオリゴマーの相対粘度ηrelは1.097であった)。それ以外はすべて同一条件で行なった。反応終了まで乳化状態を維持しており、乳化液より分離した水分は少量であった。途中、サンプリングノズル(30−1および30−2)より反応液を採取し粘度を測定した。反応管最前部の反応乳化液の粘度は0.05Pa・sであり、Re数は70であった。また反応管中間部(60%点)で粘度は0.41Pa・sであり、Re数は8.4であった。両者ともRe数<2000で層流範囲を確認できた。
【0097】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0098】
本実施例5は実施例1と同様に反応収率が良好で、末端塩素量、末端OH基量ともに低く、成形滞留焼け、耐乾熱性とも優れていた。
【0099】
[実施例6]
実施例5において、乳化機として、ホモミキサー(特殊機化工業(株)製、T.K.ホモミックラインフロー500型)を用いてタービン翼回転数2700rpmで運転し、油中水相型の高度の乳化状態とした(この際、乳化機出口部の乳化液の分散水相の平均液滴サイズは31μmであった)。それ以外はすべて同一条件で行なった。反応終了まで乳化状態を維持しており、乳化液より分離した水分は少量であった。
【0100】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0101】
本実施例6は実施例1と同様に反応収率が良好で、末端塩素量、末端OH基量ともに低く、成形滞留焼け、耐乾熱性とも優れていた。
【0102】
[比較例7]
比較例1に用いた図−3の装置のうち、内径55mmΦ、長さ50mの管型重合反応器にさらにスタティックミキサー5組を含む同径の長さ25mの管型重合反応器を接続し、全長75mの管型重合反応器として、それ以外はすべて比較例1と同じ条件で実験を行った。触媒の添加位置はB点であり、所要反応時間は30分であった。前方から6組目のSMの後部(触媒添加部の後方1組目のSMの後部)では、乳化液から多量の水分が分離していた。反応終了時の反応液の水相中のビスフェノールA濃度を測定し0.28g/L(反応収率99.86%に相当)であり、実施例1に比べて劣っていた。反応終了時の反応液は連続的に塩化メチレン236L/hrを注加し、塩化メチレン相中のポリカーボネート濃度を10wt%とした。
【0103】
また精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も比較例1と同様に行ない、結果を表1に示した。
【0104】
比較例7のサンプルは実施例1に比べ、末端塩素量および末端OH基量とも少し多く、成形滞留焼けおよび耐乾熱性が劣っていたが、比較例1に比べると末端塩素量および末端OH基量とも減少し成形滞留焼けおよび耐乾熱性は良くなっていた。SMの攪拌作用による乳化の弱まりと分離水の発生で、縮重合反応が遅くなったが、反応時間を20分から30分に延長したため反応はほぼ完結に到り品質面でかなりの改善が見られた。しかしながら実施例1に比べ反応が長時間を要する欠点を有している。
【0105】
[比較例8]
乳化機としてホモミキサーを用い、管型縮重合反応器の代わりに縮重合反応槽を用い、触媒は使用せず、無攪拌の静置重合を行なった。即ち、原材料の組成、仕込速度は実施例1と同様であり、実施例5と同様にホモミキサー(特殊機化工業(株)製、T.K.ホモミックラインフロー500型)を用いてタービン翼回転数3600rpmで運転し、油中水相型の高度の乳化状態とした(この際、乳化機出口部の乳化液の分散水相の平均液滴サイズは15μmであった)。該乳化液70Lを100リットル重合反応槽に投入し、無触媒で、攪拌せずに静置状態で30±1℃の温度に保持して2時間縮重合反応を行ない終了とした。反応終了時の反応液の水相中のビスフェノールA濃度を測定し1.2g/L(反応収率99.4%に相当)であった。該液に塩化メチレンを加えてポリカーボネート濃度10wt%とした後、精製、造粒、乾燥、押出しの操作、ペレットの品質測定、射出成形滞留焼け試験および乾熱試験も実施例1と同様に行ない、結果を表1に示した。
【0106】
比較例8の結果は反応終了時の水相中ビスフェノールAが多く(反応収率が劣る)、サンプルのポリマー末端OH基量が多く、耐乾熱特性が劣っていた。また長時間の反応時間が必要であり生産性が劣っていた。
【0107】
【表1】

Figure 2004018624
【0108】
【発明の効果】
従来、ポリカーボネートの縮重合反応は、攪拌機付き多段反応槽や、スタティックミキサー、オリフィスミキサーなどを具備した管型反応器のような攪拌装置を用いて実施していたが、本発明の縮重合反応によればそのような攪拌装置を排除した、攪拌機能のない管型反応器を用いて、その中に乳化状反応液を層流で流し触媒を添加するのみの簡単な設備・方法によって、たいへん短時間に縮重合反応を完了することができ、且つ反応収率に優れ、また得られるポリカーボネートの品質としてポリマー中の残存クロロホーメート基量や末端OH基量が少なく、成形時の熱安定性に優れ、更に成形品の乾熱着色の少ない耐熱性の良好なポリカーボネートを容易にかつ設備コストを安価に製造することが出来、本発明の工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】カーボネートオリゴマー製造装置を示す図である。
【図2】本発明(および一部比較例)のポリカーボネート連続縮重合反応装置を示す図である。
【図3】比較例のポリカーボネート連続縮重合反応装置を示す図である。
【図4】本発明のポリカーボネート連続縮重合反応装置(実施例4)を示す図である。
【図5】本発明の乳化機および触媒添加設備の一例を示す図である。
【図6】本発明の乳化機および触媒添加設備の一例を示す図である。
【符号の説明】
1. 第1反応器(図−1)
2. 第2反応器
3. 循環ポンプ
4. 熱交換器
5. オーバーフロー配管(第1反応器)
6. オーバーフロー配管(第2反応器)
7. 一部循環配管
8. ビスフェノールAの苛性ソーダ水溶液投入配管
9. ホスゲン投入配管
10. 塩化メチレン投入配管
11. 循環配管
15.カーボネートオリゴマー反応液投入配管(図−2、図−3、図−4)
16.分子量調節剤投入配管
17.苛性ソーダ水溶液投入配管
21.受け容器
22.送液ポンプ
23.乳化機
23a.流路aの乳化機(図−4)
23b.流路bの乳化機(図−4)
23−1.スタティックミキサー(乳化機)(図−5)
23−2.ホモミキサー(乳化機)(図−6)
24.管型縮重合反応器(保温材付き)
25.スタティックミキサー(反応液攪拌・混合用)(図−3)
26a.反応液流路a(図−4)
26b.反応液流路b(図−4)
27A. A点触媒添加装置(管容量10%点)
27B. B点触媒添加装置(管容量50%点)
27C. C点触媒添加装置(管容量65%点)
27D. D点触媒添加装置(管容量80%点)
27−1.圧入式触媒添加装置(図−5)
27−2.ポット式触媒添加装置(図−6)
28−1.触媒添加配管(図−5)
28−2.触媒添加配管(図−6)
28−P.触媒圧入用ポンプ(図−5)
29.反応液送液ポンプ(図−6)
30−1.サンプリングノズル(管型反応器最前部に設置)
30−2.サンプリングノズル(管型反応器中間部、前方より60%点に設置)
30−3.サンプリングノズル(管型反応器最後部:重合反応終了点)
31.希釈用塩化メチレン投入配管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aromatic polycarbonate and an apparatus for producing the same, and more particularly to an efficient method for producing a high-molecular-weight polycarbonate resin having excellent heat resistance and an apparatus for producing the same.
[0002]
[Prior art]
When polymerizing a high molecular weight polycarbonate resin, a method of performing polymerization in an emulsified state is well known.
[0003]
For example, it is disclosed in Japanese Patent Publication No. 37-2198. In this method, after the oligomer solution is emulsified, the polymerization reaction is carried out in an emulsified state under stirring at 120 to 300 rpm in a reaction vessel equipped with a stirrer, and a high-molecular-weight polycarbonate is formed more quickly than the polymerization reaction in a non-emulsified state. On the other hand, it has the advantage of forming an extremely stable emulsified state, requiring much effort to separate and purify impurities from the polymer solution after the reaction is completed, and the resulting product has a large amount of polymer terminal OH groups remaining. And has a drawback of poor dry heat resistance. There is also a disadvantage that the polymerization time is 2-3 hours and a long time is required.
[0004]
Japanese Patent Application Laid-Open No. Hei 4-277521 discloses a method of maintaining a good emulsified state by emulsifying an oligomer solution and then allowing it to stand without stirring to advance the polymerization reaction to obtain a polycarbonate resin. Have been. In this method, a molecular weight regulator is added to an oligomer solution obtained by reacting an alkaline aqueous solution of a dihydric phenol with phosgene in the presence of an organic solvent, and the reaction mixture is stirred to be emulsified, and then left to stand. The OH / CO value calculated from the absorbance ratio of the OH group at the polymer terminal to the CO group in the main chain by an infrared spectrophotometer is 0.12 to 0. It was described that 20 PCs were obtained, and the unreacted bisphenol A concentration in the aqueous phase at the end of the reaction was 0.6 to 1.2 g / L.
[0005]
However, in such a polymerization method, the reaction time required for the polymerization is as long as 2 hours, and the concentration of unreacted bisphenol A in the polymer terminal OH group and the aqueous phase is not yet sufficient, and there is room for improvement such as the dry heat resistance of the polymer. It is a batch type reaction and has many problems such as lack of productivity.
[0006]
A polymerization reaction of a methylene chloride solution of a carbonate oligomer prepared in advance and an alkali solution of a dihydric phenol is carried out in a multiphase flow forming region provided with a mixing means such as a multistage orifice, and the reaction solution has no orifice when the viscosity of the reaction solution increases. A continuous production method and apparatus for terminating the reaction by flowing the laminar flow in a laminar flow forming region is disclosed in Japanese Patent Application Laid-Open No. 50-22089 (Japanese Patent Publication No. 52-36554). Specifically, in all of the examples, triethylamine as a catalyst was added to the oligomer mixture before the polymerization reaction, and thereafter the polymerization reaction was performed as a mixed phase flow. Although there is a description that the molecular weight distribution is narrowed, there is no specific and quantitative description of characteristic values related to heat resistance, such as a terminal chloroformate group and a terminal OH group. Since the catalyst is added at an earlier time, the decomposition reaction of the chloroformate group by the alkali often occurs, and the number of OH groups at the polymer terminal increases, thereby deteriorating the dry heat resistance. Also, there is a problem that thermal stability is deteriorated by a by-product of the reaction between an amine and a chloroformate. Furthermore, the installation of a cooling device increases the cost of equipment and operation.
[0007]
In JP-A-04-255718 (Japanese Patent Publication No. 7-49475), a mixed solution of a terminal stopper, a base, water, an organic solvent, a catalyst and a carbonate oligomer is formed into a fine dispersion by a static mixer. A method for producing a polycarbonate which reacts in a residence zone and repeats this step is disclosed. The features of this method are a combination of a static mixer and a retention zone, in which the mixing is aggressively followed by a residence, and this is repeated to advance the reaction, and the catalyst is added prior to the polymerization reaction.
[0008]
It is described that this method is efficient, such as a short polymerization reaction time of 3.5 minutes and a good conversion of bisphenol A and phenol. No specific or quantitative description of characteristic values related to gender was found. Since the catalyst is added at an early stage, the decomposition reaction of the chloroformate group due to the alkali frequently occurs, and the number of OH groups at the polymer terminal increases, which adversely affects the dry heat resistance. Further, the formation of urethane bonds due to the side reaction between the amine and the chloroformate, and the fact that a large amount of free bisphenol A is contained in the polymer cause problems in heat stability such as coloring during the high-temperature molding of polycarbonate.
[0009]
In Japanese Patent Application Laid-Open No. 08-325371, a carbonate oligomer reaction liquid is emulsified in a water-in-oil state, and after passing through orifice holes and staying in pipes repeatedly, a catalyst is added. A method for carrying out the reaction is disclosed, which is characterized in that the reaction solution is subjected to strong stirring and mixing by passing through an orifice hole to cause a reaction. However, in this method, coalescence due to the collision of the dispersed droplets works by vigorous stirring and mixing, which leads to an increase in the size of the droplets and the destruction of the emulsified state, that is, a significant decrease in the boundary area between the aqueous phase and the organic phase. In addition, the partitioning effect of the orifice leads to partial stagnation of the reaction solution and a short path, and the quality tends to be unstable. Also, since many orifices are installed, the equipment is complicated, and equipment costs such as measures for preventing liquid and gas leaks are high.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing a polycarbonate resin having a small amount of residual chloroformate groups and terminal OH groups in a polymer and having excellent heat resistance with simple equipment.
[0011]
The present inventors differ from the method in which the carbonate oligomer reaction liquid is emulsified and then left standing without stirring in the tank to maintain the emulsification and advance the reaction, or alternatively, a static mixer and a retention zone are combined. During the process, unlike the method of continuously aggressively mixing and retaining the carbonate oligomer reaction solution to advance the reaction, the present invention employs a tube type without stirring function after continuously emulsifying the carbonate oligomer reaction solution. The polycondensation reaction is carried out in a laminar flow in the reactor while maintaining the emulsified state, and the catalyst is added in the middle of the tubular reactor to complete the polycondensation reaction in a very short time, Investigating the surprising fact that the amount of residual chloroformate group and the amount of terminal OH groups are small, a polycarbonate resin excellent in heat resistance is obtained, and the yield is also improved, Invention has been reached.
[0012]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention provides a method and apparatus for efficiently producing a high molecular weight polycarbonate resin having little coloring and excellent heat stability and dry heat resistance during molding with simple equipment.
[0013]
That is, the gist of the present invention is a method for continuously producing a polycarbonate resin by performing an interfacial polycondensation reaction after forming a carbonate oligomer reaction solution by reacting an aqueous alkali solution of dihydric phenol and phosgene in the presence of an organic solvent. After the oligomer reaction liquid is brought into a water-in-oil type emulsified state, an interfacial polycondensation reaction is carried out while maintaining the emulsified state in a laminar flow using a tubular reactor, and from the inlet of the tubular reactor. A continuous method for producing a polycarbonate resin, characterized in that a condensation polymerization catalyst is added up to a position corresponding to two thirds of the total capacity of the tubular reactor.
[0014]
ADVANTAGE OF THE INVENTION According to this invention, the amount of residual chloroformate groups and the amount of terminal OH groups in a polymer are small, and a polycarbonate resin excellent in heat stability and dry heat resistance can be efficiently produced with simple equipment.
[0015]
Hereinafter, the present invention will be described in more detail.
[0016]
The dihydric phenol used in the present invention includes, for example, dioxydiphenylalkanes such as 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A), dioxydiphenylcycloalkanes, dioxydiphenyl Arylalkanes, dioxydiphenyl ethers, dioxydiphenyls, dioxydiphenylsulfones, dioxydiphenylsulfides, dioxydiphenylsulfoxides, dioxydiphenylcarbonyls, dioxydiphenylcarboxyls, dioxydiphenylfluorenes, And halogen- or alkyl-substituted derivatives thereof, or mixtures thereof. In addition, a part of these dihydric phenols can be used by replacing them with polyfunctional compounds such as phloroglucin, trisphenol, 2,4-dihydroxybenzoic acid and diphenolic acid.
[0017]
These dihydric phenols are used after being dissolved in an aqueous alkali solution. In this case, as the alkali, an alkali metal hydroxide such as caustic soda and caustic potash is preferably used, and the alkali concentration in the aqueous solution is preferably 5 to 10% by weight. The molar ratio of the dihydric phenol to the alkali to be dissolved is preferably from 1: 1.8 to 1: 3.5, more preferably from 1: 2.0 to 1: 3.2. The concentration of the aqueous alkali solution of dihydric phenol is preferably from 150 to 180 g / L from the viewpoint of solubility. It is also possible to add and use a part of the alkali after the phosgenation reaction. In order to prevent oxidative coloring of the dihydric phenol, the reaction may be performed under a nitrogen atmosphere, or a reducing agent such as sodium bisulfite or hydrosulfite may be added as an antioxidant.
[0018]
Further, an organic solvent is used to facilitate the phosgenation reaction and the polymerization reaction. The organic solvents used are organic compounds which are substantially insoluble in water and inert to the reaction and which dissolve phosgene and polycarbonate. For example, chlorinated aliphatic hydrocarbons such as dichloromethane (also called methylene chloride), tetrachloroethane, 1,2-dichloroethylene, chloroform, trichloroethane and dichloroethane; chlorination of chlorobenzene, dichlorobenzene, chlorotoluene and the like Aromatic hydrocarbons: acetophenone, cyclohexane, anisole, etc., and these solvents alone or in a mixture can be used. Of these, dichloromethane (methylene chloride) is the most preferred and common. Although the amount of the solvent used is not particularly limited, the concentration of the produced polycarbonate is about 8 to 30% by weight.
[0019]
For the purpose of controlling the molecular weight of the resulting polycarbonate, a molecular weight regulator is generally used. Examples of the molecular weight regulator include monohydric phenols such as phenol, p-cresol, p-tert-butylphenol, and cumylphenol; monohydric alcohols such as methanol, ethanol, and cyclohexanol. Is preferably after the end of the phosgenation reaction, and the amount of addition varies depending on the desired molecular weight, but is usually about 0.001 to 0.2 mol per 1 mol of dihydric phenol.
[0020]
The viscosity average molecular weight of the polycarbonate obtained by the present invention is from 10,000 to 100,000, preferably from 12,000 to 50,000, more preferably from 13,000 to 40,000. The term "carbonate oligomer" in the present invention has a relative viscosity ηrel of about 1.15 or less. (The viscosity average molecular weight and the relative viscosity will be described in Examples below).
[0021]
A method of obtaining a carbonate oligomer by a phosgenation reaction by introducing phosgene can be performed under conventionally well-known conditions. For example, a method of introducing and reacting phosgene with stirring of an aqueous alkali solution of a dihydric phenol and an immiscible organic solvent (Japanese Patent Publication No. 37-2198), introducing an alkali aqueous solution of a dihydric phenol and an organic solvent into a tubular reactor. A method of forming a mixed phase flow, introducing phosgene into the mixed solution and reacting it (Japanese Patent Publication No. 46-21460), an aqueous solution of dihydric phenol, an organic solvent, and phosgene so that the dihydric phenol has a specific concentration. The carbonate oligomer can be obtained by a method such as a method of supplying a cooled circulating reaction mixture with a reaction (Japanese Patent Publication No. 6-55810).
[0022]
The phosgene to be introduced is used in a liquid or gaseous state, alone or as a solution in an organic solvent. The preferred amount used in the continuous phosgenation reaction is affected by the reaction conditions, particularly the temperature of the phosgenation reaction and the concentration of the alkaline aqueous solution of dihydric phenol, and when the temperature exceeds 25 ° C or the concentration is less than 55 g / L. In this case, the number of moles of phosgene per mole of dihydric phenol exceeds 1.2 moles, and often exceeds 1.3 moles, but under normal conditions, 1.0 to 1.2 moles is sufficient. And more preferably 1.05 to 1.15 mol.
[0023]
The addition of the molecular weight modifier to the reaction system is performed after the completion of the phosgenation reaction in order to suppress the formation of a low molecular weight compound due to the reaction between the molecular weight modifier and phosgene or a chloroformate compound of bisphenol A. It is preferable to add during the early stage of the reaction.
[0024]
In the method of the present invention, a carbonate oligomer is formed by a phosgenation reaction, and then, if necessary, a molecular weight modifier and / or an aqueous alkali solution are added to the oligomer reaction solution. An emulsified type and a highly emulsified state in which the droplet size of the dispersed aqueous phase is small. In this case, an important condition for obtaining a good emulsified state is a ratio of the organic phase to the aqueous phase in the reaction solution. The ratio is preferably from 0.1 to 3.0, more preferably from 0.5 to 2.5, based on the volume ratio of the organic phase to the organic phase of 1.0.
[0025]
There are various methods for bringing the reaction solution into a water-in-oil type emulsified state, such as a method of adding an aqueous alkali solution with stirring, a method of changing the stirring speed, and a method of injecting the reaction solution into an organic phase with stirring. . It is possible to emulsify by using a simple stirrer (propeller, turbine, anchor type wing, chi type wing, etc.) at a high rotation speed, but the degree of emulsification is limited. Examples of devices for obtaining a higher emulsified state include dynamic emulsifiers for high-speed stirring such as homogenizers, mixers, homomixers, colloid mills, and flow jet mixers, and static mixers, orifice mixers, and ultrasonic emulsifiers. Static emulsifiers are suitable, and when they are used, a highly emulsified state with a fine droplet diameter can be obtained as compared with an emulsified state with a droplet diameter obtained with a simple stirrer. In the method of the present invention, using the latter advanced emulsification apparatus alone or in combination, and if necessary, using a simple stirrer in the former stage, and continuously flowing the reaction solution to these emulsification facilities, An emulsified state can be obtained.
[0026]
The average droplet diameter of the dispersed aqueous phase of the water-in-oil type emulsion obtained by the emulsification equipment is preferably from 5 μm to 50 μm, more preferably from 10 μm to 40 μm. That is, since the average droplet size of the dispersed aqueous phase and the total interfacial area between the aqueous phase and the organic phase are almost inversely proportional, the miniaturization of the average droplet size is caused by the polycondensation reaction of polycarbonate which is an interfacial reaction. It directly affects speed.
[0027]
In order to improve the interfacial polycondensation reaction rate, the droplet diameter is preferably set to 50 μm or less, and more preferably 40 μm or less. However, there is a problem in miniaturization of the droplet diameter. When the diameter is smaller than 5 μm, the reaction rate is too fast and side reactions increase, and it becomes difficult to control the polycondensation reaction. And the like, and a power for stirring the reaction solution is required for miniaturization, and when it is smaller than 5 μm, the stirring energy per unit volume becomes excessive. Therefore, the droplet diameter is preferably 5 μm or more, more preferably 10 μm or more.
[0028]
Next, the reaction liquid in a highly emulsified state is, in a conventionally known polymerization method, a method of continuously stirring in a reaction tank as it is, a method of allowing the reaction liquid to stand without stirring in the reaction tank, and a method of stirring in a continuous multi-stage reaction tank. And a method of forming a fine dispersion and continuously flowing the mixture in a tubular reactor in which a static mixer and a retention zone are combined. However, the method of the present invention is a method in which a highly emulsified reaction liquid is continuously flowed in a laminar flow through a tubular reactor having no stirring function to carry out a condensation polymerization reaction.
[0029]
In addition, a conventionally known polymerization method using a continuous tubular reactor uses a static mixer or the like, and is intended to improve the contact between the aqueous phase and the organic phase by forcibly stirring. It has a great effect on the coalescence of the droplets and the effect of breaking the emulsified state, leading to a reduction in the area of the reaction interface between the aqueous and organic phases due to the droplet size and amount of the dispersed aqueous phase, thereby facilitating the interfacial polycondensation reaction. I can't do that.
[0030]
On the other hand, the feature of the polycondensation method using the continuous tubular reactor of the present invention is that the polymerization reaction proceeds continuously in a laminar flow in a tubular reactor having no stirring function as described above. In other words, it is possible to maintain a highly emulsified state by eliminating stirring, and it is possible to maintain the reaction interface area between the aqueous phase and the organic phase due to the droplet size and amount of the dispersed aqueous phase, and to carry out the interfacial polycondensation reaction. Can proceed smoothly.
[0031]
Next, the simplest form of the tubular reactor may be a tube having a circular cross section, or may be a tube having a rectangular cross section such as a square or hexagon. In order to flow the reaction liquid in an emulsified state by a piston flow method and to improve equipment efficiency, the ratio of the diameter of the tube to the length of the tube of the tube reactor is preferably from 1: 150 to 1: 7000, more preferably from 1: 150. 500-1: 3000 is more preferable. Further, a simple tubular reactor having no stagnation portion may be used in order to flow by the piston flow method. However, a hindrance used in a range that does not substantially hinder the manifestation of the effects of the present invention, that is, in a laminar flow range of Re number of 2000 or less. It is possible to install a plate, a partition plate, etc. in a tubular reactor. The material constituting the reactor may be a commonly used material such as SUS304 stainless steel and glass-lined steel.
[0032]
The present invention proposes an efficient method for controlling the condensation polymerization reaction temperature. A conventional method of controlling the polymerization reaction temperature is generally a method of installing a jacket or the like in a polymerization facility and cooling or heating the same, but the method of the present invention controls the raw material temperature to a predetermined temperature, and replaces the jacket or the like. This is a method using a heat insulating material. That is, the temperature of the oligomer reaction solution is controlled, and in the subsequent interfacial polycondensation reaction, the target temperature is reached by the heat generated by the reaction and the heat generated by the power energy of the liquid feed pump and the emulsifier, etc. In this method, the condensation polymerization temperature is maintained within a predetermined range only by keeping the temperature without forcibly cooling and / or heating from the outside. In the polycondensation reaction of polycarbonate, under constant reaction conditions, the heat generated by the polymerization reaction and the heat generated by the kinetic energy are almost constant, and if the temperature of the raw material system is kept constant, appropriate heat insulation by a heat insulator in the tubular polymerization reactor By carrying out (1), the amount of heat release or heat absorption can be kept small and almost constant, and as a result, the middle and final polymerization reaction temperature can be maintained in a constant temperature range.
[0033]
In one embodiment, the temperature becomes 24 ° C. when the molecular weight regulator and the aqueous alkali solution are mixed with the oligomer reaction solution at the end of the phosgenation reaction at a temperature of 20 ° C., and can be maintained at the target of 30 ± 1 ° C. at the end of the polymerization reaction of the present invention. .
[0034]
The temperature range of the polycondensation reaction in the present invention can be from 20 to 40 ° C, preferably from 24 to 36 ° C, more preferably from 28 to 34 ° C. In order to achieve this temperature, the temperature of the oligomer reaction solution is preferably from 10 to 30 ° C, and the temperature of the reaction solution containing the molecular weight regulator and the aqueous alkali solution is preferably from 15 ° C to 35 ° C.
[0035]
The material of the heat insulating material for preventing heat radiation or heat absorption includes calcium silicate, rock wool, glass wool, urethane foam, polystyrene foam, and the like, and these can be used.
[0036]
By adopting this reaction temperature maintaining method, equipment costs such as a jacket and heating / cooling equipment are not required (heat insulating equipment cost is required), and operating power cost for heating / cooling is also unnecessary, and a great cost advantage can be obtained.
[0037]
A laminar flow is required to flow the emulsified reaction solution into the inside of the tubular reactor and maintain the emulsified state. That is, it is necessary that the Re number, which is a dimensionless number representing the flow state of the reaction solution, be a laminar flow of 2000 or less. Although the Re number is often described in written books and is a well-known index, it is expressed by the following equation.
Re number = ρud / μ
Here, ρ [kg / m3]: fluid density
u [m / s]: Fluid representative velocity
d [m]: representative length (diameter of pipe)
μ [Pa · s]: Fluid viscosity
[0038]
In the case of a turbulent flow having a Re number of 4000 or more, the turbulence of the flow is severe, and the droplets of the dispersed aqueous phase collide with each other, causing the droplets to break up and increase in size. It becomes emulsified.
[0039]
In the case of a transition flow of 2000 <Re number <4000, the degree of turbulence of the flow is weaker than that of the turbulent flow, but is not preferable.
[0040]
The Re number needs to be 2000 or less, but the preferred range of the Re number is 1000 or less, and the more preferred range is 500 or less. The Re number is preferably 1 or more from the viewpoint of fluidity.
[0041]
In the method of the present invention, a condensation polymerization catalyst is used to increase the reaction rate. As the polycondensation catalyst to be added, tertiary amines such as triethylamine, tri-n-propylamine and tri-n-butylamine, and quaternary amines such as trimethylbenzylammonium chloride can be used alone or in combination. Most preferred is triethylamine, which is available and has excellent catalytic effects. The amount of the polycondensation catalyst to be used is preferably 0.002 to 2.0 mol%, more preferably 0.05 to 0.5 mol%, based on the number of moles of the dihydric phenol used. When the amount of the catalyst is less than 0.002 mol%, the catalytic effect is hardly exhibited, and the reaction time cannot be shortened. When the amount of the catalyst is more than 2.0 mol%, the decomposition of the chloroformate group and the carbonate bond tends to occur. In addition, much labor is required to remove and recover the polycondensation catalyst in the washing step.
[0042]
The equipment and method for addition of the condensation polymerization catalyst are as follows: a method of installing a pipe nozzle in the middle of the tubular reactor and press-fitting the catalyst (see FIG. 5), or a method of installing a pot in the middle of the tubular reactor. Various methods can be selected, such as a method of adding a catalyst together with the reaction solution into the pot (see FIG. 6). Although the catalyst can be used as it is or as a solution diluted with a solvent, a methylene chloride solution which is easily diffused into the organic phase of the reaction solution is most preferable.
[0043]
After the reaction solution is highly emulsified by the emulsification equipment, the addition position of the condensation polymerization catalyst is set at 3 minutes of the total volume of the tubular reactor from the inlet of the tubular reactor which is a reactor for performing the condensation polymerization reaction. It is necessary to add a catalyst to the emulsified liquid up to the position of the volume of 2 above, and the position should be between 1/10 and 6/10 of the total volume of the tubular reactor on the inlet side. It is more preferable that the position be between 1/4 and 1/2 the total volume of the tubular reactor on the inlet side.
[0044]
Adding the catalyst to the reaction mixture before the inlet of the tubular reactor, that is, before the emulsification equipment, means that the polymerization reaction rapidly proceeds at the same time as the high emulsification in the emulsification equipment, and the separated water is generated, resulting in a non-emulsified state. The terminal chloroformate group is likely to remain in the polycarbonate resin after the reaction, and the amount of terminal OH groups of the polycarbonate resin increases due to an increase in the side reaction between the alkali and the chloroformate.
[0045]
Further, adding a catalyst to the emulsion at a position behind the two-thirds volume of the total volume of the tubular reactor makes it difficult to complete the reaction in a predetermined time, and is also obtained. The amount of residual chloroformate groups in the polycarbonate resin is undesirably increased.
[0046]
The reaction time of the polycondensation reaction of the present invention varies depending on reaction conditions such as the molar ratio of raw materials used, the reaction temperature, the degree of emulsification, and the amount of catalyst used, but is generally from 5 minutes to 30 minutes, preferably from 10 minutes to 10 minutes. 20 minutes.
[0047]
The apparatus for producing an aromatic polycarbonate in the present invention is a facility for mixing a molecular weight regulator and an aqueous alkali solution with a carbonate oligomer reaction liquid obtained by previously reacting an aqueous alkali solution of dihydric phenol and phosgene in the presence of an organic solvent. And an emulsifying equipment for making the mixed reaction liquid into a highly emulsified state, and further a tubular reactor with a heat insulating material provided with a catalyst addition / mixing tool in the middle of the equipment, and a continuous polycarbonate production apparatus characterized by the following: FIG. 2 shows an example of this concept.
[0048]
The present invention also includes the following apparatus comprising a plurality of parallel tubular reactors. That is, for one equipment for mixing a molecular weight regulator and an aqueous alkali solution into the oligomer reaction liquid, one or more emulsification equipment and one or more tubular reactors (including catalyst addition and mixing tools) are provided. This is a continuous polycarbonate production apparatus. Here, the number of emulsification equipment and the number of tubular reactors is 2 to 16, preferably 2 to 8. FIG. 4 shows an example of this concept.
[0049]
Furthermore, in the present invention, in order to maintain the polycondensation reaction temperature at a target value, the tubular reactor is provided with a heat insulating material or the like having a reliable heat insulating effect instead of the external cooling equipment and / or the external heating equipment. It is necessary to be. However, in this case, if there is a heat-retaining effect, there may be a situation in which there is no direct influence of the outside air, such as a closed room that blocks outside air, regardless of the heat-insulating material.
[0050]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto unless it exceeds the scope of the gist.
(Test and analysis method)
(A) Measurement of average droplet diameter of dispersed aqueous phase of emulsion
The emulsion was placed on a slide glass and photographed using a Keyence Corporation digital HD microscope VH-7000 to determine the average droplet diameter of the dispersed aqueous phase.
[0051]
(B) Measurement of viscosity of reaction emulsion and calculation of Re number
The emulsified reaction liquid in the tubular reactor was led to a viscometer through a sampling pipe, the viscosity was measured, and the Re number was determined from the above-mentioned relational expression (Re number = ρud / μ). As a viscometer, a FVM-80A vibration type viscometer manufactured by Yamaichi Electric Co., Ltd. was used.
The Re number of the liquid in the static mixer is described in Hi-Mixer technical data (catalog) of Toray Engineering Co., Ltd., and was calculated from the following relational expression. (Re number = 277 pud / μ). Here the terms are the same as above. The relationship between the Re number and the flow state experimentally defined in Hi-Mixer is as follows. Laminar flow area: Re number <80, transition area: 80 <Re number <800, turbulent flow area: 800 <Re number
[0052]
(C) Bisphenol A concentration in the aqueous phase of the reaction solution
The reaction solution at the end of the polymerization reaction is sampled, the same amount of methylene chloride is added to the reaction solution, and the mixture is centrifuged to take out the aqueous phase. A certain amount of this aqueous phase was diluted with a dilute alkaline aqueous solution, and the absorbance at a wavelength of 294 nm and 330 nm was measured with a UV spectrophotometer (U-3000 manufactured by Hitachi, Ltd.), and the bisphenol A concentration was determined from the following equation.
Bisphenol A concentration (g / L) = (A1-A0) × n × 1/22
However, here A1, A0Is the absorbance at 294 nm and 330 nm, respectively, and n is the dilution factor.
[0053]
(D) Relative viscosity of oligomer
The reaction solution at the end of the phosgenation reaction was sampled, the organic phase was separated and purified, the solvent was evaporated from the organic phase, and the organic phase was dried under reduced pressure to obtain a carbonate oligomer. 0.700 g of the oligomer is dissolved in 100 ml of methylene chloride and measured at 20 ° C. using an Ostwald viscometer. The relative viscosity of the oligomer was determined by the following equation.
Oligomer relative viscosity ηrel= T1/ T0
Where t1, T0Is the measurement seconds for the solution and the solvent, respectively.
[0054]
(E) Viscosity average molecular weight (Mv) of polycarbonate
0.700 g of polycarbonate was dissolved in 100 ml of methylene chloride and measured at 20 ° C. with an Ostwald viscometer to determine the specific viscosity (η).sp) Was calculated and inserted into the following equation.
ηsp/C=[η]+0.45×[η]2c
[Η] = 1.23 × 10-4× (Mv)0.83
Here, [η] is the intrinsic viscosity, ηsp= Ηrel−1, c = 0.7.
[0055]
(F) Amount of terminal chlorine (amount of chlorine derived from polycarbonate terminal chloroformate group) About 1 g of the sample polycarbonate was precisely weighed in a 20 ml volumetric flask, and dissolved by adding methylene chloride, and 4- (p-nitrobenzyl) pyridine was added thereto. Was added to 2 ml of a 0.50 g / L methylene chloride solution to adjust the color to 20 ml, and the absorbance at a wavelength of 440 nm was measured using a spectrophotometer (U-3000, manufactured by Hitachi, Ltd.). Separately, the amount of terminal chlorine in the sample was determined using a calibration curve prepared using phenyl chlorocarbonate. The lower limit of quantification was 0.1 ppm in terms of the amount of chlorine in the sample.
Terminal chlorine is a factor of deterioration of heat resistance, and is preferably 0.3 ppm or less.
[0056]
(G) Terminal OH group content (polycarbonate terminal OH group content)
28 mg of a sample polycarbonate was dissolved in 0.5 ml of deuterated chloroform, and the solution was measured using a nuclear magnetic resonance spectrometer (UNITY 300 (300 MHz) manufactured by Varian).1H-NMR was measured to determine the OH value (eq / ton).
The terminal OH group is a factor of deterioration of dry heat resistance, and is preferably 3.0 eq / t or less.
[0057]
(H) Residual burning of molding
The dried polycarbonate pellets were held at 340 ° C. for 45 seconds in a plasticizing cylinder using an injection molding machine (J85ELII manufactured by Japan Steel Works, Ltd.) to form a 50 mm square sample plate having a thickness of 2 mm. Next, the sample plate was kept at 340 ° C. for 10 minutes in a plasticizing cylinder to form a sample plate. The hue (L value, a value, b value) of the sample plate was measured with a C light source using a color difference meter (color difference meter Z-1001DP type, Nippon Denshoku Co., Ltd.). ΔE (the following formula) was obtained from the difference (ΔL value, Δa value, Δb value) between the hues of the sample plate before and after the stay, and the burning after forming was evaluated.
ΔE = [(ΔL)2+ (Δa)2+ (Δb)2]1/2
ΔE is preferably 0.2 or less.
[0058]
(I) Dry heat test
The sample plate before staying in (H) was treated with a hot air drier at 150 ° C. for 20 days, and the color difference meter was used to measure the yellowness YI of the sample plate. The difference in yellowness ΔYI before and after the heat treatment was determined, and the dry heat resistance was evaluated.
ΔYI is preferably 2.0 or less.
[0059]
[Reference Example 1] (Production of carbonate oligomer)
1500 kg of bisphenol A and 3 kg of hydrosulfite were dissolved in 8070 kg of a 7.2% by weight aqueous solution of caustic soda at 30 ° C. to prepare a 170 g / L aqueous solution of bisphenol A caustic soda. Fig. 1 shows the flow of the carbonate oligomer production and the main equipment. That is, 530 L / hr of an aqueous solution of bisphenol A caustic soda, 220 L / hr of methylene chloride and 43 kg / hr of phosgene were continuously charged into a first reactor (1) having an actual capacity of 15 L equipped with a cooling jacket and a stirrer. The reaction is carried out. The reaction solution in the second reactor (2) with a stirrer having an actual volume of 100 L is pumped at a flow rate of about 5000 L / hr, passed through the heat exchanger (4), cooled, and returned to the second reactor (via the pipe 11). ) Of which, about 1/10 volume of about 500 L / hr is sent to the first reactor (via the pipe 7), mixed with the raw material liquid and subjected to the phosgenation reaction. The reaction solution that overflows the first reactor flows into the second reactor, completes the phosgenation reaction at a liquid temperature of 20 ° C. in the second reactor, generates carbonate oligomers, and overflows the second reactor (pipe 6). via).
[0060]
The oligomer reaction solution discharged from the overflow outlet of the second reactor was sampled five times when it reached a steady state, and analyzed by the above-described method. The relative viscosity of the oligomer was 1.033 to 1.037. The terminal chlorine from the oligomer terminal chloroformate was 7.0 to 7.5%, the pH of the aqueous phase was 13 or more, and the concentration of bisphenol A was 26 to 27 g / L, all showing stable values.
[0061]
[Summary of facilities in Examples and Comparative Examples]
The flow and main equipment of the present invention are shown in FIG. 2 (note that numbers in () represent symbols on the drawing), but a receiving container (21), a pump (22), an emulsifier (23), a tube-type polymerization reactor equipped with a heat insulating material (24) (tube inner diameter 55 mmφ, tube length 50 m), condensation polymerization catalyst adding device (27) (tube length 10%, 50% of the total length of the tube-type polymerization reactor 50 m) %, 65%, 80%, where the tube length% corresponds to the tube volume%), and a methylene chloride diluent injection section (31) (decrease the concentration of the polymer solution after the reaction is completed).
[0062]
On the other hand, the flow and main equipment of the comparative example are shown in FIG. 3, but the tube type polymerization reaction device (24) (tube) provided with a receiving vessel (21), a pump (22), an emulsifier (23), and a heat insulating material. Inner diameter 55 mmφ, pipe length 50 m), static mixer (25) (Toray Hi-Mixer Nominal diameter 50 mm, number of elements 5 / set, 10 sets are installed at approximately equal intervals in the total length 50 m of the tubular polymerization reactor), shrinkage Polymerization catalyst addition device (27) (installed at positions of 10%, 50%, and 65% of the total length of 50 m of the tubular polymerization reactor, where the tube length% corresponds to the tube volume%), methylene chloride diluent injection section (31).
[0063]
That is, the difference between the two is that the comparative example has a plurality of static mixers (25) for the purpose of a stirring function (hereinafter, the static mixer may be abbreviated as SM), but the present invention excludes all the static mixers. It is a tubular polymerization reactor without a stirring function.
[0064]
Further, the flow and main equipment of the present invention having a plurality of emulsifiers and a plurality of tubular polymerization reactors are shown in FIG. 4, but include a receiving vessel (21), a pump (22), and two emulsifiers (23). , A tube-type polymerization reactor (24) with a heat insulating material (tube diameter 55 mmφ, tube length 50 m), a catalyst addition device (27) (installed at 50% of the total length of the tube-type polymerization reactor 50 m) 2 And a methylene chloride diluent injection section (31) (to decrease the concentration of the polymer solution after the reaction is completed).
[0065]
[Example 1]
It is an example of continuous non-stirred tube type polymerization of the present invention, and the apparatus shown in FIG. 2 was used. In a receiving container (21), 375 L / hr of a carbonate oligomer reaction solution produced by the phosgenation reaction in Reference Example 1 (via a pipe 15), 6.0 L / hr of a solution of a molecular weight regulator p-tert-butylphenol in methylene chloride (11 wt%). (Piping 16) and 5.2 L / hr of 48% aqueous sodium hydroxide solution (Piping 17) were continuously charged, and the mixture was sent by a pump (22), and two sets of static liquids were used as an emulsifier (23). Using a mixer (Toray Hi-Mixer Nominal diameter: 10 mm, number of elements: 5 / set) (23-1), a highly emulsified state of water-in-oil type is obtained (at this time, dispersion of the emulsion at the emulsifier outlet) The average droplet size of the aqueous phase was 15 μm, and the relative viscosity η of the oligomer in the liquid was η.relWas 1.095. ) Then, the emulsion was passed through a tubular polymerization reactor (24) having an inner diameter of 55 mm, flowed in a laminar flow over a total length of 50 m, and at a catalyst addition position B (27B) (50% capacity) on the way. 6.0 L / hr of a methylene chloride solution (1.0 vol%) of triethylamine as a condensation polymerization catalyst was continuously added, and a condensation polymerization reaction was carried out at an ultimate reaction temperature of 30 ± 1 ° C. The required polymerization reaction time was 20 minutes. The emulsified state was maintained until the reaction was completed, and a small amount of water was separated from the emulsion. On the way, the reaction liquid was sampled from the sampling nozzles (30-1 and 30-2) and the viscosity was measured. The viscosity of the reaction emulsion at the forefront of the reaction tube was 0.05 Pa · s, and the Re number was 70. Further, the viscosity was 0.40 Pa · s and the Re number was 8.6 in the middle part (60% point) of the reaction tube. In both cases, the laminar flow range could be confirmed with Re number <2000. The concentration of bisphenol A in the aqueous phase of the reaction solution at the end of the reaction was 0.11 g / L (corresponding to a reaction yield of 99.94%). At the end of the reaction, 236 L / hr of methylene chloride was continuously poured into the reaction solution to adjust the polycarbonate concentration in the methylene chloride layer to 10% by weight.
[0066]
Next, the diluted mixture is passed through a filtration layer to separate and remove an aqueous layer, and then subjected to washing once, hydrochloric acid treatment once, and washing twice to remove salts, alkalis, catalysts, and the like. Got. Next, this polycarbonate solution was charged into a kneader containing warm water at 50 ° C., the solvent was removed to produce a polycarbonate powder and granules. did. The average molecular weight, terminal chlorine amount (chlorine derived from a chloroformate group), and terminal OH group amount of this pellet were measured, and the results are shown in Table 1.
[0067]
Next, the pellet was held at 340 ° C. for 45 seconds in a plasticizing cylinder using an injection molding machine (J85ELII manufactured by Japan Steel Works, Ltd.) to form a sample plate having a thickness of 2 mm and a square of 50 mm. Further, the sample was kept at 340 ° C. for 10 minutes in a plasticizing cylinder to form a sample plate. The molding retention burn was evaluated from the difference (ΔE) in the hue of the sample plate before and after the retention. Furthermore, the sample plate before staying was subjected to dry heat treatment at 150 ° C. for 20 days, and the dry heat resistance was evaluated from the difference in yellowness (ΔYI) before and after the treatment. The results are shown in Table 1.
[0068]
In Example 1, the reaction yield was good, the terminal chlorine content and the terminal OH group content were both low, and the molding retention burning and dry heat resistance were excellent.
[0069]
[Comparative Example 1]
The apparatus shown in FIG. 3 was used. In a receiving container (21), a carbonate oligomer reaction solution (via 15) formed by the phosgenation reaction in Reference Example 1, a methylene chloride (11 wt%) solution of a molecular weight modifier p-tert-butylphenol (via 16), and 48% caustic soda The same amount as in Example 1 was continuously charged for each of the aqueous solutions (via 17), and the mixed solution was fed by a pump (22), and two sets of static mixers (23-1) (23-1) were used as emulsifiers (23). Using a Toray Hi-Mixer (nominal diameter 10 mm, number of elements 5 / set), a water-in-oil type highly emulsified state (in this case, the average droplet size of the dispersed aqueous phase of the emulsion at the outlet of the emulsifier) Was 15 μm, and the relative viscosity η of the oligomer in the same liquid was η.relWas 1.094. ) Then, the emulsion was passed through a tubular polymerization reactor (24), stirred by 10 sets of SMs (static mixers) (25) installed in a total length of 50 m, and further added a catalyst addition position B ( 27B) (at a 50% capacity point), 6.0 L / hr of a methylene chloride solution of catalyst triethylamine (1.0 vol%) was continuously added, and a polymerization reaction was carried out at an ultimate reaction temperature of 30 ± 1 ° C. The required polymerization reaction time was 20 minutes. When viewed with a peeper (not shown), a large amount of water was separated from the emulsion at the rear of the sixth set of SMs from the front (the rear of the first set of SMs behind the catalyst addition section). The measured viscosity of the reaction emulsion at the forefront of the reaction tube was 0.05 Pa · s, and the Re number was 70. In the middle part of the reaction tube (60% point), the measured viscosity varied from 0.25 to 0.45 Pa · s, and the Re number was from 11.4 to 6.9. The fluctuation was influenced by the separated water. Both were in the laminar flow range with Re number <2000. On the other hand, the Re number of the reaction solution inside the SM at a position adjacent to both of them was a value in the turbulent flow region of 18000 and 2600. At the end of the reaction, the bisphenol A concentration in the aqueous phase of the reaction solution was measured and found to be 0.31 g / L (corresponding to a reaction yield of 99.84%). At the end of the reaction, 236 L / hr of methylene chloride was continuously poured into the reaction solution (via 31) to adjust the polycarbonate concentration in the methylene chloride phase to 10 wt%.
[0070]
Subsequent operations of purification, granulation, drying and extrusion were performed in the same manner as in Example 1 to obtain pellets. The quality of the pellets was measured, and the results are shown in Table 1. In addition, an injection molding retention burn test and a dry heat test were performed in the same manner as in Example 1. The results are shown in Table 1.
[0071]
The sample of Comparative Example 1 had a larger amount of terminal chlorine and a larger amount of terminal OH groups than Example 1, and was inferior in molding retention burn and dry heat resistance. This is because the emulsification was weakened by the stirring effect of SM, and the polycondensation reaction was slow and incomplete.
[0072]
[Example 2]
Example 1 was carried out under the same conditions except that the catalyst addition position was changed from point B to point A (27A) (10% capacity point). The emulsified state was maintained until the reaction was completed, and a small amount of water was separated from the emulsion.
[0073]
The operations of purification, granulation, drying, and extrusion, measurement of the quality of pellets, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0074]
In Example 2, as in Example 1, the reaction yield was good, the amount of terminal chlorine and the amount of terminal OH groups were both low, and the molding retention burning and dry heat resistance were excellent.
[0075]
[Comparative Example 2]
In Comparative Example 1, all the operations were performed under the same conditions except that the catalyst addition position was changed from point B to point A (27A) (capacity 10% point). When viewed with a peeper, a large amount of water was separated from the emulsion at the rear of the third SM from the front (the rear of the second SM after the catalyst addition section).
[0076]
Purification, granulation, drying and extrusion operations, pellet quality measurement, injection molding retention burn test and dry heat test were also conducted in the same manner as in Comparative Example 1. The results are shown in Table 1.
[0077]
The sample of Comparative Example 2 had a larger amount of terminal chlorine and terminal OH group than Example 2, and was inferior in molding retention burn and dry heat resistance. This is because the emulsification was weakened by the stirring effect of SM, and the polycondensation reaction was slow and incomplete.
[0078]
[Example 3]
Example 1 was carried out under the same conditions except that the catalyst addition position was changed from point B to point C (27C) (capacity 65% point). The emulsified state was maintained until the end of the reaction, and a small amount of water was separated from the emulsion.
[0079]
The operations of purification, granulation, drying, and extrusion, measurement of the quality of pellets, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0080]
In Example 3, as in Example 1, the reaction yield was good, the amount of terminal chlorine and the amount of terminal OH groups were both low, and the molding retention burning and drying heat resistance were excellent.
[0081]
[Comparative Example 3]
In Comparative Example 1, the same operation was performed except that the catalyst addition position was changed from point B to point C (27C) (capacity 65% point). When viewed with a peeper, a large amount of water was separated from the emulsion at the rear of the eighth set of SMs from the front (the rear of the first set of SMs behind the catalyst addition section).
[0082]
Purification, granulation, drying and extrusion operations, pellet quality measurement, injection molding retention burn test and dry heat test were also conducted in the same manner as in Comparative Example 1. The results are shown in Table 1.
[0083]
The sample of Comparative Example 3 was larger in terminal chlorine content and terminal OH group content than in Example 3, and was inferior in molding retention burn and dry heat resistance. This is because the emulsification was weakened by the stirring effect of SM, and the polycondensation reaction was slow and incomplete.
[0084]
[Comparative Example 4]
In Example 1 (using the apparatus shown in Fig. 2), the same conditions were used except that the catalyst addition position was changed from point B to point D (27D) (80% capacity point). The emulsified state was maintained until the end of the reaction, and a small amount of water was separated from the emulsion.
[0085]
The operations of purification, granulation, drying, and extrusion, measurement of the quality of pellets, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0086]
The sample of Comparative Example 4 had a large amount of terminal chlorine, and was inferior in molding retention burn. The reaction was not completed because the catalyst addition time was too late.
[0087]
[Comparative Example 5]
In Example 1 (using the apparatus shown in FIG. 2), all the operations were performed under the same conditions except that the catalyst addition position was changed from the point B to the receiving container (21) and the catalyst was added via the pipe 16. The average droplet size of the dispersed aqueous phase of the emulsion at the outlet of the emulsifier could not be measured due to generation of separated water. At the end of the reaction, a large amount of water had separated.
[0088]
Purification, granulation, drying, and extrusion operations, pellet quality measurement, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0089]
The sample of Comparative Example 5 had a large amount of terminal chlorine and a large amount of terminal OH groups, and was inferior in stagnation burning and dry heat resistance. This is because, since the catalyst was added before the emulsifier, the emulsion at the outlet of the emulsifier had separated water, and the polycondensation reaction was performed in a state where the separated water was large, and the reaction was slow and uncompleted.
[0090]
[Comparative Example 6]
In Comparative Example 1 (using the apparatus shown in FIG. 3), the procedure was carried out under the same conditions except that the catalyst addition position was changed from the point B to the receiving vessel (21) and the catalyst was added via the pipe 16. The average droplet size of the dispersed aqueous phase of the emulsion at the outlet of the emulsifier could not be measured due to generation of separated water. At the end of the reaction, a large amount of water had separated.
[0091]
Purification, granulation, drying and extrusion operations, pellet quality measurement, injection molding retention burn test and dry heat test were also conducted in the same manner as in Comparative Example 1. The results are shown in Table 1.
[0092]
The sample of Comparative Example 6 had a large amount of terminal chlorine and a large amount of terminal OH groups, and was inferior in molding retention burning and dry heat resistance. This is because, since the catalyst was added before the emulsifier, the emulsion at the outlet of the emulsifier had separated water, and the polycondensation reaction was performed in a state where the separated water was large, and the reaction was slow and uncompleted.
[0093]
[Example 4]
This is an example of a continuous reaction apparatus having a plurality of emulsifiers and a plurality of tubular polymerization reactors of the present invention, and used the apparatus shown in FIG. In the receiving container (21), 750 L / hr of a carbonate oligomer reaction liquid produced by the phosgenation reaction in Reference Example 1 (via a pipe 15), 12.0 L / hr of a solution of a molecular weight regulator p-tert-butylphenol in methylene chloride (11 wt%) (Via pipe 16) and 10.4 L / hr of a 48% aqueous sodium hydroxide solution (via pipe 17) were continuously charged, and the mixed solution was fed by a pump (22). Flow into the flow path (a), and use two sets of static mixers (Toray Hi-Mixer Nominal diameter 10 mm, number of elements 5 / one set) (23-1) as an emulsifier (23a) (23-1) (At this time, the average droplet size of the aqueous phase dispersed in the emulsion at the outlet of the emulsifier was 15 μm; the results are shown in Table 1). The mixture was passed through a tubular polymerization reactor (24), flowd in a laminar flow over a total length of 50 m, and at a catalyst addition position B (27B) (50% capacity) on the way, a methylene chloride solution (1.0 vol. ) 6.0 L / hr was added continuously, and the polymerization reaction was carried out at a reached reaction temperature of 30 ± 1 ° C. The remaining amount of the pump outlet (1/2 of the total amount) was passed through the other flow path (b), and a polymerization reaction was carried out in the same manner as the flow path (a) (the average droplet size at the emulsifier outlet was 16 μm. there were). In both cases, the emulsified state was maintained until the reaction was completed, and a small amount of water was separated from the emulsion. At the end of the polymerization reaction, 472 L / hr of methylene chloride was continuously added to the reaction mixture of the two to adjust the polycarbonate concentration in the methylene chloride layer to 10% by weight.
[0094]
The operations of purification, granulation, drying, and extrusion, measurement of the quality of pellets, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0095]
In Example 4, as in Example 1, the reaction yield was good, the amount of terminal chlorine and the amount of terminal OH groups were low, and the molding retention burning and dry heat resistance were excellent.
[0096]
[Example 5]
In Example 1, a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd., TK.) Was used instead of two sets of static mixers (Toray Hi-Mixer, nominal diameter 10 mm, number of elements: 5 / set) as emulsifiers. Using a homomic line flow 500 type, the turbine blade was operated at a rotation speed of 3600 rpm to obtain a water-in-oil type highly emulsified state (at this time, the average droplet size of the dispersed aqueous phase of the emulsion at the outlet of the emulsifier). Was 16 μm, and the relative viscosity η of the oligomer in the liquid was η.relWas 1.097). Except for that, the procedure was performed under the same conditions. The emulsified state was maintained until the reaction was completed, and a small amount of water was separated from the emulsion. On the way, the reaction liquid was sampled from the sampling nozzles (30-1 and 30-2) and the viscosity was measured. The viscosity of the reaction emulsion at the forefront of the reaction tube was 0.05 Pa · s, and the Re number was 70. The viscosity was 0.41 Pa · s and the Re number was 8.4 in the middle part of the reaction tube (60% point). In both cases, the laminar flow range could be confirmed with Re number <2000.
[0097]
The operations of purification, granulation, drying, and extrusion, measurement of the quality of pellets, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0098]
In Example 5, as in Example 1, the reaction yield was good, the amount of terminal chlorine and the amount of terminal OH groups were low, and the molding retention burning and dry heat resistance were excellent.
[0099]
[Example 6]
In Example 5, a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd., TK homomic line flow 500 type) was used as an emulsifier at a turbine blade rotation speed of 2700 rpm, and a water-in-oil type was used. The emulsion was in a highly emulsified state (at this time, the average droplet size of the aqueous phase dispersed in the emulsion at the outlet of the emulsifier was 31 μm). Except for that, the procedure was performed under the same conditions. The emulsified state was maintained until the reaction was completed, and a small amount of water was separated from the emulsion.
[0100]
The operations of purification, granulation, drying, and extrusion, measurement of the quality of pellets, injection molding retention burn test, and dry heat test were also performed in the same manner as in Example 1. The results are shown in Table 1.
[0101]
In Example 6, as in Example 1, the reaction yield was good, the amount of terminal chlorine and the amount of terminal OH groups were low, and the molding retention burn and dry heat resistance were excellent.
[0102]
[Comparative Example 7]
In the apparatus of FIG. 3 used in Comparative Example 1, a tubular polymerization reactor having an inner diameter of 55 mm and a length of 50 m was further connected to a tubular polymerization reactor having the same diameter of 25 m including five sets of static mixers, The experiment was carried out under the same conditions as in Comparative Example 1 except for a tubular polymerization reactor having a total length of 75 m. The catalyst was added at the point B, and the required reaction time was 30 minutes. At the rear part of the sixth set of SMs from the front (the rear part of the first set of SMs behind the catalyst addition section), a large amount of water was separated from the emulsion. The concentration of bisphenol A in the aqueous phase of the reaction solution at the end of the reaction was 0.28 g / L (corresponding to a reaction yield of 99.86%), which was inferior to Example 1. At the end of the reaction, 236 L / hr of methylene chloride was continuously poured into the reaction solution to adjust the concentration of polycarbonate in the methylene chloride phase to 10% by weight.
[0103]
Purification, granulation, drying and extrusion operations, pellet quality measurement, injection molding retention burn test and dry heat test were also conducted in the same manner as in Comparative Example 1. The results are shown in Table 1.
[0104]
The sample of Comparative Example 7 had slightly higher terminal chlorine content and terminal OH group content than Example 1, and was inferior in molding retention burning and dry heat resistance. However, compared with Comparative Example 1, the terminal chlorine content and terminal OH group content were lower. Both of them decreased and the resistance to burning and the heat during drying were improved. The polycondensation reaction slowed down due to the weakening of emulsification and the generation of separated water due to the stirring action of the SM, but the reaction time was extended from 20 minutes to 30 minutes, and the reaction was almost completed, resulting in a considerable improvement in quality. Was. However, it has a disadvantage that the reaction requires a longer time than in Example 1.
[0105]
[Comparative Example 8]
A homomixer was used as an emulsifier, a condensation polymerization reactor was used instead of a tubular condensation polymerization reactor, and no catalyst was used, and non-stirring static polymerization was performed. That is, the composition of the raw materials and the charging speed were the same as in Example 1, and the turbine was formed using a homomixer (TK homomic line flow 500, manufactured by Tokushu Kika Kogyo Co., Ltd.) in the same manner as in Example 5. The emulsifier was operated at a blade rotation speed of 3600 rpm to obtain a highly emulsified state of a water-in-oil type (at this time, the average droplet size of the dispersed aqueous phase of the emulsion at the outlet of the emulsifier was 15 μm). 70 L of the emulsified liquid was charged into a 100-liter polymerization reaction tank, and the polycondensation reaction was carried out for 2 hours while keeping the temperature of 30 ± 1 ° C. without a catalyst and stirring without stirring to complete the reaction. At the end of the reaction, the bisphenol A concentration in the aqueous phase of the reaction solution was measured and found to be 1.2 g / L (corresponding to a reaction yield of 99.4%). After adding methylene chloride to the solution to adjust the polycarbonate concentration to 10% by weight, purification, granulation, drying and extrusion operations, pellet quality measurement, injection molding retention burn test and dry heat test were also conducted in the same manner as in Example 1. The results are shown in Table 1.
[0106]
As a result of Comparative Example 8, the amount of bisphenol A in the aqueous phase at the end of the reaction was large (the reaction yield was poor), the amount of polymer terminal OH groups in the sample was large, and the dry heat resistance was poor. In addition, a long reaction time was required and productivity was poor.
[0107]
[Table 1]
Figure 2004018624
[0108]
【The invention's effect】
Conventionally, the polycondensation reaction of polycarbonate has been carried out using a stirrer such as a multistage reaction tank with a stirrer, or a tubular reactor equipped with a static mixer, an orifice mixer, etc. According to the simple equipment / method which uses a tubular reactor without a stirring function and eliminates such a stirrer and in which the emulsified reaction solution is flowed in a laminar flow and only a catalyst is added, a very short time is required. The polycondensation reaction can be completed in a short period of time, and the reaction yield is excellent, and the amount of residual chloroformate groups and terminal OH groups in the polymer is small as the quality of the obtained polycarbonate. It is possible to easily produce a polycarbonate excellent in heat resistance with little dry heat coloring of a molded article and at a low equipment cost, and the industrial value of the present invention is extremely large.
[Brief description of the drawings]
FIG. 1 is a view showing an apparatus for producing a carbonate oligomer.
FIG. 2 is a view showing a polycarbonate continuous polycondensation reaction apparatus of the present invention (and a part of Comparative Example).
FIG. 3 is a view showing a polycarbonate continuous polycondensation reaction apparatus of a comparative example.
FIG. 4 is a view showing a continuous polycondensation reaction apparatus for polycarbonate of the present invention (Example 4).
FIG. 5 is a diagram showing an example of the emulsifier and catalyst addition equipment of the present invention.
FIG. 6 is a diagram showing an example of the emulsifier and catalyst addition equipment of the present invention.
[Explanation of symbols]
1. First reactor (Fig. 1)
2. Second reactor
3. Circulation pump
4. Heat exchanger
5. Overflow piping (first reactor)
6. Overflow piping (second reactor)
7. Partial circulation piping
8.配 管 Piping for bisphenol A caustic soda aqueous solution
9. Phosgene charging pipe
10.メ チ レ ン Methylene chloride injection piping
11. Circulation piping
15. Carbonate oligomer reaction solution injection pipe (Fig. 2, Fig. 3, Fig. 4)
16. Injection piping for molecular weight regulator
17. Caustic soda aqueous solution input piping
21. Receiving container
22. Feed pump
23. Emulsifying machine
23a. Emulsifier for channel a (Figure 4)
23b. Emulsifier for channel b (Figure 4)
23-1. Static mixer (emulsifier) (Figure 5)
23-2. Homo mixer (emulsifier) (Fig.-6)
24. Tubular condensation polymerization reactor (with heat insulation material)
25. Static mixer (for stirring and mixing the reaction solution) (Figure 3)
26a. Reaction liquid channel a (Fig. 4)
26b. Reaction solution channel b (Figure 4)
27A. Point A catalyst addition device (tube capacity 10% point)
27B. B point catalyst addition device (tube capacity 50% point)
27C. C point catalyst addition equipment (pipe capacity 65% point)
27D. D point catalyst addition device (tube capacity 80% point)
27-1. Press-fit type catalyst addition device (Fig. 5)
27-2. Pot-type catalyst addition device (Fig. 6)
28-1. Catalyst addition pipe (Fig. 5)
28-2. Catalyst addition piping (Fig. 6)
28-P. Catalyst press-in pump (Fig. 5)
29. Reaction liquid pump (Fig. 6)
30-1. Sampling nozzle (installed at the forefront of the tubular reactor)
30-2. Sampling nozzle (installed at the middle of the tubular reactor, 60% from the front)
30-3. Sampling nozzle (the last part of the tube reactor: the end point of the polymerization reaction)
31. Methylene chloride injection piping for dilution

Claims (7)

二価フェノールのアルカリ水溶液とホスゲンとを有機溶媒の存在下で反応させてカーボネートオリゴマー反応液を形成後、界面縮重合反応を行いポリカーボネート樹脂を連続的に製造する方法において、該オリゴマー反応液を油中水型の乳化状態とした後に、管型反応器を用いて層流で乳化状態を維持しながら界面縮重合反応を行い、かつ該管型反応器の導入口から該管型反応器の全容量の3分の2の容量の位置までの間に縮重合触媒を添加することを特徴とするポリカーボネート樹脂の連続製造方法。After a carbonate oligomer reaction solution is formed by reacting an alkaline aqueous solution of a dihydric phenol with phosgene in the presence of an organic solvent, an interfacial polycondensation reaction is performed to continuously produce a polycarbonate resin. After the emulsified state of the middle water type, an interfacial polycondensation reaction is carried out while maintaining the emulsified state in a laminar flow using a tubular reactor, and the entirety of the tubular reactor is introduced through the inlet of the tubular reactor. A continuous production method of a polycarbonate resin, wherein a condensation polymerization catalyst is added to a position of two thirds of the volume. 形成したカーボネートオリゴマー反応液に、分子量調節剤および/またはアルカリ水溶液を加えた後に、油中水型の乳化状態として管型反応器を用いて界面縮重合反応を行う請求項1記載のポリカーボネート樹脂の連続製造方法。The polycarbonate resin according to claim 1, wherein after the addition of a molecular weight regulator and / or an aqueous alkali solution to the formed carbonate oligomer reaction solution, an interfacial polycondensation reaction is carried out using a tubular reactor in a water-in-oil type emulsified state. Continuous manufacturing method. 油中水型乳化状態とした際のオリゴマー反応液の分散水相の平均液滴サイズが50μm以下である請求項1記載のポリカーボネート樹脂の連続製造方法。The method for continuous production of a polycarbonate resin according to claim 1, wherein the average droplet size of the aqueous dispersion phase of the oligomer reaction liquid when the emulsion is in a water-in-oil type emulsion is 50 µm or less. 管型反応器中を流れる乳化状態の反応液のRe数が2000以下の層流である請求項1記載のポリカーボネート樹脂の連続製造方法。The continuous production method of a polycarbonate resin according to claim 1, wherein the Re number of the emulsified reaction solution flowing in the tubular reactor is a laminar flow of 2000 or less. オリゴマー反応液の温度を制御して、次いで行われる界面縮重合反応において、反応の発熱と送液ポンプおよび乳化機等の動力エネルギーによる発熱の昇温によって目標の温度に到らしめ、ジャケット等による外部からの強制的な冷却および/または加温を実施せず、保温のみで縮重合反応温度を所定範囲に維持する請求項1記載のポリカーボネート樹脂の連続製造方法。The temperature of the oligomer reaction solution is controlled, and in the subsequent interfacial polycondensation reaction, the target temperature is reached by the heat generated by the reaction and the heat generated by the power energy of the liquid feed pump and the emulsifier. The method for continuously producing a polycarbonate resin according to claim 1, wherein the condensation polymerization reaction temperature is maintained in a predetermined range only by keeping the temperature without forcibly cooling and / or heating from the outside. オリゴマー反応液に、分子量調節剤およびアルカリ水溶液を混合する設備と、該反応液を高度な乳化状態にする乳化設備、および触媒の添加混合用具を設備の途中に備えた保温材付き管型反応器よりなることを特徴とするポリカーボネート樹脂の連続製造装置。Equipment for mixing a molecular weight regulator and an aqueous alkali solution with an oligomer reaction liquid, an emulsification equipment for converting the reaction liquid into a highly emulsified state, and a tubular reactor with a heat insulating material equipped with a catalyst addition and mixing tool in the middle of the equipment A continuous production apparatus for a polycarbonate resin, comprising: オリゴマー反応液に、分子量調節剤およびアルカリ水溶液を混合する設備一基に対し、乳化設備を一基または複数基および管型反応器一基または複数基より構成される請求項6記載のポリカーボネート樹脂の連続製造装置。7. The polycarbonate resin according to claim 6, comprising one or more emulsifying equipment and one or more tubular reactors for one equipment for mixing the molecular weight regulator and the aqueous alkali solution into the oligomer reaction liquid. Continuous production equipment.
JP2002173993A 2002-06-14 2002-06-14 Method for producing aromatic polycarbonate resin and apparatus for producing the same Expired - Fee Related JP3958634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173993A JP3958634B2 (en) 2002-06-14 2002-06-14 Method for producing aromatic polycarbonate resin and apparatus for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173993A JP3958634B2 (en) 2002-06-14 2002-06-14 Method for producing aromatic polycarbonate resin and apparatus for producing the same

Publications (2)

Publication Number Publication Date
JP2004018624A true JP2004018624A (en) 2004-01-22
JP3958634B2 JP3958634B2 (en) 2007-08-15

Family

ID=31173070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173993A Expired - Fee Related JP3958634B2 (en) 2002-06-14 2002-06-14 Method for producing aromatic polycarbonate resin and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JP3958634B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012987A1 (en) * 2006-07-26 2008-01-31 Mitsubishi Chemical Corporation Process and apparatus for continuously producing aromatic polycarbonate
JP2017201035A (en) * 2012-04-27 2017-11-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Pc/abs compositions having good heat stability and chemical stability
WO2019208546A1 (en) * 2018-04-23 2019-10-31 Agc株式会社 Method for producing fluorine-containing unsaturated hydrocarbon
KR20200101355A (en) * 2017-12-20 2020-08-27 코베스트로 도이칠란트 아게 Method for producing polycarbonate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108789913B (en) * 2018-06-20 2020-04-21 北京濮源新材料技术研究院(普通合伙) Raw material mixing device and mixing process for continuously producing polycarbonate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012987A1 (en) * 2006-07-26 2008-01-31 Mitsubishi Chemical Corporation Process and apparatus for continuously producing aromatic polycarbonate
JP2008050558A (en) * 2006-07-26 2008-03-06 Mitsubishi Chemicals Corp Process for continuously producing aromatic polycarbonate and apparatus for production
US7999056B2 (en) 2006-07-26 2011-08-16 Mitsubishi Chemical Corporation Continuous production method and production apparatus of aromatic polycarbonate
JP2017201035A (en) * 2012-04-27 2017-11-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Pc/abs compositions having good heat stability and chemical stability
KR20200101355A (en) * 2017-12-20 2020-08-27 코베스트로 도이칠란트 아게 Method for producing polycarbonate
JP2021507065A (en) * 2017-12-20 2021-02-22 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Polycarbonate manufacturing method
TWI817967B (en) * 2017-12-20 2023-10-11 德商科思創德意志股份有限公司 Process for preparing polycarbonate
JP7480043B2 (en) 2017-12-20 2024-05-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフト Polycarbonate manufacturing method
KR102687889B1 (en) 2017-12-20 2024-07-25 코베스트로 도이칠란트 아게 Method for producing polycarbonate
WO2019208546A1 (en) * 2018-04-23 2019-10-31 Agc株式会社 Method for producing fluorine-containing unsaturated hydrocarbon
JPWO2019208546A1 (en) * 2018-04-23 2021-05-13 Agc株式会社 Method for producing fluorine-containing unsaturated hydrocarbon
JP7310803B2 (en) 2018-04-23 2023-07-19 Agc株式会社 Method for producing fluorine-containing unsaturated hydrocarbon

Also Published As

Publication number Publication date
JP3958634B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US3974126A (en) Process and apparatus for continuous production of polycarbonates
KR950015130B1 (en) Process for producing polycarbonate
CN110678255A (en) Oligomerization apparatus with improved mixing performance
US7847051B2 (en) Phase boundary processes for preparing polycarbonates
JP2004018624A (en) Method and apparatus for producing aromatic polycarbonate resin
JPWO2007083721A1 (en) Continuous production method of polycarbonate oligomer
EP1165484B1 (en) Method and apparatus for preparing monofunctional aromatic haloformates
JP3100229B2 (en) Continuous production method of polycarbonate
EP0434888A2 (en) Process for producing an aromatic polycarbonate
JP3403176B2 (en) Batch production of polycarbonate by interfacial polymerization.
JPH06172509A (en) Production of polycarbonate
JP2004331916A (en) Method for producing polycarbonate
JP4212985B2 (en) Method for producing polycarbonate resin
JP3445062B2 (en) Method for producing polycarbonate
JP3323390B2 (en) Method for producing polycarbonate
JP2722556B2 (en) Method for producing aromatic polycarbonate
JPS6289723A (en) Production of polycarbonate
JP2535457B2 (en) Method for producing polycarbonate resin
JPH0114924B2 (en)
TWI817967B (en) Process for preparing polycarbonate
JP3683471B2 (en) Method for producing aromatic polycarbonate
CN101611073B (en) Process for production of aromatic polycarbonate resin
JPH06107781A (en) Production of polycarbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees