WO2019203319A1 - Method for producing fluoroolefin - Google Patents
Method for producing fluoroolefin Download PDFInfo
- Publication number
- WO2019203319A1 WO2019203319A1 PCT/JP2019/016682 JP2019016682W WO2019203319A1 WO 2019203319 A1 WO2019203319 A1 WO 2019203319A1 JP 2019016682 W JP2019016682 W JP 2019016682W WO 2019203319 A1 WO2019203319 A1 WO 2019203319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- compound
- production method
- reactor
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Definitions
- the present invention relates to a method for efficiently producing a fluoroolefin, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin or a chlorofluoroolefin in a liquid phase.
- hydrofluorocarbons and hydrochlorofluorocarbons have been used for cleaning agents, refrigerants, foaming agents, solvents, aerosols and the like.
- these compounds may cause global warming. Therefore, halogenated olefins are attracting attention as compounds having a small global warming potential.
- hydrofluorocarbons or hydrochlorofluorocarbons having a structure in which hydrogen atoms, fluorine atoms or chlorine atoms are bonded to two adjacent carbon atoms in the molecule are dehydrochlorinated.
- a reaction for dehydrofluorination is known.
- Patent Document 1 discloses a reaction in which XCF 2 CF 2 CHClY is dehydrofluorinated to obtain XCF 2 CF ⁇ CClY (X and Y are fluorine atoms or chlorine atoms), and 1,1 1,2,2,3,3-hexafluoro-3-chloropropane is dehydrochlorinated to give hexafluoropropene.
- Patent Document 2 describes a method for producing 1-chloro-2,3,3-trifluoropropene by dehydrofluorinating 1-chloro-2,2,3,3-tetrafluoropropane.
- Patent Document 3 1,1-dichloro-2,2,3,3,3-pentafluoropropane is subjected to dehydrofluorination to produce 1,1-dichloro-2,3,3,3-tetrafluoro.
- a method for obtaining propene is described.
- the present invention has been made from the above viewpoint, and is an efficient fluoroolefin in a liquid phase from hydrofluorocarbon or hydrochlorofluorocarbon, specifically, hydrofluoroolefin, perfluoroolefin, hydrochlorofluoroolefin or chlorofluoroolefin. It aims at providing the method of manufacturing.
- the present invention achieves the above object and has the following aspects.
- [1] A structure in which the number of carbon atoms is 3 to 7 in a reactor capable of adjusting temperature and pressure, and a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms, respectively.
- Hydrofluorocarbon (HFC) or hydrochlorofluorocarbon (HCFC) in the molecule is brought into contact with an alkaline aqueous solution in the liquid phase, and the HFC or HCFC is dehydrochlorinated or dehydrofluorinated to produce hydrofluoroolefin (HFO), perfluoro
- HFO hydrofluoroolefin
- a process for producing a fluoroolefin which obtains at least one fluoroolefin selected from olefin (PFO), hydrochlorofluoroolefin (HCFO) and chlorofluoroolefin (CFO)
- PFO olefin
- HCFO hydrochlorofluoroolefin
- CFO chlorofluoroolefin
- aqueous alkali solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxides, metal oxides and metal carbonates is dissolved in water.
- [5] The production method according to [4], wherein a ratio of the mass of the base to the total mass of the alkaline aqueous solution in the alkaline aqueous solution is 0.5 to 48 mass%.
- phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the hydrofluorocarbon or hydrochlorofluorocarbon.
- phase transfer catalyst is a quaternary ammonium salt.
- phase transfer catalyst is tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, or methyltri-n-octylammonium chloride.
- the dichlorotetrafluoropropane is 2,3-dichloro-1,1,1,2-tetrafluoropropane and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane
- the production method according to [13] wherein the monochlorotetrafluoropropene is 1-chloro-2,3,3,3-tetrafluoropropene.
- a fluoroolefin specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin, or a chlorofluoroolefin can be produced efficiently from a hydrofluorocarbon or hydrochlorofluorocarbon in a liquid phase.
- a reactor smaller than a gas phase reaction can be employed, which is industrially advantageous.
- halogenated hydrocarbon an abbreviation of the compound is described in parentheses after the compound name, and the abbreviation is used instead of the compound name as necessary.
- abbreviations only numbers after the hyphen (-) and lower-case alphabetic characters (for example, "1224yd” in “HCFO-1224yd") may be used.
- E) attached to the names of compounds having geometric isomers and their abbreviations indicate E form (trans form), and (Z) indicates Z form (cis form).
- the names and abbreviations are generic names including E-form, Z-form, and a mixture of E-form and Z-form.
- reaction represented by reaction formula (1) is referred to as reaction (1). The same applies to reactions represented by other formulas.
- compound represented by the formula (A) is referred to as the compound (A). The same applies to compounds represented by other formulas.
- Each of “ ⁇ ” representing a numerical range includes an upper limit value and a lower limit value.
- HSP The “Hansen solubility parameter of a compound” is composed of a dispersion term, a polar term and a hydrogen bond term.
- HSP is a literature value or a value estimated by computer software (Hansen Solubility Parameters in Practice (HSPiP) version 4) from the chemical structure of a compound.
- HSP of a mixture containing two or more compounds is calculated as a vector sum of values obtained by multiplying the HSP of each compound by the volume ratio of each compound to the entire mixture.
- pressure “MPa” represents “absolute pressure”
- MPaG represents “gauge pressure”.
- reaction to which the production method of the present invention can be applied is specifically a reaction shown in the following reaction formula (1).
- the above-mentioned HFC or HCFC which is a starting material (raw material) is represented by the formula (A)
- the target product which is HFO, PFO, HCFO or CFO is represented by the formula (B).
- Formula (C) is hydrogen chloride or hydrogen fluoride.
- X 1 and X 2 are each independently a hydrogen atom, and the other is a fluorine atom or a chlorine atom.
- Y 1 and Y 2 are each independently a hydrogen atom, a fluorine atom or a chlorine atom.
- R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms (however, part or all of the hydrogen atoms are chlorine atoms or fluorine atoms) And the total number of carbon atoms of R 1 and R 2 is 1-5. At least one of Y 1 , Y 2 , R 1 and R 2 is a fluorine atom.
- This reaction is usually carried out in a closed reactor with adjustable temperature and pressure.
- the reactor there exists at least a liquid phase containing the compound (A) and an aqueous alkali solution, and a gas phase.
- the reaction (1) comprises an organic phase mainly composed of the compound (A) and an aqueous alkali solution. It is carried out in the two-phase state of the main water phase.
- the two-phase contact is efficiently performed by devising the stirring conditions and equipment, and the reaction is promoted by using a phase transfer catalyst. It has not been easy to increase production efficiency.
- the inventor reduced the concentration of the compound (A) in the liquid phase as the reaction (1) progressed in the reactor and the compound (B) was produced from the compound (A). It was confirmed that the reaction rate decreased. Then, by adjusting the temperature and pressure in the reactor so as to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B), the reaction of the reaction (1) It was found that the compound (B) can be produced more efficiently by suppressing the decrease in speed, and the present invention was completed.
- the relationship between the molecular weights of the compound (A) and the compound (B) is that the compound (B) is converted into the compound (A) by the amount of HCl or HF removed from the compound (A). ) Smaller molecular weight.
- the compound (B) has a higher vapor pressure and a lower boiling point than the compound (A). Therefore, by adjusting the temperature and pressure in the reactor so as to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B), the compound ( The decrease in the reaction rate is suppressed by suppressing the decrease in the concentration of A).
- the temperature and pressure in the reactor are adjusted to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B)” Is referred to as requirement (II).
- the mass [g] of the compound (A) in the liquid phase in the reactor is defined as L (A), and the mass [g] of the compound (B).
- Is L (B) the mass [g] of the compound (A) in the gas phase is V (A)
- the mass [g] of the compound (B) is V (B)
- the reaction (1) when the reaction (1) is carried out under the condition that the formula (III) is established, a decrease in the reaction rate is suppressed.
- the relationship of formula (III) is preferably maintained from the start to the end of the reaction.
- the ratio value of (V (B) / V (A) ) and (L (B) / L (A) ) shown on the left side of the formula (III) is preferably larger, for example, 1.5 or more Is preferable, and 2.0 or more is more preferable. A larger value of the ratio is preferable, and the upper limit is not particularly limited.
- the temperature and pressure in the reactor may vary as long as at least the above requirement (II) is satisfied, but preferably the temperature and pressure are kept constant within the range satisfying the requirement (II). It is preferred that it be retained.
- the pressure in the reactor is preferably adjusted by discharging a predetermined amount of the gas phase outside the reactor. In order to keep the pressure in the reactor constant, it is preferable to continuously discharge the gas phase out of the reactor. Specific temperature and pressure depend on the types of the compound (A) and the compound (B) in the reaction (1) to which the production method of the present invention described below can be applied.
- the reaction in the present invention may be performed by a batch method, a semi-continuous method, or a continuous flow method.
- the compound (B) is separated and recovered from the gas phase and liquid phase in the reactor by a usual method after the reaction is completed.
- the compound (B) is separated and recovered from the discharged gas phase, and after completion of the reaction, from the gas phase and liquid phase in the reactor, The compound (B) is separated and recovered by the method.
- the reaction solution when the compound (B) is recovered from the reaction solution (liquid phase) after completion of the reaction, the reaction solution is left to separate into an organic phase and an aqueous phase.
- an unreacted compound (A), a by-product, and the like can be contained in addition to the target product compound (B).
- a separation and purification method such as general distillation.
- the compound (A) when the unreacted compound (A) remains in the reaction solution, the compound (A) can be concentrated by distillation and recycled as the raw material of the present invention. In some cases, the compound (A) may be recovered from the gas phase, and in this case as well, it can be recycled as the raw material of the present invention. On the other hand, the aqueous phase separated from the organic phase can be reused by taking out only this amount and adding a base so as to obtain an appropriate concentration again.
- the purified compound (B) containing the compound (B) with high purity can be obtained by separating and purifying the compound (B) obtained by the production method of the present invention as described above. If the purified compound (B) thus obtained contains an acid content such as HF or HCl, or an impurity such as water or oxygen, the equipment will corrode during its use, and the stability of the compound (B) will decrease. There is a risk of. Therefore, it is preferable to remove these impurities by a conventionally known method to such an extent that there is no problem with corrosion and stability.
- reaction to which the production method of the present invention can be applied Specific examples of reactions to which the production method of the present invention can be applied will be described below.
- a production example of fluoropropene shown in the reactions of the following formulas (1-1) to (12-2), (15-1) and (15-2) Is mentioned.
- a production example of fluoropentene shown in the following reactions of the formulas (14-1) and (14-2).
- Formula (1-1) is a compound represented by 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and / or 1,1-dichloro-1,2,3,3,3
- Formula (1-2) is 2,3,3-trichloro-1,1,1,2-tetrafluoropropane (HCFC-224ba) and / or 1,1,1-trichloro-2,3,3,3 A reaction formula for obtaining CFO-1214ya from tetrafluoropropane (HCFC-224eb) by deHCl.
- Formula (2-1) represents 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and / or 1,1,1,2,3,3,3-heptafluoropropane.
- This is a reaction formula for obtaining hexafluoropropene (PFO-1216) from (HFC-227ea) by deHF.
- Formula (2-2) is 2-chloro-1,1,1,2,3,3-hexafluoropropane (HCFC-226ba) and / or 1-chloro-1,1,2,3,3,3
- Formula (3-1) represents 3-chloro-1,1,1,2,2-pentafluoropropane (HCFC-235cb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane
- deHF from (HCFC-235ea) (Z) -1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd (Z)) and / or (E) -1-chloro-2,3 , 3,3-tetrafluoropropene (HCFO-1224yd (E)).
- Formula (3-2) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane This is a reaction formula for obtaining HCFO-1224yd (Z) and / or HCFO-1224yd (E) from (HCFC-234ea) by removing HCl.
- Formula (4-1) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db).
- HCFC-244bb 2-chloro-1,1,1,3-tetrafluoropropane
- HCFC-244db 2-chloro-3,3,3-trifluoropropene
- Formula (4-2) is a compound represented by 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243xb) and / or 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db). Is a reaction formula for obtaining HCFO-1233xf from HCl by dehydrochlorination.
- Formula (5-1) is a compound represented by the following formula: 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) and / or 1-chloro-1,2,3,3-tetrafluoropropane (HCFC-244ea) ) To (Z) -1-chloro-2,3,3-trifluoropropene (HCFO-1233yd (Z)) and / or (E) -1-chloro-2,3,3-trifluoropropene This is a reaction formula for obtaining (HCFO-1233yd (E)).
- Formula (5-2) is a compound represented by 2,3-dichloro-1,1,2-trifluoropropane (HCFC-243ba) and / or 1,1-dichloro-2,3,3-trifluoropropane (HCFC-243eb).
- Formula (6-1) is a compound represented by the following formula: 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa).
- HCFC-244eb 3-chloro-1,1,1,2-tetrafluoropropane
- HCFC-244fa 3-chloro-1,1,1,3-tetrafluoropropane
- Formula (6-2) is a compound represented by 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db) and / or 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa).
- Formula (7-1) is obtained by removing HF from 1,1,1,2,2-pentafluoropropane (HFC-245cb) and / or 1,1,1,2,3-pentafluoropropane (HFC-245eb). Is a reaction formula for obtaining 2,3,3,3-tetrafluoropropene (HFO-1234yf).
- Formula (7-2) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb). ) From HCI-1234yf by deHCl.
- Formula (8-1) is obtained by removing HF from 1,1,1,2,3-pentafluoropropane (HFC-245eb) and / or 1,1,1,3,3-pentafluoropropane (HFC-245fa).
- Is a reaction formula to obtain Formula (8-2) is a compound represented by 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa).
- Formula (9-1) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 2,3-dichloro-1,1,1,3-tetrafluoropropane (HC) -234da) to (Z) -1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)) and / or (E) -1,2-dichloro-3 , 3,3-trifluoropropene (HCFO-1223xd (E)).
- Formula (9-2) represents 2,2,3-trichloro-1,1,1-trifluoropropane (HCFC-233ab) and / or 2,3,3-trichloro-1,1,1-trifluoropropane This is a reaction formula for obtaining HCFO-1223xd (Z) and / or HCFO-1223xd (E) from (HCFC-233da) by de-HCl.
- Formula (10-1) is represented by 1,1,1,2,2,3-hexafluoropropane (HFC-236cb) and / or 1,1,1,2,3,3-hexafluoropropane (HFC-236eb).
- HFC-236cb 1,1,1,2,3,3-hexafluoropropane
- HFC-236eb 1,1,1,2,3,3-hexafluoropropane
- Formula (10-2) is 2-chloro-1,1,1,2,3-pentafluoropropane (HCFC-235bb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane This is a reaction formula for obtaining HFO-1225ye (Z) and / or HFO-1225ye (E) by removing HCl from (HCFC-235ea).
- Formula (11-1) can be obtained by removing HF from 1,1,1,2-tetrafluoropropane (HFC-254eb) and / or 1,1,1,3-tetrafluoropropane (HFC-254fb) to form 3,3 , 3-trifluoropropene (HFO-1243zf) is obtained.
- Formula (11-2) is obtained by removing HCl from 2-chloro-1,1,1-trifluoropropane (HCFC-253db) and / or 3-chloro-1,1,1-trifluoropropane (HCFC-244eb). Is a reaction formula for obtaining HFO-1243zf.
- Formula (12-1) is obtained by removing 3,1,3-difluoropropene (HFC-263eb) and / or 1,1,3-trifluoropropane (HFC-263fa) by deHF. This is a reaction formula to obtain HFO-1252zf).
- Formula (12-2) yields HFO-1252zf from 2-chloro-1,1-difluoropropane (HCFC-262db) and / or 3-chloro-1,1-difluoropropane (HCFC-262fa) by de-HCl It is a reaction formula.
- Formula (13-1) is obtained by removing HF from 1,1,1,2,4,4-heptafluorobutane (HFC-347mef) and (Z) -1,1,1,4,4,4- Reaction to obtain hexafluoro-2-butene (HFO-1336mzz (Z)) and / or (E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)) It is a formula.
- Formula (13-2) is obtained by removing HFO-1336mzz (Z) or HFO-1336mzz (E) from 2-chloro-1,1,1,4,4,4-hexafluorobutane (HCFC-346mdf) by removing HCl. It is the reaction formula to be obtained.
- Formula (14-1) is a compound represented by the following formula: 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane (HCFC-448occc) and / or 5-chloro-1,1,2,2 (Z) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HC), 3,4,5-octafluoropentane (HCFC-448 pcce) by deHF Reaction formula to obtain HCFO-1437 dycc (Z)) and / or (E) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc (E)) It is.
- Formula (14-2) is a compound represented by 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane (HCFC-447 obscc) and / or 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane (HCFC-447necc) to remove HCFO-1437 dycc (Z) and / or HCFO-1437 dycc (E) by removing HCl.
- HCFC-447 obscc 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane
- HCFC-447necc 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane
- Formula (15-1) is a compound represented by the following formula: 3-chloro-1,1,1,2,2,3-hexafluoropropane (HCFC-226ca) and / or 1-chloro-1,1,2,3,3,3 By deHF from hexafluoropropane (HCFC-226ea) (Z) -1-chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (Z)) and / or (E) -1 This is a reaction formula for obtaining -chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (E)).
- Formula (15-2) is a compound represented by 2,3-dichloro-1,1,1,2,3-pentafluoropropane (HCFC-225ba) and / or 1,1-dichloro-1,2,3,3,3.
- the reaction in which the production method of the present invention is suitably used is a reaction in which tetrafluoropropene is obtained from monochlorotetrafluoropropane by deHCl from the viewpoint that the reaction rate can be improved and the reaction can be carried out efficiently.
- a reaction for obtaining monochlorotetrafluoropropene from dichlorotetrafluoropropane by dehydrochlorination is mentioned.
- Examples of the reaction for obtaining tetrafluoropropene from monochlorotetrafluoropropane by removing HCl include 244bb and / or 244eb of formula (7-2) to obtain 1234yf by removing HCl, 244db and / or 244fa of formula (8-2)
- the reaction to obtain 1234yf from 244bb and / or 244eb of formula (7-2) by deHCl is more preferred.
- the effect of the present invention is great particularly when the raw material includes a compound having a CH 3 group such as 244bb and the elimination of H from the CH 3 group of the compound is required. Therefore, a high effect can be expected in the reaction of obtaining 1234yf from 244bb by deHCl.
- the compound (A) is in a liquid phase as an organic phase and is in physical contact with an alkaline aqueous solution, more specifically, by contacting with a base in the alkaline aqueous solution.
- DeHF or deHCl reaction occurs to produce compound (B).
- the method for obtaining the compound (A) is not particularly limited. You may manufacture by a well-known method and may use a commercial item.
- 244bb and / or 244eb in the reaction (7-2) to which the present invention is preferably applied can be produced, for example, by a chlorination reaction in which 254eb is reacted with chlorine.
- 234bb and / or 234ea in the reaction (3-2) can be produced, for example, by further chlorinating 244bb and / or 244eb obtained in the chlorination reaction of 254eb.
- the compound (A) may be introduced into the reactor in the form of a mixture containing the compound (A) and impurities.
- the amount of impurities in the mixture is set so as not to affect the effect of the production method of the present invention.
- the compound (A) may be used together with by-products and unreacted raw materials that are by-produced during the production of the compound (A).
- the composition of the compound (A) having a purity of 85% by mass or more, preferably 90% by mass or more, particularly preferably 95% by mass or more can be used in the production method of the present invention.
- the alkaline aqueous solution used in the production method of the present invention refers to an aqueous solution in which a base is dissolved in water.
- the base is not particularly limited as long as the above reaction (1) can be performed.
- the base preferably contains at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
- examples include alkaline earth metal hydroxides and alkali metal hydroxides.
- examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide.
- examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
- examples of the metal constituting the metal oxide include an alkali metal element, an alkaline earth metal element, a transition metal element, a Group 12 metal element, and a Group 13 metal element.
- alkali metal elements, alkaline earth metal elements, Group 6 metal elements, Group 8 metal elements, Group 10 metal elements, Group 12 metal elements, or Group 13 metal elements are preferable, and sodium, calcium, chromium More preferred are iron, zinc, or aluminum.
- the metal oxide may be an oxide containing one kind of metal or a composite oxide of two or more kinds of metals.
- the metal oxide sodium oxide, calcium oxide, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide and the like are preferable from the viewpoint of reaction time and reaction yield, and alumina or chromia is more preferable.
- examples include alkaline earth metal carbonates and alkali metal carbonates.
- alkaline earth metal carbonate include carbonates of metals such as beryllium, magnesium, calcium, strontium, barium, and radium.
- alkali metal carbonate include metal carbonates such as lithium, sodium, potassium, rubidium, cesium, and francium.
- the base used in the production method of the present invention is preferably a metal hydroxide from the viewpoint of reaction time and reaction yield, and particularly preferably at least one selected from the group consisting of potassium hydroxide and sodium hydroxide.
- a metal hydroxide may be used individually by 1 type and may use 2 or more types together.
- the content of the base in the alkaline aqueous solution is preferably such that the ratio (unit%) of the mass of the base to the total amount (mass) of the alkaline aqueous solution is 0.5 to 48% by mass from the viewpoint of the reaction rate, and 20 to 45% by mass. % Is more preferable, and 30 to 40% by mass is further preferable. If the amount of base is less than the above range, a sufficient reaction rate may not be obtained. On the other hand, when the amount of the base exceeds the above range, the amount of by-products generated increases, and the selectivity for the target substance (compound (B)) may decrease.
- the amount of base used in the production method of the present invention depends on the type of reaction (1).
- the amount of base relative to 1 mol of 244bb and / or 244eb is from the viewpoint of improving the conversion of 244bb and / or 244eb and the selectivity of 1234yf. 0.2 to 3.0 mol is preferable, and 0.5 to 2.5 mol is more preferable.
- the conversion rate of 234bb and / or 234ea and 1224yd (Z) and / or 1224yd (E) from 234bb and / or 234ea by deHCl the conversion rate of 234bb and / or 234ea and 1224yd (Z) and / or 1224yd (E)
- the amount of the base relative to 1 mol of 234bb and / or 234ea is preferably 0.2 to 3.0 mol, and more preferably 0.5 to 2.5 mol.
- preferable temperature and pressure conditions within the conditions satisfying the requirement (II) depend on the types of the compound (A) and the compound (B).
- preferable temperature and pressure conditions are described below by taking, as an example, a reaction for obtaining 1234yf from 244bb by deHCl and a reaction for obtaining 1224yd from 234bb by deHCl.
- FIG. 1 shows the vapor pressure curves of 244bb and 1234yf.
- the solid line shows a vapor pressure curve of 244bb
- the broken line shows a vapor pressure curve of 1234yf.
- the compound is in a gas phase under temperature and pressure conditions below the vapor pressure curve, and the compound is in a liquid phase under temperature and pressure conditions above the vapor pressure curve. Therefore, in FIG. 1, it can be seen that 44bb is the liquid phase and 1234yf is the gas phase in the temperature and pressure regions surrounded by the vapor pressure curve of 244bb and the vapor pressure curve of 1234yf.
- the reaction temperature is preferably 60 to 120 ° C, and preferably 70 to 115 ° C from the viewpoint of improving the reaction rate and reaction rate and easily suppressing by-products. 70 to 110 ° C. is more preferable.
- the pressure in the reactor is set to be equal to or higher than the vapor pressure of 244bb and equal to or lower than the vapor pressure of 1234yf at the reaction temperature. Furthermore, the pressure is preferably 2.0 MPaG or less in terms of the design of the reactor. Therefore, it is preferable to carry out the reaction within a range satisfying these conditions.
- FIG. 2 shows vapor pressure curves of 234bb, 1224yd (Z), and 1224yd (E).
- the solid line represents the vapor pressure curve of 234bb
- the broken line represents the vapor pressure curve of 1224yd (Z)
- the dotted line represents the vapor pressure curve of 1224yd (E).
- the compound is in a gas phase under temperature and pressure conditions below the vapor pressure curve, and the compound is in a liquid phase under temperature and pressure conditions above the vapor pressure curve. Therefore, in FIG.
- 234bb in the temperature and pressure regions surrounded by the vapor pressure curve of 234bb and the vapor pressure curve of 1224yd (E), 234bb is the liquid phase, and 1224yd (Z) and 1224yd (E) are in the gas phase. I know that there is.
- the reaction temperature and reaction rate are improved, and the reaction temperature is preferably 10 to 90 ° C, more preferably 20 to 80 ° C, from the viewpoint of easily suppressing by-products. preferable.
- the pressure in the reactor is set to be equal to or higher than the vapor pressure of 234bb and equal to or lower than the vapor pressure of 1224yd at the reaction temperature. Furthermore, the pressure is preferably 0.5 MPaG or less in terms of the design of the reactor. Therefore, it is preferable to carry out the reaction within a range satisfying these conditions.
- the reaction solution is composed of an organic phase mainly composed of the compound (A) and an aqueous phase composed of an alkaline aqueous solution.
- another substance that does not impair the effects of the present invention may be present.
- a phase transfer catalyst is present.
- the phase transfer catalyst is present both in the organic phase and in the alkaline aqueous solution, and accelerates the dehalogenation reaction by contact of the compound (A) with the alkaline aqueous solution.
- phase transfer catalyst examples include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc., and are quaternary from the viewpoint of industrial availability, price, and ease of handling. Ammonium salts are preferred.
- TBAC tetra-n-butylammonium chloride
- TBAB tetra-n-butylammonium bromide
- TOMAC methyltri-n-octylammonium chloride
- TBAB tetra-n-butylammonium bromide
- TOMAC methyltri-n-octylammonium chloride
- TBAB tetra-n-butylammonium chloride
- TBAC tetra-n-butylammonium bromide
- TBAB tetra-n-butylammonium bromide
- the amount thereof is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the compound (A). More preferably, 0.01 to 3 parts by mass. If the amount of the phase transfer catalyst is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount used cannot be obtained, which is disadvantageous in terms of cost.
- the reaction solution may contain a water-soluble organic solvent capable of dissolving the compound (A) (hereinafter referred to as “water-soluble organic solvent (S)”) together with the phase transfer catalyst.
- the water-soluble organic solvent (S) is water-soluble and can dissolve the compound (A).
- the water-solubility in the water-soluble organic solvent (S) means that the water-soluble organic solvent (S) and pure water are mixed at an arbitrary mixing ratio at 25 ° C. without causing phase separation or turbidity. A property that dissolves uniformly.
- the water-soluble organic solvent (S) can dissolve the compound (A) at 25 ° C. with respect to the compound (A) in such an amount that the water-soluble organic solvent (S) is 20% by mass.
- A) and a water-soluble organic solvent (S) are mixed, they are dissolved uniformly without causing phase separation or turbidity.
- the water-soluble organic solvent (S) is present both in the organic phase and in the alkaline aqueous solution as in the phase transfer catalyst, and has a function of further enhancing the action of promoting the dehalogenation reaction of the compound (A) in the phase transfer catalyst.
- water-soluble organic solvent (S) for example, a compound capable of dissolving the compound (A) from a water-soluble alcohol, ketone, ether, ester or the like is appropriately selected and used depending on the type of the compound (A). .
- water-soluble alcohol examples include methanol, ethanol, propan-1-ol, butan-1-ol, propan-2-ol, butan-2-ol, 2-methylpropan-2-ol, and 2-methylbutane-
- water-soluble ketones such as 2-ol include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, and cyclohexanone.
- water-soluble ethers examples include tetraethylene glycol dimethyl ether (hereinafter also referred to as “tetraglyme”), chain ethers such as dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide, and cyclic ethers such as tetrahydrofuran, furan, and crown ethers.
- tetraglyme tetraethylene glycol dimethyl ether
- chain ethers such as dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide
- cyclic ethers such as tetrahydrofuran, furan, and crown ethers.
- water-soluble esters examples include methyl acetate and methyl formate.
- the water-soluble organic solvent (S) has a property of dissolving the compound (A) in addition to water solubility.
- the water-soluble organic solvent (S) is a water-soluble organic solvent (S) represented by the following formula (I) based on the Hansen solubility parameter from the viewpoint of further enhancing the action of the phase transfer catalyst in the dehalogenation reaction of the compound (A).
- the interaction distance (Ra) is preferably 25.0 or less, more preferably 23.0 or less.
- Ra [4 ⁇ ( ⁇ D 1 - ⁇ D 2) 2 + ( ⁇ P 1 - ⁇ P 2) 2 + ( ⁇ H 1 - ⁇ H 2) 2] 0.5 (I)
- Each formula (I), ⁇ D 1, ⁇ P 1 and delta] H 1 is the Hansen solubility parameter of the water-soluble organic solvent (S), dispersion term, the polarity term and hydrogen bond, [delta] D 2, [delta] P 2 and delta] H 2 is Each represents a dispersion term, a polar term and a hydrogen bonding term in the Hansen solubility parameter of the compound (A), and the unit is (MPa) 1/2 .
- methanol, acetone, tetraglyme, and tetrahydrofuran have an interaction distance (Ra) of 25.0 or less for all of 244bb, 244eb, 234bb, and 234ea.
- Ra interaction distance
- S water-soluble organic solvent
- the amount of the water-soluble organic solvent (S) used in the production method of the present invention is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight with respect to 100 parts by weight of the compound (A). Part by mass is more preferable. If the amount of the water-soluble organic solvent (S) is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount of use cannot be obtained. It is disadvantageous in terms.
- FIG. 3 shows a schematic diagram of an example of a reactor used in the method for producing a fluoroolefin of the present invention.
- reaction apparatus shown in FIG. 3 is an exemplification, and the reaction apparatus used in the embodiment of the present invention is not limited to such a structure. If necessary, each member can be deformed, deleted, and changed, and other members can be added.
- the reaction apparatus 100 has a configuration in which a reactor body 1, a lid 2, a stirrer 7 having a stirring blade, and a reactor 20 having a thermocouple 8 are installed in a thermostatic bath 5 provided with a heater 6.
- the reaction apparatus 100 includes a compound (A) storage tank 3 that stores the compound (A) outside the thermostatic chamber 5 and an alkaline aqueous solution storage tank 4 that stores an alkaline aqueous solution.
- a predetermined amount of the compound (A) and the aqueous alkali solution are supplied into the vessel 20 as a liquid phase leaving a space constituting a gas phase.
- the inside of the reactor 20 is composed of a liquid phase L and a gas phase V, and the reaction (1) is performed under the condition that formula (II) is established by adjusting the temperature and pressure in the reactor 20. Under the conditions, the pressure in the reactor 20 increases with the progress of the reaction (1). Therefore, in order to suppress this and keep the pressure in the reactor 20 within a predetermined range, A part of the phase V is recovered in the recovery tank 10 via the discharge line 22.
- the reactor 100 has a configuration in which a back pressure valve 9 is provided in the middle of the discharge line 22. By using the back pressure valve 9, the pressure in the reactor 20 is kept constant, and the gas phase V is continuously discharged from the reactor 20. That is, the reaction apparatus 100 is a reaction apparatus that can more effectively implement the production method of the present invention.
- a withstand voltage capacitor or the like may be provided. Thereby, the composition with which content of the compound (B) was raised in the collection tank 10 can be collect
- the vapor phase V recovered in the recovery tank 10 may remove components other than the compound (B) using, for example, molecular sieves.
- the material of the constituent members constituting the reaction apparatus 100 includes a compound (A), an aqueous alkaline solution, and a reaction product containing the compound (B), a phase transfer catalyst used arbitrarily, and a water-soluble organic solvent (S).
- the material is not particularly limited as long as it is inactive to the reaction solution components and the like and is a corrosion-resistant material.
- glass, iron, nickel, an alloy such as stainless steel mainly containing iron, and the like can be given.
- Examples 1, 2, 5, and 6 are examples, and examples 3, 4, 7, and 8 are comparative examples.
- reaction solution was neutralized by mixing with a 20% by mass aqueous solution of potassium hydrogen carbonate, and then a liquid separation operation was performed. After standing, the reaction composition was recovered from the separated lower layer, and 244bb was obtained by distillation.
- Example 1 A reactor similar to that shown in FIG. 3 was used.
- a 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a constant temperature bath and kept at 80 ° C.
- this reactor autoclave, the same applies below
- TBAB tetra-n-butylammonium bromide
- the stirring blade was rotated at 600 rpm, the back pressure valve was set so that the pressure in the reactor was 0.8 MPaG, and the reaction was performed for 4 hours while discharging the gas phase from the reactor.
- the gas phase discharged from the reactor was recovered in a recovery tank. After completion of the reaction, the reactor was taken out from the thermostat and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. GC analysis of the reaction composition recovered from the reactor and the gas phase (reaction composition) recovered in the recovery tank was performed to obtain a conversion rate of 244bb and a selectivity of 1234yf.
- the conversion rate of 244bb was 34.3%
- the yield of 1234yf was 34.3%
- the selectivity was 100%.
- Example 2 In Example 1, the reaction was carried out in the same manner except that the reaction time was changed to 16 hours. As a result, the conversion rate of 244bb was 62.7%, the yield of 1234yf was 62.7%, and the selectivity was 100%.
- Example 3 In Example 1, a 244bb deHCl reaction for 4 hours was performed in the same manner except that the gas phase was not discharged from the reactor. When the pressure in the reactor during the reaction was specified, it was 2.1 MPaG, which was in the upper region of the vapor pressure curve of 1234yf in FIG. After completion of the reaction, the recovered reaction composition was subjected to GC analysis to obtain a conversion rate of 244bb and a selectivity of 1234yf. The conversion of 244bb was 29.1%, the yield of 1234yf was 29.1%, and the selectivity was 100%.
- Example 4 In Example 3, the reaction was carried out in the same manner except that the reaction time was changed to 16 hours. As a result, the conversion rate of 244bb was 51.3%, the yield of 1234yf was 51.3%, and the selectivity was 100%.
- reaction heat was generated, the temperature in the reactor rose to 7.6 ° C., and the pressure in the reactor rose to 0.08 MPaG.
- the reaction was continued for 1 hour while supplying 1234yf and chlorine gas at the above flow rates. After confirming that 245g of 1234yf and 152g of chlorine were supplied, the supply of 1234yf and chlorine was stopped, and the pressure in the reactor was Light irradiation was continued until normal pressure was reached. After completion of the reaction, the obtained reaction solution was neutralized with a 20% by mass aqueous potassium hydrogen carbonate solution, and then a liquid separation operation was performed. After standing, 1734 g of product (1) was recovered from the separated lower layer.
- the product (1) was distilled by a normal operation to obtain 234bb with a purity of 99.8%. After completion of the reaction, the obtained reaction solution was neutralized by mixing with a 20% by mass aqueous solution of potassium hydrogen carbonate, and then a liquid separation operation was performed. After standing, the reaction composition was recovered from the separated lower layer, and 234bb was obtained by distillation.
- Example 5 A reactor similar to that shown in FIG. 3 was used.
- a 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a constant temperature bath and kept at 30 ° C.
- 478.5 g of a 20% by mass NaOH aqueous solution, and 276.6 g of 234bb obtained above (the molar ratio of NaOH and 234bb is NaOH: 234bb 2: 1) as a phase transfer catalyst.
- TBAB tetra-n-butylammonium bromide
- the stirring blade was rotated at 600 rpm, the back pressure valve was set so that the pressure in the reactor became 0 MPaG, and the reaction was carried out for 1 hour while discharging the gas phase from the reactor.
- the gas phase discharged from the reactor was recovered in a recovery tank. After completion of the reaction, the reactor was taken out from the thermostat and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. GC analysis of the reaction composition recovered from the reactor and the gas phase (reaction composition) recovered in the recovery tank was performed to obtain a conversion rate of 234bb and a selectivity of 1224yd.
- the conversion of 234bb was 54.1%
- the yield of 1224yd was 54.1%
- the selectivity was 100%.
- the obtained 1224yd was a mixture of 1224yd (Z) and 1224yd (E). As shown in FIG. 2, in this example, the reaction was performed in a region higher than the vapor pressure curve of 234bb and lower than the vapor pressure curves of 1224yd (Z) and 1224yd (E).
- the conversion rate of 1224yd shown above is the sum of the conversion rates of 1224yd (Z) and 1224yd (E).
- Example 6 In Example 5, the reaction was carried out in the same manner except that the reaction time was changed to 2 hours. As a result, the conversion rate of 234bb was 63.4%, the yield of 1224yd was 63.4%, and the selectivity was 100%.
- Example 7 In Example 5, a 234bb deHCl reaction for 1 hour was performed in the same manner except that the gas phase was not discharged from the reactor. When the pressure in the reactor during the reaction was specified, it was 0.15 MPaG and was in the upper region of the vapor pressure curve of 1224yd (Z) in FIG. After completion of the reaction, the recovered reaction composition was subjected to GC analysis to determine a conversion rate of 234bb and a selectivity of 1224yd. The conversion rate of 234bb was 50.5%, the yield of 1224yd was 50.5%, and the selectivity was 100%.
- Example 8 In Example 7, the reaction was carried out in the same manner except that the reaction time was changed to 2 hours. As a result, the conversion rate of 234bb was 58.2%, the yield of 1224yd was 58.2%, and the selectivity was 100%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Provided is a method for producing, in a liquid phase, a fluoroolefin from hydrofluorocarbon (HFC) or hydrochlorofluorocarbon (HCFC) with high efficiency. A method for producing a fluoroolefin, the method comprising bringing HFC or HCFC, each of which has 3 to 7 carbon atoms and also has, in the molecule thereof, such a structure that a hydrogen atom and a fluorine or chlorine atom are respectively bonded to adjacent two carbon atoms, in a liquid phase into contact with an aqueous alkaline solution in a temperature- and pressure-controllable reaction vessel to cause the removal of a hydrogen halide from the HFC or the HCFC, thereby producing the fluoroolefin, wherein the temperature and the pressure in the reaction vessel are adjusted to values falling within a zone that lies above a water vapor curve of the HFC or the HCFC and also lies below a water vapor curve of the fluoroolefin.
Description
本発明は、フルオロオレフィン、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを液相において効率的に製造する方法に関する。
The present invention relates to a method for efficiently producing a fluoroolefin, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin or a chlorofluoroolefin in a liquid phase.
近年、洗浄剤、冷媒、発泡剤、溶剤、エアゾール用途等にハイドロフルオロカーボンやハイドロクロロフルオロカーボンが用いられている。しかしながら、これらの化合物は、地球温暖化の原因となる可能性が指摘されている。そこで、地球温暖化係数の小さい化合物としてハロゲン化オレフィンが注目されている。
In recent years, hydrofluorocarbons and hydrochlorofluorocarbons have been used for cleaning agents, refrigerants, foaming agents, solvents, aerosols and the like. However, it has been pointed out that these compounds may cause global warming. Therefore, halogenated olefins are attracting attention as compounds having a small global warming potential.
ハロゲン化オレフィンの製造方法の一つとして、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを脱塩化水素または脱フッ化水素させる反応が知られている。
As one method for producing halogenated olefins, hydrofluorocarbons or hydrochlorofluorocarbons having a structure in which hydrogen atoms, fluorine atoms or chlorine atoms are bonded to two adjacent carbon atoms in the molecule are dehydrochlorinated. Alternatively, a reaction for dehydrofluorination is known.
例えば、特許文献1には、XCF2CF2CHClYを脱フッ化水素させて、XCF2CF=CClY(X、Yは、フッ素原子または塩素原子である。)を得る反応、および、1,1,1,2,3,3-ヘキサフルオロ-3-クロロプロパンを脱塩化水素させ、ヘキサフルオロプロペンを得る反応が記載されている。
For example, Patent Document 1 discloses a reaction in which XCF 2 CF 2 CHClY is dehydrofluorinated to obtain XCF 2 CF═CClY (X and Y are fluorine atoms or chlorine atoms), and 1,1 1,2,2,3,3-hexafluoro-3-chloropropane is dehydrochlorinated to give hexafluoropropene.
特許文献2には1-クロロ-2,2,3,3-テトラフルオロプロパンを脱フッ化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを製造する方法が記載されており、特許文献3には、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンを脱フッ化水素反応させて1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを得る方法が記載されている。
Patent Document 2 describes a method for producing 1-chloro-2,3,3-trifluoropropene by dehydrofluorinating 1-chloro-2,2,3,3-tetrafluoropropane. In Patent Document 3, 1,1-dichloro-2,2,3,3,3-pentafluoropropane is subjected to dehydrofluorination to produce 1,1-dichloro-2,3,3,3-tetrafluoro. A method for obtaining propene is described.
これらの特許文献1~3のいずれにおいても、ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの脱塩化水素または脱フッ化水素反応は、液相反応でアルカリ水溶液を用いて行う例が記載されている。これらの反応においては、反応時間が長く、そのため、相間移動触媒を使用する等の改良がなされているものの、より効率的に生産できる方法が求められていた。
In any of these Patent Documents 1 to 3, an example is described in which the dehydrochlorination or dehydrofluorination reaction of hydrofluorocarbon or hydrochlorofluorocarbon is performed using an aqueous alkali solution in a liquid phase reaction. In these reactions, the reaction time is long. Therefore, although improvements such as the use of a phase transfer catalyst have been made, a method capable of producing more efficiently has been demanded.
本発明は、上記観点からなされたものであって、ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンから液相において効率的にフルオロオレフィン、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを製造する方法の提供を目的とする。
The present invention has been made from the above viewpoint, and is an efficient fluoroolefin in a liquid phase from hydrofluorocarbon or hydrochlorofluorocarbon, specifically, hydrofluoroolefin, perfluoroolefin, hydrochlorofluoroolefin or chlorofluoroolefin. It aims at providing the method of manufacturing.
本発明は、上記目的を達成するものであり、下記の態様を有する。
[1]温度および圧力が調整可能な反応器内で、炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボン(HFC)またはハイドロクロロフルオロカーボン(HCFC)を液相でアルカリ水溶液と接触させ、前記HFCまたはHCFCを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン(HFO)、ペルフルオロオレフィン(PFO)、ハイドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)から選ばれる少なくとも1種のフルオロオレフィンを得る、フルオロオレフィンの製造方法であって、
前記反応器内の温度および圧力を、前記HFCまたはHCFCの蒸気圧曲線より上であり、かつ前記フルオロオレフィンの蒸気圧曲線より下となる条件に調整することを特徴とする製造方法。 The present invention achieves the above object and has the following aspects.
[1] A structure in which the number of carbon atoms is 3 to 7 in a reactor capable of adjusting temperature and pressure, and a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms, respectively. Hydrofluorocarbon (HFC) or hydrochlorofluorocarbon (HCFC) in the molecule is brought into contact with an alkaline aqueous solution in the liquid phase, and the HFC or HCFC is dehydrochlorinated or dehydrofluorinated to produce hydrofluoroolefin (HFO), perfluoro A process for producing a fluoroolefin, which obtains at least one fluoroolefin selected from olefin (PFO), hydrochlorofluoroolefin (HCFO) and chlorofluoroolefin (CFO),
The production method, wherein the temperature and pressure in the reactor are adjusted to be above the vapor pressure curve of the HFC or HCFC and below the vapor pressure curve of the fluoroolefin.
[1]温度および圧力が調整可能な反応器内で、炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボン(HFC)またはハイドロクロロフルオロカーボン(HCFC)を液相でアルカリ水溶液と接触させ、前記HFCまたはHCFCを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン(HFO)、ペルフルオロオレフィン(PFO)、ハイドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)から選ばれる少なくとも1種のフルオロオレフィンを得る、フルオロオレフィンの製造方法であって、
前記反応器内の温度および圧力を、前記HFCまたはHCFCの蒸気圧曲線より上であり、かつ前記フルオロオレフィンの蒸気圧曲線より下となる条件に調整することを特徴とする製造方法。 The present invention achieves the above object and has the following aspects.
[1] A structure in which the number of carbon atoms is 3 to 7 in a reactor capable of adjusting temperature and pressure, and a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms, respectively. Hydrofluorocarbon (HFC) or hydrochlorofluorocarbon (HCFC) in the molecule is brought into contact with an alkaline aqueous solution in the liquid phase, and the HFC or HCFC is dehydrochlorinated or dehydrofluorinated to produce hydrofluoroolefin (HFO), perfluoro A process for producing a fluoroolefin, which obtains at least one fluoroolefin selected from olefin (PFO), hydrochlorofluoroolefin (HCFO) and chlorofluoroolefin (CFO),
The production method, wherein the temperature and pressure in the reactor are adjusted to be above the vapor pressure curve of the HFC or HCFC and below the vapor pressure curve of the fluoroolefin.
[2]前記圧力の調整は前記反応器内の気相を前記反応器外に排出することで行う[1]に記載の製造方法。
[3]前記反応器内の液相中の化合物(A)の質量[g]をL(A)とし、化合物(B)の質量[g]をL(B)とし、気相中の化合物(A)の質量[g]をV(A)とし、化合物(B)の質量[g]をV(B)とした場合、下記式(III)を満たす、[1]または[2]に記載の製造方法。
(V(B)/V(A))/(L(B)/L(A))≧1.5 (III) [2] The production method according to [1], wherein the pressure is adjusted by discharging the gas phase in the reactor to the outside of the reactor.
[3] The mass [g] of the compound (A) in the liquid phase in the reactor is L (A) , the mass [g] of the compound (B) is L (B), and the compound ( When the mass [g] of A) is V (A) and the mass [g] of the compound (B) is V (B) , the following formula (III) is satisfied, according to [1] or [2] Production method.
(V (B) / V (A) ) / (L (B) / L (A) ) ≧ 1.5 (III)
[3]前記反応器内の液相中の化合物(A)の質量[g]をL(A)とし、化合物(B)の質量[g]をL(B)とし、気相中の化合物(A)の質量[g]をV(A)とし、化合物(B)の質量[g]をV(B)とした場合、下記式(III)を満たす、[1]または[2]に記載の製造方法。
(V(B)/V(A))/(L(B)/L(A))≧1.5 (III) [2] The production method according to [1], wherein the pressure is adjusted by discharging the gas phase in the reactor to the outside of the reactor.
[3] The mass [g] of the compound (A) in the liquid phase in the reactor is L (A) , the mass [g] of the compound (B) is L (B), and the compound ( When the mass [g] of A) is V (A) and the mass [g] of the compound (B) is V (B) , the following formula (III) is satisfied, according to [1] or [2] Production method.
(V (B) / V (A) ) / (L (B) / L (A) ) ≧ 1.5 (III)
[4]前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、[1]~[3]のいずれか1項に記載の製造方法。
[5]前記アルカリ水溶液における、アルカリ水溶液全質量に対する塩基の質量の割合が、0.5~48質量%である、[4]に記載の製造方法。
[6]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを相間移動触媒の存在下でアルカリ水溶液と接触させる、[1]~[5]のいずれかに記載の製造方法。
[7]前記相間移動触媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、0.001~10質量部の割合で存在させる[6]に記載の製造方法。
[8]前記相間移動触媒が第4級アンモニウム塩である、[6]または[7]に記載の製造方法。
[9]前記相間移動触媒が、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、またはメチルトリ-n-オクチルアンモニウムクロリドである、[6]~[8]のいずれかに記載の製造方法。 [4] Any of [1] to [3], wherein the aqueous alkali solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxides, metal oxides and metal carbonates is dissolved in water. 2. The production method according to claim 1.
[5] The production method according to [4], wherein a ratio of the mass of the base to the total mass of the alkaline aqueous solution in the alkaline aqueous solution is 0.5 to 48 mass%.
[6] The production method according to any one of [1] to [5], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is contacted with an alkaline aqueous solution in the presence of a phase transfer catalyst.
[7] The production method according to [6], wherein the phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the hydrofluorocarbon or hydrochlorofluorocarbon.
[8] The production method according to [6] or [7], wherein the phase transfer catalyst is a quaternary ammonium salt.
[9] The production according to any one of [6] to [8], wherein the phase transfer catalyst is tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, or methyltri-n-octylammonium chloride. Method.
[5]前記アルカリ水溶液における、アルカリ水溶液全質量に対する塩基の質量の割合が、0.5~48質量%である、[4]に記載の製造方法。
[6]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを相間移動触媒の存在下でアルカリ水溶液と接触させる、[1]~[5]のいずれかに記載の製造方法。
[7]前記相間移動触媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、0.001~10質量部の割合で存在させる[6]に記載の製造方法。
[8]前記相間移動触媒が第4級アンモニウム塩である、[6]または[7]に記載の製造方法。
[9]前記相間移動触媒が、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、またはメチルトリ-n-オクチルアンモニウムクロリドである、[6]~[8]のいずれかに記載の製造方法。 [4] Any of [1] to [3], wherein the aqueous alkali solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxides, metal oxides and metal carbonates is dissolved in water. 2. The production method according to claim 1.
[5] The production method according to [4], wherein a ratio of the mass of the base to the total mass of the alkaline aqueous solution in the alkaline aqueous solution is 0.5 to 48 mass%.
[6] The production method according to any one of [1] to [5], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is contacted with an alkaline aqueous solution in the presence of a phase transfer catalyst.
[7] The production method according to [6], wherein the phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the hydrofluorocarbon or hydrochlorofluorocarbon.
[8] The production method according to [6] or [7], wherein the phase transfer catalyst is a quaternary ammonium salt.
[9] The production according to any one of [6] to [8], wherein the phase transfer catalyst is tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, or methyltri-n-octylammonium chloride. Method.
[10]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがモノクロロテトラフルオロプロパンであり、前記フルオロオレフィンがテトラフルオロプロペンである、[1]~[9]のいずれかに記載の製造方法。
[11]前記モノクロロテトラフルオロプロパンが2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンであり、前記テトラフルオロプロペンが2,3,3,3-テトラフルオロプロペンである、[10]に記載の製造方法。
[12]前記反応器内の圧力を2.0MPaG以下に調整する、[11]に記載の製造方法。
[13]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがジクロロテトラフルオロプロパンであり、前記フルオロオレフィンがモノクロロテトラフルオロプロペンである、[1]~[9]のいずれかに記載の製造方法。
[14]前記ジクロロテトラフルオロプロパンが2,3-ジクロロ-1,1,1,2-テトラフルオロプロパンおよび/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパンであり、前記モノクロロテトラフルオロプロペンが1-クロロ-2,3,3,3-テトラフルオロプロペンである、[13]に記載の製造方法。
[15]前記反応器内の圧力を0.5MPaG以下に調整する、[14]に記載の製造方法。 [10] The production method according to any one of [1] to [9], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is monochlorotetrafluoropropane, and the fluoroolefin is tetrafluoropropene.
[11] The monochlorotetrafluoropropane is 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and the tetrafluoropropene is The production method according to [10], which is 2,3,3,3-tetrafluoropropene.
[12] The production method according to [11], wherein the pressure in the reactor is adjusted to 2.0 MPaG or less.
[13] The production method according to any one of [1] to [9], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is dichlorotetrafluoropropane, and the fluoroolefin is monochlorotetrafluoropropene.
[14] The dichlorotetrafluoropropane is 2,3-dichloro-1,1,1,2-tetrafluoropropane and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane, The production method according to [13], wherein the monochlorotetrafluoropropene is 1-chloro-2,3,3,3-tetrafluoropropene.
[15] The production method according to [14], wherein the pressure in the reactor is adjusted to 0.5 MPaG or less.
[11]前記モノクロロテトラフルオロプロパンが2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンであり、前記テトラフルオロプロペンが2,3,3,3-テトラフルオロプロペンである、[10]に記載の製造方法。
[12]前記反応器内の圧力を2.0MPaG以下に調整する、[11]に記載の製造方法。
[13]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがジクロロテトラフルオロプロパンであり、前記フルオロオレフィンがモノクロロテトラフルオロプロペンである、[1]~[9]のいずれかに記載の製造方法。
[14]前記ジクロロテトラフルオロプロパンが2,3-ジクロロ-1,1,1,2-テトラフルオロプロパンおよび/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパンであり、前記モノクロロテトラフルオロプロペンが1-クロロ-2,3,3,3-テトラフルオロプロペンである、[13]に記載の製造方法。
[15]前記反応器内の圧力を0.5MPaG以下に調整する、[14]に記載の製造方法。 [10] The production method according to any one of [1] to [9], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is monochlorotetrafluoropropane, and the fluoroolefin is tetrafluoropropene.
[11] The monochlorotetrafluoropropane is 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and the tetrafluoropropene is The production method according to [10], which is 2,3,3,3-tetrafluoropropene.
[12] The production method according to [11], wherein the pressure in the reactor is adjusted to 2.0 MPaG or less.
[13] The production method according to any one of [1] to [9], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is dichlorotetrafluoropropane, and the fluoroolefin is monochlorotetrafluoropropene.
[14] The dichlorotetrafluoropropane is 2,3-dichloro-1,1,1,2-tetrafluoropropane and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane, The production method according to [13], wherein the monochlorotetrafluoropropene is 1-chloro-2,3,3,3-tetrafluoropropene.
[15] The production method according to [14], wherein the pressure in the reactor is adjusted to 0.5 MPaG or less.
本発明によれば、ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンから液相において効率的にフルオロオレフィン、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを製造できる。
また、本発明の製造方法は液相反応で実施することから、気相反応に比して小さな反応器を採用でき、工業上有利である。 According to the present invention, a fluoroolefin, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin, or a chlorofluoroolefin can be produced efficiently from a hydrofluorocarbon or hydrochlorofluorocarbon in a liquid phase.
In addition, since the production method of the present invention is carried out by a liquid phase reaction, a reactor smaller than a gas phase reaction can be employed, which is industrially advantageous.
また、本発明の製造方法は液相反応で実施することから、気相反応に比して小さな反応器を採用でき、工業上有利である。 According to the present invention, a fluoroolefin, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin, or a chlorofluoroolefin can be produced efficiently from a hydrofluorocarbon or hydrochlorofluorocarbon in a liquid phase.
In addition, since the production method of the present invention is carried out by a liquid phase reaction, a reactor smaller than a gas phase reaction can be employed, which is industrially advantageous.
本明細書における用語の意味、及び記載の仕方は下記のとおりである。
「ハロゲン化炭化水素」については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1224yd」においては「1224yd」)を用いることがある。さらに、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。 The meaning of terms in this specification and the way of description are as follows.
As for “halogenated hydrocarbon”, an abbreviation of the compound is described in parentheses after the compound name, and the abbreviation is used instead of the compound name as necessary. In addition, as abbreviations, only numbers after the hyphen (-) and lower-case alphabetic characters (for example, "1224yd" in "HCFO-1224yd") may be used. Furthermore, (E) attached to the names of compounds having geometric isomers and their abbreviations indicate E form (trans form), and (Z) indicates Z form (cis form). In the names and abbreviations of the compounds, when the E-form and Z-form are not specified, the names and abbreviations are generic names including E-form, Z-form, and a mixture of E-form and Z-form.
「ハロゲン化炭化水素」については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1224yd」においては「1224yd」)を用いることがある。さらに、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。 The meaning of terms in this specification and the way of description are as follows.
As for “halogenated hydrocarbon”, an abbreviation of the compound is described in parentheses after the compound name, and the abbreviation is used instead of the compound name as necessary. In addition, as abbreviations, only numbers after the hyphen (-) and lower-case alphabetic characters (for example, "1224yd" in "HCFO-1224yd") may be used. Furthermore, (E) attached to the names of compounds having geometric isomers and their abbreviations indicate E form (trans form), and (Z) indicates Z form (cis form). In the names and abbreviations of the compounds, when the E-form and Z-form are not specified, the names and abbreviations are generic names including E-form, Z-form, and a mixture of E-form and Z-form.
「反応式(1)で示される反応」を、反応(1)という。他の式で表される反応も同様である。「式(A)で示される化合物」を化合物(A)という。他の式で表される化合物も同様である。数値範囲を表す「~」では、いずれも、上限値および下限値を含む。
“Reaction represented by reaction formula (1)” is referred to as reaction (1). The same applies to reactions represented by other formulas. The “compound represented by the formula (A)” is referred to as the compound (A). The same applies to compounds represented by other formulas. Each of “˜” representing a numerical range includes an upper limit value and a lower limit value.
「化合物のハンセン溶解度パラメータ(以下、「HSP」ともいう。)」は、分散項、極性項および水素結合項からなる。HSPは、文献値または、化合物の化学構造からコンピュータソフトウエア(Hansen Solubility Parameters in Practice(HSPiP)バージョン4)によって推算した値である。2種以上の化合物を含む混合物のHSPは、各化合物のHSPに、混合物全体に対する各化合物の体積比を乗じた値のベクトル和として算出される。
「圧力」について、「MPa」は「絶対圧」を、「MPaG」は「ゲージ圧」を表す。 The “Hansen solubility parameter of a compound (hereinafter also referred to as“ HSP ”)” is composed of a dispersion term, a polar term and a hydrogen bond term. HSP is a literature value or a value estimated by computer software (Hansen Solubility Parameters in Practice (HSPiP) version 4) from the chemical structure of a compound. The HSP of a mixture containing two or more compounds is calculated as a vector sum of values obtained by multiplying the HSP of each compound by the volume ratio of each compound to the entire mixture.
Regarding “pressure”, “MPa” represents “absolute pressure”, and “MPaG” represents “gauge pressure”.
「圧力」について、「MPa」は「絶対圧」を、「MPaG」は「ゲージ圧」を表す。 The “Hansen solubility parameter of a compound (hereinafter also referred to as“ HSP ”)” is composed of a dispersion term, a polar term and a hydrogen bond term. HSP is a literature value or a value estimated by computer software (Hansen Solubility Parameters in Practice (HSPiP) version 4) from the chemical structure of a compound. The HSP of a mixture containing two or more compounds is calculated as a vector sum of values obtained by multiplying the HSP of each compound by the volume ratio of each compound to the entire mixture.
Regarding “pressure”, “MPa” represents “absolute pressure”, and “MPaG” represents “gauge pressure”.
(本発明の製造方法が適用可能な反応)
本発明の製造方法が適用される反応は、具体的には、下記反応式(1)に示す反応である。式(1)中、出発物質(原料)である上記HFCまたはHCFCは式(A)で示され、HFO、PFO、HCFOまたはCFOである目的生成物は式(B)で示される。式(C)は塩化水素またはフッ化水素である。 (Reaction to which the production method of the present invention can be applied)
The reaction to which the production method of the present invention is applied is specifically a reaction shown in the following reaction formula (1). In the formula (1), the above-mentioned HFC or HCFC which is a starting material (raw material) is represented by the formula (A), and the target product which is HFO, PFO, HCFO or CFO is represented by the formula (B). Formula (C) is hydrogen chloride or hydrogen fluoride.
本発明の製造方法が適用される反応は、具体的には、下記反応式(1)に示す反応である。式(1)中、出発物質(原料)である上記HFCまたはHCFCは式(A)で示され、HFO、PFO、HCFOまたはCFOである目的生成物は式(B)で示される。式(C)は塩化水素またはフッ化水素である。 (Reaction to which the production method of the present invention can be applied)
The reaction to which the production method of the present invention is applied is specifically a reaction shown in the following reaction formula (1). In the formula (1), the above-mentioned HFC or HCFC which is a starting material (raw material) is represented by the formula (A), and the target product which is HFO, PFO, HCFO or CFO is represented by the formula (B). Formula (C) is hydrogen chloride or hydrogen fluoride.
ただし、式(1)中の記号は以下のとおりである。
X1、X2は、一方が水素原子であり、他方がフッ素原子または塩素原子である。
Y1、Y2は、それぞれ独立して、水素原子、フッ素原子または塩素原子である。
R1、R2は、それぞれ独立して、水素原子、フッ素原子、塩素原子または炭素原子数1~5の脂肪族飽和炭化水素基(ただし、水素原子の一部または全部が塩素原子またはフッ素原子で置換されてもよい。)であり、R1とR2の合計の炭素原子数は1~5である。
Y1、Y2、R1およびR2の少なくとも1つはフッ素原子である。 However, the symbols in formula (1) are as follows.
One of X 1 and X 2 is a hydrogen atom, and the other is a fluorine atom or a chlorine atom.
Y 1 and Y 2 are each independently a hydrogen atom, a fluorine atom or a chlorine atom.
R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms (however, part or all of the hydrogen atoms are chlorine atoms or fluorine atoms) And the total number of carbon atoms of R 1 and R 2 is 1-5.
At least one of Y 1 , Y 2 , R 1 and R 2 is a fluorine atom.
X1、X2は、一方が水素原子であり、他方がフッ素原子または塩素原子である。
Y1、Y2は、それぞれ独立して、水素原子、フッ素原子または塩素原子である。
R1、R2は、それぞれ独立して、水素原子、フッ素原子、塩素原子または炭素原子数1~5の脂肪族飽和炭化水素基(ただし、水素原子の一部または全部が塩素原子またはフッ素原子で置換されてもよい。)であり、R1とR2の合計の炭素原子数は1~5である。
Y1、Y2、R1およびR2の少なくとも1つはフッ素原子である。 However, the symbols in formula (1) are as follows.
One of X 1 and X 2 is a hydrogen atom, and the other is a fluorine atom or a chlorine atom.
Y 1 and Y 2 are each independently a hydrogen atom, a fluorine atom or a chlorine atom.
R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms (however, part or all of the hydrogen atoms are chlorine atoms or fluorine atoms) And the total number of carbon atoms of R 1 and R 2 is 1-5.
At least one of Y 1 , Y 2 , R 1 and R 2 is a fluorine atom.
従来から、化合物(A)を液相でアルカリ水溶液と接触させると、反応(1)に示すように化合物(A)から塩化水素またはフッ化水素が脱離して化合物(B)が得られることが知られている。
Conventionally, when compound (A) is brought into contact with an alkaline aqueous solution in the liquid phase, as shown in reaction (1), hydrogen chloride or hydrogen fluoride is eliminated from compound (A) to obtain compound (B). Are known.
この反応は、通常、温度および圧力が調整可能な密閉された反応器内で行われる。反応器内には、化合物(A)とアルカリ水溶液を含む少なくとも液相と、気相が存在し、反応(1)は該液相において、化合物(A)を主体とする有機相とアルカリ水溶液を主体とする水相の2相状態で行われる。従来から、生産性を向上させるために、撹拌条件や装置を工夫して2相の接触を効率よく行う、相間移動触媒を用いて反応の促進を図る等が行われているが、反応速度を上げて、生産効率を高めることは容易でなかった。
This reaction is usually carried out in a closed reactor with adjustable temperature and pressure. In the reactor, there exists at least a liquid phase containing the compound (A) and an aqueous alkali solution, and a gas phase. In the liquid phase, the reaction (1) comprises an organic phase mainly composed of the compound (A) and an aqueous alkali solution. It is carried out in the two-phase state of the main water phase. Conventionally, in order to improve the productivity, the two-phase contact is efficiently performed by devising the stirring conditions and equipment, and the reaction is promoted by using a phase transfer catalyst. It has not been easy to increase production efficiency.
本発明者は、上記製造方法において、反応器内で反応(1)が進行し、化合物(A)から化合物(B)が生成するのに伴い、液相内の化合物(A)の濃度が減少して、反応速度が減少することを確認した。そして、反応器内の温度および圧力を、化合物(A)の蒸気圧曲線より上であり、かつ化合物(B)の蒸気圧曲線より下となる条件に調整することで、反応(1)の反応速度の減少を抑制し、より効率的に化合物(B)が製造できることを見出し、本発明を完成させるに至った。
In the above production method, the inventor reduced the concentration of the compound (A) in the liquid phase as the reaction (1) progressed in the reactor and the compound (B) was produced from the compound (A). It was confirmed that the reaction rate decreased. Then, by adjusting the temperature and pressure in the reactor so as to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B), the reaction of the reaction (1) It was found that the compound (B) can be produced more efficiently by suppressing the decrease in speed, and the present invention was completed.
本発明が適用される反応(1)において、化合物(A)と化合物(B)の分子量の関係は、化合物(A)からHClまたはHFが除かれた分だけ、化合物(B)は化合物(A)より分子量が小さい。それにより、通常、化合物(B)は化合物(A)より蒸気圧が高く沸点が低い。したがって、反応器内の温度および圧力を、化合物(A)の蒸気圧曲線より上であり、かつ化合物(B)の蒸気圧曲線より下となる条件に調整することで、液相内の化合物(A)の濃度の減少を抑制して、反応速度の減少が抑えられる。
以下、本発明の製造方法における「反応器内の温度および圧力を、化合物(A)の蒸気圧曲線より上であり、かつ化合物(B)の蒸気圧曲線より下となる条件に調整する」要件を、要件(II)という。 In the reaction (1) to which the present invention is applied, the relationship between the molecular weights of the compound (A) and the compound (B) is that the compound (B) is converted into the compound (A) by the amount of HCl or HF removed from the compound (A). ) Smaller molecular weight. Thereby, normally, the compound (B) has a higher vapor pressure and a lower boiling point than the compound (A). Therefore, by adjusting the temperature and pressure in the reactor so as to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B), the compound ( The decrease in the reaction rate is suppressed by suppressing the decrease in the concentration of A).
Hereinafter, in the production method of the present invention, “the temperature and pressure in the reactor are adjusted to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B)” Is referred to as requirement (II).
以下、本発明の製造方法における「反応器内の温度および圧力を、化合物(A)の蒸気圧曲線より上であり、かつ化合物(B)の蒸気圧曲線より下となる条件に調整する」要件を、要件(II)という。 In the reaction (1) to which the present invention is applied, the relationship between the molecular weights of the compound (A) and the compound (B) is that the compound (B) is converted into the compound (A) by the amount of HCl or HF removed from the compound (A). ) Smaller molecular weight. Thereby, normally, the compound (B) has a higher vapor pressure and a lower boiling point than the compound (A). Therefore, by adjusting the temperature and pressure in the reactor so as to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B), the compound ( The decrease in the reaction rate is suppressed by suppressing the decrease in the concentration of A).
Hereinafter, in the production method of the present invention, “the temperature and pressure in the reactor are adjusted to be above the vapor pressure curve of the compound (A) and below the vapor pressure curve of the compound (B)” Is referred to as requirement (II).
本発明の製造方法においては、要件(II)を満たすことで、反応器内の液相中の化合物(A)の質量[g]をL(A)とし、化合物(B)の質量[g]をL(B)とし、気相中の化合物(A)の質量[g]をV(A)とし、化合物(B)の質量[g]をV(B)とした場合に下記式(III)が成り立つ。
(V(B)/V(A))/(L(B)/L(A))>1 (III) In the production method of the present invention, by satisfying the requirement (II), the mass [g] of the compound (A) in the liquid phase in the reactor is defined as L (A), and the mass [g] of the compound (B). Is L (B) , the mass [g] of the compound (A) in the gas phase is V (A), and the mass [g] of the compound (B) is V (B) , the following formula (III) Holds.
(V (B) / V (A) ) / (L (B) / L (A) )> 1 (III)
(V(B)/V(A))/(L(B)/L(A))>1 (III) In the production method of the present invention, by satisfying the requirement (II), the mass [g] of the compound (A) in the liquid phase in the reactor is defined as L (A), and the mass [g] of the compound (B). Is L (B) , the mass [g] of the compound (A) in the gas phase is V (A), and the mass [g] of the compound (B) is V (B) , the following formula (III) Holds.
(V (B) / V (A) ) / (L (B) / L (A) )> 1 (III)
本発明において、式(III)が成立する条件で反応(1)が行われると、反応速度の低下が抑制される。式(III)の関係は、反応の開始から終了まで維持されるのが好ましい。式(III)の左辺に示される、(V(B)/V(A))と(L(B)/L(A))の比の値は、大きい方が好ましく、例えば、1.5以上が好ましく、2.0以上がより好ましい。上記の比の値は大きい方が好ましく、その上限は、特に制限されない。
In the present invention, when the reaction (1) is carried out under the condition that the formula (III) is established, a decrease in the reaction rate is suppressed. The relationship of formula (III) is preferably maintained from the start to the end of the reaction. The ratio value of (V (B) / V (A) ) and (L (B) / L (A) ) shown on the left side of the formula (III) is preferably larger, for example, 1.5 or more Is preferable, and 2.0 or more is more preferable. A larger value of the ratio is preferable, and the upper limit is not particularly limited.
本発明の製造方法においては、少なくとも上記要件(II)を満たす限り、反応器内温度および圧力は変化してもよいが、好ましくは要件(II)を満たす範囲内で、温度および圧力が一定に保持されることが好ましい。具体的には、反応器内の圧力の調整は、所定量の気相を反応器外に排出することで行うのが好ましい。反応器内の圧力を一定に保つためには、気相の反応器外への排出は連続的に行うことが好ましい。具体的な、温度、圧力は、以下に説明する本発明の製造方法が適用可能な反応(1)における、化合物(A)および化合物(B)の種類による。
In the production method of the present invention, the temperature and pressure in the reactor may vary as long as at least the above requirement (II) is satisfied, but preferably the temperature and pressure are kept constant within the range satisfying the requirement (II). It is preferred that it be retained. Specifically, the pressure in the reactor is preferably adjusted by discharging a predetermined amount of the gas phase outside the reactor. In order to keep the pressure in the reactor constant, it is preferable to continuously discharge the gas phase out of the reactor. Specific temperature and pressure depend on the types of the compound (A) and the compound (B) in the reaction (1) to which the production method of the present invention described below can be applied.
本発明における反応は、バッチ式で行ってもよいし、半連続式、連続流通式で行ってもよい。本発明の製造方法において、反応中に反応器から気相を排出させない場合は、反応終了後、反応器内の気相および液相から、通常の方法で化合物(B)を分離回収する。反応中に反応器の気相を反応器から排出させる場合は、排出された気相から化合物(B)を分離回収するとともに、反応終了後、反応器内の気相および液相から、通常の方法で化合物(B)を分離回収する。
The reaction in the present invention may be performed by a batch method, a semi-continuous method, or a continuous flow method. In the production method of the present invention, when the gas phase is not discharged from the reactor during the reaction, the compound (B) is separated and recovered from the gas phase and liquid phase in the reactor by a usual method after the reaction is completed. When the gas phase of the reactor is discharged from the reactor during the reaction, the compound (B) is separated and recovered from the discharged gas phase, and after completion of the reaction, from the gas phase and liquid phase in the reactor, The compound (B) is separated and recovered by the method.
本発明の製造方法において、反応終了後に反応液(液相)から化合物(B)を回収する場合、反応液を放置して、有機相と水相に分離させる。有機相中には、目的生成物である化合物(B)以外に、未反応の化合物(A)や副生物等が含まれうる。これらを含む有機相中から化合物(B)を回収する際には、一般的な蒸留等による分離精製方法を採用するのが好ましい。
In the production method of the present invention, when the compound (B) is recovered from the reaction solution (liquid phase) after completion of the reaction, the reaction solution is left to separate into an organic phase and an aqueous phase. In the organic phase, an unreacted compound (A), a by-product, and the like can be contained in addition to the target product compound (B). When recovering the compound (B) from the organic phase containing these, it is preferable to employ a separation and purification method such as general distillation.
なお、反応液中に未反応の化合物(A)が残っている場合、蒸留によって化合物(A)を濃縮し、本発明の原料としてリサイクルすることも可能である。また、気相から化合物(A)が回収される場合があるが、その場合についても、本発明の原料としてリサイクルすることも可能である。
一方、上記有機相と分離した水相は、これだけ取り出して再度適当な濃度となるように塩基を加えれば、再利用が可能である。 In addition, when the unreacted compound (A) remains in the reaction solution, the compound (A) can be concentrated by distillation and recycled as the raw material of the present invention. In some cases, the compound (A) may be recovered from the gas phase, and in this case as well, it can be recycled as the raw material of the present invention.
On the other hand, the aqueous phase separated from the organic phase can be reused by taking out only this amount and adding a base so as to obtain an appropriate concentration again.
一方、上記有機相と分離した水相は、これだけ取り出して再度適当な濃度となるように塩基を加えれば、再利用が可能である。 In addition, when the unreacted compound (A) remains in the reaction solution, the compound (A) can be concentrated by distillation and recycled as the raw material of the present invention. In some cases, the compound (A) may be recovered from the gas phase, and in this case as well, it can be recycled as the raw material of the present invention.
On the other hand, the aqueous phase separated from the organic phase can be reused by taking out only this amount and adding a base so as to obtain an appropriate concentration again.
本発明の製造方法により得られる化合物(B)を上記のように分離精製して回収することで、化合物(B)を高純度に含有する精製化合物(B)が得られる。このようにして得られる精製化合物(B)に、HFやHCl等の酸分や水、酸素等の不純物が含まれると、その使用に際して設備が腐食する、化合物(B)の安定性が低下する等のおそれがある。したがって、従来公知の方法で、これら不純物を腐食や安定性に関し問題がない程度まで除去することが好ましい。
The purified compound (B) containing the compound (B) with high purity can be obtained by separating and purifying the compound (B) obtained by the production method of the present invention as described above. If the purified compound (B) thus obtained contains an acid content such as HF or HCl, or an impurity such as water or oxygen, the equipment will corrode during its use, and the stability of the compound (B) will decrease. There is a risk of. Therefore, it is preferable to remove these impurities by a conventionally known method to such an extent that there is no problem with corrosion and stability.
(本発明の製造方法が適用可能な反応)
本発明の製造方法が適用可能な反応の具体例を以下に説明する。炭素原子数3の場合の例として、以下の式(1-1)~式(12-2)、式(15-1)、式(15-2)の反応に示される、フルオロプロペンの製造例が挙げられる。炭素原子数4の場合の例として、以下の式(13-1)および式(13-2)の反応に示される、フルオロブテンの製造例が挙げられる。炭素原子数5の場合の例として、以下の式(14-1)および式(14-2)の反応に示される、フルオロペンテンの製造例が挙げられる。 (Reaction to which the production method of the present invention can be applied)
Specific examples of reactions to which the production method of the present invention can be applied will be described below. As an example in the case of 3 carbon atoms, a production example of fluoropropene shown in the reactions of the following formulas (1-1) to (12-2), (15-1) and (15-2) Is mentioned. As an example in the case of 4 carbon atoms, there can be mentioned a production example of fluorobutene shown in the following reactions of the formulas (13-1) and (13-2). As an example in the case of 5 carbon atoms, there can be mentioned a production example of fluoropentene shown in the following reactions of the formulas (14-1) and (14-2).
本発明の製造方法が適用可能な反応の具体例を以下に説明する。炭素原子数3の場合の例として、以下の式(1-1)~式(12-2)、式(15-1)、式(15-2)の反応に示される、フルオロプロペンの製造例が挙げられる。炭素原子数4の場合の例として、以下の式(13-1)および式(13-2)の反応に示される、フルオロブテンの製造例が挙げられる。炭素原子数5の場合の例として、以下の式(14-1)および式(14-2)の反応に示される、フルオロペンテンの製造例が挙げられる。 (Reaction to which the production method of the present invention can be applied)
Specific examples of reactions to which the production method of the present invention can be applied will be described below. As an example in the case of 3 carbon atoms, a production example of fluoropropene shown in the reactions of the following formulas (1-1) to (12-2), (15-1) and (15-2) Is mentioned. As an example in the case of 4 carbon atoms, there can be mentioned a production example of fluorobutene shown in the following reactions of the formulas (13-1) and (13-2). As an example in the case of 5 carbon atoms, there can be mentioned a production example of fluoropentene shown in the following reactions of the formulas (14-1) and (14-2).
式(1-1)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)および/または1,1-ジクロロ-1,2,3,3,3-ペンタフルオロプロパン(HCFC-225ea)から脱HFにより1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)を得る反応式である。式(1-2)は、2,3,3-トリクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-224ba)および/または1,1,1-トリクロロ-2,3,3,3-テトラフルオロプロパン(HCFC-224eb)から脱HClによりCFO-1214yaを得る反応式である。
Formula (1-1) is a compound represented by 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and / or 1,1-dichloro-1,2,3,3,3 A reaction formula for obtaining 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya) from pentafluoropropane (HCFC-225ea) by deHF. Formula (1-2) is 2,3,3-trichloro-1,1,1,2-tetrafluoropropane (HCFC-224ba) and / or 1,1,1-trichloro-2,3,3,3 A reaction formula for obtaining CFO-1214ya from tetrafluoropropane (HCFC-224eb) by deHCl.
式(2-1)は、1,1,1,2,2,3,3-ヘプタフルオロプロパン(HFC-227ca)および/または1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)から脱HFによりヘキサフルオロプロペン(PFO-1216)を得る反応式である。式(2-2)は、2-クロロ-1,1,1,2,3,3-ヘキサフルオロプロパン(HCFC-226ba)および/または1-クロロ-1,1,2,3,3,3-ヘキサフルオロプロパン(HCFC-226ea)から脱HClによりPFO-1216を得る反応式である。
Formula (2-1) represents 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and / or 1,1,1,2,3,3,3-heptafluoropropane. This is a reaction formula for obtaining hexafluoropropene (PFO-1216) from (HFC-227ea) by deHF. Formula (2-2) is 2-chloro-1,1,1,2,3,3-hexafluoropropane (HCFC-226ba) and / or 1-chloro-1,1,2,3,3,3 A reaction formula for obtaining PFO-1216 from hexafluoropropane (HCFC-226ea) by deHCl.
式(3-1)は、3-クロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-235cb)および/または3-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235ea)から脱HFにより(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))および/または(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))を得る反応式である。式(3-2)は、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)および/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234ea)から脱HClによりHCFO-1224yd(Z)および/またはHCFO-1224yd(E)を得る反応式である。
Formula (3-1) represents 3-chloro-1,1,1,2,2-pentafluoropropane (HCFC-235cb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane By deHF from (HCFC-235ea) (Z) -1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd (Z)) and / or (E) -1-chloro-2,3 , 3,3-tetrafluoropropene (HCFO-1224yd (E)). Formula (3-2) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane This is a reaction formula for obtaining HCFO-1224yd (Z) and / or HCFO-1224yd (E) from (HCFC-234ea) by removing HCl.
式(4-1)は、2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または2-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244db)から脱HFにより2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)を得る反応式である。式(4-2)は、2,2-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243xb)および/または2,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db)から脱HClによりHCFO-1233xfを得る反応式である。
Formula (4-1) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db). ) To give 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) by deHF. Formula (4-2) is a compound represented by 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243xb) and / or 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db). Is a reaction formula for obtaining HCFO-1233xf from HCl by dehydrochlorination.
式(5-1)は、3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca)および/または1-クロロ-1,2,3,3-テトラフルオロプロパン(HCFC-244ea)から脱HFにより(Z)-1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd(Z))および/または(E)-1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd(E))を得る反応式である。式(5-2)は、2,3-ジクロロ-1,1,2-トリフルオロプロパン(HCFC-243ba)および/または1,1-ジクロロ-2,3,3-トリフルオロプロパン(HCFC-243eb)から脱HClによりHCFO-1233yd(Z)および/またはHCFO-1233yd(E)を得る反応式である。
Formula (5-1) is a compound represented by the following formula: 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) and / or 1-chloro-1,2,3,3-tetrafluoropropane (HCFC-244ea) ) To (Z) -1-chloro-2,3,3-trifluoropropene (HCFO-1233yd (Z)) and / or (E) -1-chloro-2,3,3-trifluoropropene This is a reaction formula for obtaining (HCFO-1233yd (E)). Formula (5-2) is a compound represented by 2,3-dichloro-1,1,2-trifluoropropane (HCFC-243ba) and / or 1,1-dichloro-2,3,3-trifluoropropane (HCFC-243eb). HCHC-1233yd (Z) and / or HCFO-1233yd (E) by dehydrochlorination from HCl.
式(6-1)は、3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)および/または3-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244fa)から脱HFにより(Z)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))および/または(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))を得る反応式である。式(6-2)は、2,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db)および/または3,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243fa)から脱HClによりHCFO-1233zd(Z)および/またはHCFO-1233zd(E)を得る反応式である。
Formula (6-1) is a compound represented by the following formula: 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa). ) To (Z) -1-chloro-3,3,3-trifluoropropene (HCFO-1233zd (Z)) and / or (E) -1-chloro-3,3,3-trifluoropropene This is a reaction formula to obtain (HCFO-1233zd (E)). Formula (6-2) is a compound represented by 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db) and / or 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa). HCHC-1233zd (Z) and / or HCFO-1233zd (E) by dehydrochlorination from HCl.
式(7-1)は、1,1,1,2,2-ペンタフルオロプロパン(HFC-245cb)および/または1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)から脱HFにより2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を得る反応式である。式(7-2)は、2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)から脱HClによりHFO-1234yfを得る反応式である。
Formula (7-1) is obtained by removing HF from 1,1,1,2,2-pentafluoropropane (HFC-245cb) and / or 1,1,1,2,3-pentafluoropropane (HFC-245eb). Is a reaction formula for obtaining 2,3,3,3-tetrafluoropropene (HFO-1234yf). Formula (7-2) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb). ) From HCI-1234yf by deHCl.
式(8-1)は、1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)および/または1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)から脱HFにより(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))および/または(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))を得る反応式である。式(8-2)は、2-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244db)および/または3-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244fa)から脱HClによりHFO-1234ze(Z)および/またはHFO-1234ze(E)を得る反応式である。
Formula (8-1) is obtained by removing HF from 1,1,1,2,3-pentafluoropropane (HFC-245eb) and / or 1,1,1,3,3-pentafluoropropane (HFC-245fa). (Z) -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)) and / or (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)) Is a reaction formula to obtain Formula (8-2) is a compound represented by 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa). ) To obtain HFO-1234ze (Z) and / or HFO-1234ze (E) by deHCl.
式(9-1)は、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)および/または2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン(HCFC-234da)から脱HFにより(Z)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(Z))および/または(E)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(E))を得る反応式である。式(9-2)は、2,2,3-トリクロロ-1,1,1-トリフルオロプロパン(HCFC-233ab)および/または2,3,3-トリクロロ-1,1,1-トリフルオロプロパン(HCFC-233da)から脱HClによりHCFO-1223xd(Z)および/またはHCFO-1223xd(E)を得る反応式である。
Formula (9-1) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 2,3-dichloro-1,1,1,3-tetrafluoropropane (HC) -234da) to (Z) -1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)) and / or (E) -1,2-dichloro-3 , 3,3-trifluoropropene (HCFO-1223xd (E)). Formula (9-2) represents 2,2,3-trichloro-1,1,1-trifluoropropane (HCFC-233ab) and / or 2,3,3-trichloro-1,1,1-trifluoropropane This is a reaction formula for obtaining HCFO-1223xd (Z) and / or HCFO-1223xd (E) from (HCFC-233da) by de-HCl.
式(10-1)は、1,1,1,2,2,3-ヘキサフルオロプロパン(HFC-236cb)および/または1,1,1,2,3,3-ヘキサフルオロプロパン(HFC-236eb)から脱HFにより(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))および/または(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))を得る反応式である。式(10-2)は、2-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235bb)および/または3-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235ea)から脱HClによりHFO-1225ye(Z)および/またはHFO-1225ye(E)を得る反応式である。
Formula (10-1) is represented by 1,1,1,2,2,3-hexafluoropropane (HFC-236cb) and / or 1,1,1,2,3,3-hexafluoropropane (HFC-236eb). ) To (Z) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)) and / or (E) -1,2,3,3,3-pentafluoropropene This is a reaction formula to obtain (HFO-1225ye (E)). Formula (10-2) is 2-chloro-1,1,1,2,3-pentafluoropropane (HCFC-235bb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane This is a reaction formula for obtaining HFO-1225ye (Z) and / or HFO-1225ye (E) by removing HCl from (HCFC-235ea).
式(11-1)は、1,1,1,2-テトラフルオロプロパン(HFC-254eb)および/または1,1,1,3-テトラフルオロプロパン(HFC-254fb)から脱HFにより3,3,3-トリフルオロプロペン(HFO-1243zf)を得る反応式である。式(11-2)は、2-クロロ-1,1,1-トリフルオロプロパン(HCFC-253db)および/または3-クロロ-1,1,1-トリフルオロプロパン(HCFC-244eb)から脱HClによりHFO-1243zfを得る反応式である。
Formula (11-1) can be obtained by removing HF from 1,1,1,2-tetrafluoropropane (HFC-254eb) and / or 1,1,1,3-tetrafluoropropane (HFC-254fb) to form 3,3 , 3-trifluoropropene (HFO-1243zf) is obtained. Formula (11-2) is obtained by removing HCl from 2-chloro-1,1,1-trifluoropropane (HCFC-253db) and / or 3-chloro-1,1,1-trifluoropropane (HCFC-244eb). Is a reaction formula for obtaining HFO-1243zf.
式(12-1)は、1,1,2-トリフルオロプロパン(HFC-263eb)および/または1,1,3-トリフルオロプロパン(HFC-263fa)から脱HFにより3,3-ジフルオロプロペン(HFO-1252zf)を得る反応式である。式(12-2)は、2-クロロ-1,1-ジフルオロプロパン(HCFC-262db)および/または3-クロロ-1,1-ジフルオロプロパン(HCFC-262fa)から脱HClによりHFO-1252zfを得る反応式である。
Formula (12-1) is obtained by removing 3,1,3-difluoropropene (HFC-263eb) and / or 1,1,3-trifluoropropane (HFC-263fa) by deHF. This is a reaction formula to obtain HFO-1252zf). Formula (12-2) yields HFO-1252zf from 2-chloro-1,1-difluoropropane (HCFC-262db) and / or 3-chloro-1,1-difluoropropane (HCFC-262fa) by de-HCl It is a reaction formula.
式(13-1)は、1,1,1,2,4,4,4-ヘプタフルオロブタン(HFC-347mef)から脱HFにより(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))および/または(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))を得る反応式である。式(13-2)は、2-クロロ-1,1,1,4,4,4-ヘキサフルオロブタン(HCFC-346mdf)から脱HClによりHFO-1336mzz(Z)またはHFO-1336mzz(E)を得る反応式である。
Formula (13-1) is obtained by removing HF from 1,1,1,2,4,4,4-heptafluorobutane (HFC-347mef) and (Z) -1,1,1,4,4,4- Reaction to obtain hexafluoro-2-butene (HFO-1336mzz (Z)) and / or (E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)) It is a formula. Formula (13-2) is obtained by removing HFO-1336mzz (Z) or HFO-1336mzz (E) from 2-chloro-1,1,1,4,4,4-hexafluorobutane (HCFC-346mdf) by removing HCl. It is the reaction formula to be obtained.
式(14-1)は、5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(HCFC-448occc)および/または5-クロロ-1,1,2,2,3,3,4,5-オクタフルオロペンタン(HCFC-448pcce)から脱HFにより(Z)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(Z))および/または(E)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(E))を得る反応式である。式(14-2)は、4,5-ジクロロ-1,1,2,2,3,3,4-ヘプタフルオロペンタン(HCFC-447obcc)および/または5,5-ジクロロ-1,1,2,2,3,3,4-ヘプタフルオロペンタン(HCFC-447necc)から脱HClによりHCFO-1437dycc(Z)および/またはHCFO-1437dycc(E)を得る反応式である。
Formula (14-1) is a compound represented by the following formula: 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane (HCFC-448occc) and / or 5-chloro-1,1,2,2 (Z) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HC), 3,4,5-octafluoropentane (HCFC-448 pcce) by deHF Reaction formula to obtain HCFO-1437 dycc (Z)) and / or (E) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc (E)) It is. Formula (14-2) is a compound represented by 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane (HCFC-447 obscc) and / or 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane (HCFC-447necc) to remove HCFO-1437 dycc (Z) and / or HCFO-1437 dycc (E) by removing HCl.
式(15-1)は、3-クロロ-1,1,1,2,2,3-ヘキサフルオロプロパン(HCFC-226ca)および/または1-クロロ-1,1,2,3,3,3-ヘキサフルオロプロパン(HCFC-226ea)から脱HFにより(Z)-1-クロロ-1,2,3,3,3-ペンタフルオロプロペン(CFO-1215yb(Z))および/または(E)-1-クロロ-1,2,3,3,3-ペンタフルオロプロペン(CFO-1215yb(E))を得る反応式である。式(15-2)は、2,3-ジクロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-225ba)および/または1,1-ジクロロ-1,2,3,3,3-ペンタフルオロプロパン(HCFC-225eb)から脱HClによりCFO-1215yb(Z)および/またはCFO-1215yb(E)を得る反応式である。
Formula (15-1) is a compound represented by the following formula: 3-chloro-1,1,1,2,2,3-hexafluoropropane (HCFC-226ca) and / or 1-chloro-1,1,2,3,3,3 By deHF from hexafluoropropane (HCFC-226ea) (Z) -1-chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (Z)) and / or (E) -1 This is a reaction formula for obtaining -chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (E)). Formula (15-2) is a compound represented by 2,3-dichloro-1,1,1,2,3-pentafluoropropane (HCFC-225ba) and / or 1,1-dichloro-1,2,3,3,3. A reaction formula for obtaining CFO-1215yb (Z) and / or CFO-1215yb (E) from pentafluoropropane (HCFC-225eb) by deHCl.
上記各反応において、特に本発明の製造方法が好適に用いられる反応として、反応速度を向上させて反応を効率的に実施できる点から、モノクロロテトラフルオロプロパンから脱HClによりテトラフルオロプロペンを得る反応、ジクロロテトラフルオロプロパンから脱HClによりモノクロロテトラフルオロプロペンを得る反応が挙げられる。
In each of the above reactions, the reaction in which the production method of the present invention is suitably used is a reaction in which tetrafluoropropene is obtained from monochlorotetrafluoropropane by deHCl from the viewpoint that the reaction rate can be improved and the reaction can be carried out efficiently. A reaction for obtaining monochlorotetrafluoropropene from dichlorotetrafluoropropane by dehydrochlorination is mentioned.
モノクロロテトラフルオロプロパンから脱HClによりテトラフルオロプロペンを得る反応としては、式(7-2)の244bbおよび/または244ebから脱HClにより1234yfを得る反応、式(8-2)の244dbおよび/または244faから脱HClにより1234ze(Z)および/または1234ze(E)を得る反応が挙げられ、式(7-2)の244bbおよび/または244ebから脱HClにより1234yfを得る反応がより好適に挙げられる。
Examples of the reaction for obtaining tetrafluoropropene from monochlorotetrafluoropropane by removing HCl include 244bb and / or 244eb of formula (7-2) to obtain 1234yf by removing HCl, 244db and / or 244fa of formula (8-2) The reaction to obtain 1234ze (Z) and / or 1234ze (E) by dehydrochlorination from HC1, and the reaction to obtain 1234yf from 244bb and / or 244eb of formula (7-2) by deHCl is more preferred.
ジクロロテトラフルオロプロパンから脱HClによりモノクロロテトラフルオロプロペンを得る反応としては、式(3-2)の234bbおよび/または234eaから脱HClにより1224yd(Z)および/または1224yd(E)を得る反応が挙げられる。
Examples of the reaction for obtaining monochlorotetrafluoropropene from dichlorotetrafluoropropane by deHCl to obtain 1224yd (Z) and / or 1224yd (E) from 234bb and / or 234ea of formula (3-2) by deHCl. It is done.
なお、上記反応においては、特に原料に244bb等のCH3基を有する化合物が含まれ、該化合物のCH3基からHの脱離が必要とされる場合に、本発明による効果が大きい。したがって、244bbから脱HClにより1234yfを得る反応る反応において高い効果が期待できる。
In the above reaction, the effect of the present invention is great particularly when the raw material includes a compound having a CH 3 group such as 244bb and the elimination of H from the CH 3 group of the compound is required. Therefore, a high effect can be expected in the reaction of obtaining 1234yf from 244bb by deHCl.
本発明の製造方法に係る反応(1)において、化合物(A)は有機相として液相で、アルカリ水溶液と物理的に接触する、より具体的には、アルカリ水溶液中の塩基と接触することで、脱HFまたは脱HCl反応が生起し化合物(B)が生成する。
In the reaction (1) according to the production method of the present invention, the compound (A) is in a liquid phase as an organic phase and is in physical contact with an alkaline aqueous solution, more specifically, by contacting with a base in the alkaline aqueous solution. , DeHF or deHCl reaction occurs to produce compound (B).
化合物(A)の入手方法は特に制限されない。公知の方法で製造してもよく、市販品を用いてもよい。例えば、本発明が好ましく適用される(7-2)の反応における244bbおよび/または244ebは、例えば、254ebと塩素を反応させる塩素化反応により製造できる。また、(3-2)の反応における234bbおよび/または234eaは、例えば、上記254ebの塩素化反応において、得られる244bbおよび/または244ebをさらに塩素化することで製造できる。
The method for obtaining the compound (A) is not particularly limited. You may manufacture by a well-known method and may use a commercial item. For example, 244bb and / or 244eb in the reaction (7-2) to which the present invention is preferably applied can be produced, for example, by a chlorination reaction in which 254eb is reacted with chlorine. In addition, 234bb and / or 234ea in the reaction (3-2) can be produced, for example, by further chlorinating 244bb and / or 244eb obtained in the chlorination reaction of 254eb.
なお、本発明の製造方法に際して、化合物(A)は、化合物(A)と不純物を含む混合物の形で反応器内に導入されてもよい。混合物における不純物量は、本発明の製造方法の効果に影響を及ぼさない程度とする。具体的には、化合物(A)は、化合物(A)の製造時において副生する副生物や未反応原料と共に用いられてもよい。例えば、純度が85質量%以上、好ましくは90質量%以上、特に好ましくは95質量%以上の化合物(A)の組成物として、本発明の製造方法に用いることができる。
In the production method of the present invention, the compound (A) may be introduced into the reactor in the form of a mixture containing the compound (A) and impurities. The amount of impurities in the mixture is set so as not to affect the effect of the production method of the present invention. Specifically, the compound (A) may be used together with by-products and unreacted raw materials that are by-produced during the production of the compound (A). For example, the composition of the compound (A) having a purity of 85% by mass or more, preferably 90% by mass or more, particularly preferably 95% by mass or more can be used in the production method of the present invention.
本発明の製造方法に用いるアルカリ水溶液とは、塩基を水に溶解させた水溶液をいう。塩基は、上記反応(1)が実行可能な塩基であれば特に限定されない。塩基は、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種を含むことが好ましい。
The alkaline aqueous solution used in the production method of the present invention refers to an aqueous solution in which a base is dissolved in water. The base is not particularly limited as long as the above reaction (1) can be performed. The base preferably contains at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
塩基が金属水酸化物である場合、アルカリ土類金属水酸化物、アルカリ金属水酸化物などが挙げられる。アルカリ土類金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムが挙げられる。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられる。
When the base is a metal hydroxide, examples include alkaline earth metal hydroxides and alkali metal hydroxides. Examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
塩基が金属酸化物である場合、該金属酸化物を構成する金属としては、アルカリ金属元素、アルカリ土類金属元素、遷移金属元素、第12族金属元素、第13族金属元素が挙げられる。中でも、アルカリ金属元素、アルカリ土類金属元素、第6族金属元素、第8族金属元素、第10族金属元素、第12族金属元素、または第13族金属元素が好ましく、ナトリウム、カルシウム、クロム、鉄、亜鉛、またはアルミニウムがさらに好ましい。
When the base is a metal oxide, examples of the metal constituting the metal oxide include an alkali metal element, an alkaline earth metal element, a transition metal element, a Group 12 metal element, and a Group 13 metal element. Among them, alkali metal elements, alkaline earth metal elements, Group 6 metal elements, Group 8 metal elements, Group 10 metal elements, Group 12 metal elements, or Group 13 metal elements are preferable, and sodium, calcium, chromium More preferred are iron, zinc, or aluminum.
金属酸化物は、金属の1種を含む酸化物であってもよく、2種以上の金属の複合酸化物であってもよい。金属酸化物としては、反応時間および反応収率の点から、酸化ナトリウム、酸化カルシウム、酸化クロム(クロミア)、酸化アルミニウム(アルミナ)、酸化亜鉛等が好ましく、アルミナまたはクロミアがより好ましい。
The metal oxide may be an oxide containing one kind of metal or a composite oxide of two or more kinds of metals. As the metal oxide, sodium oxide, calcium oxide, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide and the like are preferable from the viewpoint of reaction time and reaction yield, and alumina or chromia is more preferable.
塩基が金属炭酸塩である場合、アルカリ土類金属炭酸塩、アルカリ金属炭酸塩などが挙げられる。アルカリ土類金属炭酸塩としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム等の金属の炭酸塩が挙げられる。アルカリ金属炭酸塩としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム等の金属の炭酸塩が挙げられる。
When the base is a metal carbonate, examples include alkaline earth metal carbonates and alkali metal carbonates. Examples of the alkaline earth metal carbonate include carbonates of metals such as beryllium, magnesium, calcium, strontium, barium, and radium. Examples of the alkali metal carbonate include metal carbonates such as lithium, sodium, potassium, rubidium, cesium, and francium.
本発明の製造方法に用いる塩基としては、反応時間および反応収率の点から、金属水酸化物が好ましく、水酸化カリウムおよび水酸化ナトリウムからなる群より選ばれる少なくとも1種が特に好ましい。金属水酸化物は、1種を単独に用いてもよく、2種以上を併用してもよい。
The base used in the production method of the present invention is preferably a metal hydroxide from the viewpoint of reaction time and reaction yield, and particularly preferably at least one selected from the group consisting of potassium hydroxide and sodium hydroxide. A metal hydroxide may be used individually by 1 type and may use 2 or more types together.
アルカリ水溶液における塩基の含有量は、反応速度の点から、アルカリ水溶液全量(質量)に対する塩基の質量の割合(単位%)が、0.5~48質量%となる量が好ましく、20~45質量%がより好ましく、30~40質量%がさらに好ましい。塩基量が上記範囲未満であると、十分な反応速度が得られないことがある。一方、塩基量が上記範囲を超えると、副生物の生成量が増え、目的物質(化合物(B))の選択率が減少する可能性がある。
The content of the base in the alkaline aqueous solution is preferably such that the ratio (unit%) of the mass of the base to the total amount (mass) of the alkaline aqueous solution is 0.5 to 48% by mass from the viewpoint of the reaction rate, and 20 to 45% by mass. % Is more preferable, and 30 to 40% by mass is further preferable. If the amount of base is less than the above range, a sufficient reaction rate may not be obtained. On the other hand, when the amount of the base exceeds the above range, the amount of by-products generated increases, and the selectivity for the target substance (compound (B)) may decrease.
本発明の製造方法に用いる塩基の使用量は、反応(1)の種類による。例えば、244bbおよび/または244ebから脱HClにより1234yfを得る反応においては、244bbおよび/または244ebの転化率および1234yfの選択率を向上させる観点から、244bbおよび/または244ebの1モルに対する塩基の量は、0.2~3.0モルが好ましく、0.5~2.5モルがより好ましい。
The amount of base used in the production method of the present invention depends on the type of reaction (1). For example, in the reaction of obtaining 1234yf from 244bb and / or 244eb by deHCl, the amount of base relative to 1 mol of 244bb and / or 244eb is from the viewpoint of improving the conversion of 244bb and / or 244eb and the selectivity of 1234yf. 0.2 to 3.0 mol is preferable, and 0.5 to 2.5 mol is more preferable.
また、例えば、234bbおよび/または234eaから脱HClにより1224yd(Z)および/または1224yd(E)を得る反応においては、234bbおよび/または234eaの転化率および1224yd(Z)および/または1224yd(E)の選択率を向上させる観点から、234bbおよび/または234eaの1モルに対する塩基の量は、0.2~3.0モルが好ましく、0.5~2.5モルがより好ましい。
Further, for example, in the reaction for obtaining 1224yd (Z) and / or 1224yd (E) from 234bb and / or 234ea by deHCl, the conversion rate of 234bb and / or 234ea and 1224yd (Z) and / or 1224yd (E) From the viewpoint of improving the selectivity, the amount of the base relative to 1 mol of 234bb and / or 234ea is preferably 0.2 to 3.0 mol, and more preferably 0.5 to 2.5 mol.
本発明の製造方法において、要件(II)を満たす条件内での、好ましい温度および圧力条件は、化合物(A)および化合物(B)の種類による。本発明の製造方法における、好ましい温度および圧力条件を、244bbから脱HClにより1234yfを得る反応、および234bbから脱HClにより1224ydを得る反応を例にして以下に説明する。
In the production method of the present invention, preferable temperature and pressure conditions within the conditions satisfying the requirement (II) depend on the types of the compound (A) and the compound (B). In the production method of the present invention, preferable temperature and pressure conditions are described below by taking, as an example, a reaction for obtaining 1234yf from 244bb by deHCl and a reaction for obtaining 1224yd from 234bb by deHCl.
図1に244bbと1234yfの蒸気圧曲線を示す。図1では、実線が244bbの蒸気圧曲線を、破線が1234yfの蒸気圧曲線を示す。各化合物において、蒸気圧曲線より下側の温度、圧力条件下では該化合物は気相であり、蒸気圧曲線より上側の温度、圧力条件下では該化合物は液相である。したがって、図1において、244bbの蒸気圧曲線と1234yfの蒸気圧曲線で囲まれる、温度、圧力領域では、44bbは液相であり、1234yfは気相であることがわかる。
FIG. 1 shows the vapor pressure curves of 244bb and 1234yf. In FIG. 1, the solid line shows a vapor pressure curve of 244bb, and the broken line shows a vapor pressure curve of 1234yf. In each compound, the compound is in a gas phase under temperature and pressure conditions below the vapor pressure curve, and the compound is in a liquid phase under temperature and pressure conditions above the vapor pressure curve. Therefore, in FIG. 1, it can be seen that 44bb is the liquid phase and 1234yf is the gas phase in the temperature and pressure regions surrounded by the vapor pressure curve of 244bb and the vapor pressure curve of 1234yf.
ここで、244bbから脱HClにより1234yfを得る反応においては、反応速度および反応率が向上し、副生成物を抑制しやすい観点から、反応温度は60~120℃が好ましく、70~115℃が好ましく、70~110℃がより好ましい。上記のとおり反応器内の圧力は、反応温度における244bbの蒸気圧以上、1234yfの蒸気圧以下に設定される。さらに、反応装置の設計上、圧力は2.0MPaG以下が好ましい。よって、これらの条件を満たす範囲で、反応を行うのが好ましい。
Here, in the reaction to obtain 1234yf from 244bb by deHCl, the reaction temperature is preferably 60 to 120 ° C, and preferably 70 to 115 ° C from the viewpoint of improving the reaction rate and reaction rate and easily suppressing by-products. 70 to 110 ° C. is more preferable. As described above, the pressure in the reactor is set to be equal to or higher than the vapor pressure of 244bb and equal to or lower than the vapor pressure of 1234yf at the reaction temperature. Furthermore, the pressure is preferably 2.0 MPaG or less in terms of the design of the reactor. Therefore, it is preferable to carry out the reaction within a range satisfying these conditions.
図2に234bbと1224yd(Z)および1224yd(E)の蒸気圧曲線を示す。図2では、実線が234bbの蒸気圧曲線を、破線が1224yd(Z)の蒸気圧曲線を、点線が1224yd(E)の蒸気圧曲線をそれぞれ示す。各化合物において、蒸気圧曲線より下側の温度、圧力条件下では該化合物は気相であり、蒸気圧曲線より上側の温度、圧力条件下では該化合物は液相である。したがって、図2において、234bbの蒸気圧曲線と1224yd(E)の蒸気圧曲線で囲まれる、温度、圧力領域では、234bbは液相であり、1224yd(Z)および1224yd(E)は気相であることがわかる。
FIG. 2 shows vapor pressure curves of 234bb, 1224yd (Z), and 1224yd (E). In FIG. 2, the solid line represents the vapor pressure curve of 234bb, the broken line represents the vapor pressure curve of 1224yd (Z), and the dotted line represents the vapor pressure curve of 1224yd (E). In each compound, the compound is in a gas phase under temperature and pressure conditions below the vapor pressure curve, and the compound is in a liquid phase under temperature and pressure conditions above the vapor pressure curve. Therefore, in FIG. 2, in the temperature and pressure regions surrounded by the vapor pressure curve of 234bb and the vapor pressure curve of 1224yd (E), 234bb is the liquid phase, and 1224yd (Z) and 1224yd (E) are in the gas phase. I know that there is.
ここで、234bbから脱HClにより1224ydを得る反応においては、反応速度および反応率が向上し、副生成物を抑制しやすい観点から、反応温度は10~90℃が好ましく、20~80℃がより好ましい。上記のとおり反応器内の圧力は、反応温度における234bbの蒸気圧以上、1224ydの蒸気圧以下に設定される。さらに、反応装置の設計上、圧力は0.5MPaG以下が好ましい。よって、これらの条件を満たす範囲で、反応を行うのが好ましい。
Here, in the reaction for obtaining 1224yd from 234bb by deHCl, the reaction temperature and reaction rate are improved, and the reaction temperature is preferably 10 to 90 ° C, more preferably 20 to 80 ° C, from the viewpoint of easily suppressing by-products. preferable. As described above, the pressure in the reactor is set to be equal to or higher than the vapor pressure of 234bb and equal to or lower than the vapor pressure of 1224yd at the reaction temperature. Furthermore, the pressure is preferably 0.5 MPaG or less in terms of the design of the reactor. Therefore, it is preferable to carry out the reaction within a range satisfying these conditions.
図1および図2を用いて、244bbから脱HClにより1234yfを得る反応、および234bbから脱HClにより1224ydを得る反応の2例について説明したが、その他の反応についても、これらと同様に、化合物(A)と化合物(B)の蒸気圧曲線および好ましい反応温度、反応圧力から、本発明の製造方法における、好ましい温度、圧力の範囲が設定できる。
1 and FIG. 2, two examples of the reaction of obtaining 1234yf from 244bb by deHCl and the reaction of obtaining 224bb from 234bb by deHCl have been described. However, in the other reactions as well, the compound ( From the vapor pressure curves of A) and compound (B) and preferred reaction temperatures and reaction pressures, preferred temperature and pressure ranges in the production method of the present invention can be set.
本発明の製造方法において、反応液は化合物(A)を主体とする有機相とアルカリ水溶液からなる水相で構成される。本発明の製造方法において、反応系中に反応をより促進する目的で、本発明の効果を損なわない他の物質を存在させてもよく、例えば、相間移動触媒を存在させるのが好ましい。なお、相間移動触媒は有機相中およびアルカリ水溶液中の両方に存在し、化合物(A)のアルカリ水溶液との接触による脱ハロゲン化反応を促進する。
In the production method of the present invention, the reaction solution is composed of an organic phase mainly composed of the compound (A) and an aqueous phase composed of an alkaline aqueous solution. In the production method of the present invention, for the purpose of further promoting the reaction in the reaction system, another substance that does not impair the effects of the present invention may be present. For example, it is preferable that a phase transfer catalyst is present. The phase transfer catalyst is present both in the organic phase and in the alkaline aqueous solution, and accelerates the dehalogenation reaction by contact of the compound (A) with the alkaline aqueous solution.
相間移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルなどが挙げられ、工業的入手容易さや価格、扱いやすさの点から第4級アンモニウム塩が好ましい。
Examples of the phase transfer catalyst include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc., and are quaternary from the viewpoint of industrial availability, price, and ease of handling. Ammonium salts are preferred.
4級アンモニウム塩として、具体的には、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)等が好ましい。なかでも、反応をより促進できる点から、テトラ-n-ブチルアンモニウムクロリド(TBAC)、またはテトラ-n-ブチルアンモニウムブロミド(TBAB)が好ましく、入手性の点からはテトラ-n-ブチルアンモニウムブロミド(TBAB)がより好ましく、反応性の点からはテトラ-n-ブチルアンモニウムクロリド(TBAC)がより好ましい。
Specifically, tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium bromide (TBAB), methyltri-n-octylammonium chloride (TOMAC) and the like are preferable as the quaternary ammonium salt. Of these, tetra-n-butylammonium chloride (TBAC) or tetra-n-butylammonium bromide (TBAB) is preferable from the viewpoint of further promoting the reaction, and tetra-n-butylammonium bromide (TBAB) (from the point of availability). TBAB) is more preferable, and tetra-n-butylammonium chloride (TBAC) is more preferable from the viewpoint of reactivity.
本発明の製造方法に相間移動触媒を用いる場合、その量は、化合物(A)の100質量部に対して、0.001~10質量部が好ましく、0.01~5質量部がより好ましく、0.01~3質量部がさらに好ましい。相間移動触媒の量が少なすぎると、十分な反応速度が得られないことがあり、多く用いても、使用量に応じた反応促進効果は得られず、コスト面で不利である。
When a phase transfer catalyst is used in the production method of the present invention, the amount thereof is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the compound (A). More preferably, 0.01 to 3 parts by mass. If the amount of the phase transfer catalyst is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount used cannot be obtained, which is disadvantageous in terms of cost.
本発明の製造方法において、反応液は、相間移動触媒とともに、化合物(A)を溶解し得る水溶性有機溶媒(以下、「水溶性有機溶媒(S)」という。)を含有してもよい。水溶性有機溶媒(S)は、水溶性であるとともに化合物(A)を溶解し得る。
In the production method of the present invention, the reaction solution may contain a water-soluble organic solvent capable of dissolving the compound (A) (hereinafter referred to as “water-soluble organic solvent (S)”) together with the phase transfer catalyst. The water-soluble organic solvent (S) is water-soluble and can dissolve the compound (A).
本明細書において、水溶性有機溶媒(S)における水溶性とは、25℃において、水溶性有機溶媒(S)と純水を任意の混合割合で混合した際に相分離や濁りを起こさずに均一に溶解する性質をいう。また、水溶性有機溶媒(S)が、化合物(A)を溶解し得るとは、25℃において、化合物(A)に対し、水溶性有機溶媒(S)が20質量%となる量で化合物(A)と水溶性有機溶媒(S)を混合した際に相分離や濁りを起こさずに均一に溶解する性質をいう。
In this specification, the water-solubility in the water-soluble organic solvent (S) means that the water-soluble organic solvent (S) and pure water are mixed at an arbitrary mixing ratio at 25 ° C. without causing phase separation or turbidity. A property that dissolves uniformly. The water-soluble organic solvent (S) can dissolve the compound (A) at 25 ° C. with respect to the compound (A) in such an amount that the water-soluble organic solvent (S) is 20% by mass. When A) and a water-soluble organic solvent (S) are mixed, they are dissolved uniformly without causing phase separation or turbidity.
水溶性有機溶媒(S)は、相間移動触媒と同様に有機相中およびアルカリ水溶液中の両方に存在し、相間移動触媒における化合物(A)の脱ハロゲン化反応を促進する作用をより高める機能を有する。
The water-soluble organic solvent (S) is present both in the organic phase and in the alkaline aqueous solution as in the phase transfer catalyst, and has a function of further enhancing the action of promoting the dehalogenation reaction of the compound (A) in the phase transfer catalyst. Have.
水溶性有機溶媒(S)としては、例えば、水溶性のアルコール、ケトン、エーテル、エステル等から化合物(A)の種類に応じて該化合物(A)を溶解し得る化合物が適宜選択されて用いられる。
As the water-soluble organic solvent (S), for example, a compound capable of dissolving the compound (A) from a water-soluble alcohol, ketone, ether, ester or the like is appropriately selected and used depending on the type of the compound (A). .
水溶性のアルコールとしては、例えば、メタノール、エタノール、プロパン-1-オール、ブタン-1-オール、プロパン-2-オール、ブタン-2-オール、2-メチルプロパン-2-オール、2-メチルブタン-2-オール等が、水溶性のケトンとしては、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン等が挙げられる。水溶性のエーテルとしては、テトラエチレングリコールジメチルエーテル(以下、「テトラグライム」ともいう。)、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、エチレンオキシド等の鎖状エーテル、テトラヒドロフラン、フラン、クラウンエーテル類等の環状エーテル等が、水溶性のエステルとしては、酢酸メチル、ギ酸メチル等が挙げられる。
Examples of the water-soluble alcohol include methanol, ethanol, propan-1-ol, butan-1-ol, propan-2-ol, butan-2-ol, 2-methylpropan-2-ol, and 2-methylbutane- Examples of water-soluble ketones such as 2-ol include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, and cyclohexanone. Examples of water-soluble ethers include tetraethylene glycol dimethyl ether (hereinafter also referred to as “tetraglyme”), chain ethers such as dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide, and cyclic ethers such as tetrahydrofuran, furan, and crown ethers. Examples of water-soluble esters include methyl acetate and methyl formate.
水溶性有機溶媒(S)は、水溶性に加えて、化合物(A)を溶解する性質を有する。水溶性有機溶媒(S)は、化合物(A)の脱ハロゲン化反応における相間移動触媒の作用をより高める観点から、ハンセン溶解度パラメータに基づき下記式(I)で示される、水溶性有機溶媒(S)と化合物(A)との、相互作用距離(Ra)が25.0以下であるのが好ましく、23.0以下がより好ましい。
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I) The water-soluble organic solvent (S) has a property of dissolving the compound (A) in addition to water solubility. The water-soluble organic solvent (S) is a water-soluble organic solvent (S) represented by the following formula (I) based on the Hansen solubility parameter from the viewpoint of further enhancing the action of the phase transfer catalyst in the dehalogenation reaction of the compound (A). ) And the compound (A), the interaction distance (Ra) is preferably 25.0 or less, more preferably 23.0 or less.
Ra = [4 × (δD 1 -δD 2) 2 + (δP 1 -δP 2) 2 + (δH 1 -δH 2) 2] 0.5 (I)
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I) The water-soluble organic solvent (S) has a property of dissolving the compound (A) in addition to water solubility. The water-soluble organic solvent (S) is a water-soluble organic solvent (S) represented by the following formula (I) based on the Hansen solubility parameter from the viewpoint of further enhancing the action of the phase transfer catalyst in the dehalogenation reaction of the compound (A). ) And the compound (A), the interaction distance (Ra) is preferably 25.0 or less, more preferably 23.0 or less.
Ra = [4 × (δD 1 -δD 2) 2 + (δP 1 -δP 2) 2 + (δH 1 -δH 2) 2] 0.5 (I)
式(I)中、δD1、δP1およびδH1は各々、水溶性有機溶媒(S)のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を、δD2、δP2およびδH2は各々、化合物(A)のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。
Each formula (I), δD 1, δP 1 and delta] H 1 is the Hansen solubility parameter of the water-soluble organic solvent (S), dispersion term, the polarity term and hydrogen bond, [delta] D 2, [delta] P 2 and delta] H 2 is Each represents a dispersion term, a polar term and a hydrogen bonding term in the Hansen solubility parameter of the compound (A), and the unit is (MPa) 1/2 .
具体的に、例えば、化合物(A)として244bb、244eb、234bb、234eaを用いた場合に、これらの化合物(A)に対して水溶性有機溶媒(S)として好ましい各化合物の相互作用距離(Ra)を表1に示す。
Specifically, for example, when 244bb, 244eb, 234bb, 234ea is used as the compound (A), the interaction distance (Ra) of each compound that is preferable as the water-soluble organic solvent (S) with respect to these compounds (A) ) Is shown in Table 1.
表1に示すように、メタノール、アセトン、テトラグライムおよびテトラヒドロフランは、244bb、244eb、234bb、234eaのいずれとも、相互作用距離(Ra)が25.0以下であり、これらの脱ハロゲン化反応に、水溶性有機溶媒(S)として好ましく用いることができる。
As shown in Table 1, methanol, acetone, tetraglyme, and tetrahydrofuran have an interaction distance (Ra) of 25.0 or less for all of 244bb, 244eb, 234bb, and 234ea. In these dehalogenation reactions, It can be preferably used as the water-soluble organic solvent (S).
なお、同様にして、相互作用距離(Ra)を指標として、表1に示す以外の化合物(A)と水溶性有機溶媒(S)の好ましい組み合わせが選択できる。
In the same manner, a preferred combination of the compound (A) and the water-soluble organic solvent (S) other than those shown in Table 1 can be selected using the interaction distance (Ra) as an index.
本発明の製造方法に用いる水溶性有機溶媒(S)の量は、化合物(A)の100質量部に対して、1~100質量部が好ましく、3~80質量部がより好ましく、5~60質量部がさらに好ましい。水溶性有機溶媒(S)の量が少なすぎると、十分な反応速度が得られないことがあり、多く用いても、使用量に応じた反応促進効果は得られず、コスト面および容積効率の面で不利である。
The amount of the water-soluble organic solvent (S) used in the production method of the present invention is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight with respect to 100 parts by weight of the compound (A). Part by mass is more preferable. If the amount of the water-soluble organic solvent (S) is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount of use cannot be obtained. It is disadvantageous in terms.
本発明の製造方法においては、工業的に目的のフルオロオレフィンを大量に生産する観点から、バッチ式、半連続式または連続式の反応器に撹拌翼を設置し、それを撹拌させることにより生成させることが好ましい。以下に本発明の製造方法が適用可能な反応装置の一例を図面を参照しながら説明する。図3に本発明のフルオロオレフィンの製造方法に使用される反応装置の一例の概略図を示す。
In the production method of the present invention, from the viewpoint of industrially producing a large amount of the desired fluoroolefin, a stirring blade is installed in a batch type, semi-continuous type or continuous type reactor, and it is generated by stirring it. It is preferable. Hereinafter, an example of a reaction apparatus to which the production method of the present invention can be applied will be described with reference to the drawings. FIG. 3 shows a schematic diagram of an example of a reactor used in the method for producing a fluoroolefin of the present invention.
なお、図3に示す反応装置は例示であって、本発明の実施形態に使用される反応装置はこのような構造のものに限定されない。必要に応じて、各部材の変形および削除、変更が可能であり、他の部材の追加も可能である。
Note that the reaction apparatus shown in FIG. 3 is an exemplification, and the reaction apparatus used in the embodiment of the present invention is not limited to such a structure. If necessary, each member can be deformed, deleted, and changed, and other members can be added.
反応装置100は、反応器本体1、蓋部2、撹拌翼を有する撹拌機7および熱電対8を有する反応器20を、ヒーター6を備えた恒温槽5内に設置した構成である。反応装置100は、恒温槽5の外部に化合物(A)を収容する化合物(A)収容槽3およびアルカリ水溶液を収容するアルカリ水溶液収容槽4を有し、各槽から供給ライン21を経て、反応器20内に所定量の化合物(A)およびアルカリ水溶液が、気相を構成する空間を残して、液相として供給される。
The reaction apparatus 100 has a configuration in which a reactor body 1, a lid 2, a stirrer 7 having a stirring blade, and a reactor 20 having a thermocouple 8 are installed in a thermostatic bath 5 provided with a heater 6. The reaction apparatus 100 includes a compound (A) storage tank 3 that stores the compound (A) outside the thermostatic chamber 5 and an alkaline aqueous solution storage tank 4 that stores an alkaline aqueous solution. A predetermined amount of the compound (A) and the aqueous alkali solution are supplied into the vessel 20 as a liquid phase leaving a space constituting a gas phase.
反応器20の内部は液相Lと気相Vからなり、反応器20内の温度および圧力を調整して、式(II)が成立する条件で反応(1)を行う。該条件では、反応(1)の進行に伴い反応器20内の圧力が上昇するため、これを抑制して反応器20内の圧力を所定の範囲内に保つために、反応器20内の気相Vの一部が排出ライン22を経て回収槽10に回収される。
The inside of the reactor 20 is composed of a liquid phase L and a gas phase V, and the reaction (1) is performed under the condition that formula (II) is established by adjusting the temperature and pressure in the reactor 20. Under the conditions, the pressure in the reactor 20 increases with the progress of the reaction (1). Therefore, in order to suppress this and keep the pressure in the reactor 20 within a predetermined range, A part of the phase V is recovered in the recovery tank 10 via the discharge line 22.
反応装置100では排出ライン22の途中に背圧弁9を設けた構成である。背圧弁9の使用により、反応器20内の圧力は一定に保たれ、さらに気相Vは連続的に反応器20から排出される。すなわち、反応装置100は、本発明の製造方法をより効果的に実施できる反応装置である。
The reactor 100 has a configuration in which a back pressure valve 9 is provided in the middle of the discharge line 22. By using the back pressure valve 9, the pressure in the reactor 20 is kept constant, and the gas phase V is continuously discharged from the reactor 20. That is, the reaction apparatus 100 is a reaction apparatus that can more effectively implement the production method of the present invention.
なお、反応装置100において、化合物(B)の回収を容易とするために、反応器20と背圧弁9の間に、反応器20から排出された気相中の化合物(A)を回収するための耐圧コンデンサ等を設けてもよい。これにより、回収槽10において化合物(B)の含有量が高められた組成物が回収できる。回収槽10に回収された気相Vは、例えばモレキュラーシーブス等を用いて化合物(B)以外の成分を除去してもよい。
In addition, in order to collect the compound (B) easily in the reaction apparatus 100, in order to collect the compound (A) in the gas phase discharged from the reactor 20 between the reactor 20 and the back pressure valve 9. A withstand voltage capacitor or the like may be provided. Thereby, the composition with which content of the compound (B) was raised in the collection tank 10 can be collect | recovered. The vapor phase V recovered in the recovery tank 10 may remove components other than the compound (B) using, for example, molecular sieves.
反応装置100を構成する構成部材の材質は、化合物(A)、アルカリ水溶液、ならびに化合物(B)を含む反応生成物、さらには、任意に用いられる相間移動触媒、水溶性有機溶媒(S)を含む反応液成分等に不活性で、耐蝕性の材質であれば特に制限されない。例えば、ガラス、鉄、ニッケル、および鉄等を主成分とするステンレス鋼等の合金などが挙げられる。
The material of the constituent members constituting the reaction apparatus 100 includes a compound (A), an aqueous alkaline solution, and a reaction product containing the compound (B), a phase transfer catalyst used arbitrarily, and a water-soluble organic solvent (S). The material is not particularly limited as long as it is inactive to the reaction solution components and the like and is a corrosion-resistant material. For example, glass, iron, nickel, an alloy such as stainless steel mainly containing iron, and the like can be given.
以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、例1、2、5、6が実施例であり、例3、4、7、8が比較例である。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. Examples 1, 2, 5, and 6 are examples, and examples 3, 4, 7, and 8 are comparative examples.
[ガスクロマトグラフィーの条件]
以下の各種化合物の製造において、得られた反応組成物の組成分析はガスクロマトグラフィー(GC)を用いて行った。カラムはDB-1301(商品名、アジレント・テクノロジー社製、長さ60m×内径250μm×厚み1μm)を用いた。 [Conditions for gas chromatography]
In the production of the following various compounds, the composition analysis of the obtained reaction composition was performed using gas chromatography (GC). DB-1301 (trade name, manufactured by Agilent Technologies, length 60 m × inner diameter 250 μm × thickness 1 μm) was used as the column.
以下の各種化合物の製造において、得られた反応組成物の組成分析はガスクロマトグラフィー(GC)を用いて行った。カラムはDB-1301(商品名、アジレント・テクノロジー社製、長さ60m×内径250μm×厚み1μm)を用いた。 [Conditions for gas chromatography]
In the production of the following various compounds, the composition analysis of the obtained reaction composition was performed using gas chromatography (GC). DB-1301 (trade name, manufactured by Agilent Technologies, length 60 m × inner diameter 250 μm × thickness 1 μm) was used as the column.
[244bbの製造例]
254ebを、次のとおり、塩素化して244bbおよび244ebを製造した。まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製オートクレーブ(内容積6.9リットル)を、20℃に冷却した。このオートクレーブ(以下、反応器と示す。)内に、四塩化炭素(CCl4)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを2分間導入し、すなわち、254ebの1モルに対して0.10モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.045MPaであった。 [Example of production of 244bb]
254eb was chlorinated to produce 244bb and 244eb as follows. First, a stainless steel autoclave (internal volume: 6.9 liters) fitted with a quartz tube and a jacket for transmitting light from the light source was cooled to 20 ° C. In this autoclave (hereinafter referred to as a reactor), 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254eb were put, and then visible from an LED lamp (LHT42N-GE39 manufactured by Mitsubishi Electric Corporation, output 40 W). While irradiating light, chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min. As the reaction progressed, heat of reaction was generated and the temperature in the reactor rose to 23.8 ° C. The flow rate chlorine gas was introduced for 2 minutes, that is, 0.10 mol of chlorine was introduced per 1 mol of 254eb, and light irradiation was continued until the temperature in the reactor became constant at 20 ° C. The pressure in the reactor was 0.045 MPa before chlorine supply, and the pressure after chlorine supply, that is, the reaction pressure was 0.045 MPa.
254ebを、次のとおり、塩素化して244bbおよび244ebを製造した。まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製オートクレーブ(内容積6.9リットル)を、20℃に冷却した。このオートクレーブ(以下、反応器と示す。)内に、四塩化炭素(CCl4)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、出力40W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを2分間導入し、すなわち、254ebの1モルに対して0.10モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.045MPaであった。 [Example of production of 244bb]
254eb was chlorinated to produce 244bb and 244eb as follows. First, a stainless steel autoclave (internal volume: 6.9 liters) fitted with a quartz tube and a jacket for transmitting light from the light source was cooled to 20 ° C. In this autoclave (hereinafter referred to as a reactor), 2336 g of carbon tetrachloride (CCl 4 ) and 103 g of 254eb were put, and then visible from an LED lamp (LHT42N-GE39 manufactured by Mitsubishi Electric Corporation, output 40 W). While irradiating light, chlorine gas was introduced into the reactor at a flow rate of 3.2 g / min. As the reaction progressed, heat of reaction was generated and the temperature in the reactor rose to 23.8 ° C. The flow rate chlorine gas was introduced for 2 minutes, that is, 0.10 mol of chlorine was introduced per 1 mol of 254eb, and light irradiation was continued until the temperature in the reactor became constant at 20 ° C. The pressure in the reactor was 0.045 MPa before chlorine supply, and the pressure after chlorine supply, that is, the reaction pressure was 0.045 MPa.
反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物を回収し、蒸留により244bbを得た。
After completion of the reaction, the obtained reaction solution was neutralized by mixing with a 20% by mass aqueous solution of potassium hydrogen carbonate, and then a liquid separation operation was performed. After standing, the reaction composition was recovered from the separated lower layer, and 244bb was obtained by distillation.
[例1]
図3に示すのと同様の反応装置を用いた。熱電対および撹拌翼を取り付けた0.1Lの反応器を恒温槽内に設置し、80℃に保った。この反応器(オートクレーブ、以下も同じ)に、25質量%NaOH水溶液を588.8g、上記で得られた244bbを277.0g(NaOHと244bbのモル比は、NaOH:244bb=2:1である。)、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)を8.3g加え、反応器を閉止した。 [Example 1]
A reactor similar to that shown in FIG. 3 was used. A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a constant temperature bath and kept at 80 ° C. In this reactor (autoclave, the same applies below), 588.8 g of 25% by weight NaOH aqueous solution, and 277.0 g of 244bb obtained above (the molar ratio of NaOH to 244bb is NaOH: 244bb = 2: 1). ), 8.3 g of tetra-n-butylammonium bromide (TBAB) as a phase transfer catalyst was added and the reactor was closed.
図3に示すのと同様の反応装置を用いた。熱電対および撹拌翼を取り付けた0.1Lの反応器を恒温槽内に設置し、80℃に保った。この反応器(オートクレーブ、以下も同じ)に、25質量%NaOH水溶液を588.8g、上記で得られた244bbを277.0g(NaOHと244bbのモル比は、NaOH:244bb=2:1である。)、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)を8.3g加え、反応器を閉止した。 [Example 1]
A reactor similar to that shown in FIG. 3 was used. A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a constant temperature bath and kept at 80 ° C. In this reactor (autoclave, the same applies below), 588.8 g of 25% by weight NaOH aqueous solution, and 277.0 g of 244bb obtained above (the molar ratio of NaOH to 244bb is NaOH: 244bb = 2: 1). ), 8.3 g of tetra-n-butylammonium bromide (TBAB) as a phase transfer catalyst was added and the reactor was closed.
600rpmで撹拌翼を回転させ、反応器内の圧力が0.8MPaGとなるように背圧弁を設定して、反応器から気相を排出させながら4時間反応を行った。反応器から排出された気相は回収槽に回収された。反応終了後に、恒温槽から反応器を取り出して氷水により0℃に冷却して反応を停止させ、反応組成物を回収した。反応器から回収した反応組成物および回収槽に回収された気相(反応組成物)のGC分析を行い、244bbの転化率、1234yfの選択率を求めた。244bbの転化率は34.3%であり、1234yfの収率は34.3%であり、選択率は100%であった。
The stirring blade was rotated at 600 rpm, the back pressure valve was set so that the pressure in the reactor was 0.8 MPaG, and the reaction was performed for 4 hours while discharging the gas phase from the reactor. The gas phase discharged from the reactor was recovered in a recovery tank. After completion of the reaction, the reactor was taken out from the thermostat and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. GC analysis of the reaction composition recovered from the reactor and the gas phase (reaction composition) recovered in the recovery tank was performed to obtain a conversion rate of 244bb and a selectivity of 1234yf. The conversion rate of 244bb was 34.3%, the yield of 1234yf was 34.3%, and the selectivity was 100%.
[例2]
例1において、反応時間を16時間に変えた以外は全て同様にして反応を実施した。その結果、244bbの転化率は62.7%であり、1234yfの収率は62.7%であり、選択率は100%であった。 [Example 2]
In Example 1, the reaction was carried out in the same manner except that the reaction time was changed to 16 hours. As a result, the conversion rate of 244bb was 62.7%, the yield of 1234yf was 62.7%, and the selectivity was 100%.
例1において、反応時間を16時間に変えた以外は全て同様にして反応を実施した。その結果、244bbの転化率は62.7%であり、1234yfの収率は62.7%であり、選択率は100%であった。 [Example 2]
In Example 1, the reaction was carried out in the same manner except that the reaction time was changed to 16 hours. As a result, the conversion rate of 244bb was 62.7%, the yield of 1234yf was 62.7%, and the selectivity was 100%.
[例3]
例1において、反応器から気相の排出を行わない以外は同様にして、4時間の244bbの脱HCl反応を行った。反応中の反応器内の圧力を特定したところ、2.1MPaGであり、図1の1234yfの蒸気圧曲線の上側の領域にあった。反応終了後、回収した反応組成物のGC分析を行い、244bbの転化率、1234yfの選択率を求めた。244bbの転化率は29.1%であり、1234yfの収率は29.1%であり、選択率は100%であった。 [Example 3]
In Example 1, a 244bb deHCl reaction for 4 hours was performed in the same manner except that the gas phase was not discharged from the reactor. When the pressure in the reactor during the reaction was specified, it was 2.1 MPaG, which was in the upper region of the vapor pressure curve of 1234yf in FIG. After completion of the reaction, the recovered reaction composition was subjected to GC analysis to obtain a conversion rate of 244bb and a selectivity of 1234yf. The conversion of 244bb was 29.1%, the yield of 1234yf was 29.1%, and the selectivity was 100%.
例1において、反応器から気相の排出を行わない以外は同様にして、4時間の244bbの脱HCl反応を行った。反応中の反応器内の圧力を特定したところ、2.1MPaGであり、図1の1234yfの蒸気圧曲線の上側の領域にあった。反応終了後、回収した反応組成物のGC分析を行い、244bbの転化率、1234yfの選択率を求めた。244bbの転化率は29.1%であり、1234yfの収率は29.1%であり、選択率は100%であった。 [Example 3]
In Example 1, a 244bb deHCl reaction for 4 hours was performed in the same manner except that the gas phase was not discharged from the reactor. When the pressure in the reactor during the reaction was specified, it was 2.1 MPaG, which was in the upper region of the vapor pressure curve of 1234yf in FIG. After completion of the reaction, the recovered reaction composition was subjected to GC analysis to obtain a conversion rate of 244bb and a selectivity of 1234yf. The conversion of 244bb was 29.1%, the yield of 1234yf was 29.1%, and the selectivity was 100%.
[例4]
例3において、反応時間を16時間に変えた以外は全て同様にして反応を実施した。その結果、244bbの転化率は51.3%であり、1234yfの収率は51.3%であり、選択率は100%であった。 [Example 4]
In Example 3, the reaction was carried out in the same manner except that the reaction time was changed to 16 hours. As a result, the conversion rate of 244bb was 51.3%, the yield of 1234yf was 51.3%, and the selectivity was 100%.
例3において、反応時間を16時間に変えた以外は全て同様にして反応を実施した。その結果、244bbの転化率は51.3%であり、1234yfの収率は51.3%であり、選択率は100%であった。 [Example 4]
In Example 3, the reaction was carried out in the same manner except that the reaction time was changed to 16 hours. As a result, the conversion rate of 244bb was 51.3%, the yield of 1234yf was 51.3%, and the selectivity was 100%.
[234bbの製造例]
1234yfを、次のとおり、塩素化して234bbを製造した。
まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製反応器(内容積2.3リットル)を、0℃に冷却した。この反応器内に、溶媒として1395gの四塩化炭素(CCl4)を入れた後、蛍光灯(東芝社製ネオコンパクトEFP12EL、出力12W)からの可視光を照射しながら、1234yfを毎時245gの流量で、塩素ガスを毎時152gの流量で、それぞれ反応器内に供給した。 [Production example of 234bb]
1234yf was chlorinated as follows to produce 234bb.
First, a stainless steel reactor (internal volume 2.3 liters) equipped with a quartz tube and a jacket that transmits light from the light source was cooled to 0 ° C. In this reactor, 1395 g of carbon tetrachloride (CCl 4 ) was added as a solvent, and then 1234yf was flowed at a flow rate of 245 g per hour while irradiating visible light from a fluorescent lamp (Neocompact EFP12EL manufactured by Toshiba Corporation, output 12 W). Then, chlorine gas was supplied into the reactor at a flow rate of 152 g per hour.
1234yfを、次のとおり、塩素化して234bbを製造した。
まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製反応器(内容積2.3リットル)を、0℃に冷却した。この反応器内に、溶媒として1395gの四塩化炭素(CCl4)を入れた後、蛍光灯(東芝社製ネオコンパクトEFP12EL、出力12W)からの可視光を照射しながら、1234yfを毎時245gの流量で、塩素ガスを毎時152gの流量で、それぞれ反応器内に供給した。 [Production example of 234bb]
1234yf was chlorinated as follows to produce 234bb.
First, a stainless steel reactor (internal volume 2.3 liters) equipped with a quartz tube and a jacket that transmits light from the light source was cooled to 0 ° C. In this reactor, 1395 g of carbon tetrachloride (CCl 4 ) was added as a solvent, and then 1234yf was flowed at a flow rate of 245 g per hour while irradiating visible light from a fluorescent lamp (Neocompact EFP12EL manufactured by Toshiba Corporation, output 12 W). Then, chlorine gas was supplied into the reactor at a flow rate of 152 g per hour.
反応の進行に伴って反応熱が生じるとともに、反応器内の温度は7.6℃に上昇し、反応器内の圧力は0.08MPaGに上昇した。上記流量で1234yfおよび塩素ガスをそれぞれ供給しながら1時間反応を続け、1234yfの245gおよび塩素の152gが供給されたことを確認した後、1234yfおよび塩素の供給を停止し、反応器内の圧力が常圧となるまで、光照射を継続した。反応終了後、得られた反応液を20質量%の炭酸水素カリウム水溶液で中和し、次いで分液操作を行った。静置後、分離した下層から1734gの生成物(1)を回収した。生成物(1)を通常の操作で蒸留して、純度99.8%の234bbを得た。
反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物を回収し、蒸留により234bbを得た。 As the reaction progressed, reaction heat was generated, the temperature in the reactor rose to 7.6 ° C., and the pressure in the reactor rose to 0.08 MPaG. The reaction was continued for 1 hour while supplying 1234yf and chlorine gas at the above flow rates. After confirming that 245g of 1234yf and 152g of chlorine were supplied, the supply of 1234yf and chlorine was stopped, and the pressure in the reactor was Light irradiation was continued until normal pressure was reached. After completion of the reaction, the obtained reaction solution was neutralized with a 20% by mass aqueous potassium hydrogen carbonate solution, and then a liquid separation operation was performed. After standing, 1734 g of product (1) was recovered from the separated lower layer. The product (1) was distilled by a normal operation to obtain 234bb with a purity of 99.8%.
After completion of the reaction, the obtained reaction solution was neutralized by mixing with a 20% by mass aqueous solution of potassium hydrogen carbonate, and then a liquid separation operation was performed. After standing, the reaction composition was recovered from the separated lower layer, and 234bb was obtained by distillation.
反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物を回収し、蒸留により234bbを得た。 As the reaction progressed, reaction heat was generated, the temperature in the reactor rose to 7.6 ° C., and the pressure in the reactor rose to 0.08 MPaG. The reaction was continued for 1 hour while supplying 1234yf and chlorine gas at the above flow rates. After confirming that 245g of 1234yf and 152g of chlorine were supplied, the supply of 1234yf and chlorine was stopped, and the pressure in the reactor was Light irradiation was continued until normal pressure was reached. After completion of the reaction, the obtained reaction solution was neutralized with a 20% by mass aqueous potassium hydrogen carbonate solution, and then a liquid separation operation was performed. After standing, 1734 g of product (1) was recovered from the separated lower layer. The product (1) was distilled by a normal operation to obtain 234bb with a purity of 99.8%.
After completion of the reaction, the obtained reaction solution was neutralized by mixing with a 20% by mass aqueous solution of potassium hydrogen carbonate, and then a liquid separation operation was performed. After standing, the reaction composition was recovered from the separated lower layer, and 234bb was obtained by distillation.
[例5]
図3に示すのと同様の反応装置を用いた。熱電対および撹拌翼を取り付けた0.1Lの反応器を恒温槽内に設置し、30℃に保った。この反応器に、20質量%NaOH水溶液を478.5g、上記で得られた234bbを276.6g(NaOHと234bbのモル比は、NaOH:234bb=2:1である。)、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)を1.4g加え、反応器を閉止した。 [Example 5]
A reactor similar to that shown in FIG. 3 was used. A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a constant temperature bath and kept at 30 ° C. In this reactor, 478.5 g of a 20% by mass NaOH aqueous solution, and 276.6 g of 234bb obtained above (the molar ratio of NaOH and 234bb is NaOH: 234bb = 2: 1) as a phase transfer catalyst. Of tetra-n-butylammonium bromide (TBAB) was added and the reactor was closed.
図3に示すのと同様の反応装置を用いた。熱電対および撹拌翼を取り付けた0.1Lの反応器を恒温槽内に設置し、30℃に保った。この反応器に、20質量%NaOH水溶液を478.5g、上記で得られた234bbを276.6g(NaOHと234bbのモル比は、NaOH:234bb=2:1である。)、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)を1.4g加え、反応器を閉止した。 [Example 5]
A reactor similar to that shown in FIG. 3 was used. A 0.1 L reactor equipped with a thermocouple and a stirring blade was placed in a constant temperature bath and kept at 30 ° C. In this reactor, 478.5 g of a 20% by mass NaOH aqueous solution, and 276.6 g of 234bb obtained above (the molar ratio of NaOH and 234bb is NaOH: 234bb = 2: 1) as a phase transfer catalyst. Of tetra-n-butylammonium bromide (TBAB) was added and the reactor was closed.
600rpmで撹拌翼を回転させ、反応器内の圧力が0MPaGとなるように背圧弁を設定して、反応器から気相を排出させながら1時間反応を行った。反応器から排出された気相は回収槽に回収された。反応終了後に、恒温槽から反応器を取り出して氷水により0℃に冷却して反応を停止させ、反応組成物を回収した。反応器から回収した反応組成物および回収槽に回収された気相(反応組成物)のGC分析を行い、234bbの転化率、1224ydの選択率を求めた。234bbの転化率は54.1%であり、1224ydの収率は54.1%であり、選択率は100%であった。
The stirring blade was rotated at 600 rpm, the back pressure valve was set so that the pressure in the reactor became 0 MPaG, and the reaction was carried out for 1 hour while discharging the gas phase from the reactor. The gas phase discharged from the reactor was recovered in a recovery tank. After completion of the reaction, the reactor was taken out from the thermostat and cooled to 0 ° C. with ice water to stop the reaction, and the reaction composition was recovered. GC analysis of the reaction composition recovered from the reactor and the gas phase (reaction composition) recovered in the recovery tank was performed to obtain a conversion rate of 234bb and a selectivity of 1224yd. The conversion of 234bb was 54.1%, the yield of 1224yd was 54.1%, and the selectivity was 100%.
なお、得られた1224ydは1224yd(Z)および1224yd(E)の混合物であった。図2に示すとおり、本例は、234bbの蒸気圧曲線より高く、1224yd(Z)および1224yd(E)のいずれの蒸気圧曲線より低い領域で反応を実施した。上に示した1224ydの転化率は、1224yd(Z)および1224yd(E)の転化率の合計である。
The obtained 1224yd was a mixture of 1224yd (Z) and 1224yd (E). As shown in FIG. 2, in this example, the reaction was performed in a region higher than the vapor pressure curve of 234bb and lower than the vapor pressure curves of 1224yd (Z) and 1224yd (E). The conversion rate of 1224yd shown above is the sum of the conversion rates of 1224yd (Z) and 1224yd (E).
[例6]
例5において、反応時間を2時間に変えた以外は全て同様にして反応を実施した。その結果、234bbの転化率は63.4%であり、1224ydの収率は63.4%であり、選択率は100%であった。 [Example 6]
In Example 5, the reaction was carried out in the same manner except that the reaction time was changed to 2 hours. As a result, the conversion rate of 234bb was 63.4%, the yield of 1224yd was 63.4%, and the selectivity was 100%.
例5において、反応時間を2時間に変えた以外は全て同様にして反応を実施した。その結果、234bbの転化率は63.4%であり、1224ydの収率は63.4%であり、選択率は100%であった。 [Example 6]
In Example 5, the reaction was carried out in the same manner except that the reaction time was changed to 2 hours. As a result, the conversion rate of 234bb was 63.4%, the yield of 1224yd was 63.4%, and the selectivity was 100%.
[例7]
例5において、反応器から気相の排出を行わない以外は同様にして、1時間の234bbの脱HCl反応を行った。反応中の反応器内の圧力を特定したところ、0.15MPaGであり、図2の1224yd(Z)の蒸気圧曲線の上側の領域にあった。反応終了後、回収した反応組成物のGC分析を行い、234bbの転化率、1224ydの選択率を求めた。234bbの転化率は50.5%であり、1224ydの収率は50.5%であり、選択率は100%であった。 [Example 7]
In Example 5, a 234bb deHCl reaction for 1 hour was performed in the same manner except that the gas phase was not discharged from the reactor. When the pressure in the reactor during the reaction was specified, it was 0.15 MPaG and was in the upper region of the vapor pressure curve of 1224yd (Z) in FIG. After completion of the reaction, the recovered reaction composition was subjected to GC analysis to determine a conversion rate of 234bb and a selectivity of 1224yd. The conversion rate of 234bb was 50.5%, the yield of 1224yd was 50.5%, and the selectivity was 100%.
例5において、反応器から気相の排出を行わない以外は同様にして、1時間の234bbの脱HCl反応を行った。反応中の反応器内の圧力を特定したところ、0.15MPaGであり、図2の1224yd(Z)の蒸気圧曲線の上側の領域にあった。反応終了後、回収した反応組成物のGC分析を行い、234bbの転化率、1224ydの選択率を求めた。234bbの転化率は50.5%であり、1224ydの収率は50.5%であり、選択率は100%であった。 [Example 7]
In Example 5, a 234bb deHCl reaction for 1 hour was performed in the same manner except that the gas phase was not discharged from the reactor. When the pressure in the reactor during the reaction was specified, it was 0.15 MPaG and was in the upper region of the vapor pressure curve of 1224yd (Z) in FIG. After completion of the reaction, the recovered reaction composition was subjected to GC analysis to determine a conversion rate of 234bb and a selectivity of 1224yd. The conversion rate of 234bb was 50.5%, the yield of 1224yd was 50.5%, and the selectivity was 100%.
[例8]
例7において、反応時間を2時間に変えた以外は全て同様にして反応を実施した。その結果、234bbの転化率は58.2%であり、1224ydの収率は58.2%であり、選択率は100%であった。 [Example 8]
In Example 7, the reaction was carried out in the same manner except that the reaction time was changed to 2 hours. As a result, the conversion rate of 234bb was 58.2%, the yield of 1224yd was 58.2%, and the selectivity was 100%.
例7において、反応時間を2時間に変えた以外は全て同様にして反応を実施した。その結果、234bbの転化率は58.2%であり、1224ydの収率は58.2%であり、選択率は100%であった。 [Example 8]
In Example 7, the reaction was carried out in the same manner except that the reaction time was changed to 2 hours. As a result, the conversion rate of 234bb was 58.2%, the yield of 1224yd was 58.2%, and the selectivity was 100%.
なお、2018年4月19日に出願された日本特許出願2018-080600号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-080600 filed on April 19, 2018 are cited herein as disclosure of the specification of the present invention. Incorporate.
Claims (15)
- 温度および圧力が調整可能な反応器内で、炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを液相でアルカリ水溶液と接触させ、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンおよびクロロフルオロオレフィンから選ばれる少なくとも1種のフルオロオレフィンを得る、フルオロオレフィンの製造方法であって、
前記反応器内の温度および圧力を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの蒸気圧曲線より上であり、かつ前記フルオロオレフィンの蒸気圧曲線より下となる条件に調整する製造方法。 In a reactor with adjustable temperature and pressure, the number of carbon atoms is 3 to 7, and a structure in which a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms, respectively, in the molecule The hydrofluorocarbon or hydrochlorofluorocarbon is brought into contact with an alkaline aqueous solution in a liquid phase, and the hydrofluorocarbon or hydrochlorofluorocarbon is dehydrochlorinated or dehydrofluorinated to produce hydrofluoroolefin, perfluoroolefin, hydrochlorofluoroolefin and chlorofluoro A process for producing a fluoroolefin, which obtains at least one fluoroolefin selected from olefins, comprising:
A production method in which the temperature and pressure in the reactor are adjusted to be above the vapor pressure curve of the hydrofluorocarbon or hydrochlorofluorocarbon and below the vapor pressure curve of the fluoroolefin. - 前記圧力の調整は前記反応器内の気相を前記反応器外に排出することで行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the pressure is adjusted by discharging the gas phase in the reactor to the outside of the reactor.
- 前記反応器内の液相中の化合物(A)の質量[g]をL(A)とし、化合物(B)の質量[g]をL(B)とし、気相中の化合物(A)の質量[g]をV(A)とし、化合物(B)の質量[g]をV(B)とした場合、下記式(III)を満たす、請求項1または2に記載の製造方法。
(V(B)/V(A))/(L(B)/L(A))≧1.5 (III) The mass [g] of the compound (A) in the liquid phase in the reactor is L (A) , the mass [g] of the compound (B) is L (B), and the compound (A) in the gas phase The manufacturing method of Claim 1 or 2 which satisfy | fills following formula (III), when mass [g] is set to V (A) and mass [g] of a compound (B) is set to V (B) .
(V (B) / V (A) ) / (L (B) / L (A) ) ≧ 1.5 (III) - 前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、請求項1~3のいずれか1項に記載の製造方法。 The alkaline aqueous solution is an aqueous solution in which at least one base selected from the group consisting of metal hydroxides, metal oxides, and metal carbonates is dissolved in water. Manufacturing method.
- 前記アルカリ水溶液における、アルカリ水溶液全質量に対する塩基の質量の割合が、0.5~48質量%である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the ratio of the mass of the base to the total mass of the alkaline aqueous solution in the alkaline aqueous solution is 0.5 to 48 mass%.
- 前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを相間移動触媒の存在下でアルカリ水溶液と接触させる、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the hydrofluorocarbon or hydrochlorofluorocarbon is contacted with an alkaline aqueous solution in the presence of a phase transfer catalyst.
- 前記相間移動触媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、0.001~10質量部の割合で存在させる、請求項6に記載の製造方法。 The production method according to claim 6, wherein the phase transfer catalyst is present in a ratio of 0.001 to 10 parts by mass with respect to 100 parts by mass of the hydrofluorocarbon or hydrochlorofluorocarbon.
- 前記相間移動触媒が第4級アンモニウム塩である、請求項6または7に記載の製造方法。 The production method according to claim 6 or 7, wherein the phase transfer catalyst is a quaternary ammonium salt.
- 前記相間移動触媒が、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、またはメチルトリ-n-オクチルアンモニウムクロリドである、請求項6~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the phase transfer catalyst is tetra-n-butylammonium chloride, tetra-n-butylammonium bromide or methyltri-n-octylammonium chloride.
- 前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがモノクロロテトラフルオロプロパンであり、前記フルオロオレフィンがテトラフルオロプロペンである、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the hydrofluorocarbon or hydrochlorofluorocarbon is monochlorotetrafluoropropane, and the fluoroolefin is tetrafluoropropene.
- 前記モノクロロテトラフルオロプロパンが2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンであり、前記テトラフルオロプロペンが2,3,3,3-テトラフルオロプロペンである、請求項10に記載の製造方法。 The monochlorotetrafluoropropane is 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and the tetrafluoropropene is 2,3 The production method according to claim 10, which is 1,3,3-tetrafluoropropene.
- 前記反応器内の圧力を2.0MPaG以下に調整する請求項11に記載の製造方法。 The production method according to claim 11, wherein the pressure in the reactor is adjusted to 2.0 MPaG or less.
- 前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがジクロロテトラフルオロプロパンであり、前記フルオロオレフィンがモノクロロテトラフルオロプロペンである、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the hydrofluorocarbon or hydrochlorofluorocarbon is dichlorotetrafluoropropane, and the fluoroolefin is monochlorotetrafluoropropene.
- 前記ジクロロテトラフルオロプロパンが2,3-ジクロロ-1,1,1,2-テトラフルオロプロパンおよび/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパンであり、前記モノクロロテトラフルオロプロペンが1-クロロ-2,3,3,3-テトラフルオロプロペンである、請求項13に記載の製造方法。 The dichlorotetrafluoropropane is 2,3-dichloro-1,1,1,2-tetrafluoropropane and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane, and the monochlorotetrafluoropropane is The production method according to claim 13, wherein the propene is 1-chloro-2,3,3,3-tetrafluoropropene.
- 前記反応器内の圧力を0.5MPaG以下に調整する請求項14に記載の製造方法。 The production method according to claim 14, wherein the pressure in the reactor is adjusted to 0.5 MPaG or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-080600 | 2018-04-19 | ||
JP2018080600A JP2021120352A (en) | 2018-04-19 | 2018-04-19 | Method for producing fluoroolefin |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203319A1 true WO2019203319A1 (en) | 2019-10-24 |
Family
ID=68239434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016682 WO2019203319A1 (en) | 2018-04-19 | 2019-04-18 | Method for producing fluoroolefin |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021120352A (en) |
WO (1) | WO2019203319A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021132390A1 (en) * | 2019-12-26 | 2021-07-01 | Agc株式会社 | Method for producing 1-chloro-2,3,3-trifluoropropene |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017001990A (en) * | 2015-06-11 | 2017-01-05 | 旭硝子株式会社 | Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene |
WO2017110851A1 (en) * | 2015-12-25 | 2017-06-29 | 旭硝子株式会社 | Method for producing 1-chloro-2,3,3,3-tetrafluoropropene |
JP2017178958A (en) * | 2010-04-29 | 2017-10-05 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Method for producing tetrafluoropropenes |
-
2018
- 2018-04-19 JP JP2018080600A patent/JP2021120352A/en active Pending
-
2019
- 2019-04-18 WO PCT/JP2019/016682 patent/WO2019203319A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017178958A (en) * | 2010-04-29 | 2017-10-05 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | Method for producing tetrafluoropropenes |
JP2017001990A (en) * | 2015-06-11 | 2017-01-05 | 旭硝子株式会社 | Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene |
WO2017110851A1 (en) * | 2015-12-25 | 2017-06-29 | 旭硝子株式会社 | Method for producing 1-chloro-2,3,3,3-tetrafluoropropene |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021132390A1 (en) * | 2019-12-26 | 2021-07-01 | Agc株式会社 | Method for producing 1-chloro-2,3,3-trifluoropropene |
CN114845982A (en) * | 2019-12-26 | 2022-08-02 | Agc株式会社 | Method for producing 1-chloro-2, 3, 3-trifluoropropene |
Also Published As
Publication number | Publication date |
---|---|
JP2021120352A (en) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620815B2 (en) | Process for producing 1-chloro-2,3,3-trifluoropropene | |
JP5576586B2 (en) | Integrated HFC Transformer-1234ZE Manufacturing Method | |
JP5491392B2 (en) | Method for producing fluorinated organic compounds | |
JP7081596B2 (en) | Methods for producing 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and 2,3,3,3-tetrafluoropropene. Production method | |
WO2019203318A1 (en) | Method for producing fluoroolefin | |
WO2019189024A1 (en) | Method for producing 1-chloro-2,3,3-trifluoropropene | |
JP2017001990A (en) | Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene | |
US8710282B2 (en) | Integrated process for the manufacture of fluorinated olefins | |
JP5805812B2 (en) | Integrated HFC Transformer-1234ZE Manufacturing Method | |
WO2019203319A1 (en) | Method for producing fluoroolefin | |
JPWO2019230456A1 (en) | Fluorine-containing propene manufacturing method | |
US10364201B2 (en) | Process for the manufacture of fluorinated olefins | |
JP7310803B2 (en) | Method for producing fluorine-containing unsaturated hydrocarbon | |
JP7371738B2 (en) | Method for removing 2-chloro-1,3,3,3-tetrafluoropropene and method for producing 1-chloro-2,3,3,3-tetrafluoropropene | |
JP6043415B2 (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JP2010215622A (en) | Method for producing fluorine-containing compound containing 1,1,1,3,3-pentafluoropropane | |
JP2016079101A (en) | Producing method of 1,1-dichloro-3,3,3-trifluoropropene | |
JP2020023450A (en) | Method for producing 2-chloro-3,3-difluoropropene, method for producing 2-chloro-1,1,2-trifluoropropane, method for producing 2,3,3-trifluoropropene, method for producing 1,2-dichloro-2,3,3-trifluoropropane, and method for producing 1-chloro-2,3,3-trifluoropropene | |
JP2016104789A (en) | Method for producing 2-chloro-1,1,1,2-tetrafluoro propene by liquid phase fluorination of 2-chloro-3,3,3-trifluoro propene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19789248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19789248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |