WO2019208538A1 - 情報処理装置 - Google Patents

情報処理装置 Download PDF

Info

Publication number
WO2019208538A1
WO2019208538A1 PCT/JP2019/017132 JP2019017132W WO2019208538A1 WO 2019208538 A1 WO2019208538 A1 WO 2019208538A1 JP 2019017132 W JP2019017132 W JP 2019017132W WO 2019208538 A1 WO2019208538 A1 WO 2019208538A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
work content
crop
unit
field
Prior art date
Application number
PCT/JP2019/017132
Other languages
English (en)
French (fr)
Inventor
中川 宏
山田 和宏
陽平 大野
雄一朗 瀬川
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020515469A priority Critical patent/JP7366887B2/ja
Publication of WO2019208538A1 publication Critical patent/WO2019208538A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present invention relates to a technology that supports the determination of the work content related to crops.
  • Patent Document 1 discloses a technique for supporting fertilization management including fertilization management such as determination of the amount of fertilizer and other farm work based on observed data such as converted leaf color values calculated from image data obtained by photographing crops. Is disclosed.
  • an object of this invention is to provide the structure which refers the past work content in the work regarding a crop.
  • the present invention provides an index record that records an index that represents a growing state of a crop calculated based on a measured value of a sensor for at least one crop area and a measurement timing of the measured value in association with each other.
  • a work recording unit that records in association with at least one work content and work time performed on the at least one crop region, and the at least one crop region in which the index is recorded in the index recording unit.
  • the figure showing the functional composition which an agricultural support system realizes A diagram showing an example of recorded work contents
  • the figure showing an example of the imaging method of a farm field The figure showing an example of the NDVI map of a pixel unit
  • a figure showing an example of extracted work contents A figure showing an example of extracted work contents
  • the figure showing an example of the time series change of NDVI of a modification The figure showing an example of
  • Example FIG. 1 represents the whole structure of the agricultural assistance system 1 which concerns on an Example.
  • the agricultural support system 1 is a system that supports a person who performs work in a farm (a place where crops such as rice, vegetables, and fruits are grown) by using an index that represents the growth status of the crop.
  • the index indicating the growth status is an index indicating one or both of the progress of the growth stage of the crop (for example, whether or not it is suitable for harvesting) and the status (also referred to as activity) such as the size and the presence or absence of disease. It is.
  • NDVI Normalized Difference Vegetation ⁇ ⁇ Index
  • an index representing the growth status of the crop in the field is calculated using an image of the field taken from above by the flying object. Is done.
  • the flying body may be anything as long as it can photograph the field, and a drone is used in this embodiment.
  • the agricultural support system 1 includes a network 2, a server device 10, a drone 20, and a user terminal 30.
  • the network 2 is a communication system including a mobile communication network and the Internet, and relays data exchange between devices accessing the own system.
  • the server device 10 is accessing the network 2 by wired communication (may be wireless communication), and the drone 20 and the user terminal 30 are accessing by wireless communication (the user terminal 30 may be wired communication).
  • the user terminal 30 is a terminal used by a user of the system (for example, a worker who performs work in a farm), and is, for example, a smartphone, a laptop computer, or a tablet terminal.
  • the drone 20 is a rotorcraft type flying body that includes one or more rotor blades and flies by rotating those rotor blades.
  • the drone 20 has a photographing function for photographing a farm field from above while flying.
  • the drone 20 is carried to the field by an operator, for example, and performs flight and shooting by performing an operation of starting shooting flight.
  • the server device 10 is an information processing device that performs processing related to worker support.
  • the server device 10 performs, for example, a process of calculating the above-described NDVI from the field image captured by the drone 20.
  • NDVI uses the property that the green leaves of plants absorb a lot of red visible light and reflect a lot of light in the near-infrared region (0.7 ⁇ m to 2.5 ⁇ m). To express.
  • the server device 10 records the growth information indicating the growth status of the crop based on the calculated NDVI, and also records the work performed by the worker. This work content is recorded, for example, when the worker inputs to the user terminal 30.
  • the server device 10 extracts the past work content in the field where the worker is working and the growth state of the crop from the recorded information, and presents it to the worker.
  • the worker can determine the timing of watering, fertilizer application, pesticide application, etc. to the crops in the field where he / she works with reference to the presented work content.
  • FIG. 2 shows the hardware configuration of the server device 10 and the user terminal 30.
  • Each of the server device 10 and the user terminal 30 is a computer including each device such as a processor 11, a memory 12, a storage 13, a communication device 14, an input device 15, an output device 16, and a bus 17.
  • the term “apparatus” here can be read as a circuit, a device, a unit, or the like. Each device may include one or a plurality of devices, or some of the devices may not be included.
  • the processor 11 controls the entire computer by operating an operating system, for example.
  • the processor 11 may include a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. Further, the processor 11 reads programs (program codes), software modules, data, and the like from the storage 13 and / or the communication device 14 to the memory 12, and executes various processes according to these.
  • CPU central processing unit
  • the number of processors 11 that execute various processes may be one, two or more, and the two or more processors 11 may execute various processes simultaneously or sequentially. Further, the processor 11 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 12 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 12 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 12 can store the above-described program (program code), software module, data, and the like.
  • the storage 13 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu- ray (registered trademark) disk, smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, or the like.
  • an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu- ray (registered trademark) disk, smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, or the like.
  • a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive,
  • the storage 13 may be called an auxiliary storage device.
  • the above-described storage medium may be, for example, a database including the memory 12 and / or the storage 13, a server, or other suitable medium.
  • the communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as, for example, a network device, a network controller, a network card, or a communication module.
  • the input device 15 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 16 is an output device (for example, a display, a speaker, or the like) that performs output to the outside. Note that the input device 15 and the output device 16 may have an integrated configuration (for example, a touch screen).
  • the devices such as the processor 11 and the memory 12 are accessible to each other via a bus 17 for communicating information.
  • the bus 17 may be composed of a single bus or may be composed of different buses between devices.
  • FIG. 3 shows the hardware configuration of the drone 20.
  • the drone 20 is a computer that includes a processor 21, a memory 22, a storage 23, a communication device 24, a flying device 25, a sensor device 26, a photographing device 27, and a bus 28.
  • the term “apparatus” here can be read as a circuit, a device, a unit, or the like. Each device may include one or a plurality of devices, or some of the devices may not be included.
  • the processor 21, the memory 22, the storage 23, the communication device 24, and the bus 28 are the same type of hardware as the device of the same name shown in FIG. 2 (performance and specifications are not necessarily the same).
  • the communication device 24 can also perform wireless communication between drones in addition to wireless communication with the network 2.
  • the flying device 25 is a device that includes a motor, a rotor, and the like and causes the aircraft to fly. The flying device 25 can move the aircraft in all directions in the air, or can stop (hover) the aircraft.
  • the sensor device 26 is a device having a sensor group that acquires information necessary for flight control.
  • the sensor device 26 is a position sensor that measures the position (latitude and longitude) of the own device, and the direction in which the own device is facing (the drone has a front direction defined, and the front direction is directed.
  • Direction sensor that measures the altitude of the aircraft, a velocity sensor that measures the velocity of the aircraft, and an inertial measurement sensor (IMU (Inertial) that measures triaxial angular velocity and acceleration in three directions. Measurement Unit)).
  • IMU Inertial measurement sensor
  • the photographing device 27 is a so-called digital camera that has a lens 271 and an image sensor 272 and records an image photographed by the image sensor 272 as digital data.
  • the image sensor 272 is sensitive to light having a wavelength in the near infrared region necessary for calculating NDVI in addition to visible light.
  • the photographing device 27 is attached to the lower part of the casing of the own device (drone 20), has a fixed photographing direction, and photographs a vertically lower part during the flight of the own device.
  • the server device 10 and the drone 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 11 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the server device 10 and the drone 20 included in the agricultural support system 1 store programs provided by this system, and the function group described below is executed by the processor of each device executing the program and controlling each unit. Realized.
  • FIG. 4 shows a functional configuration realized by the agricultural support system 1.
  • the server device 10 includes a work content recording unit 101, a crop image acquisition unit 102, an index calculation unit 103, an index map generation unit 104, a growth information recording unit 105, a work content extraction unit 106, and a similarity calculation unit. 107 and a graph storage unit 108.
  • the drone 20 includes a flight control unit 201, a flight unit 202, a sensor measurement unit 203, and an imaging unit 204.
  • the user terminal 30 includes an input receiving unit 301 and a work content display unit 302.
  • the input receiving unit 301 receives an input of work contents and the like performed on a crop growing on a farm field.
  • An operator operates the user terminal 30 before or after performing work on the field, and identifies information (for example, field ID (Identification)) on which the work is performed and the name of the crop growing on the field. And the work content and work date and time are input.
  • the work contents are, for example, work items such as watering, fertilizer application and agricultural chemical application, and details of operation such as watering amount (watering time), fertilizer amount, agricultural chemical amount, application position and application time zone, etc. It is information including at least one or more pieces of equipment information such as farm tools and agricultural machines. Note that it is not necessary to input all of these input contents every time, and the same input contents as the previous time may be unnecessary. In addition, it is possible to reduce the input effort by selecting from the options.
  • one type of crop is basically grown in one field.
  • a plurality of different types of crops are grown simultaneously in one field.
  • a region where crops are common may be handled as one field, and a field ID may be determined for each field. Since the work contents are different for different crops, the worker inputs the work contents for each crop (each field).
  • the input receiving unit 301 transmits input data indicating the input field ID, crop name, work content, and work date and time to the server device 10.
  • the work content recording unit 101 of the server device 10 records the field ID, the crop name, the work content, the work date and time, and the worker ID indicated by the transmitted input data in association with each other. By recording these, the work content recording unit 101 records the work content and work time (indicated by the work date and time) performed on the crop region of the field indicated by the field ID in association with each other.
  • the work content recording unit 101 is an example of the “work recording unit” in the present invention.
  • FIG. 5 shows an example of the recorded work content.
  • the work content recording unit 101 records the field ID, the crop name, the work date, the work item, the work details, and the device information in association with each other.
  • the work content when growing “corn” is recorded in the field ID “HA01”
  • the work content when growing “rice” is recorded in the field ID “HA02”.
  • the division of the crop name “corn” means that the growing period is different (the first “corn” is the work content of 2017, the second “corn” is It is associated with the work content of 2016).
  • the recording process is performed every time the worker inputs the work content.
  • the input of the work content is preferably performed every time the work is performed.
  • the work content may be input multiple times. In that case, a recording process for recording the work contents of a plurality of times is performed.
  • the operator brings the drone 20 to the farm field at such a frequency and performs an operation for starting the imaging flight.
  • the flight control unit 201 of the drone 20 has a function of controlling the flight of the own aircraft. For example, when the operation for starting the shooting flight is performed, the flight control is started.
  • the flight control unit 201 stores, for example, farm field range information (for example, latitude and longitude information indicating the outer edge of the farm field) indicating the geographical range of the farm field registered in advance by the operator using the user terminal 30 or the like. Based on the field range information, control is performed to fly the aircraft in a flight path that flies over the entire field at a constant altitude.
  • farm field range information for example, latitude and longitude information indicating the outer edge of the farm field
  • control is performed to fly the aircraft in a flight path that flies over the entire field at a constant altitude.
  • the flight path is a path that flies in a wavy locus from one side of the field to the other side that faces the side.
  • the flying unit 202 has a function of flying the aircraft.
  • the flying device 202 is operated by operating a motor, a rotor, and the like included in the flying device 25.
  • the sensor measurement unit 203 performs measurement by each sensor (position sensor, direction sensor, altitude sensor, speed sensor, inertial measurement sensor) included in the sensor device 26.
  • the sensor measurement unit 203 repeatedly measures the position, direction, altitude, speed, angular velocity, and acceleration of the aircraft at predetermined time intervals, and supplies sensor information indicating the measured information to the flight control unit 201.
  • the flight control unit 201 controls the flight unit 202 based on the supplied sensor information and causes the aircraft to fly along the above-described flight path.
  • the sensor measurement unit 203 supplies sensor information indicating the measured position, direction, altitude, and speed to the imaging unit 204.
  • the photographing unit 204 has a function of photographing a subject using the photographing device 27.
  • the imaging unit 204 captures the field as a subject.
  • the image capturing unit 204 captures an image of a field, and also captures an area where the crop is growing in the field.
  • the field area imaged by the imaging unit 204 is an example of the “crop area” in the present invention.
  • each pixel that forms a still image captured by the imaging unit 204 has a pixel value indicating red of visible light ( Along with R), it is represented by a pixel value (IR) indicating light having a wavelength in the near infrared region.
  • the imaging unit 204 captures a plurality of still images based on the supplied sensor information so that all areas in the field are included.
  • FIG. 6 shows an example of a method for photographing a farm field.
  • FIG. 6 shows a route B1 when the drone 20 flies over the field A1 with a wavy trajectory.
  • the imaging unit 204 calculates the imaging range (the field range included in the angle of view) of the field (0 m above the ground) from the altitude indicated by the sensor information and the angle of view of the imaging device 27. Then, the photographing unit 204 represents the ratio of the area where the current photographing range and the previous photographing range overlap from the speed and direction indicated by the sensor information (for example, expressed as a percentage of the overlapping area when the area of the photographing range is 100%). ) Is less than the threshold value, the next shooting is performed.
  • the imaging unit 204 first images the imaging region C1, and then images the imaging region C2 that slightly overlaps the imaging region C1.
  • the photographing unit 204 notifies the flight control unit 201 of the calculated size of the photographing range when the own device (drone 20) is turned back.
  • the flight control unit 201 folds back the route by a distance that overlaps the imaging range of the notified size, for example, the imaging regions C4 and C5 in FIG.
  • the imaging unit 204 captures still images in which the imaging regions C1 to C32 illustrated in FIG. 6 are captured, that is, a plurality of still images in which the imaging ranges are slightly overlapped, by repeating imaging in this manner.
  • the field A ⁇ b> 1 has a size and shape that can accommodate a plurality of imaging ranges, but this need not be the case. In that case, all the areas in the field are included in any one of the still images by widening the overlapping part of the shooting ranges or by shooting including the outside of the field.
  • the photographing method by the photographing unit 204 is not limited to this. For example, if the flight speed and the flight altitude at the time of shooting are determined, the time interval for overlapping the shooting range as shown in FIG. 6 is calculated in advance, so that shooting may be performed at the time interval. Further, if the map of the farm field and the shooting position are determined in advance, the shooting unit 204 may shoot when flying in the determined position. In addition to these, a known method for photographing the ground using a drone may be used.
  • each part with which drone 20 is provided is started when operation of a photography flight start by the farm worker mentioned above is performed.
  • the drone 20 flies over the set flight path over the field, and the imaging unit 204 repeatedly performs imaging as described above.
  • photographing unit 204 performs photographing, the photographed still image, photographing information related to photographing (position, orientation, altitude and time at the time of photographing and the field ID of the photographed field (registered in advance by the operator)) Is generated and transmitted to the server device 10.
  • the crop image acquisition unit 102 of the server device 10 receives the transmitted image data, and acquires the still image indicated by the image data as an image of the crop region captured by the drone 20.
  • the crop image acquisition unit 102 also acquires shooting information indicated by the received image data, and supplies it to the index calculation unit 103 together with the acquired still image.
  • the index calculation unit 103 calculates an index representing the growth status of a crop shown in the image based on the image of the crop region acquired by the crop image acquisition unit 102.
  • the index calculation unit 103 generates index information indicating the calculated NDVI in association with a pixel ID indicating a corresponding pixel, and supplies the index information to the index map generation unit 104 together with shooting information.
  • the index information and the shooting information are supplied every time an image of a crop area is acquired, that is, every time the drone 20 takes an image of a farm field.
  • the index map generation unit 104 generates an index map indicating the growth status of the crop on the field based on the index (NDVI) calculated by the index calculation unit 103.
  • the index map is information that represents an index (NDVI) at each position or area in the field on the map.
  • the index map generation unit 104 generates an NDVI map in pixel units representing NDVI at a position on the field corresponding to each pixel.
  • FIG. 7 shows an example of an NDVI map in pixel units. In the example of FIG. 7, the NDVI map M1 in pixel units of the field A1 shown in FIG. 6 is represented.
  • the NDVI map M1 is a rectangular map having a pixel D1 at the upper left corner, a pixel D2 at the lower left corner, a pixel D3 at the upper right corner, and a pixel D4 at the lower right corner.
  • “0.3” represented in the pixel D1 is NDVI in the pixel in the upper left corner of the image in the imaging region C1 in the upper left corner shown in FIG. 6, and “ ⁇ 0.5” represented in the pixel D2 is NDVI in the pixel in the lower left corner of the image in the imaging region C4 in the lower left corner shown in FIG.
  • the NDVI map M1 includes pixels that indicate overlapping portions of adjacent shooting areas.
  • the index map generation unit 104 uses, for these pixels, the NDVI average value of the pixels (pixels indicating the same spot in the field A1) calculated from the still images obtained by shooting the respective shooting regions.
  • the NDVI map M1 is completed when the drone 20 captures the imaging region C32 and each part performs the above operation.
  • the index map generation unit 104 generates an NDVI map in units of regions representing the growth status of crops for each of a plurality of regions that divide the field A1 from the NDVI map M1 in units of pixels thus generated.
  • FIG. 8 shows an example of the NDVI map for each region. In the NDVI map M2 shown in FIG. 8, segmented areas E1 to E32 corresponding to the imaging areas C1 to C32 shown in FIG. 6 are shown.
  • Each segmented area is patterned according to the average value of NDVI. For example, a pattern indicating that the average value of NDVI is 0.6 or more is given to the divided areas E1, E2, and E8. Similarly, the segmented areas E7 and E9 have a pattern indicating that the average value of NDVI is 0.2 or more and less than 0.6, and the segmented areas E3 and E4 have an average value of NDVI of ⁇ 0.2 or more. The pattern which shows that it is less than 0.2 is given.
  • the index map generation unit 104 supplies the generated NDVI map for each pixel and NDVI map for each region to the growth information recording unit 105 in association with the shooting information and the shooting date and time of the image that is the basis of these maps.
  • the growth information recording unit 105 records an index indicating the growth status of the crop calculated based on the measurement value of the sensor for the crop region and the measurement time of the measurement value in association with each other as the growth information.
  • the growth information recording unit 105 is an example of the “index recording unit” in the present invention.
  • the growth information recording unit 105 uses the pixel value represented by the image photographed by the drone 20 as the measurement value of the image sensor 272 of the photographing device 27, and an index map representing NDVI calculated from the pixel value.
  • the growth information is recorded by recording the shooting date and time and the shooting information in association with each other. Further, the growth information recording unit 105 refers to the work content recording unit 101, reads out the crop name associated with the field ID indicated by the imaging information, records the crop name in association with the imaging information, and records it as the growth information. In the server device 10, the work contents and the growth information for each field are thus recorded.
  • the user designates a field on which he / she performs the work on the user terminal 30 and performs a display operation for displaying past work contents which are referred to in the designated field.
  • the server device receives request data indicating a request for the work field ID and the work content specified by the user (the farm field on which the worker performs work). 10 to send.
  • the work content extraction unit 106 of the server device 10 Upon receiving the transmitted request data, the work content extraction unit 106 of the server device 10 records the requested work content, that is, the past work content to be used as a reference in the field of the field ID indicated by the request data. Extracted from the work content recorded in the section 101.
  • the work content extraction unit 106 is an example of the “extraction unit” in the present invention.
  • the work content extraction unit 106 calculates a value indicating the similarity between the NDVI time-series change of the crop region currently growing in the field of the field ID indicated by the request data and the NDVI time-series change of the other crop regions. A request is made to the similarity calculation unit 107.
  • FIG. 9 shows an example of NDVI time series change.
  • the time series change of NDVI is represented by a graph with the horizontal axis representing the time elapsed since the start of crop growth and the vertical axis representing NDVI.
  • curves FA11, FA12, and FA13 represent time-series changes in the average value of the entire NDVI field calculated in the past in the fields A11, A12, and A13. These time-series changes represent the crop growth curve in the field.
  • These time-series changes are different in slope, peak (maximum value of NDVI), and peak time, but all represent growth curves of the same crop.
  • the graph storage unit 108 generates and stores a graph representing NDVI time series changes as shown in FIG.
  • the graph storage unit 108 reads out the NDVI map from the growth start to the end of the same crop in the same field from the growth information recorded in the growth information recording unit 105, and averages the NDVI of the entire field in each growth stage of the crop. Is calculated.
  • storage part 108 produces
  • the graph storage unit 108 may plot points indicating the shooting date and the average value of NDVI, and generate a graph connecting the points with straight lines. In any case, the graph storage unit 108 generates a graph obtained by interpolating a period in which NDVI is not calculated so that NDVI corresponding to an arbitrary growth time can be obtained. The graph storage unit 108 stores the generated graph in association with the field ID and the growth period (a period represented by the growth start date and the harvest date).
  • the graph storage unit 108 generates another graph if the year changes even in the same field, and generates a different graph each time when growing a crop multiple times even in the same year. In addition, when a plurality of types of crops are grown in one field as described above, the graph storage unit 108 treats a region where the crops are common as one field and generates a graph for each field. The graph storage unit 108 generates and updates a graph regularly or whenever the growth information is recorded in the growth information recording unit 105, and always stores the latest graph.
  • the similarity calculation unit 107 calculates a value indicating the degree of similarity of time-series changes between the field designated by the user (the field on which the worker performs work) and other fields as described above.
  • the similarity calculation unit 107 first displays a graph that is associated with the field ID of the designated field and that the crop is growing (because it is not necessary to refer to the work contents if the growth is completed) as a graph storage unit. Read from 108.
  • FIG. 9 shows a curve FA1 of the graph read out at this time.
  • a curve FA1 represents a time series change of NDVI for 50 days for a crop currently growing in the field A1.
  • the similarity calculation unit 107 calculates, for example, an NDVI interpolated value for each day for a specified field graph and a comparison partner graph, and calculates an average value of the differences as a value indicating the similarity. . In this case, the smaller the value, the higher the similarity. In addition, not only this method but the well-known technique which evaluates the similarity degree of another graph may be used.
  • the similarity calculation unit 107 calculates a similarity value (a value indicating the similarity) for all the graphs stored in the graph storage unit 108 using any method.
  • the similarity calculation unit 107 supplies the calculated similarity value to the work content extraction unit 106 in association with the field ID and the growth period of the comparison partner graph.
  • the work content extraction unit 106 identifies the field ID and the growth period associated with the similarity value less than the threshold value among the supplied similarity values. For example, in the example of FIG. 9, the similarity value between the curve FA1 and the curve FA12 is less than the threshold value, and the similarity value between the curve FA1 and the curves FA11 and FA13 is greater than or equal to the threshold value.
  • the work content extraction unit 106 identifies the growing period corresponding to the time when the field ID of the field A12 and the image based on the curve FA12 were captured.
  • the field ID and the growing period specified in this way represent the growing field of the crop growing in the designated field and the growing field of the field growing similar to the NDVI in time series.
  • the work content extraction unit 106 refers to the work content recording unit 101, and associates information (work name, work item, work details, device information) with the identified field ID and the work date and time included in the identified growing period. ). In this way, the work content extraction unit 106 firstly changes the time-series change of the crop region and the index of the field designated by the user from among the crop regions in which the index (NDVI) is recorded in the growth information recording unit 105. A crop region in which the similarity is equal to or higher than a predetermined level (similarity value is less than a threshold value) is specified.
  • the work content extracting unit 106 extracts the work content performed on the identified crop region from the work content recorded in the work content recording unit 101.
  • the work content extraction unit 106 transmits to the user terminal 30 response data indicating the work content thus extracted and the name and growth period of the field indicated by the identified field ID.
  • the work content extraction unit 106 transmits, for example, response data indicating all the work contents in the growing period and the growing time (50 days in the example of FIG. 9) up to the present time of the designated field.
  • the work content display unit 302 displays information indicated by the transmitted response data as the requested work content.
  • FIG. 10 shows an example of the displayed work content.
  • the work content display unit 302 grows “corn” on the “work plan reference screen” on the character string “the following work content is likely to be helpful” and the field “BB”.
  • the work contents of 2017 and 2015 performed at the time and the work contents of 2017 performed when growing “corn” in the field “CC” are displayed.
  • the work content display unit 302 displays the work content performed before and after the growth time indicated by the response data (50 days in the example of FIG. 9).
  • the work content extracting unit 106 extracts the work content extracted to the worker in the designated crop area (particularly, the work content performed at the time when the growing state is close to the current growing state of the crop region). To be notified.
  • the operator can refer to the displayed work content, that is, the work content performed in the past for a crop having a similar growth state, when determining the work content in the current growth state.
  • the work content display unit 302 displays a part of the information indicated by the response data in the example of FIG. 10, but other information (the past work content and the future work content, etc.) is displayed by the user's operation. It may be displayed.
  • each device included in the agricultural support system 1 presents a work content recording process for recording work content, a growth information recording process for recording growth information, and a work content for reference to the work to the user.
  • FIG. 11 shows an example of the operation procedure of each apparatus in the work content recording process. This operation procedure is started when a work content is input by the user.
  • the user terminal 30 receives an input of work content and the like performed on a crop grown on a farm (Step S11), and transmits input data indicating the input content to the server device 10 (Step S11). S12).
  • the server device 10 (work content recording unit 101) records the work content indicated by the transmitted input data (step S13).
  • FIG. 12 shows an example of the operation procedure of each device in the growth information recording process.
  • This operation procedure is started when the user performs an operation for starting shooting flight of the drone 20.
  • the drone 20 flight control unit 201, flight unit 202, and sensor measurement unit 203 starts flying over the field based on the stored field range information (step S21).
  • the drone 20 imaging unit 204 starts imaging each imaging area from above the farm field (step S22).
  • each time the drone 20 (shooting unit 204) performs shooting, it generates image data indicating the shot still image and shooting information (information indicating the position, orientation, and altitude at the time of shooting) to the server device 10. Transmit (step S23).
  • the server device 10 (the crop image acquisition unit 102) acquires the still image indicated by the transmitted image data as a crop region image (step S24).
  • the server device 10 (index calculation unit 103) calculates an index (NDVI) representing the growth status of the crop shown in the image based on the acquired image of the crop region (step S25).
  • the server device 10 (index map generation unit 104) generates an index map indicating the growth status of crops in the field based on the calculated index (step S26).
  • the server device 10 (growth information recording unit 105) records the generated index map as growth information (step S27).
  • the server apparatus 10 (graph memory
  • FIG. 13 shows an example of the operation procedure of each device in the presentation process.
  • This operation procedure is started when the user performs an operation for starting shooting flight of the drone 20.
  • the user terminal 30 (work content display unit 302) accepts a display operation for displaying past work content that serves as a reference for the field designated by the user (step S31), and requests data indicating a request for the work content from the server. It transmits to the apparatus 10 (step S32).
  • the server device 10 calculates the value of the similarity of the time series change of the index between the designated field and the other fields (step S33).
  • the server device 10 extracts the work content performed on the crop region where the similarity is equal to or higher than a predetermined level (step S34). Then, the server device 10 (work content extraction unit 106) generates response data indicating the extracted work content and the like (step S35), and transmits the response data to the user terminal 30 (step S36). The user terminal 30 (work content display unit 302) displays the work content indicated by the transmitted response data (step S37).
  • the work contents performed in the past in the field where the growth situation of the designated field is similar to that of the crop are extracted and presented to the user. Is done.
  • the work content extraction unit 106 may perform extraction with priorities when extracting the work content.
  • priorities There are roughly two types of prioritized extraction methods. The first is a method of assigning priorities (the higher the priority, the higher the priority) to the extracted work contents without changing the extraction method itself. This is called a prioritized extraction method.
  • the work contents are displayed in order from the one with the highest priority, and the work contents among the work contents performed on the crop region having a similarity equal to or higher than a predetermined level. Can tell the user if is more helpful.
  • the second is a method of correcting the similarity (similarity value) itself according to the priority of the work content. This is called a priority correction extraction method.
  • this priority correction extraction method for example, even if the average difference value described in the embodiment is equal to or greater than a threshold, the average value of the difference is corrected to be less than the threshold for work contents with high priority. That is, it may be extracted. On the other hand, even if the average difference value is less than the threshold value, there is a case where the average value of the difference is corrected to be larger than the threshold value for work contents with a low priority, that is, not extracted.
  • the work content extraction unit 106 for example, the work content for a crop area where the type of growing crop is the same as the crop area specified by the user (the work content recorded in the work content recording unit 101 for the work area). Are extracted with higher priority than other work contents. In the example of FIG. 10, the work contents of the field of the same crop (corn) are extracted, but if the growth curve is similar to the designated field, the work contents of the field of another crop may be extracted. .
  • FIGS. 14A to 14D show an example of the extracted work contents.
  • the work content performed when growing “corn” in the field BB, DD, EE, GG the work content performed when growing “sorghum” in the field CC, and the field FF
  • the value of the degree of similarity is less than the threshold value (less than 1.5) and the degree of similarity is determined to be greater than or equal to a predetermined level.
  • the work content extraction unit 106 uses the prioritized extraction method to calculate the order of similarity from the smallest value of similarity (the smaller the value, the higher the similarity).
  • the priority of work contents in each field is determined.
  • the type of crop in the designated field is “corn”.
  • the work content extraction unit 106 determines the priority of all the fields having the same crop type as the designated field to be higher than other fields having different crop types. Yes.
  • the work content extraction unit 106 sets priorities in descending order of similarity between the “corn” fields and sets priorities in descending order of similarity between the other crop fields. Yes. Further, as shown in FIG. 14C, the work content extraction unit 106 corrects the similarity value of the field having the same type of crop as the designated field (corrected by 0.8 times in this example), and then priorities May be determined. As a result, the work contents of the “corn” field have a higher priority.
  • the work content extraction unit 106 further corrects the similarity value between the designated field and the field with the same crop type using the priority correction extraction method (in this example, 0. 0). It may be determined whether or not the similarity is equal to or higher than a predetermined level.
  • the field HH whose similarity value before correction was 1.6 (1.28 after correction) and the similarity value before correction was 1.8 (1.44 after correction).
  • the work content of the farm field II that was was newly extracted.
  • the type of crop is used as a condition for determining priority, but this is not restrictive.
  • the work content extraction unit 106 may extract work content for a crop area whose work history is common to the crop area specified by the user with higher priority than other work contents. For example, when the field A1 in which the curve FA1 in FIG. 9 represents a growth curve is designated, the work content extraction unit 106 compares work histories up to the 50th day.
  • the work content extraction unit 106 determines that the work histories are common when, for example, the average value of the differences in the number of work items (the number of watering, the number of fertilizer application, the number of agricultural chemical application, etc.) of each work item is less than a threshold.
  • differences in operation details watering amount (watering time), amount of fertilizer, amount of pesticide, application position, application time zone, etc.
  • watering amount watering time
  • amount of fertilizer amount of pesticide
  • application position application position
  • application time zone etc.
  • the work content extraction unit 106 determines that the work histories are common if their differences and differences are less than a predetermined standard.
  • the work content extraction unit 106 determines a field of a common work history, the work content extraction unit 106 then extracts the work history using at least one of the prioritization extraction method and the priority correction extraction method in the same manner as the modified example. As a result, it is possible to make it easier for the work contents in the field having the same work history as the designated field to be referred to than the work contents in the other farm fields.
  • the method for calculating the value indicating similarity is not limited to the method described in the embodiment.
  • the similarity calculation unit 107 compares the time series changes for 50 days from the start of growth for other time series changes. The period to be compared may be changed. For example, the similarity calculation unit 107 may not start the growth period as the start of the comparison period.
  • time series changes for 50 days from the 11th day to the 60th day may be compared.
  • the environment such as temperature and precipitation during the first 10 days is difficult to grow, when the substantial growth starts after the 10th day, the work content is referred to. be able to.
  • the similarity calculation unit 107 may compare periods having different lengths. Specifically, the time series change for 60 days from the first day to the 60th day may be converted into a time series change for 50 days and then compared.
  • the similarity calculation unit 107 calculates a similarity value using the start date or the comparison period of the comparison period in which the similarity is the highest. Thereby, compared with the case where the comparison period is fixed, it is possible to make it easier to refer to work contents for crops grown in different periods such as temperature and precipitation.
  • the work content extraction unit 106 uses the crop whose elapsed period from the start of growth is specified by the user. You may extract the work content to the crop area
  • the work content extraction unit 106 extracts the work history using at least one of the prioritization extraction method and the priority correction extraction method as in the above-described modification.
  • the comparison period is fixed, it is easy to refer to the work contents for crops grown in different periods such as temperature and precipitation. It is possible to make it easier for the work contents in the field having a high degree of similarity of the growth curves in the common growth period to be referred to than the work contents in the other fields.
  • the work content may be extracted in consideration of the harvest amount in the field (crop region).
  • the work content extraction unit 106 extracts the work content in the crop region having a higher yield with a higher priority.
  • the user performs an operation on the user terminal 30 to register the harvest amount in association with the work content after the harvesting is completed.
  • the work content recording unit 101 records the registered harvest amount in association with the work content.
  • FIG. 15 shows an example of the recorded yield.
  • the work content recording unit 101 records “G1t (G1 ton)”, “G2t”, and the like (amount of harvest at different times) as the amount of corn harvested in the field having the field ID “HA01”. “G3t” or the like is recorded as the harvest amount of rice in the field having the field ID “HA02”.
  • the work content extraction unit 106 determines the priority using a correction table in which the type of crop, the harvest amount, and the correction coefficient are associated with each other.
  • FIG. 16 shows an example of the correction coefficient.
  • the yields “less than G11”, “G11 or more and less than G12”, and “G12 or more” are “1.0”, “0.9”, “0. 8 ”is associated with each other, and the yield and the correction coefficient are similarly associated with other crops such as rice.
  • the work content extraction unit 106 also extracts a crop name and a harvest amount as information associated with the specified farm field ID and the work date and time included in the specified growth period as described in the embodiment.
  • the work content extraction unit 106 multiplies each similarity value by a correction coefficient associated with the type and yield of the crop represented by the extracted crop name in the correction table.
  • a correction coefficient associated with the type and yield of the crop represented by the extracted crop name in the correction table.
  • the larger the yield the smaller the correction coefficient is multiplied and the value indicating the similarity (average difference) becomes smaller, so the similarity (similarity) of the growth curve itself becomes higher. Thereby, it can be made easy to refer to the work contents in the field with a large harvest amount.
  • the work content may be extracted in consideration of the progress of crop growth after work.
  • the work content extraction unit 106 extracts the work content in the crop area having a higher degree of growth from the time corresponding to the current time of the crop area specified by the user with higher priority. In the crop region where the progress of growth is large, it is considered that the worker further promoted the growth from the state where the growth was smooth or improved the growth situation from the state where the growth was not smooth.
  • FIG. 17 shows an example of the time series change of NDVI of this modification.
  • the NDVI time-series change is represented by a graph similar to that of FIG.
  • Curves FA21, FA22, and FA23 represent NDVI time-series changes in the fields A21, A22, and A23.
  • the curve FA1 of the field A1 and the similarity of time series changes until the 50th day coincide.
  • the growth of NDVI is the largest in the curve FA21, FA22 is the next, and the smallest in FA23.
  • the 50th day from the start of growth is used as the time corresponding to the current time of the designated crop area.
  • the comparison period described above is changed, for example, if the comparison period is from the 10th day to the 60th day or from the 1st day to the 60th day, any of the 60th days (that is, at the end of the comparison period) Time) is the corresponding time.
  • the work content extraction unit 106 determines that, for example, the greater the NDVI when a predetermined period has elapsed, the greater the progress of growth.
  • NDVI in the fields A21, A22, and A23 when 10 days have elapsed is n21, n22, and n23 (n21> n22> n23), respectively.
  • the elongation of NDVI in each field is represented by (n21-n20), (n22-n20), (n23-n20).
  • the work content extraction unit 106 determines the priority using a correction table in which the NDVI growth and the correction coefficient are associated with each other.
  • FIG. 18 shows an example of the correction table of this modification.
  • correction factors of “1.0”, “0.9”, and “0.8” are associated with the NDVI growth of “less than N21”, “N21 or more and less than N22”, and “N22 or more”. It has been.
  • the work content extraction unit 106 calculates the NDVI elongation by referring to the graphs of the curves FA21, FA22, and FA23 stored in the graph storage unit 108, and the correction associated with the calculated NDVI elongation in the correction table. Multiply each similarity value by a coefficient. As a result, it is possible to make it easier to refer to the work contents in the field where the growth has greatly progressed due to the work performed at the time corresponding to the current time of the designated crop region.
  • the NDVI is calculated based on the image taken when the drone 20 flies over the crop area, that is, based on the measurement value of the image sensor provided in the drone 20. It was done.
  • the accuracy of the NDVI calculated in this way varies depending on the shooting conditions. For example, the higher the flying altitude of the drone 20 at the time of photographing, the wider the crop area represented by one pixel, so that things other than crops (such as the ground) are likely to be included, and the accuracy of NDVI is lowered.
  • the weaker the solar radiation the less reflected light and the lower the accuracy of NDVI.
  • a user registers shooting conditions (flight altitude, weather, or the like) in association with, for example, work contents on the day of shooting flight.
  • the work content recording unit 101 records the registered shooting conditions in association with the work date and time.
  • the work content extraction unit 106 extracts the work content in the crop region photographed under the photographing condition that increases the accuracy of NDVI with higher priority.
  • the work content extraction unit 106 determines the priority using a correction table in which the photographing conditions and the correction coefficients are associated with each other.
  • 19A and 19B show an example of a correction table of this modification.
  • correction factors of “0.8”, “0.9”, and “1.0” are set for the imaging conditions (flight altitude) of “less than H31”, “H31 or more and less than H32”, and “H32 or more”. Are associated.
  • the shooting conditions are “4-September clear”, “October-September clear”, “4-September cloudy / rainy”, and “October-Mart cloudy / rainy”. Correction coefficients of “0.7”, “0.8”, “0.9”, and “1.0” are associated with (the higher the solar radiation intensity is, the earlier the shooting condition).
  • the work content extraction unit 106 also extracts imaging conditions as information associated with the specified farm field ID and the work date and time included in the specified growth period as described in the embodiment.
  • the work content extraction unit 106 multiplies each similarity value by a correction coefficient associated with the extracted photographing condition in the correction table.
  • the work content extraction unit 106 determines that the accuracy of NDVI increases as the flight altitude decreases.
  • the work content extraction unit 106 determines that the NDVI accuracy increases as the weather has a higher solar radiation intensity.
  • the exposure amount is set appropriately, even if the solar radiation intensity is slightly different, it is possible to photograph with an appropriate exposure amount and increase the accuracy of NDVI.
  • the shooting may be performed in a state where the exposure amount is not appropriate.
  • the photographing device 27 has an automatic exposure function (a function that automatically adjusts the combination of the aperture value and the exposure time according to the brightness of the subject), depending on the performance, for example, when the sunshine conditions change It may happen that a picture is taken with an exposure amount that is not appropriate (for example, when the weather changes during photography).
  • the work content extraction unit 106 may use the exposure amount at the time of shooting as the shooting condition, and determine that the closer the exposure amount is to an appropriate value, the higher the accuracy of NDVI.
  • the appropriate value is an exposure amount when an image capable of calculating NDVI with high accuracy is taken. As described above, the accuracy of NDVI increases as the pixel value increases, but the difference between IR and R decreases and becomes close to 0 when the pixel becomes brighter as whiteout occurs.
  • the average value of the entire pixel values of the image that can calculate NDVI with high accuracy is obtained by experiment, and the work content extraction unit 106 calculates the average of the pixel values of the image used for calculating NDVI. It is determined that the exposure amount is closer to the appropriate value as the difference between the value and the average value is smaller.
  • the exposure amount is set appropriately with respect to the solar radiation intensity at the time of shooting, that is, the above-mentioned possibility can be made by making it easy to extract the work contents in the field where the compared growth curve and the actual growth curve are close. (The possibility that the extracted work content is not helpful) can be kept low.
  • the weather conditions are conditions such as average sunshine duration, average precipitation, and average temperature during the growing period. Therefore, the priority may be determined based on the weather conditions of each field.
  • a user operator registers condition information indicating the above-described weather conditions in the field.
  • the work content recording unit 101 records the registered condition information (information indicating the weather condition in the field (crop region) of the work target specified by the user) in association with the field ID.
  • the work content recording unit 101 in this case is an example of the “condition recording unit” in the present invention.
  • the recorded weather conditions may be, for example, monthly conditions (average sunshine hours, etc.), weekly, daily, or yearly conditions. However, if the weather conditions for a short period are known, the weather conditions for a long period of time can also be obtained.
  • the work content extraction unit 106 extracts the work content in the crop region closer to the weather condition of the field (crop region) in which the weather condition indicated by the condition information recorded in the work content recording unit 101 is specified, with higher priority. .
  • the work content extraction unit 106 calculates the average sunshine time in the comparison period between the designated field and the field to be compared, and calculates the difference between them. To do.
  • the work content extraction unit 106 determines the priority by using a correction table in which values representing differences in weather conditions (difference in average sunshine duration) are associated with correction coefficients.
  • 20A and 20B show an example of the correction table of this modification.
  • correction factors of “0.8”, “0.9”, and “1.0” are added to the difference between the average sunshine hours of “less than T41”, “T41 or more and less than T42”, and “T42 or more”. It is associated.
  • the work content extraction unit 106 also extracts condition information as information associated with the specified farm ID and the work date and time included in the specified growth period as described in the embodiment.
  • the work content extraction unit 106 calculates the above difference from the weather condition indicated by the extracted condition information, and multiplies each similarity value by the correction coefficient associated with the calculated difference in the correction table. As a result, it is possible to make it easier to refer to the work contents in the field where the specified crop area and the weather condition are closer.
  • condition information is not limited to information directly indicating the weather conditions.
  • field position information may be recorded as condition information. This is because if the position indicated by the position information of the field is close, it can be said that the weather conditions are also close.
  • the work content extraction unit 106 determines the priority by using a correction table in which values representing the difference in weather conditions (distance between farm fields) and correction coefficients are associated with each other.
  • the correction coefficients “0.8”, “0.9”, and “1.0” correspond to the distances between the fields “less than D51”, “D51 or more and less than D52”, and “D52 or more”. It is attached.
  • the work content extraction unit 106 calculates the distance from the position information indicated by the extracted condition information, and multiplies each similarity value by a correction coefficient associated with the calculated distance in the correction table. As a result, it is possible to make it easier to refer to the work contents in the field where the designated crop region and the weather condition are closer.
  • the relationship information to be registered is, for example, the address of the worker himself (the worker who performs work on the crop area recorded in the work content recording unit 101), the agricultural cooperative to which he belongs, and can be contacted (knows contact information). This is information representing the same company.
  • the work content recording unit 101 records the registered relation information in association with the field ID.
  • the work content recording unit 101 in this case is an example of the “relation recording unit” in the present invention.
  • the relationship information represents the relationship between the worker who performs work on each field (crop region) and the worker who performs work on the designated crop region. Information.
  • the work content extraction unit 106 sets the priority of the work content to a worker whose relationship information representing a predetermined relationship is recorded in the work content recording unit 101 over a worker who does not record the relationship information representing the predetermined relationship. Extract it higher.
  • the predetermined relationship is a relationship in which the distance between addresses is less than a threshold value, a relationship in which agricultural cooperatives belong to the same, or a relationship that can be contacted by a trader.
  • the work content extraction unit 106 reads out the relationship information associated with the designated field and the field ID of the field to be compared, and determines whether or not the worker's relationship is a predetermined relationship.
  • the work content extraction unit 106 determines the priority using a correction table in which the relationship between workers and the correction coefficient are associated with each other.
  • FIG. 21 shows an example of the correction table of this modification.
  • correction factors of “0.8”, “0.9”, and “1.0” correspond to the relationships between the workers “contactable”, “neighborhood, same agricultural cooperative”, and “unrelated”. It is attached.
  • the work content extraction unit 106 multiplies each similarity value by a correction coefficient associated in the correction table with the relationship between workers determined as described above. “Contactable” workers can be contacted to inquire about their work, and “Neighborhood, same agricultural cooperative” workers can also have opportunities to meet regularly or ask someone for contact information. There is a high possibility of doing. Thus, according to this modification, it is possible to make reference to the work contents of an operator who can easily inquire directly about the work contents.
  • the work content extraction unit 106 notifies the extracted work content as it is.
  • This work content is the work content registered by the worker, and is information (information that may become so-called personal information) that may lead to specifying an individual depending on the content. Therefore, notification may be performed so that an individual is not specified.
  • the work content extraction unit 106 calculates a representative value from the numerical values for work included in the extracted work content, and the work content represented by the representative value is represented by a user (worker who specifies a crop region). ).
  • the work content extraction unit 106 of this modification is an example of the “first notification unit” of the present invention.
  • the numerical values for work include, for example, the amount of fertilizer to be sprayed, the amount of pesticide, and the length of time for watering.
  • the work content extraction unit 106 identifies work items that are performed most frequently in a predetermined period of the extracted work content.
  • the work content extraction unit 106 calculates an average value, a median value, a mode value, or the like of the numerical values for work included in the work details of the specified work item as a representative value. In addition, the work content extraction unit 106 identifies a work device that is most frequently used among the work devices included in the device information of the identified work item. The work content extraction unit 106 generates response data representing the calculated representative value and the specified work device as work content, and transmits the response data to the user terminal 30.
  • FIG. 22 shows an example of the work content displayed in this modification.
  • the character string “The following are typical work contents” and “Agricultural chemical ⁇ spraying” on the “40th to 50th day” and “Sprayer” in the amount of “ ⁇ liter / 10a” are used. It is displayed that “Agricultural chemical ⁇ spraying” was performed using “drone” in the amount of “XX liter / 10a” on “50th to 60th day”. By notifying these pieces of information, it is possible to refer to work contents performed in the past without fear of knowing personal information.
  • Notification method 2 to workers there is no risk of personal information being known by notifying the representative value or the like, but the individual is not necessarily specified from the work contents, and even if the individual is specified between users Some users may not care. Therefore, the notification may be made only when it is confirmed that the work content can be notified.
  • the input receiving unit 301 transmits input data including information indicating whether or not the input notification is possible (allowance information) to the server device 10.
  • the work content recording unit 101 acquires and records the availability information included in the input data, that is, information indicating the availability of notification of the work content determined by the worker.
  • the work content recording unit 101 in this case is an example of the “probability acquisition unit” in the present invention.
  • the work content extraction unit 106 uses the work content acquired by the work content recording unit 101 as the availability information indicating that notification is possible among the extracted work content, as the user (worker) who specified the crop region. ).
  • the work content extraction unit 106 of this modification is an example of the “second notification unit” of the present invention.
  • the work content extraction unit 106 does not notify the worker of the work content acquired by the work content recording unit 101 with the availability information indicating that notification is impossible.
  • the work content extraction unit 106 does not notify the work content for which the availability information indicating that notification is impossible is obtained, but does not notify the work content at all.
  • the representative value may be calculated, the most work content and work equipment may be specified, and the work content represented by them may be notified. Thereby, the work content of the worker who dislikes to know the personal information can be used as a reference.
  • the user designates the field (crop area), but this is not restrictive.
  • the work contents may be extracted by periodically specifying the field of each user in which the server device 10 is registered. In that case, the user can browse the work content already extracted by designating his / her field.
  • the index map generation unit 104 generates an NDVI map for each area using the area corresponding to the shooting range as the segmented area, but the segmented area is not limited to this.
  • a plurality of shooting ranges may be used as one segmented region, or a region corresponding to a divided region obtained by dividing one shooting region into a plurality of segments may be used as the segmented region.
  • the shape and size of each segmented region may be unified or not uniform.
  • the similarity is represented by a numerical value.
  • the present invention is not limited to this and may be represented by information other than the numerical value.
  • it may be represented by characters such as “high”, “medium”, “low”, “A”, “B”, “C”, or may be represented by a symbol, a symbol, or the like.
  • the work content extraction unit 106 identifies a crop region having a similarity of “medium” or more as a crop region having a similarity of at least a predetermined level. That's fine.
  • the difference in the degree of similarity is represented in a comparable manner, and the degree of similarity may be represented by any information as long as it can be determined whether or not the degree of similarity is equal to or higher than a predetermined level.
  • a rotary wing aircraft was used as a vehicle for autonomous flight, but the invention is not limited to this.
  • it may be an airplane type aircraft or a helicopter type aircraft.
  • the function of autonomous flight is not essential, and if it is possible to fly the assigned flight airspace in the assigned flight permission period, for example, a radio control type (wireless control type) operated by a pilot from a remote location. May be used.
  • the NDVI is calculated based on the image taken by the drone 20 during the flight, but the present invention is not limited to this.
  • the NDVI may be calculated based on an image manually photographed by a worker using a digital camera or an image photographed by a fixed digital camera installed on a farm field.
  • NDVI may be calculated based on an image taken from a satellite.
  • the NDVI is calculated using the measured value of the image sensor 272 of the photographing device 27.
  • the present invention is not limited to this, and for example, the NDVI is calculated using the measured value of an infrared sensor of a handy type NDVI measuring instrument. May be.
  • the calculation of NDVI is preferably performed for the entire field (crop area), but even if only a part is performed, the tendency of the growth status of the crop in the field appears. Can be helpful.
  • NDVI is used as an index indicating the growth status, but the present invention is not limited to this.
  • a leaf color value value indicating the color of a leaf
  • a planting rate occupation rate per unit area of a planting region
  • SPAD chlororophyll content
  • plant height number of stems, or the like
  • any value may be used as an index representing the growth status as long as it represents the growth status of the crop and can be calculated from the captured crop region image.
  • the apparatus for realizing each function shown in FIG. 4 and the like may be different from those shown in FIG.
  • the drone may have all or some of the functions of the server device.
  • the drone processor is an example of the “information processing apparatus” of the present invention.
  • the user terminal may realize the function of the server device.
  • the user terminal is an example of the “information processing apparatus” of the present invention.
  • each function may be performed by another function or may be performed by a new function.
  • the index map generation unit 104 may perform an operation performed by the index calculation unit 103 (an index calculation operation).
  • a notification unit newly provided for notification of work content performed by the work content extraction unit 106 may be performed.
  • Two or more devices may realize each function provided in the server device. In short, as long as these functions are realized as the whole agricultural support system, the agricultural support system may include any number of devices.
  • the present invention includes an information processing device such as the server device and user terminal described above, a flying object such as a drone (a drone may also serve as an information processing device), It can also be understood as an information processing system such as an agricultural support system including a device and a flying object.
  • the present invention can be understood as an information processing method for realizing processing performed by each device, or as a program for causing a computer that controls each device to function.
  • This program may be provided in the form of a recording medium such as an optical disk in which it is stored, or may be provided in the form of being downloaded to a computer via a network such as the Internet, installed and made available for use. May be.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Tourism & Hospitality (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental Sciences (AREA)
  • Forests & Forestry (AREA)
  • Economics (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Strategic Management (AREA)
  • Agronomy & Crop Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Marketing (AREA)

Abstract

作物に関する作業において過去の作業内容を参考にする仕組みを提供すること。 作業内容記録部(101)は、入力された作業内容等を記録する。指標算出部(103)は、取得された作物領域の画像に基づいてその画像に写る作物の生育状況を表す指標を算出する。指標マップ生成部(104)は、算出された指標(NDVI)に基づいて圃場の作物の生育状況を示す指標マップを生成する。生育情報記録部(105)は、生成された指標マップ等を生育情報として記録する。類似度算出部(107)は、指定された圃場(作業者が作業を行う圃場)とそれ以外の圃場との指標の時系列変化の類似度を示す値を算出する。作業内容抽出部(106)は、算出された値が示す類似度が所定レベル以上となる作物領域に関して行われた作業内容を抽出する。

Description

情報処理装置
 本発明は、作物に関する作業の内容の決定を支援する技術に関する。
 作物に関する作業の内容の決定を支援する技術が知られている。特許文献1には、作物を撮影した画像データから算出される換算葉色値等の観察されるデータに基づいて、肥料の量の決定等の施肥管理やその他の農作業を含む肥培管理を支援する技術が開示されている。
特開2017-125705号公報
 作物に関する作業を行う際には、過去の作業内容(他人が行ったものでも自分が行ったものでもよい)を参考にできると便利である。しかし、特許文献1の技術では、作業者が作業を行う圃場に関する情報(観察されるデータ)を参考にすることはできるが、過去の作業内容を参考にすることは考慮されていない。
 そこで、本発明は、作物に関する作業において過去の作業内容を参考にする仕組みを提供することを目的とする。
 上記目的を達成するために、本発明は、少なくとも1の作物領域に対するセンサの測定値に基づいて算出される作物の生育状況を表す指標及び当該測定値の測定時期を対応付けて記録する指標記録部と、前記少なくとも1の作物領域に関して行われた少なくとも1の作業内容及び作業時期を対応付けて記録する作業記録部と、前記指標記録部に前記指標が記録されている前記少なくとも1の作物領域のうちの、指定された作物領域と前記指標の時系列変化の類似度が所定レベル以上の作物領域に関して行われた作業内容を前記作業記録部に記録されている前記少なくとも1の作業内容から抽出する抽出部とを備える情報処理装置を提供する。
 本発明によれば、作物に関する作業において過去の作業内容を参考にする仕組みを提供することができる。
実施例に係る農業支援システムの全体構成を表す図 サーバ装置のハードウェア構成を表す図 ドローンのハードウェア構成を表す図 農業支援システムが実現する機能構成を表す図 記録された作業内容の一例を表す図 圃場の撮影方法の一例を表す図 画素単位のNDVIマップの一例を表す図 領域単位のNDVIマップの一例を表す図 NDVIの時系列変化の一例を表す図 表示された作業内容の一例を表す図 作業内容記録処理における各装置の動作手順の一例を表す図 生育情報記録処理における各装置の動作手順の一例を表す図 提示処理における各装置の動作手順の一例を表す図 抽出された作業内容の一例を表す図 抽出された作業内容の一例を表す図 抽出された作業内容の一例を表す図 抽出された作業内容の一例を表す図 記録された収穫量の一例を表す図 補正係数の一例を表す図 変形例のNDVIの時系列変化の一例を表す図 変形例の補正テーブルの一例を表す図 変形例の補正テーブルの一例を表す図 変形例の補正テーブルの一例を表す図 変形例の補正テーブルの一例を表す図 変形例の補正テーブルの一例を表す図 変形例の補正テーブルの一例を表す図 変形例で表示された作業内容の一例を表す図
(1)実施例
 図1は実施例に係る農業支援システム1の全体構成を表す。農業支援システム1は、作物の生育状況を表す指標を活用して、圃場(稲、野菜及び果物等の作物を生育する場所)での作業を行う者を支援するシステムである。生育状況を表す指標とは、作物の生育段階の進み具合(例えば収穫に適した時期か否か)と、サイズ及び病気の有無等の状況(活性度ともいう)との一方又は両方を表す指標である。
 本実施例では、後述するNDVI(Normalized Difference Vegetation Index:正規化差植生指数)が用いられ、飛行体によって上空から撮影された圃場の画像を用いてその圃場の作物の生育状況を表す指標が算出される。飛行体は圃場を撮影可能であれば何でもよく、本実施例ではドローンが用いられる。農業支援システム1は、ネットワーク2と、サーバ装置10と、ドローン20と、ユーザ端末30とを備える。
 ネットワーク2は、移動体通信網及びインターネット等を含む通信システムであり、自システムにアクセスする装置同士のデータのやり取りを中継する。ネットワーク2には、サーバ装置10が有線通信で(無線通信でもよい)アクセスしており、ドローン20及びユーザ端末30が無線通信(ユーザ端末30は有線通信でもよい)でアクセスしている。
 ユーザ端末30は、本システムのユーザ(例えば圃場で作業を行う作業者)が利用する端末であり、例えばスマートフォン、ノートパソコン又はタブレット端末等である。ドローン20は、本実施例では、1以上の回転翼を備え、それらの回転翼を回転させて飛行する回転翼機型の飛行体である。ドローン20は、飛行しながら上空から圃場を撮影する撮影機能を備えている。ドローン20は、例えば作業者によって圃場まで持ち運ばれ、撮影飛行開始の操作が行われることで飛行及び撮影を行う。
 サーバ装置10は、作業者の支援に関する処理を行う情報処理装置である。サーバ装置10は、例えば、ドローン20により撮影された圃場の映像から前述したNDVIを算出する処理を行う。NDVIは、植物の緑葉が赤色の可視光を多く吸収して近赤外領域の波長(0.7μm~2.5μm)の光を多く反射するという性質を利用して作物の生育状況を数値で表す。
 サーバ装置10は、算出したNDVIに基づいて作物の生育状況を表す生育情報を記録すると共に、作業者が行った作業内容を記録する。この作業内容は、例えばユーザ端末30に作業者が入力することで記録される。サーバ装置10は、記録したこれらの情報から、作業者が作業を行う圃場と作物の生育状況が似ていた圃場における過去の作業内容を抽出し、作業者に提示する。作業者は、提示された作業内容を参考にして、自分が作業を行う圃場の作物への散水、肥料散布及び農薬散布等のタイミングを判断することができる。
 図2はサーバ装置10及びユーザ端末30のハードウェア構成を表す。サーバ装置10及びユーザ端末30は、いずれも、プロセッサ11と、メモリ12と、ストレージ13と、通信装置14と、入力装置15と、出力装置16と、バス17という各装置を備えるコンピュータである。なお、ここでいう「装置」という文言は、回路、デバイス及びユニット等に読み替えることができる。また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。
 プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュール及びデータ等を、ストレージ13及び/又は通信装置14からメモリ12に読み出し、これらに従って各種の処理を実行する。
 各種処理を実行するプロセッサ11は1つでもよいし、2以上であってもよく、2以上のプロセッサ11は、同時又は逐次に各種処理を実行してもよい。また、プロセッサ11は、1以上のチップで実装されてもよい。プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ12は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及びRAM(Random Access Memory)等の少なくとも1つで構成されてもよい。メモリ12は、レジスタ、キャッシュ及びメインメモリ(主記憶装置)等と呼ばれてもよい。メモリ12は、前述したプログラム(プログラムコード)、ソフトウェアモジュール及びデータ等を保存することができる。
 ストレージ13は、コンピュータが読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。
 ストレージ13は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ12及び/又はストレージ13を含むデータベース、サーバその他の適切な媒体であってもよい。通信装置14は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 入力装置15は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置16は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカなど)である。なお、入力装置15及び出力装置16は、一体となった構成(例えば、タッチスクリーン)であってもよい。また、プロセッサ11及びメモリ12等の各装置は、情報を通信するためのバス17を介して互いにアクセス可能となっている。バス17は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 図3はドローン20のハードウェア構成を表す。ドローン20は、プロセッサ21と、メモリ22と、ストレージ23と、通信装置24と、飛行装置25と、センサ装置26と、撮影装置27と、バス28という各装置を備えるコンピュータである。なお、ここでいう「装置」という文言は、回路、デバイス及びユニット等に読み替えることができる。また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。
 プロセッサ21、メモリ22、ストレージ23、通信装置24及びバス28は、図2に表す同名の装置と同種のハードウェア(性能及び仕様等は同じとは限らない)である。通信装置24は、ネットワーク2との無線通信に加え、ドローン同士の無線通信を行うこともできる。飛行装置25は、モータ及びローター等を備え、自機を飛行させる装置である。飛行装置25は、空中において、あらゆる方向に自機を移動させたり、自機を静止(ホバリング)させたりすることができる。
 センサ装置26は、飛行制御に必要な情報を取得するセンサ群を有する装置である。センサ装置26は、自機の位置(緯度及び経度)を測定する位置センサと、自機が向いている方向(ドローンには自機の正面方向が定められており、その正面方向が向いている方向)を測定する方向センサと、自機の高度を測定する高度センサと、自機の速度を測定する速度センサと、3軸の角速度及び3方向の加速度を測定する慣性計測センサ(IMU(Inertial Measurement Unit))とを備える。
 撮影装置27は、レンズ271及びイメージセンサ272等を有し、イメージセンサ272で撮影した画像をデジタルデータで記録するいわゆるデジタルカメラである。このイメージセンサ272は、可視光に加えて、NDVIの算出に必要な近赤外領域の波長の光にも感度を有する。撮影装置27は、自機(ドローン20)の筐体の下部に取り付けられ、撮影方向が固定されており、自機の飛行中に鉛直下方を撮影する。
 なお、サーバ装置10及びドローン20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、及び、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11は、これらのハードウェアの少なくとも1つで実装されてもよい。
 農業支援システム1が備えるサーバ装置10及びドローン20には、本システムで提供されるプログラムが記憶されており、各装置のプロセッサがプログラムを実行して各部を制御することで以下に述べる機能群が実現される。
 図4は農業支援システム1が実現する機能構成を表す。サーバ装置10は、作業内容記録部101と、作物画像取得部102と、指標算出部103と、指標マップ生成部104と、生育情報記録部105と、作業内容抽出部106と、類似度算出部107と、グラフ記憶部108とを備える。
 ドローン20は、飛行制御部201と、飛行部202と、センサ測定部203と、撮影部204とを備える。ユーザ端末30は、入力受付部301と、作業内容表示部302とを備える。入力受付部301は、圃場で生育する作物に関して行われる作業内容等の入力を受け付ける。作業者は、圃場での作業を行う前又は行った後に、ユーザ端末30を操作して作業を行う圃場を識別する情報(例えば圃場ID(Identification))と、圃場で生育している作物の名称と、作業内容及び作業日時とを入力する。
 作業内容とは、例えば、散水、肥料散布及び農薬散布等の作業項目と、散水量(散水時間)、肥料の量、農薬の量、散布位置及び散布時間帯等の作業詳細と、作業で用いる農具及び農作業用機械等の機器情報とのうち少なくとも1つ以上を含む情報である。なお、これらの入力内容は毎回全て入力する必要はなく前回と同じものは入力を不要にしてもよい。また、選択肢から選べるようにして入力の手間を軽減してもよい。
 本実施例では、1つの圃場では基本的に1つの種類の作物を育てているものとする。ただし、1つの圃場で同時に異なる種類の複数の作物を育てている場合があってもよい。その場合は、例えば作物が共通する領域を1つの圃場として扱い、それらの圃場毎に圃場IDが定められればよい。作物が異なれば作業内容も異なるから、作業者は、作物毎(圃場毎)に作業内容を入力する。入力受付部301は、入力された圃場ID、作物名称、作業内容及び作業日時を示す入力データをサーバ装置10に送信する。
 サーバ装置10の作業内容記録部101は、送信されてきた入力データが示す圃場ID、作物名称、作業内容、作業日時及び作業者IDを互いに対応付けて記録する。これらを記録することで、作業内容記録部101は、圃場IDが示す圃場の作物領域に関して行われた作業内容及び作業時期(作業日時によって示される)を対応付けて記録する。作業内容記録部101は本発明の「作業記録部」の一例である。
 図5は記録された作業内容の一例を表す。図5の例では、作業内容記録部101は、圃場ID、作物名称、作業日時、作業項目、作業詳細、機器情報をそれぞれ対応付けて記録している。例えば「HA01」という圃場IDには、「トウモロコシ」を育てたときの作業内容が記録され、「HA02」という圃場IDには、「稲」を育てたときの作業内容が記録されている。なお、「トウモロコシ」の作物名称を分けているのは、生育期間が異なっていることを表している(1つ目の「トウモロコシ」は2017年の作業内容に、2つ目の「トウモロコシ」は2016年の作業内容に対応付けられている)。
 ここまでは作業内容を記録する記録処理に関する機能及び動作について説明した。記録処理は、作業者が作業内容を入力する度に行われる。作業内容の入力は作業の度に行われることが望ましいが、作業日時が対応付けられていて作業時期が分かるようになっていれば、複数回の作業内容がまとめて入力されてもよい。その場合は、複数回の作業内容を記録する記録処理が行われる。
 一方、ドローン20による圃場の撮影は、毎日行われる必要はないが、数日から1週間に一度程度行われることが望ましい。作業者は、そのくらいの頻度で圃場にドローン20を持ち込んで撮影飛行開始の操作を行う。ドローン20の飛行制御部201は、自機の飛行を制御する機能であり、例えば、この撮影飛行開始の操作が行われると、飛行制御を開始する。
 飛行制御部201は、例えば、作業者がユーザ端末30等を用いて予め登録した圃場の地理的な範囲を示す圃場範囲情報(例えば圃場の外縁を示す緯度及び経度の情報)を記憶しておき、その圃場範囲情報に基づいて、圃場全体の上空を一定の高度で飛行する飛行経路で自機を飛行させる制御を行う。この場合の飛行経路は、例えば長方形の圃場であれば、圃場の一方の辺からその辺に対向する他方の辺まで波状の軌跡を描いて飛行する経路である。
 他にも、圃場の外縁に沿って飛行して、1周したら内側に経路をずらして渦巻き状の軌跡を描いて飛行する経路であってもよく、要するに圃場の全体を万遍なく飛行する飛行経路であればよい。飛行部202は、自機を飛行させる機能であり、本実施例では、飛行装置25が備えるモータ及びローター等を動作させることで自機を飛行させる。センサ測定部203は、センサ装置26が備える各センサ(位置センサ、方向センサ、高度センサ、速度センサ、慣性計測センサ)による測定を行う。
 センサ測定部203は、自機の位置、方向、高度、速度、角速度、加速度を所定の時間間隔で繰り返し測定し、測定したそれらの情報を示すセンサ情報を飛行制御部201に供給する。飛行制御部201は、供給されたセンサ情報に基づいて飛行部202を制御し、前述した飛行経路に沿って自機を飛行させる。センサ測定部203は、測定した位置、方向、高度及び速度を示すセンサ情報を撮影部204に供給する。
 撮影部204は、撮影装置27を用いて被写体を撮影する機能である。撮影部204は、飛行制御部201が上記のとおり圃場の上空を飛行する制御を行っているときには、その圃場を被写体として撮影する。撮影部204は、圃場を撮影することで、その圃場において作物が生育している領域も撮影することになる。撮影部204により撮影される圃場の領域は本発明の「作物領域」の一例である。
 撮影装置27のイメージセンサ272は上記のとおり近赤外領域の波長の光にも感度を有するので、撮影部204が撮影した静止画像を形成する各画素は、可視光の赤色を示すピクセル値(R)と共に、近赤外領域の波長の光を示すピクセル値(IR)によって表される。撮影部204は、供給されたセンサ情報に基づいて、圃場内の全ての領域が含まれるように、複数の静止画像を撮影する。
 図6は圃場の撮影方法の一例を表す。図6では、ドローン20が圃場A1の上空を波状の軌跡を描いて飛行する際の経路B1が表されている。撮影部204は、センサ情報が示す高度及び撮影装置27の画角から圃場(地上0m地点)の撮影範囲(画角に含まれる圃場の範囲)を算出する。そして、撮影部204は、センサ情報が示す速度及び方向から現時点の撮影範囲と前回の撮影範囲とが重複する面積の割合(例えば撮影範囲の面積を100%とした場合の重複面積のパーセンテージで表す)が閾値未満になったときに次の撮影を行う。
 撮影部204は、図6の例であれば、最初に撮影領域C1を撮影し、次に撮影領域C1と少し重なった撮影領域C2を撮影する。また、撮影部204は、自機(ドローン20)の折り返しの際に、算出した撮影範囲の大きさを飛行制御部201に通知する。飛行制御部201は、通知された大きさの撮影範囲が例えば図6の撮影領域C4及びC5のように重複する距離だけ経路をずらして折り返す。
 撮影部204は、この方法での撮影を繰り返すことで、図6に表す撮影領域C1からC32までを撮影した静止画像、すなわち、撮影範囲が少しずつ重複した複数の静止画像を撮影する。なお、図6の例では圃場A1が複数の撮影範囲を丁度収められる大きさ及び形になっていたが、そうなっていなくてもよい。その場合は、撮影範囲同士の重複部分を広くしたり、圃場の外部を含めて撮影したりすることで、圃場内の全ての領域がいずれかの静止画像に含まれるようになる。
 なお、撮影部204による撮影方法はこれに限らない。例えば撮影の際の飛行速度及び飛行高度が決まっていれば、撮影範囲が図6に表すように重複する時間の間隔が予め算出されるので、その時間の間隔で撮影が行われてもよい。また、圃場の地図と撮影位置とが予め決められていれば、撮影部204は、その決められた位置を飛行しているときに撮影すればよい。これら以外にも、ドローンを用いて地上を撮影するための周知の方法が用いられてもよい。
 ドローン20が備える各部の動作は、上述した農作業者による撮影飛行開始の操作が行われることで開始される。各部の動作が開始されると、ドローン20は圃場の上空を設定された飛行経路で飛行し、撮影部204は、前述のとおり繰り返し撮影を行う。撮影部204は、撮影を行うと、撮影した静止画像と、撮影に関する撮影情報(撮影したときの位置、方位、高度及び時刻と撮影した圃場の圃場ID(作業者が予め登録しておく)とを示す情報)とを示す画像データを生成してサーバ装置10に送信する。
 サーバ装置10の作物画像取得部102は、送信されてきた画像データを受け取ることで、その画像データが示す静止画像を、ドローン20が撮影した作物領域の画像として取得する。また、作物画像取得部102は、受け取った画像データが示す撮影情報も取得し、取得した静止画像と共に指標算出部103に供給する。
 指標算出部103は、作物画像取得部102により取得された作物領域の画像に基づいてその画像に写る作物の生育状況を表す指標を算出する。指標算出部103は、上述したNDVIを、生育状況を表す指標として算出する。指標算出部103は、例えば、静止画像の画素毎に、上述した赤色のピクセル値(R)及び近赤外領域の波長の光のピクセル値(IR)をNDVI=(IR-R)/(IR+R)という式に代入してNDVIを算出する。
 指標算出部103は、算出したNDVIを対応する画素を示す画素IDに対応付けて示す指標情報を生成し、撮影情報と共に指標マップ生成部104に供給する。指標情報及び撮影情報は、作物領域の画像が取得される度に、すなわちドローン20が圃場の画像を撮影する度に供給される。指標マップ生成部104は、指標算出部103により算出された指標(NDVI)に基づいて圃場の作物の生育状況を示す指標マップを生成する。
 指標マップとは、圃場内の各位置又は各領域における指標(NDVI)を地図上で表す情報である。まず、指標マップ生成部104は、各画素に対応する圃場上の位置におけるNDVIを表す画素単位のNDVIマップを生成する。
 図7は画素単位のNDVIマップの一例を表す。図7の例では、図6に表す圃場A1の画素単位のNDVIマップM1が表されている。
 NDVIマップM1は、左上角の画素D1と、左下角の画素D2と、右上角の画素D3と、右下角の画素D4とを角に持つ長方形のマップである。画素D1に表された「0.3」は、図6に表す左上角の撮影領域C1の画像の左上角の画素におけるNDVIであり、画素D2に表された「-0.5」は、図6に表す左下角の撮影領域C4の画像の左下角の画素におけるNDVIである。
 画素D4に表された「0.2」は、図6に表す右下角の撮影領域C29の画像の右下角の画素におけるNDVIであり、画素D3に表された「0.3」は、図6に表す右上角の撮影領域C32の画像の右上角の画素におけるNDVIである。NDVIマップM1には、隣接する撮影領域の重複部分を示す画素が含まれている。指標マップ生成部104は、これらの画素については、各撮影領域を撮影した静止画像からそれぞれ算出されたその画素(圃場A1の同一地点を示す画素)のNDVIの平均値を用いている。
 NDVIマップM1は、ドローン20が撮影領域C32を撮影して各部が上記動作を行うことで完成する。指標マップ生成部104は、本実施例では、こうして生成した画素単位のNDVIマップM1から、圃場A1を区分する複数の領域毎の作物の生育状況を表す領域単位のNDVIマップを生成する。
 図8は領域単位のNDVIマップの一例を表す。図8に表すNDVIマップM2では、図6に表す撮影領域C1~C32に対応する区分領域E1~E32が表されている。
 各区分領域は、NDVIの平均値の大きさに応じて模様が付けられている。例えば区分領域E1、E2及びE8等はNDVIの平均値が0.6以上であることを示す模様が付けられている。同様に、区分領域E7及びE9等はNDVIの平均値が0.2以上0.6未満であることを示す模様が付けられ、区分領域E3及びE4等はNDVIの平均値が-0.2以上0.2未満であることを示す模様が付けられている。
 指標マップ生成部104は、生成した画素単位のNDVIマップ及び領域単位のNDVIマップを、これらのマップの元になった画像の撮影情報及び撮影日時に対応付けて生育情報記録部105に供給する。生育情報記録部105は、作物領域に対するセンサの測定値に基づいて算出される作物の生育状況を表す指標及びその測定値の測定時期を対応付けて、生育情報として記録する。生育情報記録部105は本発明の「指標記録部」の一例である。
 生育情報記録部105は、本実施例では、ドローン20が撮影した画像が表すピクセル値を撮影装置27のイメージセンサ272の測定値として用いて、それらのピクセル値から算出されたNDVIを表す指標マップと、撮影日時及び撮影情報とを対応付けて記録することで、生育情報の記録を行う。また、生育情報記録部105は、作業内容記録部101を参照して、撮影情報が示す圃場IDに対応付けられている作物名称を読み出してその撮影情報に対応付けて、生育情報として記録する。サーバ装置10には、こうして圃場毎の作業内容と生育情報とが記録されていく。
 続いて、作業者が作業を行う圃場と作物の生育状況が似ていた圃場における過去の作業内容を抽出し、作業者に提示する処理に関する機能及び動作を説明する。ユーザは、ユーザ端末30に対して、自分が作業を行う圃場を指定し、指定した圃場において参考になる過去の作業内容を表示させる表示操作を行う。ユーザ端末30の作業内容表示部302は、この表示操作を受け付けると、ユーザによって指定された圃場(作業者が作業を行う圃場のこと)の圃場IDと作業内容の要求を示す要求データをサーバ装置10に送信する。
 サーバ装置10の作業内容抽出部106は、送信されてきた要求データを受け取ると、要求された作業内容、すなわち、要求データが示す圃場IDの圃場において参考になる過去の作業内容を、作業内容記録部101に記録されている作業内容から抽出する。作業内容抽出部106は本発明の「抽出部」の一例である。作業内容抽出部106は、要求データが示す圃場IDの圃場で現在生育中の作物領域のNDVIの時系列変化と、その他の作物領域のNDVIの時系列変化との類似度を示す値の算出を類似度算出部107に要求する。
 図9はNDVIの時系列変化の一例を表す。図9では、作物の生育が開始されてから経過した時間を横軸に、NDVIを縦軸にしたグラフによってNDVIの時系列変化が表されている。例えば曲線FA11、FA12、FA13は、圃場A11、A12、A13で過去に算出されたNDVIの圃場全体の平均値の時系列変化を表している。これらの時系列変化は、圃場における作物の成長曲線を表している。これらの時系列変化は、それぞれ傾き、ピーク(NDVIの最大値)及びピークの時期が異なっているが、いずれも同じ作物の成長曲線を表しているものとする。
 グラフ記憶部108は、図9に表すようなNDVIの時系列変化を表すグラフを生成して記憶する。グラフ記憶部108は、生育情報記録部105に記録された生育情報から、同じ圃場の同じ作物の生育開始から終了までのNDVIマップを読み出し、その作物の各生育段階における圃場全体のNDVIの平均値を算出する。そして、グラフ記憶部108は、例えばスプライン曲線又はベジェ曲線等を用いて図9に表すように滑らかな曲線で時系列変化を表すグラフを生成する。
 なお、グラフ記憶部108は、撮影日とNDVIの平均値とを示す点をプロットし、各点を直線で結ぶグラフを生成してもよい。いずれの場合でも、グラフ記憶部108は、任意の生育時間に対応するNDVIを求めることが可能なようにNDVIが算出されていない期間を補間したグラフを生成する。グラフ記憶部108は、こうして生成したグラフを圃場ID及び生育期間(生育開始日及び収穫日で表される期間)に対応付けて記憶する。
 グラフ記憶部108は、同じ圃場でも年が変われば別のグラフを生成し、同じ年でも複数回作物を育てる場合はその度に異なるグラフを生成する。また、グラフ記憶部108は、上述したように1つの圃場で複数種類の作物が育てられる場合には、作物が共通する領域を1つの圃場として扱い、それらの圃場毎にグラフを生成する。グラフ記憶部108は、定期的に又は生育情報記録部105に生育情報が記録される度にグラフを生成及び更新して、常に最新のグラフを記憶する。
 類似度算出部107は、前述のとおりユーザによって指定された圃場(作業者が作業を行う圃場)とそれ以外の圃場との指標の時系列変化の類似度を示す値を算出する。類似度算出部107は、まず、指定された圃場の圃場IDに対応付けられ且つ作物が生育途中のグラフ(生育が終了していれば作業内容を参考にする必要がないため)をグラフ記憶部108から読み出す。図9には、このとき読み出されるグラフの曲線FA1が表されている。曲線FA1は、圃場A1で現在生育中の作物についての50日間のNDVIの時系列変化を表している。
 類似度算出部107は、例えば、指定された圃場のグラフと、比較相手のグラフとについて1日毎のNDVIの補間値を算出し、それらの差分の平均値を、類似度を示す値として算出する。この場合、値が小さいほど類似度が高いことを表す。なお、この方法に限らず、その他のグラフの類似度を評価する周知の技術が用いられてもよい。類似度算出部107は、いずれかの方法を用いて、グラフ記憶部108に記憶されている全てのグラフについて類似度の値(類似度を示す値)を算出する。
 類似度算出部107は、こうして算出した類似度の値を、比較相手のグラフの圃場ID及び生育期間に対応付けて作業内容抽出部106に供給する。作業内容抽出部106は、供給された類似度の値のうち閾値未満の類似度の値に対応付けられている圃場ID及び生育期間を特定する。例えば図9の例であれば、曲線FA1と曲線FA12との類似度の値は閾値未満であり、曲線FA1と曲線FA11及びFA13との類似度の値は閾値以上になるとする。
 その場合、作業内容抽出部106は、圃場A12の圃場ID及び曲線FA12の元になる画像が撮影された時期に該当する生育期間を特定する。こうして特定された圃場ID及び生育期間は、指定された圃場で生育している作物とNDVIの時系列変化が似ている圃場とその圃場で生育した作物の生育期間とを表している。
 作業内容抽出部106は、作業内容記録部101を参照し、特定した圃場IDと、特定した生育期間に含まれる作業日時とに対応付けられた情報(作業名称、作業項目、作業詳細、機器情報)を抽出する。このように、作業内容抽出部106は、まず、生育情報記録部105に指標(NDVI)が記録されている作物領域のうちから、ユーザによって指定された圃場の作物領域と指標の時系列変化の類似度が所定レベル以上(類似度の値が閾値未満)となる作物領域を特定する。
 そして、作業内容抽出部106は、作業内容記録部101に記録されている作業内容から、特定した作物領域に関して行われた作業内容を抽出する。作業内容抽出部106は、こうして抽出した作業内容と、特定した圃場IDが示す圃場の名称及び生育期間とを示す応答データをユーザ端末30に送信する。作業内容抽出部106は、例えば、生育期間における全ての作業内容と、指定された圃場の現在までの生育時間(図9の例では50日間)とを示す応答データを送信する。
 作業内容表示部302は、送信されてきた応答データが示す情報を、要求した作業内容として表示する。
 図10は表示された作業内容の一例を表す。図10の例では、作業内容表示部302は、「作業計画参考画面」に、「以下の作業内容が参考になりそうです。」という文字列と、「BB」という圃場で「トウモロコシ」を育てる際に行われた2017年及び2015年の作業内容と、「CC」という圃場で「トウモロコシ」を育てる際に行われた2017年の作業内容とが表示されている。作業内容表示部302は、応答データが示す生育時間(図9の例では50日間)の前後に行われた作業内容を表示している。
 このようにして、作業内容抽出部106は、指定された作物領域の作業者に、抽出した作業内容(特にその作物領域の現在の生育状況に近い生育状況である時期に行われた作業内容)を通知する。これにより作業者は、現在の生育状況での作業内容を決めるにあたり、表示された作業内容、すなわち似た生育状況の作物に対して過去に行われた作業内容を参考にすることができる。なお、作業内容表示部302は、図10の例では応答データが示す情報の一部を表示しているが、ユーザの操作によりその他の情報(これまでの作業内容及びこれからの作業内容等)を表示してもよい。
 農業支援システム1が備える各装置は、上記の構成に基づいて、作業内容を記録する作業内容記録処理、生育情報を記録する生育情報記録処理、作業の参考になる作業内容をユーザに提示する提示処理を行う。
 図11は作業内容記録処理における各装置の動作手順の一例を表す。この動作手順は、ユーザにより作業内容の入力が行われることを契機に開始される。
 まず、ユーザ端末30(入力受付部301)は、圃場で生育する作物に関して行われる作業内容等の入力を受け付け(ステップS11)、入力された内容を示す入力データをサーバ装置10に送信する(ステップS12)。サーバ装置10(作業内容記録部101)は、送信されてきた入力データが示す作業内容等を記録する(ステップS13)。
 図12は生育情報記録処理における各装置の動作手順の一例を表す。この動作手順は、ユーザによりドローン20の撮影飛行開始の操作が行われることを契機に開始される。まず、ドローン20(飛行制御部201、飛行部202及びセンサ測定部203)は、記憶している圃場範囲情報に基づき圃場上空での飛行を開始する(ステップS21)。次に、ドローン20(撮影部204)は、圃場上空からの各撮影領域の撮影を開始する(ステップS22)。
 ドローン20(撮影部204)は、撮影を行う度に、撮影した静止画像と、撮影情報(撮影したときの位置、方位及び高度を示す情報)とを示す画像データを生成してサーバ装置10に送信する(ステップS23)。サーバ装置10(作物画像取得部102)は、送信されてきた画像データが示す静止画像を作物領域の画像として取得する(ステップS24)。次に、サーバ装置10(指標算出部103)は、取得された作物領域の画像に基づいてその画像に写る作物の生育状況を表す指標(NDVI)を算出する(ステップS25)。
 続いて、サーバ装置10(指標マップ生成部104)は、算出された指標に基づいて圃場の作物の生育状況を示す指標マップを生成する(ステップS26)。次に、サーバ装置10(生育情報記録部105)は、生成された指標マップを生育情報として記録する(ステップS27)。そして、サーバ装置10(グラフ記憶部108)は、記録された生育情報に基づいて、NDVIの時系列変化を表すグラフを生成して記憶する(ステップS28)。
 図13は提示処理における各装置の動作手順の一例を表す。この動作手順は、ユーザによりドローン20の撮影飛行開始の操作が行われることを契機に開始される。まず、ユーザ端末30(作業内容表示部302)は、ユーザによって指定された圃場について参考になる過去の作業内容を表示させる表示操作を受け付け(ステップS31)、作業内容の要求を示す要求データをサーバ装置10に送信する(ステップS32)。要求データを受け取ると、サーバ装置10(類似度算出部107)は、指定された圃場とそれ以外の圃場との指標の時系列変化の類似度の値を算出する(ステップS33)。
 次に、サーバ装置10(作業内容抽出部106)は、類似度が所定レベル以上となる作物領域に関して行われた作業内容を抽出する(ステップS34)。そして、サーバ装置10(作業内容抽出部106)は、抽出した作業内容等を示す応答データを生成し(ステップS35)、その応答データをユーザ端末30に送信する(ステップS36)。ユーザ端末30(作業内容表示部302)は、送信されてきた応答データが示す作業内容を表示する(ステップS37)。
 本実施例では、上記のとおりサーバ装置10に記録された過去の作業内容から、指定された圃場と作物の生育状況が似ている圃場において過去に行われた作業内容が抽出されてユーザに提示される。このように、本実施例によれば、作物に関する作業において過去の作業内容を参考にする仕組みを提供することができる。また、例えば同じ生育状況でも、早くから生育したがしばらく成長が停滞している作物と、最近急に成長した作物とでは、必要とされる作業が異なっている可能性が高い。
 本実施例では、上記のとおり、作物の生育状況が似ている圃場の作業内容を抽出する際に、現時点での生育状況だけなく、生育が開始してから現時点までの成長曲線が似た圃場の作業内容が抽出される。これにより、現時点での生育状況だけが似ている圃場の作業内容を抽出する場合に比べて、より必要とされる作業が似ている可能性が高い圃場で行われた作業内容をユーザに提示することができる。
(2)変形例
 上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。また、実施例及び各変形例は必要に応じてそれぞれ組み合わせてもよい。その際は、各変形例について優先順位を付けて(各変形例を実施すると競合する事象が生じる場合にどちらを優先するかを決める順位付けをして)実施してもよい。
(2-1)抽出における優先度付け
 作業内容抽出部106は、作業内容を抽出する際に、優先度を付けて抽出を行ってもよい。優先度付けをした抽出の方法には大きく分けて2通りある。1つ目は、抽出方法自体は変えずに、抽出された作業内容に優先順位(優先度が高いものほど優先順位が高い)を付ける方法である。これを優先順位付け抽出方法という。
 この優先順位付け抽出方法を用いれば、ユーザに提示する際に例えば優先度が高いものから順番に並べて表示して、類似度が所定レベル以上の作物領域に関して行われた作業内容の中でもどの作業内容がより参考になるのかをユーザに伝えることができる。2つ目は、作業内容の優先度によって類似度(類似度の値)自体を補正する方法である。これを優先度補正抽出方法という。
 この優先度補正抽出方法を用いると、例えば実施例で述べた差分の平均値が閾値以上であっても、優先度が高い作業内容については差分の平均値が小さく補正されて閾値未満になる、つまり抽出されるようになる場合がある。反対に、差分の平均値が閾値未満であっても、優先度が低い作業内容については差分の平均値が大きく補正されて閾値以上になる、つまり抽出されなくなる場合がある。以下では具体例を挙げながら各方法について説明する。
 作業内容抽出部106は、例えば、生育中の作物の種類がユーザによって指定された作物領域と共通する作物領域への作業内容(その作業領域について作業内容記録部101に記録されている作業内容)を他の作業内容よりも優先度を上げて抽出する。図10の例では、同じ作物(トウモロコシ)の圃場の作業内容が抽出されているが、指定された圃場と成長曲線が似ていれば他の作物の圃場の作業内容が抽出される場合もある。
 図14A~14Dは抽出された作業内容の一例を表す。図14A~14Dの例では、圃場BB、DD、EE、GGで「トウモロコシ」を育てる際に行われた作業内容と、圃場CCで「モロコシ」を育てる際に行われた作業内容と、圃場FFで「大麦」を育てる際に行われた作業内容とが類似度の値が閾値未満(1.5未満)であり類似度が所定レベル以上と判断されて抽出されている。
 図14Aでは、作業内容抽出部106が、優先順位付け抽出方法を用いて、算出された類似度の値が小さい(実施例と同様に値が小さいほど類似度が高いものとする)方から順番に各圃場の作業内容の優先順位を定めている。ここで、指定された圃場の作物の種類が「トウモロコシ」であるものとする。その場合、作業内容抽出部106は、例えば図14Bに表すように、指定された圃場と作物の種類が同じ全ての圃場の優先順位を作物の種類が異なる他の圃場よりも高くして定めている。
 なお、作業内容抽出部106は、「トウモロコシ」の圃場同士では類似度が高い方から順番に優先順位を定め、それ以外の作物の圃場同士でも類似度が高い方から順番に優先順位を定めている。また、作業内容抽出部106は、図14Cに表すように、指定された圃場と作物の種類が同じ圃場の類似度の値を補正(この例では0.8倍に補正)した上で優先順位を定めてもよい。その結果、「トウモロコシ」の圃場の作業内容は優先順位がそれぞれ上がっている。
 また、作業内容抽出部106は、図14Dに表すように、さらに優先度補正抽出方法を用いて、指定された圃場と作物の種類が同じ圃場の類似度の値を補正(この例では0.8倍に補正)した上で類似度が所定レベル以上であるか否かを判断してもよい。図14Dの例では、補正前の類似度の値が1.6(補正後は1.28)だった圃場HHと、補正前の類似度の値が1.8(補正後は1.44)だった圃場IIの作業内容が新たに抽出されている。以上のとおり優先度を用いることで、指定された圃場と同じ作物が育てられている圃場での作業内容がそれ以外の圃場での作業内容よりも参考にされやすいようにすることができる。
(2-2)作業履歴
 上記変形例では優先度を決める条件として作物の種類が用いられたが、これに限らない。作業内容抽出部106は、例えば、作業履歴がユーザによって指定された作物領域と共通する作物領域への作業内容を他の作業内容よりも優先度を上げて抽出してもよい。作業内容抽出部106は、例えば図9の曲線FA1が成長曲線を表す圃場A1が指定された場合、50日目までの作業履歴を比較する。
 作業内容抽出部106は、例えば各作業項目の作業回数(散水回数、肥料散布回数及び農薬散布回数等)の差分の平均値が閾値未満である場合に作業履歴が共通すると判断する。なお、作業回数の代わりに又はそれに加えて、作業詳細(散水量(散水時間)、肥料の量、農薬の量、散布位置及び散布時間帯等)の差分を考慮してもよい(全ての差分を合算して平均値を算出する等)。また、機器情報(農具及び農作業用機械等)が共通しているか否かを考慮してもよい。
 いずれの場合も、作業内容抽出部106は、作業履歴が全て完璧に一致していなくても、それらの差分及び相違点が所定の基準未満であれば作業履歴が共通すると判断する。作業内容抽出部106は、共通する作業履歴の圃場を判断すると、後は上記変形例と同様に優先順位付け抽出方法及び優先度補正抽出方法の少なくとも一方を用いて作業履歴を抽出する。これにより、指定された圃場と作業履歴が共通する圃場での作業内容がそれ以外の圃場での作業内容よりも参考にされやすいようにすることができる。
(2-3)類似度を示す値の算出方法
 類似度を示す値の算出方法は実施例で述べた方法に限らない。類似度算出部107は、例えば実施例ではユーザによって指定された圃場の現時点での生育期間が50日間であれば、他の時系列変化についても生育開始から50日間の時系列変化を比較したが、比較する期間を変動させてもよい。類似度算出部107は、例えば生育開始を比較期間の開始としなくてもよい。
 具体的には、例えば11日目から60日目までの50日間の時系列変化を比較してもよい。これは、例えば最初の10日間の気温及び降水量等の環境が生育に厳しい状況で、10日目を過ぎてから実質的な生育が開始されたような場合に、その作業内容を参考にすることができる。また、類似度算出部107は、長さが異なる期間同士を比較してもよい。具体的には、1日目から60日目までの60日間の時系列変化を50日間の時系列変化に変換してから比較してもよい。
 これは、上記環境が低調で通常なら50日間で成長するところ60日間要するような場合における作業内容を参考にすることができる。これらの比較方法を用いる場合、類似度算出部107は、類似度が最も高くなる比較期間の開始日又は比較期間を用いて類似度の値を算出する。これにより、比較期間が固定されている場合に比べて、気温及び降水量等の環境が異なる期間に生育した作物に対する作業内容でも参考にされやすいようにすることができる。
(2-4)経過期間
 上記変形例のように比較する期間を変動させて類似度の値を算出する場合に、作業内容抽出部106は、生育開始からの経過期間がユーザによって指定された作物領域と共通する作物領域への作業内容を他の作業内容よりも優先度を上げて抽出してもよい。この場合、作業内容抽出部106は、比較期間を変動させずに類似度の値が算出されて且つその値が示す類似度が所定レベル以上となる圃場(作物領域)については、生育開始からの経過期間が指定された作物領域と共通すると判断する。
 後は、作業内容抽出部106は、上記変形例と同様に優先順位付け抽出方法及び優先度補正抽出方法の少なくとも一方を用いて作業履歴を抽出する。これにより、比較期間が固定されている場合に比べて気温及び降水量等の環境が異なる期間に生育した作物に対する作業内容でも参考にされやすいようにしつつ、指定された圃場における作物の生育期間と共通の生育期間における成長曲線の類似度が高い圃場での作業内容がそれ以外の圃場での作業内容よりも参考にされやすいようにすることができる。
(2-5)収穫量
 圃場(作物領域)での収穫量を考慮して作業内容が抽出されてもよい。この場合、作業内容抽出部106は、収量が多かった作物領域での作業内容ほど優先度を上げて抽出する。本変形例では、ユーザ(作業者)が収穫終了後に収穫量を作業内容に対応付けて登録する操作をユーザ端末30に対して行う。ユーザ端末30が登録内容をサーバ装置10に送信すると、作業内容記録部101は、登録された収穫量を作業内容に対応付けて記録する。
 図15は記録された収穫量の一例を表す。図15の例では、作業内容記録部101は、「HA01」という圃場IDの圃場でのトウモロコシの収穫量として「G1t(G1トン)」及び「G2t」等(時期が異なる収穫量)を記録し、「HA02」という圃場IDの圃場での稲の収穫量として「G3t」等を記録している。作業内容抽出部106は、作物の種類と収穫量と補正係数とを対応付けた補正テーブルを用いて優先度を判断する。
 図16は補正係数の一例を表す。図16の例では、「トウモロコシ」という作物の種類では、「G11未満」、「G11以上G12未満」、「G12以上」という収穫量に「1.0」、「0.9」、「0.8」という補正係数が対応付けられており、稲等の他の作物についても同様に収穫量と補正係数が対応付けられている。作業内容抽出部106は、実施例で述べたように特定した圃場ID及び特定した生育期間に含まれる作業日時に対応付けられた情報として、作物名称及び収穫量も抽出する。
 作業内容抽出部106は、抽出した作物名称が表す作物の種類及び収穫量に補正テーブルで対応付けられている補正係数を各類似度の値に乗算する。図16の例では、収穫量が多いほど小さな補正係数が乗算されて類似度を示す値(差分の平均値)が小さくなるから、成長曲線の類似度(類似する度合い)自体は高くなる。これにより、収穫量が多い圃場での作業内容ほど参考にされやすいようにすることができる。
(2-6)生育の進み具合
 作業後の作物の生育の進み具合を考慮して作業内容が抽出されてもよい。この場合、作業内容抽出部106は、ユーザによって指定された作物領域の現在の時期に対応する時期からの生育の進み具合が大きい作物領域での作業内容ほど優先度を上げて抽出する。生育の進み具合が大きい作物領域では、作業者は、生育が順調だった状態からさらに生育を促進させたか、又は生育が順調でなかった状態から生育状況を改善させたと考えられる。
 図17は本変形例のNDVIの時系列変化の一例を表す。図17では、図9と同様のグラフによってNDVIの時系列変化が表されている。曲線FA21、FA22、FA23は、圃場A21、A22、A23におけるNDVIの時系列変化を表している。これらの曲線は、説明を分かりやすくするため、圃場A1の曲線FA1と50日目までの時系列変化の類似度が一致しているものとする。
 ただし、50日目以降は、NDVIの伸びが曲線FA21において最も大きく、FA22がその次で、FA23において最も小さくなっている。なお、この例では、生育開始から50日目が指定された作物領域の現在の時期に対応する時期として用いられている。それ以外にも、例えば上述した比較期間を変動させる場合は、例えば10日目から60日目又は1日目から60日目が比較期間であればいずれも60日目(つまり比較期間の終わりの時期)が対応する時期となる。
 作業内容抽出部106は、例えば、所定の期間が経過したときのNDVIが大きいほど生育の進み具合が大きいと判断する。図17の例では、10日間が経過したときの圃場A21、A22、A23におけるNDVIがそれぞれn21、n22、n23(n21>n22>n23)となっている。50日目のNDVIをいずれもn20とすると、各圃場のNDVIの伸びは(n21-n20)、(n22-n20)、(n23-n20)で表される。
 作業内容抽出部106は、このNDVIの伸びと補正係数とを対応付けた補正テーブルを用いて優先度を判断する。
 図18は本変形例の補正テーブルの一例を表す。図18の例では、「N21未満」、「N21以上N22未満」、「N22以上」というNDVIの伸びに「1.0」、「0.9」、「0.8」という補正係数が対応付けられている。
 作業内容抽出部106は、グラフ記憶部108に記憶されている曲線FA21、FA22、FA23のグラフを参照してNDVIの伸びを算出し、算出したNDVIの伸びに補正テーブルで対応付けられている補正係数を各類似度の値に乗算する。これにより、指定された作物領域の現在の時期に対応する時期に行われた作業により生育が大きく進んだ圃場での作業内容ほど参考にされやすいようにすることができる。
(2-7)NDVIの精度
 実施例では、ドローン20が作物領域の上空を飛行して撮影された画像に基づいて、すなわち、ドローン20に設けられたイメージセンサの測定値に基づいてNDVIが算出された。こうして算出されるNDVIは、撮影条件によってその精度が変化する。例えば撮影時のドローン20の飛行高度が高いほど1画素が表す作物領域が広くなるので、作物以外のもの(地面等)が含まれやすくなり、NDVIの精度が低くなる。
 また、日射強度が弱いほど反射光が少なくなりNDVIの精度が低くなる。例えばIR=20、R=10の場合もIR=200、R=100の場合も、NDVIは10÷30又は100÷300で0.333・・・である。これらのピクセル値に10ずつ誤差が生じた場合、IR=30、IR=20だとNDVI=10÷50=0.2となり、IR=210、R=110だとNDVI=100÷320=0.312・・・となる。
 このように、NDVIは、IR、Rのピクセル値が小さい(反射光が少ない)ほど、これらのピクセル値のわずかな誤差がNDVIの大きな誤差となって現れる。本変形例では、ユーザ(作業者)が、例えば撮影飛行をさせた日の作業内容に対応付けて撮影条件(飛行高度又は天気等)を登録する。作業内容記録部101は、登録された撮影条件を作業日時に対応付けて記録する。
 作業内容抽出部106は、NDVIの精度が高くなる撮影条件で撮影された作物領域での作業内容ほど優先順位を上げて抽出する。作業内容抽出部106は、この撮影条件と補正係数とを対応付けた補正テーブルを用いて優先度を判断する。
 図19A及び19Bは本変形例の補正テーブルの一例を表す。図19Aの例では、「H31未満」、「H31以上H32未満」、「H32以上」という撮影条件(飛行高度)に「0.8」、「0.9」、「1.0」という補正係数が対応付けられている。
 また、図19Bの例では、「4-9月の晴れ」、「10-3月の晴れ」、「4-9月の曇り/雨」、「10-3月の曇り/雨」という撮影条件(先の撮影条件ほど日射強度が強い)に「0.7」、「0.8」、「0.9」、「1.0」という補正係数が対応付けられている。作業内容抽出部106は、実施例で述べたように特定した圃場ID及び特定した生育期間に含まれる作業日時に対応付けられた情報として、撮影条件も抽出する。
 作業内容抽出部106は、抽出した撮影条件に補正テーブルで対応付けられている補正係数を各類似度の値に乗算する。図19Aの補正テーブルを用いる場合、作業内容抽出部106は、飛行高度が低いほどNDVIの精度が高くなると判断する。また、図19Bの補正テーブルを用いる場合、作業内容抽出部106は、日射強度が強い天気であるほどNDVIの精度が高くなると判断する。
 算出されるNDVIの精度が低いほど、成長曲線が似ていると思われた作物の実際の成長曲線が異なっていたということが起こりやすくなり、作業内容が参考にならないという可能性が高まる。本変形例では、上記のとおりNDVIの精度が高くなる撮影条件で撮影された作物領域での作業内容ほど優先順位を上げて抽出することで、そのような可能性を低く抑えることができる。
 なお、露出量が適切に設定されていれば、日射強度が多少異なっていても、適切な露光量で撮影がされてNDVIの精度を高くすることができる。ただし、露出量をユーザが設定して撮影する場合には、露出量が適切でない状態で撮影されることがある。また、撮影装置27が自動露出機能(被写体の明るさに応じて絞り値と露光時間の組み合わせを自動的に調整する機能)を有していても、その性能によっては例えば日照条件が変化した際に(撮影中に天気が変化したときなど)に適切でない露出量で撮影されることが起こり得る。
 そこで、作業内容抽出部106は、撮影条件として撮影時の露出量を用いて、露出量が適正値に近いほどNDVIの精度が高くなると判断してもよい。ここでいう適正値は、精度の高いNDVIを算出可能な画像が撮影される際の露出量のことである。NDVIは、上述したようにピクセル値が大きいほど精度が高くなるが、ホワイトアウトするほど明るくなるとIRとRの差が小さくなり0に近づいてしまう。
 本変形例では、例えば精度の高いNDVIを算出可能な画像の全体のピクセル値の平均値を実験により求めておき、作業内容抽出部106は、NDVIの算出に用いられた画像のピクセル値の平均値とその平均値との差分が小さいほど、露出量が適正値に近いと判断する。これにより、撮影時の日射強度に対して露出量が適切に設定された場合、すなわち、比較された成長曲線と実際の成長曲線が近い圃場における作業内容が抽出されやすいようにして、上記の可能性(抽出された作業内容が参考にならないという可能性)を低く抑えることができる。
(2-8)気象条件
 気象条件が近い圃場での作業ほど参考になりやすい。ここでいう気象条件とは、例えば生育期間中の平均日照時間、平均降水量及び平均気温等の条件である。そこで、各圃場の気象条件に基づいて優先度が判断されてもよい。本変形例では、ユーザ(作業者)が、圃場における前述した気象条件を示す条件情報を登録する。
 作業内容記録部101は、登録された条件情報(ユーザによって指定された作業対象の圃場(作物領域)における気象条件を示す情報)を圃場IDに対応付けて記録する。この場合の作業内容記録部101は本発明の「条件記録部」の一例である。記録される気象条件は、例えば月毎の条件(平均日照時間等)でもよいし、週毎、日毎、年毎の条件であってもよい。ただし、短い期間の気象条件が分かれば長期間での気象条件も求めることができるので、気象条件の期間の単位は短いほど望ましい。
 作業内容抽出部106は、作業内容記録部101に記録された条件情報が示す気象条件が指定された圃場(作物領域)の気象条件に近い作物領域での作業内容ほど優先度を上げて抽出する。作業内容抽出部106は、例えば月毎の平均日照時間が条件情報として記録されている場合は、指定された圃場及び比較対象の圃場の比較期間における平均日照時間を算出し、それらの差分を算出する。
 作業内容抽出部106は、この気象条件の違いを表す値(平均日照時間の差分)と補正係数とを対応付けた補正テーブルを用いて優先度を判断する。
 図20A及び20Bは本変形例の補正テーブルの一例を表す。図20Aの例では、「T41未満」、「T41以上T42未満」、「T42以上」という平均日照時間の差分に「0.8」、「0.9」、「1.0」という補正係数が対応付けられている。
 作業内容抽出部106は、実施例で述べたように特定した圃場ID及び特定した生育期間に含まれる作業日時に対応付けられた情報として、条件情報も抽出する。作業内容抽出部106は、抽出した条件情報が示す気象条件から上記の差分を算出し、算出した差分に補正テーブルで対応付けられている補正係数を各類似度の値に乗算する。これにより、指定された作物領域と気象条件が近い圃場での作業内容ほど参考にされやすいようにすることができる。
 なお、条件情報は、気象条件を直接示す情報に限らない。例えば圃場の位置情報が条件情報として記録されてもよい。圃場の位置情報が示す位置が近ければ、気象条件も近いと言えるからである。この場合、作業内容抽出部106は、図20Bに表すようにこの気象条件の違いを表す値(圃場間の距離)と補正係数とを対応付けた補正テーブルを用いて優先度を判断する。
 図20Bの例では、「D51未満」、「D51以上D52未満」、「D52以上」という圃場間の距離に「0.8」、「0.9」、「1.0」という補正係数が対応付けられている。この場合、作業内容抽出部106は、抽出した条件情報が示す位置情報から上記の距離を算出し、算出した距離に補正テーブルで対応付けられている補正係数を各類似度の値に乗算する。これにより、指定された作物領域と気象条件が近い圃場での作業内容ほど参考にされやすいようにすることができる。
(2-9)作業者同士の関係
 作業者同士が身近な関係(友人、同じ農協の関係者及び近所等)にある場合、無関係な相手に比べると作業内容について直接問い合わせることが行いやすい。そこで、作業者同士の関係に基づいて優先度が判断されてもよい。本変形例では、ユーザ(作業者)が、作業者同士の関係を表す関係情報を予め登録しておく。
 登録する関係情報は、例えば、作業者自身(作業内容記録部101に記録されている作物領域への作業を行う作業者)の住所、所属する農協及び連絡可能な(連絡先を知っている)同業者等を表す情報である。作業内容記録部101は、登録された関係情報を圃場IDに対応付けて記録する。この場合の作業内容記録部101は本発明の「関係記録部」の一例である。各作業者がこの関係情報を登録することで、それらの関係情報は、各圃場(作物領域)への作業を行う作業者と指定された作物領域への作業を行う作業者との関係を表す情報となる。
 作業内容抽出部106は、所定の関係を表す関係情報が作業内容記録部101に記録されている作業者を所定の関係を表す関係情報が記録されていない作業者よりも作業内容の優先度を高くして抽出する。所定の関係とは、住所同士の距離が閾値未満の関係、所属する農協が同じという関係又は連絡可能な同業者である関係等である。作業内容抽出部106は、指定された圃場及び比較対象の圃場の圃場IDにそれぞれ対応付けられている関係情報を読み出して作業者の関係が所定の関係であるか否かを判断する。
 作業内容抽出部106は、作業者同士の関係と補正係数とを対応付けた補正テーブルを用いて優先度を判断する。
 図21は本変形例の補正テーブルの一例を表す。図21の例では、「連絡可能」、「近所、同じ農協」、「無関係」という作業者同士の関係に「0.8」、「0.9」、「1.0」という補正係数が対応付けられている。
 作業内容抽出部106は、前述したとおり判断した作業者同士の関係に補正テーブルで対応付けられている補正係数を各類似度の値に乗算する。「連絡可能」な作業者には連絡を取って作業内容を問い合わせることができるし、「近所、同じ農協」の作業者も、普段から会う機会があったり連絡先を誰かに聞くことができたりする可能性が高い。このように、本変形例によれば、作業内容について直接問い合わせることが行いやすい作業者の作業内容ほど参考にされやすいようにすることができる。
(2-10)作業者への通知方法1
 作業内容抽出部106は、実施例では、抽出した作業内容をそのまま通知した。この作業内容は作業者が登録した作業内容であり、内容によっては個人を特定することに繋がる可能性がある情報(いわゆる個人情報となる可能性がある情報)である。そこで、個人が特定されないように通知が行われてもよい。
 本変形例では、作業内容抽出部106は、抽出した作業内容に含まれる作業用の数値から代表値を算出し、その代表値により表される作業内容を、作物領域を指定したユーザ(作業者)に通知する。本変形例の作業内容抽出部106は本発明の「第1通知部」の一例である。作業用の数値とは、例えば散布する肥料の量、農薬の量及び散水する時間の長さ等である。作業内容抽出部106は、まず、抽出した作業内容のうち所定の期間において最も多く行われている作業項目を特定する。
 作業内容抽出部106は、特定した作業項目の作業詳細に含まれる作業用の数値の平均値、中央値又は最頻値等を代表値として算出する。また、作業内容抽出部106は、特定した作業項目の機器情報に含まれる作業用機器のうち最も多く用いられている作業用機器を特定する。作業内容抽出部106は、算出した代表値及び特定した作業用機器を作業内容として表す応答データを生成し、ユーザ端末30に送信する。
 図22は本変形例で表示された作業内容の一例を表す。図22の例では、「以下は代表的な作業内容です。」という文字列と、「40~50日目」に「農薬α散布」を「△△リットル/10a」の量で「噴霧器」を用いて行われた事と、「50~60日目」に「農薬β散布」を「○○リットル/10a」の量で「ドローン」を用いて行われた事とが表示されている。これらの情報が通知されることで、個人情報が知られるおそれがなく過去に行われた作業内容を参考にすることができる。
(2-11)作業者への通知方法2
 上記変形例では、代表値等を通知することで個人情報が知られるおそれをなくしたが、作業内容からは必ずしも個人が特定されるとは限らないし、ユーザ同士であれば個人が特定されても気にしないユーザもいることが考えられる。そこで、作業内容を通知してよいことが確認された場合にのみ通知するようにしてもよい。
 本変形例では、ユーザ(作業者)が、作業内容を入力する際に、その作業内容の通知の可否を合わせて入力する。入力受付部301は、入力された通知の可否を示す情報(可否情報)を含む入力データをサーバ装置10に送信する。作業内容記録部101は、入力データに含まれる可否情報、すなわち作業者が定めた作業内容の通知の可否を示す情報を取得して記録する。この場合の作業内容記録部101は本発明の「可否取得部」の一例である。
 本変形例では、作業内容抽出部106は、抽出した作業内容のうち通知可能であることを示す可否情報が作業内容記録部101により取得された作業内容を、作物領域を指定したユーザ(作業者)に通知する。本変形例の作業内容抽出部106は本発明の「第2通知部」の一例である。また、作業内容抽出部106は、通知不可であることを示す可否情報が作業内容記録部101により取得された作業内容については作業者に通知しない。
 これにより、個人情報を知られることを嫌がる作業者の作業内容が他の作業者に知られることなく、過去に行われた作業内容を参考にすることができる。なお、作業内容抽出部106は、通知不可であることを示す可否情報が取得された作業内容について、全く通知しないのではなく、例えばそれらの作業内容が2以上ある場合には、それらについて例えば上記変形例のように代表値を算出し、最も多い作業内容、作業用機器を特定して、それらにより表される作業内容を通知してもよい。これにより、個人情報を知られることを嫌がる作業者の作業内容も多少の参考にすることができる。
(2-12)作物領域の指定
 実施例では、ユーザ(作業者)が圃場(作物領域)を指定したが、これに限らない。例えば、サーバ装置10が登録されている各ユーザの圃場を定期的に指定して、作業内容の抽出を行ってもよい。その場合、ユーザは、自分の圃場を指定することで、既に抽出された作業内容を閲覧することができる。
(2-13)区分領域
 指標マップ生成部104は、実施例では撮影範囲に対応する領域を区分領域として領域単位のNDVIマップを生成したが、区分領域はこれに限らない。例えば複数の撮影範囲を1つの区分領域としてもよいし、1つの撮影領域を複数に分割した分割領域に対応する領域を区分領域としてもよい。また、各区分領域の形及び大きさが統一されていてもよいし揃っていなくてもよい。
(2-14)類似度
 実施例では類似度が数値で表されたが、これに限らず、数値以外の情報で表されてもよい。例えば「高」、「中」、「低」又は「A」、「B」、「C」等の文字で表されてもよいし、符号及び記号等で表されてもよい。例えば「高」、「中」、「低」で表される場合、作業内容抽出部106は、類似度が「中」以上となる作物領域を類似度が所定レベル以上となる作物領域として特定すればよい。このように、類似度の高さの違いが比較可能に表され、類似度が所定レベル以上であるか否かを判断できるのであれば、どのような情報により類似度が表されてもよい。
(2-15)飛行体
 実施例では、自律飛行を行う飛行体として回転翼機型の飛行体が用いられたが、これに限らない。例えば飛行機型の飛行体であってもよいし、ヘリコプター型の飛行体であってもよい。また、自律飛行の機能も必須ではなく、割り当てられた飛行空域を割り当てられた飛行許可期間に飛行することができるのであれば、例えば遠隔から操縦者によって操作されるラジオコントロール型(無線操縦型)の飛行体が用いられてもよい。
(2-16)指標算出の元情報
 実施例では、ドローン20が飛行中に撮影した画像に基づいてNDVIが算出されたが、これに限らない。例えば作業者がデジカメを用いて手作業で撮影した画像又は圃場に設置された固定のデジカメが撮影した画像に基づいてNDVIが算出されてもよい。また、衛星から撮影された画像に基づいてNDVIが算出されてもよい。
 また、実施例では撮影装置27のイメージセンサ272の測定値を用いてNDVIが算出されたが、これに限らず、例えばハンディタイプのNDVI測定器の赤外線センサ等の測定値を用いてNDVIが算出されてもよい。NDVIの算出は、圃場(作物領域)の全体について行われることが望ましいが、一部について行われるだけでも、その圃場における作物の生育状況の傾向は現れるので、その圃場で行われた作業内容を参考にすることができる。
(2-17)生育状況を表す指標
 実施例では、生育状況を表す指標としてNDVIが用いられたが、これに限らない。例えば、葉色値(葉の色を示す値)、植被率(植被領域の単位面積あたりの占有率)、SPAD(葉緑素含量)、草丈又は茎数等が用いられてもよい。要するに、作物の生育状況を表しており、且つ、撮影された作物領域の画像から算出可能な値であれば、どのような値が生育状況を表す指標として用いられてもよい。
(2-18)各部を実現する装置
 図4等に表す各機能を実現する装置がそれらの図とは異なっていてもよい。例えばサーバ装置が備える全ての機能又は一部の機能をドローンが備えていてもよい。その場合はドローンのプロセッサが本発明の「情報処理装置」の一例となる。また、サーバ装置の機能をユーザ端末が実現してもよい。その場合はユーザ端末が本発明の「情報処理装置」の一例となる。
 また、各機能が行う動作を他の機能が行ってもよいし、新たな機能に行わせてもよい。例えば指標算出部103が行う動作(指標の算出動作)を指標マップ生成部104が行ってもよい。また、作業内容抽出部106が行う作業内容の通知を新たに設けた通知部が行ってもよい。また、サーバ装置が備える各機能を2以上の装置がそれぞれ実現してもよい。要するに、農業支援システム全体としてこれらの機能が実現されていれば、農業支援システムが何台の装置を備えていてもよい。
(2-19)発明のカテゴリ
 本発明は、上述したサーバ装置及びユーザ端末のような情報処理装置と、ドローンのような飛行体(ドローンは情報処理装置を兼ねる場合もある)の他、それらの装置及び飛行体を備える農業支援システムのような情報処理システムとしても捉えられる。また、本発明は、各装置が実施する処理を実現するための情報処理方法としても捉えられるし、各装置を制御するコンピュータを機能させるためのプログラムとしても捉えられる。このプログラムは、それを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、それをインストールして利用可能にするなどの形態で提供されてもよい。
(2-20)処理手順等
 本明細書で説明した各実施例の処理手順、シーケンス、フローチャートなどは、矛盾がない限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(2-21)入出力された情報等の扱い
 入出力された情報等は特定の場所(例えばメモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
(2-22)ソフトウェア
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
(2-23)情報、信号
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(2-24)システム、ネットワーク
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
(2-25)「に基づいて」の意味
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
(2-26)「及び」、「又は」
 本明細書において、「A及びB」でも「A又はB」でも実施可能な構成については、一方の表現で記載された構成を、他方の表現で記載された構成として用いてもよい。例えば「A及びB」と記載されている場合、他の記載との不整合が生じず実施可能であれば、「A又はB」として用いてもよい。
(2-27)態様のバリエーション等
 本明細書で説明した各実施例は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施例に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
1…農業支援システム、10…サーバ装置、20…ドローン、30…ユーザ端末、101…作業内容記録部、102…作物画像取得部、103…指標算出部、104…指標マップ生成部、105…生育情報記録部、106…作業内容抽出部、107…類似度算出部、108…グラフ記憶部、201…飛行制御部、202…飛行部、203…センサ測定部、204…撮影部。

Claims (10)

  1.  少なくとも1の作物領域に対するセンサの測定値に基づいて算出される作物の生育状況を表す指標及び当該測定値の測定時期を対応付けて記録する指標記録部と、
     前記少なくとも1の作物領域に関して行われた少なくとも1の作業内容及び作業時期を対応付けて記録する作業記録部と、
     前記指標記録部に前記指標が記録されている前記少なくとも1の作物領域のうちの、指定された作物領域と前記指標の時系列変化の類似度が所定レベル以上の作物領域に関して行われた作業内容を前記作業記録部に記録されている前記少なくとも1の作業内容から抽出する抽出部と
     を備える情報処理装置。
  2.  前記抽出部は、生育開始からの経過期間、作業履歴又は生育中の作物の種類が前記指定された作物領域と共通する作物領域について前記作業記録部に記録されている作業内容を他の作業内容よりも優先度を上げて抽出する
     請求項1に記載の情報処理装置。
  3.  前記抽出部は、収量が多かった作物領域での作業内容ほど優先度を上げて抽出する
     請求項1又は2に記載の情報処理装置。
  4.  前記抽出部は、前記指定された作物領域の現在の時期に対応する時期からの生育の進み具合が大きい作物領域での作業内容ほど優先度を上げて抽出する
     請求項1から3のいずれか1項に記載の情報処理装置。
  5.  前記センサは、飛行体に設けられたイメージセンサであり、
     前記指標は、前記飛行体が前記少なくとも1の作物領域の上空を飛行して撮影された画像に基づき算出され、
     前記抽出部は、前記指標の精度が高くなる撮影条件で撮影された作物領域での作業内容ほど優先順位を上げて抽出する
     請求項1から4のいずれか1項に記載の情報処理装置。
  6.  前記撮影条件は、撮影時の飛行体の高度、日射強度の大きさ又は撮影時の露出量であり、
     前記抽出部は、前記高度が低いほど、日射強度が大きい天気であるほど又は前記露出量が適正値に近いほど前記指標の精度が高くなる撮影条件と判断する
     請求項5に記載の情報処理装置。
  7.  前記少なくとも1の作物領域の気象条件を示す情報を記録する条件記録部を備え、
     前記抽出部は、記録された前記情報が示す気象条件が前記指定された作物領域の気象条件に近い作物領域での作業内容ほど優先度を上げて抽出する
     請求項1から6のいずれか1項に記載の情報処理装置。
  8.  前記作業記録部に記録されている前記少なくとも1の作物領域への作業を行う第1作業者と前記指定された作物領域への作業を行う第2作業者との関係を表す関係情報を記録する関係記録部を備え、
     前記抽出部は、所定の関係を表す前記関係情報が記録されている前記第1作業者の作業内容を当該関係情報が記録されていない他の作業者の作業内容よりも優先度を高くして抽出する
     請求項1から7のいずれか1項に記載の情報処理装置。
  9.  前記抽出部により抽出された前記作業内容に含まれる作業用の数値から代表値を算出し、当該代表値により表される作業内容を前記指定された作物領域の作業者に通知する第1通知部を備える
     請求項1から8のいずれか1項に記載の情報処理装置。
  10.  作業者が定めた作業内容の通知の可否を示す可否情報を取得する可否取得部と、
     前記抽出部により抽出された1以上の作業内容のうち通知可能であることを示す前記可否情報が取得された作業内容を前記指定された作物領域の作業者に通知する第2通知部を備える
     請求項1から9のいずれか1項に記載の情報処理装置。
PCT/JP2019/017132 2018-04-25 2019-04-23 情報処理装置 WO2019208538A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515469A JP7366887B2 (ja) 2018-04-25 2019-04-23 情報処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018083893 2018-04-25
JP2018-083893 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208538A1 true WO2019208538A1 (ja) 2019-10-31

Family

ID=68294099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017132 WO2019208538A1 (ja) 2018-04-25 2019-04-23 情報処理装置

Country Status (2)

Country Link
JP (1) JP7366887B2 (ja)
WO (1) WO2019208538A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021130817A1 (ja) * 2019-12-23 2021-07-01
WO2023189427A1 (ja) * 2022-03-31 2023-10-05 オムロン株式会社 支援装置、支援方法、プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009664A (ja) * 2001-06-29 2003-01-14 Minolta Co Ltd 作物生育量測定装置、作物生育量測定方法、作物生育量測定プログラム及びその作物生育量測定プログラムを記録したコンピュータ読取可能な記録媒体
JP2012133422A (ja) * 2010-12-20 2012-07-12 Dainippon Printing Co Ltd 農薬または肥料の使用履歴管理システム
JP2015000040A (ja) * 2013-06-17 2015-01-05 Necソリューションイノベータ株式会社 データ抽出装置、データ抽出方法、及びプログラム
JP2017068532A (ja) * 2015-09-30 2017-04-06 株式会社クボタ 農作業計画支援システム
JP2018046787A (ja) * 2016-09-23 2018-03-29 ドローン・ジャパン株式会社 農業管理予測システム、農業管理予測方法、及びサーバ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009664A (ja) * 2001-06-29 2003-01-14 Minolta Co Ltd 作物生育量測定装置、作物生育量測定方法、作物生育量測定プログラム及びその作物生育量測定プログラムを記録したコンピュータ読取可能な記録媒体
JP2012133422A (ja) * 2010-12-20 2012-07-12 Dainippon Printing Co Ltd 農薬または肥料の使用履歴管理システム
JP2015000040A (ja) * 2013-06-17 2015-01-05 Necソリューションイノベータ株式会社 データ抽出装置、データ抽出方法、及びプログラム
JP2017068532A (ja) * 2015-09-30 2017-04-06 株式会社クボタ 農作業計画支援システム
JP2018046787A (ja) * 2016-09-23 2018-03-29 ドローン・ジャパン株式会社 農業管理予測システム、農業管理予測方法、及びサーバ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021130817A1 (ja) * 2019-12-23 2021-07-01
JP7387195B2 (ja) 2019-12-23 2023-11-28 株式会社ナイルワークス 圃場管理システム、圃場管理方法およびドローン
WO2023189427A1 (ja) * 2022-03-31 2023-10-05 オムロン株式会社 支援装置、支援方法、プログラム

Also Published As

Publication number Publication date
JP7366887B2 (ja) 2023-10-23
JPWO2019208538A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
US10902566B2 (en) Methods for agronomic and agricultural monitoring using unmanned aerial systems
US11763441B2 (en) Information processing apparatus
JP2018046787A (ja) 農業管理予測システム、農業管理予測方法、及びサーバ装置
AU2016339031B2 (en) Forestry information management systems and methods streamlined by automatic biometric data prioritization
KR20200065696A (ko) 드론을 이용한 농작물 모니터링 시스템
JP7218365B2 (ja) 情報処理装置
WO2019208538A1 (ja) 情報処理装置
KR101910465B1 (ko) 농업정보 수집 시스템 및 방법
WO2021132276A1 (ja) 農業支援システム
US11183073B2 (en) Aircraft flight plan systems
EP3761069A1 (en) Information processing device and program
EP3800592B1 (en) System and method for suggesting an optimal time for performing an agricultural operation
WO2021149355A1 (ja) 情報処理装置、情報処理方法、プログラム
WO2021100429A1 (ja) 情報処理装置、情報処理方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792070

Country of ref document: EP

Kind code of ref document: A1