WO2019208443A1 - Photosensitive resin composition for bump protecting films, semiconductor device, method for manufacturing semiconductor device, and electronic device - Google Patents

Photosensitive resin composition for bump protecting films, semiconductor device, method for manufacturing semiconductor device, and electronic device Download PDF

Info

Publication number
WO2019208443A1
WO2019208443A1 PCT/JP2019/016849 JP2019016849W WO2019208443A1 WO 2019208443 A1 WO2019208443 A1 WO 2019208443A1 JP 2019016849 W JP2019016849 W JP 2019016849W WO 2019208443 A1 WO2019208443 A1 WO 2019208443A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
photosensitive resin
photosensitive
post
resin composition
Prior art date
Application number
PCT/JP2019/016849
Other languages
French (fr)
Japanese (ja)
Inventor
駿太 白石
咲子 鈴木
広道 杉山
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2019560791A priority Critical patent/JP6729818B2/en
Priority to CN201980027929.4A priority patent/CN112041745B/en
Priority to KR1020207030043A priority patent/KR102379903B1/en
Publication of WO2019208443A1 publication Critical patent/WO2019208443A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/375Thiols containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a photosensitive resin composition for a bump protective film, a semiconductor device, a method for manufacturing a semiconductor device, and an electronic apparatus.
  • a resin film made of a resin material is used for applications such as a protective film, an interlayer insulating film, and a planarizing film.
  • a resin film made of a resin material is used for applications such as a protective film, an interlayer insulating film, and a planarizing film.
  • Patent Document 1 discloses a photosensitive resin composition having excellent light transmittance by optimizing the molecular structure and reducing residual stress.
  • This photosensitive resin composition is in a liquid state, and is applied to a substrate by a spin coating method and then subjected to an exposure process and a development process. Thereby, patterning according to the exposure pattern is performed.
  • the photosensitive resin composition is also used for the purpose of forming an insulating part for insulating the wiring.
  • the acid generated from the received photosensitizer promotes the reaction of the thermosetting resin, and a resin film serving as an insulating portion is formed.
  • the generated acid lowers the pH of the photosensitive resin composition and causes the wiring to deteriorate.
  • An object of the present invention is to provide a photosensitive resin composition for a bump protective film capable of forming a resin film that has good patternability and can suppress metal deterioration, a semiconductor device including the resin film, and such a semiconductor device can be manufactured.
  • An object of the present invention is to provide a method for manufacturing a semiconductor device and an electronic apparatus including the semiconductor device.
  • thermosetting resin A photosensitizer, A solvent,
  • a photosensitive resin composition for a bump protective film comprising: After the photosensitive resin composition for bump protective film is applied on a silicon substrate, a dried film having a thickness of 15 ⁇ m obtained by drying at 120 ° C. for 3 minutes is used as a photosensitive resin film, The first treatment that exposes under the condition of 600 mJ / cm 2 with i-line at a wavelength of 365 nm, the second treatment that performs post-exposure heating at 80 ° C.
  • the photosensitive resin film after the third treatment is sequentially performed is a post-development photosensitive film
  • the post-development photosensitive film after being subjected to the fourth treatment for post-development heating at 170 ° C. for 180 minutes in a nitrogen atmosphere is a post-curing photosensitive film
  • the post-development photosensitive film is subjected to a first hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-development photosensitive film, and the pH of the extracted first extract is adjusted.
  • the pH 1 is 3.0 to 5.0
  • the post-curing photosensitive film is subjected to a second hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-curing photosensitive film, and the pH of the extracted second extract is adjusted.
  • the pH is 2
  • the pH 2 is higher than the pH 1
  • thermosetting resin includes a polyfunctional epoxy resin.
  • a semiconductor chip a semiconductor chip; A resin film provided on the semiconductor chip and containing a cured product of the photosensitive resin composition for bump protective film according to any one of (1) to (5);
  • a semiconductor device comprising:
  • the photosensitive resin film after the third treatment is sequentially performed is a post-development photosensitive film
  • the post-development photosensitive film after being subjected to the fourth treatment for post-development heating at 170 ° C. for 180 minutes in a nitrogen atmosphere is a post-curing photosensitive film
  • the post-development photosensitive film is subjected to a first hot water extraction treatment at 125 ° C.
  • a photosensitive resin composition for a bump protective film capable of forming a resin film that has good patternability and can suppress metal deterioration.
  • a highly reliable semiconductor device including a resin film that has good patternability and can suppress metal deterioration can be obtained.
  • a highly reliable electronic device can be obtained.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device of the present invention.
  • FIG. 2 is a partially enlarged view of a region surrounded by a chain line in FIG.
  • FIG. 3 is a process diagram showing a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 5 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 6 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 7 is a partial enlarged cross-sectional view showing a first modification of the semiconductor device according to the embodiment.
  • FIG. 8 is a partial enlarged cross-sectional view illustrating a second modification of the semiconductor device according to the embodiment.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device of the present invention.
  • FIG. 2 is a partially enlarged view of a region surrounded by a chain line in FIG.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • a semiconductor device 1 shown in FIG. 1 has a so-called package-on-package structure including a through electrode substrate 2 and a semiconductor package 3 mounted thereon.
  • the through electrode substrate 2 includes an organic insulating layer 21 (resin film), a plurality of through wires 221 that penetrate from the upper surface to the lower surface of the organic insulating layer 21, and a semiconductor chip 23 embedded in the organic insulating layer 21.
  • the semiconductor package 3 includes a package substrate 31, a semiconductor chip 32 mounted on the package substrate 31, a bonding wire 33 that electrically connects the semiconductor chip 32 and the package substrate 31, and a semiconductor chip 32 and a bonding wire.
  • the sealing layer 34 in which 33 is embedded, and the solder bump 35 provided on the lower surface of the package substrate 31 are provided.
  • the semiconductor package 3 is stacked on the through electrode substrate 2. Thereby, the solder bumps 35 of the semiconductor package 3 and the upper wiring layer 25 of the through electrode substrate 2 are electrically connected.
  • the through electrode substrate 2 provided with different semiconductor chips and the semiconductor package 3 are stacked, the mounting density per unit area can be increased. For this reason, both miniaturization and high performance can be achieved.
  • a lower wiring layer 24 and an upper wiring layer 25 included in the through electrode substrate 2 shown in FIG. 2 include an insulating layer, a wiring layer, a through wiring, and the like, respectively.
  • the lower wiring layer 24 and the upper wiring layer 25 include wiring inside and on the surface, and are electrically connected to each other via the through wiring 221 that penetrates the organic insulating layer 21.
  • the wiring layer included in the lower wiring layer 24 is connected to the semiconductor chip 23 and the solder bump 26.
  • the lower wiring layer 24 functions as a rewiring layer of the semiconductor chip 23, and the solder bump 26 functions as an external terminal of the semiconductor chip 23.
  • the through wiring 221 shown in FIG. 2 is provided so as to penetrate the organic insulating layer 21 as described above.
  • the lower wiring layer 24 and the upper wiring layer 25 are electrically connected, and the through electrode substrate 2 and the semiconductor package 3 can be stacked, so that the semiconductor device 1 can have higher functionality. it can.
  • the wiring layer 253 included in the upper wiring layer 25 shown in FIG. 2 is connected to the through wiring 221 and the solder bump 35.
  • the upper wiring layer 25 is electrically connected to the semiconductor chip 23, functions as a rewiring layer of the semiconductor chip 23, and serves as an interposer interposed between the semiconductor chip 23 and the package substrate 31. Also works.
  • the through wiring 221 penetrates the organic insulating layer 21, an effect of reinforcing the organic insulating layer 21 can be obtained. For this reason, even when the mechanical strength of the lower wiring layer 24 and the upper wiring layer 25 is low, a decrease in the mechanical strength of the entire through-electrode substrate 2 can be avoided. As a result, the lower wiring layer 24 and the upper wiring layer 25 can be further reduced in thickness, and the semiconductor device 1 can be further reduced in height.
  • the semiconductor device 1 shown in FIG. 1 also includes a through wiring 222 provided so as to penetrate the organic insulating layer 21 located on the upper surface of the semiconductor chip 23 in addition to the through wiring 221. Thereby, electrical connection between the upper surface of the semiconductor chip 23 and the upper wiring layer 25 can be achieved.
  • the organic insulating layer 21 is provided so as to cover the semiconductor chip 23. Thereby, the effect of protecting the semiconductor chip 23 is enhanced. As a result, the reliability of the semiconductor device 1 can be improved. In addition, the semiconductor device 1 that can be easily applied to a mounting method such as the package-on-package structure according to the present embodiment is obtained.
  • the diameter W (see FIG. 2) of the through wiring 221 is not particularly limited, but is preferably about 1 to 100 ⁇ m, and more preferably about 2 to 80 ⁇ m. Thereby, the conductivity of the through wiring 221 can be ensured without impairing the mechanical characteristics of the organic insulating layer 21.
  • the semiconductor package 3 shown in FIG. 1 may be any form of package.
  • QFP Quad Flat Package
  • SOP Small Outline Package
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • QFN Quadrature Not-Readed Package
  • SON Ne-Package
  • Examples include LF-BGA (Lead Frame BGA).
  • the arrangement of the semiconductor chips 32 is not particularly limited, but as an example, a plurality of semiconductor chips 32 are stacked in FIG. As a result, the packaging density is increased.
  • the plurality of semiconductor chips 32 may be provided side by side in the plane direction, or may be provided side by side in the plane direction while being stacked in the thickness direction.
  • the package substrate 31 may be any substrate, for example, a substrate including an insulating layer, a wiring layer, a through wiring, and the like (not shown). Among these, the solder bump 35 and the bonding wire 33 can be electrically connected through the through wiring.
  • the sealing layer 34 is made of, for example, a known sealing resin material. By providing such a sealing layer 34, the semiconductor chip 32 and the bonding wire 33 can be protected from an external force or an external environment.
  • the semiconductor chip 23 provided in the through electrode substrate 2 and the semiconductor chip 32 provided in the semiconductor package 3 are arranged close to each other, so that benefits such as higher speed of communication and lower loss can be obtained. Can do.
  • one of the semiconductor chip 23 and the semiconductor chip 32 is an arithmetic element such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an AP (Application Processor), and the other is a DRAM (Dynamic Random Access). If a memory element such as a memory) or a flash memory is used, these elements can be arranged close to each other in the same apparatus. As a result, it is possible to realize the semiconductor device 1 that achieves both high functionality and downsizing.
  • FIG. 3 is a process diagram showing a method of manufacturing the semiconductor device 1 shown in FIG. 4 to 6 are diagrams for explaining a method of manufacturing the semiconductor device 1 shown in FIG.
  • the manufacturing method of the semiconductor device 1 includes a chip placement step S1 for obtaining the organic insulating layer 21 so as to embed the semiconductor chip 23 and the through wirings 221 and 222 provided on the substrate 202, the organic insulating layer 21 and the semiconductor chip 23.
  • the upper wiring layer forming step S2 for forming the upper wiring layer 25, the substrate peeling step S3 for peeling the substrate 202, the lower wiring layer forming step S4 for forming the lower wiring layer 24, and the solder bumps 26 are formed and penetrated.
  • a solder bump forming step S5 for obtaining the electrode substrate 2 and a laminating step S6 for laminating the semiconductor package 3 on the through electrode substrate 2 are included.
  • the photosensitive resin varnish 5 (photosensitive resin composition for a varnish-shaped bump protective film) is arranged on the organic insulating layer 21 and the semiconductor chip 23, and the photosensitive resin layer 2510.
  • Chip placement step S1 First, as shown in FIG. 4A, a substrate 202, a semiconductor chip 23 and through wires 221, 222 provided on the substrate 202, and an organic insulating layer 21 provided so as to embed these are provided. A chip embedded structure 27 is prepared.
  • the constituent material of the substrate 202 is not particularly limited, and examples thereof include metal materials, glass materials, ceramic materials, semiconductor materials, and organic materials.
  • a semiconductor wafer such as a silicon wafer, a glass wafer, or the like may be used.
  • the semiconductor chip 23 is bonded onto the substrate 202.
  • a plurality of semiconductor chips 23 are provided on the same substrate 202 while being separated from each other.
  • the plurality of semiconductor chips 23 may be of the same type or different types.
  • the substrate 202 and the semiconductor chip 23 may be fixed through an adhesive layer (not shown) such as a die attach film.
  • an interposer (not shown) may be provided between the substrate 202 and the semiconductor chip 23 as necessary.
  • the interposer functions as a rewiring layer of the semiconductor chip 23, for example. Therefore, the interposer may include a pad (not shown) for electrical connection with an electrode of the semiconductor chip 23 described later. Thereby, the pad interval and the arrangement pattern of the semiconductor chip 23 can be converted, and the design freedom of the semiconductor device 1 can be further increased.
  • an interposer for example, a silicon substrate, a ceramic substrate, an inorganic substrate such as a glass substrate, an organic substrate such as a resin substrate, or the like is used.
  • the organic insulating layer 21 may be, for example, a resin film containing a thermosetting resin or a thermoplastic resin as mentioned as a component of a photosensitive resin composition for a bump protective film described later.
  • Examples of the constituent material of the through wirings 221 and 222 include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like.
  • chip embedded structure 27 manufactured by a method different from the above may be prepared.
  • photosensitive resin varnish 5 is performed using, for example, a spin coater, a bar coater, a spray device, an ink jet device, or the like.
  • the viscosity of the photosensitive resin varnish 5 is not particularly limited, but is preferably 10 to 700 mPa ⁇ s, and more preferably 30 to 400 mPa ⁇ s.
  • a thinner photosensitive resin layer 2510 see FIG. 4D
  • the upper wiring layer 25 can be made thinner, and the semiconductor device 1 can be easily reduced in thickness.
  • the viscosity of the photosensitive resin varnish 5 is, for example, a value measured using a cone plate viscometer (TV-25, manufactured by Toki Sangyo) under the conditions of a rotation speed of 50 rpm and a measurement time of 300 seconds.
  • the drying conditions of the photosensitive resin varnish 5 are not particularly limited, and examples include conditions of heating at a temperature of 80 to 150 ° C. for 1 to 60 minutes.
  • a photosensitive resin film is the photosensitive resin composition for bump protective films which concerns on this embodiment, Comprising: It is a resin film which has photosensitivity.
  • the photosensitive resin film is produced, for example, by applying the photosensitive resin varnish 5 on the ground of a carrier film or the like with various coating apparatuses, and then drying the obtained coating film.
  • the photosensitive resin layer 2510 is subjected to a pre-exposure heat treatment as necessary.
  • the pre-exposure heat treatment By performing the pre-exposure heat treatment, the molecules contained in the photosensitive resin layer 2510 are stabilized, and the reaction in the first exposure step S21 described later can be stabilized.
  • the adverse effect on the photoacid generator due to heating can be minimized.
  • the temperature of the pre-exposure heat treatment is preferably 70 to 130 ° C., more preferably 75 to 120 ° C., and further preferably 80 to 110 ° C. If the temperature of the pre-exposure heat treatment is below the lower limit, the purpose of stabilizing the molecule by the pre-exposure heat treatment may not be achieved. On the other hand, when the temperature of the pre-exposure heat treatment exceeds the upper limit, the movement of the photoacid generator becomes too active, and it is difficult to generate acid even when light is irradiated in the first exposure step S21 described later. However, there is a risk that the processing accuracy of patterning may be reduced due to the wide range.
  • the pre-exposure heat treatment time is appropriately set according to the temperature of the pre-exposure heat treatment, and the temperature is preferably 1 to 10 minutes, more preferably 2 to 8 minutes, and still more preferably. 3-6 minutes. If the pre-exposure heat treatment time is less than the lower limit, the heating time is insufficient, and the object of stabilization of molecules by the pre-exposure heat treatment may not be achieved. On the other hand, if the pre-exposure heat treatment time exceeds the upper limit, the heating time is too long, so even if the pre-exposure heat treatment temperature is within the above range, the action of the photoacid generator is inhibited. There is a risk that.
  • the atmosphere for the heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like.
  • the atmospheric pressure is not particularly limited, and may be under reduced pressure or under pressure, but it is a normal pressure in consideration of work efficiency and the like.
  • the normal pressure refers to a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  • a mask 412 is disposed in a predetermined region on the photosensitive resin layer 2510. Then, light (active radiation) is irradiated through the mask 412. Thus, the photosensitive resin layer 2510 is subjected to an exposure process according to the pattern of the mask 412.
  • FIG. 4D shows a case where the photosensitive resin layer 2510 has a so-called negative photosensitivity.
  • the solubility in the developer is imparted to the region corresponding to the light shielding portion of the mask 412 in the photosensitive resin layer 2510.
  • acid is generated by the action of the photosensitive agent.
  • the generated acid acts as a catalyst for the reaction of the thermosetting resin in the steps described later.
  • the exposure dose in the exposure process is not particularly limited, but is preferably 100 to 2000 mJ / cm 2 , and more preferably 200 to 1000 mJ / cm 2 . Thereby, underexposure and overexposure in the photosensitive resin layer 2510 can be suppressed. As a result, finally, high patterning accuracy can be realized. Thereafter, the post-exposure heat treatment is performed on the photosensitive resin layer 2510 as necessary.
  • the temperature of the post-exposure heat treatment is not particularly limited, but is preferably 50 to 150 ° C., more preferably 50 to 130 ° C., still more preferably 55 to 120 ° C., and particularly preferably 60 to 110 ° C. Is done.
  • the temperature of the post-exposure heat treatment is not particularly limited, but is preferably 50 to 150 ° C., more preferably 50 to 130 ° C., still more preferably 55 to 120 ° C., and particularly preferably 60 to 110 ° C. Is done.
  • the catalytic action of the generated acid is sufficiently enhanced, and the thermosetting resin can be reacted sufficiently in a shorter time.
  • the temperature is too high, the diffusion of the acid is promoted and the patterning processing accuracy may be lowered. However, such a concern can be reduced if the temperature is within the above range.
  • the temperature of the post-exposure heat treatment is below the lower limit, the action of a catalyst such as an acid cannot be sufficiently enhanced, and the reaction rate of the thermosetting resin may be reduced or may take time. There is.
  • the temperature of the post-exposure heat treatment exceeds the upper limit, acid diffusion is promoted (widened), and patterning processing accuracy may be reduced.
  • the post-exposure heat treatment time is appropriately set according to the post-exposure heat treatment temperature, and the above temperature is preferably 1 to 30 minutes, more preferably 2 to 20 minutes, and still more preferably. 3-15 minutes.
  • the thermosetting resin can be sufficiently reacted, and acid diffusion can be suppressed to prevent patterning processing accuracy from being lowered.
  • the atmosphere of the post-exposure heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like.
  • the atmospheric pressure of the post-exposure heat treatment is not particularly limited, and may be under reduced pressure or under pressure, but it is normal pressure in consideration of work efficiency and the like. Thereby, the pre-exposure heat treatment can be performed relatively easily.
  • the normal pressure refers to a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  • the photosensitive resin layer 2510 is subjected to a curing process (post-development heating process).
  • the conditions for the curing treatment are not particularly limited, but the heating time is about 160 to 250 ° C. and the heating time is about 30 to 240 minutes. Thereby, the photosensitive resin layer 2510 can be cured and the organic insulating layer 251 can be obtained while suppressing the thermal effect on the semiconductor chip 23.
  • Wiring layer forming step S24 Next, a wiring layer 253 is formed over the organic insulating layer 251 (see FIG. 5F).
  • the wiring layer 253 is formed by, for example, obtaining a metal layer by using a vapor phase film forming method such as a sputtering method or a vacuum deposition method, and then patterning the metal layer by a photolithography method and an etching method.
  • pre-exposure heat treatment is performed on the photosensitive resin layer 2520 as necessary.
  • the processing conditions are, for example, the conditions described in the first resin film arranging step S20.
  • Second exposure step S26 Next, the photosensitive resin layer 2520 is exposed.
  • the processing conditions are, for example, the conditions described in the first exposure step S21.
  • post-exposure heat treatment is performed on the photosensitive resin layer 2520 as necessary.
  • the processing conditions are, for example, the conditions described in the first exposure step S21.
  • Second development step S27 the photosensitive resin layer 2520 is subjected to development processing.
  • the processing conditions are, for example, the conditions described in the first development step S22. Thereby, the opening part 424 which penetrates the photosensitive resin layers 2510 and 2520 is formed (refer FIG.5 (h)).
  • Second curing step S28 After the development process, the photosensitive resin layer 2520 is subjected to a curing process (post-development heating process).
  • the curing conditions are, for example, the conditions described in the first curing step S23. Thereby, the photosensitive resin layer 2520 is cured to obtain the organic insulating layer 252 (see FIG. 6I).
  • the upper wiring layer 25 has two layers of the organic insulating layer 251 and the organic insulating layer 252, but may have three or more layers. In this case, after the second curing step S28, a series of steps from the wiring layer forming step S24 to the second curing step S28 may be repeatedly added.
  • a known method is used to form the through wiring 254. For example, the following method is used.
  • a seed layer (not shown) is formed on the organic insulating layer 252.
  • the seed layer is formed on the upper surface of the organic insulating layer 252 together with the inner surface (side surface and bottom surface) of the opening 424.
  • the seed layer for example, a copper seed layer is used.
  • the seed layer is formed by, for example, a sputtering method.
  • the seed layer may be made of the same type of metal as the through wiring 254 to be formed, or may be made of a different kind of metal.
  • a resist layer (not shown) is formed on a region other than the opening 424 in the seed layer (not shown). Then, the opening 424 is filled with metal using this resist layer as a mask. For this filling, for example, an electrolytic plating method is used. Examples of the metal to be filled include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like. In this manner, the conductive material is embedded in the opening 424, and the through wiring 254 is formed.
  • the resist layer (not shown) is removed. Further, a seed layer (not shown) on the organic insulating layer 252 is removed. For this, for example, a flash etching method can be used. Note that the formation position of the through wiring 254 is not limited to the illustrated position.
  • Substrate peeling step S3 Next, as shown in FIG. 6J, the substrate 202 is peeled off. As a result, the lower surface of the organic insulating layer 21 is exposed.
  • Lower wiring layer formation step S4 Next, as shown in FIG. 6K, the lower wiring layer 24 is formed on the lower surface side of the organic insulating layer 21.
  • the lower wiring layer 24 may be formed by any method, for example, may be formed in the same manner as the above-described upper wiring layer forming step S2.
  • the lower wiring layer 24 formed in this way is electrically connected to the upper wiring layer 25 through the through wiring 221.
  • solder bump formation step S5 As shown in FIG. 6L, solder bumps 26 are formed on the lower wiring layer 24. Further, a protective film such as a solder resist layer may be formed on the upper wiring layer 25 and the lower wiring layer 24 as necessary.
  • the through electrode substrate 2 is obtained as described above.
  • the through electrode substrate 2 shown in FIG. 6 (L) can be divided into a plurality of regions. Therefore, for example, the plurality of through electrode substrates 2 can be efficiently manufactured by dividing the through electrode substrate 2 into pieces along the alternate long and short dash line shown in FIG. For example, a diamond cutter or the like can be used for singulation.
  • Such a manufacturing method of the semiconductor device 1 can be applied to a wafer level process or a panel level process using a large-area substrate. Thereby, the manufacturing efficiency of the semiconductor device 1 can be increased and the cost can be reduced.
  • the photosensitive resin composition for bump protective films is a resin composition having photosensitivity, and includes a thermosetting resin, a photosensitive agent, and a solvent.
  • resin films provided around electrical connection elements such as bumps, lands, and wirings are collectively referred to as “bump protective films”. Therefore, the photosensitive resin composition for bump protective film refers to the resin composition used for forming the bump protective film.
  • Specific examples of the bump protective film include a passivation film, an overcoat film, an interlayer insulating film and the like provided around the electrical connection element.
  • the resin film is provided on the semiconductor chip, but may be provided in the vicinity of the semiconductor chip, or may be provided at a position away from the semiconductor chip, such as a rewiring layer or a build-up wiring layer.
  • the photosensitive resin composition for bump protective film according to the present embodiment can cause an appropriate change in pH during the above-described upper wiring layer forming step S2.
  • Such a photosensitive resin composition for a bump protective film can form a resin film that has good patternability and can suppress metal deterioration.
  • an evaluation method for explaining such characteristics will be described in detail.
  • the photosensitive resin composition for bump protective film according to the present embodiment is coated on a silicon substrate and then dried to become a photosensitive resin film.
  • a photosensitive resin composition for bump protection film is applied on a silicon substrate.
  • the obtained liquid film is dried at 120 ° C. for 3 minutes to obtain a dry film.
  • a photosensitive resin film having a thickness of 15 ⁇ m is obtained.
  • This photosensitive resin film becomes a post-development photosensitive film through a first process, a second process, and a third process under predetermined conditions.
  • the photosensitive resin film is irradiated with i-rays having a wavelength of 365 nm under the condition of 600 mJ / cm 2 . Thereby, the first treatment is performed on the photosensitive resin film.
  • the photosensitive resin film subjected to the first treatment is heated at 80 ° C. for 5 minutes in the air atmosphere. Thereby, the second treatment is performed on the photosensitive resin film.
  • This post-development photosensitive film is further subjected to a fourth treatment under predetermined conditions to become a post-curing photosensitive film.
  • the developed photosensitive film is heated at 170 ° C. for 180 minutes in a nitrogen atmosphere.
  • the fourth process is performed on the developed photosensitive film.
  • the post-development photosensitive film that has been subjected to the fourth treatment in this way is referred to as a post-curing photosensitive film.
  • the obtained post-development photosensitive film is subjected to a first hot water extraction treatment as follows, whereby a first extract is obtained.
  • the photosensitive film is scraped off from the silicon substrate.
  • a mechanical method using a scraper is used.
  • the developed post-development photosensitive film and ultrapure water are put into an extraction container made of polytetrafluoroethylene.
  • the ultrapure water is weighed so that the mass ratio is 20 times (20 mass times) of the photosensitive film after development.
  • the extraction container is taken out from the thermostat and allowed to cool to room temperature (25 ° C.).
  • the contents of the extraction container are filtered through a filter having an opening of 0.5 ⁇ m, and the filtrate is recovered as a first extract.
  • the obtained second cured solution is obtained by subjecting the obtained post-curing photosensitive film to a second hot water extraction treatment as follows.
  • the photosensitive film is scraped off from the silicon substrate.
  • a mechanical method using a scraper is used.
  • the hardened photosensitive film and ultrapure water which have been scraped off are put into an extraction container made of polytetrafluoroethylene.
  • the ultrapure water is weighed so as to be 20 times (20 mass times) of the photosensitive film after being cured by mass ratio.
  • the extraction container is taken out from the thermostat and allowed to cool to room temperature (25 ° C.).
  • the contents of the extraction container are filtered through a filter having an opening of 0.5 ⁇ m, and the filtrate is recovered as a second extract.
  • the photosensitive resin composition for bump protective film according to the present embodiment satisfies the following three conditions (a) to (c) in the evaluation result by the above-described evaluation method.
  • pH 1 is 3.0 to 5.0.
  • pH2 is higher than pH1.
  • C The difference between pH 1 and pH 2 is 0.1 to 1.0.
  • the photosensitive resin composition for a bump protective film satisfying these three conditions includes the step after or before the first development step S22 and the step after or after the second development step S27. In the previous process, it exhibits a relatively low pH.
  • Such a process includes a process that requires a reaction of a thermosetting resin in the photosensitive resin composition for bump protection film, and a relatively low pH is a catalyst that promotes the reaction of the thermosetting resin. This corresponds to a high acid content. Therefore, in such a process, the reaction of the thermosetting resin is promoted and, for example, the sensitivity of the photosensitive resin layers 2510 and 2520 is increased, so that the patternability of the photosensitive resin layers 2510 and 2520 is improved.
  • pH1 is lower than the lower limit value, for example, the metal contained in the wiring layer 253 may be deteriorated (oxidized) in the second development step S27 and the previous step.
  • pH1 exceeds the said upper limit, there exists a possibility that reaction of a thermosetting resin cannot fully be accelerated
  • the above-mentioned photosensitive resin composition for bump protective film has a pH higher after the first curing step S23 than the pH after the first development step S22, particularly due to (b).
  • the pH after the second curing step S28 is higher than the pH after the second developing step S27. That is, it can be said that the photosensitive resin composition for bump protective film has a pH of the cured product higher than that at the time of non-curing.
  • Such a photosensitive resin composition for a bump protective film has a relatively low acidity in the cured product. Therefore, for example, the metal contained in the wiring layer 253, the through wiring 254, etc. in the organic insulating layers 251 and 252. Can be prevented. Then, by suppressing the deterioration of the metal, it is possible to suppress the deterioration of the insulating properties of the organic insulating layers 251 and 252 due to the migration of metal ions.
  • the pH of the cured product of the photosensitive resin composition for bump protective film is higher than the pH at the time of non-curing, but the difference is optimized. For this reason, pH1 becomes low enough and reaction of a thermosetting resin is fully accelerated
  • the difference is too small when the difference between pH1 and pH2 is less than the lower limit value, the reaction of the thermosetting resin cannot be sufficiently promoted, or the deterioration of the metal can be sufficiently suppressed. It may not be possible.
  • the difference between pH1 and pH2 exceeds the upper limit value, the difference is too large.
  • the metal contained in the wiring layer 253 may be deteriorated (oxidized). Or there exists a possibility that stability of the photosensitive resin composition for bump protective films may fall.
  • the photosensitive resin composition for bump protective film can form a resin film that has good patternability and can suppress metal deterioration. Become.
  • the pH 1 is preferably 3.2 to 4.5, more preferably 3.4 to 4.0.
  • the difference between pH 1 and pH 2 is preferably 0.2 to 0.9, more preferably 0.3 to 0.8.
  • the pH 2 of the second extract is preferably 3.6 or more, more preferably 3.8 to 7.0.
  • pH2 is in the above range, for example, deterioration of metals contained in the wiring layer 253, the through wiring 254, and the like in the organic insulating layers 251 and 252 can be suppressed particularly well over a long period of time.
  • the semiconductor device 1 described above includes a semiconductor chip 23 and organic insulating layers 251 and 252 which are provided on the semiconductor chip 23 and are resin films containing a cured product of the photosensitive resin composition for bump protection film. ing.
  • the defect rate is low and the reliability is high.
  • thermosetting resin examples include phenol novolac type epoxy resins, cresol novolac type epoxy resins such as cresol novolak type epoxy resins, cresol naphthol type epoxy resins, biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, phenoxy resins, and naphthalene skeletons.
  • Type epoxy resin bisphenol A type epoxy resin, bisphenol A diglycidyl ether type epoxy resin, bisphenol F type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, glycidyl ether type epoxy resin, cresol Novolac epoxy resin, aromatic polyfunctional epoxy resin, aliphatic epoxy resin, aliphatic polyfunctional epoxy resin, alicyclic epoxy resin, polyfunctional Epoxy resins such as cyclic epoxy resins; resins having a triazine ring such as urea (urea) resins and melamine resins; unsaturated polyester resins; maleimide resins such as bismaleimide compounds; polyurethane resins; diallyl phthalate resins; silicone resins; Oxazine resin; polyimide resin; polyamideimide resin; benzocyclobutene resin, novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, cyanate ester resin such as
  • thermosetting resin preferably contains an epoxy resin.
  • the epoxy resin examples include a polyfunctional epoxy resin having two or more epoxy groups in one molecule. These may be used alone or in combination. By using such a polyfunctional epoxy resin, the film physical properties and workability of the photosensitive resin layers 2510 and 2520 can be improved.
  • thermosetting resin a polyfunctional epoxy resin more than trifunctional may be used.
  • Thermosetting resins include, among others, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins, dicyclopentadiene type epoxy resins, bisphenol A type epoxy resins, and tetramethylbisphenol F type epoxy resins. It is preferable to include one or more epoxy resins selected from the group consisting of: and more preferable to include a novolac type epoxy resin. Since such a thermosetting resin is a polyfunctional epoxy resin made of an aromatic compound, organic insulating layers 251 and 252 having good curability, high heat resistance, and a relatively low thermal expansion coefficient can be obtained. .
  • thermosetting resin contains solid resin at normal temperature (25 degreeC).
  • the content of the thermosetting resin is not particularly limited, but is preferably about 40 to 90% by mass, and preferably about 45 to 85% by mass of the total solid content of the photosensitive resin composition for bump protective film. More preferably, it is about 50 to 80% by mass.
  • the solid content of the photosensitive resin composition for bump protective film refers to the non-volatile content in the photosensitive resin composition for bump protective film, and refers to the remainder excluding volatile components such as water and solvent. Moreover, in this embodiment, content with respect to the whole solid of the photosensitive resin composition for bump protective films refers to content with respect to the whole component except the solvent of the photosensitive resin composition for bump protective films.
  • the photosensitive resin composition for bump protective film may contain a liquid epoxy resin that exhibits a liquid state at room temperature, if necessary. Since the liquid epoxy resin functions as a film forming aid (filming agent), brittleness of the organic insulating layers 251 and 252 can be suppressed.
  • the liquid epoxy resin a resin different from the thermosetting resin described above can be used. Specifically, an epoxy compound that has two or more epoxy groups in the molecule and is liquid at room temperature of 25 ° C. can be used. By using such a liquid epoxy resin, the brittleness of the organic insulating layers 251 and 252 can be particularly suppressed.
  • the viscosity of this liquid epoxy resin at 25 ° C. is, for example, 1 to 8000 mPa ⁇ s, preferably 5 to 1500 mPa ⁇ s, and more preferably 10 to 1400 mPa ⁇ s.
  • liquid epoxy resin examples include one or more selected from the group consisting of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, alkyl diglycidyl ether, and alicyclic epoxy.
  • One type or a combination of two or more types is used.
  • alkyldiglycidyl ether is preferably used from the viewpoint of reducing cracks after development.
  • the epoxy equivalent of the liquid epoxy resin is preferably 100 to 200 g / eq, more preferably 105 to 180 g / eq, and further preferably 110 to 170 g / eq. Thereby, the brittleness of the organic insulating layers 251 and 252 can be particularly suppressed.
  • the content of the liquid epoxy resin is not particularly limited, but is preferably about 1 to 40% by mass of the total solid content of the photosensitive resin composition for bump protective film, more preferably about 5 to 35% by mass. Preferably, it is about 10 to 30% by mass. Thereby, the physical property balance can be achieved while suppressing the brittleness of the organic insulating layers 251 and 252.
  • the amount of the liquid epoxy resin is preferably about 1 to 100 parts by weight, more preferably about 5 to 90 parts by weight, with respect to 100 parts by weight of the solid resin at room temperature. More preferably, it is about.
  • the photosensitive resin composition for bump protective films may further contain a thermoplastic resin.
  • cured material of the photosensitive resin composition for bump protective films can be improved more.
  • thermoplastic resin examples include phenoxy resin, polyvinyl acetal resin, acrylic resin, polyamide resin (for example, nylon), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene, etc.), polycarbonate, and polyester resin.
  • polyethylene terephthalate, polybutylene terephthalate, etc. polyacetal, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluororesin (eg, polytetrafluoroethylene, polyvinylidene fluoride, etc.), modified polyphenylene ether, polysulfone, polyether sulfone, Polyarylate, polyamideimide, polyetherimide, thermoplastic polyimide and the like can be mentioned.
  • one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, or one or more. And those prepolymers may be used in combination.
  • phenoxy resin is preferably used as the thermoplastic resin.
  • the phenoxy resin is also called a polyhydroxy polyether, and has a feature that the molecular weight is larger than that of the epoxy resin.
  • a phenoxy resin it can suppress that the flexibility of the hardened
  • the cured product of the photosensitive resin composition for a bump protective film exhibits appropriate stretchability. Therefore, by using such a photosensitive resin composition for bump protective film, even when a thin organic insulating layer is formed, it is possible to suppress the occurrence of cracks in the organic insulating layer, and a semiconductor with high insulation reliability.
  • the device can be manufactured.
  • Such a photosensitive resin composition for a bump protective film is particularly suitable for forming a rewiring layer such as the upper wiring layer 25 and the lower wiring layer 24.
  • phenoxy resin examples include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, copolymerized phenoxy resin of bisphenol A type and bisphenol F type, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, biphenyl type phenoxy resin and bisphenol.
  • examples thereof include copolymerized phenoxy resins with S-type phenoxy resins, and one or a mixture of two or more of these is used.
  • bisphenol A type phenoxy resin or copolymerized phenoxy resin of bisphenol A type and bisphenol F type is preferably used.
  • a resin having an epoxy group at both ends of the molecular chain is preferably used. According to such a phenoxy resin, when an epoxy resin is used as a thermosetting resin, excellent solvent resistance and heat resistance can be imparted to the cured product of the photosensitive resin composition for bump protection film. it can.
  • a resin that is solid at room temperature is preferably used.
  • a phenoxy resin having a nonvolatile content of 90% by mass or more is preferably used.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, but is preferably about 10,000 to 100,000, more preferably about 20,000 to 100,000, and further preferably about 30,000 to 70,000.
  • thermoplastic resin By using such a relatively high molecular weight thermoplastic resin, it is possible to impart satisfactory flexibility to the cured product and sufficient solubility in a solvent.
  • a phenoxy resin having a weight average molecular weight within the above range in addition to the above effects, the cured product has more suitable stretchability, and thus is particularly suitable for the formation of a rewiring layer that requires thinning. Yes.
  • the weight average molecular weight of a thermoplastic resin is measured as a polystyrene conversion value of a gel permeation chromatography (GPC) method, for example.
  • GPC gel permeation chromatography
  • the addition amount of the thermoplastic resin is not particularly limited, but is preferably 10 parts by mass or more and 90 parts by mass or less, and more preferably 15 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. Preferably, it is 20 parts by mass or more and 70 parts by mass or less.
  • thermoplastic resin when the addition amount of the thermoplastic resin is less than the lower limit, depending on the component contained in the photosensitive resin composition for bump protective film and the blending ratio thereof, it is sufficient for the cured product of the photosensitive resin composition for bump protective film. There is a possibility that the flexibility is not given.
  • the addition amount of the thermoplastic resin exceeds the upper limit, depending on the components contained in the photosensitive resin composition for bump protective film and the blending ratio thereof, the cured product of the photosensitive resin composition for bump protective film is used. There is a risk that the mechanical strength will decrease.
  • Photosensitive agent As the photosensitizer, for example, a photoacid generator can be used. As a result, a chemically amplified photosensitive resin composition for a bump protective film using an acid generated from a photoacid generator as a catalyst is obtained. Such a chemically amplified photosensitive resin composition for a bump protective film has high sensitivity, so that finer patterning can be realized with high throughput.
  • Examples of the photoacid generator include compounds that generate an acid upon irradiation with actinic rays such as ultraviolet rays, and specifically include onium salt compounds. More specifically, iodonium salts such as diazonium salts and diaryliodonium salts, sulfonium salts such as triarylsulfonium salts, triarylbililium salts, benzylpyridinium thiocyanate, dialkylphenacylsulfonium salts, and dialkylhydroxyphenylphosphonium salts. And a cationic photopolymerization initiator.
  • iodonium salts such as diazonium salts and diaryliodonium salts
  • sulfonium salts such as triarylsulfonium salts, triarylbililium salts, benzylpyridinium thiocyanate, dialkylphenacylsulfonium salts, and dialkylhydroxyphenylphosphonium salts
  • the photosensitive agent is preferably a compound that does not generate hydrogen fluoride due to decomposition, such as a methide salt type or a borate salt type, considering that the photosensitive resin composition for bump protective film is in contact with metal.
  • the photoacid generator is particularly preferably an onium salt having a gallate anion as a counter anion (hereinafter referred to as “onium gallate salt”).
  • an onium gallate salt has thermal dissociation properties. That is, the onium gallate salt undergoes thermal dissociation in the gallate anion when heated. For this reason, in the photosensitive resin composition for bump protective films, pH raises with a hardening process. As a result, the pH changes before and after the curing treatment, and a photosensitive resin composition for a bump protective film that satisfies the above three conditions (a) to (c) can be realized.
  • the onium gallate salt is not particularly limited as long as it is an onium salt having a gallate anion as a counter anion.
  • the following general formula (1) is an example of an onium gallate salt.
  • R 1 to R 4 are each independently an alkyl group or aryl group having 1 to 18 carbon atoms. Provided that at least one of R 1 to R 4 is an aryl group, and the aryl group has 6 to 14 carbon atoms (not including the carbon number of the following substituents), and a hydrogen atom in the aryl group are alkyl groups having 1 to 18 carbon atoms, alkyl groups having 1 to 8 carbon atoms substituted by halogen atoms, alkenyl groups having 2 to 18 carbon atoms, alkynyl groups having 2 to 18 carbon atoms, and 6 to 6 carbon atoms.
  • R 6 to R 9 are each an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms
  • R 10 and R 11 are each a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a carbon number 6 to 14 aryl groups.
  • R 5 is an organic group bonded to E, the number of R 5 is n + 1, and n + 1 R 5 s may be the same as or different from each other, and two or more R 5 Ring containing element E directly or each other through —O—, —S—, —SO—, —SO 2 —, —NH—, —CO—, —COO—, —CONH—, an alkylene group or a phenylene group A structure may be formed. ]
  • E combines with the organic group R 5 to form an onium ion (onium cation).
  • onium ion onium cation
  • examples of E include O (oxygen), N (nitrogen), P (phosphorus), S (sulfur), and I (iodine), and onium ions corresponding to these include oxonium, ammonium, phosphonium, sulfonium, and iodonium. It is.
  • R 5 examples include an aryl group having 6 to 14 carbon atoms, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, and an alkynyl group having 2 to 18 carbon atoms.
  • the aryl group in R 5 is further an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, Hydroxyl group, cyano group, alkoxy group or aryloxy group represented by —OR 6 , acyl group represented by R 7 CO—, acyloxy group represented by R 8 COO—, alkylthio group represented by —SR 9 Alternatively, it may be substituted with an arylthio group, an amino group represented by —NR 10 R 11 , or a halogen atom.
  • the onium ion is particularly preferably a sulfonium ion, more preferably a triarylsulfonium ion, and even more preferably a triphenylsulfonium ion.
  • a photoacid generator having good sensitivity and solubility can be obtained.
  • Examples of the triarylsulfonium ion include at least one of ions represented by the following structural formula.
  • gallate anions include (C 6 F 5 ) 4 Ga ⁇ , ((CF 3 ) 2 C 6 H 3 ) 4 Ga ⁇ , (CF 3 C 6 H 4 ) 4 Ga ⁇ , (C 6 F 5 ) 2 GaF 2 ⁇ , C 6 F 5 GaF 3 ⁇ , (C 6 H 3 F 2 ) 4 Ga ⁇ and the like.
  • an anion it is possible to realize a photosensitive resin composition for a bump protective film that has particularly good thermal dissociability and can cause an appropriate pH change.
  • the fourth treatment in which heating is performed at 170 ° C. for 180 minutes in a nitrogen atmosphere as described above.
  • the pH of the photosensitive resin composition for bump protective film rises moderately by the fourth treatment, and the photosensitive resin composition for bump protective film that satisfies the above three conditions (a) to (c) is realized. can do.
  • the effect mentioned above is the same not only when using onium gallate salt, but also when using the photo-acid generator containing the counter-anion which has thermal dissociation property (photo-acid generator which has thermal dissociation property). Is obtained.
  • a triarylsulfonium salt having a borate anion as a counter anion or a triarylsulfonium salt having a sulfonate anion as a counter anion may be used instead of the gallate anion.
  • Such triarylsulfonium salts with a borate anion or sulfonate anion as a counter anion have little or no thermal dissociation properties, even if they have a thermal dissociation than a triaryl sulfonium salt with a gallate anion as a counter ion. The nature is small. In this case, even if it uses for a 4th process, pH of the photosensitive resin composition for bump protective films does not rise, or the raise width becomes small.
  • a photoacid generator that contains a counter anion that does not have thermal dissociation property or has low thermal dissociation property is referred to as a non-thermal dissociable photoacid generator.
  • a photoacid generator having thermal dissociation property or a photoacid generator having low thermal dissociation property is used alone, or a photoacid generator having thermal dissociation property and a non-thermal dissociative photoacid generator are used.
  • the pH of the photosensitive resin composition for bump protective film can be adjusted as appropriate.
  • a photosensitive resin composition for a bump protective film that satisfies the above three conditions (a) to (c) can be realized.
  • the change in pH in the photosensitive resin composition for bump protection film is not limited to this example, and other It may be a change due to the factor.
  • a thermosetting resin, a thermoplastic resin, a curing agent, and the like may be used. When these have thermal dissociation properties, the same pH change as in the present embodiment is induced. Can do.
  • the addition amount of the photosensitive agent is not particularly limited, but is preferably about 0.3 to 5.0% by mass of the total solid content of the photosensitive resin composition for bump protective film, and preferably 0.5 to 4.5% by mass. % Is more preferable, and about 1.0 to 4.0% by mass is even more preferable.
  • the photosensitive agent may be a photosensitive agent that imparts negative photosensitivity to the photosensitive resin composition for bump protection film, or may be a photosensitive agent that imparts positive photosensitivity.
  • the photosensitive resin composition for bump protective film may contain a coupling agent as necessary.
  • the photosensitive resin composition for a bump protective film having a coupling agent enables the formation of a resin film having good adhesion to an inorganic material.
  • the organic insulating layers 251 and 252 having good adhesion to the wiring layer 253, the through wiring 254, and the semiconductor chip 23 are obtained.
  • coupling agents include coupling agents containing amino groups, epoxy groups, acrylic groups, methacryl groups, mercapto groups, vinyl groups, ureido groups, sulfide groups, acid anhydrides and the like as functional groups. These may be used alone or in combination.
  • amino group-containing coupling agents include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ -aminopropylmethyldiethoxysilane.
  • ⁇ -aminopropylmethyldimethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyl Examples include methyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, and N-phenyl- ⁇ -amino-propyltrimethoxysilane.
  • epoxy group-containing coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -glycidylpropyl.
  • acrylic group-containing coupling agent or methacryl group-containing coupling agent examples include ⁇ - (methacryloxypropyl) trimethoxysilane, ⁇ - (methacryloxypropyl) methyldimethoxysilane, and ⁇ - (methacryloxypropyl) methyldiethoxysilane. Etc.
  • Examples of the mercapto group-containing coupling agent include 3-mercaptopropyltrimethoxysilane.
  • vinyl group-containing coupling agent examples include vinyl tris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane.
  • ureido group-containing coupling agent examples include 3-ureidopropyltriethoxysilane.
  • sulfide group-containing coupling agent examples include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
  • acid anhydride-containing coupling agent examples include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylsilylpropyl succinic anhydride, 3-dimethylmethoxysilylpropyl succinic anhydride, and the like.
  • silane coupling agent was enumerated here, a titanium coupling agent, a zirconium coupling agent, etc. may be sufficient.
  • the addition amount of the coupling agent is not particularly limited, but is preferably about 0.3 to 5% by mass of the total solid content of the photosensitive resin composition for bump protective film, and preferably 0.5 to 4.5% by mass. More preferred is about 1 to 4% by mass.
  • organic insulating layers 251 and 252 having particularly good adhesion to an inorganic material such as the wiring layer 253 and the through wiring 254 can be obtained. This contributes to the realization of the highly reliable semiconductor device 1 such that the insulating properties of the organic insulating layers 251 and 252 are maintained over a long period of time.
  • the addition amount of the coupling agent when the addition amount of the coupling agent is less than the lower limit, the adhesion to the inorganic material may be lowered depending on the composition of the coupling agent. On the other hand, when the addition amount of the coupling agent exceeds the upper limit, the photosensitivity and mechanical properties of the bump protective film photosensitive resin composition may be lowered depending on the composition of the coupling agent.
  • the other additive may be added to the photosensitive resin composition for bump protective films as needed.
  • examples of other additives include an antioxidant, a filler such as silica, a surfactant, a sensitizer, and a filming agent.
  • surfactant examples include a fluorine-based surfactant, a silicon-based surfactant, an alkyl-based surfactant, and an acrylic-based surfactant.
  • the photosensitive resin composition for bump protective films contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve each component of the photosensitive resin composition for bump protective film and does not react with each component.
  • the solvent examples include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, benzyl alcohol.
  • Propylene carbonate ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, dipropylene glycol methyl-n-propyl ether, butyl acetate, ⁇ -butyrolactone, and the like. These may be used alone or in combination.
  • the amount of the solvent added is not particularly limited, but is preferably 30 to 80% by mass, more preferably 40 to 70% by mass of the photosensitive resin composition for bump protective film.
  • FIG. 7 is a partial enlarged cross-sectional view showing a first modification of the semiconductor device according to the embodiment.
  • a 1st modification is demonstrated, in the following description, it demonstrates centering around difference with embodiment shown in FIG.1, 2, The description is abbreviate
  • symbol is attached
  • the semiconductor device 1A shown in FIG. 7 is the same as the semiconductor device 1 shown in FIGS. 1 and 2 except that the structure of the lower wiring layer is different. That is, the semiconductor device 1 ⁇ / b> A shown in FIG. 7 includes a semiconductor chip 23 provided with lands 231, a lower wiring layer 24 ⁇ / b> A, and solder bumps 26. The structure of the lower wiring layer 24A is different from the structure of the lower wiring layer 24 shown in FIGS.
  • the lower wiring layer 24A shown in FIG. 7 includes an organic insulating layer 240 provided on the lower surface of the semiconductor chip 23 and an organic insulating layer 241 provided below the organic insulating layer 240. . At least one of these organic insulating layers 240 and 241 is formed using the above-described photosensitive resin composition for bump protective film.
  • the lower surface of the semiconductor chip 23 is covered with organic insulating layers 240 and 241.
  • the lower wiring layer 24A shown in FIG. 7 includes a bump adhesion layer 245 that is electrically connected to both the land 231 and the solder bump 26.
  • FIG. 8 is a partial enlarged cross-sectional view illustrating a second modification of the semiconductor device according to the embodiment.
  • a 2nd modification is demonstrated, in the following description, it demonstrates centering around difference with embodiment shown in FIG.1, 2, The description is abbreviate
  • symbol is attached
  • the semiconductor device 1B shown in FIG. 8 is the same as the semiconductor device 1 shown in FIGS. 1 and 2 except that the structure of the lower wiring layer is different. That is, the semiconductor device 1B shown in FIG. 8 includes a semiconductor chip 23 provided with lands 231, a lower wiring layer 24 ⁇ / b> B, and solder bumps 26. The structure of the lower wiring layer 24B is different from the structure of the lower wiring layer 24 shown in FIGS.
  • the lower wiring layer 24B shown in FIG. 8 includes an organic insulating layer 240 provided on the lower surface of the semiconductor chip 23, an organic insulating layer 241 provided below the organic insulating layer 240, and an organic insulating layer 241. And an organic insulating layer 242 provided below. At least one of these organic insulating layers 240, 241, and 242 is formed using the above-described photosensitive resin composition for bump protective film.
  • the lower wiring layer 24B shown in FIG. 8 includes a wiring layer 243 that is electrically connected to the land 231, a bump adhesion layer 245 that is electrically connected to both the wiring layer 243 and the solder bump 26, It has.
  • Organic insulating layers 240 and 241 are interposed between the semiconductor chip 23 and the wiring layer 243, and the lower surface of the wiring layer 243 is covered with the organic insulating layer 242.
  • the electronic apparatus according to the present embodiment includes the semiconductor device according to the present embodiment described above.
  • Such a semiconductor device has a resin film that has good patternability and can suppress metal deterioration, it has high reliability. For this reason, high reliability is also provided to the electronic apparatus according to the present embodiment.
  • the electronic apparatus is not particularly limited as long as it includes such a semiconductor device.
  • a semiconductor device for example, mobile phones, smartphones, tablet devices, wearable devices, information devices such as personal computers, communication devices such as servers and routers, industrial devices such as robots and machine tools, vehicle control computers, car navigation systems, etc.
  • An on-vehicle device etc. are mentioned.
  • the photosensitive resin composition for bump protective film, the semiconductor device, and the electronic device of the present invention may be added with any element in the embodiment.
  • the photosensitive resin composition for bump protective films is a bump protective film for display devices such as MEMS (Micro Electro Mechanical Systems), bump sensors for various sensors, liquid crystal display devices, and organic EL devices.
  • MEMS Micro Electro Mechanical Systems
  • bump sensors for various sensors such as MEMS (Micro Electro Mechanical Systems)
  • liquid crystal display devices such as LCD, LCD, and organic EL devices.
  • the present invention can also be applied.
  • the form of the package of the semiconductor device is not limited to the form shown in the figure, and may be any form.
  • test piece for pH evaluation First, the raw materials shown in Tables 1 and 2 were mixed to prepare a solution.
  • This photosensitive resin composition for bump protective film is a negative type.
  • the obtained photosensitive resin composition for bump protective film was applied onto a 6-inch silicon wafer (silicon substrate) with a spin coater. Thereby, a liquid film was obtained.
  • the obtained liquid film was dried by heating at 120 ° C. for 3 minutes in the air on a hot plate. Thereby, a photosensitive resin film having a thickness of 15 ⁇ m was obtained.
  • the obtained photosensitive resin film was subjected to a first process of exposing the entire surface of i-line having a wavelength of 365 nm using an automatic exposure machine.
  • the exposure amount was 600 mJ / cm 2 .
  • the photosensitive resin film after the first treatment was subjected to a second treatment by heating at 80 ° C. for 5 minutes in an air atmosphere using a hot plate.
  • the photosensitive resin film after the second treatment was subjected to a third treatment in which spray development using 25 ° C. propylene glycol monomethyl ether acetate as a developing solution was performed for 30 seconds. Thereby, a test piece for pH evaluation in which a plurality of post-development photosensitive films were formed was obtained.
  • Examples 2 to 7 A test piece for pH evaluation was obtained in the same manner as in Example 1 except that the production conditions of the test piece for pH evaluation were changed as shown in Tables 1 and 2.
  • test piece for pH evaluation was obtained in the same manner as in Example 1 except that the production conditions of the test piece for pH evaluation were changed as shown in Tables 1 and 2.
  • CPI-310FG is a triarylsulfonium salt.
  • a heat-resistant vinyl chloride resin sheet is prepared as a substrate, and a comb-shaped Cu plating film (Cu electrode) having a width of 30 ⁇ m, a pitch of 20 ⁇ m, and a thickness of 10 to 15 ⁇ m is formed thereon. did. Thereby, a Cu wiring substrate was obtained.
  • Cu electrode Cu plating film
  • the varnish-shaped photosensitive resin composition for bump protective film obtained in each example and each comparative example was spin-coated on a Cu wiring substrate, and the obtained liquid film was heated at 100 ° C. for 3 minutes. And dried. Thereby, a photosensitive resin film having a thickness of 30 ⁇ m was obtained.
  • the entire surface of the resulting photosensitive resin film was exposed to i-line having a wavelength of 365 nm with an exposure amount of 600 mJ / cm 2 using an automatic exposure machine.
  • the Cu wiring substrate was heated at 70 ° C. for 5 minutes on a hot plate in the atmosphere.
  • the Cu wiring board was immersed in propylene glycol monomethyl ether acetate for 20 seconds.
  • the Cu wiring board was heated at 170 ° C. for 180 minutes in a nitrogen atmosphere.
  • the photosensitive resin film was cured to obtain a test piece for pattern evaluation.
  • This film was irradiated with i-line through a mask made by Toppan Printing Co., Ltd. (a remaining pattern having a width of 1.0 to 100 ⁇ m and a removal pattern were drawn).
  • a i-line stepper manufactured by Nikon Corporation, NSR-4425i was used.
  • the wafer was placed on a hot plate and baked at 80 ° C. for 5 minutes in the air.
  • PMEA propylene glycol monomethyl ether acetate
  • the internal temperature was set to 130 ° C.
  • the internal relative humidity was set to 85%
  • a bias of 3.5 V was applied between the Cu electrodes separated from each other.
  • the insulation resistance value between the Cu electrodes was automatically measured at intervals of 6 minutes from the start of application.
  • the elapsed time (leak generation time) from the start of application to the occurrence of leak (insulation breakdown) was measured. Note that the occurrence of leakage refers to a case where the measured insulation resistance value is reduced to 1.0 ⁇ 10 4 ⁇ or less.
  • test pieces obtained in each Example had good patterning properties (sensitivity) and good wiring reliability (insulating properties).
  • the photosensitive resin composition for a bump protective film of the present invention is a resin composition having photosensitivity, and includes a thermosetting resin, a photosensitive agent, and a solvent. Further, using the photosensitive resin composition for a bump protective film, a developed photosensitive film developed by applying a treatment under predetermined conditions, and a post-cured photosensitive film obtained by curing the developed photosensitive film under predetermined conditions
  • the pH of the extract obtained by performing the hot water extraction treatment under predetermined conditions (the pH of the extract of the photosensitive film after development: pH 1, the pH of the extract of the photosensitive film after curing: pH 2) is as follows: The following three conditions (a) to (c) are satisfied.
  • A) pH 1 is 3.0 to 5.0.
  • (B) pH2 is higher than pH1.
  • the difference between pH 1 and pH 2 is 0.1 to 1.0.
  • the reaction of the thermosetting resin is promoted, and the patternability of the photosensitive film is improved. Further, the deterioration of the metal such as the wiring layer contained in the photosensitive film can be suppressed, and the deterioration of the insulating property of the photosensitive film can be suppressed. Therefore, by using such a photosensitive resin composition for a bump protective film, it becomes possible to form a photosensitive film (organic insulating layer) that has good patternability and can suppress metal deterioration. Therefore, the present invention has industrial applicability.

Abstract

A photosensitive resin composition for bump protecting films according to the present invention comprises a heat-curable resin, a photosensitizing agent and a solvent, wherein, when a dried film having a thickness of 15 μm and produced by applying the photosensitive resin composition for bump protecting films onto a silicon substrate and then drying the resultant film is named as a photosensitive resin film, the photosensitive resin film which is subjected to a first treatment of exposing to i line, a second treatment of carrying out heating after the exposure and a third treatment of carrying out spray development in this order is named as a post-development photosensitive film, and the post-development photosensitive film which is subjected to a fourth treatment of carrying out heating after the development is named as a post-curing photosensitive film, the pH value 1 of a first liquid extract extracted from the post-development photosensitive film is 3.0 to 5.0 and the pH value 2 of a second liquid extract extracted from the post-curing photosensitive film is higher by 0.1 to 1.0 than the pH value 1.

Description

バンプ保護膜用感光性樹脂組成物、半導体装置、半導体装置の製造方法および電子機器Photosensitive resin composition for bump protective film, semiconductor device, method for manufacturing semiconductor device, and electronic device
 本発明は、バンプ保護膜用感光性樹脂組成物、半導体装置、半導体装置の製造方法および電子機器に関する。 The present invention relates to a photosensitive resin composition for a bump protective film, a semiconductor device, a method for manufacturing a semiconductor device, and an electronic apparatus.
 半導体素子には、保護膜、層間絶縁膜、平坦化膜等の用途で、樹脂材料からなる樹脂膜が用いられている。この樹脂膜をパターニングする際には、樹脂材料に感光性および光透過性を付与するとともに、露光処理および現像処理を施すことにより、目的とするパターンを精度よく形成することができる。 In the semiconductor element, a resin film made of a resin material is used for applications such as a protective film, an interlayer insulating film, and a planarizing film. When patterning this resin film, it is possible to form a target pattern with high accuracy by imparting photosensitivity and light transmission to the resin material, and performing exposure processing and development processing.
 例えば、特許文献1には、分子構造を最適化し、残留応力を低減させることにより、光透過性に優れる感光性樹脂組成物が開示されている。この感光性樹脂組成物は、液状であり、スピンコート法により基板上に塗布された後、露光処理および現像処理に供される。これにより、露光パターンに応じたパターニングが施される。 For example, Patent Document 1 discloses a photosensitive resin composition having excellent light transmittance by optimizing the molecular structure and reducing residual stress. This photosensitive resin composition is in a liquid state, and is applied to a substrate by a spin coating method and then subjected to an exposure process and a development process. Thereby, patterning according to the exposure pattern is performed.
特開2003-209104号公報JP 2003-209104 A
 また、感光性樹脂組成物は、配線を絶縁するための絶縁部を形成する目的でも使用される。感光性樹脂組成物では、受光した感光剤から発生した酸が熱硬化性樹脂の反応を促進させ、絶縁部となる樹脂膜が形成される。その一方、発生した酸は、感光性樹脂組成物のpHを低下させ、配線を劣化させる原因になることが懸念される。 The photosensitive resin composition is also used for the purpose of forming an insulating part for insulating the wiring. In the photosensitive resin composition, the acid generated from the received photosensitizer promotes the reaction of the thermosetting resin, and a resin film serving as an insulating portion is formed. On the other hand, there is a concern that the generated acid lowers the pH of the photosensitive resin composition and causes the wiring to deteriorate.
 本発明の目的は、パターニング性が良好でかつ金属の劣化を抑制し得る樹脂膜を形成可能なバンプ保護膜用感光性樹脂組成物、前記樹脂膜を備える半導体装置、かかる半導体装置を製造可能な半導体装置の製造方法、および、前記半導体装置を備える電子機器を提供することにある。 An object of the present invention is to provide a photosensitive resin composition for a bump protective film capable of forming a resin film that has good patternability and can suppress metal deterioration, a semiconductor device including the resin film, and such a semiconductor device can be manufactured. An object of the present invention is to provide a method for manufacturing a semiconductor device and an electronic apparatus including the semiconductor device.
 このような目的は、下記(1)~(8)の本発明により達成される。
 (1) 熱硬化性樹脂と、
 感光剤と、
 溶媒と、
を含むバンプ保護膜用感光性樹脂組成物であって、
 前記バンプ保護膜用感光性樹脂組成物がシリコン基板上に塗布された後、120℃、3分間の乾燥により得られた厚さ15μmの乾燥膜を、感光性樹脂膜とし、
 波長365nmのi線により600mJ/cmの条件で露光する第1処理、大気雰囲気における80℃、5分間の露光後加熱を行う第2処理、および、プロピレングリコールモノメチルエーテルアセテートによる30秒間のスプレー現像を行う第3処理、が順次施された後の前記感光性樹脂膜を、現像後感光膜とし、
 窒素雰囲気における170℃、180分間の現像後加熱を行う第4処理が施された後の前記現像後感光膜を、硬化後感光膜としたとき、
 前記現像後感光膜に対して、前記現像後感光膜の20質量倍の超純水を用いた125℃、20時間の第1熱水抽出処理を施し、抽出された第1抽出液のpHをpH1とすると、前記pH1が3.0~5.0であり、
 前記硬化後感光膜に対して、前記硬化後感光膜の20質量倍の超純水を用いた125℃、20時間の第2熱水抽出処理を施し、抽出された第2抽出液のpHをpH2とすると、前記pH2が前記pH1より高く、
 前記pH1と前記pH2との差が0.1~1.0であることを特徴とするバンプ保護膜用感光性樹脂組成物。
Such an object is achieved by the present inventions (1) to (8) below.
(1) a thermosetting resin;
A photosensitizer,
A solvent,
A photosensitive resin composition for a bump protective film comprising:
After the photosensitive resin composition for bump protective film is applied on a silicon substrate, a dried film having a thickness of 15 μm obtained by drying at 120 ° C. for 3 minutes is used as a photosensitive resin film,
The first treatment that exposes under the condition of 600 mJ / cm 2 with i-line at a wavelength of 365 nm, the second treatment that performs post-exposure heating at 80 ° C. for 5 minutes in the air atmosphere, and the spray development for 30 seconds with propylene glycol monomethyl ether acetate The photosensitive resin film after the third treatment is sequentially performed is a post-development photosensitive film,
When the post-development photosensitive film after being subjected to the fourth treatment for post-development heating at 170 ° C. for 180 minutes in a nitrogen atmosphere is a post-curing photosensitive film,
The post-development photosensitive film is subjected to a first hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-development photosensitive film, and the pH of the extracted first extract is adjusted. Assuming pH 1, the pH 1 is 3.0 to 5.0,
The post-curing photosensitive film is subjected to a second hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-curing photosensitive film, and the pH of the extracted second extract is adjusted. When the pH is 2, the pH 2 is higher than the pH 1,
A photosensitive resin composition for a bump protective film, wherein a difference between the pH 1 and the pH 2 is 0.1 to 1.0.
 (2) 前記pH2が3.6以上である上記(1)に記載のバンプ保護膜用感光性樹脂組成物。
 (3) 前記感光剤は、熱解離性を有する上記(1)または(2)に記載のバンプ保護膜用感光性樹脂組成物。
(2) The photosensitive resin composition for bump protective films according to (1), wherein the pH 2 is 3.6 or more.
(3) The photosensitive resin composition for a bump protective film according to (1) or (2), wherein the photosensitive agent has thermal dissociation properties.
 (4) 前記熱硬化性樹脂は、多官能エポキシ樹脂を含む上記(1)ないし(3)のいずれかに記載のバンプ保護膜用感光性樹脂組成物。 (4) The photosensitive resin composition for a bump protective film according to any one of (1) to (3), wherein the thermosetting resin includes a polyfunctional epoxy resin.
 (5) さらに、熱可塑性樹脂を含む上記(1)ないし(4)のいずれかに記載のバンプ保護膜用感光性樹脂組成物。 (5) The photosensitive resin composition for bump protective film according to any one of (1) to (4), further comprising a thermoplastic resin.
 (6) 半導体チップと、
 前記半導体チップ上に設けられ、上記(1)ないし(5)のいずれかに記載のバンプ保護膜用感光性樹脂組成物の硬化物を含む樹脂膜と、
を備えることを特徴とする半導体装置。
(6) a semiconductor chip;
A resin film provided on the semiconductor chip and containing a cured product of the photosensitive resin composition for bump protective film according to any one of (1) to (5);
A semiconductor device comprising:
 (7) 半導体チップ上に、熱硬化性樹脂と、感光剤と、溶媒と、を含むバンプ保護膜用感光性樹脂組成物を配置し、感光性樹脂膜を得る樹脂膜配置工程と、
 前記樹脂膜配置工程の後、前記感光性樹脂膜に露光処理を施す露光工程と、
 前記露光工程の後、前記感光性樹脂膜に現像処理を施す現像工程と、
 前記現像工程の後、前記感光性樹脂膜に硬化処理を施す硬化工程と、
を有し、
 前記バンプ保護膜用感光性樹脂組成物は、
 前記バンプ保護膜用感光性樹脂組成物がシリコン基板上に塗布された後、120℃、3分間の乾燥により得られた厚さ15μmの乾燥膜を、前記感光性樹脂膜とし、
 波長365nmのi線により600mJ/cmの条件で露光する第1処理、大気雰囲気における80℃、5分間の露光後加熱を行う第2処理、および、プロピレングリコールモノメチルエーテルアセテートによる30秒間のスプレー現像を行う第3処理、が順次施された後の前記感光性樹脂膜を、現像後感光膜とし、
 窒素雰囲気における170℃、180分間の現像後加熱を行う第4処理が施された後の前記現像後感光膜を、硬化後感光膜としたとき、
 前記現像後感光膜に対して、前記現像後感光膜の20質量倍の超純水を用いた125℃、20時間の第1熱水抽出処理を施し、抽出された第1抽出液のpHをpH1とすると、前記pH1が3.0~5.0であり、
 前記硬化後感光膜に対して、前記硬化後感光膜の20質量倍の超純水を用いた125℃、20時間の第2熱水抽出処理を施し、抽出された第2抽出液のpHをpH2とすると、前記pH2が前記pH1より高く、
 前記pH1と前記pH2との差が0.1~1.0であることを特徴とする半導体装置の製造方法。
 (8) 上記(6)に記載の半導体装置を備えることを特徴とする電子機器。
(7) A resin film arranging step of arranging a photosensitive resin composition for a bump protective film including a thermosetting resin, a photosensitive agent, and a solvent on a semiconductor chip to obtain a photosensitive resin film;
After the resin film arranging step, an exposure step of performing an exposure process on the photosensitive resin film,
After the exposure step, a development step for developing the photosensitive resin film;
After the development step, a curing step for performing a curing treatment on the photosensitive resin film,
Have
The bump protective film photosensitive resin composition,
After the photosensitive resin composition for bump protective film is applied on a silicon substrate, a dry film having a thickness of 15 μm obtained by drying at 120 ° C. for 3 minutes is used as the photosensitive resin film.
The first treatment that exposes under the condition of 600 mJ / cm 2 with i-line at a wavelength of 365 nm, the second treatment that performs post-exposure heating at 80 ° C. for 5 minutes in the air atmosphere, and the spray development for 30 seconds with propylene glycol monomethyl ether acetate The photosensitive resin film after the third treatment is sequentially performed is a post-development photosensitive film,
When the post-development photosensitive film after being subjected to the fourth treatment for post-development heating at 170 ° C. for 180 minutes in a nitrogen atmosphere is a post-curing photosensitive film,
The post-development photosensitive film is subjected to a first hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-development photosensitive film, and the pH of the extracted first extract is adjusted. Assuming pH 1, the pH 1 is 3.0 to 5.0,
The post-curing photosensitive film is subjected to a second hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-curing photosensitive film, and the pH of the extracted second extract is adjusted. When the pH is 2, the pH 2 is higher than the pH 1,
A method of manufacturing a semiconductor device, wherein a difference between the pH 1 and the pH 2 is 0.1 to 1.0.
(8) An electronic apparatus comprising the semiconductor device according to (6).
 本発明によれば、パターニング性が良好でかつ金属の劣化を抑制し得る樹脂膜を形成可能なバンプ保護膜用感光性樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain a photosensitive resin composition for a bump protective film capable of forming a resin film that has good patternability and can suppress metal deterioration.
 また、本発明によれば、パターニング性が良好でかつ金属の劣化を抑制し得る樹脂膜を備える信頼性の高い半導体装置を得ることができる。
 また、本発明によれば、信頼性の高い電子機器を得ることができる。
Further, according to the present invention, a highly reliable semiconductor device including a resin film that has good patternability and can suppress metal deterioration can be obtained.
Moreover, according to the present invention, a highly reliable electronic device can be obtained.
図1は、本発明の半導体装置の実施形態を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device of the present invention. 図2は、図1の鎖線で囲まれた領域の部分拡大図である。FIG. 2 is a partially enlarged view of a region surrounded by a chain line in FIG. 図3は、図1に示す半導体装置を製造する方法を示す工程図である。FIG. 3 is a process diagram showing a method of manufacturing the semiconductor device shown in FIG. 図4は、図1に示す半導体装置を製造する方法を説明するための図である。FIG. 4 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 図5は、図1に示す半導体装置を製造する方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 図6は、図1に示す半導体装置を製造する方法を説明するための図である。FIG. 6 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 図7は、実施形態に係る半導体装置の第1変形例を示す部分拡大断面図である。FIG. 7 is a partial enlarged cross-sectional view showing a first modification of the semiconductor device according to the embodiment. 図8は、実施形態に係る半導体装置の第2変形例を示す部分拡大断面図である。FIG. 8 is a partial enlarged cross-sectional view illustrating a second modification of the semiconductor device according to the embodiment.
 以下、本発明のバンプ保護膜用感光性樹脂組成物、半導体装置および電子機器について添付図面に示す好適実施形態に基づいて詳細に説明する。 Hereinafter, the photosensitive resin composition for bump protective film, the semiconductor device, and the electronic device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
<半導体装置>
 まず、バンプ保護膜用感光性樹脂組成物の説明に先立ち、本発明の半導体装置の実施形態について説明する。
<Semiconductor device>
First, prior to the description of the photosensitive resin composition for bump protective film, an embodiment of the semiconductor device of the present invention will be described.
 図1は、本発明の半導体装置の実施形態を示す縦断面図である。また、図2は、図1の鎖線で囲まれた領域の部分拡大図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」と言う。 FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device of the present invention. FIG. 2 is a partially enlarged view of a region surrounded by a chain line in FIG. In the following description, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 図1に示す半導体装置1は、貫通電極基板2と、その上に実装された半導体パッケージ3と、を備えた、いわゆるパッケージオンパッケージ構造を有する。 A semiconductor device 1 shown in FIG. 1 has a so-called package-on-package structure including a through electrode substrate 2 and a semiconductor package 3 mounted thereon.
 このうち、貫通電極基板2は、有機絶縁層21(樹脂膜)と、有機絶縁層21の上面から下面を貫通する複数の貫通配線221と、有機絶縁層21の内部に埋め込まれた半導体チップ23と、有機絶縁層21の下面に設けられた下層配線層24と、有機絶縁層21の上面に設けられた上層配線層25と、下層配線層24の下面に設けられた半田バンプ26と、を備えている。 Among these, the through electrode substrate 2 includes an organic insulating layer 21 (resin film), a plurality of through wires 221 that penetrate from the upper surface to the lower surface of the organic insulating layer 21, and a semiconductor chip 23 embedded in the organic insulating layer 21. A lower wiring layer 24 provided on the lower surface of the organic insulating layer 21, an upper wiring layer 25 provided on the upper surface of the organic insulating layer 21, and a solder bump 26 provided on the lower surface of the lower wiring layer 24. I have.
 一方、半導体パッケージ3は、パッケージ基板31と、パッケージ基板31上に実装された半導体チップ32と、半導体チップ32とパッケージ基板31とを電気的に接続するボンディングワイヤー33と、半導体チップ32やボンディングワイヤー33が埋め込まれた封止層34と、パッケージ基板31の下面に設けられた半田バンプ35と、を備えている。 On the other hand, the semiconductor package 3 includes a package substrate 31, a semiconductor chip 32 mounted on the package substrate 31, a bonding wire 33 that electrically connects the semiconductor chip 32 and the package substrate 31, and a semiconductor chip 32 and a bonding wire. The sealing layer 34 in which 33 is embedded, and the solder bump 35 provided on the lower surface of the package substrate 31 are provided.
 そして、貫通電極基板2上に半導体パッケージ3が積層されている。これにより、半導体パッケージ3の半田バンプ35と、貫通電極基板2の上層配線層25と、が電気的に接続されている。 The semiconductor package 3 is stacked on the through electrode substrate 2. Thereby, the solder bumps 35 of the semiconductor package 3 and the upper wiring layer 25 of the through electrode substrate 2 are electrically connected.
 このような半導体装置1では、貫通電極基板2においてコア層を含む有機基板のような厚い基板を用いる必要がないため、低背化を容易に図ることができる。このため、半導体装置1を内蔵する電子機器の小型化にも貢献することができる。 In such a semiconductor device 1, since it is not necessary to use a thick substrate such as an organic substrate including a core layer in the through electrode substrate 2, it is possible to easily reduce the height. For this reason, it can also contribute to size reduction of the electronic device incorporating the semiconductor device 1.
 また、互いに異なる半導体チップを備えた貫通電極基板2と半導体パッケージ3とを積層しているため、単位面積当たりの実装密度を高めることができる。このため、小型化と高性能化との両立を図ることができる。 In addition, since the through electrode substrate 2 provided with different semiconductor chips and the semiconductor package 3 are stacked, the mounting density per unit area can be increased. For this reason, both miniaturization and high performance can be achieved.
 以下、貫通電極基板2および半導体パッケージ3についてさらに詳述する。
 図2に示す貫通電極基板2が備える下層配線層24および上層配線層25は、それぞれ絶縁層、配線層および貫通配線等を含んでいる。これにより、下層配線層24および上層配線層25は、内部や表面に配線を含むとともに、有機絶縁層21を貫通する貫通配線221を介して相互の電気的接続が図られる。
Hereinafter, the through electrode substrate 2 and the semiconductor package 3 will be described in more detail.
A lower wiring layer 24 and an upper wiring layer 25 included in the through electrode substrate 2 shown in FIG. 2 include an insulating layer, a wiring layer, a through wiring, and the like, respectively. Thereby, the lower wiring layer 24 and the upper wiring layer 25 include wiring inside and on the surface, and are electrically connected to each other via the through wiring 221 that penetrates the organic insulating layer 21.
 このうち、下層配線層24に含まれる配線層は、半導体チップ23や半田バンプ26と接続されている。このため、下層配線層24は半導体チップ23の再配線層として機能するとともに、半田バンプ26は半導体チップ23の外部端子として機能する。 Among these, the wiring layer included in the lower wiring layer 24 is connected to the semiconductor chip 23 and the solder bump 26. For this reason, the lower wiring layer 24 functions as a rewiring layer of the semiconductor chip 23, and the solder bump 26 functions as an external terminal of the semiconductor chip 23.
 また、図2に示す貫通配線221は、前述したように、有機絶縁層21を貫通するように設けられている。これにより、下層配線層24と上層配線層25との間が電気的に接続され、貫通電極基板2と半導体パッケージ3との積層が可能になるため、半導体装置1の高機能化を図ることができる。 Further, the through wiring 221 shown in FIG. 2 is provided so as to penetrate the organic insulating layer 21 as described above. As a result, the lower wiring layer 24 and the upper wiring layer 25 are electrically connected, and the through electrode substrate 2 and the semiconductor package 3 can be stacked, so that the semiconductor device 1 can have higher functionality. it can.
 さらに、図2に示す上層配線層25に含まれる配線層253は、貫通配線221や半田バンプ35と接続されている。このため、上層配線層25は、半導体チップ23と電気的に接続されることとなり、半導体チップ23の再配線層として機能するとともに、半導体チップ23とパッケージ基板31との間に介在するインターポーザーとしても機能する。 Further, the wiring layer 253 included in the upper wiring layer 25 shown in FIG. 2 is connected to the through wiring 221 and the solder bump 35. For this reason, the upper wiring layer 25 is electrically connected to the semiconductor chip 23, functions as a rewiring layer of the semiconductor chip 23, and serves as an interposer interposed between the semiconductor chip 23 and the package substrate 31. Also works.
 また、貫通配線221が有機絶縁層21を貫通していることにより、有機絶縁層21を補強する効果が得られる。このため、下層配線層24や上層配線層25の機械的強度が低い場合でも、貫通電極基板2全体の機械的強度の低下を避けることができる。その結果、下層配線層24や上層配線層25のさらなる薄型化を図ることができ、半導体装置1のさらなる低背化を図ることができる。 Further, since the through wiring 221 penetrates the organic insulating layer 21, an effect of reinforcing the organic insulating layer 21 can be obtained. For this reason, even when the mechanical strength of the lower wiring layer 24 and the upper wiring layer 25 is low, a decrease in the mechanical strength of the entire through-electrode substrate 2 can be avoided. As a result, the lower wiring layer 24 and the upper wiring layer 25 can be further reduced in thickness, and the semiconductor device 1 can be further reduced in height.
 また、図1に示す半導体装置1は、貫通配線221の他に、半導体チップ23の上面に位置する有機絶縁層21を貫通するように設けられた貫通配線222も備えている。これにより、半導体チップ23の上面と上層配線層25との電気的接続を図ることができる。 The semiconductor device 1 shown in FIG. 1 also includes a through wiring 222 provided so as to penetrate the organic insulating layer 21 located on the upper surface of the semiconductor chip 23 in addition to the through wiring 221. Thereby, electrical connection between the upper surface of the semiconductor chip 23 and the upper wiring layer 25 can be achieved.
 さらには、有機絶縁層21は、半導体チップ23を覆うように設けられている。これにより、半導体チップ23を保護する効果が高められる。その結果、半導体装置1の信頼性を高めることができる。また、本実施形態に係るパッケージオンパッケージ構造のような実装方式にも容易に適用可能な半導体装置1が得られる。 Furthermore, the organic insulating layer 21 is provided so as to cover the semiconductor chip 23. Thereby, the effect of protecting the semiconductor chip 23 is enhanced. As a result, the reliability of the semiconductor device 1 can be improved. In addition, the semiconductor device 1 that can be easily applied to a mounting method such as the package-on-package structure according to the present embodiment is obtained.
 貫通配線221の直径W(図2参照)は、特に限定されないが、1~100μm程度であるのが好ましく、2~80μm程度であるのがより好ましい。これにより、有機絶縁層21の機械的特性を損なうことなく、貫通配線221の導電性を確保することができる。 The diameter W (see FIG. 2) of the through wiring 221 is not particularly limited, but is preferably about 1 to 100 μm, and more preferably about 2 to 80 μm. Thereby, the conductivity of the through wiring 221 can be ensured without impairing the mechanical characteristics of the organic insulating layer 21.
 図1に示す半導体パッケージ3は、いかなる形態のパッケージであってもよい。例えば、QFP(Quad Flat Package)、SOP(Small Outline Package)、BGA(Ball Grid Array)、CSP(Chip Size Package)、QFN(Quad Flat Non-leaded Package)、SON(Small Outline Non-leaded Package)、LF-BGA(Lead Flame BGA)等の形態が挙げられる。 The semiconductor package 3 shown in FIG. 1 may be any form of package. For example, QFP (Quad Flat Package), SOP (Small Outline Package), BGA (Ball Grid Array), CSP (Chip Size Package), QFN (Quad Flat Non-Readed Package), SON (Ne-Package) Examples include LF-BGA (Lead Frame BGA).
 半導体チップ32の配置は、特に限定されないが、一例として図1では複数の半導体チップ32が積層されている。これにより、実装密度の高密度化が図られている。なお、複数の半導体チップ32は、平面方向に併設されていてもよく、厚さ方向に積層されつつ平面方向にも併設されていてもよい。 The arrangement of the semiconductor chips 32 is not particularly limited, but as an example, a plurality of semiconductor chips 32 are stacked in FIG. As a result, the packaging density is increased. The plurality of semiconductor chips 32 may be provided side by side in the plane direction, or may be provided side by side in the plane direction while being stacked in the thickness direction.
 パッケージ基板31は、いかなる基板であってもよいが、例えば図示しない絶縁層、配線層および貫通配線等を含む基板とされる。このうち、貫通配線を介して半田バンプ35とボンディングワイヤー33とを電気的に接続することができる。 The package substrate 31 may be any substrate, for example, a substrate including an insulating layer, a wiring layer, a through wiring, and the like (not shown). Among these, the solder bump 35 and the bonding wire 33 can be electrically connected through the through wiring.
 封止層34は、例えば公知の封止樹脂材料で構成されている。このような封止層34を設けることにより、半導体チップ32やボンディングワイヤー33を外力や外部環境から保護することができる。 The sealing layer 34 is made of, for example, a known sealing resin material. By providing such a sealing layer 34, the semiconductor chip 32 and the bonding wire 33 can be protected from an external force or an external environment.
 なお、貫通電極基板2が備える半導体チップ23と半導体パッケージ3が備える半導体チップ32は、互いに近接して配置されることになるため、相互通信の高速化や低損失化等のメリットを享受することができる。かかる観点から、例えば、半導体チップ23と半導体チップ32のうち、一方をCPU(Central Processing Unit)やGPU(Graphics Processing Unit)、AP(Application Processor)等の演算素子とし、他方をDRAM(Dynamic Random Access Memory)やフラッシュメモリー等の記憶素子等にすれば、同一装置内においてこれらの素子同士を近接して配置することができる。これにより、高機能化と小型化とを両立した半導体装置1を実現することができる。 Note that the semiconductor chip 23 provided in the through electrode substrate 2 and the semiconductor chip 32 provided in the semiconductor package 3 are arranged close to each other, so that benefits such as higher speed of communication and lower loss can be obtained. Can do. From such a viewpoint, for example, one of the semiconductor chip 23 and the semiconductor chip 32 is an arithmetic element such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an AP (Application Processor), and the other is a DRAM (Dynamic Random Access). If a memory element such as a memory) or a flash memory is used, these elements can be arranged close to each other in the same apparatus. As a result, it is possible to realize the semiconductor device 1 that achieves both high functionality and downsizing.
<半導体装置の製造方法>
 次に、図1に示す半導体装置1を製造する方法について説明する。
<Method for Manufacturing Semiconductor Device>
Next, a method for manufacturing the semiconductor device 1 shown in FIG. 1 will be described.
 図3は、図1に示す半導体装置1を製造する方法を示す工程図である。また、図4~図6は、それぞれ図1に示す半導体装置1を製造する方法を説明するための図である。 FIG. 3 is a process diagram showing a method of manufacturing the semiconductor device 1 shown in FIG. 4 to 6 are diagrams for explaining a method of manufacturing the semiconductor device 1 shown in FIG.
 半導体装置1の製造方法は、基板202上に設けられた半導体チップ23および貫通配線221、222を埋め込むように有機絶縁層21を得るチップ配置工程S1と、有機絶縁層21上および半導体チップ23上に上層配線層25を形成する上層配線層形成工程S2と、基板202を剥離する基板剥離工程S3と、下層配線層24を形成する下層配線層形成工程S4と、半田バンプ26を形成し、貫通電極基板2を得る半田バンプ形成工程S5と、貫通電極基板2上に半導体パッケージ3を積層する積層工程S6と、を有する。 The manufacturing method of the semiconductor device 1 includes a chip placement step S1 for obtaining the organic insulating layer 21 so as to embed the semiconductor chip 23 and the through wirings 221 and 222 provided on the substrate 202, the organic insulating layer 21 and the semiconductor chip 23. The upper wiring layer forming step S2 for forming the upper wiring layer 25, the substrate peeling step S3 for peeling the substrate 202, the lower wiring layer forming step S4 for forming the lower wiring layer 24, and the solder bumps 26 are formed and penetrated. A solder bump forming step S5 for obtaining the electrode substrate 2 and a laminating step S6 for laminating the semiconductor package 3 on the through electrode substrate 2 are included.
 このうち、上層配線層形成工程S2は、有機絶縁層21上および半導体チップ23上に感光性樹脂ワニス5(ワニス状のバンプ保護膜用感光性樹脂組成物)を配置し、感光性樹脂層2510を得る第1樹脂膜配置工程S20と、感光性樹脂層2510に露光処理を施す第1露光工程S21と、感光性樹脂層2510に現像処理を施す第1現像工程S22と、感光性樹脂層2510に硬化処理を施す第1硬化工程S23と、配線層253を形成する配線層形成工程S24と、感光性樹脂層2510および配線層253上に感光性樹脂ワニス5を配置し、感光性樹脂層2520を得る第2樹脂膜配置工程S25と、感光性樹脂層2520に露光処理を施す第2露光工程S26と、感光性樹脂層2520に現像処理を施す第2現像工程S27と、感光性樹脂層2520に硬化処理を施す第2硬化工程S28と、開口部424(貫通孔)に貫通配線254を形成する貫通配線形成工程S29と、を含む。 Among them, in the upper wiring layer forming step S <b> 2, the photosensitive resin varnish 5 (photosensitive resin composition for a varnish-shaped bump protective film) is arranged on the organic insulating layer 21 and the semiconductor chip 23, and the photosensitive resin layer 2510. A first resin film arrangement step S20 for obtaining a photosensitive resin layer 2510, a first exposure step S21 for subjecting the photosensitive resin layer 2510 to an exposure treatment, a first development step S22 for subjecting the photosensitive resin layer 2510 to a development treatment, and a photosensitive resin layer 2510. The first curing step S23 for performing the curing process, the wiring layer forming step S24 for forming the wiring layer 253, the photosensitive resin varnish 5 is disposed on the photosensitive resin layer 2510 and the wiring layer 253, and the photosensitive resin layer 2520 is formed. A second resin film arranging step S25 for obtaining a photosensitive resin layer 2520, a second exposure step S26 for subjecting the photosensitive resin layer 2520 to an exposure treatment, a second development step S27 for subjecting the photosensitive resin layer 2520 to a development treatment, It includes a second curing step S28 is subjected to a curing treatment in the light resin layer 2520, and the through wiring forming step S29 of forming the through wiring 254 to the opening 424 (the through hole), the.
 以下、各工程について順次説明する。なお、以下の製造方法は一例であり、これに限定されない。 Hereinafter, each step will be described in order. In addition, the following manufacturing methods are examples and are not limited to this.
 [1]チップ配置工程S1
 まず、図4(a)に示すように、基板202と、基板202上に設けられた半導体チップ23および貫通配線221、222と、これらを埋め込むように設けられた有機絶縁層21と、を備えるチップ埋込構造体27を用意する。
[1] Chip placement step S1
First, as shown in FIG. 4A, a substrate 202, a semiconductor chip 23 and through wires 221, 222 provided on the substrate 202, and an organic insulating layer 21 provided so as to embed these are provided. A chip embedded structure 27 is prepared.
 基板202の構成材料としては、特に限定されないが、例えば、金属材料、ガラス材料、セラミック材料、半導体材料、有機材料等が挙げられる。また、基板202には、シリコンウエハーのような半導体ウエハー、ガラスウエハー等を用いるようにしてもよい。 The constituent material of the substrate 202 is not particularly limited, and examples thereof include metal materials, glass materials, ceramic materials, semiconductor materials, and organic materials. As the substrate 202, a semiconductor wafer such as a silicon wafer, a glass wafer, or the like may be used.
 半導体チップ23は、基板202上に接着されている。本製造方法では、一例として、複数の半導体チップ23を互いに離間させつつ同一の基板202上に併設する。複数の半導体チップ23は、互いに同じ種類であってもよいし、互いに異なる種類であってもよい。また、ダイアタッチフィルムのような接着剤層(図示せず)を介して基板202と半導体チップ23との間を固定するようにしてもよい。 The semiconductor chip 23 is bonded onto the substrate 202. In this manufacturing method, as an example, a plurality of semiconductor chips 23 are provided on the same substrate 202 while being separated from each other. The plurality of semiconductor chips 23 may be of the same type or different types. Further, the substrate 202 and the semiconductor chip 23 may be fixed through an adhesive layer (not shown) such as a die attach film.
 なお、必要に応じて、基板202と半導体チップ23との間にインターポーザー(図示せず)を設けるようにしてもよい。インターポーザーは、例えば半導体チップ23の再配線層として機能する。したがって、インターポーザーは、後述する半導体チップ23の電極と電気的に接続させるための図示しないパッドを備えていてもよい。これにより、半導体チップ23のパッド間隔や配列パターンを変換することができ、半導体装置1の設計自由度をより高めることができる。 Note that an interposer (not shown) may be provided between the substrate 202 and the semiconductor chip 23 as necessary. The interposer functions as a rewiring layer of the semiconductor chip 23, for example. Therefore, the interposer may include a pad (not shown) for electrical connection with an electrode of the semiconductor chip 23 described later. Thereby, the pad interval and the arrangement pattern of the semiconductor chip 23 can be converted, and the design freedom of the semiconductor device 1 can be further increased.
 このようなインターポーザーには、例えば、シリコン基板、セラミック基板、ガラス基板のような無機系基板、樹脂基板のような有機系基板等が用いられる。 For such an interposer, for example, a silicon substrate, a ceramic substrate, an inorganic substrate such as a glass substrate, an organic substrate such as a resin substrate, or the like is used.
 有機絶縁層21は、例えば後述するバンプ保護膜用感光性樹脂組成物の成分として挙げたような熱硬化性樹脂や熱可塑性樹脂を含む樹脂膜であってもよい。 The organic insulating layer 21 may be, for example, a resin film containing a thermosetting resin or a thermoplastic resin as mentioned as a component of a photosensitive resin composition for a bump protective film described later.
 貫通配線221、222の構成材料としては、例えば銅または銅合金、アルミニウムまたはアルミニウム合金、金または金合金、銀または銀合金、ニッケルまたはニッケル合金等が挙げられる。 Examples of the constituent material of the through wirings 221 and 222 include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like.
 なお、上記とは異なる方法で作製したチップ埋込構造体27を用意するようにしてもよい。 It should be noted that a chip embedded structure 27 manufactured by a method different from the above may be prepared.
 [2]上層配線層形成工程S2
 次に、有機絶縁層21上および半導体チップ23上に、上層配線層25を形成する。
[2] Upper wiring layer forming step S2
Next, the upper wiring layer 25 is formed on the organic insulating layer 21 and the semiconductor chip 23.
  [2-1]第1樹脂膜配置工程S20
 まず、図4(b)に示すように、有機絶縁層21上および半導体チップ23上に感光性樹脂ワニス5を塗布する(配置する)。これにより、図4(c)に示すように、感光性樹脂ワニス5の液状被膜が得られる。感光性樹脂ワニス5については、後に詳述するが、本実施形態に係るバンプ保護膜用感光性樹脂組成物であって、感光性を有するワニスである。
[2-1] First resin film arranging step S20
First, as shown in FIG. 4B, the photosensitive resin varnish 5 is applied (arranged) on the organic insulating layer 21 and the semiconductor chip 23. Thereby, as shown in FIG.4 (c), the liquid film of the photosensitive resin varnish 5 is obtained. Although the photosensitive resin varnish 5 will be described in detail later, the photosensitive resin varnish 5 is a photosensitive resin composition for a bump protective film according to this embodiment, and is a photosensitive varnish.
 感光性樹脂ワニス5の塗布は、例えば、スピンコーター、バーコーター、スプレー装置、インクジェット装置等を用いて行われる。 Application of the photosensitive resin varnish 5 is performed using, for example, a spin coater, a bar coater, a spray device, an ink jet device, or the like.
 感光性樹脂ワニス5の粘度は、特に限定されないが、10~700mPa・sであるのが好ましく、30~400mPa・sであるのがより好ましい。感光性樹脂ワニス5の粘度が前記範囲内であることにより、より薄い感光性樹脂層2510(図4(d)参照)を形成することができる。その結果、上層配線層25をより薄くすることができ、半導体装置1の薄型化が容易になる。 The viscosity of the photosensitive resin varnish 5 is not particularly limited, but is preferably 10 to 700 mPa · s, and more preferably 30 to 400 mPa · s. When the viscosity of the photosensitive resin varnish 5 is within the above range, a thinner photosensitive resin layer 2510 (see FIG. 4D) can be formed. As a result, the upper wiring layer 25 can be made thinner, and the semiconductor device 1 can be easily reduced in thickness.
 なお、感光性樹脂ワニス5の粘度は、例えば、コーンプレート型粘度計(TV-25、東機産業製)を用い、回転速度50rpm、測定時間300秒の条件で測定された値とされる。 The viscosity of the photosensitive resin varnish 5 is, for example, a value measured using a cone plate viscometer (TV-25, manufactured by Toki Sangyo) under the conditions of a rotation speed of 50 rpm and a measurement time of 300 seconds.
 次に、感光性樹脂ワニス5の液状被膜を乾燥させる。これにより、図4(d)に示す感光性樹脂層2510を得る。 Next, the liquid film of the photosensitive resin varnish 5 is dried. As a result, a photosensitive resin layer 2510 shown in FIG. 4D is obtained.
 感光性樹脂ワニス5の乾燥条件は、特に限定されないが、例えば80~150℃の温度で、1~60分間加熱する条件が挙げられる。 The drying conditions of the photosensitive resin varnish 5 are not particularly limited, and examples include conditions of heating at a temperature of 80 to 150 ° C. for 1 to 60 minutes.
 なお、本工程では、感光性樹脂ワニス5を塗布するプロセスに代えて、感光性樹脂ワニス5をフィルム化してなる感光性樹脂フィルムを配置するプロセスを採用するようにしてもよい。感光性樹脂フィルムは、本実施形態に係るバンプ保護膜用感光性樹脂組成物であって、感光性を有する樹脂フィルムである。 In this step, instead of the process of applying the photosensitive resin varnish 5, a process of arranging a photosensitive resin film formed by forming the photosensitive resin varnish 5 into a film may be adopted. A photosensitive resin film is the photosensitive resin composition for bump protective films which concerns on this embodiment, Comprising: It is a resin film which has photosensitivity.
 感光性樹脂フィルムは、例えば感光性樹脂ワニス5を各種塗布装置によってキャリアーフィルム等の下地上に塗布し、その後、得られた塗膜を乾燥させることによって製造される。 The photosensitive resin film is produced, for example, by applying the photosensitive resin varnish 5 on the ground of a carrier film or the like with various coating apparatuses, and then drying the obtained coating film.
 このようにして感光性樹脂層2510を形成した後、必要に応じて、感光性樹脂層2510に対して露光前加熱処理を施す。露光前加熱処理を施すことにより、感光性樹脂層2510に含まれる分子が安定化して、後述する第1露光工程S21における反応の安定化を図ることができる。また、その一方、後述するような加熱条件で加熱されることで、加熱による光酸発生剤への悪影響を最小限に留めることができる。 After forming the photosensitive resin layer 2510 in this way, the photosensitive resin layer 2510 is subjected to a pre-exposure heat treatment as necessary. By performing the pre-exposure heat treatment, the molecules contained in the photosensitive resin layer 2510 are stabilized, and the reaction in the first exposure step S21 described later can be stabilized. On the other hand, by heating under the heating conditions as will be described later, the adverse effect on the photoacid generator due to heating can be minimized.
 露光前加熱処理の温度は、好ましくは70~130℃とされ、より好ましくは75~120℃とされ、さらに好ましくは80~110℃とされる。露光前加熱処理の温度が前記下限値を下回ると、露光前加熱処理による分子の安定化という目的が果たされないおそれがある。一方、露光前加熱処理の温度が前記上限値を上回ると、光酸発生剤の動きが活発になりすぎ、後述する第1露光工程S21において光が照射されても酸が発生しにくくなるという影響が広範囲化してパターニングの加工精度が低下するおそれがある。 The temperature of the pre-exposure heat treatment is preferably 70 to 130 ° C., more preferably 75 to 120 ° C., and further preferably 80 to 110 ° C. If the temperature of the pre-exposure heat treatment is below the lower limit, the purpose of stabilizing the molecule by the pre-exposure heat treatment may not be achieved. On the other hand, when the temperature of the pre-exposure heat treatment exceeds the upper limit, the movement of the photoacid generator becomes too active, and it is difficult to generate acid even when light is irradiated in the first exposure step S21 described later. However, there is a risk that the processing accuracy of patterning may be reduced due to the wide range.
 また、露光前加熱処理の時間は、露光前加熱処理の温度に応じて適宜設定されるが、前記温度において好ましくは1~10分間とされ、より好ましくは2~8分間とされ、さらに好ましくは3~6分間とされる。露光前加熱処理の時間が前記下限値を下回ると、加熱時間が不足するため、露光前加熱処理による分子の安定化という目的が果たされないおそれがある。一方、露光前加熱処理の時間が前記上限値を上回ると、加熱時間が長すぎるため、露光前加熱処理の温度が前記範囲内に収まっていたとしても、光酸発生剤の作用が阻害されてしまうおそれがある。 The pre-exposure heat treatment time is appropriately set according to the temperature of the pre-exposure heat treatment, and the temperature is preferably 1 to 10 minutes, more preferably 2 to 8 minutes, and still more preferably. 3-6 minutes. If the pre-exposure heat treatment time is less than the lower limit, the heating time is insufficient, and the object of stabilization of molecules by the pre-exposure heat treatment may not be achieved. On the other hand, if the pre-exposure heat treatment time exceeds the upper limit, the heating time is too long, so even if the pre-exposure heat treatment temperature is within the above range, the action of the photoacid generator is inhibited. There is a risk that.
 また、加熱処理の雰囲気は、特に限定されず、不活性ガス雰囲気や還元性ガス雰囲気等であってもよいが、作業効率等を考慮すれば大気下とされる。 The atmosphere for the heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like.
 また、雰囲気圧力は、特に限定されず、減圧下や加圧下であってもよいが、作業効率等を考慮すれば常圧とされる。なお、常圧とは、30~150kPa程度の圧力のことをいい、好ましくは大気圧である。 Also, the atmospheric pressure is not particularly limited, and may be under reduced pressure or under pressure, but it is a normal pressure in consideration of work efficiency and the like. The normal pressure refers to a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  [2-2]第1露光工程S21
 次に、感光性樹脂層2510に露光処理を施す。
[2-2] First exposure step S21
Next, the photosensitive resin layer 2510 is exposed.
 まず、図4(d)に示すように、感光性樹脂層2510上の所定の領域にマスク412を配置する。そして、マスク412を介して光(活性放射線)を照射する。これにより、マスク412のパターンに応じて感光性樹脂層2510に露光処理が施される。 First, as shown in FIG. 4D, a mask 412 is disposed in a predetermined region on the photosensitive resin layer 2510. Then, light (active radiation) is irradiated through the mask 412. Thus, the photosensitive resin layer 2510 is subjected to an exposure process according to the pattern of the mask 412.
 なお、図4(d)では、感光性樹脂層2510がいわゆるネガ型の感光性を有している場合を図示している。この例では、感光性樹脂層2510のうち、マスク412の遮光部に対応する領域に対して、現像液に対する溶解性が付与されることとなる。 FIG. 4D shows a case where the photosensitive resin layer 2510 has a so-called negative photosensitivity. In this example, the solubility in the developer is imparted to the region corresponding to the light shielding portion of the mask 412 in the photosensitive resin layer 2510.
 一方、マスク412の透過部に対応する領域では、感光剤の作用によって例えば酸が発生する。発生した酸は、後述する工程において、熱硬化性樹脂の反応の触媒として作用する。 On the other hand, in the region corresponding to the transmission part of the mask 412, for example, acid is generated by the action of the photosensitive agent. The generated acid acts as a catalyst for the reaction of the thermosetting resin in the steps described later.
 また、露光処理における露光量は、特に限定されないが、100~2000mJ/cmであるのが好ましく、200~1000mJ/cmであるのがより好ましい。これにより、感光性樹脂層2510における露光不足および露光過剰を抑制することができる。その結果、最終的に高いパターニング精度を実現することができる。
 その後、必要に応じて、感光性樹脂層2510に露光後加熱処理を施す。
The exposure dose in the exposure process is not particularly limited, but is preferably 100 to 2000 mJ / cm 2 , and more preferably 200 to 1000 mJ / cm 2 . Thereby, underexposure and overexposure in the photosensitive resin layer 2510 can be suppressed. As a result, finally, high patterning accuracy can be realized.
Thereafter, the post-exposure heat treatment is performed on the photosensitive resin layer 2510 as necessary.
 露光後加熱処理の温度は、特に限定されないが、好ましくは50~150℃とされ、より好ましくは50~130℃とされ、さらに好ましくは55~120℃とされ、特に好ましくは60~110℃とされる。このような温度で露光後加熱処理を施すことにより、発生した酸の触媒作用が十分に増強され、熱硬化性樹脂をより短時間でかつ十分に反応させることができる。一方、温度が高すぎると、酸の拡散が促進されることとなり、パターニングの加工精度が低下するおそれがあるが、前記範囲内であればかかる懸念を低減することができる。 The temperature of the post-exposure heat treatment is not particularly limited, but is preferably 50 to 150 ° C., more preferably 50 to 130 ° C., still more preferably 55 to 120 ° C., and particularly preferably 60 to 110 ° C. Is done. By performing post-exposure heat treatment at such a temperature, the catalytic action of the generated acid is sufficiently enhanced, and the thermosetting resin can be reacted sufficiently in a shorter time. On the other hand, if the temperature is too high, the diffusion of the acid is promoted and the patterning processing accuracy may be lowered. However, such a concern can be reduced if the temperature is within the above range.
 なお、露光後加熱処理の温度が前記下限値を下回ると、酸のような触媒の作用が十分に高められないため、熱硬化性樹脂の反応率が低下したり、時間を要したりするおそれがある。一方、露光後加熱処理の温度が前記上限値を上回ると、酸の拡散が促進され(広範囲化し)、パターニングの加工精度が低下するおそれがある。 If the temperature of the post-exposure heat treatment is below the lower limit, the action of a catalyst such as an acid cannot be sufficiently enhanced, and the reaction rate of the thermosetting resin may be reduced or may take time. There is. On the other hand, when the temperature of the post-exposure heat treatment exceeds the upper limit, acid diffusion is promoted (widened), and patterning processing accuracy may be reduced.
 一方、露光後加熱処理の時間は、露光後加熱処理の温度に応じて適宜設定されるが、前記温度において好ましくは1~30分間とされ、より好ましくは2~20分間とされ、さらに好ましくは3~15分間とされる。このような時間で露光後加熱処理を施すことにより、熱硬化性樹脂を十分に反応させることができるとともに、酸の拡散を抑えてパターニングの加工精度が低下するのを抑制することができる。 On the other hand, the post-exposure heat treatment time is appropriately set according to the post-exposure heat treatment temperature, and the above temperature is preferably 1 to 30 minutes, more preferably 2 to 20 minutes, and still more preferably. 3-15 minutes. By performing post-exposure heat treatment in such a time, the thermosetting resin can be sufficiently reacted, and acid diffusion can be suppressed to prevent patterning processing accuracy from being lowered.
 また、露光後加熱処理の雰囲気は、特に限定されず、不活性ガス雰囲気や還元性ガス雰囲気等であってもよいが、作業効率等を考慮すれば大気下とされる。 Further, the atmosphere of the post-exposure heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like.
 また、露光後加熱処理の雰囲気圧力は、特に限定されず、減圧下や加圧下であってもよいが、作業効率等を考慮すれば常圧とされる。これにより、比較的容易に露光前加熱処理を施すことができる。なお、常圧とは、30~150kPa程度の圧力のことをいい、好ましくは大気圧である。 Further, the atmospheric pressure of the post-exposure heat treatment is not particularly limited, and may be under reduced pressure or under pressure, but it is normal pressure in consideration of work efficiency and the like. Thereby, the pre-exposure heat treatment can be performed relatively easily. The normal pressure refers to a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  [2-3]第1現像工程S22
 次に、感光性樹脂層2510に現像処理を施す。これにより、マスク412の遮光部に対応した領域に、感光性樹脂層2510を貫通する開口部423が形成される(図5(e)参照)。
 現像液としては、例えば、有機系現像液、水溶性現像液等が挙げられる。
[2-3] First development step S22
Next, the photosensitive resin layer 2510 is developed. Thus, an opening 423 that penetrates the photosensitive resin layer 2510 is formed in a region corresponding to the light shielding portion of the mask 412 (see FIG. 5E).
Examples of the developer include an organic developer and a water-soluble developer.
  [2-4]第1硬化工程S23
 現像処理の後、感光性樹脂層2510に対して硬化処理(現像後加熱処理)を施す。硬化処理の条件は、特に限定されないが、160~250℃程度の加熱温度で、30~240分程度の加熱時間とされる。これにより、半導体チップ23に対する熱影響を抑えつつ、感光性樹脂層2510を硬化させ、有機絶縁層251を得ることができる。
[2-4] First curing step S23
After the development process, the photosensitive resin layer 2510 is subjected to a curing process (post-development heating process). The conditions for the curing treatment are not particularly limited, but the heating time is about 160 to 250 ° C. and the heating time is about 30 to 240 minutes. Thereby, the photosensitive resin layer 2510 can be cured and the organic insulating layer 251 can be obtained while suppressing the thermal effect on the semiconductor chip 23.
  [2-5]配線層形成工程S24
 次に、有機絶縁層251上に配線層253を形成する(図5(f)参照)。配線層253は、例えばスパッタリング法、真空蒸着法等の気相成膜法を用いて金属層を得た後、フォトリソグラフィー法およびエッチング法によりパターニングされることによって形成される。
[2-5] Wiring layer forming step S24
Next, a wiring layer 253 is formed over the organic insulating layer 251 (see FIG. 5F). The wiring layer 253 is formed by, for example, obtaining a metal layer by using a vapor phase film forming method such as a sputtering method or a vacuum deposition method, and then patterning the metal layer by a photolithography method and an etching method.
 なお、配線層253の形成に先立ち、プラズマ処理のような表面改質処理を施すようにしてもよい。 Note that prior to the formation of the wiring layer 253, surface modification treatment such as plasma treatment may be performed.
  [2-6]第2樹脂膜配置工程S25
 次に、図5(g)に示すように、第1樹脂膜配置工程S20と同様にして感光性樹脂層2520を得る。感光性樹脂層2520は、配線層253を覆うように配置される。
[2-6] Second resin film arranging step S25
Next, as shown in FIG. 5G, a photosensitive resin layer 2520 is obtained in the same manner as in the first resin film arranging step S20. The photosensitive resin layer 2520 is disposed so as to cover the wiring layer 253.
 その後、必要に応じて、感光性樹脂層2520に対して露光前加熱処理を施す。処理条件は、例えば第1樹脂膜配置工程S20で記載した条件とされる。 Thereafter, pre-exposure heat treatment is performed on the photosensitive resin layer 2520 as necessary. The processing conditions are, for example, the conditions described in the first resin film arranging step S20.
  [2-7]第2露光工程S26
 次に、感光性樹脂層2520に露光処理を施す。処理条件は、例えば第1露光工程S21で記載した条件とされる。
[2-7] Second exposure step S26
Next, the photosensitive resin layer 2520 is exposed. The processing conditions are, for example, the conditions described in the first exposure step S21.
 その後、必要に応じて、感光性樹脂層2520に対して露光後加熱処理を施す。処理条件は、例えば第1露光工程S21で記載した条件とされる。 Thereafter, post-exposure heat treatment is performed on the photosensitive resin layer 2520 as necessary. The processing conditions are, for example, the conditions described in the first exposure step S21.
  [2-8]第2現像工程S27
 次に、感光性樹脂層2520に現像処理を施す。処理条件は、例えば第1現像工程S22で記載した条件とされる。これにより、感光性樹脂層2510、2520を貫通する開口部424が形成される(図5(h)参照)。
[2-8] Second development step S27
Next, the photosensitive resin layer 2520 is subjected to development processing. The processing conditions are, for example, the conditions described in the first development step S22. Thereby, the opening part 424 which penetrates the photosensitive resin layers 2510 and 2520 is formed (refer FIG.5 (h)).
  [2-9]第2硬化工程S28
 現像処理の後、感光性樹脂層2520に対して硬化処理(現像後加熱処理)を施す。硬化条件は、例えば第1硬化工程S23で記載した条件とされる。これにより、感光性樹脂層2520を硬化させ、有機絶縁層252を得る(図6(i)参照)。
[2-9] Second curing step S28
After the development process, the photosensitive resin layer 2520 is subjected to a curing process (post-development heating process). The curing conditions are, for example, the conditions described in the first curing step S23. Thereby, the photosensitive resin layer 2520 is cured to obtain the organic insulating layer 252 (see FIG. 6I).
 なお、本実施形態では、上層配線層25が有機絶縁層251と有機絶縁層252の2層を有しているが、3層以上を有していてもよい。この場合、第2硬化工程S28の後、配線層形成工程S24から第2硬化工程S28までの一連の工程を繰り返し追加するようにすればよい。 In the present embodiment, the upper wiring layer 25 has two layers of the organic insulating layer 251 and the organic insulating layer 252, but may have three or more layers. In this case, after the second curing step S28, a series of steps from the wiring layer forming step S24 to the second curing step S28 may be repeatedly added.
  [2-10]貫通配線形成工程S29
 次に、開口部424に対し、図6(i)に示す貫通配線254を形成する。
[2-10] Through-wiring forming step S29
Next, the through wiring 254 shown in FIG. 6I is formed in the opening 424.
 貫通配線254の形成には、公知の方法が用いられるが、例えば以下の方法が用いられる。 A known method is used to form the through wiring 254. For example, the following method is used.
 まず、有機絶縁層252上に、図示しないシード層を形成する。シード層は、開口部424の内面(側面および底面)とともに、有機絶縁層252の上面に形成される。 First, a seed layer (not shown) is formed on the organic insulating layer 252. The seed layer is formed on the upper surface of the organic insulating layer 252 together with the inner surface (side surface and bottom surface) of the opening 424.
 シード層としては、例えば、銅シード層が用いられる。また、シード層は、例えばスパッタリング法により形成される。 As the seed layer, for example, a copper seed layer is used. The seed layer is formed by, for example, a sputtering method.
 また、シード層は、形成しようとする貫通配線254と同種の金属で構成されていてもよいし、異種の金属で構成されていてもよい。 Further, the seed layer may be made of the same type of metal as the through wiring 254 to be formed, or may be made of a different kind of metal.
 次いで、図示しないシード層のうち、開口部424以外の領域上に図示しないレジスト層を形成する。そして、このレジスト層をマスクとして、開口部424内に金属を充填する。この充填には、例えば電解めっき法が用いられる。充填される金属としては、例えば銅または銅合金、アルミニウムまたはアルミニウム合金、金または金合金、銀または銀合金、ニッケルまたはニッケル合金等が挙げられる。このようにして開口部424内に導電性材料が埋設され、貫通配線254が形成される。 Next, a resist layer (not shown) is formed on a region other than the opening 424 in the seed layer (not shown). Then, the opening 424 is filled with metal using this resist layer as a mask. For this filling, for example, an electrolytic plating method is used. Examples of the metal to be filled include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like. In this manner, the conductive material is embedded in the opening 424, and the through wiring 254 is formed.
 次いで、図示しないレジスト層を除去する。さらに、有機絶縁層252上の図示しないシード層を除去する。これには、例えばフラッシュエッチング法を用いることができる。
 なお、貫通配線254の形成箇所は、図示の位置に限定されない。
Next, the resist layer (not shown) is removed. Further, a seed layer (not shown) on the organic insulating layer 252 is removed. For this, for example, a flash etching method can be used.
Note that the formation position of the through wiring 254 is not limited to the illustrated position.
 [3]基板剥離工程S3
 次に、図6(j)に示すように、基板202を剥離する。これにより、有機絶縁層21の下面が露出することとなる。
[3] Substrate peeling step S3
Next, as shown in FIG. 6J, the substrate 202 is peeled off. As a result, the lower surface of the organic insulating layer 21 is exposed.
 [4]下層配線層形成工程S4
 次に、図6(k)に示すように、有機絶縁層21の下面側に下層配線層24を形成する。下層配線層24は、いかなる方法で形成されてもよく、例えば上述した上層配線層形成工程S2と同様にして形成されてもよい。
[4] Lower wiring layer formation step S4
Next, as shown in FIG. 6K, the lower wiring layer 24 is formed on the lower surface side of the organic insulating layer 21. The lower wiring layer 24 may be formed by any method, for example, may be formed in the same manner as the above-described upper wiring layer forming step S2.
 このようにして形成された下層配線層24は、貫通配線221を介して上層配線層25と電気的に接続される。 The lower wiring layer 24 formed in this way is electrically connected to the upper wiring layer 25 through the through wiring 221.
 [5]半田バンプ形成工程S5
 次に、図6(L)に示すように、下層配線層24に半田バンプ26を形成する。また、上層配線層25や下層配線層24には、必要に応じてソルダーレジスト層のような保護膜を形成するようにしてもよい。
 以上のようにして、貫通電極基板2が得られる。
[5] Solder bump formation step S5
Next, as shown in FIG. 6L, solder bumps 26 are formed on the lower wiring layer 24. Further, a protective film such as a solder resist layer may be formed on the upper wiring layer 25 and the lower wiring layer 24 as necessary.
The through electrode substrate 2 is obtained as described above.
 なお、図6(L)に示す貫通電極基板2は、複数の領域に分割可能になっている。したがって、例えば図6(L)に示す一点鎖線に沿って貫通電極基板2を個片化することにより、複数の貫通電極基板2を効率よく製造することができる。なお、個片化には、例えばダイヤモンドカッター等を用いることができる。 Note that the through electrode substrate 2 shown in FIG. 6 (L) can be divided into a plurality of regions. Therefore, for example, the plurality of through electrode substrates 2 can be efficiently manufactured by dividing the through electrode substrate 2 into pieces along the alternate long and short dash line shown in FIG. For example, a diamond cutter or the like can be used for singulation.
 [6]積層工程S6
 次に、個片化した貫通電極基板2上に半導体パッケージ3を配置する。これにより、図1に示す半導体装置1が得られる。
[6] Lamination process S6
Next, the semiconductor package 3 is disposed on the separated through electrode substrate 2. Thereby, the semiconductor device 1 shown in FIG. 1 is obtained.
 このような半導体装置1の製造方法は、大面積の基板を用いたウエハーレベルプロセスやパネルレベルプロセスに適用することが可能である。これにより、半導体装置1の製造効率を高め、低コスト化を図ることができる。 Such a manufacturing method of the semiconductor device 1 can be applied to a wafer level process or a panel level process using a large-area substrate. Thereby, the manufacturing efficiency of the semiconductor device 1 can be increased and the cost can be reduced.
<バンプ保護膜用感光性樹脂組成物>
 次に、半導体装置1を製造する方法に用いられるバンプ保護膜用感光性樹脂組成物(本発明のバンプ保護膜用感光性樹脂組成物)の好適な実施形態について説明する。
<Photosensitive resin composition for bump protective film>
Next, a preferred embodiment of the photosensitive resin composition for bump protective film (photosensitive resin composition for bump protective film of the present invention) used in the method for manufacturing the semiconductor device 1 will be described.
 本実施形態に係るバンプ保護膜用感光性樹脂組成物は、感光性を有する樹脂組成物であって、熱硬化性樹脂と、感光剤と、溶媒と、を含む。なお、本発明では、バンプ、ランド、配線等の電気接続要素の周囲に設けられる樹脂膜のことを総称して「バンプ保護膜」という。したがって、バンプ保護膜用感光性樹脂組成物は、バンプ保護膜を形成するために用いられる樹脂組成物を指す。
 なお、バンプ保護膜の具体例としては、例えば電気接続要素の周囲に設けられるパッシベーション膜、オーバーコート膜、層間絶縁膜等が挙げられる。また、樹脂膜は、半導体チップ上に設けられるが、半導体チップに近接して設けられてもよく、再配線層やビルドアップ配線層のように半導体チップから離れた位置に設けられてもよい。
The photosensitive resin composition for bump protective films according to this embodiment is a resin composition having photosensitivity, and includes a thermosetting resin, a photosensitive agent, and a solvent. In the present invention, resin films provided around electrical connection elements such as bumps, lands, and wirings are collectively referred to as “bump protective films”. Therefore, the photosensitive resin composition for bump protective film refers to the resin composition used for forming the bump protective film.
Specific examples of the bump protective film include a passivation film, an overcoat film, an interlayer insulating film and the like provided around the electrical connection element. The resin film is provided on the semiconductor chip, but may be provided in the vicinity of the semiconductor chip, or may be provided at a position away from the semiconductor chip, such as a rewiring layer or a build-up wiring layer.
 本実施形態に係るバンプ保護膜用感光性樹脂組成物は、前述した上層配線層形成工程S2の工程の途中においてpHの適度な変化を生じ得る。このようなバンプ保護膜用感光性樹脂組成物は、パターニング性が良好でかつ金属の劣化を抑制し得る樹脂膜を形成可能となる。以下、かかる特徴を説明するための評価方法について詳述する。 The photosensitive resin composition for bump protective film according to the present embodiment can cause an appropriate change in pH during the above-described upper wiring layer forming step S2. Such a photosensitive resin composition for a bump protective film can form a resin film that has good patternability and can suppress metal deterioration. Hereinafter, an evaluation method for explaining such characteristics will be described in detail.
 本実施形態に係るバンプ保護膜用感光性樹脂組成物は、シリコン基板上に塗布された後、乾燥されることにより、感光性樹脂膜となる。 The photosensitive resin composition for bump protective film according to the present embodiment is coated on a silicon substrate and then dried to become a photosensitive resin film.
 具体的には、まず、バンプ保護膜用感光性樹脂組成物をシリコン基板上に塗布する。次に、得られた液状被膜を120℃で3分間乾燥させ、乾燥膜を得る。これにより、厚さが15μmの感光性樹脂膜を得る。 Specifically, first, a photosensitive resin composition for bump protection film is applied on a silicon substrate. Next, the obtained liquid film is dried at 120 ° C. for 3 minutes to obtain a dry film. Thereby, a photosensitive resin film having a thickness of 15 μm is obtained.
 この感光性樹脂膜は、所定の条件の第1処理、第2処理、および第3処理を経て、現像後感光膜となる。 This photosensitive resin film becomes a post-development photosensitive film through a first process, a second process, and a third process under predetermined conditions.
 具体的には、まず、感光性樹脂膜に対し、波長365nmのi線を、600mJ/cmの条件で照射する。これにより、感光性樹脂膜に第1処理を施す。 Specifically, first, the photosensitive resin film is irradiated with i-rays having a wavelength of 365 nm under the condition of 600 mJ / cm 2 . Thereby, the first treatment is performed on the photosensitive resin film.
 次に、第1処理を施した感光性樹脂膜を、大気雰囲気において80℃で5分間加熱する。これにより、感光性樹脂膜に第2処理を施す。 Next, the photosensitive resin film subjected to the first treatment is heated at 80 ° C. for 5 minutes in the air atmosphere. Thereby, the second treatment is performed on the photosensitive resin film.
 次に、第2処理を施した感光性樹脂膜に対し、25℃のプロピレングリコールモノメチルエーテルアセテートを現像液とするスプレー現像を30秒間行う。これにより、感光性樹脂膜に第3処理を施す。このようにして第1処理、第2処理、および第3処理が順次施された感光性樹脂膜を、現像後感光膜とする。 Next, spray development using 25 ° C. propylene glycol monomethyl ether acetate as a developing solution is performed on the photosensitive resin film subjected to the second treatment for 30 seconds. Thereby, the third treatment is performed on the photosensitive resin film. The photosensitive resin film that has been sequentially subjected to the first process, the second process, and the third process in this manner is referred to as a post-development photosensitive film.
 この現像後感光膜は、さらに所定の条件の第4処理を経て、硬化後感光膜となる。
 具体的には、現像後感光膜を、窒素雰囲気において170℃で180分間加熱する。これにより、現像後感光膜に第4処理を施す。このようにして第4処理が施された現像後感光膜を、硬化後感光膜とする。
This post-development photosensitive film is further subjected to a fourth treatment under predetermined conditions to become a post-curing photosensitive film.
Specifically, the developed photosensitive film is heated at 170 ° C. for 180 minutes in a nitrogen atmosphere. Thus, the fourth process is performed on the developed photosensitive film. The post-development photosensitive film that has been subjected to the fourth treatment in this way is referred to as a post-curing photosensitive film.
 そして、得られた現像後感光膜を、以下のようにして第1熱水抽出処理に供することにより、第1抽出液が得られる。 Then, the obtained post-development photosensitive film is subjected to a first hot water extraction treatment as follows, whereby a first extract is obtained.
 具体的には、まず、現像後感光膜をシリコン基板から削り落とす。これには、例えばスクレーパーを用いた機械的方法が用いられる。 Specifically, first, after development, the photosensitive film is scraped off from the silicon substrate. For this, for example, a mechanical method using a scraper is used.
 次に、削り落とした現像後感光膜および超純水を、ポリテトラフルオロエチレン製の抽出容器に入れる。超純水は、質量比で現像後感光膜の20倍(20質量倍)となるように秤量される。 Next, the developed post-development photosensitive film and ultrapure water are put into an extraction container made of polytetrafluoroethylene. The ultrapure water is weighed so that the mass ratio is 20 times (20 mass times) of the photosensitive film after development.
 次に、抽出容器を密栓した後、恒温器に投入し、125℃で20時間加熱する第1熱水抽出処理を施す。 Next, after sealing the extraction container, it is put into a thermostatic chamber and subjected to a first hot water extraction treatment in which heating is performed at 125 ° C. for 20 hours.
 次に、恒温器から抽出容器を取り出し、室温(25℃)まで放冷する。
 次に、抽出容器の内容物を目開き0.5μmのフィルターでろ過し、ろ液を第1抽出液として回収する。
Next, the extraction container is taken out from the thermostat and allowed to cool to room temperature (25 ° C.).
Next, the contents of the extraction container are filtered through a filter having an opening of 0.5 μm, and the filtrate is recovered as a first extract.
 次に、得られた第1抽出液に、セブンイージーS20型pHメーター(メトラー・トレド株式会社製)の電極を浸漬させる。そして、pHメーターにより、第1抽出液のpHを測定する。得られた第1抽出液のpHを「pH1」とする。 Next, an electrode of a Seven Easy S20 pH meter (manufactured by METTLER TOLEDO) is immersed in the obtained first extract. Then, the pH of the first extract is measured with a pH meter. Let pH of the obtained 1st extract be "pH1".
 また、得られた硬化後感光膜を、以下のようにして第2熱水抽出処理に供することにより、第2抽出液が得られる。 Further, the obtained second cured solution is obtained by subjecting the obtained post-curing photosensitive film to a second hot water extraction treatment as follows.
 具体的には、まず、硬化後感光膜をシリコン基板から削り落とす。これには、例えばスクレーパーを用いた機械的方法が用いられる。 Specifically, first, after curing, the photosensitive film is scraped off from the silicon substrate. For this, for example, a mechanical method using a scraper is used.
 次に、削り落とした硬化後感光膜および超純水を、ポリテトラフルオロエチレン製の抽出容器に入れる。超純水は、質量比で硬化後感光膜の20倍(20質量倍)となるように秤量される。 Next, the hardened photosensitive film and ultrapure water which have been scraped off are put into an extraction container made of polytetrafluoroethylene. The ultrapure water is weighed so as to be 20 times (20 mass times) of the photosensitive film after being cured by mass ratio.
 次に、抽出容器を密栓した後、恒温器に投入し、125℃で20時間加熱する第2熱水抽出処理を施す。 Next, after sealing the extraction container, it is put into a thermostatic chamber and subjected to a second hot water extraction treatment in which it is heated at 125 ° C. for 20 hours.
 次に、恒温器から抽出容器を取り出し、室温(25℃)まで放冷する。 Next, the extraction container is taken out from the thermostat and allowed to cool to room temperature (25 ° C.).
 次に、抽出容器の内容物を目開き0.5μmのフィルターでろ過し、ろ液を第2抽出液として回収する。 Next, the contents of the extraction container are filtered through a filter having an opening of 0.5 μm, and the filtrate is recovered as a second extract.
 次に、得られた第2抽出液に、セブンイージーS20型pHメーター(メトラー・トレド株式会社製)の電極を浸漬させる。そして、pHメーターにより、第2抽出液のpHを測定する。得られた第2抽出液のpHを「pH2」とする。
 以上のような評価方法により、pH1およびpH2が得られる。
Next, an electrode of a Seven Easy S20 type pH meter (manufactured by METTLER TOLEDO Co., Ltd.) is immersed in the obtained second extract. Then, the pH of the second extract is measured with a pH meter. Let pH of the obtained 2nd extract be "pH2."
By the evaluation method as described above, pH 1 and pH 2 are obtained.
 ここで、本実施形態に係るバンプ保護膜用感光性樹脂組成物は、上述した評価方法による評価結果において以下の(a)~(c)の3条件を満たす。 Here, the photosensitive resin composition for bump protective film according to the present embodiment satisfies the following three conditions (a) to (c) in the evaluation result by the above-described evaluation method.
 (a)pH1が3.0~5.0である。
 (b)pH2がpH1より高い。
 (c)pH1とpH2との差が0.1~1.0である。
(A) pH 1 is 3.0 to 5.0.
(B) pH2 is higher than pH1.
(C) The difference between pH 1 and pH 2 is 0.1 to 1.0.
 このような3条件を満たすバンプ保護膜用感光性樹脂組成物は、特に(a)により、前述した第1現像工程S22後またはそれ以前の工程、および、前述した第2現像工程S27後またはそれ以前の工程において、比較的低いpHを示す。このような工程には、バンプ保護膜用感光性樹脂組成物において熱硬化性樹脂の反応が必要になる工程が含まれており、比較的低いpHは、熱硬化性樹脂の反応を促進する触媒となる酸の含有率が高いことに相当する。このため、このような工程において、熱硬化性樹脂の反応が促進され、例えば感光性樹脂層2510、2520の感度が高くなるため、感光性樹脂層2510、2520のパターニング性が良好になる。 The photosensitive resin composition for a bump protective film satisfying these three conditions, in particular, includes the step after or before the first development step S22 and the step after or after the second development step S27. In the previous process, it exhibits a relatively low pH. Such a process includes a process that requires a reaction of a thermosetting resin in the photosensitive resin composition for bump protection film, and a relatively low pH is a catalyst that promotes the reaction of the thermosetting resin. This corresponds to a high acid content. Therefore, in such a process, the reaction of the thermosetting resin is promoted and, for example, the sensitivity of the photosensitive resin layers 2510 and 2520 is increased, so that the patternability of the photosensitive resin layers 2510 and 2520 is improved.
 なお、pH1が前記下限値を下回ると、例えば第2現像工程S27やそれ以前の工程において、配線層253に含まれる金属を劣化(酸化)させるおそれがある。一方、pH1が前記上限値を上回ると、熱硬化性樹脂の反応を十分に促進させることができないおそれがある。 If pH1 is lower than the lower limit value, for example, the metal contained in the wiring layer 253 may be deteriorated (oxidized) in the second development step S27 and the previous step. On the other hand, when pH1 exceeds the said upper limit, there exists a possibility that reaction of a thermosetting resin cannot fully be accelerated | stimulated.
 また、前述したバンプ保護膜用感光性樹脂組成物は、特に(b)により、第1現像工程S22後のpHよりも、第1硬化工程S23後のpHが高いことになる。同様に、第2現像工程S27後のpHよりも、第2硬化工程S28後のpHが高いことになる。つまり、バンプ保護膜用感光性樹脂組成物は、その硬化物のpHが、非硬化時のpHよりも高いといえる。このようなバンプ保護膜用感光性樹脂組成物は、その硬化物において酸性度が相対的に低いことになるため、例えば有機絶縁層251、252において配線層253や貫通配線254等に含まれる金属の劣化を抑制することができる。そして、金属の劣化が抑制されることにより、金属イオンのマイグレーションに伴う有機絶縁層251、252の絶縁性の低下を抑制することができる。 Further, the above-mentioned photosensitive resin composition for bump protective film has a pH higher after the first curing step S23 than the pH after the first development step S22, particularly due to (b). Similarly, the pH after the second curing step S28 is higher than the pH after the second developing step S27. That is, it can be said that the photosensitive resin composition for bump protective film has a pH of the cured product higher than that at the time of non-curing. Such a photosensitive resin composition for a bump protective film has a relatively low acidity in the cured product. Therefore, for example, the metal contained in the wiring layer 253, the through wiring 254, etc. in the organic insulating layers 251 and 252. Can be prevented. Then, by suppressing the deterioration of the metal, it is possible to suppress the deterioration of the insulating properties of the organic insulating layers 251 and 252 due to the migration of metal ions.
 また、特に(c)により、バンプ保護膜用感光性樹脂組成物の硬化物のpHは、非硬化時のpHよりも高くなっているものの、その差が最適化されていることになる。このため、pH1が十分に低くなり、熱硬化性樹脂の反応が十分に促進される一方、pH2が十分に高くなり、金属の劣化を十分に抑制することができる。 Further, in particular, due to (c), the pH of the cured product of the photosensitive resin composition for bump protective film is higher than the pH at the time of non-curing, but the difference is optimized. For this reason, pH1 becomes low enough and reaction of a thermosetting resin is fully accelerated | stimulated, On the other hand, pH2 becomes high enough and metal deterioration can fully be suppressed.
 なお、pH1とpH2との差が前記下限値を下回ると、差が小さすぎるため、熱硬化性樹脂の反応を十分に促進させることができないおそれ、または、金属の劣化を十分に抑制することができないおそれがある。一方、pH1とpH2との差が前記上限値を上回ると、差が大きすぎるため、例えば第2現像工程S27やそれ以前の工程において、配線層253に含まれる金属を劣化(酸化)させるおそれ、または、バンプ保護膜用感光性樹脂組成物の安定性が低下するおそれがある。また、大きな差を実現するために、感光剤の添加量を過剰にする必要があり、感光性樹脂層2510、2520のパターニング性が低下するおそれがある。 In addition, since the difference is too small when the difference between pH1 and pH2 is less than the lower limit value, the reaction of the thermosetting resin cannot be sufficiently promoted, or the deterioration of the metal can be sufficiently suppressed. It may not be possible. On the other hand, if the difference between pH1 and pH2 exceeds the upper limit value, the difference is too large. For example, in the second development step S27 and the previous step, the metal contained in the wiring layer 253 may be deteriorated (oxidized). Or there exists a possibility that stability of the photosensitive resin composition for bump protective films may fall. In addition, in order to realize a large difference, it is necessary to make the addition amount of the photosensitive agent excessive, and the patternability of the photosensitive resin layers 2510 and 2520 may be lowered.
 したがって、以上の(a)~(c)の3条件を同時に満たすことにより、バンプ保護膜用感光性樹脂組成物は、パターニング性が良好でかつ金属の劣化を抑制し得る樹脂膜を形成可能となる。 Therefore, by simultaneously satisfying the above three conditions (a) to (c), the photosensitive resin composition for bump protective film can form a resin film that has good patternability and can suppress metal deterioration. Become.
 なお、pH1は、好ましくは3.2~4.5であり、より好ましくは3.4~4.0である。 Incidentally, the pH 1 is preferably 3.2 to 4.5, more preferably 3.4 to 4.0.
 また、pH1とpH2との差は、好ましくは0.2~0.9であり、より好ましくは0.3~0.8である。 The difference between pH 1 and pH 2 is preferably 0.2 to 0.9, more preferably 0.3 to 0.8.
 また、バンプ保護膜用感光性樹脂組成物は、その第2抽出液のpH2が、3.6以上であるのが好ましく、3.8~7.0であるのがより好ましい。pH2が前記範囲内であることにより、例えば有機絶縁層251、252において配線層253や貫通配線254等に含まれる金属の劣化を長期にわたって特に良好に抑制することができる。 Further, in the photosensitive resin composition for bump protective film, the pH 2 of the second extract is preferably 3.6 or more, more preferably 3.8 to 7.0. When pH2 is in the above range, for example, deterioration of metals contained in the wiring layer 253, the through wiring 254, and the like in the organic insulating layers 251 and 252 can be suppressed particularly well over a long period of time.
 なお、pH2が前記下限値を下回ると、金属の劣化を十分に抑制することができないおそれがある。一方、pH2が前記上限値を上回ると、バンプ保護膜用感光性樹脂組成物の安定性が低下するおそれがある。 In addition, when pH2 is less than the said lower limit, there exists a possibility that deterioration of a metal cannot fully be suppressed. On the other hand, when pH2 exceeds the upper limit, the stability of the photosensitive resin composition for bump protective film may be lowered.
 また、前述した半導体装置1は、半導体チップ23と、半導体チップ23上に設けられ、バンプ保護膜用感光性樹脂組成物の硬化物を含む樹脂膜である有機絶縁層251、252と、を備えている。このような半導体装置1は、有機絶縁層251、252の絶縁性の低下が抑制されるため、不良率が低くかつ信頼性が高くなる。 The semiconductor device 1 described above includes a semiconductor chip 23 and organic insulating layers 251 and 252 which are provided on the semiconductor chip 23 and are resin films containing a cured product of the photosensitive resin composition for bump protection film. ing. In such a semiconductor device 1, since the deterioration of the insulating properties of the organic insulating layers 251 and 252 is suppressed, the defect rate is low and the reliability is high.
 以下、バンプ保護膜用感光性樹脂組成物の各構成成分について詳述する。
 (熱硬化性樹脂)
 熱硬化性樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂のようなノボラック型エポキシ樹脂、クレゾールナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノキシ樹脂、ナフタレン骨格型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、芳香族多官能エポキシ樹脂、脂肪族エポキシ樹脂、脂肪族多官能エポキシ樹脂、脂環式エポキシ樹脂、多官能脂環式エポキシ樹脂等のエポキシ樹脂;ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂;不飽和ポリエステル樹脂;ビスマレイミド化合物等のマレイミド樹脂;ポリウレタン樹脂;ジアリルフタレート樹脂;シリコーン系樹脂;ベンゾオキサジン樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;ベンゾシクロブテン樹脂、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のシアネート樹脂等のシアネートエステル樹脂等が挙げられる。また、熱硬化性樹脂では、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。
Hereinafter, each component of the photosensitive resin composition for bump protective films will be described in detail.
(Thermosetting resin)
Examples of thermosetting resins include phenol novolac type epoxy resins, cresol novolac type epoxy resins such as cresol novolak type epoxy resins, cresol naphthol type epoxy resins, biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, phenoxy resins, and naphthalene skeletons. Type epoxy resin, bisphenol A type epoxy resin, bisphenol A diglycidyl ether type epoxy resin, bisphenol F type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, glycidyl ether type epoxy resin, cresol Novolac epoxy resin, aromatic polyfunctional epoxy resin, aliphatic epoxy resin, aliphatic polyfunctional epoxy resin, alicyclic epoxy resin, polyfunctional Epoxy resins such as cyclic epoxy resins; resins having a triazine ring such as urea (urea) resins and melamine resins; unsaturated polyester resins; maleimide resins such as bismaleimide compounds; polyurethane resins; diallyl phthalate resins; silicone resins; Oxazine resin; polyimide resin; polyamideimide resin; benzocyclobutene resin, novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, cyanate ester resin such as cyanate resin such as tetramethylbisphenol F type cyanate resin, etc. Can be mentioned. In the thermosetting resin, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination. You may use together with a polymer.
 このうち、熱硬化性樹脂としては、エポキシ樹脂を含んでいることが好ましい。これにより、機械的特性が良好な有機絶縁層251、252を形成可能なバンプ保護膜用感光性樹脂組成物が得られる。 Of these, the thermosetting resin preferably contains an epoxy resin. Thereby, the photosensitive resin composition for bump protective films which can form the organic insulating layers 251 and 252 with favorable mechanical characteristics is obtained.
 エポキシ樹脂としては、例えば1分子中にエポキシ基が2個以上である多官能エポキシ樹脂が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。このような多官能エポキシ樹脂を用いることにより、感光性樹脂層2510、2520の膜物性や加工性を高めることができる。 Examples of the epoxy resin include a polyfunctional epoxy resin having two or more epoxy groups in one molecule. These may be used alone or in combination. By using such a polyfunctional epoxy resin, the film physical properties and workability of the photosensitive resin layers 2510 and 2520 can be improved.
 また、エポキシ樹脂としては、3官能以上の多官能エポキシ樹脂が用いられてもよい。
 また、熱硬化性樹脂は、特に、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、およびテトラメチルビスフェノールF型エポキシ樹脂からなる群より選択される1種以上のエポキシ樹脂を含むことが好ましく、ノボラック型エポキシ樹脂を含むことがより好ましい。このような熱硬化性樹脂は、多官能でかつ芳香族化合物からなるエポキシ樹脂であるため、硬化性が良好で耐熱性が高く、熱膨張係数の比較的低い有機絶縁層251、252が得られる。
Moreover, as an epoxy resin, a polyfunctional epoxy resin more than trifunctional may be used.
Thermosetting resins include, among others, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins, dicyclopentadiene type epoxy resins, bisphenol A type epoxy resins, and tetramethylbisphenol F type epoxy resins. It is preferable to include one or more epoxy resins selected from the group consisting of: and more preferable to include a novolac type epoxy resin. Since such a thermosetting resin is a polyfunctional epoxy resin made of an aromatic compound, organic insulating layers 251 and 252 having good curability, high heat resistance, and a relatively low thermal expansion coefficient can be obtained. .
 なお、熱硬化性樹脂は、常温(25℃)で固形の樹脂を含むことが好ましい。これにより、機械的特性が良好な有機絶縁層251、252を形成可能なバンプ保護膜用感光性樹脂組成物が得られる。 In addition, it is preferable that a thermosetting resin contains solid resin at normal temperature (25 degreeC). Thereby, the photosensitive resin composition for bump protective films which can form the organic insulating layers 251 and 252 with favorable mechanical characteristics is obtained.
 熱硬化性樹脂の含有量は、特に限定されないが、バンプ保護膜用感光性樹脂組成物の固形分全体の40~90質量%程度であるのが好ましく、45~85質量%程度であるのがより好ましく、50~80質量%程度であるのがさらに好ましい。熱硬化性樹脂の含有量を前記範囲内に設定することにより、バンプ保護膜用感光性樹脂組成物のパターニング性を高めるとともに、有機絶縁層251、252の耐熱性や機械的強度を十分に高めることができる。 The content of the thermosetting resin is not particularly limited, but is preferably about 40 to 90% by mass, and preferably about 45 to 85% by mass of the total solid content of the photosensitive resin composition for bump protective film. More preferably, it is about 50 to 80% by mass. By setting the content of the thermosetting resin within the above range, the patterning property of the photosensitive resin composition for bump protective film is enhanced, and the heat resistance and mechanical strength of the organic insulating layers 251 and 252 are sufficiently enhanced. be able to.
 なお、バンプ保護膜用感光性樹脂組成物の固形分とは、バンプ保護膜用感光性樹脂組成物中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。また、本実施形態において、バンプ保護膜用感光性樹脂組成物の固形分全体に対する含有量とは、バンプ保護膜用感光性樹脂組成物のうちの溶媒を除く成分全体に対する含有量を指す。 The solid content of the photosensitive resin composition for bump protective film refers to the non-volatile content in the photosensitive resin composition for bump protective film, and refers to the remainder excluding volatile components such as water and solvent. Moreover, in this embodiment, content with respect to the whole solid of the photosensitive resin composition for bump protective films refers to content with respect to the whole component except the solvent of the photosensitive resin composition for bump protective films.
 (液状エポキシ樹脂)
 バンプ保護膜用感光性樹脂組成物は、必要に応じて、常温で液状を呈する液状エポキシ樹脂を含んでいてもよい。液状エポキシ樹脂は成膜助剤(フィルム化剤)として機能するため、有機絶縁層251、252の脆性を抑えることができる。
(Liquid epoxy resin)
The photosensitive resin composition for bump protective film may contain a liquid epoxy resin that exhibits a liquid state at room temperature, if necessary. Since the liquid epoxy resin functions as a film forming aid (filming agent), brittleness of the organic insulating layers 251 and 252 can be suppressed.
 液状エポキシ樹脂としては、前述した熱硬化性樹脂とは異なる樹脂を用いることができる。具体的には、分子中に2個以上のエポキシ基を有しており、室温25℃において液状であるエポキシ化合物を用いることができる。このような液状エポキシ樹脂を用いることにより、有機絶縁層251、252の脆性を特に抑えることができる。この液状エポキシ樹脂の25℃における粘度は、例えば、1~8000mPa・sであり、好ましくは5~1500mPa・sであり、より好ましくは10~1400mPa・sとすることができる。 As the liquid epoxy resin, a resin different from the thermosetting resin described above can be used. Specifically, an epoxy compound that has two or more epoxy groups in the molecule and is liquid at room temperature of 25 ° C. can be used. By using such a liquid epoxy resin, the brittleness of the organic insulating layers 251 and 252 can be particularly suppressed. The viscosity of this liquid epoxy resin at 25 ° C. is, for example, 1 to 8000 mPa · s, preferably 5 to 1500 mPa · s, and more preferably 10 to 1400 mPa · s.
 このような液状エポキシ樹脂としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、アルキルジグリシジルエーテルおよび脂環式エポキシからなる群から選択される1種以上が挙げられ、これらのうちの1種または2種以上を組み合わせて用いられる。この中でも、現像後のクラック低減の観点から、アルキルジグリシジルエーテルが好ましく用いられる。 Examples of such a liquid epoxy resin include one or more selected from the group consisting of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, alkyl diglycidyl ether, and alicyclic epoxy. One type or a combination of two or more types is used. Among these, alkyldiglycidyl ether is preferably used from the viewpoint of reducing cracks after development.
 また、液状エポキシ樹脂のエポキシ当量は、100~200g/eqであるのが好ましく、105~180g/eqであるのがより好ましく、110~170g/eqであるのがさらに好ましい。これにより、有機絶縁層251、252の脆性を特に抑えることができる。 The epoxy equivalent of the liquid epoxy resin is preferably 100 to 200 g / eq, more preferably 105 to 180 g / eq, and further preferably 110 to 170 g / eq. Thereby, the brittleness of the organic insulating layers 251 and 252 can be particularly suppressed.
 液状エポキシ樹脂の含有量は、特に限定されないが、バンプ保護膜用感光性樹脂組成物の固形分全体の1~40質量%程度であるのが好ましく、5~35質量%程度であるのがより好ましく、10~30質量%程度であるのがさらに好ましい。これにより、有機絶縁層251、252の脆性を抑えつつ、その物性のバランスを図ることができる。 The content of the liquid epoxy resin is not particularly limited, but is preferably about 1 to 40% by mass of the total solid content of the photosensitive resin composition for bump protective film, more preferably about 5 to 35% by mass. Preferably, it is about 10 to 30% by mass. Thereby, the physical property balance can be achieved while suppressing the brittleness of the organic insulating layers 251 and 252.
 また、液状エポキシ樹脂の量は、常温で固形の樹脂100質量部に対して1~100質量部程度であるのが好ましく、5~90質量部程度であるのがより好ましく、10~80質量部程度であるのがさらに好ましい。 The amount of the liquid epoxy resin is preferably about 1 to 100 parts by weight, more preferably about 5 to 90 parts by weight, with respect to 100 parts by weight of the solid resin at room temperature. More preferably, it is about.
 (熱可塑性樹脂)
 また、バンプ保護膜用感光性樹脂組成物は、さらに熱可塑性樹脂を含んでいてもよい。これにより、バンプ保護膜用感光性樹脂組成物の硬化物の可撓性をより高めることができる。その結果、熱応力等が発生しにくい有機絶縁層251、252が得られる。
(Thermoplastic resin)
Moreover, the photosensitive resin composition for bump protective films may further contain a thermoplastic resin. Thereby, the flexibility of the hardened | cured material of the photosensitive resin composition for bump protective films can be improved more. As a result, it is possible to obtain the organic insulating layers 251 and 252 that hardly generate thermal stress and the like.
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、アクリル系樹脂、ポリアミド系樹脂(例えばナイロン等)、熱可塑性ウレタン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)、ポリカーボネート、ポリエステル系樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等が挙げられる。また、バンプ保護膜用感光性樹脂組成物では、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。 Examples of the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, acrylic resin, polyamide resin (for example, nylon), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene, etc.), polycarbonate, and polyester resin. (Eg, polyethylene terephthalate, polybutylene terephthalate, etc.), polyacetal, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluororesin (eg, polytetrafluoroethylene, polyvinylidene fluoride, etc.), modified polyphenylene ether, polysulfone, polyether sulfone, Polyarylate, polyamideimide, polyetherimide, thermoplastic polyimide and the like can be mentioned. Moreover, in the photosensitive resin composition for bump protective films, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, or one or more. And those prepolymers may be used in combination.
 このうち、熱可塑性樹脂としては、フェノキシ樹脂が好ましく用いられる。フェノキシ樹脂は、ポリヒドロキシポリエーテルとも呼ばれ、エポキシ樹脂よりも分子量が大きい特徴を有する。このようなフェノキシ樹脂を含むことにより、バンプ保護膜用感光性樹脂組成物の硬化物の可撓性が低下するのを抑制することができる。特に、フェノキシ樹脂を含有することにより、バンプ保護膜用感光性樹脂組成物の硬化物は適度な伸縮性を発現する。そのため、係るバンプ保護膜用感光性樹脂組成物を用いることにより、薄型の有機絶縁層を形成する場合でも、有機絶縁層にクラック等が生じることを抑制することができ、絶縁信頼性の高い半導体装置を製造することができる。係るバンプ保護膜用感光性樹脂組成物は、特に、上層配線層25や下層配線層24等の再配線層の形成に適している。 Of these, phenoxy resin is preferably used as the thermoplastic resin. The phenoxy resin is also called a polyhydroxy polyether, and has a feature that the molecular weight is larger than that of the epoxy resin. By including such a phenoxy resin, it can suppress that the flexibility of the hardened | cured material of the photosensitive resin composition for bump protective films falls. In particular, by containing a phenoxy resin, the cured product of the photosensitive resin composition for a bump protective film exhibits appropriate stretchability. Therefore, by using such a photosensitive resin composition for bump protective film, even when a thin organic insulating layer is formed, it is possible to suppress the occurrence of cracks in the organic insulating layer, and a semiconductor with high insulation reliability. The device can be manufactured. Such a photosensitive resin composition for a bump protective film is particularly suitable for forming a rewiring layer such as the upper wiring layer 25 and the lower wiring layer 24.
 フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂、ビフェニル型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、ビフェニル型フェノキシ樹脂とビスフェノールS型フェノキシ樹脂との共重合フェノキシ樹脂等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 Examples of the phenoxy resin include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, copolymerized phenoxy resin of bisphenol A type and bisphenol F type, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, biphenyl type phenoxy resin and bisphenol. Examples thereof include copolymerized phenoxy resins with S-type phenoxy resins, and one or a mixture of two or more of these is used.
 これらの中でも、ビスフェノールA型フェノキシ樹脂またはビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂が好ましく用いられる。 Among these, bisphenol A type phenoxy resin or copolymerized phenoxy resin of bisphenol A type and bisphenol F type is preferably used.
 また、フェノキシ樹脂としては、分子鎖両末端にエポキシ基を有する樹脂が好ましく用いられる。このようなフェノキシ樹脂によれば、熱硬化性樹脂としてエポキシ樹脂が用いられた場合、バンプ保護膜用感光性樹脂組成物の硬化物に対して優れた耐溶剤性および耐熱性を付与することができる。 As the phenoxy resin, a resin having an epoxy group at both ends of the molecular chain is preferably used. According to such a phenoxy resin, when an epoxy resin is used as a thermosetting resin, excellent solvent resistance and heat resistance can be imparted to the cured product of the photosensitive resin composition for bump protection film. it can.
 また、フェノキシ樹脂としては、常温で固形の樹脂が好ましく用いられる。具体的には、不揮発分が90質量%以上であるフェノキシ樹脂が好ましく用いられる。このようなフェノキシ樹脂を用いることにより、硬化物の機械的特性を良好にすることができる。 Further, as the phenoxy resin, a resin that is solid at room temperature is preferably used. Specifically, a phenoxy resin having a nonvolatile content of 90% by mass or more is preferably used. By using such a phenoxy resin, the mechanical properties of the cured product can be improved.
 熱可塑性樹脂の重量平均分子量は、特に限定されないが、10000~100000程度であるのが好ましく、20000~100000程度であるのがより好ましく、30000~70000程度であることがさらに好ましい。このような比較的高分子量の熱可塑性樹脂が用いられることにより、硬化物に対して良好な可撓性を付与するとともに、溶媒への十分な溶解性を付与することができる。特に、重量平均分子量が上記範囲内のフェノキシ樹脂を用いることにより、上記の効果に加え、硬化物がより好適な伸縮性を有するため、薄型化が要求される再配線層の形成に特に適している。 The weight average molecular weight of the thermoplastic resin is not particularly limited, but is preferably about 10,000 to 100,000, more preferably about 20,000 to 100,000, and further preferably about 30,000 to 70,000. By using such a relatively high molecular weight thermoplastic resin, it is possible to impart satisfactory flexibility to the cured product and sufficient solubility in a solvent. In particular, by using a phenoxy resin having a weight average molecular weight within the above range, in addition to the above effects, the cured product has more suitable stretchability, and thus is particularly suitable for the formation of a rewiring layer that requires thinning. Yes.
 なお、熱可塑性樹脂の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法のポリスチレン換算値として測定される。 In addition, the weight average molecular weight of a thermoplastic resin is measured as a polystyrene conversion value of a gel permeation chromatography (GPC) method, for example.
 熱可塑性樹脂の添加量は、特に限定されないが、熱硬化性樹脂100質量部に対して10質量部以上90質量部以下であるのが好ましく、15質量部以上80質量部以下であるのがより好ましく、20質量部以上70質量部以下であるのがさらに好ましい。熱可塑性樹脂の添加量を前記範囲内に設定することにより、バンプ保護膜用感光性樹脂組成物の硬化物について、機械的特性のバランスを高めることができる。 The addition amount of the thermoplastic resin is not particularly limited, but is preferably 10 parts by mass or more and 90 parts by mass or less, and more preferably 15 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. Preferably, it is 20 parts by mass or more and 70 parts by mass or less. By setting the addition amount of the thermoplastic resin within the above range, it is possible to increase the balance of the mechanical properties of the cured product of the photosensitive resin composition for bump protective film.
 なお、熱可塑性樹脂の添加量が前記下限値を下回ると、バンプ保護膜用感光性樹脂組成物に含まれる成分やその配合比によっては、バンプ保護膜用感光性樹脂組成物の硬化物に十分な可撓性が付与されないおそれがある。一方、熱可塑性樹脂の添加量が前記上限値を上回ると、バンプ保護膜用感光性樹脂組成物に含まれる成分やその配合比によっては、バンプ保護膜用感光性樹脂組成物の硬化物の機械的強度が低下するおそれがある。 In addition, when the addition amount of the thermoplastic resin is less than the lower limit, depending on the component contained in the photosensitive resin composition for bump protective film and the blending ratio thereof, it is sufficient for the cured product of the photosensitive resin composition for bump protective film. There is a possibility that the flexibility is not given. On the other hand, when the addition amount of the thermoplastic resin exceeds the upper limit, depending on the components contained in the photosensitive resin composition for bump protective film and the blending ratio thereof, the cured product of the photosensitive resin composition for bump protective film is used. There is a risk that the mechanical strength will decrease.
 (感光剤)
 感光剤としては、例えば光酸発生剤を用いることができる。これにより、光酸発生剤から発生した酸を触媒として利用する化学増幅型のバンプ保護膜用感光性樹脂組成物が得られる。かかる化学増幅型のバンプ保護膜用感光性樹脂組成物は、感度が高いことから、より微細なパターニングを高いスループットで実現可能となる。
(Photosensitive agent)
As the photosensitizer, for example, a photoacid generator can be used. As a result, a chemically amplified photosensitive resin composition for a bump protective film using an acid generated from a photoacid generator as a catalyst is obtained. Such a chemically amplified photosensitive resin composition for a bump protective film has high sensitivity, so that finer patterning can be realized with high throughput.
 光酸発生剤としては、紫外線等の活性光線の照射により酸を発生する化合物が挙げられ、具体的には、オニウム塩化合物が挙げられる。より具体的には、ジアゾニウム塩、ジアリールヨードニウム塩等のヨードニウム塩、トリアリールスルホニウム塩のようなスルホニウム塩、トリアリールビリリウム塩、ベンジルピリジニウムチオシアネート、ジアルキルフェナシルスルホニウム塩、ジアルキルヒドロキシフェニルホスホニウム塩のようなカチオン型光重合開始剤等が挙げられる。 Examples of the photoacid generator include compounds that generate an acid upon irradiation with actinic rays such as ultraviolet rays, and specifically include onium salt compounds. More specifically, iodonium salts such as diazonium salts and diaryliodonium salts, sulfonium salts such as triarylsulfonium salts, triarylbililium salts, benzylpyridinium thiocyanate, dialkylphenacylsulfonium salts, and dialkylhydroxyphenylphosphonium salts. And a cationic photopolymerization initiator.
 なお、感光剤は、バンプ保護膜用感光性樹脂組成物が金属に接することを考慮すると、メチド塩型やボレート塩型のような、分解によるフッ化水素の発生がない化合物が好ましい。 The photosensitive agent is preferably a compound that does not generate hydrogen fluoride due to decomposition, such as a methide salt type or a borate salt type, considering that the photosensitive resin composition for bump protective film is in contact with metal.
 また、光酸発生剤は、特に、ガレートアニオンを対アニオンとするオニウム塩(以下、「オニウムガレート塩」という。)がより好ましく用いられる。このようなオニウムガレート塩は、熱解離性を有する。すなわち、オニウムガレート塩は、加熱されたとき、ガレートアニオンにおいて熱解離が生じる。このため、バンプ保護膜用感光性樹脂組成物では、硬化処理に伴ってpHの上昇が生じる。その結果、硬化処理の前後でpHが変化し、前述した(a)~(c)の3条件を満たすバンプ保護膜用感光性樹脂組成物を実現することができる。 The photoacid generator is particularly preferably an onium salt having a gallate anion as a counter anion (hereinafter referred to as “onium gallate salt”). Such an onium gallate salt has thermal dissociation properties. That is, the onium gallate salt undergoes thermal dissociation in the gallate anion when heated. For this reason, in the photosensitive resin composition for bump protective films, pH raises with a hardening process. As a result, the pH changes before and after the curing treatment, and a photosensitive resin composition for a bump protective film that satisfies the above three conditions (a) to (c) can be realized.
 ここで、オニウムガレート塩は、ガレートアニオンを対アニオンとするオニウム塩であれば、特に限定されない。下記一般式(1)は、オニウムガレート塩の一例である。 Here, the onium gallate salt is not particularly limited as long as it is an onium salt having a gallate anion as a counter anion. The following general formula (1) is an example of an onium gallate salt.
Figure JPOXMLDOC01-appb-C000001
[式(1)中、R~Rは、互いに独立して、炭素数1~18のアルキル基またはアリール基である。ただし、R~Rは、少なくとも1つがアリール基であり、このアリール基の炭素数は、6~14(以下の置換基の炭素数は含まない)であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基、ハロゲン原子が置換した炭素数1~8のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基もしくはアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基もしくはアリールチオ基、-NR1011で表されるアミノ基、またはハロゲン原子で置換されていてもよい。
 また、R~Rは、炭素数1~8のアルキル基または炭素数6~14のアリール基であり、R10およびR11は、水素原子、炭素数1~8のアルキル基または炭素数6~14のアリール基である。
 また、Eは、元素周期表の15族~17族の原子価nの元素を表し、nは1~3の整数である。
 また、RはEに結合している有機基であり、Rの個数はn+1であり、n+1個のRはそれぞれ互いに同一であっても異なっていてもよく、2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000001
[In Formula (1), R 1 to R 4 are each independently an alkyl group or aryl group having 1 to 18 carbon atoms. Provided that at least one of R 1 to R 4 is an aryl group, and the aryl group has 6 to 14 carbon atoms (not including the carbon number of the following substituents), and a hydrogen atom in the aryl group Are alkyl groups having 1 to 18 carbon atoms, alkyl groups having 1 to 8 carbon atoms substituted by halogen atoms, alkenyl groups having 2 to 18 carbon atoms, alkynyl groups having 2 to 18 carbon atoms, and 6 to 6 carbon atoms. 14 aryl group, nitro group, hydroxyl group, cyano group, alkoxy group or aryloxy group represented by —OR 6 , acyl group represented by R 7 CO—, acyloxy group represented by R 8 COO—, It may be substituted with an alkylthio group or arylthio group represented by SR 9 , an amino group represented by —NR 10 R 11 , or a halogen atom.
R 6 to R 9 are each an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms, and R 10 and R 11 are each a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a carbon number 6 to 14 aryl groups.
E represents an element having a valence n of Groups 15 to 17 of the periodic table, and n is an integer of 1 to 3.
R 5 is an organic group bonded to E, the number of R 5 is n + 1, and n + 1 R 5 s may be the same as or different from each other, and two or more R 5 Ring containing element E directly or each other through —O—, —S—, —SO—, —SO 2 —, —NH—, —CO—, —COO—, —CONH—, an alkylene group or a phenylene group A structure may be formed. ]
 このうち、Eは、有機基Rと結合してオニウムイオン(オニウムカチオン)を形成する。Eとしては、例えばO(酸素)、N(窒素)、P(リン)、S(硫黄)、I(ヨウ素)が挙げられ、これらに対応するオニウムイオンは、オキソニウム、アンモニウム、ホスホニウム、スルホニウム、ヨードニウムである。 Among these, E combines with the organic group R 5 to form an onium ion (onium cation). Examples of E include O (oxygen), N (nitrogen), P (phosphorus), S (sulfur), and I (iodine), and onium ions corresponding to these include oxonium, ammonium, phosphonium, sulfonium, and iodonium. It is.
 また、Rとしては、炭素数6~14のアリール基、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基等が挙げられる。 Examples of R 5 include an aryl group having 6 to 14 carbon atoms, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, and an alkynyl group having 2 to 18 carbon atoms.
 なお、Rにおけるアリール基は、さらに、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基もしくはアリールオキシ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-SRで表されるアルキルチオ基もしくはアリールチオ基、-NR1011で表されるアミノ基、またはハロゲン原子で置換されていてもよい。 The aryl group in R 5 is further an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an alkynyl group having 2 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, Hydroxyl group, cyano group, alkoxy group or aryloxy group represented by —OR 6 , acyl group represented by R 7 CO—, acyloxy group represented by R 8 COO—, alkylthio group represented by —SR 9 Alternatively, it may be substituted with an arylthio group, an amino group represented by —NR 10 R 11 , or a halogen atom.
 ここで、オニウムイオンは、特にスルホニウムイオンであるのが好ましく、トリアリールスルホニウムイオンであるのがより好ましく、トリフェニルスルホニウムイオンであるのがさらに好ましい。これにより、感度および溶解性が良好な光酸発生剤が得られる。 Here, the onium ion is particularly preferably a sulfonium ion, more preferably a triarylsulfonium ion, and even more preferably a triphenylsulfonium ion. As a result, a photoacid generator having good sensitivity and solubility can be obtained.
 トリアリールスルホニウムイオンとしては、例えば、下記の構造式で表されるイオンのうちの少なくとも1種が挙げられる。 Examples of the triarylsulfonium ion include at least one of ions represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一方、ガレートアニオンとしては、特に、(CGa、((CFGa、(CFGa、(CGaF 、CGaF 、(CGa等が挙げられる。このようなアニオンが用いられることにより、熱解離性が特に良好で、適当なpHの変化を生じさせ得るバンプ保護膜用感光性樹脂組成物を実現することができる。 On the other hand, gallate anions include (C 6 F 5 ) 4 Ga , ((CF 3 ) 2 C 6 H 3 ) 4 Ga , (CF 3 C 6 H 4 ) 4 Ga , (C 6 F 5 ) 2 GaF 2 , C 6 F 5 GaF 3 , (C 6 H 3 F 2 ) 4 Ga − and the like. By using such an anion, it is possible to realize a photosensitive resin composition for a bump protective film that has particularly good thermal dissociability and can cause an appropriate pH change.
 すなわち、ガレートアニオンでは、前述したような、窒素雰囲気において170℃で180分間加熱する第4処理によって、何らかの熱解離が生じる。このため、第4処理によって、バンプ保護膜用感光性樹脂組成物のpHが適度に上昇し、前述した(a)~(c)の3条件を満たすバンプ保護膜用感光性樹脂組成物を実現することができる。
 なお、上述した作用効果は、オニウムガレート塩を用いた場合に限らず、熱解離性を有する対アニオンを含む光酸発生剤(熱解離性を有する光酸発生剤)を用いた場合にも同様にして得られる。
That is, in the gallate anion, some thermal dissociation is caused by the fourth treatment in which heating is performed at 170 ° C. for 180 minutes in a nitrogen atmosphere as described above. For this reason, the pH of the photosensitive resin composition for bump protective film rises moderately by the fourth treatment, and the photosensitive resin composition for bump protective film that satisfies the above three conditions (a) to (c) is realized. can do.
In addition, the effect mentioned above is the same not only when using onium gallate salt, but also when using the photo-acid generator containing the counter-anion which has thermal dissociation property (photo-acid generator which has thermal dissociation property). Is obtained.
 また、光酸発生剤としては、ガレートアニオンに代えて、ボレートアニオンを対アニオンとするトリアリールスルホニウム塩、または、スルホネートアニオンを対アニオンとするトリアリールスルホニウム塩が用いられてもよい。このようなボレートアニオンまたはスルホネートアニオンを対アニオンとするトリアリールスルホニウム塩は、ほとんど熱解離性を有さないか、有していたとしてもガレートアニオンを対イオンとするトリアリールスルホニウム塩よりも熱解離性が小さい。この場合、第4処理に供されても、バンプ保護膜用感光性樹脂組成物のpHが上昇しないか、上昇幅が小さくなる。 As the photoacid generator, a triarylsulfonium salt having a borate anion as a counter anion or a triarylsulfonium salt having a sulfonate anion as a counter anion may be used instead of the gallate anion. Such triarylsulfonium salts with a borate anion or sulfonate anion as a counter anion have little or no thermal dissociation properties, even if they have a thermal dissociation than a triaryl sulfonium salt with a gallate anion as a counter ion. The nature is small. In this case, even if it uses for a 4th process, pH of the photosensitive resin composition for bump protective films does not rise, or the raise width becomes small.
 以下、熱解離性を有さない、または、熱解離性が小さい対アニオンを含む光酸発生剤を、非熱解離性の光酸発生剤という。 Hereinafter, a photoacid generator that contains a counter anion that does not have thermal dissociation property or has low thermal dissociation property is referred to as a non-thermal dissociable photoacid generator.
 なお、熱解離性を有する光酸発生剤または熱解離性が小さい光酸発生剤をそれぞれ単独で用いるか、または、熱解離性を有する光酸発生剤と、非熱解離性の光酸発生剤と、を併用することにより、バンプ保護膜用感光性樹脂組成物のpHを適宜調整することができる。その結果、前述した(a)~(c)の3条件を満たすバンプ保護膜用感光性樹脂組成物を実現することができる。 In addition, a photoacid generator having thermal dissociation property or a photoacid generator having low thermal dissociation property is used alone, or a photoacid generator having thermal dissociation property and a non-thermal dissociative photoacid generator are used. In combination, the pH of the photosensitive resin composition for bump protective film can be adjusted as appropriate. As a result, a photosensitive resin composition for a bump protective film that satisfies the above three conditions (a) to (c) can be realized.
 また、本実施形態では、光酸発生剤の熱解離に伴ってpHが変化する例について説明したが、バンプ保護膜用感光性樹脂組成物におけるpHの変化は、かかる例に限定されず、他の因子に伴う変化であってもよい。他の因子としては、例えば、熱硬化性樹脂、熱可塑性樹脂、硬化剤等であってもよく、これらが熱解離性を有している場合、本実施形態と同様のpH変化を誘起させることができる。 Further, in the present embodiment, an example in which the pH changes with the thermal dissociation of the photoacid generator has been described, but the change in pH in the photosensitive resin composition for bump protection film is not limited to this example, and other It may be a change due to the factor. As other factors, for example, a thermosetting resin, a thermoplastic resin, a curing agent, and the like may be used. When these have thermal dissociation properties, the same pH change as in the present embodiment is induced. Can do.
 感光剤の添加量は、特に限定されないが、バンプ保護膜用感光性樹脂組成物の固形分全体の0.3~5.0質量%程度であるのが好ましく、0.5~4.5質量%程度であるのがより好ましく、1.0~4.0質量%程度であるのがさらに好ましい。感光剤の添加量を前記範囲内に設定することにより、感光性樹脂層2510、2520のパターニング性を高めるとともに、バンプ保護膜用感光性樹脂組成物の長期保管性を向上させることができる。 The addition amount of the photosensitive agent is not particularly limited, but is preferably about 0.3 to 5.0% by mass of the total solid content of the photosensitive resin composition for bump protective film, and preferably 0.5 to 4.5% by mass. % Is more preferable, and about 1.0 to 4.0% by mass is even more preferable. By setting the addition amount of the photosensitive agent within the above range, the patternability of the photosensitive resin layers 2510 and 2520 can be improved, and the long-term storage property of the photosensitive resin composition for bump protective film can be improved.
 なお、感光剤は、バンプ保護膜用感光性樹脂組成物にネガ型の感光性を付与する感光剤であってもよいし、ポジ型の感光性を付与する感光剤であってもよい。 The photosensitive agent may be a photosensitive agent that imparts negative photosensitivity to the photosensitive resin composition for bump protection film, or may be a photosensitive agent that imparts positive photosensitivity.
 (カップリング剤)
 バンプ保護膜用感光性樹脂組成物は、必要に応じて、カップリング剤を含んでいてもよい。
(Coupling agent)
The photosensitive resin composition for bump protective film may contain a coupling agent as necessary.
 カップリング剤を有するバンプ保護膜用感光性樹脂組成物は、無機材料に対する密着性が良好な樹脂膜の形成を可能にする。これにより、例えば配線層253や貫通配線254、半導体チップ23に対する密着性が良好な有機絶縁層251、252が得られる。 The photosensitive resin composition for a bump protective film having a coupling agent enables the formation of a resin film having good adhesion to an inorganic material. Thereby, for example, the organic insulating layers 251 and 252 having good adhesion to the wiring layer 253, the through wiring 254, and the semiconductor chip 23 are obtained.
 カップリング剤としては、官能基としてアミノ基、エポキシ基、アクリル基、メタクリル基、メルカプト基、ビニル基、ウレイド基、スルフィド基、酸無水物等を含むカップリング剤が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 Examples of coupling agents include coupling agents containing amino groups, epoxy groups, acrylic groups, methacryl groups, mercapto groups, vinyl groups, ureido groups, sulfide groups, acid anhydrides and the like as functional groups. These may be used alone or in combination.
 アミノ基含有カップリング剤としては、例えばビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノ-プロピルトリメトキシシラン等が挙げられる。 Examples of amino group-containing coupling agents include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and γ-aminopropylmethyldiethoxysilane. , Γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyl Examples include methyldimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, and N-phenyl-γ-amino-propyltrimethoxysilane.
 エポキシ基含有カップリング剤としては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシジルプロピルトリメトキシシラン等が挙げられる。 Examples of the epoxy group-containing coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycidylpropyl. Examples include trimethoxysilane.
 アクリル基含有カップリング剤またはメタクリル基含有カップリング剤としては、例えばγ-(メタクリロキシプロピル)トリメトキシシラン、γ-(メタクリロキシプロピル)メチルジメトキシシラン、γ-(メタクリロキシプロピル)メチルジエトキシシラン等が挙げられる。 Examples of the acrylic group-containing coupling agent or methacryl group-containing coupling agent include γ- (methacryloxypropyl) trimethoxysilane, γ- (methacryloxypropyl) methyldimethoxysilane, and γ- (methacryloxypropyl) methyldiethoxysilane. Etc.
 メルカプト基含有カップリング剤としては、例えば3-メルカプトプロピルトリメトキシシラン等が挙げられる。 Examples of the mercapto group-containing coupling agent include 3-mercaptopropyltrimethoxysilane.
 ビニル基含有カップリング剤としては、例えばビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。 Examples of the vinyl group-containing coupling agent include vinyl tris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane.
 ウレイド基含有カップリング剤としては、例えば3-ウレイドプロピルトリエトキシシラン等が挙げられる。 Examples of the ureido group-containing coupling agent include 3-ureidopropyltriethoxysilane.
 スルフィド基含有カップリング剤としては、例えばビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。 Examples of the sulfide group-containing coupling agent include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
 酸無水物含有カップリング剤としては、例えば3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピルコハク酸無水物等が挙げられる。 Examples of the acid anhydride-containing coupling agent include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylsilylpropyl succinic anhydride, 3-dimethylmethoxysilylpropyl succinic anhydride, and the like.
 なお、ここではシランカップリング剤を列挙したが、チタンカップリング剤やジルコニウムカップリング剤等であってもよい。 In addition, although the silane coupling agent was enumerated here, a titanium coupling agent, a zirconium coupling agent, etc. may be sufficient.
 カップリング剤の添加量は、特に限定されないが、バンプ保護膜用感光性樹脂組成物の固形分全体の0.3~5質量%程度であるのが好ましく、0.5~4.5質量%程度であるのがより好ましく、1~4質量%程度であるのがさらに好ましい。カップリング剤の添加量を前記範囲内に設定することにより、例えば配線層253や貫通配線254のような無機材料に対する密着性が特に良好な有機絶縁層251、252が得られる。これにより、有機絶縁層251、252の絶縁性が長期にわたって維持される等、信頼性の高い半導体装置1の実現に寄与する。 The addition amount of the coupling agent is not particularly limited, but is preferably about 0.3 to 5% by mass of the total solid content of the photosensitive resin composition for bump protective film, and preferably 0.5 to 4.5% by mass. More preferred is about 1 to 4% by mass. By setting the addition amount of the coupling agent within the above range, for example, organic insulating layers 251 and 252 having particularly good adhesion to an inorganic material such as the wiring layer 253 and the through wiring 254 can be obtained. This contributes to the realization of the highly reliable semiconductor device 1 such that the insulating properties of the organic insulating layers 251 and 252 are maintained over a long period of time.
 なお、カップリング剤の添加量が前記下限値を下回ると、カップリング剤の組成等によっては、無機材料に対する密着性が低下するおそれがある。一方、カップリング剤の添加量が前記上限値を上回ると、カップリング剤の組成等によっては、バンプ保護膜用感光性樹脂組成物の感光性や機械的特性が低下するおそれがある。 In addition, when the addition amount of the coupling agent is less than the lower limit, the adhesion to the inorganic material may be lowered depending on the composition of the coupling agent. On the other hand, when the addition amount of the coupling agent exceeds the upper limit, the photosensitivity and mechanical properties of the bump protective film photosensitive resin composition may be lowered depending on the composition of the coupling agent.
 (その他の添加剤)
 バンプ保護膜用感光性樹脂組成物には、必要に応じて、その他の添加剤が添加されていてもよい。その他の添加剤としては、例えば、酸化防止剤、シリカ等の充填材、界面活性剤、増感剤、フィルム化剤等が挙げられる。
(Other additives)
The other additive may be added to the photosensitive resin composition for bump protective films as needed. Examples of other additives include an antioxidant, a filler such as silica, a surfactant, a sensitizer, and a filming agent.
 界面活性剤としては、例えば、フッ素系界面活性剤、シリコン系界面活性剤、アルキル系界面活性剤、アクリル系界面活性剤等が挙げられる。 Examples of the surfactant include a fluorine-based surfactant, a silicon-based surfactant, an alkyl-based surfactant, and an acrylic-based surfactant.
 (溶媒)
 バンプ保護膜用感光性樹脂組成物は、溶媒を含む。この溶媒としては、バンプ保護膜用感光性樹脂組成物の各構成成分を溶解可能であり、かつ、各構成成分と反応しない溶媒であれば特に制限なく用いられる。
(solvent)
The photosensitive resin composition for bump protective films contains a solvent. The solvent is not particularly limited as long as it can dissolve each component of the photosensitive resin composition for bump protective film and does not react with each component.
 溶媒としては、例えば、アセトン、メチルエチルケトン、トルエン、プロピレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ベンジルアルコール、プロピレンカーボネート、エチレングリコールジアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロプレングリコールメチルーn-プロピルエーテル、酢酸ブチル、γ-ブチロラクトン等が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 Examples of the solvent include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, benzyl alcohol. Propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, dipropylene glycol methyl-n-propyl ether, butyl acetate, γ-butyrolactone, and the like. These may be used alone or in combination.
 溶媒の添加量は、特に限定されないが、バンプ保護膜用感光性樹脂組成物の30~80質量%であるのが好ましく、40~70質量%であるのがより好ましい。 The amount of the solvent added is not particularly limited, but is preferably 30 to 80% by mass, more preferably 40 to 70% by mass of the photosensitive resin composition for bump protective film.
<半導体装置の変形例>
 次に、実施形態に係る半導体装置の変形例について説明する。
<Modification of semiconductor device>
Next, a modification of the semiconductor device according to the embodiment will be described.
 (第1変形例)
 まず、第1変形例について説明する。
 図7は、実施形態に係る半導体装置の第1変形例を示す部分拡大断面図である。
 以下、第1変形例について説明するが、以下の説明では、図1、2に示す実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図1、2と同様の構成については、図7において同じ符号を付している。
(First modification)
First, the first modification will be described.
FIG. 7 is a partial enlarged cross-sectional view showing a first modification of the semiconductor device according to the embodiment.
Hereinafter, although a 1st modification is demonstrated, in the following description, it demonstrates centering around difference with embodiment shown in FIG.1, 2, The description is abbreviate | omitted about the same matter. In addition, about the structure similar to FIG.1, 2, the same code | symbol is attached | subjected in FIG.
 図7に示す半導体装置1Aは、下層配線層の構造が異なる以外、図1、2に示す半導体装置1と同様である。すなわち、図7に示す半導体装置1Aは、ランド231が設けられている半導体チップ23と、下層配線層24Aと、半田バンプ26と、を備えている。そして、下層配線層24Aの構造が、図1、2に示す下層配線層24の構造と相違している。 The semiconductor device 1A shown in FIG. 7 is the same as the semiconductor device 1 shown in FIGS. 1 and 2 except that the structure of the lower wiring layer is different. That is, the semiconductor device 1 </ b> A shown in FIG. 7 includes a semiconductor chip 23 provided with lands 231, a lower wiring layer 24 </ b> A, and solder bumps 26. The structure of the lower wiring layer 24A is different from the structure of the lower wiring layer 24 shown in FIGS.
 具体的には、図7に示す下層配線層24Aは、半導体チップ23の下面に設けられた有機絶縁層240と、有機絶縁層240の下方に設けられた有機絶縁層241と、を備えている。これらの有機絶縁層240、241の少なくとも一方は、前述したバンプ保護膜用感光性樹脂組成物を用いて形成されている。そして、半導体チップ23の下面は、有機絶縁層240、241で覆われている。 Specifically, the lower wiring layer 24A shown in FIG. 7 includes an organic insulating layer 240 provided on the lower surface of the semiconductor chip 23 and an organic insulating layer 241 provided below the organic insulating layer 240. . At least one of these organic insulating layers 240 and 241 is formed using the above-described photosensitive resin composition for bump protective film. The lower surface of the semiconductor chip 23 is covered with organic insulating layers 240 and 241.
 また、図7に示す下層配線層24Aは、ランド231および半田バンプ26の双方と電気的に接続されているバンプ密着層245を備えている。 Further, the lower wiring layer 24A shown in FIG. 7 includes a bump adhesion layer 245 that is electrically connected to both the land 231 and the solder bump 26.
 このような第1変形例の製造に際して、前述したバンプ保護膜用感光性樹脂組成物を用いることにより、パターニング精度が高く、ランド231やバンプ密着層245に含まれる金属の劣化を抑制することができる。このため、信頼性の高い半導体装置1Aが得られる。 In manufacturing the first modified example, by using the above-described photosensitive resin composition for bump protective film, patterning accuracy is high, and deterioration of metal contained in the land 231 and the bump adhesion layer 245 can be suppressed. it can. For this reason, a highly reliable semiconductor device 1A is obtained.
 (第2変形例)
 次に、第2変形例について説明する。
 図8は、実施形態に係る半導体装置の第2変形例を示す部分拡大断面図である。
 以下、第2変形例について説明するが、以下の説明では、図1、2に示す実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図1、2と同様の構成については、図8において同じ符号を付している。
(Second modification)
Next, a second modification will be described.
FIG. 8 is a partial enlarged cross-sectional view illustrating a second modification of the semiconductor device according to the embodiment.
Hereinafter, although a 2nd modification is demonstrated, in the following description, it demonstrates centering around difference with embodiment shown in FIG.1, 2, The description is abbreviate | omitted about the same matter. In addition, about the structure similar to FIG.1, 2, the same code | symbol is attached | subjected in FIG.
 図8に示す半導体装置1Bは、下層配線層の構造が異なる以外、図1、2に示す半導体装置1と同様である。すなわち、図8に示す半導体装置1Bは、ランド231が設けられている半導体チップ23と、下層配線層24Bと、半田バンプ26と、を備えている。そして、下層配線層24Bの構造が、図1、2に示す下層配線層24の構造と相違している。 The semiconductor device 1B shown in FIG. 8 is the same as the semiconductor device 1 shown in FIGS. 1 and 2 except that the structure of the lower wiring layer is different. That is, the semiconductor device 1B shown in FIG. 8 includes a semiconductor chip 23 provided with lands 231, a lower wiring layer 24 </ b> B, and solder bumps 26. The structure of the lower wiring layer 24B is different from the structure of the lower wiring layer 24 shown in FIGS.
 具体的には、図8に示す下層配線層24Bは、半導体チップ23の下面に設けられた有機絶縁層240と、有機絶縁層240の下方に設けられた有機絶縁層241と、有機絶縁層241の下方に設けられた有機絶縁層242と、を備えている。これらの有機絶縁層240、241、242の少なくとも1つは、前述したバンプ保護膜用感光性樹脂組成物を用いて形成されている。 Specifically, the lower wiring layer 24B shown in FIG. 8 includes an organic insulating layer 240 provided on the lower surface of the semiconductor chip 23, an organic insulating layer 241 provided below the organic insulating layer 240, and an organic insulating layer 241. And an organic insulating layer 242 provided below. At least one of these organic insulating layers 240, 241, and 242 is formed using the above-described photosensitive resin composition for bump protective film.
 また、図8に示す下層配線層24Bは、ランド231と電気的に接続されている配線層243と、配線層243および半田バンプ26の双方と電気的に接続されているバンプ密着層245と、を備えている。そして、半導体チップ23と配線層243との間には、有機絶縁層240、241が介挿され、配線層243の下面は、有機絶縁層242で覆われている。 Also, the lower wiring layer 24B shown in FIG. 8 includes a wiring layer 243 that is electrically connected to the land 231, a bump adhesion layer 245 that is electrically connected to both the wiring layer 243 and the solder bump 26, It has. Organic insulating layers 240 and 241 are interposed between the semiconductor chip 23 and the wiring layer 243, and the lower surface of the wiring layer 243 is covered with the organic insulating layer 242.
 このような第2変形例の製造に際して、前述したバンプ保護膜用感光性樹脂組成物を用いることにより、パターニング精度が高く、ランド231や配線層243、バンプ密着層245に含まれる金属の劣化を抑制することができる。このため、信頼性の高い半導体装置1Bが得られる。 In manufacturing the second modified example, by using the above-described photosensitive resin composition for bump protective film, patterning accuracy is high, and deterioration of the metal contained in the land 231, the wiring layer 243, and the bump adhesion layer 245 is prevented. Can be suppressed. For this reason, a highly reliable semiconductor device 1B is obtained.
<電子機器>
 本実施形態に係る電子機器は、前述した本実施形態に係る半導体装置を備えている。
<Electronic equipment>
The electronic apparatus according to the present embodiment includes the semiconductor device according to the present embodiment described above.
 かかる半導体装置は、パターニング性が良好でかつ金属の劣化を抑制し得る樹脂膜を備えているため、信頼性が高い。このため、本実施形態に係る電子機器にも高い信頼性が付与される。 Since such a semiconductor device has a resin film that has good patternability and can suppress metal deterioration, it has high reliability. For this reason, high reliability is also provided to the electronic apparatus according to the present embodiment.
 本実施形態に係る電子機器は、このような半導体装置を備えていれば、特に限定されない。例えば、携帯電話、スマートフォン、タブレット端末、ウェアラブル端末、パソコンのような情報機器、サーバー、ルーターのような通信機器、ロボット、工作機械のような産業機器、車両制御用コンピューター、カーナビゲーションシステムのような車載機器等が挙げられる。 The electronic apparatus according to the present embodiment is not particularly limited as long as it includes such a semiconductor device. For example, mobile phones, smartphones, tablet devices, wearable devices, information devices such as personal computers, communication devices such as servers and routers, industrial devices such as robots and machine tools, vehicle control computers, car navigation systems, etc. An on-vehicle device etc. are mentioned.
 以上、本発明を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されない。 As mentioned above, although this invention was demonstrated based on embodiment of illustration, this invention is not limited to these.
 例えば、本発明の半導体装置の製造方法は、前記実施形態に任意の目的の工程が付加されてもよい。 For example, in the method for manufacturing a semiconductor device of the present invention, an arbitrary process may be added to the embodiment.
 また、本発明のバンプ保護膜用感光性樹脂組成物、半導体装置および電子機器は、前記実施形態に任意の要素が付加されてもよい。 In addition, the photosensitive resin composition for bump protective film, the semiconductor device, and the electronic device of the present invention may be added with any element in the embodiment.
 また、バンプ保護膜用感光性樹脂組成物は、半導体装置の他、例えばMEMS(Micro Electro Mechanical Systems)や各種センサーのバンプ保護膜、液晶表示装置、有機EL装置のような表示装置のバンプ保護膜等にも適用可能である。 Moreover, the photosensitive resin composition for bump protective films is a bump protective film for display devices such as MEMS (Micro Electro Mechanical Systems), bump sensors for various sensors, liquid crystal display devices, and organic EL devices. The present invention can also be applied.
 また、半導体装置のパッケージの形態は、図示した形態に限定されず、いかなる形態であってもよい。 Further, the form of the package of the semiconductor device is not limited to the form shown in the figure, and may be any form.
 次に、本発明の具体的実施例について説明する。
 1.pH評価用試験片の作製
 (実施例1)
 まず、表1、2に示す原料を混合し、溶液を調製した。
Next, specific examples of the present invention will be described.
1. Preparation of test piece for pH evaluation (Example 1)
First, the raw materials shown in Tables 1 and 2 were mixed to prepare a solution.
 次に、調製した溶液を、孔径0.2μmのポリプロピレンフィルターでろ過し、ワニス状のバンプ保護膜用感光性樹脂組成物を得た。このバンプ保護膜用感光性樹脂組成物はネガ型である。 Next, the prepared solution was filtered through a polypropylene filter having a pore size of 0.2 μm to obtain a varnish-like photosensitive resin composition for a bump protective film. This photosensitive resin composition for bump protective film is a negative type.
 次に、得られたバンプ保護膜用感光性樹脂組成物を、6インチのシリコンウエハー(シリコン基板)上にスピンコーターで塗布した。これにより、液状被膜を得た。 Next, the obtained photosensitive resin composition for bump protective film was applied onto a 6-inch silicon wafer (silicon substrate) with a spin coater. Thereby, a liquid film was obtained.
 次に、得られた液状被膜に対し、大気中でホットプレートにて120℃で3分間の加熱を行い、乾燥させた。これにより、厚さ15μmの感光性樹脂膜を得た。 Next, the obtained liquid film was dried by heating at 120 ° C. for 3 minutes in the air on a hot plate. Thereby, a photosensitive resin film having a thickness of 15 μm was obtained.
 次に、得られた感光性樹脂膜に対し、自動露光機を用いて波長365nmのi線を全面露光する第1処理を施した。露光量は600mJ/cmとした。 Next, the obtained photosensitive resin film was subjected to a first process of exposing the entire surface of i-line having a wavelength of 365 nm using an automatic exposure machine. The exposure amount was 600 mJ / cm 2 .
 次に、第1処理後の感光性樹脂膜を、ホットプレートを用いて大気雰囲気において80℃で5分間加熱する第2処理を施した。 Next, the photosensitive resin film after the first treatment was subjected to a second treatment by heating at 80 ° C. for 5 minutes in an air atmosphere using a hot plate.
 次に、第2処理後の感光性樹脂膜に対し、25℃のプロピレングリコールモノメチルエーテルアセテートを現像液とするスプレー現像を30秒間行う第3処理を施した。
 これにより、複数の現像後感光膜が形成されたpH評価用試験片を得た。
Next, the photosensitive resin film after the second treatment was subjected to a third treatment in which spray development using 25 ° C. propylene glycol monomethyl ether acetate as a developing solution was performed for 30 seconds.
Thereby, a test piece for pH evaluation in which a plurality of post-development photosensitive films were formed was obtained.
 次に、一部のpH評価用試験片に対し、さらに、窒素雰囲気において170℃で180分間加熱する第4処理を施した。
 これにより、硬化後感光膜が形成されたpH評価用試験片を得た。
Next, the 4th process which heats at 170 degreeC for 180 minute (s) in nitrogen atmosphere was given with respect to some test pieces for pH evaluation.
This obtained the test piece for pH evaluation in which the photosensitive film was formed after hardening.
 (実施例2~7)
 pH評価用試験片の作製条件を表1、2に示すように変更した以外は、実施例1と同様にしてpH評価用試験片を得た。
(Examples 2 to 7)
A test piece for pH evaluation was obtained in the same manner as in Example 1 except that the production conditions of the test piece for pH evaluation were changed as shown in Tables 1 and 2.
 (比較例1、2)
 pH評価用試験片の作製条件を表1、2に示すように変更した以外は、実施例1と同様にしてpH評価用試験片を得た。
(Comparative Examples 1 and 2)
A test piece for pH evaluation was obtained in the same manner as in Example 1 except that the production conditions of the test piece for pH evaluation were changed as shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、CPI-310FGは、トリアリールスルホニウム塩である。 CPI-310FG is a triarylsulfonium salt.
 2.pH評価用試験片の評価
 各実施例および各比較例で得られた現像後感光膜を、前述した第1熱水抽出処理に供した。これにより、第1抽出液を得た。そして、前述したpH測定方法により、pH1を求めた。
2. Evaluation of Test Piece for pH Evaluation The post-development photosensitive film obtained in each example and each comparative example was subjected to the first hot water extraction treatment described above. This obtained the 1st extract. And pH1 was calculated | required with the pH measuring method mentioned above.
 また、各実施例および各比較例で得られた硬化後感光膜を、前述した第2熱水抽出処理に供した。これにより、第2抽出液を得た。そして、前述したpH測定方法により、pH2を求めた。
 このようにして求めたpH1およびpH2を表2に示す。
 また、pH1とpH2との差を算出し、算出結果を表2に示す。
Moreover, the post-curing photosensitive film obtained in each example and each comparative example was subjected to the second hot water extraction treatment described above. This obtained the 2nd extract. And pH2 was calculated | required with the pH measuring method mentioned above.
The pH 1 and pH 2 thus determined are shown in Table 2.
Further, the difference between pH 1 and pH 2 was calculated, and the calculation results are shown in Table 2.
 3.パターン評価用試験片の作製
 まず、基材として耐熱塩化ビニル樹脂シートを用意し、その上に、幅30μm、ピッチ20μm、厚さ10~15μmの櫛歯型のCuめっき膜(Cu電極)を形成した。これにより、Cu配線基板を得た。
3. Preparation of test piece for pattern evaluation First, a heat-resistant vinyl chloride resin sheet is prepared as a substrate, and a comb-shaped Cu plating film (Cu electrode) having a width of 30 μm, a pitch of 20 μm, and a thickness of 10 to 15 μm is formed thereon. did. Thereby, a Cu wiring substrate was obtained.
 次に、各実施例および各比較例で得られたワニス状のバンプ保護膜用感光性樹脂組成物を、Cu配線基板上にスピンコートし、得られた液状被膜を100℃で3分間加熱して乾燥させた。これにより、厚さ30μmの感光性樹脂膜を得た。 Next, the varnish-shaped photosensitive resin composition for bump protective film obtained in each example and each comparative example was spin-coated on a Cu wiring substrate, and the obtained liquid film was heated at 100 ° C. for 3 minutes. And dried. Thereby, a photosensitive resin film having a thickness of 30 μm was obtained.
 次に、得られた感光性樹脂膜に対し、自動露光機を用いて、波長365nmのi線を600mJ/cmの露光量で全面露光した。 Next, the entire surface of the resulting photosensitive resin film was exposed to i-line having a wavelength of 365 nm with an exposure amount of 600 mJ / cm 2 using an automatic exposure machine.
 次に、Cu配線基板を、大気中でホットプレートにて70℃、5分間加熱した。
 次に、Cu配線基板を、プロピレングリコールモノメチルエーテルアセテート中に20秒間浸漬した。
Next, the Cu wiring substrate was heated at 70 ° C. for 5 minutes on a hot plate in the atmosphere.
Next, the Cu wiring board was immersed in propylene glycol monomethyl ether acetate for 20 seconds.
 次に、Cu配線基板を、窒素雰囲気において170℃、180分間加熱した。これにより、感光性樹脂膜を硬化させ、パターン評価用試験片を得た。 Next, the Cu wiring board was heated at 170 ° C. for 180 minutes in a nitrogen atmosphere. As a result, the photosensitive resin film was cured to obtain a test piece for pattern evaluation.
 4.バンプ保護膜用感光性樹脂組成物およびパターン評価用試験片の評価
 4.1 パターニング性(感度)の評価
 まず、調製されたバンプ保護膜用感光性樹脂組成物を、8インチシリコンウエハー上にスピンコーターを用いて塗布した。塗布後、大気中でホットプレートにて120℃で3分間プリベークし、膜厚約9.0μmの塗膜を得た。
4). Evaluation of photosensitive resin composition for bump protective film and test piece for pattern evaluation 4.1 Evaluation of patterning property (sensitivity) First, the prepared photosensitive resin composition for bump protective film was spun onto an 8-inch silicon wafer. It was applied using a coater. After coating, the film was pre-baked at 120 ° C. for 3 minutes in the air with a hot plate to obtain a coating film having a thickness of about 9.0 μm.
 この塗膜に、凸版印刷社製マスク(幅1.0~100μmの残しパターンおよび抜きパターンが描かれている)を通して、i線を照射した。照射には、i線ステッパー(ニコン社製・NSR-4425i)を用いた。 This film was irradiated with i-line through a mask made by Toppan Printing Co., Ltd. (a remaining pattern having a width of 1.0 to 100 μm and a removal pattern were drawn). For irradiation, an i-line stepper (manufactured by Nikon Corporation, NSR-4425i) was used.
 露光後、ウエハーをホットプレートに置き、大気中で80℃、5分間のベーク処理を行った。 After exposure, the wafer was placed on a hot plate and baked at 80 ° C. for 5 minutes in the air.
 その後、現像液としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)を用い、30秒間スプレー現像を行うことによって未露光部を溶解除去した。 Thereafter, propylene glycol monomethyl ether acetate (PGMEA) was used as a developing solution, and the unexposed portion was dissolved and removed by performing spray development for 30 seconds.
 その後、露光量を変化させて複数回のパターニング評価を行い、幅100μmのマスク開口部により、幅100μmのビアパターンがスカム無く形成される「露光量」を、バンプ保護膜用感光性樹脂組成物の感度(mJ/cm)として求めた。
 求めた感度を表2に示す。
Thereafter, patterning evaluation is performed a plurality of times by changing the exposure amount, and the “exposure amount” in which a via pattern having a width of 100 μm is formed without scum by a mask opening having a width of 100 μm is designated as a photosensitive resin composition for bump protection film. The sensitivity (mJ / cm 2 ) was obtained.
The obtained sensitivity is shown in Table 2.
 4.2 配線信頼性(絶縁性)の評価
 4.2.1 Bias-HAST試験(試験時間:100時間)
 まず、パターン評価用試験片を、B-HAST装置内に配置した。そして、装置の配線とCu電極とを半田接続した。なお、B-HAST装置は、バイアス付き高度加速ストレス試験装置である。
4.2 Evaluation of wiring reliability (insulation) 4.2.1 Bias-HAST test (test time: 100 hours)
First, a test piece for pattern evaluation was placed in a B-HAST apparatus. And the wiring of the apparatus and the Cu electrode were soldered. The B-HAST apparatus is a biased high acceleration stress test apparatus.
 次に、装置内温度を130℃、装置内相対湿度を85%に設定し、互いに離間しているCu電極間に3.5Vのバイアスを印加した。続いて、印加開始から6分間隔で、Cu電極間の絶縁抵抗値を自動的に計測した。そして、印加開始からリーク発生(絶縁破壊)までの経過時間(リーク発生時間)を計測した。なお、リーク発生とは、計測された絶縁抵抗値が1.0×10Ω以下に低下した場合を指す。 Next, the internal temperature was set to 130 ° C., the internal relative humidity was set to 85%, and a bias of 3.5 V was applied between the Cu electrodes separated from each other. Subsequently, the insulation resistance value between the Cu electrodes was automatically measured at intervals of 6 minutes from the start of application. And the elapsed time (leak generation time) from the start of application to the occurrence of leak (insulation breakdown) was measured. Note that the occurrence of leakage refers to a case where the measured insulation resistance value is reduced to 1.0 × 10 4 Ω or less.
 次に、計測したリーク発生時間を、以下の評価基準に照らして評価した。
 <リーク発生時間の評価基準>
 A:リーク発生時間が100時間以上である
 B:リーク発生時間が50時間以上100時間未満である
 C:リーク発生時間が50時間未満である
 評価結果を表2に示す。
Next, the measured leak occurrence time was evaluated against the following evaluation criteria.
<Evaluation criteria for leak occurrence time>
A: Leak generation time is 100 hours or more B: Leak generation time is 50 hours or more and less than 100 hours C: Leak generation time is less than 50 hours Table 2 shows the evaluation results.
 4.2.2 Bias-HAST試験(追加試験:50時間×2回)
 まず、前述した4.2.1の評価を終えたパターン評価用試験片について、さらに50時間のBias-HAST試験を追加した。
 その後、パターン評価用試験片についてリークが発生したか否かを評価した。なお、この評価は、以下の評価基準に照らして評価した。
 <リーク発生の評価基準>
 A:リークが発生していない
 B:リークが発生した
4.2.2 Bias-HAST test (additional test: 50 hours x 2)
First, a 50-hour Bias-HAST test was added to the pattern evaluation test piece that had undergone the evaluation of 4.2.1 described above.
Thereafter, it was evaluated whether or not a leak occurred in the pattern evaluation test piece. This evaluation was performed in light of the following evaluation criteria.
<Evaluation criteria for leak occurrence>
A: No leak occurred B: Leak occurred
 続いて、さらに50時間(合計で100時間)のBias-HAST試験を追加した。
 その後、パターン評価用試験片についてリークが発生したか否かを評価した。なお、この評価は、上記評価基準に照らして評価した。
 以上の評価結果を表2に示す。
Subsequently, an additional 50 hours (100 hours total) Bias-HAST test was added.
Thereafter, it was evaluated whether or not a leak occurred in the pattern evaluation test piece. This evaluation was performed in light of the above evaluation criteria.
The above evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2から明らかなように、各実施例で得られた試験片では、パターニング性(感度)が良好で、かつ、配線信頼性(絶縁性)が良好であることが認められた。 As is apparent from Table 2, it was confirmed that the test pieces obtained in each Example had good patterning properties (sensitivity) and good wiring reliability (insulating properties).
 一方、各比較例で得られた試験片を切断し、断面を観察したところ、Cuのマイグレーションが観察された。
 また、各実施例および各比較例で得られたバンプ保護膜用感光性樹脂組成物を用いて、図1に示すような半導体装置を作成したところ、各試験片の評価結果と同様に、各実施例のバンプ保護膜用感光性樹脂組成物を用いて形成された半導体装置は、絶縁信頼性が高かった。一方、各比較例のバンプ保護膜用感光性樹脂組成物を用いて形成された半導体装置は、絶縁信頼性が低かった。
On the other hand, when the test piece obtained by each comparative example was cut | disconnected and the cross section was observed, Cu migration was observed.
Moreover, when the semiconductor device as shown in FIG. 1 was created using the photosensitive resin composition for bump protective film obtained in each example and each comparative example, The semiconductor device formed using the photosensitive resin composition for bump protective film of the example had high insulation reliability. On the other hand, the semiconductor device formed using the photosensitive resin composition for bump protective film of each comparative example had low insulation reliability.
 本願発明のバンプ保護膜用感光性樹脂組成物は、感光性を有する樹脂組成物であって、熱硬化性樹脂と、感光剤と、溶媒と、を含む。また、係るバンプ保護膜用感光性樹脂組成物を用いて、所定の条件の処理を施して現像した現像後感光膜、および係る現像後感光膜を所定の条件で硬化させた硬化後感光膜に対して、それぞれ、所定の条件で熱水抽出処理を施して得られた抽出液のpH(現像後感光膜の抽出液のpH:pH1、硬化後感光膜の抽出液のpH:pH2)が以下の(a)~(c)の3条件を満足する。
 (a)pH1が3.0~5.0である。
 (b)pH2がpH1より高い。
 (c)pH1とpH2との差が0.1~1.0である。
 上記条件を満足するバンプ保護膜用感光性樹脂組成物では、熱硬化性樹脂の反応が促進され、感光膜のパターニング性が良好となる。さらに、感光膜に含まれる配線層等の金属の劣化が抑制され、感光膜の絶縁性の低下を抑制することができる。そのため、係るバンプ保護膜用感光性樹脂組成物を用いることによって、パターニング性が良好でかつ金属の劣化を抑制し得る感光膜(有機絶縁層)を形成可能となる。したがって、本発明は、産業上の利用可能性を有する。
The photosensitive resin composition for a bump protective film of the present invention is a resin composition having photosensitivity, and includes a thermosetting resin, a photosensitive agent, and a solvent. Further, using the photosensitive resin composition for a bump protective film, a developed photosensitive film developed by applying a treatment under predetermined conditions, and a post-cured photosensitive film obtained by curing the developed photosensitive film under predetermined conditions In contrast, the pH of the extract obtained by performing the hot water extraction treatment under predetermined conditions (the pH of the extract of the photosensitive film after development: pH 1, the pH of the extract of the photosensitive film after curing: pH 2) is as follows: The following three conditions (a) to (c) are satisfied.
(A) pH 1 is 3.0 to 5.0.
(B) pH2 is higher than pH1.
(C) The difference between pH 1 and pH 2 is 0.1 to 1.0.
In the photosensitive resin composition for a bump protective film that satisfies the above conditions, the reaction of the thermosetting resin is promoted, and the patternability of the photosensitive film is improved. Further, the deterioration of the metal such as the wiring layer contained in the photosensitive film can be suppressed, and the deterioration of the insulating property of the photosensitive film can be suppressed. Therefore, by using such a photosensitive resin composition for a bump protective film, it becomes possible to form a photosensitive film (organic insulating layer) that has good patternability and can suppress metal deterioration. Therefore, the present invention has industrial applicability.

Claims (8)

  1.  熱硬化性樹脂と、
     感光剤と、
     溶媒と、
    を含むバンプ保護膜用感光性樹脂組成物であって、
     前記バンプ保護膜用感光性樹脂組成物がシリコン基板上に塗布された後、120℃、3分間の乾燥により得られた厚さ15μmの乾燥膜を、感光性樹脂膜とし、
     波長365nmのi線により600mJ/cmの条件で露光する第1処理、大気雰囲気における80℃、5分間の露光後加熱を行う第2処理、および、プロピレングリコールモノメチルエーテルアセテートによる30秒間のスプレー現像を行う第3処理、が順次施された後の前記感光性樹脂膜を、現像後感光膜とし、
     窒素雰囲気における170℃、180分間の現像後加熱を行う第4処理が施された後の前記現像後感光膜を、硬化後感光膜としたとき、
     前記現像後感光膜に対して、前記現像後感光膜の20質量倍の超純水を用いた125℃、20時間の第1熱水抽出処理を施し、抽出された第1抽出液のpHをpH1とすると、前記pH1が3.0~5.0であり、
     前記硬化後感光膜に対して、前記硬化後感光膜の20質量倍の超純水を用いた125℃、20時間の第2熱水抽出処理を施し、抽出された第2抽出液のpHをpH2とすると、前記pH2が前記pH1より高く、
     前記pH1と前記pH2との差が0.1~1.0であることを特徴とするバンプ保護膜用感光性樹脂組成物。
    A thermosetting resin;
    A photosensitizer,
    A solvent,
    A photosensitive resin composition for a bump protective film comprising:
    After the photosensitive resin composition for bump protective film is applied on a silicon substrate, a dried film having a thickness of 15 μm obtained by drying at 120 ° C. for 3 minutes is used as a photosensitive resin film,
    The first treatment that exposes under the condition of 600 mJ / cm 2 with i-line at a wavelength of 365 nm, the second treatment that performs post-exposure heating at 80 ° C. for 5 minutes in the air atmosphere, and the spray development for 30 seconds with propylene glycol monomethyl ether acetate The photosensitive resin film after the third treatment is sequentially performed is a post-development photosensitive film,
    When the post-development photosensitive film after being subjected to the fourth treatment for post-development heating at 170 ° C. for 180 minutes in a nitrogen atmosphere is a post-curing photosensitive film,
    The post-development photosensitive film is subjected to a first hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-development photosensitive film, and the pH of the extracted first extract is adjusted. Assuming pH 1, the pH 1 is 3.0 to 5.0,
    The post-curing photosensitive film is subjected to a second hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-curing photosensitive film, and the pH of the extracted second extract is adjusted. When the pH is 2, the pH 2 is higher than the pH 1,
    A photosensitive resin composition for a bump protective film, wherein a difference between the pH 1 and the pH 2 is 0.1 to 1.0.
  2.  前記pH2が3.6以上である請求項1に記載のバンプ保護膜用感光性樹脂組成物。 The photosensitive resin composition for bump protective film according to claim 1, wherein the pH 2 is 3.6 or more.
  3.  前記感光剤は、熱解離性を有する請求項1または2に記載のバンプ保護膜用感光性樹脂組成物。 The photosensitive resin composition for bump protective film according to claim 1, wherein the photosensitive agent has thermal dissociation properties.
  4.  前記熱硬化性樹脂は、多官能エポキシ樹脂を含む請求項1ないし3のいずれか1項に記載のバンプ保護膜用感光性樹脂組成物。 The photosensitive resin composition for a bump protective film according to any one of claims 1 to 3, wherein the thermosetting resin contains a polyfunctional epoxy resin.
  5.  さらに、熱可塑性樹脂を含む請求項1ないし4のいずれか1項に記載のバンプ保護膜用感光性樹脂組成物。 Furthermore, the photosensitive resin composition for bump protective films of any one of Claim 1 thru | or 4 containing a thermoplastic resin.
  6.  半導体チップと、
     前記半導体チップ上に設けられ、請求項1ないし5のいずれか1項に記載のバンプ保護膜用感光性樹脂組成物の硬化物を含む樹脂膜と、
    を備えることを特徴とする半導体装置。
    A semiconductor chip;
    A resin film provided on the semiconductor chip and containing a cured product of the photosensitive resin composition for bump protective film according to any one of claims 1 to 5,
    A semiconductor device comprising:
  7.  半導体チップ上に、熱硬化性樹脂と、感光剤と、溶媒と、を含むバンプ保護膜用感光性樹脂組成物を配置し、感光性樹脂膜を得る樹脂膜配置工程と、
     前記樹脂膜配置工程の後、前記感光性樹脂膜に露光処理を施す露光工程と、
     前記露光工程の後、前記感光性樹脂膜に現像処理を施す現像工程と、
     前記現像工程の後、前記感光性樹脂膜に硬化処理を施す硬化工程と、
    を有し、
     前記バンプ保護膜用感光性樹脂組成物は、
     前記バンプ保護膜用感光性樹脂組成物がシリコン基板上に塗布された後、120℃、3分間の乾燥により得られた厚さ15μmの乾燥膜を、前記感光性樹脂膜とし、
     波長365nmのi線により600mJ/cmの条件で露光する第1処理、大気雰囲気における80℃、5分間の露光後加熱を行う第2処理、および、プロピレングリコールモノメチルエーテルアセテートによる30秒間のスプレー現像を行う第3処理、が順次施された後の前記感光性樹脂膜を、現像後感光膜とし、
     窒素雰囲気における170℃、180分間の現像後加熱を行う第4処理が施された後の前記現像後感光膜を、硬化後感光膜としたとき、
     前記現像後感光膜に対して、前記現像後感光膜の20質量倍の超純水を用いた125℃、20時間の第1熱水抽出処理を施し、抽出された第1抽出液のpHをpH1とすると、前記pH1が3.0~5.0であり、
     前記硬化後感光膜に対して、前記硬化後感光膜の20質量倍の超純水を用いた125℃、20時間の第2熱水抽出処理を施し、抽出された第2抽出液のpHをpH2とすると、前記pH2が前記pH1より高く、
     前記pH1と前記pH2との差が0.1~1.0であることを特徴とする半導体装置の製造方法。
    A resin film arranging step of arranging a photosensitive resin composition for a bump protective film containing a thermosetting resin, a photosensitive agent, and a solvent on a semiconductor chip to obtain a photosensitive resin film;
    After the resin film arranging step, an exposure step of performing an exposure process on the photosensitive resin film,
    After the exposure step, a development step for developing the photosensitive resin film;
    After the development step, a curing step for performing a curing treatment on the photosensitive resin film,
    Have
    The bump protective film photosensitive resin composition,
    After the photosensitive resin composition for bump protective film is applied on a silicon substrate, a dry film having a thickness of 15 μm obtained by drying at 120 ° C. for 3 minutes is used as the photosensitive resin film.
    The first treatment that exposes under the condition of 600 mJ / cm 2 with i-line at a wavelength of 365 nm, the second treatment that performs post-exposure heating at 80 ° C. for 5 minutes in the air atmosphere, and the spray development for 30 seconds with propylene glycol monomethyl ether acetate The photosensitive resin film after the third treatment is sequentially performed is a post-development photosensitive film,
    When the post-development photosensitive film after being subjected to the fourth treatment for post-development heating at 170 ° C. for 180 minutes in a nitrogen atmosphere is a post-curing photosensitive film,
    The post-development photosensitive film is subjected to a first hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-development photosensitive film, and the pH of the extracted first extract is adjusted. Assuming pH 1, the pH 1 is 3.0 to 5.0,
    The post-curing photosensitive film is subjected to a second hot water extraction treatment at 125 ° C. for 20 hours using ultrapure water 20 times as much as the post-curing photosensitive film, and the pH of the extracted second extract is adjusted. When the pH is 2, the pH 2 is higher than the pH 1,
    A method of manufacturing a semiconductor device, wherein a difference between the pH 1 and the pH 2 is 0.1 to 1.0.
  8.  請求項6に記載の半導体装置を備えることを特徴とする電子機器。 An electronic apparatus comprising the semiconductor device according to claim 6.
PCT/JP2019/016849 2018-04-23 2019-04-19 Photosensitive resin composition for bump protecting films, semiconductor device, method for manufacturing semiconductor device, and electronic device WO2019208443A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019560791A JP6729818B2 (en) 2018-04-23 2019-04-19 Photosensitive resin composition for bump protective film, semiconductor device, method for manufacturing semiconductor device, and electronic device
CN201980027929.4A CN112041745B (en) 2018-04-23 2019-04-19 Photosensitive resin composition for bump protection film, semiconductor device, method for manufacturing semiconductor device, and electronic apparatus
KR1020207030043A KR102379903B1 (en) 2018-04-23 2019-04-19 Photosensitive resin composition for bump protective film, semiconductor device, semiconductor device manufacturing method, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-082087 2018-04-23
JP2018082087 2018-04-23
JP2018-118458 2018-06-22
JP2018118458 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019208443A1 true WO2019208443A1 (en) 2019-10-31

Family

ID=68295094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016849 WO2019208443A1 (en) 2018-04-23 2019-04-19 Photosensitive resin composition for bump protecting films, semiconductor device, method for manufacturing semiconductor device, and electronic device

Country Status (5)

Country Link
JP (2) JP6729818B2 (en)
KR (1) KR102379903B1 (en)
CN (1) CN112041745B (en)
TW (1) TWI739092B (en)
WO (1) WO2019208443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076895A (en) * 2018-11-08 2020-05-21 住友ベークライト株式会社 Photosensitive resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008309A2 (en) * 2000-07-17 2002-01-31 Ucb S.A. Use of cross-linker and compositions made therefrom
WO2017038379A1 (en) * 2015-09-03 2017-03-09 サンアプロ株式会社 Curable composition and cured article using same
WO2017212963A1 (en) * 2016-06-09 2017-12-14 サンアプロ株式会社 Sulfonium salt, photoacid generator, curable composition, and resist composition
WO2018003470A1 (en) * 2016-06-29 2018-01-04 サンアプロ株式会社 Sulfonium salt, photoacid generator, photocurable composition, and cured product thereof
JP2019105832A (en) * 2017-12-11 2019-06-27 東京応化工業株式会社 Curable composition, film, optical film, light-emitting display element panel, and light-emitting display
JP2019111796A (en) * 2017-12-20 2019-07-11 ケイディケイ株式会社 Cut-off opening bookbinding type postcard and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166233A (en) * 1999-08-17 2000-12-26 Spectra Group Limited, Inc. Onium gallates cationic initiators
JP2003209104A (en) 2002-01-15 2003-07-25 Hitachi Chemical Dupont Microsystems Ltd Semiconductor device and its material
JP4092572B2 (en) * 2003-08-07 2008-05-28 信越化学工業株式会社 Resist polymer, resist material and pattern forming method
EP2149360A4 (en) * 2007-05-31 2014-01-22 Tokuyama Dental Corp Adhesive for teeth-straightening members
KR102402598B1 (en) * 2015-04-30 2022-05-26 삼성디스플레이 주식회사 Positive photosensitive resin composition for display device and display device comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008309A2 (en) * 2000-07-17 2002-01-31 Ucb S.A. Use of cross-linker and compositions made therefrom
WO2017038379A1 (en) * 2015-09-03 2017-03-09 サンアプロ株式会社 Curable composition and cured article using same
WO2017212963A1 (en) * 2016-06-09 2017-12-14 サンアプロ株式会社 Sulfonium salt, photoacid generator, curable composition, and resist composition
WO2018003470A1 (en) * 2016-06-29 2018-01-04 サンアプロ株式会社 Sulfonium salt, photoacid generator, photocurable composition, and cured product thereof
JP2019105832A (en) * 2017-12-11 2019-06-27 東京応化工業株式会社 Curable composition, film, optical film, light-emitting display element panel, and light-emitting display
JP2019111796A (en) * 2017-12-20 2019-07-11 ケイディケイ株式会社 Cut-off opening bookbinding type postcard and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076895A (en) * 2018-11-08 2020-05-21 住友ベークライト株式会社 Photosensitive resin composition

Also Published As

Publication number Publication date
TWI739092B (en) 2021-09-11
JP2020194164A (en) 2020-12-03
JPWO2019208443A1 (en) 2020-04-30
JP6729818B2 (en) 2020-07-22
CN112041745B (en) 2022-03-08
KR102379903B1 (en) 2022-04-04
TW202003679A (en) 2020-01-16
CN112041745A (en) 2020-12-04
KR20210005591A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP2021096486A (en) Negative type photosensitive resin composition, and semiconductor device using the same
JP6870724B2 (en) Negative photosensitive resin compositions, semiconductor devices and electronic devices
WO2019208443A1 (en) Photosensitive resin composition for bump protecting films, semiconductor device, method for manufacturing semiconductor device, and electronic device
JP2019109295A (en) Photosensitive resin composition and electronic device
JP2019109294A (en) Photosensitive resin composition and electronic device
JP7375406B2 (en) Photosensitive resin composition, electronic device manufacturing method, and electronic device
JP7259317B2 (en) Negative photosensitive resin composition, semiconductor device and electronic equipment using the same
JP2019113739A (en) Photosensitive resin composition and electronic device
JP7210978B2 (en) Negative photosensitive resin composition and semiconductor device
JP2021076728A (en) Photosensitive resin composition, method for producing electronic device and electronic device
JP2021067815A (en) Photosensitive resin composition for bump protective film, semiconductor device, method for manufacturing semiconductor device and electronic apparatus
JP2024003100A (en) Photosensitive resin composition
TWI838398B (en) Negative photosensitive resin composition and semiconductor device using the same
JP2019060960A (en) Photosensitive resin composition, photosensitive resin film, semiconductor device, and electronic apparatus
JP2019062016A (en) Method for manufacturing semiconductor device
JP2019113756A (en) Patterning method and manufacturing method of semiconductor device
JP2019060959A (en) Photosensitive resin composition, patterning method and method for manufacturing semiconductor device
JP2019060958A (en) Patterning method and method for manufacturing semiconductor device
JP6903961B2 (en) Manufacturing method of electronic device
JP2023138254A (en) Photosensitive resin composition, electronic device and method for producing the same
JP2019040134A (en) Photosensitive resin composition and electronic apparatus
JP2018151475A (en) Method for manufacturing electronic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019560791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792466

Country of ref document: EP

Kind code of ref document: A1