WO2019208408A1 - Pulse pattern generating device - Google Patents

Pulse pattern generating device Download PDF

Info

Publication number
WO2019208408A1
WO2019208408A1 PCT/JP2019/016738 JP2019016738W WO2019208408A1 WO 2019208408 A1 WO2019208408 A1 WO 2019208408A1 JP 2019016738 W JP2019016738 W JP 2019016738W WO 2019208408 A1 WO2019208408 A1 WO 2019208408A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
pulse pattern
motor
phase
voltage
Prior art date
Application number
PCT/JP2019/016738
Other languages
French (fr)
Japanese (ja)
Inventor
山根和貴
名和政道
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019208408A1 publication Critical patent/WO2019208408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a pulse pattern generation device.
  • An inverter for driving a motor includes a plurality of switching elements.
  • the switching element is switched to convert DC power into AC power.
  • Patent Document 1 discloses an inverter that switches a switching element with a predetermined pulse pattern.
  • Non-Patent Document 1 discloses a pulse pattern generation method for generating a pulse pattern for reducing harmonic loss using a simple circuit.
  • the simple circuit is formed by connecting a voltage source that applies a line voltage and two coils to which the line voltage is applied.
  • an effective current value is calculated from a current flowing through a simple circuit, and a pulse pattern is generated so that the effective current value is minimized. Since the harmonic loss is reduced when the current effective value is reduced, the harmonic loss can be reduced by generating the pulse pattern so that the current effective value is minimized.
  • An object of the present invention is to provide a pulse pattern generation device capable of reducing a difference between a current actually flowing through a coil of a motor and a calculated current.
  • a pulse pattern generation device that solves the above-described problem is a pulse pattern generation device that generates a pulse pattern for controlling a plurality of switching elements included in an inverter that drives a motor, and is applied to a coil of the motor when the motor is driven.
  • a current calculation unit for calculating a current assumed to flow, a current effective value calculation unit for calculating a current effective value from the current calculated by the current calculation unit, and the current calculated by the current effective value calculation unit A pattern generation unit that generates the pulse pattern based on an effective value, and the current calculation unit includes a voltage applied to the coil when the motor is driven and an induced voltage generated when the motor is driven. To calculate the current flowing through.
  • the current generated by the induced voltage is a current in the opposite direction to the current that flows due to the voltage applied to the coil when the motor is driven.
  • the current calculation unit calculates the current in consideration of not only the voltage applied to the coil during driving of the motor but also the induced voltage. Compared to the case where the current is calculated without considering the induced voltage, it can be said that the current flowing in the coil is simulated when the actual motor is driven. As a result, the difference between the current actually flowing through the motor coil and the calculated current can be reduced.
  • the pattern generation unit may generate the pulse pattern so that the effective current value is minimized. Harmonic loss is reduced by reducing the current effective value. Harmonic loss can be reduced by generating a pulse pattern so that the effective current value is minimized and performing switching control of the switching element with this pulse pattern.
  • the difference between the current actually flowing in the motor coil and the calculated current can be reduced.
  • the block diagram which shows the motor and the inverter which drives a motor The block diagram which shows the structure of d, q / u, v, and w conversion circuit.
  • the block diagram of a pulse pattern generation apparatus The figure which shows the simple circuit by a line voltage application part and an induced voltage application part. The figure which shows the relationship between a line voltage and a current waveform. The figure which shows the map of the pulse pattern produced
  • the inverter 10 includes an inverter circuit 20 and an inverter control device 30.
  • the inverter control device 30 includes a drive circuit 31 and a control unit 32.
  • the inverter 10 of this embodiment is for driving the motor 60.
  • the inverter circuit 20 includes six switching elements Q1 to Q6 and six diodes D1 to D6. IGBTs are used as the switching elements Q1 to Q6. Between positive electrode bus Lp and negative electrode bus Ln, switching element Q1 constituting the u-phase upper arm and switching element Q2 constituting the u-phase lower arm are connected in series. Between positive electrode bus Lp and negative electrode bus Ln, switching element Q3 that constitutes the v-phase upper arm and switching element Q4 that constitutes the v-phase lower arm are connected in series. Between the positive electrode bus Lp and the negative electrode bus Ln, a switching element Q5 constituting a w-phase upper arm and a switching element Q6 constituting a w-phase lower arm are connected in series. Diodes D1 to D6 are connected in antiparallel to the switching elements Q1 to Q6. A battery B is connected to the positive electrode bus Lp and the negative electrode bus Ln via a smoothing capacitor C.
  • the inverter circuit 20 having the switching elements Q1 to Q6 constituting the upper and lower arms can convert the DC voltage, which is the voltage of the battery B, into an AC voltage and supply it to the motor 60 in accordance with the switching operation of the switching elements Q1 to Q6. It can be done.
  • the motor 60 is a three-phase AC motor in which three coils U, V, and W are star-connected. As the motor 60, any type of motor such as an induction motor, an IPM motor, or an SPM motor may be used.
  • a drive circuit 31 is connected to the gate terminals of the switching elements Q1 to Q6.
  • the drive circuit 31 switches the switching elements Q1 to Q6 of the inverter circuit 20 based on the control signal.
  • the inverter 10 includes a position detector 61 that detects the electrical angle ⁇ of the motor 60, a current sensor 62 that detects the u-phase current Iu of the motor 60, a current sensor 63 that detects the v-phase current Iv of the motor 60, and a power source. And a voltage sensor 64 for detecting the voltage Vdc.
  • the control unit 32 is constituted by a microcomputer.
  • the control unit 32 includes a subtraction unit 33, a torque control unit 34, a torque / current command value conversion unit 35, subtraction units 36 and 37, a current control unit 38, and a d, q / u, v, and w conversion circuit. 39, a coordinate conversion unit 40, and a speed calculation unit 41.
  • the speed calculator 41 calculates the speed ⁇ from the electrical angle ⁇ detected by the position detector 61.
  • the subtraction unit 33 calculates a difference ⁇ between the command speed ⁇ * and the speed ⁇ calculated by the speed calculation unit 41.
  • the torque control unit 34 calculates the torque command value T * from the difference ⁇ of the speed ⁇ .
  • the torque / current command value conversion unit 35 converts the torque command value T * into a d-axis current command value Id * and a q-axis current command value Iq *.
  • the torque / current command value conversion unit 35 uses a table in which the target torque stored in advance in a storage unit (not shown) is associated with the d-axis current command value Id * and the q-axis current command value Iq *. Torque / current command value conversion.
  • the coordinate conversion unit 40 obtains the w-phase current Iw of the motor 60 from the u-phase current Iu and the v-phase current Iv by the current sensors 62 and 63, and based on the electrical angle ⁇ detected by the position detection unit 61, the u-phase current Iu, v-phase current Iv and w-phase current Iw are converted into d-axis current Id and q-axis current Iq.
  • the d-axis current Id is a current vector component for generating a field in the current flowing through the motor 60
  • the q-axis current Iq is a current vector component for generating torque in the current flowing through the motor 60. .
  • the subtraction unit 36 calculates a difference ⁇ Id between the d-axis current command value Id * and the d-axis current Id.
  • the subtraction unit 37 calculates a difference ⁇ Iq between the q-axis current command value Iq * and the q-axis current Iq.
  • the current control unit 38 calculates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * based on the difference ⁇ Id and the difference ⁇ Iq.
  • the d, q / u, v, w conversion circuit 39 receives the electrical angle ⁇ , the d-axis voltage command value Vd *, the q-axis voltage command value Vq *, and the power supply voltage Vdc and inputs each of the switching elements Q1 to Q6.
  • the control signal is output to the drive circuit 31.
  • the d, q / u, v, w conversion circuit 39 includes a d, q / u, v, w conversion unit 50, a modulation factor calculation unit 51, a pulse pattern determination unit 52, and a signal. And a generating unit 53.
  • the d, q / u, v, w converter 50 converts the d-axis voltage command value Vd * and the q-axis voltage command value Vq * to u, u based on the electrical angle ⁇ that is angle information (rotor position). Coordinates are converted to voltage command values Vu *, Vv *, Vw * for v and w phases.
  • the modulation factor calculation unit 51 calculates the modulation factors Keu, Kev, and Kew based on the voltage command values Vu *, Vv *, and Vw * and the power supply voltage Vdc.
  • the modulation factor calculation unit 51 is a value obtained by dividing the voltage command values Vu *, Vv *, Vw * by the power supply voltage Vdc, and the ratio of the voltage command values (voltage amplitude) Vu *, Vv *, Vw * to the power supply voltage Vdc. It is.
  • the pulse pattern determination unit 52 determines a pulse pattern that is a switching pattern of the switching elements Q1 to Q6 based on the electrical angle ⁇ and the modulation factors Keu, Kev, and Kew.
  • the pulse pattern is stored as a map M1 in a storage unit such as a memory.
  • the pulse pattern is set in association with the electrical angle ⁇ and the modulation factors Keu, Kev, and Kew.
  • the map M1 is information in which each of the ON instruction signal and the OFF instruction signal is associated with the electrical angle ⁇ and the modulation factors Keu, Kev, and Kew.
  • FIG. 3 shows an example of a map M1 associated with the u-phase modulation factor Keu and the electrical angle ⁇ .
  • the on instruction signal is a signal for instructing to turn on the upper arm switching elements Q1, Q3, Q5 and to turn off the lower arm switching elements Q2, Q4, Q6.
  • the off instruction signal is a signal for instructing to turn off the upper arm switching elements Q1, Q3, and Q5 and to turn on the lower arm switching elements Q2, Q4, and Q6.
  • the map M1 indicates a pulse angle that is an electrical angle ⁇ that instructs switching from an on instruction signal to an off instruction signal and switching from an off instruction signal to an on instruction signal.
  • FIG. 3 illustrates ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 as pulse angles for switching between the on instruction signal and the off instruction signal.
  • FIG. 3 shows a map M1 in which the electrical angle ⁇ is 0 ° to 90 ° in the u-phase map M1.
  • the map M1 is line-symmetrical at the position where the electrical angle ⁇ is 0 °, it becomes a map from 0 ° to -90 °, and if the map where the electrical angle ⁇ is -90 ° to 90 ° is reversed to be point-symmetrical, 90 ° to The map is 270 °.
  • the v-phase and w-phase maps M1 are obtained by shifting the electrical angle ⁇ by 120 ° and 240 ° with respect to the u-phase map M1.
  • the signal generation unit 53 generates a control signal based on the pulse pattern determined by the pulse pattern determination unit 52. Based on the pulse pattern, the signal generation unit 53 sets a dead time for switching on / off of the upper arm switching elements Q1, Q3, Q5 and the lower arm switching elements Q2, Q4, Q6, and generates a control signal. . As a result, switching elements Q1 to Q6 of inverter 10 are subjected to switching control with a predetermined pulse pattern.
  • the pulse pattern generation device 70 includes a line voltage application unit 71 that applies a line voltage to the coil of the motor 60, and an induced voltage application unit 72 that applies an induction voltage to the coil of the motor 60. .
  • the coils are two coils to which a line voltage is applied. In this embodiment, the coils are two coils, a u-phase coil U and a v-phase coil V.
  • the pulse pattern generation device 70 is a device that generates a pulse pattern by simulating the driving state of the motor 60.
  • the line voltage application unit 71 virtually applies to the coils U and W a line voltage that is a voltage applied to the coils U and W when the motor 60 is driven.
  • the induced voltage application unit 72 virtually applies the induced voltage generated when the motor 60 is driven to the coils U and W.
  • the line voltage is determined from the voltage of the battery B.
  • the induced voltage is derived by analysis or actual measurement. For example, the induced voltage can be derived by calculating the voltage generated when the motor 60 is rotated using magnetic field analysis or by measuring the terminal of the motor 60 with a measuring instrument such as an oscilloscope.
  • the current that flows when the line voltage is applied to the coils U and V and the current that flows when the induced voltage is applied to the coils U and V are opposite to each other. As shown in FIG.
  • the line voltage application unit 71 and the induced voltage application unit 72 are a series connection body 75 of coils U and V, a voltage source that generates a line voltage, and a voltage source that applies an induced voltage. Can be expressed as a simple circuit C1.
  • the pulse pattern generation device 70 includes a current calculation unit 73 that calculates a current i that flows through the coils U and V (simple circuit C1) when the line voltage and the induced voltage are applied to the coils U and V, and the current i.
  • the current calculation unit 73 calculates the current i from the following equation (1).
  • L is a combined inductance of the coil U and the coil V
  • the current i takes into account the induced voltage in addition to the line voltage.
  • the current i is a current assumed to flow through the coils U and V of the motor 60 when the motor 60 is driven.
  • the slope of the current waveform obtained from the current i changes depending on the magnitude relationship between the line voltage and the induced voltage.
  • the current effective value calculation unit 74 calculates the current effective value Irms from the current waveform obtained from the current i calculated by the current calculation unit 73. Since the current i takes the induced voltage into consideration, a current waveform closer to the actual driving state of the motor 60 can be obtained as compared with the current waveform not taking the induced voltage into consideration.
  • FIG. 6 shows the correspondence between the waveform L1 due to the line voltage and the current waveform L2 obtained from the current i.
  • the current waveform L2 when the induced voltage is taken into consideration, when the line voltage is 0 [V], the line voltage is less than the induced voltage, and the slope of the current waveform L2 is negative.
  • the current due to the induced voltage is not taken into account, and the current value is maintained when the line voltage becomes 0 [V]. That is, the slope of the current waveform becomes zero.
  • the current waveform differs between the case where the induced voltage is considered and the case where the induced voltage is not considered.
  • the pulse pattern generation device 70 includes a pattern generation unit 76.
  • the pattern generator 76 generates a pulse pattern based on the current effective value Irms. It can be said that the pulse pattern is generated from an evaluation function using the current effective value Irms as an evaluation item.
  • the pattern generation unit 76 generates a pulse pattern so that the current effective value Irms is minimized. Thereby, the map M1 shown in FIG. 3, that is, the pulse pattern is generated.
  • a map M2 shown in FIG. 7 is a map of a pulse pattern generated using only the line voltage without considering the induced voltage. As can be understood from FIG. 7, the pulse pattern generated without considering the induced voltage is different from the pulse pattern generated considering the induced voltage with the pulse angles ⁇ 11, ⁇ 12, ⁇ 13, ⁇ 14, ⁇ 15, and ⁇ 16. I understand.
  • the switching elements Q1 to Q6 of the inverter 10 are subjected to switching control with the pulse pattern generated by the pulse pattern generation device 70.
  • This pulse pattern is a pulse pattern determined so that the current effective value Irms is minimized.
  • a switching operation is performed so that the current effective value Irms becomes small.
  • the current calculation unit 73 calculates a current i that flows when a line voltage and an induced voltage are applied to the coils U and V. When the motor 60 is driven, an induced voltage is generated.
  • the current calculation unit 73 calculates the current i in consideration of not only the voltage applied to the coils U and V when driving the motor 60 but also the induced voltage. For this reason, it can be said that the current flowing through the coils U and V when the actual motor 60 is driven is simulated as compared with the case where the current i is calculated without considering the induced voltage. Thereby, the difference between the current actually flowing through the coils U and V of the motor 60 and the calculated current i can be reduced.
  • the pattern generator 76 generates a pulse pattern so that the current effective value Irms is minimized. Since the harmonic loss is proportional to the current effective value Irms, the harmonic loss can be reduced by switching control of the switching elements Q1 to Q6 with a pulse pattern that minimizes the current effective value Irms.
  • the pulse pattern generation device according to the second embodiment is different from the first embodiment in the method for calculating the current.
  • Other configurations are the same as those of the first embodiment.
  • a pulse pattern is generated assuming a coil for two phases, whereas in the second embodiment, a pulse pattern is assumed assuming a coil for three phases. Is generated. More specifically, a simple arrangement comprising three-phase coils U, V, W, three-phase induced voltage application units 91, 92, 93, and three-phase phase voltage application units 81, 82, 83. A pulse pattern is generated assuming the circuit C2.
  • the phase voltage application units 81, 82, 83 virtually apply phase voltages, which are voltages applied to the coils U, V, W when the motor 60 is driven, to the coils U, V, W.
  • the phase voltage can be calculated from the voltage of the battery B.
  • FIG. 9 shows the correspondence between the space vector and the u-phase current as an example.
  • the space vector can also be said to be a switching pattern of the three-phase switching elements Q1 to Q6.
  • 0 and 1 of V0 to V7 indicate ON / OFF of the switching elements Q1 to Q6 of each phase, respectively.
  • 0 indicates that the upper arm switching elements Q1, Q3, and Q5 are off, and the lower arm switching elements Q2, Q4, and Q6 are on.
  • 1 indicates a state in which the upper arm switching elements Q1, Q3, and Q5 are on and the lower arm switching elements Q2, Q4, and Q6 are off.
  • V0 to V7 Three 0s and 1s of V0 to V7 correspond to the u phase, the v phase, and the w phase in order from the left.
  • L is the inductance of the coil U
  • E is the voltage of the battery B
  • Vemf is the induced voltage.
  • the current calculation unit 73 can calculate the u-phase current according to the space vector.
  • FIG. 10 shows a current waveform L21 obtained by space vector transition and a current waveform L22 obtained by analysis. It can be seen that the current waveform L21 approximates the current waveform L22 obtained by the analysis. That is, it can be said that the u-phase current (current i) obtained by considering the space vector and the induced voltage has a small difference from the current that actually flows through the coil U when the motor 60 is driven.
  • the current calculation unit 73 calculates the current i in consideration of the space vector and the induced voltage. For this reason, the electric current which flows into the coil U at the time of the drive of the actual motor 60 can be simulated more.
  • the inductance of the coils U, V, W when generating the pulse pattern may be variable.
  • the inductances of the coils U, V, and W vary depending on the value of the current flowing through each of the coils U, V, and W and the rotational position of the motor 60.
  • the pulse pattern generation device 70 may be mounted on the inverter 10.
  • the inductance of the coil U used for generating the pulse pattern is corrected by providing a detection unit that can detect the deterioration degree of the coil U and an estimation unit that can estimate the deterioration degree of the coil U.
  • the pulse pattern in consideration of the deterioration degree of the coil U can be generated.
  • switching control of the switching elements Q1 to Q6 can be performed with a pulse pattern suitable for the inverter 10.
  • the pattern generator 76 is not limited to a pulse pattern that minimizes the current effective value Irms, and may generate a pulse pattern that can output an arbitrary current waveform.
  • the modulation factor may be calculated for only one phase.
  • the control is performed using the modulation rate for one phase as the modulation rate common to the three phases.
  • the pulse pattern generation device 70 may generate a pulse pattern when driving a three-phase AC motor in which three coils U, V, and W are delta-connected.
  • the current calculation unit 73 calculates a current (phase current) that flows when a phase voltage and an induced voltage are applied to a coil for one phase. That is, the line voltage application unit 71 of the simple circuit C1 is a phase voltage application unit, and the series connection body 75 is a coil for one phase.
  • the pulse pattern generation device 70 may generate a pulse pattern when driving a three-phase AC motor in which three coils U, V, and W are delta-connected.
  • the simple circuit C3 includes three-phase coils U, V, and W that are delta-connected, three-phase induced voltage application units 91, 92, and 93, and three-phase coils.
  • a phase voltage application unit (line voltage application unit) 81, 82, 83 In this case, the slope of the u-phase current corresponding to the space vector is as shown in the table of FIG. Note that 1 of V0 to V6 shown in FIG.

Abstract

This pulse pattern generating device comprises: a line voltage imparting unit that imparts line voltage to a coil of a motor; and an induced voltage imparting unit that imparts induced voltage to a coil of the motor. The pulse pattern generating device comprises: a current calculation unit that calculates a current i which flows when the line voltage and the induced voltage are imparted to a coil; and a current effective-value calculation unit that calculates a current effective-value Irms from the current i. The pulse pattern generating device is provided with a pattern generating unit. The pattern generating unit generates a pulse pattern based on the current effective-value Irms.

Description

パルスパターン生成装置Pulse pattern generator
 本発明は、パルスパターン生成装置に関する。 The present invention relates to a pulse pattern generation device.
 モータを駆動するためのインバータは、複数のスイッチング素子を備える。このスイッチング素子が、スイッチング動作されることで、直流電力が交流電力に変換される。
 特許文献1には、予め定められたパルスパターンでスイッチング素子をスイッチング動作されるインバータが開示されている。非特許文献1には、簡易回路を用いて、高調波損失を低減させるパルスパターンを生成するパルスパターン生成方法が開示されている。簡易回路は、線間電圧を印加する電圧源と、線間電圧が加わる2つのコイルとを接続したものである。非特許文献1では、簡易回路に流れる電流から電流実効値を算出し、電流実効値が最小となるようにパルスパターンを生成している。電流実効値を小さくすると、高調波損失が低減されるため、電流実効値が最小となるようにパルスパターンを生成することで、高調波損失を低減させることができる。
An inverter for driving a motor includes a plurality of switching elements. The switching element is switched to convert DC power into AC power.
Patent Document 1 discloses an inverter that switches a switching element with a predetermined pulse pattern. Non-Patent Document 1 discloses a pulse pattern generation method for generating a pulse pattern for reducing harmonic loss using a simple circuit. The simple circuit is formed by connecting a voltage source that applies a line voltage and two coils to which the line voltage is applied. In Non-Patent Document 1, an effective current value is calculated from a current flowing through a simple circuit, and a pulse pattern is generated so that the effective current value is minimized. Since the harmonic loss is reduced when the current effective value is reduced, the harmonic loss can be reduced by generating the pulse pattern so that the current effective value is minimized.
特公平6-36676号公報Japanese Patent Publication No. 6-36676
 ところで、非特許文献1に開示のパルスパターン生成方法は、実際にモータのコイルに流れる電流を十分に模擬できているとはいえない。
 本発明の目的は、モータのコイルに実際に流れる電流と、算出される電流との差を小さくすることができるパルスパターン生成装置を提供することにある。
Incidentally, it cannot be said that the pulse pattern generation method disclosed in Non-Patent Document 1 can sufficiently simulate the current that actually flows in the motor coil.
An object of the present invention is to provide a pulse pattern generation device capable of reducing a difference between a current actually flowing through a coil of a motor and a calculated current.
 上記課題を解決するパルスパターン生成装置は、モータを駆動するインバータが備える複数のスイッチング素子を制御するためのパルスパターンを生成するパルスパターン生成装置であって、前記モータの駆動時に前記モータのコイルに流れると想定される電流を算出する電流算出部と、前記電流算出部によって算出された前記電流から電流実効値を算出する電流実効値算出部と、前記電流実効値算出部によって算出された前記電流実効値に基づき、前記パルスパターンを生成するパターン生成部と、を備え、前記電流算出部は、前記モータの駆動時に前記コイルに加えられる電圧、及び、前記モータの駆動時に生じる誘起電圧により前記コイルに流れる電流を算出する。 A pulse pattern generation device that solves the above-described problem is a pulse pattern generation device that generates a pulse pattern for controlling a plurality of switching elements included in an inverter that drives a motor, and is applied to a coil of the motor when the motor is driven. A current calculation unit for calculating a current assumed to flow, a current effective value calculation unit for calculating a current effective value from the current calculated by the current calculation unit, and the current calculated by the current effective value calculation unit A pattern generation unit that generates the pulse pattern based on an effective value, and the current calculation unit includes a voltage applied to the coil when the motor is driven and an induced voltage generated when the motor is driven. To calculate the current flowing through.
 モータの駆動時には、誘起電圧が発生する。この誘起電圧により生じる電流は、モータの駆動時にコイルに加えられる電圧により流れる電流とは逆向きの電流となる。電流算出部は、モータの駆動時にコイルに加えられる電圧だけではなく、誘起電圧も考慮して電流を算出している。誘起電圧を考慮せずに電流を算出する場合に比べて、実際のモータの駆動時にコイルに流れる電流を模擬しているといえる。これにより、モータのコイルに実際に流れる電流と、算出される電流との差を小さくすることができる。 When the motor is driven, an induced voltage is generated. The current generated by the induced voltage is a current in the opposite direction to the current that flows due to the voltage applied to the coil when the motor is driven. The current calculation unit calculates the current in consideration of not only the voltage applied to the coil during driving of the motor but also the induced voltage. Compared to the case where the current is calculated without considering the induced voltage, it can be said that the current flowing in the coil is simulated when the actual motor is driven. As a result, the difference between the current actually flowing through the motor coil and the calculated current can be reduced.
 上記パルスパターン生成装置について、前記パターン生成部は、前記電流実効値が最小となるように前記パルスパターンを生成してもよい。
 電流実効値を小さくすることで、高調波損失は低減される。電流実効値が最小となるようにパルスパターンを生成し、このパルスパターンでスイッチング素子をスイッチング制御させることで、高調波損失を低減できる。
In the pulse pattern generation device, the pattern generation unit may generate the pulse pattern so that the effective current value is minimized.
Harmonic loss is reduced by reducing the current effective value. Harmonic loss can be reduced by generating a pulse pattern so that the effective current value is minimized and performing switching control of the switching element with this pulse pattern.
 本発明によれば、モータのコイルに実際に流れる電流と、算出される電流との差を小さくすることができる。 According to the present invention, the difference between the current actually flowing in the motor coil and the calculated current can be reduced.
モータ、及び、モータを駆動するインバータを示すブロック図。The block diagram which shows the motor and the inverter which drives a motor. d,q/u,v,w変換回路の構成を示すブロック図。The block diagram which shows the structure of d, q / u, v, and w conversion circuit. パルスパターンのマップの一例を示す図。The figure which shows an example of the map of a pulse pattern. パルスパターン生成装置のブロック図。The block diagram of a pulse pattern generation apparatus. 線間電圧印加部、及び、誘起電圧印加部による簡易回路を示す図。The figure which shows the simple circuit by a line voltage application part and an induced voltage application part. 線間電圧と電流波形との関係を示す図。The figure which shows the relationship between a line voltage and a current waveform. 誘起電圧を考慮せずに生成されたパルスパターンのマップを示す図。The figure which shows the map of the pulse pattern produced | generated without considering the induced voltage. 相電圧印加部、及び、誘起電圧印加部による簡易回路を示す図。The figure which shows the simple circuit by a phase voltage application part and an induced voltage application part. 空間ベクトルとu相電流の対応関係を示す表。The table | surface which shows the correspondence of a space vector and u phase current. 解析による電流波形と、空間ベクトルから算出された電流波形との関係を示す図。The figure which shows the relationship between the current waveform by analysis, and the current waveform calculated from the space vector. 相電圧印加部、及び、誘起電圧印加部による簡易回路を示す図。The figure which shows the simple circuit by a phase voltage application part and an induced voltage application part. 変形例における空間ベクトルとu相電流の対応関係を示す表。The table | surface which shows the correspondence of the space vector and u phase current in a modification.
第1実施形態First embodiment
 以下、パルスパターン生成装置の第1実施形態について説明する。
 図1に示すように、インバータ10は、インバータ回路20と、インバータ制御装置30と、を備える。インバータ制御装置30は、ドライブ回路31と、制御部32と、を備える。本実施形態のインバータ10は、モータ60を駆動するためのものである。
Hereinafter, a first embodiment of a pulse pattern generation device will be described.
As shown in FIG. 1, the inverter 10 includes an inverter circuit 20 and an inverter control device 30. The inverter control device 30 includes a drive circuit 31 and a control unit 32. The inverter 10 of this embodiment is for driving the motor 60.
 インバータ回路20は、6つのスイッチング素子Q1~Q6と、6つのダイオードD1~D6と、を備える。スイッチング素子Q1~Q6としては、IGBTを用いている。正極母線Lpと負極母線Lnとの間に、u相上アームを構成するスイッチング素子Q1と、u相下アームを構成するスイッチング素子Q2が直列接続されている。正極母線Lpと負極母線Lnとの間に、v相上アームを構成するスイッチング素子Q3と、v相下アームを構成するスイッチング素子Q4が直列接続されている。正極母線Lpと負極母線Lnとの間に、w相上アームを構成するスイッチング素子Q5と、w相下アームを構成するスイッチング素子Q6が直列接続されている。スイッチング素子Q1~Q6にはダイオードD1~D6が逆並列接続されている。正極母線Lp、負極母線Lnには平滑コンデンサCを介してバッテリBが接続されている。 The inverter circuit 20 includes six switching elements Q1 to Q6 and six diodes D1 to D6. IGBTs are used as the switching elements Q1 to Q6. Between positive electrode bus Lp and negative electrode bus Ln, switching element Q1 constituting the u-phase upper arm and switching element Q2 constituting the u-phase lower arm are connected in series. Between positive electrode bus Lp and negative electrode bus Ln, switching element Q3 that constitutes the v-phase upper arm and switching element Q4 that constitutes the v-phase lower arm are connected in series. Between the positive electrode bus Lp and the negative electrode bus Ln, a switching element Q5 constituting a w-phase upper arm and a switching element Q6 constituting a w-phase lower arm are connected in series. Diodes D1 to D6 are connected in antiparallel to the switching elements Q1 to Q6. A battery B is connected to the positive electrode bus Lp and the negative electrode bus Ln via a smoothing capacitor C.
 スイッチング素子Q1とスイッチング素子Q2の間は、モータ60のu相端子に接続されている。スイッチング素子Q3とスイッチング素子Q4の間は、モータ60のv相端子に接続されている。スイッチング素子Q5とスイッチング素子Q6の間は、モータ60のw相端子に接続されている。上下のアームを構成するスイッチング素子Q1~Q6を有するインバータ回路20は、スイッチング素子Q1~Q6のスイッチング動作に伴いバッテリBの電圧である直流電圧を交流電圧に変換してモータ60に供給することができるようになっている。モータ60は、3つのコイルU,V,Wをスター結線した三相交流モータである。モータ60としては、誘導モータ、IPMモータ、SPMモータなど、どのような種類のモータを用いてもよい。 Between the switching element Q1 and the switching element Q2, it is connected to the u-phase terminal of the motor 60. The switching element Q3 and the switching element Q4 are connected to the v-phase terminal of the motor 60. The switching element Q5 and the switching element Q6 are connected to the w-phase terminal of the motor 60. The inverter circuit 20 having the switching elements Q1 to Q6 constituting the upper and lower arms can convert the DC voltage, which is the voltage of the battery B, into an AC voltage and supply it to the motor 60 in accordance with the switching operation of the switching elements Q1 to Q6. It can be done. The motor 60 is a three-phase AC motor in which three coils U, V, and W are star-connected. As the motor 60, any type of motor such as an induction motor, an IPM motor, or an SPM motor may be used.
 各スイッチング素子Q1~Q6のゲート端子にはドライブ回路31が接続されている。ドライブ回路31は、制御信号に基づいてインバータ回路20のスイッチング素子Q1~Q6をスイッチング動作させる。 A drive circuit 31 is connected to the gate terminals of the switching elements Q1 to Q6. The drive circuit 31 switches the switching elements Q1 to Q6 of the inverter circuit 20 based on the control signal.
 インバータ10は、モータ60の電気角θを検出する位置検出部61と、モータ60のu相電流Iuを検出する電流センサ62と、モータ60のv相電流Ivを検出する電流センサ63と、電源電圧Vdcを検出する電圧センサ64と、を備える。 The inverter 10 includes a position detector 61 that detects the electrical angle θ of the motor 60, a current sensor 62 that detects the u-phase current Iu of the motor 60, a current sensor 63 that detects the v-phase current Iv of the motor 60, and a power source. And a voltage sensor 64 for detecting the voltage Vdc.
 制御部32はマイクロコンピュータにより構成されている。制御部32は、減算部33と、トルク制御部34と、トルク/電流指令値変換部35と、減算部36,37と、電流制御部38と、d,q/u,v,w変換回路39と、座標変換部40と、速度演算部41と、を備える。 The control unit 32 is constituted by a microcomputer. The control unit 32 includes a subtraction unit 33, a torque control unit 34, a torque / current command value conversion unit 35, subtraction units 36 and 37, a current control unit 38, and a d, q / u, v, and w conversion circuit. 39, a coordinate conversion unit 40, and a speed calculation unit 41.
 速度演算部41は、位置検出部61により検出される電気角θから速度ωを演算する。減算部33は、指令速度ω*と速度演算部41により演算された速度ωとの差分Δωを算出する。トルク制御部34は、速度ωの差分Δωからトルク指令値T*を演算する。 The speed calculator 41 calculates the speed ω from the electrical angle θ detected by the position detector 61. The subtraction unit 33 calculates a difference Δω between the command speed ω * and the speed ω calculated by the speed calculation unit 41. The torque control unit 34 calculates the torque command value T * from the difference Δω of the speed ω.
 トルク/電流指令値変換部35は、トルク指令値T*を、d軸電流指令値Id*およびq軸電流指令値Iq*に変換する。例えば、トルク/電流指令値変換部35は、記憶部(図示略)に予め記憶される目標トルクとd軸電流指令値Id*およびq軸電流指令値Iq*とが対応付けられたテーブルを用いてトルク/電流指令値変換を行う。 The torque / current command value conversion unit 35 converts the torque command value T * into a d-axis current command value Id * and a q-axis current command value Iq *. For example, the torque / current command value conversion unit 35 uses a table in which the target torque stored in advance in a storage unit (not shown) is associated with the d-axis current command value Id * and the q-axis current command value Iq *. Torque / current command value conversion.
 座標変換部40は、電流センサ62,63によるu相電流Iuおよびv相電流Ivからモータ60のw相電流Iwを求め、位置検出部61により検出される電気角θに基づいて、u相電流Iu、v相電流Ivおよびw相電流Iwをd軸電流Idおよびq軸電流Iqに変換する。なお、d軸電流Idはモータ60に流れる電流において、界磁を発生させるための電流ベクトル成分であり、q軸電流Iqはモータ60に流れる電流において、トルクを発生させるための電流ベクトル成分である。 The coordinate conversion unit 40 obtains the w-phase current Iw of the motor 60 from the u-phase current Iu and the v-phase current Iv by the current sensors 62 and 63, and based on the electrical angle θ detected by the position detection unit 61, the u-phase current Iu, v-phase current Iv and w-phase current Iw are converted into d-axis current Id and q-axis current Iq. The d-axis current Id is a current vector component for generating a field in the current flowing through the motor 60, and the q-axis current Iq is a current vector component for generating torque in the current flowing through the motor 60. .
 減算部36は、d軸電流指令値Id*とd軸電流Idとの差分ΔIdを算出する。減算部37は、q軸電流指令値Iq*とq軸電流Iqとの差分ΔIqを算出する。電流制御部38は、差分ΔIdおよび差分ΔIqに基づいてd軸電圧指令値Vd*およびq軸電圧指令値Vq*を算出する。 The subtraction unit 36 calculates a difference ΔId between the d-axis current command value Id * and the d-axis current Id. The subtraction unit 37 calculates a difference ΔIq between the q-axis current command value Iq * and the q-axis current Iq. The current control unit 38 calculates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * based on the difference ΔId and the difference ΔIq.
 d,q/u,v,w変換回路39は、電気角θと、d軸電圧指令値Vd*と、q軸電圧指令値Vq*と、電源電圧Vdcを入力して各スイッチング素子Q1~Q6の制御信号をドライブ回路31に出力する。 The d, q / u, v, w conversion circuit 39 receives the electrical angle θ, the d-axis voltage command value Vd *, the q-axis voltage command value Vq *, and the power supply voltage Vdc and inputs each of the switching elements Q1 to Q6. The control signal is output to the drive circuit 31.
 図2に示すように、d,q/u,v,w変換回路39は、d,q/u,v,w変換部50と、変調率算出部51と、パルスパターン決定部52と、信号生成部53と、を備える。 As shown in FIG. 2, the d, q / u, v, w conversion circuit 39 includes a d, q / u, v, w conversion unit 50, a modulation factor calculation unit 51, a pulse pattern determination unit 52, and a signal. And a generating unit 53.
 d,q/u,v,w変換部50は、角度情報(ロータの位置)である電気角θに基づいてd軸電圧指令値Vd*、及び、q軸電圧指令値Vq*を、u,v,w相の電圧指令値Vu*,Vv*,Vw*に座標変換する。 The d, q / u, v, w converter 50 converts the d-axis voltage command value Vd * and the q-axis voltage command value Vq * to u, u based on the electrical angle θ that is angle information (rotor position). Coordinates are converted to voltage command values Vu *, Vv *, Vw * for v and w phases.
 変調率算出部51は、電圧指令値Vu*,Vv*,Vw*と、電源電圧Vdcに基づき、変調率Keu,Kev,Kewを算出する。変調率算出部51は、電圧指令値Vu*,Vv*,Vw*を電源電圧Vdcで除算した値であり、電圧指令値(電圧振幅)Vu*,Vv*,Vw*と電源電圧Vdcの比率である。 The modulation factor calculation unit 51 calculates the modulation factors Keu, Kev, and Kew based on the voltage command values Vu *, Vv *, and Vw * and the power supply voltage Vdc. The modulation factor calculation unit 51 is a value obtained by dividing the voltage command values Vu *, Vv *, Vw * by the power supply voltage Vdc, and the ratio of the voltage command values (voltage amplitude) Vu *, Vv *, Vw * to the power supply voltage Vdc. It is.
 パルスパターン決定部52は、電気角θと変調率Keu,Kev,Kewに基づいて、スイッチング素子Q1~Q6のスイッチングパターンであるパルスパターンを決定する。パルスパターンは、マップM1としてメモリなどの記憶部に記憶されている。パルスパターンは、電気角θと変調率Keu,Kev,Kewに対応付けて設定されている。 The pulse pattern determination unit 52 determines a pulse pattern that is a switching pattern of the switching elements Q1 to Q6 based on the electrical angle θ and the modulation factors Keu, Kev, and Kew. The pulse pattern is stored as a map M1 in a storage unit such as a memory. The pulse pattern is set in association with the electrical angle θ and the modulation factors Keu, Kev, and Kew.
 図3に示すように、マップM1は、オン指示信号とオフ指示信号とのそれぞれが、電気角θ及び変調率Keu,Kev,Kewに対応付けられた情報である。図3には、u相の変調率Keuと電気角θに対応付けられたマップM1の一例を示す。オン指示信号は、上アームスイッチング素子Q1,Q3,Q5をオンし、下アームスイッチング素子Q2,Q4,Q6をオフすることを指示する信号である。オフ指示信号は、上アームスイッチング素子Q1,Q3,Q5をオフし、下アームスイッチング素子Q2,Q4,Q6をオンすることを指示する信号である。 As shown in FIG. 3, the map M1 is information in which each of the ON instruction signal and the OFF instruction signal is associated with the electrical angle θ and the modulation factors Keu, Kev, and Kew. FIG. 3 shows an example of a map M1 associated with the u-phase modulation factor Keu and the electrical angle θ. The on instruction signal is a signal for instructing to turn on the upper arm switching elements Q1, Q3, Q5 and to turn off the lower arm switching elements Q2, Q4, Q6. The off instruction signal is a signal for instructing to turn off the upper arm switching elements Q1, Q3, and Q5 and to turn on the lower arm switching elements Q2, Q4, and Q6.
 マップM1は、オン指示信号からオフ指示信号への切り替え、及び、オフ指示信号からオン指示信号への切り替えを指示する電気角θであるパルス角を示すものである。図3には、オン指示信号とオフ指示信号との切り替えを行うパルス角として、θ1,θ2,θ3,θ4,θ5,θ6を図示する。 The map M1 indicates a pulse angle that is an electrical angle θ that instructs switching from an on instruction signal to an off instruction signal and switching from an off instruction signal to an on instruction signal. FIG. 3 illustrates θ1, θ2, θ3, θ4, θ5, and θ6 as pulse angles for switching between the on instruction signal and the off instruction signal.
 なお、図3では、u相のマップM1のうち電気角θが0°~90°までのマップM1を図示している。マップM1を電気角θが0°の位置で線対称にすると0°~-90°までのマップとなり、電気角θが-90°~90°までのマップを点対称に反転させると90°~270°のマップとなる。v相、w相のマップM1は、u相のマップM1に対して、電気角θが120°,240°ずれたものである。 FIG. 3 shows a map M1 in which the electrical angle θ is 0 ° to 90 ° in the u-phase map M1. If the map M1 is line-symmetrical at the position where the electrical angle θ is 0 °, it becomes a map from 0 ° to -90 °, and if the map where the electrical angle θ is -90 ° to 90 ° is reversed to be point-symmetrical, 90 ° to The map is 270 °. The v-phase and w-phase maps M1 are obtained by shifting the electrical angle θ by 120 ° and 240 ° with respect to the u-phase map M1.
 信号生成部53は、パルスパターン決定部52で決定されたパルスパターンに基づき、制御信号を生成する。信号生成部53は、パルスパターンに基づき、上アームスイッチング素子Q1,Q3,Q5と下アームスイッチング素子Q2,Q4,Q6のオン/オフを切り替える際のデッドタイムを設定するとともに、制御信号を生成する。これにより、インバータ10のスイッチング素子Q1~Q6は、予め定められたパルスパターンでスイッチング制御されることになる。 The signal generation unit 53 generates a control signal based on the pulse pattern determined by the pulse pattern determination unit 52. Based on the pulse pattern, the signal generation unit 53 sets a dead time for switching on / off of the upper arm switching elements Q1, Q3, Q5 and the lower arm switching elements Q2, Q4, Q6, and generates a control signal. . As a result, switching elements Q1 to Q6 of inverter 10 are subjected to switching control with a predetermined pulse pattern.
 次に、上記したパルスパターンを生成するパルスパターン生成装置について説明する。
 図4に示すように、パルスパターン生成装置70は、モータ60のコイルに線間電圧を加える線間電圧印加部71と、モータ60のコイルに誘起電圧を加える誘起電圧印加部72と、を備える。コイルは、線間電圧が加えられる2つのコイルであり、本実施形態では、u相のコイルUとv相のコイルVの2つのコイルとする。パルスパターン生成装置70は、モータ60の駆動状況を模擬することで、パルスパターンを生成する装置である。
Next, a pulse pattern generation apparatus that generates the above-described pulse pattern will be described.
As shown in FIG. 4, the pulse pattern generation device 70 includes a line voltage application unit 71 that applies a line voltage to the coil of the motor 60, and an induced voltage application unit 72 that applies an induction voltage to the coil of the motor 60. . The coils are two coils to which a line voltage is applied. In this embodiment, the coils are two coils, a u-phase coil U and a v-phase coil V. The pulse pattern generation device 70 is a device that generates a pulse pattern by simulating the driving state of the motor 60.
 線間電圧印加部71は、コイルU,Wに、モータ60の駆動時にコイルU,Wに加わる電圧である線間電圧を仮想的に印加する。誘起電圧印加部72は、モータ60の駆動時に生じる誘起電圧をコイルU,Wに仮想的に印加する。線間電圧は、バッテリBの電圧から定まる。誘起電圧は、解析や、実測などにより導出されている。例えば、磁界解析を用いて、モータ60を回転させたときに発生する電圧を算出したり、モータ60の端子をオシロスコープなどの測定器で測定することで誘起電圧を導出することができる。線間電圧をコイルU,Vに加えたときに流れる電流と、誘起電圧をコイルU,Vに加えたときに流れる電流とは、逆向きの電流となる。図5に示すように、線間電圧印加部71と、誘起電圧印加部72とは、コイルU,Vの直列接続体75と、線間電圧を発生させる電圧源と、誘起電圧を加える電圧源とを接続した簡易回路C1として表現することができる。 The line voltage application unit 71 virtually applies to the coils U and W a line voltage that is a voltage applied to the coils U and W when the motor 60 is driven. The induced voltage application unit 72 virtually applies the induced voltage generated when the motor 60 is driven to the coils U and W. The line voltage is determined from the voltage of the battery B. The induced voltage is derived by analysis or actual measurement. For example, the induced voltage can be derived by calculating the voltage generated when the motor 60 is rotated using magnetic field analysis or by measuring the terminal of the motor 60 with a measuring instrument such as an oscilloscope. The current that flows when the line voltage is applied to the coils U and V and the current that flows when the induced voltage is applied to the coils U and V are opposite to each other. As shown in FIG. 5, the line voltage application unit 71 and the induced voltage application unit 72 are a series connection body 75 of coils U and V, a voltage source that generates a line voltage, and a voltage source that applies an induced voltage. Can be expressed as a simple circuit C1.
 パルスパターン生成装置70は、線間電圧と、誘起電圧とをコイルU,Vに加えたときにコイルU,V(簡易回路C1)に流れる電流iを算出する電流算出部73と、電流iから電流実効値Irmsを算出する電流実効値算出部74と、を備える。電流算出部73は、以下の(1)式から電流iを算出する。 The pulse pattern generation device 70 includes a current calculation unit 73 that calculates a current i that flows through the coils U and V (simple circuit C1) when the line voltage and the induced voltage are applied to the coils U and V, and the current i. A current effective value calculation unit 74 for calculating the current effective value Irms. The current calculation unit 73 calculates the current i from the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 ただし、LはコイルUとコイルVとの合成インダクタンス、iは、時刻t=0のときにコイルUに流れる電流である。
Figure JPOXMLDOC01-appb-M000001
Here, L is a combined inductance of the coil U and the coil V, and i 0 is a current flowing through the coil U at time t = 0.
 (1)式から把握できるように、電流iは、線間電圧に加えて、誘起電圧を考慮したものとなっている。電流iは、モータ60の駆動時にモータ60のコイルU,Vに流れると想定される電流である。電流iにより得られる電流波形は、線間電圧と誘起電圧との大小関係により傾きが変化することになる。 As can be understood from the equation (1), the current i takes into account the induced voltage in addition to the line voltage. The current i is a current assumed to flow through the coils U and V of the motor 60 when the motor 60 is driven. The slope of the current waveform obtained from the current i changes depending on the magnitude relationship between the line voltage and the induced voltage.
 電流実効値算出部74は、電流算出部73が算出した電流iにより得られる電流波形から電流実効値Irmsを算出する。電流iは、誘起電圧を考慮したものとなっているため、誘起電圧を考慮していない電流波形に比べて、実際のモータ60の駆動状況に近い電流波形を得ることができる。 The current effective value calculation unit 74 calculates the current effective value Irms from the current waveform obtained from the current i calculated by the current calculation unit 73. Since the current i takes the induced voltage into consideration, a current waveform closer to the actual driving state of the motor 60 can be obtained as compared with the current waveform not taking the induced voltage into consideration.
 図6には、線間電圧による波形L1と、電流iにより得られる電流波形L2との対応関係を示している。電流波形L2から把握できるように、誘起電圧を考慮した場合、線間電圧が0[V]となるときは線間電圧<誘起電圧となり、電流波形L2の傾きが負となる。これに対し、誘起電圧を考慮しない場合、誘起電圧に起因する電流が考慮されず、線間電圧が0[V]となるときに電流の値が維持される。即ち、電流波形の傾きが0になる。このように、誘起電圧を考慮する場合と、考慮しない場合で、電流波形が異なるものになる。 FIG. 6 shows the correspondence between the waveform L1 due to the line voltage and the current waveform L2 obtained from the current i. As can be understood from the current waveform L2, when the induced voltage is taken into consideration, when the line voltage is 0 [V], the line voltage is less than the induced voltage, and the slope of the current waveform L2 is negative. On the other hand, when the induced voltage is not taken into consideration, the current due to the induced voltage is not taken into account, and the current value is maintained when the line voltage becomes 0 [V]. That is, the slope of the current waveform becomes zero. As described above, the current waveform differs between the case where the induced voltage is considered and the case where the induced voltage is not considered.
 図4に示すように、パルスパターン生成装置70は、パターン生成部76を備える。パターン生成部76は、電流実効値Irmsに基づきパルスパターンを生成する。パルスパターンは、電流実効値Irmsを評価項目とした評価関数から生成されているといえる。パターン生成部76は、電流実効値Irmsが最小となるようにパルスパターンを生成する。これにより、図3に示すマップM1、即ち、パルスパターンが生成される。 As shown in FIG. 4, the pulse pattern generation device 70 includes a pattern generation unit 76. The pattern generator 76 generates a pulse pattern based on the current effective value Irms. It can be said that the pulse pattern is generated from an evaluation function using the current effective value Irms as an evaluation item. The pattern generation unit 76 generates a pulse pattern so that the current effective value Irms is minimized. Thereby, the map M1 shown in FIG. 3, that is, the pulse pattern is generated.
 図7に示すマップM2は、誘起電圧を考慮せずに線間電圧のみを用いて生成したパルスパターンのマップである。図7から把握できるように、誘起電圧を考慮せずに生成されたパルスパターンでは、誘起電圧を考慮して生成されたパルスパターンとパルス角θ11,θ12,θ13,θ14,θ15,θ16が異なることがわかる。 A map M2 shown in FIG. 7 is a map of a pulse pattern generated using only the line voltage without considering the induced voltage. As can be understood from FIG. 7, the pulse pattern generated without considering the induced voltage is different from the pulse pattern generated considering the induced voltage with the pulse angles θ11, θ12, θ13, θ14, θ15, and θ16. I understand.
 本実施形態の作用について説明する。
 インバータ10の各スイッチング素子Q1~Q6は、パルスパターン生成装置70で生成されたパルスパターンでスイッチング制御される。このパルスパターンは、電流実効値Irmsが最小になるように定められたパルスパターンである。このパルスパターンでスイッチング素子Q1~Q6をスイッチング制御することで、電流実効値Irmsが小さくなるようにスイッチング動作が行われることになる。
The operation of this embodiment will be described.
The switching elements Q1 to Q6 of the inverter 10 are subjected to switching control with the pulse pattern generated by the pulse pattern generation device 70. This pulse pattern is a pulse pattern determined so that the current effective value Irms is minimized. By performing switching control of the switching elements Q1 to Q6 with this pulse pattern, a switching operation is performed so that the current effective value Irms becomes small.
 第1実施形態の効果について説明する。
 (1-1)電流算出部73は、線間電圧と誘起電圧をコイルU,Vに加えたときに流れる電流iを算出している。モータ60の駆動時には、誘起電圧が発生する。電流算出部73は、モータ60の駆動時にコイルU,Vに加えられる電圧だけではなく、誘起電圧も考慮して電流iを算出している。このため、誘起電圧を考慮せずに電流iを算出する場合に比べて、実際のモータ60の駆動時にコイルU,Vに流れる電流を模擬しているといえる。これにより、モータ60のコイルU,Vに実際に流れる電流と、算出される電流iとの差を小さくすることができる。電流iと、モータ60のコイルU,Vに実際に流れる電流との差が大きいと、パルスパターン生成装置70でパルスパターンを生成しても、所望の電流波形を得ることができない。電流iと、モータ60のコイルU,Vに実際に流れる電流との差を小さくすることで、所望の電流波形を得られるパルスパターンを生成することができる。特に、誘起電圧の大きいIPMモータやSPMモータなどをモータ60として用いる場合、誘導モータよりも大きな効果を得ることができる。
The effect of the first embodiment will be described.
(1-1) The current calculation unit 73 calculates a current i that flows when a line voltage and an induced voltage are applied to the coils U and V. When the motor 60 is driven, an induced voltage is generated. The current calculation unit 73 calculates the current i in consideration of not only the voltage applied to the coils U and V when driving the motor 60 but also the induced voltage. For this reason, it can be said that the current flowing through the coils U and V when the actual motor 60 is driven is simulated as compared with the case where the current i is calculated without considering the induced voltage. Thereby, the difference between the current actually flowing through the coils U and V of the motor 60 and the calculated current i can be reduced. If the difference between the current i and the current that actually flows through the coils U and V of the motor 60 is large, a desired current waveform cannot be obtained even if the pulse pattern generator 70 generates a pulse pattern. By reducing the difference between the current i and the current actually flowing through the coils U and V of the motor 60, a pulse pattern that can obtain a desired current waveform can be generated. In particular, when an IPM motor, an SPM motor or the like having a large induced voltage is used as the motor 60, a greater effect than that of the induction motor can be obtained.
 (1-2)パターン生成部76は、電流実効値Irmsが最小となるようにパルスパターンを生成する。高調波損失は、電流実効値Irmsに比例するため、電流実効値Irmsが最小となるようなパルスパターンでスイッチング素子Q1~Q6をスイッチング制御することで、高調波損失を低減させることができる。 (1-2) The pattern generator 76 generates a pulse pattern so that the current effective value Irms is minimized. Since the harmonic loss is proportional to the current effective value Irms, the harmonic loss can be reduced by switching control of the switching elements Q1 to Q6 with a pulse pattern that minimizes the current effective value Irms.
第2実施形態Second embodiment
 以下、パルスパターン生成装置の第2実施形態について説明する。第2実施形態のパルスパターン生成装置は、電流の算出方法が第1実施形態とは異なる。他の構成は、第1実施形態と同様である。 Hereinafter, a second embodiment of the pulse pattern generation device will be described. The pulse pattern generation device according to the second embodiment is different from the first embodiment in the method for calculating the current. Other configurations are the same as those of the first embodiment.
 図8に示すように、第1実施形態では、2相分のコイルを想定してパルスパターンを生成していたのに対し、第2実施形態では、3相分のコイルを想定してパルスパターンを生成する。詳細にいえば、3相分のコイルU,V,Wと、3相分の誘起電圧印加部91,92,93と、3相分の相電圧印加部81,82,83と、を備える簡易回路C2を想定してパルスパターンを生成する。相電圧印加部81,82,83は、モータ60の駆動時に各コイルU,V,Wに印加される電圧である相電圧を仮想的にコイルU,V,Wに加える。相電圧は、バッテリBの電圧から算出することができる。 As shown in FIG. 8, in the first embodiment, a pulse pattern is generated assuming a coil for two phases, whereas in the second embodiment, a pulse pattern is assumed assuming a coil for three phases. Is generated. More specifically, a simple arrangement comprising three-phase coils U, V, W, three-phase induced voltage application units 91, 92, 93, and three-phase phase voltage application units 81, 82, 83. A pulse pattern is generated assuming the circuit C2. The phase voltage application units 81, 82, 83 virtually apply phase voltages, which are voltages applied to the coils U, V, W when the motor 60 is driven, to the coils U, V, W. The phase voltage can be calculated from the voltage of the battery B.
 図9に示すように、空間ベクトルによって相電流は異なる。図9には、一例として、空間ベクトルとu相電流との対応関係を示している。なお、空間ベクトルは、3相のスイッチング素子Q1~Q6のスイッチングパターンともいえる。図9に示すV0~V7の0,1は、それぞれ、各相のスイッチング素子Q1~Q6のオン/オフを示す。0は上アームスイッチング素子Q1,Q3,Q5がオフであり、下アームスイッチング素子Q2,Q4,Q6がオンの状態を示す。1は上アームスイッチング素子Q1,Q3,Q5がオンであり、下アームスイッチング素子Q2,Q4,Q6がオフの状態を示す。V0~V7の3つの0,1は左から順にu相、v相、w相に対応している。図9に示すLはコイルUのインダクタンスであり、EはバッテリBの電圧であり、Vemfは誘起電圧である。図9に示すように、電流算出部73は、空間ベクトルに応じて、u相電流を算出することができる。 As shown in FIG. 9, the phase current varies depending on the space vector. FIG. 9 shows the correspondence between the space vector and the u-phase current as an example. The space vector can also be said to be a switching pattern of the three-phase switching elements Q1 to Q6. In FIG. 9, 0 and 1 of V0 to V7 indicate ON / OFF of the switching elements Q1 to Q6 of each phase, respectively. 0 indicates that the upper arm switching elements Q1, Q3, and Q5 are off, and the lower arm switching elements Q2, Q4, and Q6 are on. 1 indicates a state in which the upper arm switching elements Q1, Q3, and Q5 are on and the lower arm switching elements Q2, Q4, and Q6 are off. Three 0s and 1s of V0 to V7 correspond to the u phase, the v phase, and the w phase in order from the left. 9, L is the inductance of the coil U, E is the voltage of the battery B, and Vemf is the induced voltage. As shown in FIG. 9, the current calculation unit 73 can calculate the u-phase current according to the space vector.
 図10には、空間ベクトルの遷移により得られた電流波形L21と、解析により得られた電流波形L22とを示す。電流波形L21は、解析により得られた電流波形L22と近似していることがわかる。即ち、空間ベクトル及び誘起電圧を考慮することで得られたu相電流(電流i)は、モータ60の駆動時に実際にコイルUに流れる電流との差が少ないといえる。 FIG. 10 shows a current waveform L21 obtained by space vector transition and a current waveform L22 obtained by analysis. It can be seen that the current waveform L21 approximates the current waveform L22 obtained by the analysis. That is, it can be said that the u-phase current (current i) obtained by considering the space vector and the induced voltage has a small difference from the current that actually flows through the coil U when the motor 60 is driven.
 第2実施形態の効果について説明する。
 (2-1)電流算出部73は、空間ベクトル及び誘起電圧を考慮して電流iを算出する。このため、実際のモータ60の駆動時にコイルUに流れる電流をより模擬できる。
The effect of the second embodiment will be described.
(2-1) The current calculation unit 73 calculates the current i in consideration of the space vector and the induced voltage. For this reason, the electric current which flows into the coil U at the time of the drive of the actual motor 60 can be simulated more.
 各実施形態は、以下のように変更して実施することができる。各実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○各実施形態において、パルスパターンを生成するときのコイルU,V,Wのインダクタンスを可変としてもよい。コイルU,V,Wのインダクタンスは、各コイルU,V,Wを流れる電流の値や、モータ60の回転位置によって変化する。電流iを算出するときに、電流の値や、モータ60の回転位置を加味したインダクタンスを用いることで、電流iと、モータ60の駆動時にコイルU,V,Wに実際に流れる電流との差を更に低減させることができる。
Each embodiment can be implemented with the following modifications. Each embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
In each embodiment, the inductance of the coils U, V, W when generating the pulse pattern may be variable. The inductances of the coils U, V, and W vary depending on the value of the current flowing through each of the coils U, V, and W and the rotational position of the motor 60. When calculating the current i, the difference between the current i and the current that actually flows through the coils U, V, and W when the motor 60 is driven by using an inductance that takes into account the current value and the rotational position of the motor 60. Can be further reduced.
 ○各実施形態において、パルスパターン生成装置70は、インバータ10に搭載されていてもよい。この場合、コイルUの劣化具合を検出できる検出部や、コイルUの劣化具合を推定できる推定部を設けることで、パルスパターンの生成に用いられるコイルUのインダクタンスを補正する。これにより、コイルUの劣化具合を考慮したパルスパターンを生成することができる。パルスパターンをコイルUの劣化具合に応じて更新していくことで、インバータ10に適したパルスパターンによりスイッチング素子Q1~Q6のスイッチング制御を行うことができる。 In each embodiment, the pulse pattern generation device 70 may be mounted on the inverter 10. In this case, the inductance of the coil U used for generating the pulse pattern is corrected by providing a detection unit that can detect the deterioration degree of the coil U and an estimation unit that can estimate the deterioration degree of the coil U. Thereby, the pulse pattern in consideration of the deterioration degree of the coil U can be generated. By updating the pulse pattern according to the degree of deterioration of the coil U, switching control of the switching elements Q1 to Q6 can be performed with a pulse pattern suitable for the inverter 10.
 ○各実施形態において、パターン生成部76は、電流実効値Irmsが最小となるパルスパターンに限られず、任意の電流波形を出力できるパルスパターンなどを生成するようにしてもよい。 In each embodiment, the pattern generator 76 is not limited to a pulse pattern that minimizes the current effective value Irms, and may generate a pulse pattern that can output an arbitrary current waveform.
 ○各実施形態において、変調率は、1相分のみ算出されていてもよい。この場合、1相分の変調率を3相共通の変調率として制御が行われる。
 ○第1実施形態において、パルスパターン生成装置70は、3つのコイルU,V,Wをデルタ結線した三相交流モータを駆動する際のパルスパターンを生成してもよい。この場合、電流算出部73は、1相分のコイルに相電圧及び誘起電圧を加えたときに流れる電流(相電流)を算出する。即ち、簡易回路C1の線間電圧印加部71が相電圧印加部となり、直列接続体75が1相分のコイルとなる。
In each embodiment, the modulation factor may be calculated for only one phase. In this case, the control is performed using the modulation rate for one phase as the modulation rate common to the three phases.
In the first embodiment, the pulse pattern generation device 70 may generate a pulse pattern when driving a three-phase AC motor in which three coils U, V, and W are delta-connected. In this case, the current calculation unit 73 calculates a current (phase current) that flows when a phase voltage and an induced voltage are applied to a coil for one phase. That is, the line voltage application unit 71 of the simple circuit C1 is a phase voltage application unit, and the series connection body 75 is a coil for one phase.
 ○第2実施形態において、パルスパターン生成装置70は、3つのコイルU,V,Wをデルタ結線した三相交流モータを駆動する際のパルスパターンを生成してもよい。この場合、図11に示すように、簡易回路C3は、デルタ結線された3相分のコイルU,V,Wと、3相分の誘起電圧印加部91,92,93と、3相分の相電圧印加部(線間電圧印加部)81,82,83と、を備えたものとなる。この場合、空間ベクトルに対応するu相電流の傾きとしては、図12の表に示すようになる。なお、図12に示すV0~V6の1は、上アームスイッチング素子Q1,Q3,Q5がオン、下アームスイッチング素子Q2,Q4,Q6がオフの状態を示す。0は、上アームスイッチング素子Q1,Q3,Q5、及び、下アームスイッチング素子Q2,Q4,Q6の両方がオフの状態を示す。-1は、上アームスイッチング素子Q1,Q3,Q5がオフ、下アームスイッチング素子Q2,Q4,Q6がオンの状態を示す。 In the second embodiment, the pulse pattern generation device 70 may generate a pulse pattern when driving a three-phase AC motor in which three coils U, V, and W are delta-connected. In this case, as shown in FIG. 11, the simple circuit C3 includes three-phase coils U, V, and W that are delta-connected, three-phase induced voltage application units 91, 92, and 93, and three-phase coils. And a phase voltage application unit (line voltage application unit) 81, 82, 83. In this case, the slope of the u-phase current corresponding to the space vector is as shown in the table of FIG. Note that 1 of V0 to V6 shown in FIG. 12 indicates a state in which the upper arm switching elements Q1, Q3, and Q5 are on and the lower arm switching elements Q2, Q4, and Q6 are off. 0 indicates that both the upper arm switching elements Q1, Q3, and Q5 and the lower arm switching elements Q2, Q4, and Q6 are off. -1 indicates a state in which the upper arm switching elements Q1, Q3, and Q5 are off and the lower arm switching elements Q2, Q4, and Q6 are on.
 Q1~Q6  スイッチング素子
 U,V,W  コイル
 10  インバータ
 60  モータ
 70  パルスパターン生成装置
 71  線間電圧印加部
 73  電流算出部
 74  電流実効値算出部
 76  パターン生成部
Q1 to Q6 Switching element U, V, W Coil 10 Inverter 60 Motor 70 Pulse pattern generation device 71 Line voltage application unit 73 Current calculation unit 74 Current effective value calculation unit 76 Pattern generation unit

Claims (2)

  1.  モータを駆動するインバータが備える複数のスイッチング素子を制御するためのパルスパターンを生成するパルスパターン生成装置であって、
     前記モータの駆動時に前記モータのコイルに流れると想定される電流を算出する電流算出部と、
     前記電流算出部によって算出された前記電流から電流実効値を算出する電流実効値算出部と、
     前記電流実効値算出部によって算出された前記電流実効値に基づき、前記パルスパターンを生成するパターン生成部と、を備え、
     前記電流算出部は、前記モータの駆動時に前記コイルに加えられる電圧、及び、前記モータの駆動時に生じる誘起電圧により前記コイルに流れる電流を算出するパルスパターン生成装置。
    A pulse pattern generation device that generates a pulse pattern for controlling a plurality of switching elements included in an inverter that drives a motor,
    A current calculation unit for calculating a current assumed to flow through the coil of the motor when the motor is driven;
    A current effective value calculation unit for calculating a current effective value from the current calculated by the current calculation unit;
    A pattern generation unit that generates the pulse pattern based on the current effective value calculated by the current effective value calculation unit, and
    The current calculation unit is a pulse pattern generation device that calculates a current applied to the coil based on a voltage applied to the coil when the motor is driven and an induced voltage generated when the motor is driven.
  2.  前記パターン生成部は、前記電流実効値が最小となるように前記パルスパターンを生成する請求項1に記載のパルスパターン生成装置。 The pulse pattern generation device according to claim 1, wherein the pattern generation unit generates the pulse pattern so that the current effective value is minimized.
PCT/JP2019/016738 2018-04-27 2019-04-19 Pulse pattern generating device WO2019208408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-087749 2018-04-27
JP2018087749A JP6962267B2 (en) 2018-04-27 2018-04-27 Pulse pattern generator

Publications (1)

Publication Number Publication Date
WO2019208408A1 true WO2019208408A1 (en) 2019-10-31

Family

ID=68293683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016738 WO2019208408A1 (en) 2018-04-27 2019-04-19 Pulse pattern generating device

Country Status (2)

Country Link
JP (1) JP6962267B2 (en)
WO (1) WO2019208408A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252995A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Controlling apparatus of brushless dc motor
JP2014158402A (en) * 2013-02-18 2014-08-28 Toyota Motor Corp Power conversion device
WO2017110855A1 (en) * 2015-12-21 2017-06-29 日産自動車株式会社 Motor diagnostic method and electric power conversion equipment using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252995A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Controlling apparatus of brushless dc motor
JP2014158402A (en) * 2013-02-18 2014-08-28 Toyota Motor Corp Power conversion device
WO2017110855A1 (en) * 2015-12-21 2017-06-29 日産自動車株式会社 Motor diagnostic method and electric power conversion equipment using same

Also Published As

Publication number Publication date
JP2019193543A (en) 2019-10-31
JP6962267B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP5594301B2 (en) Electric motor drive system
EP2333948A2 (en) Inverter control device and motor drive system
JP2004343963A (en) Control device for brushless dc motor
JP6981272B2 (en) AC motor control device
US10498283B2 (en) Motor drive device
JP4131421B2 (en) Inverter test equipment
US9184687B2 (en) Motor control apparatus and motor control method
WO2017030055A1 (en) Device and method for controlling rotary machine
WO2019146437A9 (en) Inverter device
JP5888148B2 (en) Rotating machine control device
WO2019208408A1 (en) Pulse pattern generating device
JP6939693B2 (en) Pulse pattern generator
JP7004980B2 (en) Pulse pattern generator
JP6733579B2 (en) Motor drive
JP6544204B2 (en) Motor control device
JP7001043B2 (en) Inverter device
JP7067522B2 (en) Inverter device
JP7067380B2 (en) Inverter device
JP7251336B2 (en) motor controller
JP4079201B2 (en) Inverter test equipment
JP2021027651A (en) Electric motor control device
JP2020108281A (en) Inverter controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793289

Country of ref document: EP

Kind code of ref document: A1