WO2019208136A1 - Light-shielding film and method for manufacturing light-shielding film - Google Patents

Light-shielding film and method for manufacturing light-shielding film Download PDF

Info

Publication number
WO2019208136A1
WO2019208136A1 PCT/JP2019/014803 JP2019014803W WO2019208136A1 WO 2019208136 A1 WO2019208136 A1 WO 2019208136A1 JP 2019014803 W JP2019014803 W JP 2019014803W WO 2019208136 A1 WO2019208136 A1 WO 2019208136A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding layer
light shielding
shielding film
prototype
Prior art date
Application number
PCT/JP2019/014803
Other languages
French (fr)
Japanese (ja)
Inventor
一晃 西村
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2019208136A1 publication Critical patent/WO2019208136A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a light shielding film and a method for producing the light shielding film.
  • a shutter As a shutter, a diaphragm member, or a gap adjusting member disposed between a plurality of lenses of an optical device such as a smartphone or a digital video camera, a light shielding film is used as disclosed in Patent Document 1, for example.
  • the light-shielding film includes, for example, a light-shielding layer containing black pigment, filler particles, and a binder resin and having fine irregularities formed on the surface.
  • the light shielding layer has anti-glare properties that prevent incidents by scattering incident light, and light shielding properties that shield external light that has entered the optical device.
  • the binder resin In the light-shielding layer, it is desirable to use a photocurable resin as the binder resin from the viewpoint of easy adjustment of the thickness of the light-shielding layer and ensuring scratch resistance during production and handling of the light-shielding film.
  • a light-shielding component such as a black pigment
  • a photocurable resin when used as the binder resin, light irradiation becomes insufficient, making it difficult to cure the precursor of the binder resin. There is a risk.
  • an object of the present invention is to make it possible to satisfactorily manufacture a light-shielding film in a light-shielding film having a light-shielding layer having antiglare properties on the surface even when a photocurable resin is used as a binder resin for the light-shielding layer.
  • a light-shielding film is a light-shielding film including at least one light-shielding layer in which black fine particles are dispersed, and the light-shielding layer includes the black fine particles, It contains a photocurable binder resin and a photoactive compound that activates a polymerization initiator of the precursor of the binder resin by light irradiation, and the surface has antiglare properties by forming irregularities on the surface.
  • the light shielding layer contains the photoactive compound that activates the polymerization initiator of the binder resin precursor by light irradiation, light irradiation is performed even when the polymerization initiator is shielded from light by the black fine particles.
  • the polymerization initiator can be activated by the photoactive compound thus prepared to promote polymerization of the precursor of the photocurable binder resin.
  • the glossiness at an incident angle of 85 degrees on the surface of the light shielding layer may be set to a value of 20% or less.
  • the surface of the light shielding layer can be provided with excellent low glossiness (anti-reflection), and incident light incident on the surface of the light shielding layer can be scattered more favorably.
  • the content of inorganic fine particles other than the black fine particles or the content of organic fine particles may be set to a value in the range of 0 wt% to 10 wt%.
  • the arithmetic average roughness (Ra) on the surface of the light shielding layer may be set to a value in the range of 0.03 ⁇ m to 3.0 ⁇ m. Thereby, fine unevenness
  • corrugation can be provided to the surface of a light shielding layer, and incident light in this surface can be scattered still more favorably.
  • the black fine particles may be spherical, and the primary particle size may be set to a value in the range of 10 nm to 500 nm. Thereby, the black fine particles can be uniformly dispersed in the light shielding layer, and uniform light shielding properties can be obtained in the entire light shielding layer.
  • the black fine particles may be carbon nanotubes. Thereby, the selection range of the material as black fine particles can be expanded.
  • the optical density of the light shielding layer in the wavelength range of 380 nm to 780 nm is set to a value of 5.0 or more, and the surface resistance value of the light shielding layer is set to a value of 1 ⁇ 10 12 ⁇ / ⁇ or less. It may be.
  • the optical density and the surface resistance value of the light shielding layer are set to the predetermined values, it is possible to impart high light shielding properties to the light shielding layer and to further appropriately adjust the electric resistance value of the light shielding layer, It is possible to better prevent the impurities such as adhering to the light shielding layer due to charging of the light shielding layer.
  • a base film disposed on the surface in contact with the light shielding layer may be further provided.
  • a light shielding layer can be favorably supported by a base film.
  • the handling can be improved.
  • the thickness dimension of the base film may be set to a value in the range of 1 ⁇ m to 188 ⁇ m. Thereby, while being able to adjust the thickness dimension of a light shielding film appropriately, the handling can be improved further more favorably.
  • the light-shielding film according to an aspect of the present invention is a light-shielding film including at least one light-shielding layer in which black fine particles are dispersed.
  • the light-shielding layer has a pencil hardness set to a value of 2H or more, and is optical.
  • the density is set to a value of 5.0 or more.
  • a method for producing a light-shielding film includes: black fine particles; a precursor of a photocurable binder resin; a polymerization initiator of the precursor of the binder resin; and activation of the polymerization initiator by light irradiation.
  • a deposition step of depositing an uncured material containing a photoactive compound on the surface of the prototype having an anti-glare surface by forming irregularities; and the uncured material on the surface of the prototype And a curing step of forming a light-shielding layer on the surface of which the shape of the surface of the original is transferred by photocuring in a deposited state.
  • the uncured material contains a photoactive compound that activates the polymerization initiator of the precursor of the binder resin by light irradiation
  • the polymerization initiator is composed of black fine particles. Even when light is shielded from light, the photoinitiator irradiated with light can activate the polymerization initiator to accelerate the polymerization of the photocurable binder resin precursor.
  • a light shielding film provided with the light shielding layer containing a photocurable resin can be manufactured favorably.
  • a light-transmitting prototype film may be used as the prototype.
  • a light-shielding film can be efficiently manufactured by irradiating light with an uncured material through an original film.
  • the prototype is a film, handling is easy, and the prototype can be easily peeled from the light shielding layer.
  • a prototype film having a sea-island structure including a plurality of resin components and formed by phase separation of the plurality of resin components may be used as the light transmissive prototype film.
  • the light shielding film 1 which has the outstanding anti-glare property can be manufactured by using the original film which has the sea-island structure formed by the phase separation of several resin component.
  • the uncured material is applied to the surface of a support member, and the uncured material is deposited on the surface of the prototype while the uncured material is supported by the support member, and the curing is performed.
  • the light shielding layer may be peeled off from the master and the support member.
  • the light shielding film which consists of a light shielding layer by which the unevenness
  • the uncured material is applied to at least one surface of the base film, the surface of the prototype is deposited on the uncured material, and after the curing step, the light shielding layer is You may peel from a prototype.
  • transferred by the surface supported by the base film can be manufactured with exact and stable quality.
  • the light-shielding film in a light-shielding film having a light-shielding layer having anti-glare properties on the surface, the light-shielding film can be satisfactorily manufactured even when a photocurable resin is used as a binder resin for the light-shielding layer.
  • FIG. 10 It is sectional drawing of the light shielding film which concerns on 1st Embodiment. It is a manufacturing flowchart of the light shielding film of FIG. It is a figure which shows the mode at the time of manufacture of the light shielding film of FIG. It is sectional drawing of the light shielding film which concerns on 2nd Embodiment. It is sectional drawing of the light shielding film which concerns on 3rd Embodiment. It is a figure which shows the mode at the time of manufacture of the light shielding film of FIG. 10 is an enlarged cross-sectional view showing a prototype according to Modification 1. FIG. 10 is an enlarged cross-sectional view showing a prototype according to Modification 2. FIG.
  • FIG. 1 is a cross-sectional view of a light shielding film 1 according to the first embodiment.
  • the light shielding film 1 is disposed so as to surround the optical axis between a plurality of optical members (lenses and the like) included in the optical device.
  • the light shielding film 1 includes at least one light shielding layer 3 in which black fine particles 5 are dispersed.
  • the light shielding film 1 of this embodiment includes a base film 2 and a light shielding layer 3.
  • the base film 2 is disposed in contact with the light shielding layer 3 on the surface.
  • the base film 2 is made of a resin film containing a black pigment. Thereby, the base film 2 is colored black.
  • the base film 2 may be colored in a color other than black (for example, white) or may be transparent.
  • the resin included in the base film 2 may be a thermoplastic resin, a thermosetting resin, or a photocurable resin.
  • the thermoplastic resin for example, polyolefin, styrene resin, acrylic resin, vinyl chloride resin, polyvinyl alcohol resin, polyacetal, polyester, polycarbonate, polyamide, polyimide, polysulfone resin, polyphenylene ether resin, polyphenylene Examples thereof include sulfide resins, fluororesins, and cellulose derivatives.
  • thermoplastic resins can be used alone or in combination of two or more.
  • cyclic polyolefin polyalkylene arylate (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polymethyl methacrylate resin, bisphenol A type polycarbonate, and cellulose ester are preferable.
  • thermosetting resin examples include phenol resin, melamine resin, urea resin, benzoguanamine resin, silicone resin, epoxy resin, unsaturated polyester, vinyl ester resin, and polyurethane. These thermosetting resins can be used alone or in combination of two or more. Of these, epoxy resin, unsaturated polyester, silicone resin, and polyurethane are preferable from the viewpoint of securing strength.
  • photocurable resin examples include photocurable polyester, photocurable acrylic resin, photocurable epoxy (meth) acrylate, and photocurable urethane (meth) acrylate. These photocurable resins can be used alone or in combination of two or more. Among these, from the viewpoint of ensuring strength, a photocurable acrylic resin and a photocurable urethane (meth) acrylate are preferable.
  • the “photocurable resin” includes a resin that is cured by active energy rays (ultraviolet rays or electron beams).
  • the base film 2 contains a black pigment so that the side surface in the thickness direction is black. Thereby, the base film 2 is difficult for incident light to pass through the base film 2.
  • the thickness dimension of the base film 2 can be set as appropriate, it is set to a value in the range of 1 ⁇ m to 188 ⁇ m.
  • the thickness dimension of the base film 2 of this embodiment is larger than the maximum thickness dimension of the light shielding layer 3.
  • the thickness dimension of the base film 2 may be smaller than the maximum thickness dimension of the light shielding layer 3.
  • an adhesive layer for improving the adhesion to the light shielding layer 3 may be provided on the surface of the base film 2. That is, the base film 2 may have a resin layer and an adhesive layer disposed on the resin layer.
  • the light shielding layer 3 includes black fine particles 5, a binder resin 6, and a photoactive compound that activates a polymerization initiator of a precursor of the binder resin 6 by light irradiation.
  • the precursor of the binder resin 6 is polymerized by a radical polymerization reaction.
  • the polymerization initiator is activated by the photoactive compound to initiate this polymerization reaction.
  • the binder resin 6 is a photocurable resin. That is, the light shielding layer 3 is formed by curing the binder resin 6 that is a photocurable resin.
  • the binder resin 6 include the same photo-curable resin as that of the base film 2. By including such a photocurable resin, the light shielding layer 3 of the light shielding film 1 has a pencil hardness set to a value of 2H or higher and an optical density set to a value of 5.0 or higher.
  • black fine particles 5 are dispersed and arranged.
  • the black fine particles 5 include carbon black, lamp black, vine black, peach black, bone charcoal, carbon nanotube, silver oxide, zinc oxide, magnetite type triiron tetroxide, copper and chromium composite oxide, copper, chromium, Zinc complex oxide, black glass and the like can be mentioned. Since the light shielding layer 3 includes the black fine particles 5, the optical density in the range of wavelengths from 380 nm to 780 nm is set to a value of 5.0 or more.
  • the optical density of the light-shielding layer 3 is a value of 5.0 or more in the range of wavelengths from 380 nm to 780 nm, the light-shielding property of the light-shielding layer 3 is favorably prevented from being deteriorated.
  • the photoactive compound is a compound that generates thiol by at least one selected from active energy rays, acids and bases.
  • the photoactive compound includes a compound (A1) that generates thiol with active energy rays, a compound (A2) that generates thiol with an acid, and a compound (A3) that generates thiol with a base.
  • the compound (A1) has a thiol group with a protecting group having an absorption region at a wavelength of 200 nm to 800 nm, or a methyl group in which at least one hydrogen atom is substituted with an organic group having an absorption region at a wavelength of 300 nm to 800 nm.
  • Protected compounds are included. Examples thereof include tris ⁇ S- (9-methylfluorenyl) ⁇ thiocyanuric acid and S-benzyl-3-mercapto-1,2,4-triazole.
  • Compound (A2) includes a compound in which a thiol group is protected by a protecting group that is decomposed by an acid.
  • a protecting group that is decomposed by an acid.
  • S-acetylthiourea, S-benzoyl-2-mercaptobenzimidazole, S- (2-pyridinylethyl-2-mercaptopyrimidine, S- (t-butoxycarbonyl) -4,6-dimethyl-2-mercaptopyrimidine, etc. Can be mentioned.
  • Compound (A3) includes a compound in which a thiol group is protected by a protecting group that is decomposed by a base. Examples include 2-mercaptobenzimidazole disulfide, thiocyanuric acid disulfide, and S- (9-fluorenylmethyl) -5-mercapto-1-methyltetrazole.
  • photoactive compounds that generate thiol by at least one selected from active energy rays, acids and bases, from the viewpoint of thiol generation efficiency preferred are those represented by the following general formulas (1) to (4). It is a compound. (A) may be used individually by 1 type, and may use 2 or more types together.
  • R1 to R3 and R5 to R8 are each independently a hydrogen atom or a monovalent hydrocarbon group having a value in the range of 1 to 20 carbon atoms, and R4 has 2 to 30 carbon atoms.
  • the compounds represented by the general formulas (1) to (4) have a common skeleton (—S—C ⁇ (N) —N), and by having this skeleton, oxygen inhibition is suppressed. The effect to do becomes high. Thereby, sclerosis
  • the light-shielding layer 3 contains a photoactive compound with a value in the range of 0.1 wt% to 5 wt%, for example. More preferably, the light-shielding layer 3 contains the photoactive compound in a value in the range of 1 wt% to 4 wt%.
  • the photoactive compound activates the polymerization initiator dispersed in the precursor of the binder resin 6 when the light shielding layer 3 is manufactured. For this reason, even if the polymerization initiator is not directly irradiated with light, the polymerization initiator is activated when the photoactive compound is irradiated with light.
  • the thickness dimension of the light shielding layer 3 can be set as appropriate, it can be set to a value in the range of 1 ⁇ m to 20 ⁇ m. As an example, the thickness dimension of the light shielding layer 3 is set to a value in the range of 3 ⁇ m to 10 ⁇ m.
  • the black fine particles 5 of the present embodiment are spherical, and the primary particle size is set to a value in the range of 10 nm to 500 nm.
  • the surface resistance value of the light shielding layer 3 is set to a value of 1 ⁇ 10 12 ⁇ / ⁇ or less. By setting the surface resistance value of the light shielding layer 3 to 1 ⁇ 10 13 ⁇ / ⁇ or more, the light shielding film 1 can be suitably used as an insulating member.
  • Irregularities are formed on the surface 3 a of the light shielding layer 3.
  • the surface 3a of the light shielding layer 3 has antiglare property.
  • the irregularities formed on the surface 3a of the light shielding layer 3 are formed by transferring the irregularities on the surface 4a of the original pattern 4 during the production of the light shielding film 1, as will be described later. Thereby, the reflection of external light is suppressed on the surface 3 a of the light shielding layer 3.
  • the light shielding layer 3 has antiglare properties by performing the following settings.
  • the light shielding layer 3 has a glossiness of 20% or less at an incident angle of 85 degrees on the surface 3a.
  • the arithmetic average roughness (Ra) of the surface 3a is set to a value in the range of 0.03 ⁇ m to 3.0 ⁇ m.
  • the arithmetic average roughness (Sa) of the surface 3a is set to a value in the range of 0.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the light shielding layer 3 can be manufactured comparatively easily by setting the arithmetic average roughness (Ra) of the surface 3a of the light shielding layer 3 to a value of 3.0 ⁇ m or less.
  • the primary particle size As for the primary particle size, a photograph of the particle surface magnified 100,000 times with a field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd.) is taken, and the enlarged photo is further enlarged as necessary. And it can measure as an average particle diameter of the number using a ruler, a caliper, etc. about 50 or more particle
  • JSM-6700F field emission scanning electron microscope
  • optical density in the range of wavelengths from 380 nm to 780 nm is measured by irradiating the sample with a vertically transmitted light beam using an optical densitometer (“X-Rite 341C” manufactured by VideoJet X-Rite Co., Ltd.). It is possible to express the ratio to the state where there is no log in log (logarithm).
  • the light flux width can be measured as a circle having a diameter of 2 mm.
  • the glossiness is JLS It is a value measured by a measuring method based on K7105.
  • the arithmetic average roughness (Ra) is a center line average surface roughness, and is a value calculated according to the definition of JIS B 0601 (1994 edition).
  • the light-shielding layer 3 contains a photoactive compound that activates the polymerization initiator of the precursor of the binder resin 6 by light irradiation. Even when the light is shielded from light, the photoinitiator irradiated with light can activate the polymerization initiator to promote the polymerization of the precursor of the photocurable binder resin 6. Thereby, while having the unevenness
  • the light shielding layer 3 has a glossiness at an incident angle of 85 degrees on the surface 3a set to a value of 20% or less, the surface 3a of the light shielding layer 3 is provided with excellent low glossiness (anti-reflection effect). The incident light incident on the surface 3a of the light shielding layer 3 can be scattered more satisfactorily.
  • the content of inorganic fine particles other than the black fine particles 5 or the content of organic fine particles is set to a value in the range of 0 wt% to 10 wt%.
  • the light shielding layer 3 is colored in colors, such as white, by inorganic fine particles other than the black fine particles 5, or organic fine particles. Therefore, it can prevent that the light-shielding property of the light shielding layer 3 falls with these fine particles.
  • the abrasion resistance of the light shielding layer 3 contains these microparticles
  • the light shielding layer 3 can exhibit antiglare properties without using inorganic fine particles other than the black fine particles 5 or organic fine particles, the black light shielding film 1 with less whiteness can be realized. Thereby, it can suppress that the unnecessary light from the light shielding film 1 injects into the lens of an optical instrument, for example.
  • the arithmetic mean roughness (Ra) on the surface 3a of the light shielding layer 3 is set to a value in the range of 0.03 ⁇ m or more and 3.0 ⁇ m or less, the surface 3a of the light shielding layer 3 can be provided with fine irregularities. The incident light incident on the surface 3a can be scattered even better.
  • the black fine particles 5 of the present embodiment are spherical and the primary particle size is set to a value in the range of 10 nm to 500 nm, the black fine particles 5 can be uniformly dispersed inside the light shielding layer 3. In addition, uniform light shielding properties can be obtained in the entire light shielding layer 3. In another example, since the black fine particles 5 are Kahn nanotubes, the selection range of materials for the black fine particles 5 can be expanded.
  • the optical density of the light shielding layer 3 in the wavelength range of 380 nm to 780 nm is set to a value of 5.0 or more, and the surface resistance value of the light shielding layer 3 is set to a value of 1 ⁇ 10 12 ⁇ / ⁇ or less. Therefore, the light shielding layer 3 can be provided with a high light shielding property, and the electrical resistance value of the light shielding layer 3 can be adjusted more appropriately, so that impurities such as dust adhere to the light shielding layer due to charging of the light shielding layer. It can prevent well.
  • the light shielding film 1 includes the base film 2, the light shielding layer 3 can be favorably supported by the base film 2. Moreover, while being able to adjust the thickness dimension of the light shielding film 1 easily, the handling can be improved. Thereby, for example, the light shielding film 1 can be easily disposed between the plurality of optical members of the optical device.
  • the light shielding film 1 can adjust the thickness dimension of the light shielding film 1 appropriately, and also improves the handling more favorably. Can be made.
  • the light shielding layer 3 of the light shielding film 1 has a pencil hardness of 2H or more and an optical density of 5.0 or more, so that the light shielding layer has excellent hardness and light shielding properties. 3 can be obtained.
  • FIG. 2 is a manufacturing flow diagram of the light shielding film 1 of FIG.
  • FIG. 3 is a diagram showing a state of manufacturing the light shielding film 1 of FIG.
  • the manufacturing method of the light shielding film 1 has preparation step S1, deposition step S2, hardening step S3, and peeling step S4.
  • the light shielding film 1 is manufactured by sequentially performing steps S1 to S4.
  • steps S1 to S5 will be described in detail.
  • the operator prepares an uncured material 30 as a material for the light shielding layer 3.
  • the uncured material 30 includes black fine particles 5, a precursor of a photocurable binder resin 6, a polymerization initiator of the precursor of the binder resin 6, and a photoactive compound that activates the polymerization initiator by light irradiation. Including.
  • the operator prepares the uncured material 30 so as to have fluidity suitable for coating by mixing these materials and adding a solvent. Thereby, preparation step S1 is performed.
  • the operator uniformly applies the uncured material 30 to one surface of the base film 2. Thereafter, the volatile components of the uncured material 30 are partially removed by applying hot air to the surface of the uncured material 30.
  • the operator attaches the surface 4a of the prototype 4 having the antiglare property to the surface 4a due to the formation of irregularities on the surface of the uncured material 30 supported by the base film 2.
  • a light-transmitting prototype film having a surface 4 a is used as the prototype 4. Thereby, the deposition step S2 is performed.
  • the surface 4a of the prototype 4 has a fine uneven shape.
  • the prototype 4 of the present embodiment includes a plurality of resin components, and has a fine concavo-convex shape including a sea-island structure formed by phase separation of the plurality of resin components.
  • the shape of the surface 4 a of the prototype 4 is transferred to the surface 3 a of the light shielding layer 3. That is, the antiglare property imparted to the surface 3 a of the light shielding layer 3 is set by the shape of the surface 4 a of the prototype 4.
  • the operator irradiates the uncured material 30 supported by the base film 2 through the prototype 4 (in this case, ultraviolet (UV) irradiation) (FIG. 3).
  • the uncured material 30 is photocured in a state where the uncured material 30 is applied to the surface 4a of the prototype 4, and the light shielding layer 3 in which the shape of the surface 4a of the prototype 4 is transferred to the surface 3a is formed.
  • the curing step S3 is performed.
  • the photoactive compound contained in the uncured material 30 activates the polymerization initiator dispersed in the uncured material 30 when irradiated with light. For this reason, even if the polymerization initiator is not directly irradiated with light, the polymerization initiator is activated by the photoactive compound. Therefore, the precursor of the binder resin 6 is well polymerized and cured while preventing the polymerization reaction from being hindered by the black fine particles 5.
  • the polymerization reaction of the precursor of the binder resin 6 is a radical polymerization reaction
  • radicals can be generated efficiently by using a photoactive compound, and the binder resin 6 can be obtained at a relatively high curing rate.
  • the photoactive compound acts on the polymerization initiator, it can be applied to a wide variety of monomers that are precursors of the binder resin 6. For this reason, the design freedom of the light shielding layer 3 can be raised.
  • the operator peels the original pattern 4 from the surface 3 a of the cured light shielding layer 3. Thereby, peeling step S4 is performed.
  • the light shielding film 1 is obtained.
  • the uncured material 30 includes a photoactive compound that activates the polymerization initiator of the precursor of the binder resin 6 by light irradiation. Therefore, even when the polymerization initiator is shielded from light by the black fine particles 5, the polymerization initiator is activated by the photoactive compound irradiated with light to promote polymerization of the precursor of the photocurable binder resin 6. Can do. Thereby, while having the unevenness
  • the light-shielding film 1 can be efficiently manufactured by irradiating the uncured material 30 with light through, for example, the original film by using a light-transmitting original film as the original 4.
  • the prototype 4 is a film, it is easy to handle, and the prototype 4 can be easily peeled off from the light shielding layer 3.
  • the surface 4a of the prototype 4 is deposited on the uncured material 30 in a state where the uncured material 30 is applied to at least one surface of the base film 2, and cured after the curing step S3. Since the light-shielding layer 3 is peeled off from the master 4, the light-shielding film 1 having the light-shielding layer 3 supported by the base film 2 and having the unevenness of the surface 4 a of the master 4 transferred to the surface 3 a can be manufactured with accurate and stable quality. .
  • a prototype film including a plurality of resin components and having a sea-island structure formed by phase separation of the plurality of resin components is used as the prototype 4.
  • the irregularities due to the sea-island structure can be transferred to the surface of the light shielding layer 3 with high accuracy.
  • the light shielding film 1 which has the outstanding anti-glare property can be manufactured by using the original film which has the sea-island structure formed by the phase separation of several resin component.
  • the cured light shielding layer 3 is peeled off from the original pattern 4, so that the light shielding film 1 having the light shielding layer 3 supported by the base film 2 and having the unevenness of the surface 4a of the original pattern 4 transferred to the surface 3a. Can be manufactured satisfactorily.
  • the light-shielding film is composed only of the light-shielding layer 3.
  • the light shielding film is obtained, for example, by peeling the master 4 and the base film 2 from the light shielding layer 3 in the peeling step S4.
  • FIG. 4 is a cross-sectional view of the light shielding film 11 according to the second embodiment.
  • the light shielding film 11 includes a base film 2 and a pair of light shielding layers 3 disposed on both sides of the base film 2.
  • Each of the pair of light shielding layers 3 is disposed with the surface 3a facing away from the base film 2 side (that is, the outside of the light shielding film 11).
  • the pair of light shielding layers 3 of the light shielding film 11 is manufactured by performing steps S2 to S4 of the first embodiment on each surface of the base film 2 at the time of manufacturing.
  • both surfaces of the light shielding film 11 have anti-glare properties, for example, in an optical device in which light passes in the reciprocating direction of the optical path, even when the light shielding film 11 is disposed near the middle of the optical path, Good light-shielding properties and anti-glare properties can be exhibited.
  • FIG. 5 is a cross-sectional view of the light shielding film 21 according to the third embodiment.
  • the light shielding film 21 has antiglare properties on both surfaces (first surface 21 a and second surface 21 b).
  • the light shielding film 21 has the same composition as the light shielding layer 3.
  • the surface shapes of the first surface 21a and the second surface 21b are similar to each other.
  • the light-shielding film 21 having such a configuration can reduce the thickness dimension while ensuring excellent strength due to the photocurable resin. Accordingly, when the light shielding film 21 is disposed between a plurality of lenses at the time of manufacturing the optical device, the light shielding film 21 has good scratch resistance, so that the yield can be improved and the optical device can be downsized. be able to.
  • FIG. 6 is a diagram showing a state of manufacturing the light shielding film 21 of FIG.
  • the pair of prototypes 4 are arranged with the surfaces 4 a facing each other, and the uncured material 30 is sandwiched between the pair of prototypes 4.
  • the deposition step S ⁇ b> 2 is performed on both surfaces of the uncured material 30.
  • the uncured material 30 is irradiated with light from the outside of the pair of prototypes 4 to be cured.
  • the curing step S3 is performed on both surfaces of the uncured material 30.
  • the light shielding film 21 is obtained by performing peeling step S4 which peels and removes a pair of original pattern 4.
  • one of the pair of prototypes 4 can also be used as a support member that supports the uncured material 30 when the light shielding film 21 is manufactured.
  • the uncured material 30 is applied to the surface of a support member that is one of the pair of prototypes 4, and the uncured material 30 is supported on the uncured material 30 in a state where the uncured material 30 is supported by the support member.
  • the surface 4a of the prototype 4 which is the other of the pair of prototypes 4 is attached.
  • a peeling step S4 for peeling the cured light shielding layer (that is, the light shielding film 21) from the master 4 and the support member is performed. Thereby, the light shielding film 21 is obtained.
  • the light shielding film 21 including the light shielding layer in which the unevenness of the surface 4a of the prototype 4 is transferred to the surface 3a.
  • the uncured material 30 can be supported by the support member in the deposition step S2 and the curing step S3, the light shielding film 21 can be efficiently manufactured.
  • the support member may be subjected to a peeling treatment.
  • the surface 4a of the prototype 4 has antiglare properties.
  • a plurality of sea-island structures are formed on the surface 4a of the prototype 4 by phase separation of a plurality of resin components.
  • the sea-island structure is branched and forms a sea-island structure in a dense state.
  • the prototype 4 exhibits antiglare properties due to a plurality of sea-island structure parts and recesses located between adjacent sea-island structure parts.
  • the surface 4a of the prototype 4 has a network structure, that is, a plurality of irregular loop structures that are continuous or partially missing, by forming the sea-island structure portion in a substantially mesh shape.
  • the surface 4a of the prototype 4 has one or more sea-island structures having a predetermined length per 1 mm 2 .
  • the length dimension of this sea-island structure part is set to a value of 100 ⁇ m or more.
  • a value of the length dimension of the sea-island structure portion for example, a value of 200 ⁇ m or more is more preferable, and a value of 500 ⁇ m or more is more preferable.
  • a plurality of sea-island structure portions may exist, but when the entire surface 4a has a sea-island structure, the number of sea-island structure portions on the surface 4a may be one.
  • the meshes having the same diameter are arranged in an irregular shape.
  • the average diameter of the mesh of the sea-island structure (when the mesh of the sea-island structure is an anisotropic shape such as an ellipse or a rectangle) is set to a value in the range of 1 ⁇ m to 70 ⁇ m, for example. Has been.
  • the average diameter value is more preferably in the range of 2 ⁇ m to 50 ⁇ m, and still more preferably in the range of 5 ⁇ m to 30 ⁇ m. In another example, the average diameter value is more preferably in the range of 1 ⁇ m to 40 ⁇ m, more preferably in the range of 3 ⁇ m to 35 ⁇ m, and still more preferably in the range of 10 ⁇ m to 30 ⁇ m.
  • the shape of the sea-island structure portion when the surface 4a is viewed in plan is a string shape having a curved portion at least partly.
  • the average width of the sea-island structure portion is set to a value in the range of 0.1 ⁇ m to 30 ⁇ m.
  • a value in the range of 0.1 ⁇ m to 20 ⁇ m is more preferable, a value in the range of 0.1 ⁇ m to 15 ⁇ m is more preferable, and 0.1 ⁇ m to 10 ⁇ m (especially A value in the range of 0.1 ⁇ m or more and 5 ⁇ m or less is more preferable.
  • the value of the average width of the sea-island structure is more preferably in the range of 1.0 ⁇ m to 20 ⁇ m, more preferably in the range of 1.0 ⁇ m to 15 ⁇ m, and more preferably 1.0 ⁇ m to 10 ⁇ m. Values in the following ranges are more preferred. If the average width is too small, the antiglare property may be lowered.
  • the average height of the sea-island structure is set to a value in the range of 0.05 ⁇ m to 10 ⁇ m, for example.
  • the value of the average height of the sea-island structure is more preferably in the range of 0.07 ⁇ m to 5 ⁇ m, and more preferably in the range of 0.09 ⁇ m to 3 ⁇ m (particularly 0.1 ⁇ m to 2 ⁇ m). preferable.
  • the occupied area of the sea-island structure portion on the surface 4a is set to a value in the range of 10% to less than 100% of the total surface area of the surface 4a, for example.
  • a value in the range of 30% or more and less than 100% of the total surface area of the surface 4a is more preferable, and 50% or more and less than 100% of the total surface area of the surface 4a ( A value in the range of 70% or more and less than 100% is more preferable.
  • a value in the range of 70% or more and less than 100% is more preferable.
  • each of the above-described average value, average width, and average height is a value obtained by averaging measured values measured at arbitrary 10 or more positions on the surface 4a.
  • the surface 4a of the prototype 4 is prevented from forming a lens-like (sea-island-shaped) convex portion due to the formation of a sea-island structure.
  • the shape of the surface 4a of the original pattern 4 is transferred to the surface 3a of the light shielding layer 3 in the first embodiment and its modification and the surfaces 21a and 21b of the light shielding film 21 in the second embodiment.
  • the phase separation and the sea-island structure of the prototype 4 are formed by performing spinodal decomposition (wet spinodal decomposition) from the liquid phase using a predetermined raw material solution.
  • spinodal decomposition wet spinodal decomposition
  • Japanese Patent No. 6190581 can be referred to, for example.
  • the plurality of resin components included in the prototype 4 may be anything that can be phase-separated, but from the viewpoint of obtaining the prototype 4 in which the sea-island structure portion is formed and having high scratch resistance, a polymer and a curable resin are used. It is preferable to include.
  • thermoplastic resins include styrene resins, (meth) acrylic resins, organic acid vinyl ester resins, vinyl ether resins, halogen-containing resins, olefin resins (including alicyclic olefin resins), polycarbonate resins, Polyester resin, polyamide resin, thermoplastic polyurethane resin, polysulfone resin (polyethersulfone, polysulfone, etc.), polyphenylene ether resin (2,6-xylenol polymer, etc.), cellulose derivatives (cellulose esters, cellulose carbamate) , Cellulose ethers, etc.), silicone resins (polydimethylsiloxane, polymethylphenylsiloxane, etc.), rubbers or elastomers (diene rubbers such as polybutadiene, polyisoprene, styrene-butadiene copo
  • polymer examples include those having a functional group involved in the curing reaction or a functional group that reacts with the curable compound. This polymer may have a functional group in the main chain or side chain.
  • Examples of the functional group include a condensable group and a reactive group (for example, a hydroxyl group, an acid anhydride group, a carboxyl group, an amino group or an imino group, an epoxy group, a glycidyl group, an isocyanate group), and a polymerizable group (for example, C2-6 alkenyl groups such as vinyl, propenyl, isopropenyl, butenyl and allyl groups, C2-6 alkynyl groups such as ethynyl, propynyl and butynyl groups, C2-6 alkenylidene groups such as vinylidene groups, or polymerizable groups thereof. Examples thereof include a group having (meth) acryloyl group and the like. Of these functional groups, a polymerizable group is preferable.
  • the prototype 4 may contain a plurality of types of polymers. Each of these polymers may be phase-separable by spinodal decomposition from the liquid phase, or may be incompatible with each other.
  • the combination of the first polymer and the second polymer included in the plurality of types of polymers is not particularly limited, but those incompatible with each other near the processing temperature can be used.
  • the first polymer is a styrene resin (polystyrene, styrene-acrylonitrile copolymer, etc.)
  • examples of the second polymer include cellulose derivatives (eg, cellulose esters such as cellulose acetate propionate), ( (Meth) acrylic resins (polymethyl methacrylate, etc.), alicyclic olefin resins (polymers containing norbornene as a monomer), polycarbonate resins, polyester resins (poly C2-4 alkylene arylate copolyester, etc.) ) Etc.
  • the first polymer is a cellulose derivative (for example, cellulose esters such as cellulose acetate propionate)
  • examples of the second polymer include styrene resins (polystyrene, styrene-acrylonitrile copolymer, etc.), Examples thereof include (meth) acrylic resins, alicyclic olefin resins (polymers having norbornene as a monomer), polycarbonate resins, polyester resins (poly C2-4 alkylene arylate copolyesters, and the like).
  • the plurality of types of polymers may contain at least cellulose esters (for example, cellulose C2-4 alkyl carboxylic acid esters such as cellulose diacetate, cellulose triacetate, cellulose acetate propionate, and cellulose acetate butyrate). .
  • cellulose esters for example, cellulose C2-4 alkyl carboxylic acid esters such as cellulose diacetate, cellulose triacetate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the precursor of the curable resin contained in a plurality of resin components is cured by active energy rays (such as ultraviolet rays or electron beams) or heat when the prototype 4 is manufactured. It is fixed by doing. Moreover, scratch resistance is imparted to the prototype 4 by such a curable resin.
  • At least one polymer contained in the plural types of polymers is a polymer having a functional group capable of reacting with the curable resin precursor in the side chain.
  • a thermoplastic resin or other polymer may be included in addition to the two incompatible polymers described above.
  • the weight ratio M1 / M2 between the weight M1 of the first polymer and the weight M2 of the second polymer and the glass transition temperature of the polymer can be set as appropriate.
  • the curable resin precursor has a functional group that reacts with active energy rays (such as ultraviolet rays or electron beams) or heat, and is cured or crosslinked with this functional group to give a resin (particularly a curable resin or a crosslinked resin).
  • active energy rays such as ultraviolet rays or electron beams
  • heat a functional group that reacts with this functional group to give a resin (particularly a curable resin or a crosslinked resin).
  • the curable compound to form can be illustrated.
  • thermosetting compounds or thermosetting resins epoxy groups, polymerizable groups, isocyanate groups, alkoxysilyl groups, silanol groups, etc., low molecular weight compounds (eg, epoxy resins, unsaturated polyesters). Resins, urethane resins, silicone resins, etc.)), photocurable (ionizing radiation curable) compounds (UV curable compounds such as photocurable monomers and oligomers) that are cured by ultraviolet rays, electron beams, etc. .
  • thermosetting resins epoxy groups, polymerizable groups, isocyanate groups, alkoxysilyl groups, silanol groups, etc.
  • low molecular weight compounds eg, epoxy resins, unsaturated polyesters.
  • Resins, urethane resins, silicone resins, etc. Resins, urethane resins, silicone resins, etc.
  • photocurable (ionizing radiation curable) compounds UV curable compounds such as photocurable monomers and oligo
  • the curable resin precursor include a photocurable compound that is cured in a short time by ultraviolet rays, electron beams, or the like. Of these, UV curable compounds are particularly practical.
  • the photocurable compound preferably has 2 or more (preferably about 2 to 15, more preferably about 4 to 10) polymerizable unsaturated bonds in the molecule.
  • the photocurable compound is an epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, or a polyfunctional monomer having at least two polymerizable unsaturated bonds. Preferably there is.
  • the curable resin precursor may contain a curing agent according to the type.
  • the thermosetting resin precursor may contain a curing agent such as amines and polyvalent carboxylic acids
  • the photocurable resin precursor may contain a photopolymerization initiator.
  • the photopolymerization initiator include conventional components such as acetophenones or propiophenones, benzyls, benzoins, benzophenones, thioxanthones, and acylphosphine oxides.
  • the curable resin precursor may contain a curing accelerator.
  • the photocurable resin precursor may contain a photocuring accelerator, for example, tertiary amines (dialkylaminobenzoic acid ester and the like), a phosphine photopolymerization accelerator, and the like.
  • FIG. 7 is an enlarged cross-sectional view showing a prototype 14 according to the first modification.
  • the prototype 14 includes a matrix resin 15 and a plurality of fine particles 16 dispersed in the matrix resin 15.
  • the fine particles 16 are formed in a true spherical shape, but are not limited thereto, and may be formed in a substantially spherical shape or an ellipsoidal shape.
  • the fine particles 16 are solid, but may be formed hollow. When the fine particles 16 are formed in a hollow shape, the hollow portion of the fine particles may be filled with air or other gas.
  • a plurality of fine particles 16 may be dispersed as primary particles, or a plurality of secondary particles formed by aggregation of the plurality of fine particles 16 may be dispersed.
  • the fine particles 16 have an average particle size set to a value in the range of 0.1 ⁇ m to 10.0 ⁇ m.
  • the average particle diameter of the fine particles 16 is more preferably in the range of 1.0 ⁇ m to 5.0 ⁇ m, and more preferably in the range of 1.0 ⁇ m to 4.0 ⁇ m.
  • the variation in the particle size of the fine particles 16 is small.
  • the average particle size of 50% by weight or more of the fine particles contained in the prototype 14 is within 2.0 ⁇ m. It is desirable that they are housed in variations.
  • the fine particles 16 dispersed in the matrix resin 15 may be either inorganic or organic, but preferably have good transparency.
  • organic fine particles include plastic beads.
  • Plastic beads include styrene beads (refractive index 1.59), melamine beads (refractive index 1.57), acrylic beads (refractive index 1.49), acrylic-styrene beads (refractive index 1.54), polycarbonate beads, Examples thereof include polyethylene beads.
  • the styrene beads may be crosslinked styrene beads, and the acrylic beads may be crosslinked acrylic beads.
  • the plastic beads preferably have a hydrophobic group on the surface. Examples of such plastic beads include styrene beads.
  • Examples of the matrix resin 15 include at least one of a photo-curing resin that is cured by active energy rays, a solvent-drying resin that is cured by drying a solvent added during coating, and a thermosetting resin.
  • the photocurable resin examples include those having an acrylate functional group, such as a polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene having a relatively low molecular weight.
  • examples include oligomers such as resins and (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents.
  • monofunctional monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, and polyfunctional monomers such as polymethylolpropane trichloride.
  • Examples include diol di (meth) acrylate and neopentyl glycol di (meth) acrylate.
  • the photocurable resin is an ultraviolet curable resin
  • a photopolymerization initiator examples include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, tetramethylthiuram monosulfide, and thioxanthones.
  • a photosensitizer for a photocurable resin examples include n-butylamine, triethylamine, and poly-n-butylphosphine.
  • the solvent-drying resin examples include known thermoplastic resins.
  • thermoplastic resin styrene resin, (meth) acrylic resin, vinyl acetate resin, vinyl ether resin, halogen-containing resin, alicyclic olefin resin, polycarbonate resin, polyester resin, polyamide resin, Examples include cellulose derivatives, silicone resins, and rubbers or elastomers.
  • solvent-drying resin a resin that is soluble in an organic solvent and excellent in moldability, film forming property, transparency, and weather resistance is particularly desirable.
  • solvent-drying resins include styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, and cellulose derivatives (cellulose esters and the like).
  • FIG. 8 is an enlarged cross-sectional view showing a prototype 24 according to the second modification.
  • the prototype 24 has a structure in which an uneven shape is formed on the surface 24a.
  • the prototype 24 is made of a resin 17 similar to the matrix resin 15 of the prototype 14.
  • the prototype 4 can be obtained, for example, by applying a predetermined uncured material on the surface of a plate material, shaping the surface of the uncured material into a concavo-convex shape with a mold, and then curing the uncured material.
  • the mold may be other than a roll-shaped mold, for example, a plate-shaped mold (embossed plate). Examples of the material of the mold include metal, plastic, and wood.
  • Unevenness can be formed on the surface of the mold by blasting the surface of the mold with blast particles.
  • blast particles metal, silica, alumina, and glass can be exemplified.
  • the blast particles can be struck against the surface of the mold by, for example, gas or liquid pressure.
  • the average particle size of the blast particles can be set as appropriate, but can be set to a value in the range of 10 ⁇ m to 50 ⁇ m as an example.
  • the average particle size of the blast particles is more preferably in the range of 20 ⁇ m to 45 ⁇ m, and more preferably in the range of 30 ⁇ m to 40 ⁇ m. In this way, uniform and moderate irregularities are formed on the surface of the mold by the blast particles whose particle sizes are relatively uniform and whose average particle size is set in the above range. Therefore, by shaping using this mold, the master 24 having the concavo-convex shape transferred to the surface 24a is obtained.
  • a film made of PET containing a black pigment was used as the base film 2.
  • black fine particles 5 mixed 20 parts of carbon black dispersion (containing 10% by weight of “MHI Black # 273” manufactured by Mikuni Dye Co., Ltd.) and 3 parts of polymerization initiator (“Irgacure 184” manufactured by BASF Corporation)
  • a prototype film having a sea-island structure including a plurality of resin components and formed by phase separation of the plurality of resin components was used as the prototype 4 used for producing Example 1.
  • This prototype film has a film thickness of 50 ⁇ m, a surface arithmetic average roughness (Ra) of 1.5, and a gloss of the surface 4a applied to the surface of the uncured material (surface 3a of the light shielding layer 3) at an incident angle of 20 degrees.
  • the glossiness was 0.0%
  • the glossiness at an incident angle of 60 degrees was 3.0%
  • the glossiness at an incident angle of 85 degrees was 20.0%.
  • a light shielding film 21 shown in FIG. The composition of the light shielding film 21 was the same as that of the light shielding layer 3 of Example 1.
  • the prototype 4 used for producing the light shielding film 21 of Example 2 the same one as the prototype film of Example 1 was used.
  • Example 3 a light-shielding film 1 similar to that of Example 1 is produced as Example 3 except that the glossiness at incident angles of 60 degrees and 85 degrees and the surface roughness (Ra, Sa, Sq) are different from those of Example 1. did.
  • a prototype 4 having a surface shape different from that used in Example 1 was used.
  • thermosetting resin is used as the binder resin.
  • the arithmetic average roughness (Sa) indicates an average of absolute values of height differences of a plurality of points with respect to the average surface.
  • the root mean square height (Sq) corresponds to a parameter of the standard deviation of the distance from the average plane. Table 1 shows the measurement results.
  • CB indicates a light shielding layer
  • base indicates a base film
  • black PET indicates PET containing a black pigment.
  • Example 1 As shown in Table 1, in each of Examples 1 to 3, better results were obtained than in Comparative Examples 1 and 2. In particular, the pencil hardness of Examples 1 and 3 was significantly better than the pencil hardness of Comparative Examples 1 and 2 and was found to have high scratch resistance. As a reason why Examples 1 and 3 have high pencil hardness, it is considered that the light shielding layer 3 contains a photocurable resin.
  • the pencil hardness of Example 2 was the same HB as the pencil hardness of Comparative Example 1. However, since the composition of the light shielding film 21 of Example 2 is the same as the composition of the light shielding layer 3 of Example 1, Example 2 is This is considered to have the same scratch resistance as the light shielding layer 3 of Example 1.
  • each gloss value at an incident angle of 85 degrees in Examples 1 to 3 is significantly lower than each gloss value at an incident angle of 85 degrees in Comparative Examples 1 and 2 and is 20% or less (this test) Was 9.5% or less).
  • the light shielding layer 3 of Examples 1 and 3 and the light shielding film 21 of Example 2 do not contain inorganic fine particles or organic fine particles other than the black fine particles 5. For this reason, it turned out that the light-shielding layer 3 of Examples 1 and 3 and the light-shielding film 21 of Example 2 are colored in a favorable black color while being suppressed from being whitish by visual observation.
  • the values of the surface roughness (Ra, Sa, Sq) of Examples 1 and 2 were both higher than the values of the surface roughness (Ra, Sa, Sq) of Comparative Examples 1 and 2. Moreover, the value of the surface roughness (Ra, Sa, Sq) in Example 3 was almost equal to the value of the surface roughness (Ra, Sa, Sq) in Comparative Examples 1 and 2. From this result, as the prototype 4, by using a prototype film having a sea-island structure that includes a plurality of resin components and is formed by phase separation of a plurality of resin components, the quality of the anti-glare property excellent on the surface of the light-shielding film is stabilized. It was found that it can be granted. Further, it was found that Examples 1 to 3 all had optical densities and surface resistance values equivalent to those of Comparative Examples 1 and 2.
  • the present invention has an excellent effect that a light-shielding film can be satisfactorily produced even when a photocurable resin is used as a binder resin for the light-shielding layer in a light-shielding film having a light-shielding layer having antiglare properties on the surface. Therefore, it is beneficial to widely apply the present invention to a light-shielding film that can exhibit the significance of this effect and a method for producing the light-shielding film.

Abstract

This light-shielding film includes at least one light-shielding layer having black microparticles distributed therein, wherein the light-shielding layer comprises black microparticles, a photocurable binder resin, and a photoactive compound that activates a polymerization initiator of a binder resin precursor by light irradiation, and the surface of the light-shielding layer has an anti-glare property by having protrusions and recesses thereon.

Description

遮光フィルム及び遮光フィルムの製造方法Light-shielding film and method for producing light-shielding film
 本発明は、遮光フィルム及び遮光フィルムの製造方法に関する。 The present invention relates to a light shielding film and a method for producing the light shielding film.
 スマートフォンやデジタルビデオカメラ等の光学機器のシャッター、絞り部材、又は複数のレンズ間に配置されるギャップ調整部材として、例えば特許文献1に開示されるように、遮光フィルムが用いられている。 As a shutter, a diaphragm member, or a gap adjusting member disposed between a plurality of lenses of an optical device such as a smartphone or a digital video camera, a light shielding film is used as disclosed in Patent Document 1, for example.
 遮光フィルムは、例えば、黒色顔料、フィラー粒子、及びバインダー樹脂を含み且つ表面に微細な凹凸が形成された遮光層を備える。遮光層は、入射光を散乱させて写り込みを防止するアンチグレア性と、光学機器内に侵入した外光を遮光する遮光性とを有する。 The light-shielding film includes, for example, a light-shielding layer containing black pigment, filler particles, and a binder resin and having fine irregularities formed on the surface. The light shielding layer has anti-glare properties that prevent incidents by scattering incident light, and light shielding properties that shield external light that has entered the optical device.
特表2010-534342号公報Special table 2010-534342 gazette
 遮光層では、遮光層の厚み調整の容易さや、遮光フィルムの製造時及び取扱い時における耐擦傷性を確保する観点等から、バインダー樹脂として光硬化性樹脂を用いることが望ましい。しかしながら、遮光層に黒色顔料のような遮光性成分が含まれていると、バインダー樹脂として光硬化性樹脂を用いる場合、光照射が不十分となり、バインダー樹脂の前駆体を硬化することが困難になるおそれがある。 In the light-shielding layer, it is desirable to use a photocurable resin as the binder resin from the viewpoint of easy adjustment of the thickness of the light-shielding layer and ensuring scratch resistance during production and handling of the light-shielding film. However, if a light-shielding component such as a black pigment is contained in the light-shielding layer, when a photocurable resin is used as the binder resin, light irradiation becomes insufficient, making it difficult to cure the precursor of the binder resin. There is a risk.
 そこで本発明は、表面にアンチグレア性を有する遮光層を備える遮光フィルムにおいて、遮光層のバインダー樹脂として光硬化性樹脂を用いる場合でも遮光フィルムを良好に製造可能にすることを目的としている。 Therefore, an object of the present invention is to make it possible to satisfactorily manufacture a light-shielding film in a light-shielding film having a light-shielding layer having antiglare properties on the surface even when a photocurable resin is used as a binder resin for the light-shielding layer.
 上記課題を解決するために、本発明の一態様に係る遮光フィルムは、内部に黒色微粒子が分散された少なくとも1つの遮光層を備える遮光フィルムであって、前記遮光層は、前記黒色微粒子と、光硬化性のバインダー樹脂と、光照射により前記バインダー樹脂の前駆体の重合開始剤を活性化させる光活性化合物とを含むと共に、表面に凹凸が形成されていることにより、前記表面がアンチグレア性を有する。 In order to solve the above problems, a light-shielding film according to an aspect of the present invention is a light-shielding film including at least one light-shielding layer in which black fine particles are dispersed, and the light-shielding layer includes the black fine particles, It contains a photocurable binder resin and a photoactive compound that activates a polymerization initiator of the precursor of the binder resin by light irradiation, and the surface has antiglare properties by forming irregularities on the surface. Have.
 上記構成によれば、遮光層が光照射によりバインダー樹脂の前駆体の重合開始剤を活性化させる光活性化合物を含んでいるので、重合開始剤が黒色微粒子により遮光されている場合でも、光照射された光活性化合物により重合開始剤を活性化させて、光硬化性のバインダー樹脂の前駆体を重合促進させることができる。これにより、表面に凹凸が形成されていることでアンチグレア性を有すると共に、光硬化性樹脂を含む遮光層を備える遮光フィルムを良好に製造できる。 According to the above configuration, since the light shielding layer contains the photoactive compound that activates the polymerization initiator of the binder resin precursor by light irradiation, light irradiation is performed even when the polymerization initiator is shielded from light by the black fine particles. The polymerization initiator can be activated by the photoactive compound thus prepared to promote polymerization of the precursor of the photocurable binder resin. Thereby, while having an unevenness | corrugation in the surface, while having anti-glare property, a light shielding film provided with the light shielding layer containing a photocurable resin can be manufactured favorably.
 前記遮光層の前記表面の入射角85度における光沢度が、20%以下の値に設定されていてもよい。これにより、遮光層の表面に優れた低光沢性(写り込み防止性)を付与でき、遮光層の表面に入射した入射光を更に良好に散乱できる。 The glossiness at an incident angle of 85 degrees on the surface of the light shielding layer may be set to a value of 20% or less. As a result, the surface of the light shielding layer can be provided with excellent low glossiness (anti-reflection), and incident light incident on the surface of the light shielding layer can be scattered more favorably.
 前記遮光層は、前記黒色微粒子以外の無機微粒子の含有量、又は、有機微粒子の含有量が、0重量%以上10重量%以下の範囲の値に設定されていてもよい。これにより、黒色微粒子以外の無機微粒子、又は、有機微粒子によって、遮光層が白色等の色に着色されるのを防止できる。よって、遮光層の遮光性がこれらの微粒子により低下するのを防止できる。また、遮光層の耐擦傷性がこれらの微粒子を含むことで低下するのを防止できるので、例えば、光学機器の内部に遮光層の一部が欠落して混入するのを防止できる。 In the light shielding layer, the content of inorganic fine particles other than the black fine particles or the content of organic fine particles may be set to a value in the range of 0 wt% to 10 wt%. Thereby, it is possible to prevent the light shielding layer from being colored in a color such as white by inorganic fine particles other than black fine particles or organic fine particles. Therefore, it can prevent that the light-shielding property of a light shielding layer falls by these microparticles | fine-particles. Moreover, since it can prevent that the abrasion resistance of a light shielding layer contains these microparticles | fine-particles, it can prevent that a part of light shielding layer is missing and mixed in the inside of an optical apparatus, for example.
 前記遮光層の前記表面における算術平均粗さ(Ra)が、0.03μm以上3.0μm以下の範囲の値に設定されていてもよい。これにより、遮光層の表面に微細な凹凸を付与でき、該表面における入射光を更に一層良好に散乱できる。 The arithmetic average roughness (Ra) on the surface of the light shielding layer may be set to a value in the range of 0.03 μm to 3.0 μm. Thereby, fine unevenness | corrugation can be provided to the surface of a light shielding layer, and incident light in this surface can be scattered still more favorably.
 前記黒色微粒子は球状であり、一次粒径が、10nm以上500nm以下の範囲の値に設定されていてもよい。これにより、遮光層の内部に黒色微粒子を均一に分散させることができ、遮光層の全体において均一な遮光性を得ることができる。 The black fine particles may be spherical, and the primary particle size may be set to a value in the range of 10 nm to 500 nm. Thereby, the black fine particles can be uniformly dispersed in the light shielding layer, and uniform light shielding properties can be obtained in the entire light shielding layer.
 前記黒色微粒子は、カーボンナノチューブであってもよい。これにより、黒色微粒子としての材料の選択幅を広げることができる。 The black fine particles may be carbon nanotubes. Thereby, the selection range of the material as black fine particles can be expanded.
 前記遮光層の波長380nm以上780nm以下の範囲の値における光学濃度が、5.0以上の値に設定され、前記遮光層の表面抵抗値が、1×1012Ω/□以下の値に設定されていてもよい。このように、遮光層の光学濃度と表面抵抗値とを上記各所定値に設定することで、遮光層に高い遮光性を付与できると共に、遮光層の電気抵抗値を更に適切に調整でき、埃等の不純物が遮光層の帯電により遮光層に付着するのを一層良好に防止できる。 The optical density of the light shielding layer in the wavelength range of 380 nm to 780 nm is set to a value of 5.0 or more, and the surface resistance value of the light shielding layer is set to a value of 1 × 10 12 Ω / □ or less. It may be. In this way, by setting the optical density and the surface resistance value of the light shielding layer to the predetermined values, it is possible to impart high light shielding properties to the light shielding layer and to further appropriately adjust the electric resistance value of the light shielding layer, It is possible to better prevent the impurities such as adhering to the light shielding layer due to charging of the light shielding layer.
 表面に前記遮光層に接して配置された基材フィルムを更に備えていてもよい。これにより、遮光層を基材フィルムにより良好に支持できる。また、遮光フィルムの厚み寸法を容易に調整できると共に、そのハンドリングを向上させることができる。 A base film disposed on the surface in contact with the light shielding layer may be further provided. Thereby, a light shielding layer can be favorably supported by a base film. Moreover, while being able to adjust the thickness dimension of a light shielding film easily, the handling can be improved.
 前記基材フィルムの厚み寸法が、1μm以上188μm以下の範囲の値に設定されていてもよい。これにより、遮光フィルムの厚み寸法を適切に調整できると共に、そのハンドリングを更に良好に向上させることができる。 The thickness dimension of the base film may be set to a value in the range of 1 μm to 188 μm. Thereby, while being able to adjust the thickness dimension of a light shielding film appropriately, the handling can be improved further more favorably.
 本発明の一態様における遮光フィルムは、内部に黒色微粒子が分散された少なくとも1つの遮光層を備える遮光フィルムであって、前記遮光層は、鉛筆硬度が2H以上の値に設定され、且つ、光学濃度が5.0以上の値に設定されている。これにより、優れた硬度と遮光性とを有する遮光層を備える遮光フィルムを得ることができる。 The light-shielding film according to an aspect of the present invention is a light-shielding film including at least one light-shielding layer in which black fine particles are dispersed. The light-shielding layer has a pencil hardness set to a value of 2H or more, and is optical. The density is set to a value of 5.0 or more. Thereby, a light shielding film provided with the light shielding layer which has the outstanding hardness and light-shielding property can be obtained.
 本発明の一態様における遮光フィルムの製造方法は、黒色微粒子と、光硬化性のバインダー樹脂の前駆体と、前記バインダー樹脂の前駆体の重合開始剤と、光照射により前記重合開始剤を活性化させる光活性化合物とを含む未硬化材料を、凹凸が形成されていることにより表面がアンチグレア性を有する原型の前記表面に被着させる被着ステップと、前記未硬化材料を前記原型の前記表面に被着させた状態で光硬化させることにより、表面に前記原型の前記表面の形状が転写された遮光層を形成する硬化ステップと、を有する。 In one embodiment of the present invention, a method for producing a light-shielding film includes: black fine particles; a precursor of a photocurable binder resin; a polymerization initiator of the precursor of the binder resin; and activation of the polymerization initiator by light irradiation. A deposition step of depositing an uncured material containing a photoactive compound on the surface of the prototype having an anti-glare surface by forming irregularities; and the uncured material on the surface of the prototype And a curing step of forming a light-shielding layer on the surface of which the shape of the surface of the original is transferred by photocuring in a deposited state.
 上記方法の被着ステップと硬化ステップとによれば、未硬化材料が光照射によりバインダー樹脂の前駆体の重合開始剤を活性化させる光活性化合物を含んでいるので、重合開始剤が黒色微粒子により遮光されている場合でも、光照射された光活性化合物により重合開始剤を活性化させて、光硬化性のバインダー樹脂の前駆体を重合促進させることができる。これにより、表面に凹凸が形成されていることでアンチグレア性を有すると共に、光硬化性樹脂を含む遮光層を備える遮光フィルムを良好に製造できる。 According to the deposition step and the curing step of the above method, since the uncured material contains a photoactive compound that activates the polymerization initiator of the precursor of the binder resin by light irradiation, the polymerization initiator is composed of black fine particles. Even when light is shielded from light, the photoinitiator irradiated with light can activate the polymerization initiator to accelerate the polymerization of the photocurable binder resin precursor. Thereby, while having an unevenness | corrugation in the surface, while having anti-glare property, a light shielding film provided with the light shielding layer containing a photocurable resin can be manufactured favorably.
 前記被着ステップでは、前記原型として、光透過性の原型フィルムを用いてもよい。これにより、例えば、原型フィルムを介して未硬化材料を光照射することで、遮光フィルムを効率よく製造できる。また、原型がフィルムであるため取扱いが容易であり、遮光層から原型を剥離し易くすることができる。 In the deposition step, a light-transmitting prototype film may be used as the prototype. Thereby, for example, a light-shielding film can be efficiently manufactured by irradiating light with an uncured material through an original film. Moreover, since the prototype is a film, handling is easy, and the prototype can be easily peeled from the light shielding layer.
前記被着ステップでは、前記光透過性の原型フィルムとして、複数の樹脂成分を含み、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いてもよい。 In the deposition step, a prototype film having a sea-island structure including a plurality of resin components and formed by phase separation of the plurality of resin components may be used as the light transmissive prototype film.
 このような原型フィルムを原型として用いることで、遮光層の表面に海島構造による凹凸を高精度で転写できる。また、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いることで、優れたアンチグレア性を有する遮光フィルム1を製造できる。 By using such a prototype film as a prototype, irregularities due to the sea-island structure can be transferred to the surface of the light shielding layer with high accuracy. Moreover, the light shielding film 1 which has the outstanding anti-glare property can be manufactured by using the original film which has the sea-island structure formed by the phase separation of several resin component.
 前記被着ステップでは、前記未硬化材料を支持部材の表面に塗布し、前記未硬化材料を前記支持部材により支持した状態で、前記未硬化材料に前記原型の前記表面を被着させ、前記硬化ステップ後に、前記遮光層を前記原型と前記支持部材とから剥離してもよい。これにより、原型の表面の凹凸が表面に転写された遮光層からなる遮光フィルムを良好に製造できる。
 前記被着ステップでは、前記未硬化材料を基材フィルムの少なくとも一方の面に塗布した状態で、前記未硬化材料に前記原型の前記表面を被着させ、前記硬化ステップ後に、前記遮光層を前記原型から剥離してもよい。これにより、基材フィルムに支持されて原型の表面の凹凸が表面に転写された遮光層を有する遮光フィルムを正確且つ安定した品質で製造できる。
In the depositing step, the uncured material is applied to the surface of a support member, and the uncured material is deposited on the surface of the prototype while the uncured material is supported by the support member, and the curing is performed. After the step, the light shielding layer may be peeled off from the master and the support member. Thereby, the light shielding film which consists of a light shielding layer by which the unevenness | corrugation of the surface of the original was transcribe | transferred to the surface can be manufactured favorably.
In the deposition step, the uncured material is applied to at least one surface of the base film, the surface of the prototype is deposited on the uncured material, and after the curing step, the light shielding layer is You may peel from a prototype. Thereby, the light shielding film which has the light shielding layer by which the unevenness | corrugation of the surface of the original pattern was transcribe | transferred by the surface supported by the base film can be manufactured with exact and stable quality.
 本発明の各態様によれば、表面にアンチグレア性を有する遮光層を備える遮光フィルムにおいて、遮光層のバインダー樹脂として光硬化性樹脂を用いる場合でも遮光フィルムを良好に製造できる。 According to each aspect of the present invention, in a light-shielding film having a light-shielding layer having anti-glare properties on the surface, the light-shielding film can be satisfactorily manufactured even when a photocurable resin is used as a binder resin for the light-shielding layer.
第1実施形態に係る遮光フィルムの断面図である。It is sectional drawing of the light shielding film which concerns on 1st Embodiment. 図1の遮光フィルムの製造フロー図である。It is a manufacturing flowchart of the light shielding film of FIG. 図1の遮光フィルムの製造時の様子を示す図である。It is a figure which shows the mode at the time of manufacture of the light shielding film of FIG. 第2実施形態に係る遮光フィルムの断面図である。It is sectional drawing of the light shielding film which concerns on 2nd Embodiment. 第3実施形態に係る遮光フィルムの断面図である。It is sectional drawing of the light shielding film which concerns on 3rd Embodiment. 図5の遮光フィルムの製造時の様子を示す図である。It is a figure which shows the mode at the time of manufacture of the light shielding film of FIG. 変形例1に係る原型を示す拡大断面図である。10 is an enlarged cross-sectional view showing a prototype according to Modification 1. FIG. 変形例2に係る原型を示す拡大断面図である。10 is an enlarged cross-sectional view showing a prototype according to Modification 2. FIG.
 以下、各実施形態について、図面を参照して説明する。 Hereinafter, each embodiment will be described with reference to the drawings.
 (第1実施形態)
 [遮光フィルム]
 図1は、第1実施形態に係る遮光フィルム1の断面図である。遮光フィルム1は、一例として、光学機器が備える複数の光学部材(レンズ等)間において、光軸を囲むように配置される。遮光フィルム1は、図1に示すように、内部に黒色微粒子5が分散された少なくとも1つの遮光層3を備える。本実施形態の遮光フィルム1は、基材フィルム2と遮光層3とを備える。
(First embodiment)
[Shading film]
FIG. 1 is a cross-sectional view of a light shielding film 1 according to the first embodiment. As an example, the light shielding film 1 is disposed so as to surround the optical axis between a plurality of optical members (lenses and the like) included in the optical device. As shown in FIG. 1, the light shielding film 1 includes at least one light shielding layer 3 in which black fine particles 5 are dispersed. The light shielding film 1 of this embodiment includes a base film 2 and a light shielding layer 3.
 基材フィルム2は、表面に遮光層3に接して配置されている。基材フィルム2は、一例として、黒色顔料を含む樹脂フィルムにより構成されている。これにより、基材フィルム2は黒色に着色されている。なお基材フィルム2は、黒色以外の色(例えば白色)に着色されていてもよいし、透明であってもよい。 The base film 2 is disposed in contact with the light shielding layer 3 on the surface. As an example, the base film 2 is made of a resin film containing a black pigment. Thereby, the base film 2 is colored black. The base film 2 may be colored in a color other than black (for example, white) or may be transparent.
 基材フィルム2が含む樹脂は、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂のいずれでもよい。このうち熱可塑性樹脂としては、例えば、ポリオレフィン、スチレン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、ポリビニルアルコール系樹脂、ポリアセタール、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、フッ素樹脂、セルロース誘導体等が挙げられる。これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。このうち強度確保の観点から、環状ポリオレフィン、ポリアルキレンアリレート(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリメタクリル酸メチル系樹脂、ビスフェノールA型ポリカーボネート、セルロースエステルが好ましい。 The resin included in the base film 2 may be a thermoplastic resin, a thermosetting resin, or a photocurable resin. Among these, as the thermoplastic resin, for example, polyolefin, styrene resin, acrylic resin, vinyl chloride resin, polyvinyl alcohol resin, polyacetal, polyester, polycarbonate, polyamide, polyimide, polysulfone resin, polyphenylene ether resin, polyphenylene Examples thereof include sulfide resins, fluororesins, and cellulose derivatives. These thermoplastic resins can be used alone or in combination of two or more. Among these, from the viewpoint of ensuring strength, cyclic polyolefin, polyalkylene arylate (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polymethyl methacrylate resin, bisphenol A type polycarbonate, and cellulose ester are preferable.
 また熱硬化性樹脂としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、エポキシ樹脂、不飽和ポリエステル、ビニルエステル樹脂、ポリウレタン等が挙げられる。これらの熱硬化性樹脂は、単独で又は二種以上を組み合わせて使用できる。このうち強度確保の観点から、エポキシ樹脂、不飽和ポリエステル、シリコーン樹脂、ポリウレタンが好ましい。 Examples of the thermosetting resin include phenol resin, melamine resin, urea resin, benzoguanamine resin, silicone resin, epoxy resin, unsaturated polyester, vinyl ester resin, and polyurethane. These thermosetting resins can be used alone or in combination of two or more. Of these, epoxy resin, unsaturated polyester, silicone resin, and polyurethane are preferable from the viewpoint of securing strength.
 また光硬化性樹脂としては、例えば、光硬化性ポリエステル、光硬化性アクリル系樹脂、光硬化性エポキシ(メタ)アクリレート、光硬化性ウレタン(メタ)アクリレート等が挙げられる。これらの光硬化性樹脂は、単独で又は二種以上組み合わせて使用できる。このうち強度確保の観点から、光硬化性アクリル系樹脂、光硬化性ウレタン(メタ)アクリレートが好ましい。なお「光硬化性樹脂」とは、活性エネルギー線(紫外線又は電子線等)により硬化する樹脂を含む。 Examples of the photocurable resin include photocurable polyester, photocurable acrylic resin, photocurable epoxy (meth) acrylate, and photocurable urethane (meth) acrylate. These photocurable resins can be used alone or in combination of two or more. Among these, from the viewpoint of ensuring strength, a photocurable acrylic resin and a photocurable urethane (meth) acrylate are preferable. The “photocurable resin” includes a resin that is cured by active energy rays (ultraviolet rays or electron beams).
 基材フィルム2は、黒色顔料を含むことで、厚み方向側面が黒色となる。これにより基材フィルム2は、入射光が基材フィルム2内を通過しにくくなっている。基材フィルム2の厚み寸法は、適宜設定可能であるが、ここでは1μm以上188μm以下の範囲の値に設定されている。本実施形態の基材フィルム2の厚み寸法は、遮光層3の最大厚み寸法よりも大きい。なお基材フィルム2の厚み寸法は、遮光層3の最大厚み寸法より小さくてもよい。 The base film 2 contains a black pigment so that the side surface in the thickness direction is black. Thereby, the base film 2 is difficult for incident light to pass through the base film 2. Although the thickness dimension of the base film 2 can be set as appropriate, it is set to a value in the range of 1 μm to 188 μm. The thickness dimension of the base film 2 of this embodiment is larger than the maximum thickness dimension of the light shielding layer 3. In addition, the thickness dimension of the base film 2 may be smaller than the maximum thickness dimension of the light shielding layer 3.
 また基材フィルム2の表面には、遮光層3との接着性を向上させるための接着層が設けられていてもよい。即ち基材フィルム2は、樹脂層と、樹脂層に重ねて配置された接着層とを有していてもよい。 Further, an adhesive layer for improving the adhesion to the light shielding layer 3 may be provided on the surface of the base film 2. That is, the base film 2 may have a resin layer and an adhesive layer disposed on the resin layer.
 遮光層3は、黒色微粒子5と、バインダー樹脂6と、このバインダー樹脂6の前駆体の重合開始剤を光照射により活性化させる光活性化合物とを含む。バインダー樹脂6の前駆体は、ラジカル重合反応により重合する。重合開始剤は、光活性化合物により活性化されて、この重合反応を開始させる。バインダー樹脂6は、光硬化性樹脂である。即ち遮光層3は、光硬化性樹脂であるバインダー樹脂6が硬化することで形成されている。バインダー樹脂6としては、例えば、基材フィルム2と同様の光硬化性樹脂が挙げられる。このような光硬化性樹脂を含むことにより、遮光フィルム1の遮光層3は、鉛筆硬度が2H以上の値に設定され、且つ、光学濃度が5.0以上の値に設定されている。 The light shielding layer 3 includes black fine particles 5, a binder resin 6, and a photoactive compound that activates a polymerization initiator of a precursor of the binder resin 6 by light irradiation. The precursor of the binder resin 6 is polymerized by a radical polymerization reaction. The polymerization initiator is activated by the photoactive compound to initiate this polymerization reaction. The binder resin 6 is a photocurable resin. That is, the light shielding layer 3 is formed by curing the binder resin 6 that is a photocurable resin. Examples of the binder resin 6 include the same photo-curable resin as that of the base film 2. By including such a photocurable resin, the light shielding layer 3 of the light shielding film 1 has a pencil hardness set to a value of 2H or higher and an optical density set to a value of 5.0 or higher.
 遮光層3の内部には、黒色微粒子5が分散して配置されている。黒色微粒子5としては、例えば、カーボンブラック、ランプブラック、バインブラック、ピーチブラック、骨炭、カーボンナノチューブ、酸化銀、酸化亜鉛、マグネタイト型四酸化三鉄、銅とクロムの複合酸化物、銅、クロム、亜鉛の複合酸化物、黒色ガラス等が挙げられる。遮光層3は、黒色微粒子5を含むことで、波長380nm以上780nm以下の範囲の値における光学濃度が、5.0以上の値に設定されている。波長380nm以上780nm以下の範囲の値における遮光層3の光学濃度が5.0以上の値に設定されることで、遮光層3の遮光性の低下が良好に防止される。 In the light shielding layer 3, black fine particles 5 are dispersed and arranged. Examples of the black fine particles 5 include carbon black, lamp black, vine black, peach black, bone charcoal, carbon nanotube, silver oxide, zinc oxide, magnetite type triiron tetroxide, copper and chromium composite oxide, copper, chromium, Zinc complex oxide, black glass and the like can be mentioned. Since the light shielding layer 3 includes the black fine particles 5, the optical density in the range of wavelengths from 380 nm to 780 nm is set to a value of 5.0 or more. By setting the optical density of the light-shielding layer 3 to a value of 5.0 or more in the range of wavelengths from 380 nm to 780 nm, the light-shielding property of the light-shielding layer 3 is favorably prevented from being deteriorated.
 光活性化合物は、活性エネルギー線、酸及び塩基から選ばれる少なくとも1種によりチオールを発生する化合物である。光活性化合物には、活性エネルギー線によりチオールを発生する化合物(A1)、酸によりチオールを発生する化合物(A2)及び塩基によりチオールを発生する化合物(A3)が含まれる。 The photoactive compound is a compound that generates thiol by at least one selected from active energy rays, acids and bases. The photoactive compound includes a compound (A1) that generates thiol with active energy rays, a compound (A2) that generates thiol with an acid, and a compound (A3) that generates thiol with a base.
 化合物(A1)には、200nm~800nmの波長に吸収領域を有する保護基、または少なくとも一つの水素原子が300nm~800nmの波長に吸収領域を有する有機基で置換されたメチル基にてチオール基が保護されている化合物が含まれる。例えば、トリス{S-(9-メチルフルオレニル)}チオシアヌル酸及びS-ベンジル-3-メルカプト-1,2,4-トリアゾール等が挙げられる。 The compound (A1) has a thiol group with a protecting group having an absorption region at a wavelength of 200 nm to 800 nm, or a methyl group in which at least one hydrogen atom is substituted with an organic group having an absorption region at a wavelength of 300 nm to 800 nm. Protected compounds are included. Examples thereof include tris {S- (9-methylfluorenyl)} thiocyanuric acid and S-benzyl-3-mercapto-1,2,4-triazole.
 化合物(A2)には、酸により分解する保護基にてチオール基が保護されている化合物が含まれる。例えば、S-アセチルチオ尿素、S-ベンゾイル-2-メルカプトベンゾイミダゾール、S-(2-ピリジニルエチル-2-メルカプトピリミジン及びS-(t-ブトキシカルボニル)-4,6-ジメチル-2-メルカプトピリミジン等が挙げられる。 Compound (A2) includes a compound in which a thiol group is protected by a protecting group that is decomposed by an acid. For example, S-acetylthiourea, S-benzoyl-2-mercaptobenzimidazole, S- (2-pyridinylethyl-2-mercaptopyrimidine, S- (t-butoxycarbonyl) -4,6-dimethyl-2-mercaptopyrimidine, etc. Can be mentioned.
 化合物(A3)には、塩基により分解する保護基にてチオール基が保護されている化合物が含まれる。例えば、2-メルカプトベンゾイミダゾールのジスルフィド化物、チオシアヌル酸のジスルフィド化物及びS-(9-フルオレニルメチル)-5-メルカプト-1-メチルテトラゾール等が挙げられる。 Compound (A3) includes a compound in which a thiol group is protected by a protecting group that is decomposed by a base. Examples include 2-mercaptobenzimidazole disulfide, thiocyanuric acid disulfide, and S- (9-fluorenylmethyl) -5-mercapto-1-methyltetrazole.
 活性エネルギー線、酸及び塩基から選ばれる少なくとも1種によりチオールを発生する光活性化合物のうち、チオールの発生効率の観点から、好ましいものとしては、下記一般式(1)~(4)で表される化合物である。(A)は1種を単独で用いてもよいし、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000001
Of the photoactive compounds that generate thiol by at least one selected from active energy rays, acids and bases, from the viewpoint of thiol generation efficiency, preferred are those represented by the following general formulas (1) to (4). It is a compound. (A) may be used individually by 1 type, and may use 2 or more types together.
Figure JPOXMLDOC01-appb-C000001
 上記式中、R1~R3,R5~R8は、それぞれ独立に水素原子又は炭素数が1以上20以下の範囲の値である1価の炭化水素基であり、R4は、炭素数が2以上30以下の範囲の値である2価の炭化水素基であり、X1~X6は、酸及び塩基からなる群より選ばれる少なくとも1種によりこれらと結合している硫黄原子との結合が切断される1価の置換基である。 In the above formula, R1 to R3 and R5 to R8 are each independently a hydrogen atom or a monovalent hydrocarbon group having a value in the range of 1 to 20 carbon atoms, and R4 has 2 to 30 carbon atoms. A divalent hydrocarbon group having a value in the following range, wherein X1 to X6 are a group in which a bond with a sulfur atom bonded thereto is cut by at least one selected from the group consisting of acids and bases. Is a valent substituent.
 一般式(1)~(4)で表される化合物は、共通骨格(-S-C=(N)-N)を有しており、この骨格を有していることにより、酸素阻害を抑制する効果が高くなる。これにより、低露光量での露光時及び薄膜形成時の少なくともいずれかの条件下においても、硬化性が向上する。 The compounds represented by the general formulas (1) to (4) have a common skeleton (—S—C═ (N) —N), and by having this skeleton, oxygen inhibition is suppressed. The effect to do becomes high. Thereby, sclerosis | hardenability improves also on the conditions of at least any one at the time of the exposure at the low exposure amount, and thin film formation.
 遮光層3には、光活性化合物が、例えば0.1重量%以上5重量%以下の範囲の値で含まれている。遮光層3には、光活性化合物が1重量%以上4重量%以下の範囲の値で含まれていると、より好ましい。後述するように、光活性化合物は、遮光層3の製造時において、バインダー樹脂6の前駆体中に分散された重合開始剤を活性化させる。このため、重合開始剤が直接光照射されていなくても、光活性化合物が光照射されることで重合開始剤が活性化される。 The light-shielding layer 3 contains a photoactive compound with a value in the range of 0.1 wt% to 5 wt%, for example. More preferably, the light-shielding layer 3 contains the photoactive compound in a value in the range of 1 wt% to 4 wt%. As will be described later, the photoactive compound activates the polymerization initiator dispersed in the precursor of the binder resin 6 when the light shielding layer 3 is manufactured. For this reason, even if the polymerization initiator is not directly irradiated with light, the polymerization initiator is activated when the photoactive compound is irradiated with light.
 遮光層3の厚み寸法は、適宜設定可能であるが、ここでは1μm以上20μm以下の範囲の値に設定できる。遮光層3の厚み寸法は、一例として3μm以上10μm以下の範囲の値に設定されている。 Although the thickness dimension of the light shielding layer 3 can be set as appropriate, it can be set to a value in the range of 1 μm to 20 μm. As an example, the thickness dimension of the light shielding layer 3 is set to a value in the range of 3 μm to 10 μm.
 本実施形態の黒色微粒子5は球状であり、一次粒径は、10nm以上500nm以下の範囲の値に設定されている。また遮光層3の表面抵抗値は、1×1012Ω/□以下の値に設定されている。遮光層3の表面抵抗値を1×1013Ω/□以上とすることで、遮光フィルム1を絶縁部材として好適に用いることができる。 The black fine particles 5 of the present embodiment are spherical, and the primary particle size is set to a value in the range of 10 nm to 500 nm. The surface resistance value of the light shielding layer 3 is set to a value of 1 × 10 12 Ω / □ or less. By setting the surface resistance value of the light shielding layer 3 to 1 × 10 13 Ω / □ or more, the light shielding film 1 can be suitably used as an insulating member.
 遮光層3の表面3aには、凹凸が形成されている。これにより遮光層3の表面3aは、アンチグレア性を有する。遮光層3の表面3aに形成された凹凸は、後述するように、遮光フィルム1の製造時において原型4の表面4aの凹凸が転写されることで形成されている。これにより遮光層3の表面3aは、外光の反射が抑制されている。 Irregularities are formed on the surface 3 a of the light shielding layer 3. Thereby, the surface 3a of the light shielding layer 3 has antiglare property. The irregularities formed on the surface 3a of the light shielding layer 3 are formed by transferring the irregularities on the surface 4a of the original pattern 4 during the production of the light shielding film 1, as will be described later. Thereby, the reflection of external light is suppressed on the surface 3 a of the light shielding layer 3.
 具体的に遮光層3は、以下の各設定が行われることでアンチグレア性を有している。遮光層3は、表面3aの入射角85度における光沢度が、20%以下の値に設定されている。また遮光層3は、表面3aの算術平均粗さ(Ra)が、0.03μm以上3.0μm以下の範囲の値に設定されている。また遮光層3は、表面3aの算術平均粗さ(Sa)が、0.5μm以上5.0μm以下の範囲の値に設定されている。 Specifically, the light shielding layer 3 has antiglare properties by performing the following settings. The light shielding layer 3 has a glossiness of 20% or less at an incident angle of 85 degrees on the surface 3a. In the light shielding layer 3, the arithmetic average roughness (Ra) of the surface 3a is set to a value in the range of 0.03 μm to 3.0 μm. In the light shielding layer 3, the arithmetic average roughness (Sa) of the surface 3a is set to a value in the range of 0.5 μm or more and 5.0 μm or less.
 遮光層3の表面3aの算術平均粗さ(Ra)を0.1μm以上の値に設定することで、遮光層3の表面3aにアンチグレア性を付与し易くすることができる。また、遮光層3の表面3aの算術平均粗さ(Ra)を3.0μm以下の値に設定することで、遮光層3を比較的容易に製造できる。 By setting the arithmetic average roughness (Ra) of the surface 3 a of the light shielding layer 3 to a value of 0.1 μm or more, it is possible to easily impart antiglare properties to the surface 3 a of the light shielding layer 3. Moreover, the light shielding layer 3 can be manufactured comparatively easily by setting the arithmetic average roughness (Ra) of the surface 3a of the light shielding layer 3 to a value of 3.0 μm or less.
 なお、一次粒径は、フィールドエミッション走査電子顕微鏡(日本電子(株)製「JSM-6700F」)により10万倍に拡大した粒子表面の写真を撮影し、その拡大写真を必要に応じてさらに拡大し、50個以上の粒子について定規やノギス等を用い、その個数の平均粒径として測定することができる。 As for the primary particle size, a photograph of the particle surface magnified 100,000 times with a field emission scanning electron microscope (“JSM-6700F” manufactured by JEOL Ltd.) is taken, and the enlarged photo is further enlarged as necessary. And it can measure as an average particle diameter of the number using a ruler, a caliper, etc. about 50 or more particle | grains.
 また、波長380nm以上780nm以下の範囲の値における光学濃度は、光学濃度計(ビデオジェット・エックスライト(株)製「X-Rite 341C」)を用い、試料に垂直透過光束を照射して、試料が無い状態との比をlog(対数)で表したものとすることができる。 The optical density in the range of wavelengths from 380 nm to 780 nm is measured by irradiating the sample with a vertically transmitted light beam using an optical densitometer (“X-Rite 341C” manufactured by VideoJet X-Rite Co., Ltd.). It is possible to express the ratio to the state where there is no log in log (logarithm).
 また光束幅は、直径2mmの円形として測定することができる。また光沢度は、JlS
 K7105に準拠した測定方法により測定された値である。また算術平均粗さ(Ra)は、中心線平均表面粗さであり、JIS B 0601(1994年版)の定義により算出された値である。
The light flux width can be measured as a circle having a diameter of 2 mm. The glossiness is JLS
It is a value measured by a measuring method based on K7105. The arithmetic average roughness (Ra) is a center line average surface roughness, and is a value calculated according to the definition of JIS B 0601 (1994 edition).
 以上のように、遮光フィルム1によれば、遮光層3が光照射によりバインダー樹脂6の前駆体の重合開始剤を活性化させる光活性化合物を含んでいるので、重合開始剤が黒色微粒子5により遮光されている場合でも、光照射された光活性化合物により重合開始剤を活性化させて、光硬化性のバインダー樹脂6の前駆体を重合促進させることができる。これにより、表面3aに凹凸が形成されていることでアンチグレア性を有すると共に、光硬化性樹脂を含む遮光層3を備える遮光フィルム1を良好に製造できる。 As described above, according to the light-shielding film 1, the light-shielding layer 3 contains a photoactive compound that activates the polymerization initiator of the precursor of the binder resin 6 by light irradiation. Even when the light is shielded from light, the photoinitiator irradiated with light can activate the polymerization initiator to promote the polymerization of the precursor of the photocurable binder resin 6. Thereby, while having the unevenness | corrugation in the surface 3a, while having anti-glare property, the light shielding film 1 provided with the light shielding layer 3 containing a photocurable resin can be manufactured favorably.
 また遮光層3は、表面3aの入射角85度における光沢度が、20%以下の値に設定されているので、遮光層3の表面3aに優れた低光沢性(写り込み防止性)を付与でき、遮光層3の表面3aに入射した入射光を更に良好に散乱できる。 Further, since the light shielding layer 3 has a glossiness at an incident angle of 85 degrees on the surface 3a set to a value of 20% or less, the surface 3a of the light shielding layer 3 is provided with excellent low glossiness (anti-reflection effect). The incident light incident on the surface 3a of the light shielding layer 3 can be scattered more satisfactorily.
 また遮光層3は、黒色微粒子5以外の無機微粒子の含有量、又は、有機微粒子の含有量が、0重量%以上10重量%以下の範囲の値に設定されている。これにより、黒色微粒子5以外の無機微粒子、又は、有機微粒子によって、遮光層3が白色等の色に着色されるのを防止できる。よって、遮光層3の遮光性がこれらの微粒子により低下するのを防止できる。また、遮光層3の耐擦傷性がこれらの微粒子を含むことで低下するのを防止できるので、例えば、光学機器の内部に遮光層3の一部が欠落して混入するのを防止できる。 Further, in the light shielding layer 3, the content of inorganic fine particles other than the black fine particles 5 or the content of organic fine particles is set to a value in the range of 0 wt% to 10 wt%. Thereby, it can prevent that the light shielding layer 3 is colored in colors, such as white, by inorganic fine particles other than the black fine particles 5, or organic fine particles. Therefore, it can prevent that the light-shielding property of the light shielding layer 3 falls with these fine particles. Moreover, since it can prevent that the abrasion resistance of the light shielding layer 3 contains these microparticles | fine-particles, it can prevent that a part of light shielding layer 3 is missing and mixed in the inside of an optical instrument, for example.
 また、遮光層3は黒色微粒子5以外の無機微粒子、又は、有機微粒子を用いなくてもアンチグレア性を発揮できるため、より白味の少ない黒色の遮光フィルム1を実現できる。これにより、例えば光学機器のレンズの内部に遮光フィルム1からの不要な光が入射するのを抑制できる。 Further, since the light shielding layer 3 can exhibit antiglare properties without using inorganic fine particles other than the black fine particles 5 or organic fine particles, the black light shielding film 1 with less whiteness can be realized. Thereby, it can suppress that the unnecessary light from the light shielding film 1 injects into the lens of an optical instrument, for example.
 また遮光層3は、表面3aにおける算術平均粗さ(Ra)が、0.03μm以上3.0μm以下の範囲の値に設定されているので、遮光層3の表面3aに微細な凹凸を付与でき、表面3aに入射した入射光を更に一層良好に散乱できる。 Moreover, since the arithmetic mean roughness (Ra) on the surface 3a of the light shielding layer 3 is set to a value in the range of 0.03 μm or more and 3.0 μm or less, the surface 3a of the light shielding layer 3 can be provided with fine irregularities. The incident light incident on the surface 3a can be scattered even better.
 また、本実施形態の黒色微粒子5は球状であり、一次粒径が、10nm以上500nm以下の範囲の値に設定されているので、遮光層3の内部に黒色微粒子5を均一に分散させることができ、遮光層3の全体において均一な遮光性を得ることができる。また別の例では、黒色微粒子5がカーンナノチューブであるため、黒色微粒子5としての材料の選択幅を広げることができる。 Further, since the black fine particles 5 of the present embodiment are spherical and the primary particle size is set to a value in the range of 10 nm to 500 nm, the black fine particles 5 can be uniformly dispersed inside the light shielding layer 3. In addition, uniform light shielding properties can be obtained in the entire light shielding layer 3. In another example, since the black fine particles 5 are Kahn nanotubes, the selection range of materials for the black fine particles 5 can be expanded.
 また、遮光層3の波長380nm以上780nm以下の範囲の値における光学濃度が、5.0以上の値に設定され、遮光層3の表面抵抗値が、1×1012Ω/□以下の値に設定されているので、遮光層3に高い遮光性を付与できると共に、遮光層3の電気抵抗値を更に適切に調整でき、埃等の不純物が遮光層の帯電により遮光層に付着するのを一層良好に防止できる。 Further, the optical density of the light shielding layer 3 in the wavelength range of 380 nm to 780 nm is set to a value of 5.0 or more, and the surface resistance value of the light shielding layer 3 is set to a value of 1 × 10 12 Ω / □ or less. Therefore, the light shielding layer 3 can be provided with a high light shielding property, and the electrical resistance value of the light shielding layer 3 can be adjusted more appropriately, so that impurities such as dust adhere to the light shielding layer due to charging of the light shielding layer. It can prevent well.
 また遮光フィルム1は、基材フィルム2を備えているので、遮光層3を基材フィルム2により良好に支持できる。また、遮光フィルム1の厚み寸法を容易に調整できると共に、そのハンドリングを向上させることができる。これにより、例えば、遮光フィルム1を光学機器の複数の光学部材間に配置し易くすることができる。 Further, since the light shielding film 1 includes the base film 2, the light shielding layer 3 can be favorably supported by the base film 2. Moreover, while being able to adjust the thickness dimension of the light shielding film 1 easily, the handling can be improved. Thereby, for example, the light shielding film 1 can be easily disposed between the plurality of optical members of the optical device.
 また遮光フィルム1は、基材フィルム2の厚み寸法が、1μm以上188μm以下の範囲の値に設定されているので、遮光フィルム1の厚み寸法を適切に調整できると共に、そのハンドリングを更に良好に向上させることができる。 Moreover, since the thickness dimension of the base film 2 is set to the value of the range of 1 micrometer or more and 188 micrometers or less, the light shielding film 1 can adjust the thickness dimension of the light shielding film 1 appropriately, and also improves the handling more favorably. Can be made.
 また遮光フィルム1の遮光層3は、鉛筆硬度が2H以上の値に設定され、且つ、光学濃度が5.0以上の値に設定されているので、優れた硬度と遮光性とを有する遮光層3を備える遮光フィルム1を得ることができる。 The light shielding layer 3 of the light shielding film 1 has a pencil hardness of 2H or more and an optical density of 5.0 or more, so that the light shielding layer has excellent hardness and light shielding properties. 3 can be obtained.
 [遮光フィルムの製造方法]
 図2は、図1の遮光フィルム1の製造フロー図である。図3は、図1の遮光フィルム1の製造時の様子を示す図である。図2に示すように、遮光フィルム1の製造方法は、調製ステップS1、被着ステップS2、硬化ステップS3、及び剥離ステップS4を有する。遮光フィルム1は、ステップS1~S4を順に行うことで製造される。以下、ステップS1~S5を具体的に説明する。
[Method for producing light-shielding film]
FIG. 2 is a manufacturing flow diagram of the light shielding film 1 of FIG. FIG. 3 is a diagram showing a state of manufacturing the light shielding film 1 of FIG. As shown in FIG. 2, the manufacturing method of the light shielding film 1 has preparation step S1, deposition step S2, hardening step S3, and peeling step S4. The light shielding film 1 is manufactured by sequentially performing steps S1 to S4. Hereinafter, steps S1 to S5 will be described in detail.
 オペレータは、遮光層3の材料となる未硬化材料30を調製する。未硬化材料30は、黒色微粒子5と、光硬化性のバインダー樹脂6の前駆体と、バインダー樹脂6の前駆体の重合開始剤と、光照射により重合開始剤を活性化させる光活性化合物とを含む。オペレータは、これらのものを混合すると共に、溶媒を添加することにより、塗工に適した流動性を有するように未硬化材料30を調製する。これにより調製ステップS1が行われる。 The operator prepares an uncured material 30 as a material for the light shielding layer 3. The uncured material 30 includes black fine particles 5, a precursor of a photocurable binder resin 6, a polymerization initiator of the precursor of the binder resin 6, and a photoactive compound that activates the polymerization initiator by light irradiation. Including. The operator prepares the uncured material 30 so as to have fluidity suitable for coating by mixing these materials and adding a solvent. Thereby, preparation step S1 is performed.
 次にオペレータは、基材フィルム2の一方の面に未硬化材料30を均一に塗布する。その後、未硬化材料30の表面に熱風を当てることにより、未硬化材料30の揮発成分を一部除去する。 Next, the operator uniformly applies the uncured material 30 to one surface of the base film 2. Thereafter, the volatile components of the uncured material 30 are partially removed by applying hot air to the surface of the uncured material 30.
 その後オペレータは、基材フィルム2に支持された未硬化材料30の表面に、凹凸が形成されていることにより表面4aがアンチグレア性を有する原型4の表面4aを被着させる。本実施形態では、原型4として、表面4aを有する光透過性の原型フィルムを用いる。これにより被着ステップS2が行われる。 Thereafter, the operator attaches the surface 4a of the prototype 4 having the antiglare property to the surface 4a due to the formation of irregularities on the surface of the uncured material 30 supported by the base film 2. In the present embodiment, a light-transmitting prototype film having a surface 4 a is used as the prototype 4. Thereby, the deposition step S2 is performed.
 ここで原型4の表面4aは、微細な凹凸形状を有する。本実施形態の原型4は、詳細を後述するように、複数の樹脂成分を含み、複数の樹脂成分の相分離により形成された海島構造からなる微細な凹凸形状を有する。遮光層3の表面3aには、この原型4の表面4aの形状が転写される。即ち、遮光層3の表面3aに付与されるアンチグレア性は、この原型4の表面4aの形状により設定される。 Here, the surface 4a of the prototype 4 has a fine uneven shape. As will be described in detail later, the prototype 4 of the present embodiment includes a plurality of resin components, and has a fine concavo-convex shape including a sea-island structure formed by phase separation of the plurality of resin components. The shape of the surface 4 a of the prototype 4 is transferred to the surface 3 a of the light shielding layer 3. That is, the antiglare property imparted to the surface 3 a of the light shielding layer 3 is set by the shape of the surface 4 a of the prototype 4.
 次にオペレータは、原型4を介して、基材フィルム2に支持された未硬化材料30を光照射(ここでは紫外線(UV)照射)する(図3)。これにより、未硬化材料30を原型4の表面4aに被着させた状態で光硬化させて、表面3aに原型4の表面4aの形状が転写された遮光層3を形成する。以上で硬化ステップS3が行われる。 Next, the operator irradiates the uncured material 30 supported by the base film 2 through the prototype 4 (in this case, ultraviolet (UV) irradiation) (FIG. 3). As a result, the uncured material 30 is photocured in a state where the uncured material 30 is applied to the surface 4a of the prototype 4, and the light shielding layer 3 in which the shape of the surface 4a of the prototype 4 is transferred to the surface 3a is formed. Thus, the curing step S3 is performed.
 ここで、未硬化材料30に含まれる光活性化合物は、光照射されることで未硬化材料30中に分散された重合開始剤を活性化させる。このため、重合開始剤が直接光照射されなくても、重合開始剤は光活性化合物により活性化される。よって、バインダー樹脂6の前駆体は、その重合反応が黒色微粒子5によって妨げられるのが防止されながら、良好に重合して硬化する。 Here, the photoactive compound contained in the uncured material 30 activates the polymerization initiator dispersed in the uncured material 30 when irradiated with light. For this reason, even if the polymerization initiator is not directly irradiated with light, the polymerization initiator is activated by the photoactive compound. Therefore, the precursor of the binder resin 6 is well polymerized and cured while preventing the polymerization reaction from being hindered by the black fine particles 5.
 また、バインダー樹脂6の前駆体の重合反応がラジカル重合反応である場合、光活性化合物を用いることで効率よくラジカルを発生させることができ、比較的速い硬化速度でバインダー樹脂6を得ることができる。また光活性化合物は、重合開始剤に作用するため、バインダー樹脂6の前駆体である幅広い種類のモノマーに適用できる。このため、遮光層3の設計自由度を高めることができる。次にオペレータは、硬化した遮光層3の表面3aから原型4を剥離する。これにより剥離ステップS4が行われる。以上で遮光フィルム1が得られる。 Moreover, when the polymerization reaction of the precursor of the binder resin 6 is a radical polymerization reaction, radicals can be generated efficiently by using a photoactive compound, and the binder resin 6 can be obtained at a relatively high curing rate. . In addition, since the photoactive compound acts on the polymerization initiator, it can be applied to a wide variety of monomers that are precursors of the binder resin 6. For this reason, the design freedom of the light shielding layer 3 can be raised. Next, the operator peels the original pattern 4 from the surface 3 a of the cured light shielding layer 3. Thereby, peeling step S4 is performed. Thus, the light shielding film 1 is obtained.
 以上のように、上記製造方法の被着ステップS2と硬化ステップS3とによれば、未硬化材料30が光照射によりバインダー樹脂6の前駆体の重合開始剤を活性化させる光活性化合物を含んでいるので、重合開始剤が黒色微粒子5により遮光されている場合でも、光照射された光活性化合物により重合開始剤を活性化させて、光硬化性のバインダー樹脂6の前駆体を重合促進させることができる。これにより、表面3aに凹凸が形成されていることでアンチグレア性を有すると共に、光硬化性樹脂を含む遮光層3を備える遮光フィルム1を良好に製造できる。 As described above, according to the deposition step S2 and the curing step S3 of the manufacturing method, the uncured material 30 includes a photoactive compound that activates the polymerization initiator of the precursor of the binder resin 6 by light irradiation. Therefore, even when the polymerization initiator is shielded from light by the black fine particles 5, the polymerization initiator is activated by the photoactive compound irradiated with light to promote polymerization of the precursor of the photocurable binder resin 6. Can do. Thereby, while having the unevenness | corrugation in the surface 3a, while having anti-glare property, the light shielding film 1 provided with the light shielding layer 3 containing a photocurable resin can be manufactured favorably.
 また被着ステップS2では、原型4として、光透過性の原型フィルムを用いることにより、例えば、原型フィルムを介して未硬化材料30を光照射することで、遮光フィルム1を効率よく製造できる。また、原型4がフィルムであるため取扱いが容易であり、遮光層3から原型4を剥離し易くすることができる。 Also, in the deposition step S2, the light-shielding film 1 can be efficiently manufactured by irradiating the uncured material 30 with light through, for example, the original film by using a light-transmitting original film as the original 4. Moreover, since the prototype 4 is a film, it is easy to handle, and the prototype 4 can be easily peeled off from the light shielding layer 3.
 また被着ステップS2では、未硬化材料30を基材フィルム2の少なくとも一方の面に塗布した状態で、未硬化材料30に原型4の表面4aを被着させ、硬化ステップS3後に、硬化された遮光層3を原型4から剥離するので、基材フィルム2に支持されて原型4の表面4aの凹凸が表面3aに転写された遮光層3を有する遮光フィルム1を正確且つ安定した品質で製造できる。 In addition, in the deposition step S2, the surface 4a of the prototype 4 is deposited on the uncured material 30 in a state where the uncured material 30 is applied to at least one surface of the base film 2, and cured after the curing step S3. Since the light-shielding layer 3 is peeled off from the master 4, the light-shielding film 1 having the light-shielding layer 3 supported by the base film 2 and having the unevenness of the surface 4 a of the master 4 transferred to the surface 3 a can be manufactured with accurate and stable quality. .
 また本実施形態では、原型4として、複数の樹脂成分を含み、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いている。このような原型フィルムを原型4として用いることで、遮光層3の表面に海島構造による凹凸を高精度で転写できる。また、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いることで、優れたアンチグレア性を有する遮光フィルム1を製造できる。 In the present embodiment, a prototype film including a plurality of resin components and having a sea-island structure formed by phase separation of the plurality of resin components is used as the prototype 4. By using such a prototype film as the prototype 4, the irregularities due to the sea-island structure can be transferred to the surface of the light shielding layer 3 with high accuracy. Moreover, the light shielding film 1 which has the outstanding anti-glare property can be manufactured by using the original film which has the sea-island structure formed by the phase separation of several resin component.
 また硬化ステップS3後に、硬化された遮光層3を原型4から剥離するので、基材フィルム2に支持されて原型4の表面4aの凹凸が表面3aに転写された遮光層3を有する遮光フィルム1を良好に製造できる。 Further, after the curing step S3, the cured light shielding layer 3 is peeled off from the original pattern 4, so that the light shielding film 1 having the light shielding layer 3 supported by the base film 2 and having the unevenness of the surface 4a of the original pattern 4 transferred to the surface 3a. Can be manufactured satisfactorily.
 第1実施形態の変形例としては、基材フィルム2が省略された遮光フィルムが挙げられる。この場合の遮光フィルムは、遮光層3のみにより構成される。該遮光フィルムは、例えば、剥離ステップS4において、遮光層3から原型4と基材フィルム2とを剥離することで得られる。以下、その他の実施形態について、第1実施形態との差異を中心に説明する。 As a modification of the first embodiment, there is a light shielding film in which the base film 2 is omitted. In this case, the light-shielding film is composed only of the light-shielding layer 3. The light shielding film is obtained, for example, by peeling the master 4 and the base film 2 from the light shielding layer 3 in the peeling step S4. Hereinafter, other embodiments will be described focusing on differences from the first embodiment.
 (第2実施形態)
 図4は、第2実施形態に係る遮光フィルム11の断面図である。図4に示すように、遮光フィルム11は、基材フィルム2と、基材フィルム2の両面に重ねて配置された一対の遮光層3とを備える。一対の遮光層3は、各々表面3aを基材フィルム2側とは反対側(即ち遮光フィルム11の外側)に向けて配置されている。遮光フィルム11の一対の遮光層3は、製造時において、基材フィルム2の各々の表面に対して第1実施形態のステップS2~S4を行うことで製造される。
(Second Embodiment)
FIG. 4 is a cross-sectional view of the light shielding film 11 according to the second embodiment. As shown in FIG. 4, the light shielding film 11 includes a base film 2 and a pair of light shielding layers 3 disposed on both sides of the base film 2. Each of the pair of light shielding layers 3 is disposed with the surface 3a facing away from the base film 2 side (that is, the outside of the light shielding film 11). The pair of light shielding layers 3 of the light shielding film 11 is manufactured by performing steps S2 to S4 of the first embodiment on each surface of the base film 2 at the time of manufacturing.
 このような遮光フィルム11においても、遮光フィルム1と同様の効果が奏される。また、遮光フィルム11の両面がアンチグレア性を有するので、例えば、光路の往復方向に光が通過する光学機器において、その光路途中の近傍に遮光フィルム11が配置される場合においても、遮光フィルム11に良好な遮光性とアンチグレア性とを発揮させることができる。 Also in such a light shielding film 11, the same effect as the light shielding film 1 is exhibited. Moreover, since both surfaces of the light shielding film 11 have anti-glare properties, for example, in an optical device in which light passes in the reciprocating direction of the optical path, even when the light shielding film 11 is disposed near the middle of the optical path, Good light-shielding properties and anti-glare properties can be exhibited.
 (第3実施形態)
 図5は、第3実施形態に係る遮光フィルム21の断面図である。図5に示すように、遮光フィルム21は、その両面(第1面21a,第2面21b)がアンチグレア性を有する。遮光フィルム21は、遮光層3と同様の組成からなる。第1面21a,第2面21bの表面形状は、互いに同様である。
(Third embodiment)
FIG. 5 is a cross-sectional view of the light shielding film 21 according to the third embodiment. As shown in FIG. 5, the light shielding film 21 has antiglare properties on both surfaces (first surface 21 a and second surface 21 b). The light shielding film 21 has the same composition as the light shielding layer 3. The surface shapes of the first surface 21a and the second surface 21b are similar to each other.
 このような構成を有する遮光フィルム21は、光硬化性樹脂による優れた強度を確保しながら厚み寸法を薄くできる。これにより、光学機器の製造時に遮光フィルム21を複数のレンズ間に配置する場合等には、遮光フィルム21が良好な耐擦傷性を有することで歩留まりを向上できると共に、光学機器の小型化を図ることができる。 The light-shielding film 21 having such a configuration can reduce the thickness dimension while ensuring excellent strength due to the photocurable resin. Accordingly, when the light shielding film 21 is disposed between a plurality of lenses at the time of manufacturing the optical device, the light shielding film 21 has good scratch resistance, so that the yield can be improved and the optical device can be downsized. be able to.
 図6は、図5の遮光フィルム21の製造時の様子を示す図である。図6に示すように、遮光フィルム21の製造時には、一対の原型4を互いの表面4aを対向させた状態で配置し、一対の原型4により未硬化材料30を挟持する。これにより、未硬化材料30の両面に対して被着ステップS2が行われる。 FIG. 6 is a diagram showing a state of manufacturing the light shielding film 21 of FIG. As shown in FIG. 6, at the time of manufacturing the light shielding film 21, the pair of prototypes 4 are arranged with the surfaces 4 a facing each other, and the uncured material 30 is sandwiched between the pair of prototypes 4. Thereby, the deposition step S <b> 2 is performed on both surfaces of the uncured material 30.
 その後、一対の原型4の外側から未硬化材料30を光照射して硬化させる。これにより、未硬化材料30の両面に対して硬化ステップS3が行われる。その後、一対の原型4を剥離除去する剥離ステップS4を行うことで、遮光フィルム21が得られる。 Thereafter, the uncured material 30 is irradiated with light from the outside of the pair of prototypes 4 to be cured. Thereby, the curing step S3 is performed on both surfaces of the uncured material 30. Then, the light shielding film 21 is obtained by performing peeling step S4 which peels and removes a pair of original pattern 4.
 ここで、一対の原型4のうち一方は、遮光フィルム21の製造時に未硬化材料30を支持する支持部材として用いることもできる。具体的に被着ステップS2では、未硬化材料30を一対の原型4のうちの一方である支持部材の表面に塗布し、未硬化材料30を支持部材により支持した状態で、未硬化材料30に一対の原型4のうちの他方である原型4の表面4aを被着させる。硬化ステップS3後、硬化された遮光層(即ち遮光フィルム21)を、原型4と支持部材とから剥離する剥離ステップS4を行う。これにより遮光フィルム21が得られる。 Here, one of the pair of prototypes 4 can also be used as a support member that supports the uncured material 30 when the light shielding film 21 is manufactured. Specifically, in the deposition step S2, the uncured material 30 is applied to the surface of a support member that is one of the pair of prototypes 4, and the uncured material 30 is supported on the uncured material 30 in a state where the uncured material 30 is supported by the support member. The surface 4a of the prototype 4 which is the other of the pair of prototypes 4 is attached. After the curing step S3, a peeling step S4 for peeling the cured light shielding layer (that is, the light shielding film 21) from the master 4 and the support member is performed. Thereby, the light shielding film 21 is obtained.
 この方法によれば、原型4の表面4aの凹凸が表面3aに転写された遮光層からなる遮光フィルム21を良好に製造できる。また、被着ステップS2及び硬化ステップS3では、支持部材により未硬化材料30を支持できるので、遮光フィルム21を効率よく製造できる。なお、支持部材には剥離処理を施してもよい。 According to this method, it is possible to satisfactorily manufacture the light shielding film 21 including the light shielding layer in which the unevenness of the surface 4a of the prototype 4 is transferred to the surface 3a. In addition, since the uncured material 30 can be supported by the support member in the deposition step S2 and the curing step S3, the light shielding film 21 can be efficiently manufactured. Note that the support member may be subjected to a peeling treatment.
 (原型について)
 以下、原型4について詳細に説明する。原型4の表面4aは、アンチグレア性を有する。原型4の表面4aには、一例として、複数の樹脂成分の相分離により、複数の海島構造部が形成されている。海島構造部は分岐しており、密な状態で海島構造を形成している。原型4は、複数の海島構造部と、隣接する海島構造部間に位置する凹部とによりアンチグレア性を発現する。原型4の表面4aは、海島構造部が略網目状に形成されることにより、網目状構造、言い換えると、連続し又は一部欠落した不規則な複数のループ構造を有する。
(About the prototype)
Hereinafter, the prototype 4 will be described in detail. The surface 4a of the prototype 4 has antiglare properties. As an example, a plurality of sea-island structures are formed on the surface 4a of the prototype 4 by phase separation of a plurality of resin components. The sea-island structure is branched and forms a sea-island structure in a dense state. The prototype 4 exhibits antiglare properties due to a plurality of sea-island structure parts and recesses located between adjacent sea-island structure parts. The surface 4a of the prototype 4 has a network structure, that is, a plurality of irregular loop structures that are continuous or partially missing, by forming the sea-island structure portion in a substantially mesh shape.
 具体的に原型4の表面4aには、1mm当たり、所定の長さ寸法を有する海島構造部が1つ以上存在している。この海島構造部の長さ寸法は、本実施形態では、100μm以上の値に設定されている。この海島構造部の長さ寸法の値としては、一例として、200μm以上の値がより好ましく、500μm以上の値が一層好ましい。なお、海島構造部は、複数存在してもよいが、表面4aの全面が海島構造を有する場合、該表面4aにおける海島構造部の数は1となる場合もある。 Specifically, the surface 4a of the prototype 4 has one or more sea-island structures having a predetermined length per 1 mm 2 . In this embodiment, the length dimension of this sea-island structure part is set to a value of 100 μm or more. As a value of the length dimension of the sea-island structure portion, for example, a value of 200 μm or more is more preferable, and a value of 500 μm or more is more preferable. A plurality of sea-island structure portions may exist, but when the entire surface 4a has a sea-island structure, the number of sea-island structure portions on the surface 4a may be one.
 海島構造部により形成された海島構造では、同程度の径を有する網目が不規則な形状で配列している。海島構造が有する網目の平均径(海島構造の網目が楕円形状や長方形状等の異方形状の場合、長径と短径との平均値)は、例えば、1μm以上70μm以下の範囲の値に設定されている。 In the sea-island structure formed by the sea-island structure part, the meshes having the same diameter are arranged in an irregular shape. The average diameter of the mesh of the sea-island structure (when the mesh of the sea-island structure is an anisotropic shape such as an ellipse or a rectangle) is set to a value in the range of 1 μm to 70 μm, for example. Has been.
 この平均径の値としては、一例として、2μm以上50μm以下の範囲の値がより好ましく、5μm以上30μm以下の範囲の値が一層好ましい。また他の例では、この平均径の値としては、1μm以上40μm以下の範囲の値がより好ましく、3μm以上35μm以下の範囲の値が一層好ましく、10μm以上30μm以下の範囲の値が更に好ましい。 As an example, the average diameter value is more preferably in the range of 2 μm to 50 μm, and still more preferably in the range of 5 μm to 30 μm. In another example, the average diameter value is more preferably in the range of 1 μm to 40 μm, more preferably in the range of 3 μm to 35 μm, and still more preferably in the range of 10 μm to 30 μm.
 表面4aを平面視した場合の海島構造部の形状は、一部以上に曲線部分を有する紐状である。海島構造部の平均幅は、本実施形態では、0.1μm以上30μm以下の範囲の値に設定されている。 The shape of the sea-island structure portion when the surface 4a is viewed in plan is a string shape having a curved portion at least partly. In this embodiment, the average width of the sea-island structure portion is set to a value in the range of 0.1 μm to 30 μm.
 海島構造部の平均幅の値としては、一例として、0.1μm以上20μm以下の範囲の値がより好ましく、0.1μm以上15μm以下の範囲の値が一層好ましく、0.1μm以上10μm以下(特に0.1μm以上5μm以下)の範囲の値が更に好ましい。 As an example of the value of the average width of the sea-island structure portion, a value in the range of 0.1 μm to 20 μm is more preferable, a value in the range of 0.1 μm to 15 μm is more preferable, and 0.1 μm to 10 μm (especially A value in the range of 0.1 μm or more and 5 μm or less is more preferable.
 また他の例では、海島構造部の平均幅の値としては、1.0μm以上20μm以下の範囲の値がより好ましく、1.0μm以上15μm以下の範囲の値が一層好ましく、1.0μm以上10μm以下の範囲の値が更に好ましい。なお、平均幅が小さ過ぎるとアンチグレア性が低下するおそれがある。 In another example, the value of the average width of the sea-island structure is more preferably in the range of 1.0 μm to 20 μm, more preferably in the range of 1.0 μm to 15 μm, and more preferably 1.0 μm to 10 μm. Values in the following ranges are more preferred. If the average width is too small, the antiglare property may be lowered.
 海島構造部の平均高さは、例えば、0.05μm以上10μm以下の範囲の値に設定されている。海島構造部の平均高さの値としては、一例として、0.07μm以上5μm以下の範囲の値がより好ましく、0.09μm以上3μm以下(特に0.1μm以上2μm以下)の範囲の値が一層好ましい。 The average height of the sea-island structure is set to a value in the range of 0.05 μm to 10 μm, for example. As an example, the value of the average height of the sea-island structure is more preferably in the range of 0.07 μm to 5 μm, and more preferably in the range of 0.09 μm to 3 μm (particularly 0.1 μm to 2 μm). preferable.
 表面4aにおける海島構造部の占有面積は、例えば、表面4aの全表面積の10%以上100%未満の範囲の値に設定されている。表面4aにおける海島構造部の占有面積の値としては、一例として、表面4aの全表面積の30%以上100%未満の範囲の値がより好ましく、表面4aの全表面積の50%以上100%未満(特に70%以上100%未満)の範囲の値が一層好ましい。なお、海島構造部間の面積が小さ過ぎるとアンチグレア性が低下し易いおそれがある。 The occupied area of the sea-island structure portion on the surface 4a is set to a value in the range of 10% to less than 100% of the total surface area of the surface 4a, for example. As an example of the value of the area occupied by the sea-island structure portion on the surface 4a, a value in the range of 30% or more and less than 100% of the total surface area of the surface 4a is more preferable, and 50% or more and less than 100% of the total surface area of the surface 4a ( A value in the range of 70% or more and less than 100% is more preferable. In addition, when the area between sea island structure parts is too small, there exists a possibility that anti-glare property may fall easily.
 ここで、表面4aの海島構造部の寸法、形状(分岐の有無等)、及び面積は、顕微鏡写真で観察される二次元的な形状に基づいて測定及び評価できる。また、上記した平均値、平均幅、及び平均高さの各々は、表面4aにおける任意の10箇所以上の位置において測定した測定値を平均した値である。 Here, the size, shape (presence / absence of branching), and area of the sea-island structure portion on the surface 4a can be measured and evaluated based on the two-dimensional shape observed in the micrograph. Moreover, each of the above-described average value, average width, and average height is a value obtained by averaging measured values measured at arbitrary 10 or more positions on the surface 4a.
 原型4の表面4aは、海島構造が形成されることで、レンズ状(海島状)の凸部が形成されるのが防止されている。第1実施形態及びその変形例における遮光層3の表面3a、及び第2実施形態の遮光フィルム21の各面21a,21bには、このような原型4の表面4aの形状が転写されている。 The surface 4a of the prototype 4 is prevented from forming a lens-like (sea-island-shaped) convex portion due to the formation of a sea-island structure. The shape of the surface 4a of the original pattern 4 is transferred to the surface 3a of the light shielding layer 3 in the first embodiment and its modification and the surfaces 21a and 21b of the light shielding film 21 in the second embodiment.
 なお複数の海島構造部は、互いに独立していてもよいし、繋がっていてもよい。原型4の相分離及び海島構造は、所定の原料溶液を用いて、液相からスピノーダル分解(湿式スピノーダル分解)を行うことにより形成される。原型4の表面形状及び製造方法の詳細については、例えば、特許第6190581号公報の記載を参照できる。 Note that the plurality of sea-island structures may be independent of each other or may be connected. The phase separation and the sea-island structure of the prototype 4 are formed by performing spinodal decomposition (wet spinodal decomposition) from the liquid phase using a predetermined raw material solution. For details of the surface shape of the prototype 4 and the manufacturing method, the description of Japanese Patent No. 6190581 can be referred to, for example.
 ここで、原型4が含む複数の樹脂成分は、相分離可能なものであればよいが、海島構造部が形成され且つ高い耐擦傷性を有する原型4を得る観点から、ポリマー及び硬化性樹脂を含むことが好ましい。 Here, the plurality of resin components included in the prototype 4 may be anything that can be phase-separated, but from the viewpoint of obtaining the prototype 4 in which the sea-island structure portion is formed and having high scratch resistance, a polymer and a curable resin are used. It is preferable to include.
 原型4が含むポリマーとしては、熱可塑性樹脂を例示できる。熱可塑性樹脂としては、スチレン系樹脂、(メタ)アクリル系樹脂、有機酸ビニルエステル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、オレフィン系樹脂(脂環式オレフィン系樹脂を含む)、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン系樹脂(ポリエーテルスルホン、ポリスルホン等)、ポリフェニレンエーテル系樹脂(2,6-キシレノールの重合体等)、セルロース誘導体(セルロースエステル類、セルロースカーバメート類、セルロースエーテル類等)、シリコーン樹脂(ポリジメチルシロキサン、ポリメチルフェニルシロキサン等)、ゴム又はエラストマー(ポリブタジエン、ポリイソプレン等のジエン系ゴム、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、アクリルゴム、ウレタンゴム、シリコーンゴム等)等を例示できる。これらの熱可塑性樹脂は、単独で又は二種以上の組み合わせで使用できる。 As the polymer contained in the prototype 4, a thermoplastic resin can be exemplified. Thermoplastic resins include styrene resins, (meth) acrylic resins, organic acid vinyl ester resins, vinyl ether resins, halogen-containing resins, olefin resins (including alicyclic olefin resins), polycarbonate resins, Polyester resin, polyamide resin, thermoplastic polyurethane resin, polysulfone resin (polyethersulfone, polysulfone, etc.), polyphenylene ether resin (2,6-xylenol polymer, etc.), cellulose derivatives (cellulose esters, cellulose carbamate) , Cellulose ethers, etc.), silicone resins (polydimethylsiloxane, polymethylphenylsiloxane, etc.), rubbers or elastomers (diene rubbers such as polybutadiene, polyisoprene, styrene-butadiene copolymers, acrylo) Tolyl - butadiene copolymer, acrylic rubber, urethane rubber, silicone rubber, etc.) and the like. These thermoplastic resins can be used alone or in combination of two or more.
 またポリマーとしては、硬化反応に関与する官能基、又は、硬化性化合物と反応する官能基を有するものも例示できる。このポリマーは、官能基を主鎖又は側鎖に有していてもよい。 Examples of the polymer include those having a functional group involved in the curing reaction or a functional group that reacts with the curable compound. This polymer may have a functional group in the main chain or side chain.
 前記官能基としては、縮合性基や反応性基(例えば、ヒドロキシル基、酸無水物基、カルボキシル基、アミノ基又はイミノ基、エポキシ基、グリシジル基、イソシアネート基等)、重合性基(例えば、ビニル、プロペニル、イソプロペニル、ブテニル、アリル基等のC2-6アルケニル基、エチニル、プロピニル、ブチニル基等のC2-6アルキニル基、ビニリデン基等のC2-6アルケニリデン基、又はこれらの重合性基を有する基((メタ)アクリロイル基等)等)等を例示できる。これらの官能基のうち、重合性基が好ましい。 Examples of the functional group include a condensable group and a reactive group (for example, a hydroxyl group, an acid anhydride group, a carboxyl group, an amino group or an imino group, an epoxy group, a glycidyl group, an isocyanate group), and a polymerizable group (for example, C2-6 alkenyl groups such as vinyl, propenyl, isopropenyl, butenyl and allyl groups, C2-6 alkynyl groups such as ethynyl, propynyl and butynyl groups, C2-6 alkenylidene groups such as vinylidene groups, or polymerizable groups thereof. Examples thereof include a group having (meth) acryloyl group and the like. Of these functional groups, a polymerizable group is preferable.
 また原型4には、複数種類のポリマーが含まれていてもよい。これらの各ポリマーは、液相からのスピノーダル分解により相分離可能であってもよいし、互いに非相溶であってもよい。複数種類のポリマーに含まれる第1のポリマーと第2のポリマーとの組み合わせは特に制限されないが、加工温度付近で互いに非相溶なものを使用できる。 The prototype 4 may contain a plurality of types of polymers. Each of these polymers may be phase-separable by spinodal decomposition from the liquid phase, or may be incompatible with each other. The combination of the first polymer and the second polymer included in the plurality of types of polymers is not particularly limited, but those incompatible with each other near the processing temperature can be used.
 例えば、第1のポリマーがスチレン系樹脂(ポリスチレン、スチレン-アクリロニトリル共重合体等)である場合、第2のポリマーとしては、セルロース誘導体(例えば、セルロースアセテートプロピオネート等のセルロースエステル類)、(メタ)アクリル系樹脂(ポリメタクリル酸メチル等)、脂環式オレフィン系樹脂(ノルボルネンを単量体とする重合体等)、ポリカーボネート系樹脂、ポリエステル系樹脂(ポリC2-4アルキレンアリレート系コポリエステル等)等を例示できる。 For example, when the first polymer is a styrene resin (polystyrene, styrene-acrylonitrile copolymer, etc.), examples of the second polymer include cellulose derivatives (eg, cellulose esters such as cellulose acetate propionate), ( (Meth) acrylic resins (polymethyl methacrylate, etc.), alicyclic olefin resins (polymers containing norbornene as a monomer), polycarbonate resins, polyester resins (poly C2-4 alkylene arylate copolyester, etc.) ) Etc.
 また例えば、第1のポリマーがセルロース誘導体(例えば、セルロースアセテートプロピオネート等のセルロースエステル類)である場合、第2のポリマーとしては、スチレン系樹脂(ポリスチレン、スチレン-アクリロニトリル共重合体等)、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂(ノルボルネンを単量体とする重合体等)、ポリカーボネート系樹脂、ポリエステル系樹脂(ポリC2-4アルキレンアリレート系コポリエステル等)等を例示できる。 Further, for example, when the first polymer is a cellulose derivative (for example, cellulose esters such as cellulose acetate propionate), examples of the second polymer include styrene resins (polystyrene, styrene-acrylonitrile copolymer, etc.), Examples thereof include (meth) acrylic resins, alicyclic olefin resins (polymers having norbornene as a monomer), polycarbonate resins, polyester resins (poly C2-4 alkylene arylate copolyesters, and the like).
 複数種類のポリマーには、少なくともセルロースエステル類(例えば、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースC2-4アルキルカルボン酸エステル類)が含まれていてもよい。 The plurality of types of polymers may contain at least cellulose esters (for example, cellulose C2-4 alkyl carboxylic acid esters such as cellulose diacetate, cellulose triacetate, cellulose acetate propionate, and cellulose acetate butyrate). .
 ここで、原型4の相分離による海島構造は、原型4の製造時に、複数の樹脂成分に含まれていた硬化性樹脂の前駆体が活性エネルギー線(紫外線又は電子線等)や熱等により硬化することで固定される。また、このような硬化性樹脂により、原型4に耐擦傷性が付与される。 Here, in the sea-island structure by phase separation of the prototype 4, the precursor of the curable resin contained in a plurality of resin components is cured by active energy rays (such as ultraviolet rays or electron beams) or heat when the prototype 4 is manufactured. It is fixed by doing. Moreover, scratch resistance is imparted to the prototype 4 by such a curable resin.
 原型4の耐擦傷性を得る観点から、複数種類のポリマーに含まれる少なくとも一つのポリマーは、硬化性樹脂前駆体と反応可能な官能基を側鎖に有するポリマーであることが好ましい。相分離による海島構造を形成するポリマーとしては、上記した互いに非相溶な2つのポリマー以外に、熱可塑性樹脂や他のポリマーが含まれていてもよい。第1のポリマーの重量M1と第2のポリマーの重量M2との重量比M1/M2、及び、ポリマーのガラス転移温度は、適宜設定可能である。 From the viewpoint of obtaining the scratch resistance of the prototype 4, it is preferable that at least one polymer contained in the plural types of polymers is a polymer having a functional group capable of reacting with the curable resin precursor in the side chain. As the polymer that forms the sea-island structure by phase separation, a thermoplastic resin or other polymer may be included in addition to the two incompatible polymers described above. The weight ratio M1 / M2 between the weight M1 of the first polymer and the weight M2 of the second polymer and the glass transition temperature of the polymer can be set as appropriate.
 硬化性樹脂前駆体としては、活性エネルギー線(紫外線又は電子線等)や熱等により反応する官能基を有し、この官能基により硬化又は架橋して樹脂(特に硬化性樹脂又は架橋樹脂)を形成する硬化性化合物を例示できる。 The curable resin precursor has a functional group that reacts with active energy rays (such as ultraviolet rays or electron beams) or heat, and is cured or crosslinked with this functional group to give a resin (particularly a curable resin or a crosslinked resin). The curable compound to form can be illustrated.
 このような化合物としては、熱硬化性化合物又は熱硬化性樹脂(エポキシ基、重合性基、イソシアネート基、アルコキシシリル基、シラノール基等を有する低分子量化合物(例えば、エポキシ系樹脂、不飽和ポリエステル系樹脂、ウレタン系樹脂、シリコーン系樹脂等))、紫外線や電子線等により硬化する光硬化性(電離放射線硬化性)化合物(光硬化性モノマー、オリゴマー等の紫外線硬化性化合物等)等を例示できる。 Such compounds include thermosetting compounds or thermosetting resins (epoxy groups, polymerizable groups, isocyanate groups, alkoxysilyl groups, silanol groups, etc., low molecular weight compounds (eg, epoxy resins, unsaturated polyesters). Resins, urethane resins, silicone resins, etc.)), photocurable (ionizing radiation curable) compounds (UV curable compounds such as photocurable monomers and oligomers) that are cured by ultraviolet rays, electron beams, etc. .
 好ましい硬化性樹脂前駆体としては、紫外線や電子線等により短時間で硬化する光硬化性化合物を例示できる。このうち、特に紫外線硬化性化合物が実用的である。耐擦傷性等の耐性を向上させるため、光硬化性化合物は、分子中に2以上(好ましくは2~15、更に好ましくは4~10程度)の重合性不飽和結合を有することが好ましい。具体的に光硬化性化合物は、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、少なくとも2つの重合性不飽和結合を有する多官能性単量体であることが好ましい。 Preferred examples of the curable resin precursor include a photocurable compound that is cured in a short time by ultraviolet rays, electron beams, or the like. Of these, UV curable compounds are particularly practical. In order to improve resistance such as scratch resistance, the photocurable compound preferably has 2 or more (preferably about 2 to 15, more preferably about 4 to 10) polymerizable unsaturated bonds in the molecule. Specifically, the photocurable compound is an epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, or a polyfunctional monomer having at least two polymerizable unsaturated bonds. Preferably there is.
 硬化性樹脂前駆体には、その種類に応じた硬化剤が含まれていてもよい。例えば熱硬化性樹脂前駆体には、アミン類、多価カルボン酸類等の硬化剤が含まれていてもよく、光硬化性樹脂前駆体には、光重合開始剤が含まれていてもよい。光重合開始剤としては、慣用の成分、例えば、アセトフェノン類又はプロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類、アシルホスフィンオキシド類等を例示できる。 The curable resin precursor may contain a curing agent according to the type. For example, the thermosetting resin precursor may contain a curing agent such as amines and polyvalent carboxylic acids, and the photocurable resin precursor may contain a photopolymerization initiator. Examples of the photopolymerization initiator include conventional components such as acetophenones or propiophenones, benzyls, benzoins, benzophenones, thioxanthones, and acylphosphine oxides.
 また硬化性樹脂前駆体には、硬化促進剤が含まれていてもよい。例えば光硬化性樹脂前駆体には、光硬化促進剤、例えば、第三級アミン類(ジアルキルアミノ安息香酸エステル等)、ホスフィン系光重合促進剤等が含まれていてもよい。 Further, the curable resin precursor may contain a curing accelerator. For example, the photocurable resin precursor may contain a photocuring accelerator, for example, tertiary amines (dialkylaminobenzoic acid ester and the like), a phosphine photopolymerization accelerator, and the like.
 (変形例1に係る原型)
 図7は、変形例1に係る原型14を示す拡大断面図である。原型14は、マトリクス樹脂15と、マトリクス樹脂15中に分散された複数の微粒子16とを含む。
(Prototype according to Modification 1)
FIG. 7 is an enlarged cross-sectional view showing a prototype 14 according to the first modification. The prototype 14 includes a matrix resin 15 and a plurality of fine particles 16 dispersed in the matrix resin 15.
 微粒子16は、真球状に形成されているが、これに限定されず、実質的な球状や楕円体状に形成されていてもよい。また微粒子16は、中実に形成されているが、中空に形成されていてもよい。微粒子16が中空に形成されている場合、微粒子の中空部には、空気或いはその他の気体が充填されていてもよい。マトリクス樹脂15中には、複数の微粒子16が一次粒子として分散していてもよいし、複数の微粒子16が凝集して形成された複数の二次粒子が分散していてもよい。 The fine particles 16 are formed in a true spherical shape, but are not limited thereto, and may be formed in a substantially spherical shape or an ellipsoidal shape. The fine particles 16 are solid, but may be formed hollow. When the fine particles 16 are formed in a hollow shape, the hollow portion of the fine particles may be filled with air or other gas. In the matrix resin 15, a plurality of fine particles 16 may be dispersed as primary particles, or a plurality of secondary particles formed by aggregation of the plurality of fine particles 16 may be dispersed.
 微粒子16は、平均粒径が0.1μm以上10.0μm以下の範囲の値に設定されている。微粒子16の平均粒径は、1.0μm以上5.0μm以下の範囲の値であることが一層望ましく、1.0μm以上4.0μm以下の範囲の値であることがより好ましい。 The fine particles 16 have an average particle size set to a value in the range of 0.1 μm to 10.0 μm. The average particle diameter of the fine particles 16 is more preferably in the range of 1.0 μm to 5.0 μm, and more preferably in the range of 1.0 μm to 4.0 μm.
 また、微粒子16の粒径のバラツキは小さい方が望ましく、例えば、原型14に含まれる微粒子の粒径分布において、原型14に含まれる微粒子の50重量%以上の平均粒径が2.0μm以内のバラツキに収められていることが望ましい。 Further, it is desirable that the variation in the particle size of the fine particles 16 is small. For example, in the particle size distribution of the fine particles contained in the prototype 14, the average particle size of 50% by weight or more of the fine particles contained in the prototype 14 is within 2.0 μm. It is desirable that they are housed in variations.
 このように、粒径が比較的均一に揃えられ且つ平均粒径が上記範囲に設定された微粒子16により、原型4の表面14aには均一且つ適度な凹凸が形成される。 Thus, uniform and appropriate irregularities are formed on the surface 14a of the prototype 4 by the fine particles 16 having a relatively uniform particle diameter and an average particle diameter set in the above range.
 マトリクス樹脂15中に分散される微粒子16は、無機系及び有機系のいずれのものでもよいが、良好な透明性を有するものが好ましい。有機系微粒子としては、プラスチックビーズを例示できる。プラスチックビーズとしては、スチレンビーズ(屈折率1.59)、メラミンビーズ(屈折率1.57)、アクリルビーズ(屈折率1.49)、アクリル-スチレンビーズ(屈折率1.54)、ポリカーボネートビーズ、ポリエチレンビーズ等を例示できる。 The fine particles 16 dispersed in the matrix resin 15 may be either inorganic or organic, but preferably have good transparency. Examples of the organic fine particles include plastic beads. Plastic beads include styrene beads (refractive index 1.59), melamine beads (refractive index 1.57), acrylic beads (refractive index 1.49), acrylic-styrene beads (refractive index 1.54), polycarbonate beads, Examples thereof include polyethylene beads.
 スチレンビーズは、架橋スチレンビーズでもよく、アクリルビーズは、架橋アクリルビーズでもよい。プラスチックビーズは、表面に疎水基を有するものが望ましい。このようなプラスチックビーズとしては、スチレンビーズを例示できる。 The styrene beads may be crosslinked styrene beads, and the acrylic beads may be crosslinked acrylic beads. The plastic beads preferably have a hydrophobic group on the surface. Examples of such plastic beads include styrene beads.
 マトリクス樹脂15としては、活性エネルギー線により硬化する光硬化性樹脂、塗工時に添加した溶剤の乾燥により硬化する溶剤乾燥型樹脂、及び、熱硬化性樹脂の少なくともいずれかを例示できる。 Examples of the matrix resin 15 include at least one of a photo-curing resin that is cured by active energy rays, a solvent-drying resin that is cured by drying a solvent added during coating, and a thermosetting resin.
 光硬化性樹脂としては、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマー、反応性希釈剤を例示できる。 Examples of the photocurable resin include those having an acrylate functional group, such as a polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene having a relatively low molecular weight. Examples include oligomers such as resins and (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents.
 これらの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を例示できる。 Specific examples thereof include monofunctional monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, and polyfunctional monomers such as polymethylolpropane trichloride. (Meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexane Examples include diol di (meth) acrylate and neopentyl glycol di (meth) acrylate.
 光硬化性樹脂が紫外線硬化性樹脂である場合、光重合開始剤を用いることが好ましい。光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチウラムモノスルフィド、チオキサントン類を例示できる。また光硬化性樹脂には、光増感剤を混合して用いることも好ましい。光増感剤としては、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等を例示できる。 When the photocurable resin is an ultraviolet curable resin, it is preferable to use a photopolymerization initiator. Examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, α-amyloxime ester, tetramethylthiuram monosulfide, and thioxanthones. Moreover, it is also preferable to mix and use a photosensitizer for a photocurable resin. Examples of the photosensitizer include n-butylamine, triethylamine, and poly-n-butylphosphine.
 溶剤乾燥型樹脂としては、公知の熱可塑性樹脂を例示できる。この熱可塑性樹脂としては、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂、及びゴム又はエラストマー等を例示できる。溶剤乾燥型樹脂としては、有機溶媒に可溶であって、特に、成形性、製膜性、透明性、及び耐候性に優れる樹脂が望ましい。このような溶剤乾燥型樹脂としては、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)を例示できる。 Examples of the solvent-drying resin include known thermoplastic resins. As this thermoplastic resin, styrene resin, (meth) acrylic resin, vinyl acetate resin, vinyl ether resin, halogen-containing resin, alicyclic olefin resin, polycarbonate resin, polyester resin, polyamide resin, Examples include cellulose derivatives, silicone resins, and rubbers or elastomers. As the solvent-drying resin, a resin that is soluble in an organic solvent and excellent in moldability, film forming property, transparency, and weather resistance is particularly desirable. Examples of such solvent-drying resins include styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, and cellulose derivatives (cellulose esters and the like).
 (変形例2に係る原型)
 図8は、変形例2に係る原型24を示す拡大断面図である。原型24は、表面24aに凹凸形状が賦形された構造を有する。原型24は、一例として、原型14のマトリクス樹脂15と同様の樹脂17により構成されている。
(Prototype according to modification 2)
FIG. 8 is an enlarged cross-sectional view showing a prototype 24 according to the second modification. The prototype 24 has a structure in which an uneven shape is formed on the surface 24a. For example, the prototype 24 is made of a resin 17 similar to the matrix resin 15 of the prototype 14.
 原型4は、例えば、板材の表面に所定の未硬化材料を塗布し、この未硬化材料の表面を金型により凹凸形状に賦形した後、該未硬化材料を硬化することにより得られる。金型は、ロール状金型以外でもよく、例えば、板状金型(エンボス板)でもよい。金型の材質は、一例として、金属、プラスチック、及び木を例示できる。 The prototype 4 can be obtained, for example, by applying a predetermined uncured material on the surface of a plate material, shaping the surface of the uncured material into a concavo-convex shape with a mold, and then curing the uncured material. The mold may be other than a roll-shaped mold, for example, a plate-shaped mold (embossed plate). Examples of the material of the mold include metal, plastic, and wood.
 金型の表面をブラスト粒子によりブラスト処理することで、金型の表面に凹凸を形成できる。ブラスト粒子の材質としては、一例として、金属、シリカ、アルミナ、及びガラスを例示できる。ブラスト粒子は、例えば、気体又は液体の圧力により金型の表面に衝打させることができる。 Unevenness can be formed on the surface of the mold by blasting the surface of the mold with blast particles. As an example of the material of the blast particles, metal, silica, alumina, and glass can be exemplified. The blast particles can be struck against the surface of the mold by, for example, gas or liquid pressure.
 ブラスト粒子の平均粒径は、適宜設定可能であるが、一例として、10μm以上50μm以下の範囲の値に設定できる。ブラスト粒子の平均粒径は、20μm以上45μm以下の範囲の値が一層望ましく、30μm以上40μm以下の範囲の値がより望ましい。このように、粒径が比較的均一に揃えられ且つ平均粒径が上記範囲に設定されたブラスト粒子により、金型の表面に均一且つ適度な凹凸が形成される。よって、この金型を用いて賦形することで、表面24aに凹凸形状が転写された原型24が得られる。 The average particle size of the blast particles can be set as appropriate, but can be set to a value in the range of 10 μm to 50 μm as an example. The average particle size of the blast particles is more preferably in the range of 20 μm to 45 μm, and more preferably in the range of 30 μm to 40 μm. In this way, uniform and moderate irregularities are formed on the surface of the mold by the blast particles whose particle sizes are relatively uniform and whose average particle size is set in the above range. Therefore, by shaping using this mold, the master 24 having the concavo-convex shape transferred to the surface 24a is obtained.
 (確認試験)
 図1に示す遮光フィルム1を実施例1として作製した。基材フィルム2として、黒色顔料を含むPETからなるフィルムを用いた。紫外線硬化性樹脂であるウレタンアクリル系樹脂の前駆体(DIC(株)製「ユニデックV-4025」)72部、活性化合物(三洋化成(株)製「サンラッドSLP―003」)5部、黒色微粒子5(カーボンブラック分散体(御国色素(株)製「MHIブラック#273」をカーボンブラックとして10重量%含むもの)20部、重合開始剤(BASF(株)製「イルガキュア184」)3部を混合することにより、遮光層3の未硬化材料30を調製した。
(Confirmation test)
A light shielding film 1 shown in FIG. As the base film 2, a film made of PET containing a black pigment was used. 72 parts of a urethane acrylic resin precursor (“Unidec V-4025” manufactured by DIC Corporation), 5 parts of an active compound (“Sunrad SLP-003” manufactured by Sanyo Chemical Co., Ltd.), black fine particles 5 (mixing 20 parts of carbon black dispersion (containing 10% by weight of “MHI Black # 273” manufactured by Mikuni Dye Co., Ltd.) and 3 parts of polymerization initiator (“Irgacure 184” manufactured by BASF Corporation) By doing so, the uncured material 30 of the light shielding layer 3 was prepared.
 また、実施例1の作製に用いる原型4として、複数の樹脂成分を含み、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いた。この原型フィルムとして、膜厚寸法50μm、表面の算術平均粗さ(Ra)1.5、未硬化材料の表面(遮光層3の表面3a)に被着される表面4aの入射角20度における光沢度が、0.0%、入射角60度における光沢度が、3.0%、入射角85度における光沢度が、20.0%に設定されたものを用いた。 In addition, as the prototype 4 used for producing Example 1, a prototype film having a sea-island structure including a plurality of resin components and formed by phase separation of the plurality of resin components was used. This prototype film has a film thickness of 50 μm, a surface arithmetic average roughness (Ra) of 1.5, and a gloss of the surface 4a applied to the surface of the uncured material (surface 3a of the light shielding layer 3) at an incident angle of 20 degrees. The glossiness was 0.0%, the glossiness at an incident angle of 60 degrees was 3.0%, and the glossiness at an incident angle of 85 degrees was 20.0%.
 また、図5に示す遮光フィルム21を実施例2として作製した。遮光フィルム21の組成は、実施例1の遮光層3と同様のものとした。また、実施例2の遮光フィルム21の作製に用いる原型4として、実施例1の原型フィルムと同様のものを使用した。 Further, a light shielding film 21 shown in FIG. The composition of the light shielding film 21 was the same as that of the light shielding layer 3 of Example 1. In addition, as the prototype 4 used for producing the light shielding film 21 of Example 2, the same one as the prototype film of Example 1 was used.
 また、入射角60度及び85度における光沢度と、表面粗さ(Ra,Sa,Sq)とが実施例1のものと異なる以外は実施例1と同様の遮光フィルム1を実施例3として作製した。実施例3の作製に際しては、実施例1で用いたものとは表面形状が異なる原型4を用いた。 Further, a light-shielding film 1 similar to that of Example 1 is produced as Example 3 except that the glossiness at incident angles of 60 degrees and 85 degrees and the surface roughness (Ra, Sa, Sq) are different from those of Example 1. did. When producing Example 3, a prototype 4 having a surface shape different from that used in Example 1 was used.
 また比較用として、表1に示す構成及び物性を有する比較例1,2の遮光フィルムを用意した。比較例1,2の遮光フィルムが備える遮光層では、熱硬化性樹脂がバインダー樹脂として用いられている。 For comparison, light-shielding films of Comparative Examples 1 and 2 having the configurations and physical properties shown in Table 1 were prepared. In the light shielding layer provided in the light shielding films of Comparative Examples 1 and 2, a thermosetting resin is used as the binder resin.
 実施例1~3及び比較例1,2の各遮光フィルムにおける遮光層(実施例2では遮光フィルム自体)について、鉛筆硬度(JIS K5600に準拠する測定方法に基づく鉛筆硬度)、入射角20度、60度、85度における各光沢度(JlS K7105に準拠する測定方法に基づく光沢度)、光学濃度、表面粗さ(Ra,Sa,Sq)(JIS B 0601(1994年版)及びISO25178に準拠する測定方法に基づく各表面粗さ)、及び表面抵抗値(JIS K7194に準拠する測定方法に基づく表面抵抗値)をそれぞれ測定した。 For the light-shielding layer (the light-shielding film itself in Example 2) in each of the light-shielding films of Examples 1 to 3 and Comparative Examples 1 and 2, pencil hardness (pencil hardness based on a measurement method based on JIS K5600), incident angle of 20 degrees, Each glossiness at 60 degrees and 85 degrees (glossiness based on a measurement method based on JlS K7105), optical density, surface roughness (Ra, Sa, Sq) (JIS B 0601 (1994 version) and measurement based on ISO25178) Each surface roughness based on the method) and the surface resistance value (surface resistance value based on the measuring method based on JIS K7194) were measured.
 ここで算術平均粗さ(Sa)は、表面の平均面に対する複数点の高さの差の絶対値の平均を示す。二乗平均平方根高さ(Sq)は、平均面からの距離の標準偏差のパラメータに相当する。各測定結果を表1に示す。表1中の「CB」は遮光層、「基材」は基材フィルム、「黒PET」は黒色顔料を含むPETをそれぞれ示す。 Here, the arithmetic average roughness (Sa) indicates an average of absolute values of height differences of a plurality of points with respect to the average surface. The root mean square height (Sq) corresponds to a parameter of the standard deviation of the distance from the average plane. Table 1 shows the measurement results. In Table 1, “CB” indicates a light shielding layer, “base” indicates a base film, and “black PET” indicates PET containing a black pigment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~3のいずれについても比較例1,2よりも良好な結果が得られた。特に実施例1及び3の鉛筆硬度は、比較例1,2における各鉛筆硬度よりも大幅に優れ、高い耐擦傷性を有することが分かった。このように実施例1及び3が高い鉛筆硬度を有する理由としては、遮光層3が光硬化性樹脂を含むことが考えられる。実施例2の鉛筆硬度は比較例1の鉛筆硬度と同じHBであったが、実施例2の遮光フィルム21の組成が実施例1の遮光層3の組成と同一であるため、実施例2は、実施例1の遮光層3と同様の耐擦傷性を有するものと考えられる。 As shown in Table 1, in each of Examples 1 to 3, better results were obtained than in Comparative Examples 1 and 2. In particular, the pencil hardness of Examples 1 and 3 was significantly better than the pencil hardness of Comparative Examples 1 and 2 and was found to have high scratch resistance. As a reason why Examples 1 and 3 have high pencil hardness, it is considered that the light shielding layer 3 contains a photocurable resin. The pencil hardness of Example 2 was the same HB as the pencil hardness of Comparative Example 1. However, since the composition of the light shielding film 21 of Example 2 is the same as the composition of the light shielding layer 3 of Example 1, Example 2 is This is considered to have the same scratch resistance as the light shielding layer 3 of Example 1.
 また、実施例1~3の入射角85度における各光沢度の値は、いずれも比較例1,2の入射角85度における各光沢度の値よりも大幅に低く、20%以下(本試験では9.5%以下)の値であった。 In addition, each gloss value at an incident angle of 85 degrees in Examples 1 to 3 is significantly lower than each gloss value at an incident angle of 85 degrees in Comparative Examples 1 and 2 and is 20% or less (this test) Was 9.5% or less).
 また、実施例1,3の遮光層3と、実施例2の遮光フィルム21とは、黒色微粒子5以外の無機微粒子又は有機微粒子を含まない。このため、実施例1,3の遮光層3と、実施例2の遮光フィルム21とは、肉眼観察により、白っぽく見えるのが抑えられると共に良好な黒色に着色していることが分かった。 Further, the light shielding layer 3 of Examples 1 and 3 and the light shielding film 21 of Example 2 do not contain inorganic fine particles or organic fine particles other than the black fine particles 5. For this reason, it turned out that the light-shielding layer 3 of Examples 1 and 3 and the light-shielding film 21 of Example 2 are colored in a favorable black color while being suppressed from being whitish by visual observation.
 また、実施例1,2の表面粗さ(Ra,Sa,Sq)の値は、いずれも比較例1,2の表面粗さ(Ra,Sa,Sq)の値よりも高い値であった。また、実施例3のの表面粗さ(Ra,Sa,Sq)の値は、比較例1,2の表面粗さ(Ra,Sa,Sq)の値とほぼ同等であった。この結果から、原型4として、複数の樹脂成分を含み、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いることにより、遮光フィルムの表面に優れたアンチグレア性を安定した品質で付与できることが分かった。また実施例1~3は、いずれも比較例1,2と同等の光学濃度と表面抵抗値とを有することが分かった。 The values of the surface roughness (Ra, Sa, Sq) of Examples 1 and 2 were both higher than the values of the surface roughness (Ra, Sa, Sq) of Comparative Examples 1 and 2. Moreover, the value of the surface roughness (Ra, Sa, Sq) in Example 3 was almost equal to the value of the surface roughness (Ra, Sa, Sq) in Comparative Examples 1 and 2. From this result, as the prototype 4, by using a prototype film having a sea-island structure that includes a plurality of resin components and is formed by phase separation of a plurality of resin components, the quality of the anti-glare property excellent on the surface of the light-shielding film is stabilized. It was found that it can be granted. Further, it was found that Examples 1 to 3 all had optical densities and surface resistance values equivalent to those of Comparative Examples 1 and 2.
 本発明は、各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、その構成及び方法を変更、追加、又は削除できる。 The present invention is not limited to each embodiment, and the configuration and method thereof can be changed, added, or deleted without departing from the spirit of the present invention.
 以上のように本発明は、表面にアンチグレア性を有する遮光層を備える遮光フィルムにおいて、遮光層のバインダー樹脂として光硬化性樹脂を用いる場合でも遮光フィルムを良好に製造できる優れた効果を有する。従って、この効果の意義を発揮できる遮光フィルム及び遮光フィルムの製造方法に本発明を広く適用すると有益である。 As described above, the present invention has an excellent effect that a light-shielding film can be satisfactorily produced even when a photocurable resin is used as a binder resin for the light-shielding layer in a light-shielding film having a light-shielding layer having antiglare properties on the surface. Therefore, it is beneficial to widely apply the present invention to a light-shielding film that can exhibit the significance of this effect and a method for producing the light-shielding film.
 1,11,21  遮光フィルム
 2  基材フィルム
 3,13  遮光層
 4,14,24  原型
 5  黒色微粒子
 6  バインダー樹脂
 30  未硬化材料
DESCRIPTION OF SYMBOLS 1,11,21 Light-shielding film 2 Base film 3,13 Light- shielding layer 4,14,24 Prototype 5 Black fine particle 6 Binder resin 30 Uncured material

Claims (15)

  1.  内部に黒色微粒子が分散された少なくとも1つの遮光層を備える遮光フィルムであって、
     前記遮光層は、前記黒色微粒子と、光硬化性のバインダー樹脂と、光照射により前記バインダー樹脂の前駆体の重合開始剤を活性化させる光活性化合物とを含むと共に、表面に凹凸が形成されていることにより、前記表面がアンチグレア性を有する、遮光フィルム。
    A light shielding film comprising at least one light shielding layer in which black fine particles are dispersed;
    The light shielding layer includes the black fine particles, a photocurable binder resin, and a photoactive compound that activates a polymerization initiator of the precursor of the binder resin by light irradiation, and has irregularities formed on the surface. A light-shielding film in which the surface has anti-glare properties.
  2.  前記遮光層の前記表面の入射角85度における光沢度が、20%以下の値に設定されている、請求項1に記載の遮光フィルム。 The light-shielding film according to claim 1, wherein a glossiness at an incident angle of 85 degrees on the surface of the light-shielding layer is set to a value of 20% or less.
  3.  前記遮光層は、前記黒色微粒子以外の無機微粒子の含有量、又は、有機微粒子の含有量が、0重量%以上10重量%以下の範囲の値に設定されている、請求項1又は2に記載の遮光フィルム。 The content of inorganic fine particles other than the black fine particles or the content of organic fine particles in the light shielding layer is set to a value in the range of 0 wt% or more and 10 wt% or less. Light shielding film.
  4.  前記遮光層の前記表面における算術平均粗さが、0.03μm以上3.0μm以下の範囲の値に設定されている、請求項1~3のいずれか1項に記載の遮光フィルム。 The light-shielding film according to any one of claims 1 to 3, wherein an arithmetic average roughness on the surface of the light-shielding layer is set to a value in a range of 0.03 µm to 3.0 µm.
  5.  前記黒色微粒子は球状であり、一次粒径が、10nm以上500nm以下の範囲の値に設定されている、請求項1~4のいずれか1項に記載の遮光フィルム。 The light-shielding film according to any one of claims 1 to 4, wherein the black fine particles are spherical and have a primary particle size set in a range of 10 nm to 500 nm.
  6.  前記黒色微粒子は、カーボンナノチューブである、請求項1~4のいずれか1項に記載の遮光フィルム。 5. The light-shielding film according to claim 1, wherein the black fine particles are carbon nanotubes.
  7.  前記遮光層の波長380nm以上780nm以下の範囲の値における光学濃度が、5.0以上の値に設定され、前記遮光層の表面抵抗値が、1×1012Ω/□以下の値に設定されている、請求項1~6のいずれか1項に記載の遮光フィルム。 The optical density of the light shielding layer in the wavelength range of 380 nm to 780 nm is set to a value of 5.0 or more, and the surface resistance value of the light shielding layer is set to a value of 1 × 10 12 Ω / □ or less. The light-shielding film according to any one of claims 1 to 6.
  8.  表面に前記遮光層に接して配置された基材フィルムを更に備える、請求項1~7のいずれか1項に記載の遮光フィルム。 The light shielding film according to any one of claims 1 to 7, further comprising a base film disposed on the surface in contact with the light shielding layer.
  9.  前記基材フィルムの厚み寸法が、1μm以上188μm以下の範囲の値に設定されている、請求項8に記載の遮光フィルム。 The light-shielding film according to claim 8, wherein a thickness dimension of the base film is set to a value in a range of 1 µm or more and 188 µm or less.
  10.  内部に黒色微粒子が分散された少なくとも1つの遮光層を備える遮光フィルムであって、
     前記遮光層は、鉛筆硬度が2H以上の値に設定され、且つ、光学濃度が5.0以上の値に設定されている、遮光フィルム。
    A light shielding film comprising at least one light shielding layer in which black fine particles are dispersed;
    The light-shielding layer is a light-shielding film having a pencil hardness set to a value of 2H or higher and an optical density set to a value of 5.0 or higher.
  11.  黒色微粒子と、光硬化性のバインダー樹脂の前駆体と、前記バインダー樹脂の前駆体の重合開始剤と、光照射により前記重合開始剤を活性化させる光活性化合物とを含む未硬化材料を、凹凸が形成されていることにより表面がアンチグレア性を有する原型の前記表面に被着させる被着ステップと、
     前記未硬化材料を前記原型の前記表面に被着させた状態で光硬化させることにより、表面に前記原型の前記表面の形状が転写された遮光層を形成する硬化ステップと、を有する、遮光フィルムの製造方法。
    An uncured material comprising black fine particles, a precursor of a photocurable binder resin, a polymerization initiator of the precursor of the binder resin, and a photoactive compound that activates the polymerization initiator by light irradiation, A deposition step in which the surface is deposited on the original surface having anti-glare properties by being formed, and
    A curing step of forming a light-shielding layer on the surface of which the shape of the surface of the prototype is transferred by photocuring the uncured material while being applied to the surface of the prototype. Manufacturing method.
  12.  前記被着ステップでは、前記原型として、光透過性の原型フィルムを用いる、請求項11に記載の遮光フィルムの製造方法。 The method for producing a light-shielding film according to claim 11, wherein a light-transmitting prototype film is used as the prototype in the deposition step.
  13.  前記被着ステップでは、前記光透過性の原型フィルムとして、複数の樹脂成分を含み、複数の樹脂成分の相分離により形成された海島構造を有する原型フィルムを用いる、請求項12に記載の遮光フィルムの製造方法。 The light-shielding film according to claim 12, wherein in the deposition step, a prototype film having a sea-island structure including a plurality of resin components and formed by phase separation of the plurality of resin components is used as the light-transmissive prototype film. Manufacturing method.
  14.  前記被着ステップでは、前記未硬化材料を支持部材の表面に塗布し、前記未硬化材料を前記支持部材により支持した状態で、前記未硬化材料に前記原型の前記表面を被着させ、
     前記硬化ステップ後に、前記遮光層を前記原型と前記支持部材とから剥離する、請求項11~13のいずれか1項に記載の遮光フィルムの製造方法。
    In the deposition step, the uncured material is applied to the surface of a support member, and the uncured material is deposited on the surface of the prototype while the uncured material is supported by the support member.
    The method for producing a light-shielding film according to any one of claims 11 to 13, wherein, after the curing step, the light-shielding layer is peeled off from the prototype and the support member.
  15.  前記被着ステップでは、前記未硬化材料を基材フィルムの少なくとも一方の面に塗布した状態で、前記未硬化材料に前記原型の前記表面を被着させ、
     前記硬化ステップ後に、前記遮光層を前記原型から剥離する、請求項11~13のいずれか1項に記載の遮光フィルムの製造方法。
    In the deposition step, the uncured material is applied to at least one surface of the base film, and the uncured material is deposited on the surface of the prototype.
    The method for producing a light-shielding film according to any one of claims 11 to 13, wherein the light-shielding layer is peeled off from the original mold after the curing step.
PCT/JP2019/014803 2018-04-25 2019-04-03 Light-shielding film and method for manufacturing light-shielding film WO2019208136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084314 2018-04-25
JP2018084314A JP6745295B2 (en) 2018-04-25 2018-04-25 Light-shielding film and method of manufacturing light-shielding film

Publications (1)

Publication Number Publication Date
WO2019208136A1 true WO2019208136A1 (en) 2019-10-31

Family

ID=68294033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014803 WO2019208136A1 (en) 2018-04-25 2019-04-03 Light-shielding film and method for manufacturing light-shielding film

Country Status (3)

Country Link
JP (1) JP6745295B2 (en)
TW (1) TWI698470B (en)
WO (1) WO2019208136A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085243B1 (en) * 2019-11-22 2020-03-04 태양쓰리시 주식회사 Lightshielding film with excellent shading properties and method of manufacturing the same
WO2023190567A1 (en) * 2022-03-31 2023-10-05 富士フイルム株式会社 Light-shielding film, solid-state imaging element, image display device, and infrared sensor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462048A (en) * 1990-06-26 1992-02-27 Dainippon Printing Co Ltd Opaque sheet
JP2006106290A (en) * 2004-10-04 2006-04-20 Daicel Chem Ind Ltd Antiglare film
JP2008114463A (en) * 2006-11-02 2008-05-22 Somar Corp Light shielding film and its manufacturing method
JP2008137282A (en) * 2006-12-01 2008-06-19 Fujifilm Corp Method for manufacturing uneven sheet and optical film
JP2010066469A (en) * 2008-09-10 2010-03-25 Daicel Chem Ind Ltd Antiglare film and method for manufacturing the same
JP2010076243A (en) * 2008-09-25 2010-04-08 Asahi Kasei E-Materials Corp Method for manufacturing cylindrical original plate for printing
JP2010076383A (en) * 2008-09-29 2010-04-08 Asahi Kasei E-Materials Corp Cylindrical printing original plate molding apparatus
WO2012132727A1 (en) * 2011-03-28 2012-10-04 株式会社きもと Light-shielding material for optical equipment
JP2016029456A (en) * 2014-07-18 2016-03-03 大日本印刷株式会社 Low reflection sheet
JP2018004844A (en) * 2016-06-29 2018-01-11 ソマール株式会社 Light shielding member for optical device
JP2018028031A (en) * 2016-08-19 2018-02-22 東洋インキScホールディングス株式会社 Conductive resin composition, molded article, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932439B2 (en) * 2013-09-18 2018-04-03 Daicel Corporation Photosensitive resin composition and cured article of same, and optical component
WO2016129381A1 (en) * 2015-02-09 2016-08-18 富士フイルム株式会社 Light-shielding film, light-shielding film-equipped infrared cut-off filter, and solid-state imaging device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462048A (en) * 1990-06-26 1992-02-27 Dainippon Printing Co Ltd Opaque sheet
JP2006106290A (en) * 2004-10-04 2006-04-20 Daicel Chem Ind Ltd Antiglare film
JP2008114463A (en) * 2006-11-02 2008-05-22 Somar Corp Light shielding film and its manufacturing method
JP2008137282A (en) * 2006-12-01 2008-06-19 Fujifilm Corp Method for manufacturing uneven sheet and optical film
JP2010066469A (en) * 2008-09-10 2010-03-25 Daicel Chem Ind Ltd Antiglare film and method for manufacturing the same
JP2010076243A (en) * 2008-09-25 2010-04-08 Asahi Kasei E-Materials Corp Method for manufacturing cylindrical original plate for printing
JP2010076383A (en) * 2008-09-29 2010-04-08 Asahi Kasei E-Materials Corp Cylindrical printing original plate molding apparatus
WO2012132727A1 (en) * 2011-03-28 2012-10-04 株式会社きもと Light-shielding material for optical equipment
JP2016029456A (en) * 2014-07-18 2016-03-03 大日本印刷株式会社 Low reflection sheet
JP2018004844A (en) * 2016-06-29 2018-01-11 ソマール株式会社 Light shielding member for optical device
JP2018028031A (en) * 2016-08-19 2018-02-22 東洋インキScホールディングス株式会社 Conductive resin composition, molded article, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARAI, HIRONORI: "Manufacturing process and characterization of carbon black", TANSO, vol. 223, 15 June 2006 (2006-06-15), pages 232 - 243, XP055645044 *

Also Published As

Publication number Publication date
JP6745295B2 (en) 2020-08-26
TW201945449A (en) 2019-12-01
TWI698470B (en) 2020-07-11
JP2019191375A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5413195B2 (en) Fine pattern formed body, method for producing fine pattern formed body, optical element, and photocurable composition
KR102332012B1 (en) Double-sided translucent conductive film, roll thereof, and touch panel
KR20100127293A (en) Antiglare film and process for producing the same
KR102540565B1 (en) Light guide laminate using anisotropic optical film and planar light source device using the same
WO1995031737A1 (en) Glare-proof film
KR20130080857A (en) Fine-structure laminate, method for preparing fine-structure laminate, and production method for fine-structure laminate
KR20150143629A (en) Hard coat film and hard coat film roll
JP6745410B2 (en) Anti-glare film
WO2001007938A1 (en) Resin-bond type optical element, production method therefor and optical article
KR102300811B1 (en) anti-glare film
WO2019208136A1 (en) Light-shielding film and method for manufacturing light-shielding film
KR20200011473A (en) Manufacturing method of transfer film and mat shaped molded object
KR102417938B1 (en) Anti-glare film
JP2011002759A (en) Antireflection film
JP2010164824A (en) Antireflection laminate and method for manufacturing the same
KR101245953B1 (en) Molded product and production method thereof
WO2019208135A1 (en) Light shielding film and method for manufacturing light shielding film
JP2018173546A (en) Transfer sheet and method of manufacturing compact
JP4418684B2 (en) Anti-glare film
JP2014002322A (en) Optical element and conductive optical element
JP5598428B2 (en) Method for producing moth-eye film
JP2010164823A (en) Antireflection laminate
JP2011232522A (en) Optical low-pass filter, and method of manufacturing the same
JP2019164189A (en) Antiglare film
JP2013218045A (en) Light transmitting material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792525

Country of ref document: EP

Kind code of ref document: A1