WO2019206591A1 - Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer - Google Patents

Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer Download PDF

Info

Publication number
WO2019206591A1
WO2019206591A1 PCT/EP2019/058454 EP2019058454W WO2019206591A1 WO 2019206591 A1 WO2019206591 A1 WO 2019206591A1 EP 2019058454 W EP2019058454 W EP 2019058454W WO 2019206591 A1 WO2019206591 A1 WO 2019206591A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
binder
zeolite
volume
weight
Prior art date
Application number
PCT/EP2019/058454
Other languages
English (en)
Inventor
Sylvie Maury
Vincent Coupard
Delphine Bazer-Bachi
Joseph Lopez
Nikolai Nesterenko
Guillaume DUPLAN
Colin DUPONT
Original Assignee
IFP Energies Nouvelles
Total Research & Technology Feluy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Total Research & Technology Feluy filed Critical IFP Energies Nouvelles
Priority to US17/050,155 priority Critical patent/US11618721B2/en
Priority to EP19714216.9A priority patent/EP3784389A1/fr
Priority to BR112020021110-9A priority patent/BR112020021110A2/pt
Publication of WO2019206591A1 publication Critical patent/WO2019206591A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7026MFS-type, e.g. ZSM-57
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30296Other shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/64Synthesis on support in or on refractory materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/55Cylinders or rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a catalyst and an improved process for producing alkenes from a feedstock comprising a primary monoalcohol alone or in admixture, of the formula R-CH 2 -OH, wherein R is a nonlinear alkyl radical of the formula general C n H 2n + i where n is an integer of 3 to 20 (such as isobutanol).
  • R is a nonlinear alkyl radical of the formula general C n H 2n + i where n is an integer of 3 to 20 (such as isobutanol).
  • This charge can be obtained by chemical processes or by fermentative processes.
  • This process uses a catalyst based on a zeolite comprising at least one series of channels whose opening is defined by an 8-atom oxygen ring (8MR), this catalyst having optimized morphological and textural characteristics which allow to operate in the absence of pre-coking.
  • 8MR 8-atom oxygen ring
  • alkenes obtained in particular isobutene, butene-1 and butenes-2, are of great interest in the field of the petrochemical industry and organic synthesis.
  • Isobutene is a key petrochemical molecule especially for the synthesis of gasoline additives such as I ⁇ TBE and MTBE.
  • the vast majority of publications focus on the production of isobutene from linear butanols, which are more easily produced than isobutanol by conventional fermentation routes (EBA). Recent developments, however, have greatly improved the fermentative yields of isobutanol, making this load accessible and available at attractive cost.
  • WO-2009/079213 describes the sequence of the dehydration reactions of biosourced alcohols (C2-C7) on an acidic catalyst to form olefins followed by the oligomerization of olefins on an acid oligomerization catalyst (zeolite or alumina ).
  • the intended application is the preparation of kerosene (or jet fuel in English).
  • the document EP-2348005 of the company Total describes the dehydration of alcohols containing from 2 to 10 carbon atoms to the corresponding olefin on a zeolitic catalyst of the FER type with an Si / Al atomic ratio of less than 100.
  • the mass hourly space velocity (Weight Hourly Space Velocity according to the English name, or WHSV) compared to the alcohol is at least 4 h 1 and the temperature is 320 to 600 ° C.
  • the catalyst may be in the form of pellets, extrudates, spheres, atomized powder or multilobes.
  • the document WO-201 1/089235 describes other structural types of zeolite all belonging to the family of zeolites with average channel size (10MR), with an Si / Al molar ratio of less than 100.
  • the zeolites may be modified by different post treatments.
  • the catalyst is used for the dehydration of alcohols containing from 2 to 10 carbon atoms to the corresponding olefin.
  • the document WO-201 1/1 13834 of the company Total describes the simultaneous dehydration and skeletal isomerization of isobutanol in the presence of crystalline silicates catalysts, average channel size (10MR) dealuminized or not dealuminated, modified with phosphorus or not , FER, MWW, EUO, MFS, ZSM-48, MTT, MFI, MEL or TON with Si / Al ratio greater than 10, or silicoaluminophosphate molecular sieves of the AEL group, or silica-, zirconia-, titanium- or fluorine-alumina.
  • the WHSV with respect to the alcohol is at least 1 h 1 and the temperature is 200 to 600 ° C.
  • n-butenes obtained in the butenes is 58.4% at 375 ° C and high WHSV (12.6 h 1 ) on a powdered Si / Al 33 zeolite FER.
  • the catalyst may be in the form of pellets, extrudates, spheres, atomized powder or multilobes.
  • the present invention relates to a process for converting an alkene of a nonlinear primary monoalcohol with a zeolitic catalyst.
  • An object of the invention is to improve the performance of the conversion process and the catalyst.
  • the invention aims to optimize the selectivity to alkenes and in particular the selectivity to linear alkene.
  • the invention also seeks to improve the stability of the catalyst.
  • the invention relates to a process for the isomerizing dehydration of a feedstock comprising a primary monoalcohol alone or in a mixture, of formula R-CH 2 -OH, in which R is a nonlinear alkyl radical of general formula C n H 2n + i where n is an integer of between 3 and 20, said process comprising an isomerization dehydration step operated in the gas phase, at a weighted average temperature of between 250 and 460 ° C., at a pressure of between 0.2 MPa and 1 MPa, at a weight hourly space velocity (PPH) of between 1 and 25 h 1 , in the presence of a catalyst comprising at least one zeolite and at least one binder, the weight content T z of zeolite is 55-90% by weight relative to the total weight of said catalyst and wherein said zeolite has at least one series of channels whose opening is 8 oxygen atoms (8MR), said binder having a pore volume of between 0.5 and 0.9 ml
  • Vp 0.0014Tz -0.0006, the micropores having a diameter of less than 2 nm
  • Tz is expressed in% wt and the porous volumes in ml / g
  • the present invention also relates to a catalyst comprising at least one zeolite and at least one binder, the weight content T z of zeolite is 50-90 wt%, said binder having a pore volume of between 0.5 and 0.9 ml / g, a catalyst in which at least one zeolite has at least one series of channels, the opening of which is 8 oxygen atoms (8MR), the catalyst being in multilobe form and having
  • VM 0.0101Tz - 0.5375, the macropores having a diameter greater than 50 nm and less than 7000 nm,
  • Vp 0.0014Tz -0.0006, the micropores having a diameter of less than 2 nm
  • Tz is expressed in% wt and the porous volumes in ml / g
  • such a catalyst having the particular morphological (geometric shape) and textural (porosity) characteristics of the invention makes it possible to obtain improved performances.
  • a catalyst makes it possible to achieve a proportion of linear alkenes in the alkenes fraction much greater than the value expected at thermodynamic equilibrium.
  • the catalyst according to the invention is little deactivated compared to previous catalysts, which notably improves the performance over time in terms of conversion.
  • the pore volume of the binder corresponds to the total pore volume of the solid used as binder. It is measured by the analysis of the nitrogen adsorption isotherm, detailed below.
  • the expression "between ... and " means that the limit values of the range are included in the range of values described. If this were not the case and the limit values were not included in the described range, such precision will be provided by the present invention.
  • the invention relates to a process for the isomerizing dehydration of a feedstock comprising a primary monoalcohol alone or in a mixture, of formula R-CH 2 -OH, in which R is a nonlinear alkyl radical of general formula C n H 2n + i where n is an integer of between 3 and 20 (such as isobutanol), said process comprising an isomerization dehydration step operated in the gas phase, at a weighted average temperature of between 250 and 460 ° C., at a pressure of between 0.degree.
  • a catalyst comprising at least one zeolite and at least one binder, whose weight content Tz in zeolite is from 55 to 90% by weight relative to the total weight of said catalyst and wherein said zeolite has at least one series of channels whose opening is 8 oxygen atoms (8MR), said binder having a pore volume of between 0, 5 and 0.9 ml / g, the catalyst being multilobed form and presenting:
  • Tz is expressed in% wt and the porous volumes in ml / g
  • the mesoporous and macroporous volumes of the catalyst which respectively correspond to the volume occupied by the mesopores having a diameter of 3.6 nm to 50 nm and the volume occupied by the macropores having a diameter greater than 50 nm and less than 7000 nm, are measured. by mercury porosimeter intrusion according to ASTM D4284-83 at a maximum pressure of 4000 bar, using a surface tension of 484 dyne / cm and a contact angle of 141 °. The wetting angle was taken equal to 1 10 ° following the recommendations of the book "Techniques of the engineer, treated analysis and characterization", 1050, J. Charpin and B. Rasneur.
  • the mercury volume value in ml / g given in the following text corresponds to the value of the total mercury volume in ml / g measured on the sample minus the mercury volume value in ml / g. measured on the same sample for a pressure corresponding to 30 psi (about 2 bar).
  • the microporous volume, in particular of the catalyst formed, is measured by the analysis of the nitrogen adsorption isotherm.
  • the microporous volume of the catalyst according to the invention corresponds to the volume occupied by the pores with a diameter of less than 2 nm.
  • the isothermal nitrogen adsorption analysis corresponding to the physical adsorption of nitrogen molecules in the porosity of said solid via a progressive increase in the pressure at constant temperature provides information on the textural characteristics (pore diameter, porosity type, specific surface) of the zeolitic solid contained in the catalyst used according to the invention. In particular, it provides access to the specific surface, the microporous volume and the porous distribution of said solid.
  • specific surface area is meant the BET specific surface area (S B AND in m 2 / g) determined by nitrogen adsorption in accordance with the ASTM-D-3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of the American Society", 1938, 60, 309.
  • the exposed geometric surface is calculable by those skilled in the art, it is the ratio between the external geometric surface (which is not the BET specific surface area) of the catalyst to the volume of the catalyst loaded in the reactor.
  • V calculated volume of an extruded
  • the external geometric surface corresponds to the geometrical surface of the catalyst bed expressed relative to the volume occupied by the same catalyst bed.
  • this geometrical surface corresponds to the external geometrical surface (or area) relative to the volume of the catalytic bed in the reactor.
  • the filling density of the catalyst for example when loaded into a reactor, is measured (ASTM-D-7481 -09) for particles up to 3.5 mm.
  • the vacuum content in the catalyst bed is deduced by referring, for example, to "Contact catalysis: design, preparation and use of industrial catalysts", J. F. Le Page, page 209.
  • the process according to the invention makes it possible to obtain, at the end of the reaction step, an effluent comprising a proportion of linear alkenes beyond that expected if we consider the thermodynamic equilibrium between the alkenes at room temperature. reactor outlet. It is obtained an excellent conversion of the alcohol (greater than 97 mol%) and a very good selectivity in total alkenes (greater than 97 mol%).
  • the filler treated in the process according to the invention is a filler comprising a primary monoalcohol alone or in a mixture, of formula R-CH 2 -OH, in which R is a nonlinear alkyl radical of general formula C n H 2n + i wherein n is an integer between 3 and 20 (such as isobutanol).
  • alkyl denotes a hydrocarbon compound of general formula C n H 2n + i where n is an integer between 3 and 20, preferably between 3 and 10, preferably between 3 and 5.
  • the filler comprises from 40 to 100% by weight of said primary monoalcohol.
  • isobutanol As primary monoalcohol according to the invention, mention may be made of isobutanol; 2-methylbutan-1-ol; 2,2-dimethylpropan-1-ol; 2-methylpentan-1-ol; 2,2-dimethylbutan-1-ol; 2-ethylbutan-1-ol. They can be alone or in mixture.
  • Said primary monoalcohol is preferably isobutanol or 2-methyl-1-butanol, taken alone or as a mixture.
  • said alcohol is essentially isobutanol, preferably the only primary monoalcohol is isobutanol.
  • Said feedstock can come from chemical or biochemical processes, for example fermentation processes.
  • this feedstock can be derived from fermentation processes of lignocellulosic biomass.
  • Said filler may contain water, especially up to 60% water. It may also comprise impurities of mineral type (such as Na, Ca, P, Al, Si, K, SO 4 ) and of organic type (such as methanol, ethanol, n-butanol, aldehydes, ketones, and the corresponding acids, for example furanic acid, acetic acid, isobutyric acid).
  • mineral type such as Na, Ca, P, Al, Si, K, SO 4
  • organic type such as methanol, ethanol, n-butanol, aldehydes, ketones, and the corresponding acids, for example furanic acid, acetic acid, isobutyric acid.
  • the process according to the invention comprises an isomerization dehydration step operated in the gas phase, at a weighted average temperature of between 250 and 460 ° C., preferably between 250 and 400 ° C., or even 250 ° -375 ° C., at a pressure comprised between between 0.2 MPa and 1 MPa, at a weight hourly space velocity (PPH) of between 1 and 25 h 1 , preferably 1 and 20 h 1 , in the presence of the catalyst according to the invention.
  • PPH weight hourly space velocity
  • Said catalyst is arranged in one or more fixed beds, which can be operated in ascending, descending or radial flow.
  • PPH Weight per Weight per Hour
  • weight hourly space velocity PPH
  • WHSV Weight Hourly Space Velocity
  • TMP Weighted average temperature
  • the weighted average temperature will be representative of the reaction temperature.
  • the reaction takes place in one or more reactors and each reactor is operated under clean or identical conditions.
  • the choice of operating conditions (pressure, TMP temperature, residence time) of each reactor is a function of the objective of conversion of the charge and selectivity to linear olefins desired.
  • the TMP of each of the reactors is adjusted to a value between 275 ° C and 460 ° C.
  • the term "the reactor” designates both the reactor of this step when it comprises only one reactor, that each of the reactors of this step, when it comprises more than one reactor. a reactor.
  • Said catalyst is arranged in one or more fixed beds, which can be operated in ascending, descending or radial flow.
  • the calorie intake is achieved by any heating means known to those skilled in the art.
  • the catalyst is activated by any means known to those skilled in the art, for example by heat treatment in air.
  • the catalyst used comprises at least one zeolite, said zeolite having at least one series of channels whose opening is defined by an 8-atom oxygen ring (8MR) as defined in the classification.
  • 8MR 8-atom oxygen ring
  • This zeolite is shaped with a binder, preferably silicic, with a multilobe geometry, preferably trilobed or quadrilobe, the material obtained has suitable porous volumes.
  • Multilobe catalyst means a catalyst having at least 3 lobes. It can be advantageously a trilobed or a quadrilobe, and preferably a quadrilobe.
  • a quadrilobe catalyst has 4 lobes and the cross section is generally in a circumscribed circle of diameter 1 mm to 9 mm, or in an oval whose main axis is from 2 mm to 9 mm and the secondary axis of 1, 2 mm at 7 mm.
  • the cross-section is generally in a circumscribed circle of diameter 1, 6 mm or in an oval whose main axis is from 1.2 to 2 mm and the secondary axis from 1.2 to 1.6 mm.
  • the catalyst is in the form of a quadrilobe and has a diameter relative to the circumscribed circle of between 1 mm and 9 mm, preferably between 1 mm and 5 mm, preferably between 1, 2 and 3 mm, and even more preferably between 1, 2 and 2 mm.
  • said zeolite may also advantageously contain at least one series of channels whose pore opening is defined by a ring containing 10 oxygen atoms (10 MR).
  • Said zeolite is advantageously chosen from zeolites having 8 and 10MR channels such as zeolites of structural type FER and MFS, taken alone or as a mixture.
  • the zeolite is more advantageously selected in the FER type from zeolites ferrierite, FU-9, ISI-6, NU-23, ZSM-35 and for the MFS type, it is zeolite ZSM-57, taken alone or in mixture.
  • Said zeolite is very advantageously of the FER type and preferably it is ferrierite.
  • said zeolite is made of ferrierite.
  • the ferrierite has an Si / Al molar ratio of from 8 to 70, preferably from 15 to 70, preferably from 20 to 50 or from 10 to 50.
  • the content of said zeolite in the catalyst is 55-90% by weight, preferably between 60 and 80% by weight relative to the total weight of the catalyst.
  • the zeolite is shaped with said binder, advantageously inert. Indeed, since the zeolite can not be used industrially in powder form, the binder makes it possible to confer on the final solid an increased resistance in the presence of water. The binder also allows the use of the catalyst thus constituted in a fixed bed in a reactor without giving too much pressure loss.
  • the binder has a pore volume of between 0.5 and 0.9 ml / g, preferably between 0.6 and 0.8 ml / g.
  • the pore volume of the binder corresponds to the total pore volume of said binder, in particular to the volume occupied by the meso- and micropores present in the solid binder. It is measured by the analysis of the nitrogen adsorption isotherm.
  • the binder consists of several sources (a number i of sources, i being an integer greater than or equal to 2)
  • the pore volume of the binder according to the invention is the total pore volume resulting from the sum of the pore volumes Vi of different sources weighted by the weight fractions (Xi) of said i sources constituting the binder.
  • Vp (binder) ⁇ Xi x Vi
  • Vp binder
  • the binder is advantageously a compound that is inert for the intended reaction (isomerizing dehydration of a primary alcohol).
  • the binder is preferably a silicic binder, AIPO 4 , a clay, a zirconia, a Ti oxide, SiC, or mixtures thereof. Very preferably, it is a silicic binder.
  • the silicic binder consists essentially of silica, that is to say that the silicic binder consists of silica with impurities, these having no catalytic effect.
  • said silica is an amorphous silica.
  • the silicic binder is advantageously composed of a source of silica or a mixture of silicas.
  • the binder content in the catalyst is between 10 and 45 wt%, preferably between 20 and 40 wt%.
  • the catalyst consists of at least one zeolite having at least one series of channels whose opening is 8 oxygen atoms (8MR) and a silicic binder.
  • said catalyst consists of zeolite ferrierite and silicic binder.
  • said catalyst consists of zeolite ferrierite and silica, and in particular amorphous silica.
  • the catalyst is shaped (extruded) in a multilobe geometry.
  • the catalyst does not include metals.
  • the expression "no metals” is understood to mean that there are no metals added during the preparation. It is also understood that there may be impurities in the binders and therefore in small amounts. In general there is no aluminum or iron in the silica.
  • the process of the invention operates with a catalyst having a particular porosity, which gives it its performance. It has been observed that there is a linear relationship between the pore volume and the zeolite content, a relationship that is valid in a certain field, or even the different domains, of porous volumes.
  • the catalyst has a porosity such that:
  • Tz is expressed in% wt and the pore volumes in ml / g.
  • This catalyst also has an exposed geometric area of 2700 to 1000 m 2 / m 3 of catalyst bed volume, and preferably 2800 and 9000 m 2 / m 3 .
  • the catalyst consists of at least one zeolite having at least one series of channels whose opening is at 8 oxygen atoms (8MR) and a silicic binder having a pore volume of between 0.5 and 0.9 ml / g.
  • said catalyst consists of ferrierite zeolite and silicic binder having a pore volume of between 0.5 and 0.9 ml / g.
  • said catalysts are in trilobed or quadrilobic form, and preferably in a quadrilobe form.
  • the silicic binder consists essentially of silica and the catalyst is in quadrilobe form having a diameter relative to the circumscribed circle of between 1 mm and 5 mm, preferably between 1, 2 and 3 mm.
  • this catalyst does not include metals.
  • a catalyst having such morphological and textural characteristics makes it possible to improve the isomerically dehydrating performance of a primary alcohol.
  • Such a catalyst also has improved deactivation stability. It can also advantageously operate in the absence of pre-coking.
  • step b) a kneading step of the mixture obtained at the end of step a), in the presence of addition of solvent, advantageously of an aqueous solution, preferably water, and optionally of peptizing agent, until obtaining a pasty mixture;
  • solvent advantageously of an aqueous solution, preferably water, and optionally of peptizing agent, until obtaining a pasty mixture;
  • step c) a multilobal shaping step of the pasty mixture obtained at the end of step b), for example by extrusion using a die of suitable geometry; d) a step of drying the shaped material obtained at the end of step c), advantageously at a temperature of between 50 and 200 ° C., preferably between 80 and 150 ° C, advantageously for a period of between 1 and 24 hours, and advantageously under air;
  • the binder (and especially the silicic binder) used in step a) is well known to those skilled in the art.
  • the binder powder (and in particular of silicic binder) contributes to controlling the porosity of the final solid.
  • a source of silicic binder may be a precipitated silica or a silica derived from by-products such as fly ash, for example silico-aluminous or silico-calcic particles, and silica fumes. It is advantageous to use a colloidal silica, for example in the form of a stabilized suspension.
  • the zeolite powder and the binder are advantageously kneaded in the presence of a solvent (step b), preferably in the presence of an aqueous solution, and even more preferably in the presence of of water, in which a peptizing agent can advantageously be dissolved in order to obtain a better dispersion of the binder.
  • a solvent advantageously of aqueous solution, added is between 20 and 40% by weight, preferably between 25 and 35% by weight and more preferably between 28 and 34% by weight of the total weight of the mixture composed of the zeolite powder, binder, solvent and optionally the peptizing agent.
  • the consistency of the dough is adjusted through the amount of solvent.
  • the loss on ignition of the dough (or pasty mixture) obtained at the end of step b) in the preparation process according to the invention varies between 20 and 50%, preferably between 25 and 45%, and even more preferably between 30 and 40%.
  • loss of ignition on fire is understood to mean the mass loss experienced by a solid compound, a mixture of solid compounds or a paste, during a heat treatment at 1000 ° C. for 2 hours, in an oven static (muffle furnace type), relative to the mass of the solid compound, the mixture of solid compounds or the initial paste (e).
  • the loss on ignition generally corresponds to the loss of solvent (such as water) contained in the solids and from the solvent added to form the paste but also to the elimination of volatile organic compounds contained in the inorganic solid constituents.
  • the peptising agent optionally used in step b) of the process for preparing the catalyst according to the invention may advantageously be an organic or inorganic acid or base, such as acetic acid, hydrochloric acid or sulfuric acid. , formic acid, citric acid and nitric acid, alone or as a mixture, ammonia, an amine, a quaternary ammonium compound, chosen from alkyl-ethanol amines or ethoxylated alkylamines, tetraethylammonium hydroxide (TEAOH) and tetramethylammonium.
  • acetic acid such as acetic acid, hydrochloric acid or sulfuric acid.
  • formic acid, citric acid and nitric acid alone or as a mixture
  • ammonia an amine
  • a quaternary ammonium compound chosen from alkyl-ethanol amines or ethoxylated alkylamines, tetraethylammonium hydroxide (TE
  • step c) shaping the kneaded paste is extruded through a die whose geometry will impose the shape of the catalyst.
  • the process for preparing the catalyst may further comprise a "steaming" step, or thermal treatment under water vapor, carried out at the end of the preparation process according to the invention, that is to say after step d) drying or after the step (s) optional (s) of calcination e) and / or heat treatment f) the catalyst preparation process according to the invention.
  • This optional step of "steaming", if it is integrated in the preparation process according to the invention, is carried out under water vapor, in particular without third carrier gas, at a temperature of between 250 and 400 ° C., preferably between 300 and 350 ° C, at a pressure greater than 4 bar absolute (that is to say 0.4 MPa abs.) And preferably less than or equal to 15 bar absolute (that is to say 1, 5 MPa abs.), And at an injected water flow rate corresponding to the hourly mass of water relative to the catalyst mass (PPH) of between 3 and 9 h 1 , preferably between 5 and 7 h 1 .
  • PPH catalyst mass
  • porous volumes were measured according to the mercury porosimeter intrusion and nitrogen adsorption isotherm methods described previously in the present text, which explains the deviations from the calculated volumes according to the given formulas. but which remain in the gap interval of 20%.
  • Catalyst A is prepared by comalaxing 70% by weight of commercial ferrierite in ammonium form having an Si / Al atomic ratio of 20, of 9% by weight of a source of silica, in powder form, with a pore volume of 1, 54 ml / g and 21% by weight of a source of silica, in powder form, with a pore volume equal to 0.312 ml / g.
  • the binder used to prepare the catalyst A is a silicic binder, in the form of a powder, composed of 30% by weight of the silica source with a porous volume of 1.54 ml / g and 70% by weight of the silica source with a porous volume.
  • the two silica powders are mixed with the zeolite.
  • a basic aqueous solution containing TEAOH (tetraethylammonium hydroxide) is then added to the powder mixture, which is then kneaded to form a paste, so that: the TEAOH content in the zeolite + silica powders mixture is 2.5% by weight and the PAF of the paste obtained is 37%.
  • TEAOH tetraethylammonium hydroxide
  • the solid was extruded in quadrilobial form with a diameter of 1.6 mm, dried at 80 ° C. for 12 hours and then calcined in moist air (6% v / v, volume of water relative to the volume of complete gaseous effluent) for 2 hours. h at 600 ° C.
  • Catalyst A obtained has an SBET surface area of 300 m 2 / g, a mesoporous volume of 0.24 ml / g, macroporous of 0.16 ml / g and microporous of 0.097 ml / g.
  • the exposed and calculated geometrical surface is 3404 m 2 / m 3, for a catalytic bed void ratio of 38.5% and an average length of 3.5 mm.
  • Catalyst B is prepared by comalaxing 70% by weight of commercial ferrierite in ammonium form having an Si / Al atomic ratio of 20, and 30% by weight of a silica source in powder form and having a pore volume equal to 0.312. ml / g.
  • the silicic binder is mixed with the zeolite.
  • a basic aqueous solution containing TEAOH is added to the mixture of powders which is then kneaded to form a paste, so that: TEAOH content in the mixture of zeolite + silica powders is 2.5% by weight and the PAF of the paste obtained is 34%.
  • the solid was extruded in cylindrical form with a diameter of 2.1 mm, dried at 80 ° C. for 12 hours and then calcined in moist air (6% v / v, volume of water relative to the volume of complete gaseous effluent) for 2 hours. h at 600 ° C.
  • the catalyst B obtained has an SBET surface area of 280 m 2 / g, a mesoporous volume of 0.14 ml / g, macroporous of 0.21 ml / g and microporous of 0.094 ml / g.
  • the exposed and calculated geometrical surface is 1535 m 2 / m 3, for a catalytic bed void ratio of 38.5% and an average length of 3.5 mm.
  • Catalyst C is prepared by comalaxing 70% by weight of commercial ferrierite in ammonium form having an Si / Al atomic ratio of 20 and 30% by weight of a source of silica in powder form and with a pore volume equal to 0.312 ml / boy Wut.
  • the silicic binder and the zeolite are mixed.
  • a basic aqueous solution containing TEAOH is added to the powder mixture which is then kneaded to form a paste, so that: the TEAOH content in the zeolite + silica powder mixture is 2.5% weight and the PAF of the paste obtained is 35.5%.
  • the solid was extruded in trilobal form with a diameter of 2.1 mm, dried at 80 ° C. for 12 hours and then calcined in moist air (6% v / v, volume of water relative to the volume of complete gaseous effluent) for 2 hours. h at 600 ° C.
  • Catalyst C obtained has a surface area SBET of 333 m 2 / g, a mesoporous volume of 0.15 ml / g, macroporous of 0.13 ml / g and microporous of 0.102 ml / g.
  • the exposed and calculated geometric area is 2270 m 2 / m 3, for a catalyst bed vacuum of 38.5% and an average length of 3.5 mm.
  • Catalyst D is prepared by comalaxing 70% by weight of commercial ferrierite in ammonium form having an Si / Al atomic ratio of 20, of 11% by weight of a source of silica with a pore volume equal to 1.54 ml / g and 19% by weight of a porous volume silica source equal to 0.312 ml / g.
  • the binder used to prepare the catalyst D is therefore a silicic binder, in the form of a powder, composed of approximately 36.7% by weight of the porous volume silica source 1, 54 ml / g and 63.3% by weight of the porous volume silica source equal to 0.312 ml / g.
  • TEAOH tetraethylammonium
  • the catalyst D obtained has a SBET surface area of 341 m 2 / g, a mesoporous volume of 0.19 ml / g, macroporous of 0.19 ml / g and microporous of 0.101 ml / g.
  • the exposed and calculated geometric area is 2871 m 2 / m 3, for a catalytic bed void ratio of 38.5% and an average length of 3.5 mm.
  • Catalyst E is prepared by comalaxing 70% by weight of commercial ferrierite in ammonium form having an Si / Al atomic ratio of 20 and 30% by weight of silica with a pore volume equal to 0.377 ml / g.
  • the silica is mixed with the zeolite.
  • a basic aqueous solution containing TEAOH is added and the mixture is kneaded to form a paste.
  • the addition of the aqueous solution is such that the content of TEAOH (tetraethylammonium hydroxide) in the mixture of zeolite + silica powders is 2.5% by weight and the PAF of the paste obtained is 33%.
  • the solid was extruded in quadrilobial form with a diameter of 1.6 mm, dried at 80 ° C. for 12 hours and then calcined in moist air (6% v / v, volume of water relative to the volume of complete gaseous effluent) for 2 hours. h at 600 ° C.
  • the catalyst E obtained has a SBET surface area of 326 m 2 / g, a mesoporous volume of 0.17 ml / g, macroporous of 0.27 ml / g and microporous of 0.097 ml / g.
  • the exposed and calculated geometrical surface is 3404 m 2 / m 3, for a catalytic bed void ratio of 38.5% and an average length of 3.5 mm.
  • Example 6 Catalytic Test: Dehydration of an Isobutanol Charge / Monophasic Water in the Presence of Catalysts A, B, C, D and E.
  • the dehydration step is performed on a catalytic test unit comprising a fixed bed operating in "down flow" mode, that is to say in downflow mode.
  • the catalyst is loaded into a 316L stainless steel reactor with an internal diameter of 13 mm.
  • the catalyst is then activated at 450 ° C. under 6 l / h of air for a period of one hour after a rise in temperature of 10 ° C / min.
  • the temperature is then lowered to the test temperature under 6 l / h of nitrogen in order to remove the air present in the system before injection of the alcohol charge.
  • the feed is vaporized in the lines heated to 150-180 ° C upstream of the reactor and then injected into the catalytic reactor.
  • the operating conditions are: weighted average temperature of 300 ° C, WHSV (weight of filler per weight of catalyst per gram) of 7h 1 for 24 h and then 12 1 for 48 h and then 20h 1 for 72 h, then again at pph 7h 1 for 24h (return point).
  • the analysis of the total effluent is carried out at the outlet of the reactor on an in-line gas chromatograph equipped with two columns, which makes it possible to determine the conversion of isobutanol, the selectivities into different products and in particular the butene selectivity. and the fraction of linear butenes in the butene section, a fraction that is sought to maximize.
  • the analyzer also makes it possible to measure the selectivity of secondary products such as propene or products containing 5 or more carbon atoms.
  • the measurement of the average conversion achieved during the 24h of the return point is compared to the average conversion during the first 24 hours at PPH 7h 1 and makes it possible to evaluate the loss of activity during the test.
  • the determination of the deactivation slope on the conversion curve of the monohydric alcohol to PPH of 20h 1 makes it possible to evaluate and compare the stability of the catalysts under deactivating conditions. It is expressed as a loss of% alcohol converted per hour.
  • the catalysts according to the invention A and D show virtually no deactivation at the return point, their deactivation rate is lower under the high PPH condition than that of the catalysts B, C and E. Their stability is thus improved compared with the catalysts B , C and E. Their selectivity to linear butenes is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)

Abstract

L'invention concerne un procédé de déshydratation isomérisante en présence d'un catalyseur particulier, pour produire au moins un alcène. Le procédé est opéré sur une charge comprenant un monoalcool primaire non linéaire, pris seul ou en mélange. Le catalyseur comprend au moins une zéolithe ayant au moins une série de canaux 8MR et comprend un liant, de préférence un liant silicique, présentant un volume poreux compris entre 0,5 et 0,9 ml/g. Le catalyseur présente une forme multilobe et un volume mésoporeux moyen Vm centré à plus ou moins 20% autour de la valeur définie par la formule Vm = - 0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm, un volume macroporeux moyen VM centré à plus ou moins 20% autour de la valeur définie par la formule VM=0,0101Tz – 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm, un volume microporeux moyen Vµ centré à plus ou moins 20% autour de la valeur définie par la formule Vµ=0,0014Tz – 0,0006, les micropores ayant un diamètre inférieur à 2 nm, dans les formules, Tz étant la teneur pondérale en zéolite du catalyseur, exprimée en %pds, et les volumes poreux étant exprimés en ml/g. Le catalyseur présente une aire géométrique exposée de 2700 à 11000 m2/m3 de volume du lit de catalyseur.

Description

PROCEDE DE DESHYDRATATION ISOMERISANTE DE MONOALCOOL PRIMAIRE NON LINEAIRE SUR UN CATALYSEUR ZEOLITHIQUE QUADRILOBE DE TYPE FER
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne un catalyseur et un procédé amélioré de production d’alcènes à partir d'une charge comprenant un monoalcool primaire seul ou en mélange, de formule R-CH2-OH, dans lequel R est un radical alkyl non linéaire de formule générale CnH2n+i où n est un entier compris entre 3 et 20 (tel que l’isobutanol). Cette charge peut être obtenue par des procédés chimiques ou par des procédés fermentaires. Ce procédé met en oeuvre un catalyseur à base d'une zéolithe comprenant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR), ce catalyseur présentant des caractéristiques morphologiques et texturales optimisées qui lui permettent d’opérer en l’absence de pré-cokage.
Les alcènes obtenus, en particulier l'isobutène, le butène-1 et les butènes-2, présentent un intérêt important dans le domaine de l'industrie pétrochimique et de la synthèse organique.
ART ANTÉRIEUR
L'isobutène est une molécule clé en pétrochimie notamment pour la synthèse d'additifs essence tels que IΈTBE et le MTBE. La grande majorité des publications portent sur la production d'isobutène à partir de butanols linéaires, ceux-ci étant plus facilement produits que l'isobutanol par voies fermentaires classiques (ABE). De récents développements ont cependant permis d'améliorer fortement les rendements fermentaires en isobutanol, rendant cette charge accessible et disponible à coût attractif.
Le document WO-2009/079213 décrit l'enchaînement des réactions de déshydratation d'alcools (C2-C7) biosourcés sur un catalyseur acide pour former des oléfines suivies de l'oligomérisation des oléfines sur un catalyseur d'oligomérisation acide (zéolithe ou alumine). L'application visée est la préparation de kérosène (ou jet fuel en terme anglais).
Le document EP-2348005 de la société Total décrit la déshydratation d'alcools contenant de 2 à 10 atomes de carbone en l'oléfine correspondante sur un catalyseur zéolithique de type FER de ratio atomique Si/Al inférieur à 100. La vitesse spatiale horaire massique (Weight Hourly Space Velocity selon la dénomination anglaise, ou WHSV) par rapport à l'alcool est d'au moins 4 h 1 et la température de 320 à 600°C. Le catalyseur peut être sous forme de pastilles, d’extrudés, de sphères, de poudre atomisée ou de multilobes.
Le document WO-201 1/089235 décrit d'autres types structuraux de zéolithe appartenant tous à la famille des zéolithes à taille de canaux moyenne (10MR), de ratio molaire Si/Al inférieur à 100. Les zéolithes peuvent être modifiées par différents post traitements. Le catalyseur est utilisé pour la déshydratation d'alcools contenant de 2 à 10 atomes de carbone en l'oléfine correspondante.
Le document WO-201 1/1 13834 de la société Total décrit la déshydratation et l'isomérisation squelettale simultanée de l'isobutanol en présence de catalyseurs silicates cristallins, à taille de canaux moyenne (10MR) désaluminisés ou non, modifiés au phosphore ou non, du groupe FER, MWW, EUO, MFS, ZSM-48, MTT, MFI, MEL ou TON ayant un ratio Si/Al supérieur à 10, ou de tamis moléculaires silicoaluminophosphates du groupe AEL, ou silice-, zircone-, titane- ou fluor-alumine. La WHSV par rapport à l'alcool est d'au moins 1 h 1 et la température de 200 à 600°C. La proportion maximale atteinte en n-butènes dans les butènes (isobutène plus butènes) est de 58,4% à 375°C à forte WHSV (12,6 h 1) sur une zéolithe FER en poudre de Si/Al 33.
De même que dans les références précédentes, le catalyseur peut être sous forme de pastilles, d’extrudés, de sphères, de poudre atomisée ou de multilobes.
La déshydratation d'alcools en C4 sur solides acides s'accompagne généralement de l'isomérisation de position de l'alcène formé. Ces deux réactions sont en effet concomitantes, puisque l'isomérisation de position de la double liaison de l'alcène est aussi rapide que la réaction de déshydratation du monoalcool en C4. Dans le cas de l'isobutanol, l'isobutène formé au cours des réactions se protone facilement (formation d'un carbocation tertiaire) et peut ensuite subir des réactions secondaires, notamment de dimérisation, puis de cyclisation, risquant d'entraîner la formation de produits secondaires non désirés.
La déshydratation du n-butanol suivie de l’isomérisation squelettale des n-butènes formés a été décrite par Chadwik et al (Applied Catalysis 201 1 , issue 1 -2, volume 403, p1 -1 1 ) sur différents catalyseurs zéolithiques. Les catalyseurs sont sous forme de granules de 0,5- 0,8 mm obtenues après broyage de pastilles de zéolite. Les auteurs mettent en évidence une instabilité importante de la ferrierite en présence de l’eau formée lors de la réaction de déshydratation et une dégradation de ces performances catalytiques au cours du temps (baisse du rendement en butènes).
Kotsarenko et al., Kin. Katal. 24, 877 (1983), décrit cependant, dans le cas particulier de la déshydratation et de l'isomérisation squelettale simultanées de l'isobutanol sur solides non zéolithiques, un mécanisme dans lequel une espèce intermédiaire de type carbocation primaire formée par déshydratation sur site acide de l'alcool se réarrange via une réaction de réarrangement moléculaire (« méthyl shift ») pour former un carbocation secondaire et favoriser la formation de butènes linéaires. Les catalyseurs les plus performants sont des oxydes mixtes non organisés à base d'alumine et de silice, avec une teneur en alumine inférieure à 5%. La proportion maximale atteinte en n-butènes dans les butènes est de 32,7% à des températures comprises en 275 et 350°C.
La présente invention concerne un procédé de transformation en alcène d'un monoalcool primaire non linéaire avec un catalyseur zéolitique.
Un objectif de l’invention est d’améliorer les performances du procédé de transformation et du catalyseur. En particulier, l’invention a pour objectif d’optimiser la sélectivité en alcènes et notamment la sélectivité en alcène linéaires. L’invention cherche également à améliorer la stabilité du catalyseur.
RESUME DE L’INVENTION
L’invention concerne un procédé de déshydratation isomérisante d’une charge comprenant un monoalcool primaire seul ou en mélange, de formule R-CH2-OH, dans lequel R est un radical alkyl non linéaire de formule générale CnH2n+i où n est un entier compris entre 3 et 20, ledit procédé comprenant une étape de de déshydratation isomérisante opérée en phase gaz, à une température moyenne pondérée comprise entre 250 et 460°C, à une pression comprise entre 0,2 MPa et 1 MPa, à une vitesse spatiale horaire en poids (PPH) comprise entre 1 et 25 h 1, en présence d’un catalyseur comprenant au moins une zéolite et au moins un liant, dont la teneur pondérale Tz en zéolite est de 55-90% pds par rapport au poids total dudit catalyseur et dans lequel ladite zéolite présente au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g, le catalyseur étant sous forme multilobe et présentant :
- un volume mésoporeux moyen Vm centré à plus ou moins 20% autour de la valeur définie par la formule Vm=-0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm, - un volume macroporeux moyen VM centré à plus ou moins 20% autour de la valeur définie par la formule VM=0,0101Tz - 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm,
- un volume microporeux moyen Vp centré à plus ou moins 20% autour de la valeur définie par la formule Vp=0,0014Tz - 0,0006, les micropores ayant un diamètre inférieur à 2 nm,
et, dans les formules, Tz est exprimé en % pds et les volumes poreux en ml/g
- une aire géométrique exposée de 2700 à 1 1000 m2/m3 de volume du lit de catalyseur.
La présente invention concerne également un catalyseur comprenant au moins une zéolite et au moins un liant, dont la teneur pondérale Tz en zéolite est de 50-90% pds, ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g, catalyseur dans lequel au moins une zéolite présente au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), le catalyseur étant sous forme de multilobe et présentant
- un volume mésoporeux moyen Vm centré à plus ou moins 20% autour de la valeur définie par la formule Vm=-0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm,
- un volume macroporeux moyen VM centré à plus ou moins 20% autour de la valeur définie par la formule VM=0,0101Tz - 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm,
- un volume microporeux moyen Vp centré à plus ou moins 20% autour de la valeur définie par la formule Vp=0,0014Tz - 0,0006, les micropores ayant un diamètre inférieur à 2 nm,
et, dans les formules, Tz est exprimé en % pds et les volumes poreux en ml/g
- une aire géométrique exposée de 2700 à 1 1000 m2/m3 de volume du lit de catalyseur.
De façon surprenante, les inventeurs ont constaté qu’un tel catalyseur présentant les caractéristiques morphologiques (forme géométrique) et texturales (porosités) particulières selon l’invention permet d’obtenir des performances améliorées. En particulier, un tel catalyseur permet d’atteindre une proportion en alcènes linéaires dans la fraction alcènes bien supérieure à la valeur attendue à l'équilibre thermodynamique. De plus, le catalyseur selon l’invention se désactive peu par rapport aux catalyseurs antérieurs, ce qui améliore notamment les performances dans le temps en termes de conversion.
DESCRIPTION DE L’INVENTION
Selon l’invention, le volume poreux du liant correspond au volume poreux total du solide utilisé comme liant. Il est mesuré par l’analyse de l’isotherme d’adsorption d’azote, détaillée ci-après.
Selon la présente invention, l’expression « compris entre ... et ... » signifie que les valeurs limites de l’intervalle sont incluses dans la gamme de valeurs décrite. Si tel n’était pas le cas et que les valeurs limites n’étaient pas incluses dans la gamme décrite, une telle précision sera apportée par la présente invention.
L’invention concerne un procédé de déshydratation isomérisante d’une charge comprenant un monoalcool primaire seul ou en mélange, de formule R-CH2-OH, dans lequel R est un radical alkyl non linéaire de formule générale CnH2n+i où n est un entier compris entre 3 et 20 (tel que l’isobutanol), ledit procédé comprenant une étape de de déshydratation isomérisante opérée en phase gaz, à une température moyenne pondérée comprise entre 250 et 460°C, à une pression comprise entre 0,2 MPa et 1 MPa, à une vitesse spatiale horaire en poids (PPH) comprise entre 1 et 25 h 1, en présence d’un catalyseur comprenant au moins une zéolite et au moins un liant, dont la teneur pondérale Tz en zéolite est de 55- 90% pds par rapport au poids total dudit catalyseur et dans lequel ladite zéolite présente au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g, le catalyseur étant sous forme multilobe et présentant :
- un volume mésoporeux moyen Vm centré à plus ou moins 20% autour de la valeur définie par la formule Vm = -0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm,
- un volume macroporeux moyen VM centré à plus ou moins 20% autour de la valeur définie par la formule VM = 0,0101Tz - 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm, - un volume microporeux moyen Vp centré à plus ou moins 20% autour de la valeur définie par la formule Vp = 0,0014Tz - 0,0006, les micropores ayant un diamètre inférieur à 2 nm,
et, dans les formules, Tz est exprimé en % pds et les volumes poreux en ml/g
- une aire géométrique exposée de 2700 à 1 1000 m2/m3 de volume du lit de catalyseur.
Les volumes mésoporeux et macroporeux du catalyseur, qui correspondent respectivement au volume occupé par les mésopores ayant un diamètre de 3,6 nm à 50 nm et au volume occupé par les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm, sont mesurés par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar, utilisant une tension de surface de 484 dyne/cm et un angle de contact de 141 °. L'angle de mouillage a été pris égal à 1 10° en suivant les recommandations de l'ouvrage "Techniques de l'ingénieur, traité analyse et caractérisation", 1050, de J. Charpin et B. Rasneur. Afin d'obtenir une meilleure précision, la valeur du volume mercure en ml/g donnée dans le texte qui suit correspond à la valeur du volume mercure total en ml/g mesurée sur l'échantillon moins la valeur du volume mercure en ml/g mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 2 bar).
Le volume microporeux, notamment du catalyseur formé, est mesuré par l’analyse de l’isotherme d’adsorption d’azote. Le volume microporeux du catalyseur selon l’invention correspond au volume occupé par les pores de diamètre inférieur à 2 nm.
L'analyse isotherme d'adsorption d'azote correspondant à l'adsorption physique de molécules d'azote dans la porosité dudit solide via une augmentation progressive de la pression à température constante renseigne sur les caractéristiques texturales (diamètre de pores, type de porosité, surface spécifique) du solide de type zéolithique compris dans le catalyseur utilisé selon l'invention. En particulier, elle permet d'accéder à la surface spécifique, au volume microporeux et à la distribution poreuse dudit solide.
On entend par surface spécifique, la surface spécifique BET (S BET en m2/g) déterminée par adsorption d’azote conformément à la norme ASTM-D-3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique " The Journal of American Society", 1938, 60, 309. La surface géométrique exposée est calculable par l’homme du métier, c’est le rapport entre la surface géométrique externe (qui n’est pas la surface spécifique BET) du catalyseur au volume du catalyseur chargé en réacteur.
Les formules utilisées pour le calcul de la surface géométrique externe sont: pour un trilobé : L = 1000(
Figure imgf000009_0001
Figure imgf000009_0002
- pour un cylindre: L = 1000(
Figure imgf000009_0003
avec
L = Surface géométrique externe / volume du lit de catalyseur, m2/m3
D = Diamètre externe(circonscrit), mm
H = Longueur extrudé, mm
Tv = Fraction de vide dans le lit de catalyseur, (fraction)
V= volume calculé d’un extrudé
La surface (ou aire) géométrique externe correspond à la surface géométrique du lit de catalyseur exprimée par rapport au volume occupé par le même lit de catalyseur. Lorsque le catalyseur est chargé dans un réacteur, cette surface géométrique correspond à la surface (ou aire) géométrique externe par rapport au volume du lit catalytique dans le réacteur.
La densité de remplissage du catalyseur, par exemple lorsqu’il est chargé en réacteur, est mesurée (ASTM-D-7481 -09) pour des particules allant jusqu’à 3,5 mm. On en déduit le taux de vide dans le lit de catalyseur, en se référant par exemple à « Catalyse de contact: conception, préparation et mise en oeuvre des catalyseurs industriels », J. F. Le Page, page 209.
Le procédé selon l’invention permet d’obtenir, à l’issue de l’étape réactionnelle, un effluent comprenant une proportion en alcènes linéaires au-delà de celle attendue si l’on considère l'équilibre thermodynamique entre les alcènes à la température de sortie de réacteur. Il est obtenu une excellente conversion de l'alcool (supérieure à 97% molaire) et une très bonne sélectivité en alcènes totaux (supérieure à 97% molaire).
Charge
Conformément à l’invention, la charge traitée dans le procédé selon l’invention est une charge comprenant un monoalcool primaire seul ou en mélange , de formule R-CH2-OH, dans lequel R est un radical alkyl non linéaire de formule générale CnH2n+i où n est un entier compris entre 3 et 20 (tel que l’isobutanol).
Dans la suite de l’exposé, le terme alkyl désigne un composé hydrocarboné de formule générale CnH2n+i où n est un entier compris entre 3 et 20, de préférence entre 3 et 10, de manière préférée entre 3 et 5.
De préférence, la charge comprend de 40 à 100% poids dudit monoalcool primaire.
On peut citer, comme monoalcool primaire selon l’invention, l’isobutanol ; 2-methylbutan-1 - ol ; 2,2-dimethylpropan-1 -ol ; 2-methylpentan-1 -ol ; 2,2-dimethylbutan-1 -ol ; 2-ethylbutan-1 - ol. Ils peuvent être seuls ou en mélange.
Ledit monoalcool primaire est préférentiellement l’isobutanol ou le 2-methyl-1 -butanol, pris seul ou en mélange. Très préférentiellement, ledit alcool est essentiellement de l’isobutanol, de préférence le seul monoalcool primaire est l’isobutanol.
Ladite charge peut provenir de procédés chimiques ou biochimiques, par exemple fermentaires. En particulier, cette charge peut être issue de procédés de fermentation de biomasse lignocellulosique.
Ladite charge peut contenir de l’eau, notamment jusqu’à 60% d’eau. Elle peut également comprendre des impuretés de type minéral (telles que Na, Ca, P, Al, Si, K, S04) et de type organique (telles que du méthanol, de l’éthanol, du n-butanol, des aldéhydes, des cétones, et les acides correspondant, par exemple l’acide furanique, acétique, isobutyrique).
Procédé
Le procédé selon l’invention comprend une étape de déshydratation isomérisante opérée en phase gaz, à une température moyenne pondérée comprise entre 250 et 460°C, de préférence entre 250 et 400°C, voire 250-375°C, à une pression comprise entre 0,2 MPa et 1 MPa, à une vitesse spatiale horaire en poids (PPH) comprise entre 1 et 25 h 1, de préférence 1 et 20 h 1, en présence du catalyseur selon l’invention. Ledit catalyseur est disposé dans un ou plusieurs lits fixes, lesquels peuvent être opérés en écoulement ascendant, descendant ou radial.
Par PPH, on entend « Poids par Poids par Heure » et correspond à la vitesse spatiale horaire en poids. Par vitesse spatiale horaire en poids (PPH), on entend le débit massique de monoalcool primaire dans la charge, en entrée de réacteur divisé par la masse de catalyseur dans ledit réacteur. Cette notion est également parfois désignée sous son acronyme anglais de WHSV, ou « Weight Hourly Space Velocity ».
Par température moyenne pondérée (noté TMP), on entend la moyenne de la température dans le lit catalytique, le lit étant l’ensemble des lits présents dans le réacteur, lits dans lesquels se déroule la réaction catalytique, calculée le long de l’axe de l’écoulement dans ledit lit. Soit un lit de longueur L et de surface S, le mélange réactif s’écoulant le long de l’axe longitudinal x de ce lit, l’entrée dans le lit catalytique formant l’origine de l’axe (x=0), la température moyenne pondérée, noté TMP, s’exprime selon la formule suivante :
1 L
TMP —J T(x)dx
o
La réaction étant endothermique et le réacteur opérant soit en mode isotherme, soit en mode adiabatique, la température moyenne pondérée sera représentative de la température de réaction.
La réaction se déroule dans un ou plusieurs réacteurs et chaque réacteur est opéré dans des conditions propres ou identiques. Le choix des conditions opératoires (pression, température TMP, temps de séjour) de chaque réacteur est fonction de l’objectif de conversion de la charge et de la sélectivité en oléfines linéaires souhaitée. La TMP de chacun des réacteurs est ajustée à une valeur comprise entre 275°C et 460°C. Ainsi, dans la suite de l’exposé, le terme « le réacteur » désigne aussi bien le réacteur de cette étape lorsque celle-ci ne comprend qu’un réacteur, que chacun des réacteurs de cette étape, lorsque celle-ci comprend plus d’un réacteur.
Ledit catalyseur est disposé dans un ou plusieurs lits fixes, lesquels peuvent être opérés en écoulement ascendant, descendant ou radial.
La réaction de déshydratation étant endothermique, l’apport en calories est réalisé par tout moyen de chauffage connu de l’homme du métier. Avant mise en contact avec la charge à traiter, le catalyseur est activé par tout moyen connu de l’homme du métier, par exemple par traitement thermique sous air.
Catalyseur
Conformément à l'invention, le catalyseur mis en œuvre comprend au moins une zéolithe, ladite zéolithe présentant au moins une série de canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8MR) telle que définie dans la classification“Atlas of Zeolite Structure Types”, Ch. Baerlocher, L. B. Mc Cusker, D.H. Oison, 6ème Edition, Elsevier, 2007, Elsevier".
Cette zéolithe est mise en forme avec un liant, de préférence silicique, avec une géométrie multilobe, de préférence trilobé ou quadrilobe, le matériau obtenu présente des volumes poreux adaptés.
On entend par catalyseur de forme multilobe un catalyseur ayant au moins 3 lobes. Ce peut être avantageusement un trilobé ou un quadrilobe, et de préférence un quadrilobe.
Un catalyseur quadrilobe présente 4 lobes et la section transversale est généralement dans un cercle circonscrit de diamètre 1 mm à 9 mm, ou dans un ovale dont l’axe principal va de 2 mm à 9 mm et l’axe secondaire de 1 ,2 mm à 7 mm.
Pour un catalyseur trilobé, la section transversale est généralement dans un cercle circonscrit de diamètre 1 ,6 mm ou dans un ovale dont l’axe principal va de 1 ,2 à 2 mm et l’axe secondaire de 1 ,2 à 1 ,6 mm.
De préférence, le catalyseur est sous forme de quadrilobe et présente un diamètre relatif au cercle circonscrit compris entre 1 mm et 9 mm, de préférence entre 1 mm et 5 mm, préférentiellement entre 1 ,2 et 3 mm, et de façon encore plus préférée entre 1 ,2 et 2 mm.
Selon un mode de réalisation particulier, ladite zéolithe peut également avantageusement contenir au moins une série de canaux dont l'ouverture de pores est définie par un anneau contenant 10 atomes d'oxygène (10 MR).
Ladite zéolithe est avantageusement choisie parmi les zéolithes ayant des canaux 8 et 10MR telles que les zéolithes de type structural FER et MFS, prises seules ou en mélange. La zéolite est plus avantageusement choisie dans le type FER parmi les zéolithes ferrierite, FU-9, ISI-6, NU-23, ZSM-35 et pour le type MFS, c’est la zéolite ZSM-57, prises seules ou en mélange. Ladite zéolithe est très avantageusement de type FER et de préférence c’est la ferrierite. De préférence, ladite zéolite est constituée de ferrierite.
De façon préférée, la ferrierite a un rapport molaire Si/Al de 8 à 70, de préférence 15 à 70, de préférence choisi entre 20 et 50 ou entre 10 et 50.
La teneur en ladite zéolite dans le catalyseur, notée Tz, est de 55-90% pds, de préférence entre 60 et 80% pds par rapport au poids total du catalyseur.
La zéolithe est mise en forme avec ledit liant, avantageusement inerte. En effet, comme la zéolithe ne peut être utilisée industriellement sous forme de poudre le liant permet de conférer au solide final une résistance accrue en présence d'eau. Le liant permet également l’utilisation du catalyseur ainsi constitué en lit fixe dans un réacteur sans donner de perte de pression trop importante.
Le liant présente un volume poreux compris entre 0,5 et 0,9 ml/g, de préférence compris entre 0,6 et 0,8 ml/g. Le volume poreux du liant correspond au volume poreux total dudit liant, notamment au volume occupé par les méso- et micro-pores présents dans le liant solide. Il est mesuré par l’analyse de l’isotherme d’adsorption d’azote. Lorsque le liant est constitué par plusieurs sources (un nombre i de sources, i étant un nombre entier supérieur ou égal à 2), le volume poreux du liant selon l’invention est le volume poreux total résultant de la somme des volumes poreux Vi des différentes sources pondérés par les fractions pondérales (Xi) desdites i sources constituant le liant.
Ainsi : Vp (liant) = å Xi x Vi
avec Vp(liant), le volume poreux du liant
Xi, fraction pondérale de la source i de liant par rapport au poids total de liant
Vi, volume poreux (total) de la source i de liant.
Le liant est avantageusement un composé inerte pour la réaction visée (déshydratation isomérisante d’un alcool primaire). Selon l’invention, le liant est de préférence un liant silicique, un AIP04, une argile, une zircone, un oxyde de Ti, du SiC, ou leurs mélanges. De façon très préférée, c’est un liant silicique.
De préférence, le liant silicique est constitué essentiellement de silice, c’est-à-dire que le liant silicique est constitué de silice aux impuretés près, celles-ci n’ayant pas d’effet catalytique. En particulier, ladite silice est une silice amorphe.
Le liant silicique est avantageusement composé d’une source de silice ou d’un mélange de silices. La teneur en liant dans le catalyseur est comprise entre 10 et 45% pds, de préférence entre 20 et 40% pds.
De manière très avantageuse, le catalyseur est constitué d’au moins une zéolite ayant au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR) et un liant silicique. De préférence, ledit catalyseur est constitué de zéolithe ferriérite et de liant silicique. De préférence, ledit catalyseur est constitué de zéolithe ferriérite et de silice, et en particulier de silice amorphe.
Ledit catalyseur est mis en forme (extrudé) selon une géométrie multilobe.
Généralement, le catalyseur ne comprend pas de métaux. Selon l’invention, on entend par cette expression « pas de métaux », qu’il n’y a pas de métaux ajoutés lors de la préparation. On comprend également qu’il peut y avoir des impuretés dans les liants et donc en faibles quantités. En général il n’y a pas d’aluminium ou de fer dans la silice.
Le procédé de l’invention opère avec un catalyseur ayant une porosité particulière, qui lui confère ses performances. On a pu observer qu’il existe une relation linéaire entre le volume poreux et la teneur en zéolite, relation valable dans un certain domaine, voire les différents domaines, de volumes poreux.
Ainsi, selon l’invention, le catalyseur présente une porosité telle que :
- le volume mésoporeux moyen Vm est centré à plus ou moins 20%, de préférence plus ou moins 15%, autour de la valeur définie par la formule Vm=-0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm,
- le volume macroporeux moyen VM est centré à plus ou moins 20%, de préférence plus ou moins 15%, autour de la valeur définie par la formule VM=0,0101 Tz - 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm,
- le volume microporeux moyen Vp est centré à plus ou moins 20%, de préférence plus ou moins 15%, autour de la valeur définie par la formule Vp=0,0014Tz - 0,0006, les micropores ayant un diamètre inférieur à 2 nm,
et, dans les formules, Tz est exprimé en % pds et les volumes poreux en ml/g.
Ce catalyseur présente également une aire géométrique exposée de 2700 à 1 1000 m2/m3 de volume du lit de catalyseur, et de préférence de 2800 et 9000 m2/m3. De manière très avantageuse, le catalyseur est constitué d’au moins une zéolite ayant au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR) et un liant silicique présentant un volume poreux compris entre 0,5 et 0,9 ml/g. De préférence, ledit catalyseur est constitué de zéolithe ferriérite et de liant silicique présentant un volume poreux compris entre 0,5 et 0,9 ml/g. Avantageusement, lesdits catalyseurs se présentent sous forme trilobé ou quadrilobe, et de préférence sous une forme quadrilobe.
De préférence, le liant silicique est essentiellement constitué de silice et le catalyseur est sous forme quadrilobe présentant un diamètre relatif au cercle circonscrit compris entre 1 mm et 5 mm, de préférence entre 1 ,2 et 3 mm. De préférence, ce catalyseur ne comprend pas de métaux.
Ainsi, un catalyseur présentant de telles caractéristiques morphologiques et texturales permet d’améliorer les performances de déshydratation isomérisante d’un alcool primaire. Un tel catalyseur présente également une stabilité à la désactivation améliorée. Il peut également avantageusement opérer en l’absence de pré-cokage.
Procédé de préparation
Ledit catalyseur utilisé dans le procédé selon l’invention est avantageusement préparé selon un procédé de préparation comprenant au moins les étapes suivantes :
a) une étape de mélange d'au moins une poudre de zéolithe, de préférence sous forme protonique ou ammonium, ladite zéolithe présentant au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), avec au moins un liant, de préférence un liant silicique, par exemple une poudre de silice amorphe, ladite zéolithe représentant entre 55 et 90% poids du poids total du mélange de zéolithe et de liant, ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g ;
b) une étape de malaxage du mélange obtenu à l’issue de l’étape a), en présence d’ajout de solvant, avantageusement d’une solution aqueuse, de préférence de l’eau, et éventuellement d’agent peptisant, jusqu’à l’obtention d’un mélange pâteux ;
c) une étape de mise en forme multilobe du mélange pâteux obtenu à l'issue de l'étape b), par exemple par extrusion en utilisant une filière de géométrie adaptée ; d) une étape de séchage du matériau mis en forme obtenu à l'issue de l'étape c), avantageusement à une température comprise entre 50 et 200°C, préférentiellement entre 80 et 150°C, avantageusement pendant une durée comprise entre 1 et 24 h, et avantageusement sous air ;
e) une étape optionnelle de calcination du matériau, à l’issue de l’étape d) de séchage, avantageusement sous air sec, à une température allant de 400 à 800°C et de préférence pendant une période allant de 2 à 12 h ; et/ou
f) une étape optionnelle de traitement thermique à l’issue de l’étape d) de séchage ou à l’issue de l’étape optionnelle e) de calcination, à une température comprise entre 500- 700°C sous air en présence de 1 à 30% volume d'eau dans l'air, de préférence 1 à 10%, avantageusement pendant un temps allant de 1 à 4 heures.
Le liant (et notamment le liant silicique) utilisé dans l’étape a) est bien connu de l’Homme du métier. La poudre de liant (et notamment de liant silicique) contribue à contrôler la porosité du solide final.
Une source de liant silicique peut être une silice de précipitation ou une silice issue de sous- produits comme les cendres volantes, par exemple les particules silico-alumineuses ou silico-calciques, et les fumées de silice. On pourra avantageusement utiliser une silice colloïdale, se présentant par exemple sous la forme d'une suspension stabilisée.
La poudre de zéolite et le liant (tel que silicique), de préférence sous forme de poudre, sont avantageusement malaxés en présence d'un solvant (étape b), de préférence en présence d’une solution aqueuse, et encore plus préférentiellement en présence d'eau, dans lequel un agent peptisant peut avantageusement être dissout afin d'obtenir une meilleure dispersion du liant. La proportion de solvant, avantageusement de solution aqueuse, ajouté est comprise entre 20 et 40% poids, de préférence entre 25 et 35% poids et plus préférentiellement encore entre 28 et 34 % poids du poids total du mélange composé de la poudre de zéolithe, du liant, du solvant et éventuellement de l’agent peptisant. La consistance de la pâte est ajustée par le biais de la quantité de solvant. L’ajustement de la quantité de solvant permet de moduler la perte au feu de la pâte et d’obtenir ainsi les caractéristiques géométriques et les propriétés texturales souhaitées pour le solide final. Avantageusement, la perte au feu de la pâte (ou mélange pâteux) obtenue à l’issue de l’étape b) dans le procédé de préparation selon l’invention varie entre 20 et 50%, de préférence entre 25 et 45% et de façon encore plus préférée entre 30 et 40%. Selon l’invention, on entend par perte au feu (PAF) la perte de masse subie par un composé solide, un mélange de composés solides ou une pâte, lors d’un traitement thermique à 1000°C pendant 2 heures, dans un four statique (type four à moufle), par rapport à la masse du composé solide, du mélange de composés solides ou de la pâte initial(e). La perte au feu correspond en général à la perte de solvant (tel que l’eau) contenu dans les solides et provenant du solvant ajouté pour former la pâte mais aussi à l’élimination de composés organiques volatiles contenus dans les constituants solides minéraux.
L’agent peptisant éventuellement utilisé lors de l’étape b) du procédé de préparation du catalyseur selon l’invention peut avantageusement être un acide ou une base organique ou inorganique, comme l’acide acétique, l'acide chlorhydrique, l'acide sulfurique, l’acide formique, l’acide citrique et l'acide nitrique, seul ou en mélange, l'ammoniaque, une amine, un composé à ammonium quaternaire, choisi parmi les alkyl-éthanol amines ou les alkyl- amines éthoxylées, l'hydroxyde de tétraéthylammonium (TEAOH) et le tétraméthylammonium.
Lors de l’étape c) de mise en forme, la pâte malaxée est extrudée au travers d’une filière dont la géométrie va imposer la forme du catalyseur.
Selon un mode de réalisation de l’invention, le procédé de préparation du catalyseur peut en outre comprendre une étape de « steaming », ou traitement thermique sous vapeur d’eau, réalisée en fin de procédé de préparation selon l’invention, c’est-à-dire après l’étape d) de séchage ou après la ou les étape(s) optionnelle(s) de calcination e) et/ou de traitement thermique f) du procédé de préparation de catalyseur selon l’invention. Cette étape éventuelle de « steaming », si elle est intégrée au procédé de préparation selon l’invention, est réalisée sous vapeur d’eau, en particulier sans gaz vecteur tiers, à une température comprise entre 250 et 400°C, de préférence entre 300 et 350°C, à une pression supérieure à 4 bar absolu (c’est-à-dire 0,4 MPa abs.) et de préférence inférieure ou égale à 15 bar absolu (c’est-à-dire 1 ,5 MPa abs.), et à un débit d’eau injecté correspondant à la masse horaire d’eau rapportée à la masse de catalyseur (PPH) comprise entre 3 et 9 h 1, de préférence comprise entre 5 et 7 h 1.
Les exemples qui suivent sont présentés à titre illustratif et non limitatif du procédé de traitement selon l’invention. EXEMPLES
Dans les exemples, les volumes poreux ont été mesurés selon les méthodes par intrusion au porosimètre à mercure et par isotherme d’adsorption d’azote, décrites précédemment dans le présent texte, ce qui explique les écarts par rapport aux volumes calculés selon les formules données, mais qui restent dans l’intervalle d’écart de 20%.
Exemple 1 (selon l’invention)
Le catalyseur A est préparé par comalaxage de 70% poids de ferriérite commerciale sous forme ammonium présentant un ratio atomique Si/Al de 20, de 9% poids d’une source de silice, sous forme de poudre, de volume poreux égal à 1 ,54 ml/g et 21 % poids d’une source de silice, sous forme de poudre, de volume poreux égal à 0,312 ml/g. Le liant utilisé pour préparer le catalyseur A est un liant silicique, sous forme de poudre, composé de 30% poids de la source de silice de volume poreux 1 ,54 ml/g et de 70% poids de la source de silice de volume poreux égal à 0,312 ml/g. Le liant a un volume poreux total résultant égal à Vp(liant)=0,680 ml/g. Il représente 30% poids du mélange de poudre zéolithe ferriérite + silices. Les deux poudres de silice sont mélangées à la zéolithe. Une solution aqueuse basique contenant de la TEAOH (hydroxyde de tétraéthylammonium) est ensuite ajoutée au mélange de poudres qui est alors malaxé jusqu’à former une pâte, de telle façon que : la teneur en TEAOH dans le mélange de poudres zéolithe + silices est de 2,5% poids et la PAF de la pâte obtenue est de 37%. Le solide a été extrudé sous forme quadrilobe de diamètre 1 ,6 mm, séché à 80°C pendant 12h puis calciné sous air humide (6% v/v, volume d’eau par rapport au volume d’effluent gazeux complet) pendant 2 h à 600°C.
Le catalyseur A obtenu a une surface spécifique SBET de 300 m2/g, un volume mésoporeux de 0,24 ml/g, macroporeux de 0,16 ml/g et microporeux de 0,097 ml/g. La surface géométrique exposée et calculée est de 3404 m2/m3, pour un taux de vide du lit catalytique de 38,5% et une longueur moyenne de 3,5 mm.
Exemple 2 (comparatif)
Le catalyseur B est préparé par comalaxage de 70% poids de ferriérite commerciale sous forme ammonium présentant un ratio atomique Si/Al de 20, et de 30% poids d’une source de silice sous forme de poudre et ayant un volume poreux égal à 0,312 ml/g. Le liant silicique est mélangé à la zéolithe. Une solution aqueuse basique contenant de la TEAOH est ajoutée au mélange de poudres qui est alors malaxé afin de former une pâte, de telle façon que : la teneur en TEAOH dans le mélange de poudres zéolithe + silice est de 2,5% poids et la PAF de la pâte obtenue est de 34%. Le solide a été extrudé sous forme cylindrique de diamètre 2,1 mm, séché à 80°C pendant 12h puis calciné sous air humide (6% v/v, volume d’eau par rapport au volume d’effluent gazeux complet) pendant 2 h à 600°C.
Le catalyseur B obtenu a une surface spécifique SBET de 280 m2/g, un volume mésoporeux de 0,14 ml/g, macroporeux de 0,21 ml/g et microporeux de 0,094 ml/g. La surface géométrique exposée et calculée est de 1535 m2/m3, pour un taux de vide du lit catalytique de 38,5% et une longueur moyenne de 3,5 mm.
Exemple 3 (comparatif)
Le catalyseur C est préparé par comalaxage de 70% poids de ferriérite commerciale sous forme ammonium présentant un ratio atomique Si/Al de 20 et de 30% poids d’une source de silice sous forme de poudre et de volume poreux égal à 0,312 ml/g. Le liant silicique et la zéolithe sont mélangés. Une solution aqueuse basique contenant de la TEAOH est ajoutée au mélange de poudres qui est alors malaxé jusqu’à afin de former une pâte, de telle façon que : la teneur en TEAOH dans le mélange de poudres zéolithe + silice est de 2,5% poids et la PAF de la pâte obtenue est de 35,5%. Le solide a été extrudé sous forme trilobée de diamètre 2,1 mm, séché à 80°C pendant 12h puis calciné sous air humide (6% v/v, volume d’eau par rapport au volume d’effluent gazeux complet) pendant 2 h à 600°C.
Le catalyseur C obtenu a une surface spécifique SBET de 333 m2/g, un volume mésoporeux de 0,15 ml/g, macroporeux de 0,13 ml/g et microporeux de 0,102 ml/g. La surface géométrique exposée et calculée est de 2270 m2/m3, pour un taux de vide du lit catalytique de 38,5% et une longueur moyenne de 3,5 mm.
Exemple 4 (selon l’invention)
Le catalyseur D est préparé par comalaxage de 70% poids de ferriérite commerciale sous forme ammonium présentant un ratio atomique Si/Al de 20, de 1 1 % poids d’une source de silice de volume poreux égal à 1 ,54 ml/g et de 19% poids d’une source de silice de volume poreux égal à 0,312 ml/g. Le liant utilisé pour préparer le catalyseur D est donc un liant silicique, sous forme de poudre, composé d’environ 36,7% poids de la source de silice de volume poreux 1 ,54 ml/g et de 63,3% poids de la source de silice de volume poreux égal à 0,312 ml/g. Le liant a un volume poreux total résultant égal à Vp(liant)=0, 762 ml/g. Il représente 30% poids du mélange de poudre zéolithe ferriérite + silices. Les deux poudres de silice sont mélangées à la zéolithe. Une solution aqueuse basique contenant de la TEAOH (hydroxyde de tétraéthylammonium) est ensuite ajoutée au mélange de poudres qui est alors malaxé jusqu’à de former une pâte, de telle façon que : la teneur en TEAOH dans le mélange de poudres zéolithe + silices est de 2,5% poids et la PAF de la pâte obtenue est de 35,5%. Le solide a été extrudé sous forme trilobé de diamètre 1 ,6 mm, séché à 80°C pendant 12h puis calciné sous air humide (6% v/v, volume d’eau par rapport au volume d’effluent gazeux complet) pendant 2 h à 600°C.
Le catalyseur D obtenu a une surface spécifique SBET de 341 m2/g, un volume mésoporeux de 0,19 ml/g, macroporeux de 0,19 ml/g et microporeux de 0,101 ml/g. La surface géométrique exposée et calculée est de 2871 m2/m3, pour un taux de vide du lit catalytique de 38,5% et une longueur moyenne de 3,5 mm.
Exemple 5 (comparatif)
Le catalyseur E est préparé par comalaxage de 70% poids de ferriérite commerciale sous forme ammonium présentant un ratio atomique Si/Al de 20 et de 30% poids de silice de volume poreux égal à 0,377 ml/g. La silice est mélangée à la zéolithe. Une solution aqueuse basique contenant de la TEAOH est ajouté et le mélange est malaxé jusqu’à former une pâte. L’ajout de la solution aqueuse est tel que la teneur en TEAOH (hydroxyde de tétraéthylammonium) dans le mélange de poudres zéolithe + silice est de 2,5% poids et la PAF de la pâte obtenue est de 33%. Le solide a été extrudé sous forme quadrilobe de diamètre 1 ,6 mm, séché à 80°C pendant 12h puis calciné sous air humide (6% v/v, volume d’eau par rapport au volume d’effluent gazeux complet) pendant 2 h à 600°C.
Le catalyseur E obtenu a une surface spécifique SBET de 326 m2/g, un volume mésoporeux de 0,17 ml/g, macroporeux de 0,27 ml/g et microporeux de 0,097 ml/g. La surface géométrique exposée et calculée est de 3404 m2/m3, pour un taux de vide du lit catalytique de 38,5% et une longueur moyenne de 3,5 mm.
Exemple 6 : Test catalytique : Déshydratation d’une charge isobutanol/eau monophasique en présence des catalyseurs A, B, C, D et E.
L’étape de déshydratation est réalisée sur une unité de test catalytique comprenant un lit fixe fonctionnant en mode « down flow », c'est-à-dire en écoulement descendant. Le catalyseur est chargé dans un réacteur inox 316L de diamètre interne de 13 mm. Le catalyseur est ensuite activé à 450°C sous 6 l/h d'air pendant un palier d'une heure après une montée en température de 10°C/min. La température est ensuite abaissée à la température de test sous 6l/h d'azote afin d'éliminer l’air présent dans le système avant injection de la charge alcool.
La charge est vaporisée dans les lignes chauffées à 150-180°C en amont du réacteur puis injectée dans le réacteur catalytique. Les conditions opératoires sont les suivantes : température moyenne pondérée de 300°C, PPH (poids de charge par poids de catalyseur par gramme) de 7h 1 pendant 24h, puis de 12h 1 pendant 48h, puis de 20h 1 pendant 72h, puis de nouveau à pph 7h 1 pendant 24h (point retour).
L’analyse de l’effluent total est effectuée en sortie de réacteur sur un chromatographe en phase gazeuse en ligne équipée de deux colonnes, ce qui permet de déterminer la conversion de l’isobutanol, les sélectivités en différents produits et notamment la sélectivité en butènes et la fraction de butènes linéaires dans la coupe butènes, fraction que l’on cherche à maximiser. L’analyseur permet aussi de mesurer la sélectivité en produits secondaires tels que le propène ou les produits contenant 5 atomes de carbone ou plus. La mesure de la conversion moyenne atteinte pendant les 24h du point retour est comparée à la conversion moyenne pendant les 24 premières heures à PPH 7h 1 et permet d’évaluer la perte d’activité au cours du test. La détermination de la pente de désactivation sur la courbe de conversion du monoalcool à PPH de 20h 1 permet d’évaluer et de comparer la stabilité des catalyseurs en conditions désactivantes. Elle est exprimée en perte de %alcool converti par heure.
Les résultats obtenus sont présentés dans le tableau ci-dessous.
Figure imgf000021_0001
Les catalyseurs selon l’invention A et D présentent une désactivation quasi nulle au point retour, leur vitesse de désactivation est plus faible en condition de PPH élevée que celle des catalyseurs B, C et E. Leur stabilité est donc améliorée par rapport aux catalyseurs B, C et E. Leur sélectivité en butènes linéaires est améliorée.

Claims

REVENDICATIONS
1. Procédé de déshydratation isomérisante d’une charge comprenant un monoalcool primaire seul ou en mélange , de formule R-CH2-OH, dans lequel R est un radical alkyl non linéaire de formule générale CnH2n+i où n est un entier compris entre 3 et 20, ledit procédé comprenant une étape de de déshydratation isomérisante opérée en phase gaz, à une température moyenne pondérée comprise entre 250 et 460°C, à une pression comprise entre 0,2 MPa et 1 MPa, à une vitesse spatiale horaire en poids (PPH) comprise entre 1 et 25 h 1, en présence d’un catalyseur comprenant au moins une zéolite et au moins un liant, dont la teneur pondérale Tz en zéolite est de 55-90% pds par rapport au poids total dudit catalyseur et dans lequel ladite zéolite présente au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g, le catalyseur étant sous forme de multilobe et présentant
- un volume mésoporeux moyen Vm centré à plus ou moins 20% autour de la valeur définie par la formule Vm=-0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm,
- un volume macroporeux moyen VM centré à plus ou moins 20% autour de la valeur définie par la formule VM=0,0101 Tz - 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm,
- un volume microporeux moyen Vp centré à plus ou moins 20% autour de la valeur définie par la formule Vp=0,0014Tz - 0,0006, les micropores ayant un diamètre inférieur à 2 nm,
et, dans les formules, Tz est exprimé en % pds et les volumes poreux en ml/g,
- une aire géométrique exposée de 2700 à 1 1000 m2/m3 de volume du lit de catalyseur.
2. Procédé selon la revendication 1 dans lequel la zéolite est du type structural FER ou MFS, et de préférence est choisie dans le groupe formé par ferriérite, FU-9, ISI-6, NU-23, ZSM-35, ZSM-57 ou leurs mélanges.
3. Procédé selon l’une des revendications précédentes dans lequel la zéolite est une ferrierite, et de préférence ayant un rapport molaire Si/Al =15 à 70.
4. Procédé selon l’une des revendications précédentes dans lequel la teneur en zéolite est comprise entre 55 et 80% pds par rapport au poids total dudit catalyseur.
5. Procédé selon l’une des revendications précédentes dans lequel le liant est choisi dans le groupe formé par un liant silicique, un AIP04, une argile, une zircone, un oxyde de Ti, du SiC.
6. Procédé selon l’une des revendications précédentes dans lequel le liant est un liant silicique, de préférence il est essentiellement constitué de silice.
7. Procédé selon l’une des revendications précédentes dans lequel le volume poreux du liant est compris entre 0,6 et 0,8 ml/g.
8. Procédé selon l’une des revendications précédentes dans lequel la teneur en liant silicique est comprise entre 10 et 45% pds, de préférence entre 20 et 40% pds par rapport au poids total dudit catalyseur.
9. Procédé selon l’une des revendications précédentes dans lequel le catalyseur ne comprend pas de métaux.
10. Procédé selon l’une des revendications précédentes dans lequel le catalyseur est sous forme de trilobé ou quadrilobe.
1 1. Procédé selon l’une des revendications précédentes dans lequel le catalyseur est sous forme de quadrilobe et présente un diamètre relatif au cercle circonscrit compris 1 mm et 9 mm, de préférence entre 1 mm et 5 mm, préférentiellement entre 1 ,2 et 3 mm et de façon encore plus préférée entre 1 ,2 et 2 mm.
12. Procédé selon l’une des revendications précédentes dans lequel ledit monoalcool est l’isobutanol.
13. Procédé selon l’une des revendications précédentes dans lequel la charge comprend de 40 à 100% poids dudit monoalcool primaire.
14. Catalyseur comprenant au moins une zéolite et au moins un liant, dont la teneur pondérale Tz en zéolite est de 50-90% pds, ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g, catalyseur dans lequel au moins une zéolite présente au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), le catalyseur étant sous forme de multilobe et présentant - un volume mésoporeux moyen Vm centré à plus ou moins 20% autour de la valeur définie par la formule Vm=-0,004Tz + 0,505, les mésopores ayant un diamètre de 3,6 nm à 50 nm,
- un volume macroporeux moyen VM centré à plus ou moins 20% autour de la valeur définie par la formule VM=0,0101Tz - 0,5375, les macropores ayant un diamètre supérieur à 50 nm et inférieur à 7000 nm,
- un volume microporeux moyen Vp centré à plus ou moins 20% autour de la valeur définie par la formule Vp=0,0014Tz - 0,0006, les micropores ayant un diamètre inférieur à 2 nm,
et, dans les formules, Tz est exprimé en % pds et les volumes poreux en ml/g
- une aire géométrique exposée de 2700 à 1 1000 m2/m3 de volume du lit de catalyseur.
15. Catalyseur selon la revendication 14 dans lequel le liant est un liant silicique, de préférence essentiellement constitué de silice, le catalyseur est sous forme d’un quadrilobe, de préférence présentant un diamètre relatif au cercle circonscrit compris entre 1 mm et 5 mm, de préférence entre 1 ,2 et 3 mm, et de façon encore plus préférée entre 1 ,2 et 2 mm et la surface géométrique exposée est comprise entre 2800 et 9000 m2/m3.
16. Catalyseur selon l’une des revendications 14 et 15 ne comprenant pas de métaux.
17. Procédé de préparation du catalyseur selon l’une des revendications 14 à 16, comprenant au moins les étapes suivantes :
a) une étape de mélange d'au moins une poudre de zéolithe , de préférence sous forme protonique ou ammonium, ladite zéolithe présentant au moins une série de canaux dont l’ouverture est à 8 atomes d’oxygène (8MR), avec au moins un liant, de préférence un liant silicique, ladite zéolithe représentant entre 55 et 90% poids du poids total du mélange de zéolithe et de liant, ledit liant présentant un volume poreux compris entre 0,5 et 0,9 ml/g
b) une étape de malaxage du mélange obtenu à l’issue de l’étape a), en présence d’ajout de solvant, avantageusement d’une solution aqueuse, et éventuellement d’agent peptisant, jusqu’à l’obtention d’un mélange pâteux ; c) une étape de mise en forme multilobe du mélange pâteux obtenu à l'issue de l'étape b),
d) une étape de séchage du matériau mis en forme obtenu à l'issue de l'étape c), avantageusement à une température comprise entre 50 et 200°C, avantageusement pendant une durée comprise entre 1 et 24 h,
e) une étape optionnelle de calcination, à l’issue de l’étape d) de séchage du matériau, avantageusement sous air sec, à une température allant de 400 à 800°C de préférence pendant une période allant de 2 à 12 h, et/ou
f) une étape optionnelle de traitement thermique, à l’issue de l’étape d) de séchage du matériau ou à l’issue de l’étape optionnelle e) de calcination, à une température comprise entre 500-700°C sous air, en présence de 1 à 30% volume d'eau dans l'air.
18. Procédé de préparation du catalyseur selon la revendication précédente, comprenant en outre une étape de « steaming » réalisée après l’étape d) de séchage ou après la ou les étape(s) optionnelle(s) de calcination e) et/ou de traitement thermique f), sous vapeur d’eau, en particulier sans gaz vecteur tiers, à une température comprise entre 250 et 400°C, de préférence entre 300 et 350°C, à une pression supérieure à 4 bar absolu et de préférence inférieure ou égale à 15 bar absolu, et à un débit d’eau injecté correspondant à la masse horaire d’eau rapportée à la masse de catalyseur (PPH) comprise entre 3 et 9 h 1, de préférence comprise entre 5 et 7 h 1.
PCT/EP2019/058454 2018-04-25 2019-04-04 Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer WO2019206591A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/050,155 US11618721B2 (en) 2018-04-25 2019-04-04 Method for isomerising dehydration of a non-linear primary monoalcohol on a quadrilobed iron zeolite catalyst
EP19714216.9A EP3784389A1 (fr) 2018-04-25 2019-04-04 Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer
BR112020021110-9A BR112020021110A2 (pt) 2018-04-25 2019-04-04 processo de desidratação isomerisante de monoálcool primário não linear sobre um catalisador zeolítico com quadrilobulados do tipo férrico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853627A FR3080546B1 (fr) 2018-04-25 2018-04-25 Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer
FR1853627 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019206591A1 true WO2019206591A1 (fr) 2019-10-31

Family

ID=63080064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/058454 WO2019206591A1 (fr) 2018-04-25 2019-04-04 Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer

Country Status (5)

Country Link
US (1) US11618721B2 (fr)
EP (1) EP3784389A1 (fr)
BR (1) BR112020021110A2 (fr)
FR (1) FR3080546B1 (fr)
WO (1) WO2019206591A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042194A1 (fr) * 2022-08-25 2024-02-29 IFP Energies Nouvelles Procédé de déshydratation d'une charge comprenant un alcool pour la production d'alcènes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079213A2 (fr) 2007-12-03 2009-06-25 Gevo, Inc. Compositions renouvelables
EP2348005A1 (fr) 2010-01-22 2011-07-27 Total Petrochemicals Research Feluy Déshydratation d'alcools sur des silicates cristallins de structure de fer
WO2011089235A1 (fr) 2010-01-22 2011-07-28 Total Petrochemicals Research Feluy Déshydratation d'alcools sur un silicate cristallin à faible rapport si/al
WO2011113834A1 (fr) 2010-03-15 2011-09-22 Total Petrochemicals Research Feluy Déshydratation et isomérisation squelettale simultanées d'isobutanol sur des catalyseurs acides
WO2016046242A1 (fr) * 2014-09-26 2016-03-31 IFP Energies Nouvelles Procede de deshydratation isomerisante d'une charge alcool primaire substitue en position 2 par un groupement alkyl sur un catalyseur comprenant une zeolithe de type fer
WO2018087033A1 (fr) * 2016-11-08 2018-05-17 IFP Energies Nouvelles Procede de deshydratation isomerisante d'une charge alcool primaire non lineaire en presence d'injection d'eau et d'un catalyseur comprenant une zeolithe de type fer ou mfs
WO2018087032A1 (fr) * 2016-11-08 2018-05-17 IFP Energies Nouvelles Procédé de déshydratation isomérisante de monoalcools primaires non linéaires sur catalyseur zéolithique dopé d'alcalin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079213A2 (fr) 2007-12-03 2009-06-25 Gevo, Inc. Compositions renouvelables
EP2348005A1 (fr) 2010-01-22 2011-07-27 Total Petrochemicals Research Feluy Déshydratation d'alcools sur des silicates cristallins de structure de fer
WO2011089235A1 (fr) 2010-01-22 2011-07-28 Total Petrochemicals Research Feluy Déshydratation d'alcools sur un silicate cristallin à faible rapport si/al
WO2011113834A1 (fr) 2010-03-15 2011-09-22 Total Petrochemicals Research Feluy Déshydratation et isomérisation squelettale simultanées d'isobutanol sur des catalyseurs acides
WO2016046242A1 (fr) * 2014-09-26 2016-03-31 IFP Energies Nouvelles Procede de deshydratation isomerisante d'une charge alcool primaire substitue en position 2 par un groupement alkyl sur un catalyseur comprenant une zeolithe de type fer
WO2018087033A1 (fr) * 2016-11-08 2018-05-17 IFP Energies Nouvelles Procede de deshydratation isomerisante d'une charge alcool primaire non lineaire en presence d'injection d'eau et d'un catalyseur comprenant une zeolithe de type fer ou mfs
WO2018087032A1 (fr) * 2016-11-08 2018-05-17 IFP Energies Nouvelles Procédé de déshydratation isomérisante de monoalcools primaires non linéaires sur catalyseur zéolithique dopé d'alcalin

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CH. BAERLOCHER; L. B. MC CUSKER; D.H. OISON: "Atlas of Zeolite Structure Types", 2007, ELSEVIER
CHADWIK ET AL., APPLIED CATALYSIS, vol. 403, no. 1-2, 2011, pages 1 - 11
J. F. LE PAGE, CATALYSE DE CONTACT: CONCEPTION, PRÉPARATION ET MISE EN OEUVRE DES CATALYSEURS INDUSTRIELS, pages 209
KOTSARENKO ET AL., KIN. KATAL., vol. 24, 1983, pages 877
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042194A1 (fr) * 2022-08-25 2024-02-29 IFP Energies Nouvelles Procédé de déshydratation d'une charge comprenant un alcool pour la production d'alcènes
FR3139140A1 (fr) * 2022-08-25 2024-03-01 IFP Energies Nouvelles Procédé de déshydratation d’une charge comprenant un alcool pour la production d’alcènes

Also Published As

Publication number Publication date
FR3080546A1 (fr) 2019-11-01
BR112020021110A2 (pt) 2021-02-17
FR3080546B1 (fr) 2022-12-16
US20210078919A1 (en) 2021-03-18
US11618721B2 (en) 2023-04-04
EP3784389A1 (fr) 2021-03-03

Similar Documents

Publication Publication Date Title
EP2308814B1 (fr) Procede d'oligomerisation d'une charge hydrocarbonee olefinique utilisant un catalyseur a base d'une silice-alumine mésoporeuse/macroporeuse
EP3197850B1 (fr) Procede de deshydratation isomerisante d'une charge alcool primaire substitue en position 2 par un groupement alkyl sur un catalyseur comprenant une zeolithe de type fer
CA2931704C (fr) Procede de deshydratation d'un melange contenant de l'ethanol et de l'isopropanol
Makarfi et al. Conversion of bioethanol over zeolites
WO2015144856A1 (fr) Procédé pour la conversion catalytique de cétoacides et l'hydro-traitement aux hydrocarbures
FR2988717A1 (fr) Procede de deshydratation et d'isomerisation d'alcools utilisant un catalyseur a base d'un materiau mesostructure comprenant du silicium
CA2931705C (fr) Procede de deshydratation d'un melange contenant de l'ethanol et du n-propanol
CA2797748A1 (fr) Procede de deshydratation et d'isomerisation d'alcools en c4 utilisant un solide amorphe a porosite adaptee
EP3784389A1 (fr) Procede de deshydratation isomerisante de monoalcool primaire non lineaire sur un catalyseur zeolithique quadrilobe de type fer
JP2020055739A (ja) 最適である酸度と孔隙を有する構造とを有するアルミナ
EP2831020B1 (fr) Procédé de déshydratation et d'isomérisation d'alcools utilisant un solide de type aluminosilicate non zéolithique
EP3538502A1 (fr) Procede de deshydratation isomerisante d'une charge alcool primaire non lineaire en presence d'injection d'eau et d'un catalyseur comprenant une zeolithe de type fer ou mfs
FR3068692B1 (fr) Procede de deshydratation des alcools en olefines comprenant une etape de selectivation du catalyseur
FR3058414B1 (fr) Procede de deshydratation isomerisante d'un alcool primaire non lineaire sur un catalyseur comprenant une zeolithe de type fer et un liant aluminique
WO2018087032A1 (fr) Procédé de déshydratation isomérisante de monoalcools primaires non linéaires sur catalyseur zéolithique dopé d'alcalin
WO2024042194A1 (fr) Procédé de déshydratation d'une charge comprenant un alcool pour la production d'alcènes
WO2024133376A1 (fr) Catalyseur a base d'une zeolithe et d'une structure alpo et presentant un volume macroporeux eleve
FR3137311A1 (fr) Procédé de traitement d’un catalyseur comprenant une zéolithe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19714216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020021110

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019714216

Country of ref document: EP

Effective date: 20201125

ENP Entry into the national phase

Ref document number: 112020021110

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201015