WO2019206292A9 - Organic electroluminescent device and display comprising same - Google Patents

Organic electroluminescent device and display comprising same Download PDF

Info

Publication number
WO2019206292A9
WO2019206292A9 PCT/CN2019/084629 CN2019084629W WO2019206292A9 WO 2019206292 A9 WO2019206292 A9 WO 2019206292A9 CN 2019084629 W CN2019084629 W CN 2019084629W WO 2019206292 A9 WO2019206292 A9 WO 2019206292A9
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
atom
branched
carbon atoms
Prior art date
Application number
PCT/CN2019/084629
Other languages
French (fr)
Chinese (zh)
Other versions
WO2019206292A1 (en
Inventor
李崇
唐丹丹
张兆超
张小庆
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019206292A1 publication Critical patent/WO2019206292A1/en
Publication of WO2019206292A9 publication Critical patent/WO2019206292A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly, to an organic electroluminescent device and a display including the same.
  • Organic electroluminescence device technology can be used to manufacture both new display products and new lighting products. It is expected to replace the existing liquid crystal display and fluorescent lamp lighting, and has a wide application prospect.
  • An organic electroluminescent device is a current device. When a voltage is applied to the electrodes at both ends and an electric field is applied to the positive and negative charges in the functional material film layer of the organic layer, the positive and negative charges are further recombined in the organic light emitting layer, resulting in Electroluminescence.
  • Organic electroluminescent devices generally have a multi-layer structure, and various auxiliary function layers other than the light-emitting layer also play a vital role in device performance.
  • Reasonable device structures can effectively improve device performance. Electron injection layers, electron transport layers, hole blocking layers, light emitting layers, electron blocking layers, hole transport layers, and hole injection layers are widely used to improve device performance.
  • Carriers (holes and electrons) in an organic electroluminescent device are injected into the device by two electrodes of the device under the driving of an electric field, respectively, and the composite light is emitted when the light emitting layer meets.
  • Hole transport materials used in existing organic electroluminescent devices are known, such as The HOMO energy level and the HOMO energy level of the electron blocking layer material are greatly different, and it is easy to form an accumulated charge at the material interface, which affects the life of the OLED device.
  • the present invention aims to provide an organic electroluminescence device having improved luminous efficiency, heat resistance and service life, and a display including the same.
  • An object of the present invention is achieved by providing an organic electroluminescence device, which is provided with a substrate, a first electrode, an organic functional material layer, and a second electrode in this order from bottom to top.
  • the organic functional material layer includes:
  • a light-emitting layer which is located on the hole-transporting region and includes a host material and a guest material;
  • An electron-transporting region located above the light-emitting layer,
  • the hole transporting region includes a hole injection layer, a hole transporting layer, and an electron blocking layer in this order from bottom to top.
  • the hole transport layer includes first and second organic materials, wherein the HOMO energy level of the first organic material is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, and more preferably -5.35eV to -5.5eV, and the HOMO energy level of the second organic material is -5.4eV to -5.9eV, preferably -5.4eV to -5.7eV, more preferably -5.48eV to -5.68eV, and the HOMO first organic material
  • the HOMO of the first and second organic materials is defined, and this energy level matching causes the anode to block electrons
  • the potential barrier between layers is reduced, which facilitates the injection of holes from the anode into the electron blocking layer, improves the efficiency of hole injection, reduces the driving voltage of the device, reduces the accumulated charge at the interface contact, and improves the device's Stability and service life;
  • the higher glass transition temperature of the hole transport layer of the present invention improves the heat resistance of the device.
  • the organic film layer composed of two different materials can effectively improve the molecular arrangement and the interaction force between the molecules, making the film layer more stable, reducing the leakage current of the device and increasing the service life of the device.
  • Another object of the present invention is achieved by providing a display including the above-mentioned organic electroluminescent device.
  • FIG. 1 schematically illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates an energy transfer mechanism diagram of an organic electroluminescent device according to an embodiment of the present invention.
  • 3-7 schematically illustrate a combined structure of a light-emitting layer in an organic electroluminescent device including a hole-transporting layer of the present invention.
  • any numerical range listed herein is meant to include all sub-ranges with the same numerical precision included in the listed range.
  • "1.0 to 10.0" means all subranges (and including 1.0 and 10.0) included between the listed minimum value 1.0 and the listed maximum value 10.0, that is, having a minimum value equal to or greater than 1.0 and equal to Or all subranges of the maximum value less than 10.0.
  • Any maximum numerical limitation listed herein is intended to include all smaller numerical limitations incorporated herein, and any minimum numerical limitation listed herein is intended to include all larger numerical limitations incorporated herein. Accordingly, the applicant reserves the right to modify this specification, including the claims, to explicitly describe any sub-scope that falls within the scope explicitly described herein.
  • HT used herein means the organic material constituting the hole transport layer, for example, HT-I means the first organic material, and HT-II means the second organic material.
  • FIG. 1 schematically illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device according to an embodiment of the present invention is provided with a substrate 1, a first electrode 2, a hole transport region A, a light emitting layer 6, an electron transport region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injection layer 3, the hole transporting layer 4, and an electron blocking layer 5 in order from bottom to top
  • the electron transporting region B includes a hole blocking layer 7, electron transporting layer 8, and electrons in order from bottom to top.
  • Injected layer 9 is provided with a substrate 1, a first electrode 2, a hole transport region A, a light emitting layer 6, an electron transport region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injection layer 3, the hole transporting layer 4, and an electron blocking layer 5 in order from bottom to top
  • the electron transporting region B includes a
  • any substrate commonly used in organic electroluminescent devices can be selected.
  • transparent substrates such as glass or transparent plastic substrates; opaque substrates such as silicon substrates; flexible PI film substrates.
  • Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water resistance. Depending on the nature, the direction of use is different.
  • a transparent substrate is preferably used.
  • the thickness of the substrate is not particularly limited.
  • a first electrode is formed on the substrate, and the first electrode and the second electrode may face each other.
  • the first electrode may be an anode.
  • the first electrode may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the first electrode may be formed using a transparent metal oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide ( ITZO) and so on.
  • the first electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a metal mixture.
  • the thickness of the first electrode layer depends on the material used, and is usually 50-500 nm, preferably 70-300 nm, and more preferably 100-200 nm.
  • the organic functional material layer provided between the first electrode and the second electrode includes a hole transport region, a light emitting layer, and an electron transport region in this order from bottom to top.
  • the hole transporting region may be disposed between the first electrode and the light emitting layer.
  • the hole transport region may include, but is not limited to, a hole injection layer, a hole transport layer, and an electron blocking layer.
  • the hole transporting region may include a hole injection layer, a hole transporting layer, and an electron blocking layer disposed on the first electrode in this order from bottom to top.
  • organic materials having p-type properties which are easily oxidized and electrochemically stable when they are oxidized, are mainly used as hole injection materials or hole transport materials.
  • organic materials with n-type properties which are easily reduced and electrochemically stable when reduced, are used as electron injection materials or electron transport materials.
  • the light-emitting layer material a material having both p-type and n-type properties is preferred, which is stable when it is oxidized and reduced, and also preferably has high luminescence for converting excitons into light when excitons are formed. Efficient materials.
  • the material of the hole injection layer is generally a material that preferably has a high work function, so that holes are easily injected into the organic material layer.
  • the material of the hole injection layer contains at least one of the materials represented by the general formulae (17), (18) or (19):
  • F 1 -F 3 each independently represent a substituted or unsubstituted C 6-30 aryl group, a substituted or unsubstituted 3 to 30 membered heteroaryl group, and F 1 -F 3 Can be the same or different;
  • G 1 to G 6 each independently represent hydrogen, nitrile, halogen, amido, alkoxy, ester, nitro, CR 11 , substituted or unsubstituted C 6-30 aryl, 3- to 30-membered heteroaryl, wherein R 11 is a linear or branched C 1-20 alkyl, provided that G 1 -G 6 are not hydrogen at the same time;
  • heteroatom is selected from at least one of N, O, and S atoms.
  • the material of the hole injection layer used is selected from one of the following (a) to (j):
  • the thickness of the hole injection layer of the present invention may be 5 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm.
  • the hole transporting layer of the present invention may be provided on the hole injection layer.
  • the hole transport layer material includes a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 1:99 to 99: 1, preferably 10:90 to 90:10, more It is preferably 30:70 to 70:30, based on mass.
  • the HOMO energy level of the first organic material is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, more preferably -5.35eV to -5.5eV
  • the HOMO energy of the second organic material is The order is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and
  • FIG. 2 schematically illustrates an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention, where a represents a hole injection layer, b represents a hole transport layer, c represents an electron blocking layer, and d represents a light emitting layer. , E represents the host of the light-emitting layer, and f represents the electron transport layer.
  • the absolute value of the difference between the HOMO energy levels of the second organic material and the electron blocking material is ⁇ 0.4ev.
  • the smaller energy barrier between the hole-transporting material and the electron-blocking layer material allows holes to be easily injected into the electron-blocking layer via the hole-transporting layer, and then transported into the light-emitting layer.
  • the first and second organic materials of the present invention are each independently selected from one of the general formula (1), the general formula (2), and the general formula (3):
  • X and X 1 are each independently selected from a single bond, a carbon atom, N- (R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, One of a linear or branched C 1-20 alkyl-substituted silylene group and a C 6-20 aryl-substituted alkylene group;
  • R 5 may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group , Linear or branched C 1-20 alkyl-substituted silylene, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one heteroatom selected from N, O, and S Heteroaryl, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl ;
  • Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1- 20 alkyl substituted alkyl, straight or branched C 1-20 alkyl substituted silylene, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected from N A heteroaryl group of O, S and O, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl substitutions in which two or more R 6 groups may be connected to each other and may form a ring structure;
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently represent a single bond, a linear or branched C 1-20 alkylene group, an arylene group having 5 to 30 carbon atoms, a linear or branched chain C 1-20 alkyl-substituted silylene, heteroarylene having 5 to 30 carbon atoms and at least one heteroatom selected from N, O, and S, wherein in the case of the latter two, the group The group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, and a C 5-20 heteroaryl group, wherein the Ar1 and Ar2 groups may also be connected to form a ring;
  • n, p, q, s, and t are equal to 0 or 1; and m + n + p + q ⁇ 1 and m + n + s + t ⁇ 1;
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the general formula (4), the general formula (5) or the general formula (6), provided that R 1 , R 2 , R 3 And R 4 are not hydrogen atoms at the same time;
  • X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 Alkyl substituted silyl, C 6-20 aryl substituted alkylene, C 1-20 alkyl substituted imine, C 6-20 aryl substituted imine, C 5-20 heteroaryl One of the substituted imines;
  • Y 1 may identically or differently represent an N atom or CR, wherein R may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl substituted alkyl, linear or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected A heteroaryl group from a heteroatom of N, O, and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl, C 6-20 aryl , C 5-20 heteroaryl substitution; wherein two or more R groups can be connected to each other and can form a ring structure;
  • R 6 and R 7 each independently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group, a straight chain or a branched group C 1-20 alkyl substituted silyl groups of the chain, aryl groups having 5 to 30 carbon atoms, heteroaryl groups having 5 to 30 carbon atoms and at least one heteroatom selected from N, O and S, A structure represented by formula (7) or formula (6); wherein in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C 1-20 alkyl group, C 6- 20 aryl, C 5-20 heteroaryl substitution;
  • Y 2 may identically or differently represent an N atom or CR 10 , wherein R 10 may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a straight chain or Branched C 1-20 alkyl substituted alkyl, straight or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least A heteroaryl heteroaryl group selected from N, O, and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 Aryl, C 5-20 heteroaryl substitution;
  • X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 Alkyl substituted silyl, C 6-20 aryl substituted alkylene, C 1-20 alkyl substituted imine, C 6-20 aryl substituted imine, C 5-20 heteroaryl One of the substituted imines;
  • the general formula (7) is connected to the general formula (4) or the general formula (5) by a ring method, and * is indicated as a connection site. When connected, only two adjacent sites can be taken.
  • the connection site Y 1 is represented as a carbon atom;
  • R 8 and R 9 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, and the group may be Optionally substituted by a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; R 8 and R 9 may also be linked to form a ring;
  • L 1 , L 2 , and L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, where in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; L 1.
  • L 2 and L 3 can be connected to each other and form a ring structure;
  • Ar 5 , Ar 6 , and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, said group may be optionally substituted by straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; Ar 5 , Ar 6 , Ar 7 can be connected to each other and can form a ring structure;
  • Ar 5 , Ar 6 , and Ar 7 may each be independently represented as one of the general formula (4), the general formula (5), and the general formula (6), wherein the groups X 2 and X 3 on the general formula , Y 1 , R 6 , R 7 and * have the meanings as described above;
  • D 1 , D 2 , and D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, where in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; L 1.
  • L 2 and L 3 can be connected to each other and form a ring structure;
  • Ar 8 , Ar 9 , and Ar 10 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, said group may be optionally substituted by straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; Ar 8 , Ar 9 , Ar 10 can be connected to each other and can form a ring structure;
  • At least one of Ar 8 , Ar 9 , and Ar 10 is one of the general formula (4), the general formula (5), and the general formula (6); wherein the groups on the general formula are X 2 , X 3 , and Y 1 , R 6 , R 7 and * each have the meanings described above.
  • the general formula (2) is represented as one of the general formula (9) to the general formula (12):
  • Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms
  • An imino group the group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, and a C 5-20 heteroaryl group;
  • L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
  • the general formula (3) is represented as one of the general formula (13) to the general formula (16):
  • Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms
  • An imino group the group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; and
  • D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
  • the first organic material is selected from one of the following compounds:
  • the second organic material is selected from one of the following compounds:
  • the hole transport layer material of the present invention has a hole mobility of 1 ⁇ 10 -5 to 1 ⁇ 10 -2 cm 2 / (V ⁇ s), preferably 1 ⁇ 10 -4 to 1 ⁇ 10 -2 cm 2 / (V ⁇ s) and more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 -3 cm 2 / (V ⁇ s).
  • the glass transition temperature of the hole transport layer material of the present invention is ⁇ 120 ° C., preferably ⁇ 130 ° C. and more preferably ⁇ 140 ° C.
  • the thickness of the hole transport layer material of the present invention may be 1-200 nm, and preferably 10-100 nm.
  • the electron blocking layer may be disposed on the hole transport layer; the material of the electron blocking layer is preferably a material having a high T1 and a low LUMO, which can block electron loss and energy loss.
  • the electron blocking layer used in the present invention may be
  • the thickness of the electron blocking layer of the present invention may be 5 to 200 nm, preferably 10 to 150 nm, and more preferably 20 to 100 nm.
  • the light emitting layer may be disposed on the hole transport region.
  • the material of the light emitting layer is a material capable of emitting visible light by receiving holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining the received holes and electrons. Specific examples thereof include metal complexes of hydroxyquinoline derivatives, various metal complexes, anthracene derivatives, bisstyrene benzene derivatives, fluorene derivatives, oxazole derivatives, and poly-p-styrene derivatives, etc. , But not limited to this.
  • the light emitting layer may include a host material and a guest material.
  • a light-emitting layer material for an organic electroluminescence device known in the prior art can be used.
  • the guest material may be, for example, quinacridone, coumarin, red fluorescent Alkenes, pyrenes and their derivatives, benzopyran derivatives, rhodamine derivatives or aminostyrene derivatives.
  • the light-emitting layer host material used is selected from a combination of one or more of the following EMH-1 to EMH-22:
  • the light emitting material may further include a phosphorescent or fluorescent material.
  • the phosphorescent material include phosphorescent materials of metal complexes such as iridium, platinum, and the like.
  • green phosphorescent materials such as Ir (ppy) 3 [fac-tri (2-phenylpyridine) iridium]
  • blue phosphorescent materials such as FIrpic and FIr6, and red phosphorescent materials
  • Btp2Ir acac
  • the light-emitting layer guest material used is selected from one of the following EMD-1 to EMD-23:
  • the ratio of the host material to the guest material used is 99: 1-70: 30, preferably 99: 1-85: 15 and more preferably 97: 3-87: 13, based on mass meter.
  • the light-emitting layer may use another guest material, or a variety of guest materials.
  • the guest material may be simple Fluorescent materials, delayed fluorescence (TADF) materials, or phosphorescent materials, or a combination of different fluorescent materials, TADF materials, and phosphorescence.
  • the light-emitting layer can be a single light-emitting layer material, or it can be a composite light-emitting layer superimposed horizontally or vertically. material.
  • the light-emitting layers constituting the above-mentioned organic electroluminescent device are exemplified by the following various structures:
  • the organic light emitting functional layer includes a light emitting layer including one or a combination of at least two of blue, green, red, and yellow organic light emitting layer materials.
  • G represents light
  • 6 represents a light emitting layer
  • EM1, EM2, and EM3 represent different materials of the light emitting layer.
  • 6 represents a light-emitting layer
  • 300 represents an organic light-emitting functional layer
  • 610, 620, and 630 represent connection layers.
  • the film thickness of the light-emitting layer 6 constituting the OLED light-emitting body described above can be arbitrarily adjusted as required, or light-emitting layers that cannot be colored can be alternately superimposed and combined as required, and light can be emitted adjacently.
  • a charge blocking layer for different functional purposes is added.
  • the thickness of the light emitting layer of the present invention may be 5-60 nm, preferably 10-50 nm, and more preferably 20-45 nm.
  • the electron transporting region includes a hole blocking layer, an electron transporting layer, and an electron injection layer disposed on the light emitting layer in order from bottom to top, but is not limited thereto.
  • the hole blocking layer is a layer that blocks holes injected from the anode from passing through the light emitting layer and entering the cathode, thereby extending the life of the device and improving the efficiency of the device.
  • the hole blocking layer of the present invention may be provided above the light emitting layer.
  • a compound having a hole blocking effect known in the prior art can be used, for example, phenanthroline derivatives such as bath copper spirit (called BCP), aluminum (III) metal complexes of hydroxyquinoline derivatives such as bis (2-methyl-8-quinoline) -4-phenylphenate (BAlq), various rare earth complexes, oxazole derivatives, Triazole derivatives, triazine derivatives, 9,9 ′-(5- (6-([1,1′-biphenyl] -4-yl) -2-phenylpyrimidin-4-yl) -1, Pyrimidine derivatives such as 3-phenylene) bis (9H-carbazole) (CAS number: 1345338-69-3) and the like.
  • the thickness of the hole blocking layer of the present invention may be 2-200 nm, preferably 5-150 nm, and more preferably 10-100 nm.
  • the electron transport layer may be disposed on the light emitting layer or, if present, the hole blocking layer.
  • the electron transport layer material is a material that easily receives electrons from the cathode and transfers the received electrons to the light emitting layer. Materials having high electron mobility are preferred.
  • the organic electroluminescent device can be used in the prior art known electron transport layer material for organic electroluminescent devices, for example, Alq 3, BAlq as quinolinol derivative represented by the Metal complexes, various metal complexes, triazole derivatives, 2,4-bis (9,9-dimethyl-9H-fluoren-2-yl) -6- (naphthalene-2-yl) Triazine derivatives such as -1,3,5-triazine (CAS number: 1459162-51-6), 2- (4- (9,10-bis (naphthalene-2-yl) anthracen-2-yl) benzene ) -1-phenyl-1H-benzo [d] imidazole (CAS number: 561064-11-7, commonly known as LG201) and other imidazole derivatives, triazine derivatives, oxadiazole derivatives, and thiadiazole derivatives , Carbodiimide derivatives, quinoxaline
  • the electron injection layer may be disposed on the electron transport layer.
  • the material of the electron injection layer is generally a material which preferably has a low work function, so that electrons are easily injected into the organic functional material layer.
  • an electron injecting layer material for an organic electroluminescent device known in the prior art can be used, for example, lithium; a lithium salt, such as lithium 8-hydroxyquinoline, Lithium fluoride, lithium carbonate, or lithium azide; or cesium salt, cesium fluoride, cesium carbonate, or cesium azide.
  • the thickness of the electron injection layer of the present invention may be 0.1-5 nm, preferably 0.5-3 nm, and more preferably 0.8-1.5 nm.
  • the second electrode may be disposed above the electron transport region.
  • the second electrode may be a cathode.
  • the second electrode EL2 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the second electrode may include, for example, Li, Yb, Ca, LiF / Ca, LiF / Al, Al, Mg, BaF, Ba, Ag, or a compound or mixture thereof; when the second electrode is a half electrode
  • the second electrode may include Ag, Mg, Yb, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF / Ca, LiF / Al, Mo, Ti, or Its compounds or mixtures.
  • the organic electroluminescent device of the present invention may be a top emission type, a bottom emission type, or a double-sided emission type.
  • the first electrode may be a reflective electrode, and the second electrode may be a transmissive electrode or a semi-transmissive electrode.
  • the first electrode may be a transmissive electrode or a semi-transmissive electrode, and the second electrode may be a reflective electrode.
  • the organic electroluminescent device may further include a packaging structure.
  • the packaging structure may be a protective structure that prevents foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device.
  • the packaging structure may be, for example, a can, such as a glass can or a metal can; or a film covering the entire surface of the organic layer.
  • the organic electroluminescent device of the present invention can be prepared by sequentially laminating a first electrode, an organic functional material layer, and a second electrode on a substrate.
  • a physical vapor deposition method such as a sputtering method or an electron beam vapor method, or a vacuum evaporation method may be used, but is not limited thereto.
  • the above-mentioned compound can be used to form an organic functional material layer by, for example, a vacuum deposition method, a vacuum evaporation method, or a solution coating method.
  • the solution coating method means, but is not limited to, a spin coating method, a dip coating method, a jet printing method, a screen printing method, a spray method, and a roll coating method.
  • Vacuum evaporation means heating and plating a material onto a substrate in a vacuum environment.
  • the respective layers are preferably formed using a vacuum evaporation method.
  • each layer according to the present invention may be formed into a single layer and used as a single layer, or may be mixed with other materials and formed into a film and used as a single layer.
  • a display including one or more organic electroluminescence devices of the present invention, and in the case of including a plurality of devices, the devices are combined horizontally or vertically in combination.
  • the display may include a device each having an organic light emitting material layer of three colors of blue, green, and red, and the device has a hole transport layer having the same film thickness and material.
  • the display consists of a device that can include organic light emitting material layers each having three colors of blue, green, and red, and the devices have hole transport layers of the same material but different film thicknesses.
  • the display may include a device each having an organic light emitting material layer of three colors of blue, green, and red, and the device has hole transport with the same film thickness but at least two combinations of materials Floor.
  • the display may include devices each having an organic light-emitting material layer of three colors of blue, green, and red, and the devices have blanks with different film thicknesses and at least two combinations of materials. Cavity transmission layer.
  • Glass transition temperature Tg measured by differential scanning calorimetry (DSC, DSC204F1 Differential Scanning Calorimeter, Germany), heating rate 10 ° C / min;
  • HOMO level There are many methods or instrumental methods for testing the HOMO level of organic optoelectronic materials, including CV (cyclic voltammetry), UPS (ultraviolet photoelectron spectroscopy), and AC series equipment manufactured by Riken Instrument Co., Ltd. ( Atmospheric photoelectron spectroscopy), IPS series equipment (vacuum photoelectron spectroscopy) produced by Xindi Tianyi Co., Ltd., in addition to the above methods, can also determine the level of HOMO energy level by Gaussian calculation and combined with semi-empirical judgment, and accurately measure The HOMO energy level is very important for studying the structural matching of OLED devices.
  • the CV method is affected by solvents, and the data accuracy and reproducibility are relatively poor.
  • Others include the UPS method, AC method, and IPS method. Fundamentally, they are measurements of ultraviolet photoelectron spectroscopy Principle, in which UPS measurement not only requires ultra-high vacuum, the equipment value is expensive, but because of the person who measures, and the instrument settings, the data analysis results vary greatly.
  • the AC method requires the sample to be placed in an aerobic dry air environment. The oxygen element has a certain effect on the sample. The data reproducibility and consistency are relatively poor.
  • the IPS method measures the HOMO energy level.
  • IPS measurement method In a vacuum environment, UV monochromatic light is directly applied to the surface of the sample, and the HOMO energy level is determined by measuring the photoelectron current, which is a direct measurement. Based on the above analysis and practice, the inventors believe that the IPS measurement method has the highest reproducibility, consistency, and accuracy when measuring the HOMO energy level of OLED materials.
  • the HOMO energy levels of all materials involved in the present invention are IPS measurement methods. The specific measurement method is as follows:
  • the evaporation rate is controlled to The material is vapor-deposited on the ITO substrate with a film thickness of 60-80 nm, and then the HOMO energy level of the sample film is measured by using an IPS3 measurement device, and the measurement environment is a vacuum environment below 10-2Pa;
  • Eg energy level Based on the ultraviolet spectrophotometry (UV absorption) baseline of the single film of the material and the rising side of the first absorption peak, a tangent line is drawn, and the value of the tangent line and the baseline crossing point are used to calculate.
  • UV absorption ultraviolet spectrophotometry
  • LUMO energy level calculated based on the difference between the aforementioned HOMO energy level and Eg energy level.
  • Hole mobility The material was made into a single charge device and measured by the SCLC method.
  • Elemental analysis structure (Molecular formula C 60 H 42 N 4 ): Theoretical value: C, 87.99; H, 5.17; N, 6.84; Test value: C, 87.97; H, 5.18; N, 6.85.
  • Elemental analysis structure (molecular formula C 54 H 44 N 2 ): Theoretical value: C, 89.96; H, 6.15; N, 3.89; Test value: C, 89.97; H, 6.13; N, 3.90.
  • Elemental analysis structure (molecular formula C 42 H 25 NO 3 ): Theoretical value: C, 85.26; H, 4.26; N, 2.37; Test value: C, 85.24; H, 4.24; N, 2.39.
  • Elemental analysis structure (Molecular formula C 72 H 54 N 4 ): Theoretical value: C, 88.67; H, 5.58; N, 5.74; Test value: C, 88.64; H, 5.60; N, 5.73.
  • Elemental analysis structure (Molecular formula C 56 H 40 N 2 ): Theoretical value: C, 90.78; H, 5.44; N, 3.78; Test value: C, 90.76; H, 5.45; N, 3.79.
  • Elemental analysis structure (Molecular formula C 60 H 44 N 2 ): Theoretical value: C, 90.87; H, 5.59; N, 3.53; Test value: C, 90.86; H, 5.58; N, 3.56.
  • Elemental analysis structure (molecular formula C 52 H 37 N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.42; H, 5.50; N, 2.08.
  • Elemental analysis structure (molecular formula C 54 H 39 N): Theoretical value: C, 92.40; H, 5.60; N, 2.00; Test value: C, 92.38; H, 5.61; N, 2.01.
  • Elemental analysis structure (molecular formula C 52 H 39 N): Theoretical value: C, 92.13; H, 5.80; N, 2.07; Test value: C, 92.11; H, 5.82; N, 2.07.
  • Elemental analysis structure (Molecular formula C 55 H 41 NO): Theoretical value: C, 90.25; H, 5.65; N, 1.91; Test value: C, 90.24; H, 5.64; N, 1.90.
  • Elemental analysis structure (molecular formula C 55 H 43 N): Theoretical value: C, 92.01; H, 6.04; N, 1.95; Test value: C, 92.02; H, 6.02; N, 1.96.
  • Elemental analysis structure (molecular formula C 54 H 41 NO): Theoretical value: C, 90.09; H, 5.74; N, 1.95; Test value: C, 90.07; H, 5.76; N, 1.97.
  • Elemental analysis structure (Molecular formula C 63 H 57 N): Theoretical value: C, 91.37; H, 6.94; N, 1.69; Test value: C, 91.35; H, 6.96; N, 1.68.
  • Elemental analysis structure (Molecular formula C 58 H 47 N): Theoretical value: C, 91.90; H, 6.25; N, 1.85; Test value: C, 91.92; H, 6.24; N, 1.84.
  • Elemental analysis structure (Molecular formula C 49 H 41 N): Theoretical value: C, 91.41; H, 6.42; N, 2.18; Test value: C, 91.43; H, 6.41; N, 2.16.
  • Elemental analysis structure (Molecular formula C 60 H 49 N 3 ): Theoretical value: C, 88.74; H, 6.08; N, 5.17; Test value: C, 88.71; H, 6.09; N, 5.20.
  • Elemental analysis structure (Molecular formula C 53 H 41 N 3 ): Theoretical value: C, 88.42; H, 5.74; N, 5.84; Test value: C, 88.43; H, 5.75; N, 5.82.
  • Elemental analysis structure (molecular formula C 54 H 39 N): Theoretical value: C, 92.40; H, 5.60; N, 2.00; Test value: C, 92.41; H, 5.61; N, 1.98.
  • Elemental analysis structure (molecular formula C 54 H 35 NO 2 ): Theoretical value: C, 88.86; H, 4.83; N, 1.92; Test value: C, 88.85; H, 4.84; N, 1.91.
  • Elemental analysis structure (molecular formula C 51 H 37 NO): Theoretical value: C, 90.10; H, 5.49; N, 2.06; Test value: C, 90.11; H, 5.47; N, 2.07.
  • Elemental analysis structure (molecular formula C 54 H 36 N 2 O): Theoretical value: C, 88.98; H, 4.98; N, 3.84; Test value: C, 88.96; H, 4.99; N, 3.85.
  • Elemental analysis structure (molecular formula C 52 H 37 N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.42; H, 5.53; N, 2.05.
  • Elemental analysis structure (Molecular formula C 49 H 35 N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.42; H, 5.53; N, 2.05.
  • Elemental analysis structure (molecular formula C 55 H 41 NO): Theoretical value: C, 90.25; H, 5.65; N, 1.91; Test value: C, 90.23; H, 5.66; N, 1.90.
  • Elemental analysis structure (molecular formula C 52 H 39 NO): Theoretical value: C, 90.01; H, 5.67; N, 2.02; Test value: C, 90.03; H, 5.64; N, 2.03.
  • Elemental analysis structure (molecular formula C 55 H 43 N): Theoretical value: C, 92.01; H, 6.04; N, 1.95; Test value: C, 92.02; H, 6.02; N, 1.96.
  • Elemental analysis structure (Molecular formula C 54 H 39 N): Theoretical value: C, 92.40; H, 5.60; N, 2.00; Test value: C, 92.41; H, 5.58; N, 2.01.
  • Elemental analysis structure (molecular formula C 63 H 57 N): Theoretical value: C, 91.37; H, 6.94; N, 1.69; Test value: C, 91.36; H, 6.93; N, 1.70.
  • Elemental analysis structure (Molecular formula C 62 H 55 N): Theoretical value: C, 91.47; H, 6.81; N, 1.72; Test value: C, 91.45; H, 6.82; N, 1.73.
  • Elemental analysis structure (molecular formula C 45 H 32 N 2 O): Theoretical value: C, 87.63; H, 5.23; N, 4.54; Test value: C, 87.61; H, 5.24; N, 4.55.
  • Elemental analysis structure (molecular formula C 46 H 31 NO): Theoretical value: C, 90.02; H, 5.09; N, 2.28; Test value: C, 90.01; H, 5.07; N, 2.29 ;.
  • Elemental analysis structure (molecular formula C 46 H 31 NO 2 ): Theoretical value: C, 87.73; H, 4.96; N, 2.22; Test value: C, 87.71; H, 4.97; N, 2.23.
  • Elemental analysis structure (molecular formula C 49 H 37 NO): Theoretical value: C, 89.74; H, 5.69; N, 2.14; Test value: C, 89.74; H, 5.69; N, 2.14.
  • Table 1 shows the prepared first and second organic materials, the electron blocking layer material (EB1) adjacent thereto, the host material (EMH-1, EMH-7, and EMH-13) of the luminescent material, and the guest material (EMD- 1. EMD-8 and EMD-13) test results of each energy level.
  • the HOMO energy level of the first organic material of the present invention is between -5.2eV and -5.6eV
  • the HOMO energy level of the second organic material is between -5.4eV and -5.9eV
  • ; and the absolute value of the difference between the HOMO energy levels of the second organic material and the electron blocking layer material is ⁇ 0.4ev.
  • the first organic material HTI-1 and the second organic material HTII-7 were placed in two evaporation sources, and controlled under a pressure of 1.0E -5 Pa.
  • the evaporation rate of the first organic material 1 is Control the evaporation rate of the second organic material 1 to Co-mixing to obtain the hole transport layer material 1 of the present invention.
  • Example 2 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is A hole transport layer material 2 was obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is A hole transport layer material 3 was obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is A hole transport layer material 4 is obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is A hole transport layer material 5 is obtained.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-9 and the second organic material HTII-37 were used to obtain the hole transport layer material 6.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-28 and the second organic material HTII-21 were used to obtain the hole transport layer material 7.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 8.
  • Example 3 The preparation process of Example 3 was repeated, except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 9.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-52 and the second organic material HTII-52 were used to obtain the hole transport layer material 10.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-57 and the second organic material HTII-78 were used to obtain the hole transport layer material 11.
  • Example 1 The manufacturing process of Example 1 was repeated, except that the first organic material HTI-63 and the second organic material HTII-102 were used to obtain the hole transport layer material 12.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-72 and the second organic material HTII-132 were used to obtain the hole transport layer material 13.
  • Example 1 The manufacturing process of Example 1 was repeated, except that the first organic material HTI-72 and the second organic material HTII-148 were used to obtain the hole transport layer material 14.
  • Example 2 The preparation process of Example 2 was repeated, except that the first organic material HTI-72 and the second organic material HTII-164 were used to obtain the hole transport layer material 15.
  • Example 1 The manufacturing process of Example 1 was repeated, except that the first organic material HTI-86 and the second organic material HTII-164 were used to obtain the hole transport layer material 16.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-101 and the second organic material HTII-192 were used to obtain the hole transport layer material 17.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-114 and the second organic material HTII-192 were used to obtain the hole transport layer material 18.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-124 and the second organic material HTII-232 were used to obtain the hole transport layer material 19.
  • Example 1 The manufacturing process of Example 1 was repeated, except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 20.
  • Example 2 The preparation process of Example 2 was repeated, except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 21.
  • Example 2 The preparation process of Example 2 was repeated, except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 22.
  • Example 1 The manufacturing process of Example 1 was repeated, except that the first organic material HTI-134 and the second organic material HTII-266 were used to obtain the hole transport layer material 23.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-144 and the second organic material HTII-277 were used to obtain the hole transport layer material 24.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 25.
  • Example 5 The preparation process of Example 5 was repeated, except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 26.
  • Example 1 The preparation process of Example 1 was repeated, except that the first organic material HTI-176 and the second organic material HTII-335 were used to obtain the hole transport layer material 27.
  • the vacuum evaporation is performed under the following conditions: using a CIC evaporation equipment (manufactured by Changzhou Industry), and controlling the evaporation rate at a pressure of 1.0E -5 Pa
  • HAT-CN is evaporated by a vacuum evaporation method to a thickness of 10 nm, and this layer is used as a hole injection layer;
  • the hole transport layer material 1 obtained in Example 1 for preparing the hole transport layer material by vacuum evaporation is used as a hole transport layer; the thickness is 90 nm;
  • EB1 is evaporated by vacuum evaporation to a thickness of 20 nm, and this layer is an electron blocking layer;
  • the light-emitting layer material is evaporated by vacuum evaporation.
  • the host material is EMH-7 and EMH-9, and the guest material is EMD-8.
  • the mass ratio of EMH-7, EMH-9 and EMD-8 45:45:10, thickness is 40nm;
  • LG201 and Liq are vapor-deposited on the light-emitting layer by vacuum evaporation.
  • the mass ratio of LG201 and Liq is 50:50 and the thickness is 40nm. This layer is used as an electron transport layer.
  • LiF is deposited by vacuum evaporation to a thickness of 1 nm, and this layer is an electron injection layer;
  • Al is vacuum evaporated to a thickness of 100 nm, and this layer is a second electrode layer.
  • step c) the hole transport layer materials 2-10 obtained in the example 2-10 of preparing the hole transport layer material are used.
  • the difference is that the thickness of the hole transport layer in step c) is 160 nm; in step e), the host material is EMH-13, the guest material is EMD-8, and EMH-13 The mass ratio with EMD-8 is 90:10, and the thickness is 40nm.
  • the process is carried out according to the device preparation example 11 except that the hole transport layer material 2-3 obtained in the embodiment 2-3 for preparing the hole transport layer material is used in step c).
  • step c) the hole transport layer materials 12-18 obtained in Examples 12-18 of preparing the hole transport layer materials are used.
  • the film thickness of the hole transport layer in step c) is 50 nm; the host material in step e) is EMH-1, and the guest material is EMD-1, and EMH-1 and EMD-1 has a mass ratio of 95: 5 and a thickness of 25 nm.
  • Table 5-7 shows the results of measuring the performance of the produced organic electroluminescence device at a current density of 10 mA / cm 2 .
  • LT95 refers to the time it takes for the device brightness to decay to 95% at a current density of 10 mA / cm 2 ;
  • the life test system is an OLED device life tester which is jointly researched by the owner of the present invention and Shanghai University.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic electroluminescent device, successively comprising, from bottom to top, a substrate, a first electrode, an organic functional material layer and a second electrode, wherein the organic functional material layer comprises a hole transport zone arranged over the first electrode, a luminous layer arranged over the hole transport zone and comprising host and guest materials, and an electron transport zone arranged over the luminous layer, wherein the hole transport zone successively comprises, from top to bottom, a hole injection layer, a hole transport layer and an electron blocking layer; the hole transport layer comprises first and second organic materials; and the HOMO energy level of the first organic material is within the range of -5.2 eV to -5.6 eV, and the HOMO energy level of the second organic material is within the range of -5.4 eV to -5.9 eV, where |HOMOfirst organic material|< |HOMOsecond organic material|.

Description

有机电致发光器件及包括其的显示器Organic electroluminescence device and display including the same
本发明涉及半导体技术领域,更具体而言,涉及一种有机电致发光器件及包括其的显示器。The present invention relates to the field of semiconductor technology, and more particularly, to an organic electroluminescent device and a display including the same.
有机电致发光器件技术既可以用于制造新型显示产品,也可以用于制备新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。有机电致发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用于有机层功能材料膜层中的正负电荷上,正负电荷进一步在有机发光层中复合,即产生有机电致发光。Organic electroluminescence device technology can be used to manufacture both new display products and new lighting products. It is expected to replace the existing liquid crystal display and fluorescent lamp lighting, and has a wide application prospect. An organic electroluminescent device is a current device. When a voltage is applied to the electrodes at both ends and an electric field is applied to the positive and negative charges in the functional material film layer of the organic layer, the positive and negative charges are further recombined in the organic light emitting layer, resulting in Electroluminescence.
有机电致发光器件一般为多层结构,除了发光层之外的各种辅助功能层对器件性能同样起着至关重要的作用。合理的器件结构能够有效提高器件的性能,电子注入层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层和空穴注入层被广泛用来提高器件的性能。Organic electroluminescent devices generally have a multi-layer structure, and various auxiliary function layers other than the light-emitting layer also play a vital role in device performance. Reasonable device structures can effectively improve device performance. Electron injection layers, electron transport layers, hole blocking layers, light emitting layers, electron blocking layers, hole transport layers, and hole injection layers are widely used to improve device performance.
目前对有机电致发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现有机电致发光器件的性能的不断提升,不但需要有机电致发光器件结构和制备工艺的创新,更需要有机电致发光功能材料的不断研究和创新,制造出更高性能的有机电致发光功能材料。Current research on improving the performance of organic electroluminescent devices includes: reducing the driving voltage of the device, improving the light emitting efficiency of the device, and increasing the service life of the device. In order to achieve the continuous improvement of the performance of organic electroluminescent devices, not only innovations in the structure and manufacturing process of organic electroluminescent devices are required, but also continuous research and innovation of organic electroluminescent functional materials are needed to produce higher performance organic electroluminescent devices. Luminous functional materials.
有机电致发光器件中的载流子(空穴和电子)在电场的驱动下分别由器件的两个电极注入到器件中,并在发光层相遇复合发光。已知现有的有机电致发光器件中使用的空穴传输材料,例如
Figure PCTCN2019084629-appb-000001
存在HOMO能级和电子阻挡层材料HOMO能级差较大,易在材料界面处形成集聚电荷,影响OLED器件寿命。
Carriers (holes and electrons) in an organic electroluminescent device are injected into the device by two electrodes of the device under the driving of an electric field, respectively, and the composite light is emitted when the light emitting layer meets. Hole transport materials used in existing organic electroluminescent devices are known, such as
Figure PCTCN2019084629-appb-000001
The HOMO energy level and the HOMO energy level of the electron blocking layer material are greatly different, and it is easy to form an accumulated charge at the material interface, which affects the life of the OLED device.
此外,在有机电致发光器件中,并不是所有材料的能级都能很好地匹配,它们之间的势垒严重阻碍空穴的有效注入。合理的能级结构有利于器件各层中的能级形成阶梯势垒,能够降低空穴注入的势垒,降低器件的驱动电压,从而改善器件的发光效率和寿命。In addition, in organic electroluminescent devices, not all the energy levels of the materials can be well matched, and the potential barrier between them severely hinders the effective injection of holes. A reasonable energy level structure is conducive to the formation of stepped potential barriers in the layers of the device, which can reduce the potential barrier for hole injection and lower the driving voltage of the device, thereby improving the light emitting efficiency and lifetime of the device.
因此,不断需要开发具有优异的发光效率和寿命的有机电致发光器件。Therefore, there is an ongoing need to develop organic electroluminescent devices having excellent luminous efficiency and lifetime.
本发明旨在提供一种具有改善的发光效率、耐热性和使用寿命的有机电致发光器件及包括其的显示器。The present invention aims to provide an organic electroluminescence device having improved luminous efficiency, heat resistance and service life, and a display including the same.
本发明的一个目的通过提供一种下述的有机电致发光器件而实现,所述有机电致发光器件由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:An object of the present invention is achieved by providing an organic electroluminescence device, which is provided with a substrate, a first electrode, an organic functional material layer, and a second electrode in this order from bottom to top. The organic functional material layer includes:
空穴传输区域,位于所述第一电极之上;A hole-transporting region located on the first electrode;
发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;A light-emitting layer, which is located on the hole-transporting region and includes a host material and a guest material;
电子传输区域,位于所述发光层之上,An electron-transporting region located above the light-emitting layer,
其中,所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,The hole transporting region includes a hole injection layer, a hole transporting layer, and an electron blocking layer in this order from bottom to top.
所述空穴传输层包括第一和第二有机材料,其中第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,更优选为-5.35eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.9eV,优选为-5.4eV至-5.7eV,更优选为-5.48eV至-5.68eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|。 The hole transport layer includes first and second organic materials, wherein the HOMO energy level of the first organic material is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, and more preferably -5.35eV to -5.5eV, and the HOMO energy level of the second organic material is -5.4eV to -5.9eV, preferably -5.4eV to -5.7eV, more preferably -5.48eV to -5.68eV, and the HOMO first organic material | <| HOMO Second Organic Material |.
在包括含本发明的第一和第二有机材料的空穴传输层的有机电致发光器件中,限定了所述第一和第二有机材料的HOMO,这种能级匹配使阳极与电子阻挡层界面间的势垒减小,这有利于空穴从阳极注入到电子阻挡层中,提高了空穴的注入效率,并降低了器件的驱动电压,降低界面接触处的积聚电荷,提高器件的稳定性和使用寿命;此外,本发明空穴传输层的较高的玻璃化转变温度,提高了器件的耐热性。并且由两种不同材料组合成的有机膜层,可有效改善分子排列和分子间相互作用力,使得膜层稳定性更高,降低了器件的漏电流,提高器件的使用寿命。In an organic electroluminescent device including a hole-transporting layer containing the first and second organic materials of the present invention, the HOMO of the first and second organic materials is defined, and this energy level matching causes the anode to block electrons The potential barrier between layers is reduced, which facilitates the injection of holes from the anode into the electron blocking layer, improves the efficiency of hole injection, reduces the driving voltage of the device, reduces the accumulated charge at the interface contact, and improves the device's Stability and service life; In addition, the higher glass transition temperature of the hole transport layer of the present invention improves the heat resistance of the device. And the organic film layer composed of two different materials can effectively improve the molecular arrangement and the interaction force between the molecules, making the film layer more stable, reducing the leakage current of the device and increasing the service life of the device.
本发明的另一目的通过提供一种包括上述有机电致发光器件的显示器而实现。Another object of the present invention is achieved by providing a display including the above-mentioned organic electroluminescent device.
图1示意性地示出了本发明一个实施方案的有机电致发光器件的剖视图。FIG. 1 schematically illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
图2示意性地示出了本发明一个实施方案的有机电致发光器件的能量转移机制图。FIG. 2 schematically illustrates an energy transfer mechanism diagram of an organic electroluminescent device according to an embodiment of the present invention.
图3-7示意性地示出了包含本发明空穴传输层的有机电致发光器件中发光层组合结构图。3-7 schematically illustrate a combined structure of a light-emitting layer in an organic electroluminescent device including a hole-transporting layer of the present invention.
下文中将参照附图更详细地描述本发明,但不意欲限制本发明。Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but it is not intended to limit the present invention.
本文中所列出的任何数值范围意指包括纳入所列范围内具有相同数值精度的全部子范围。例如,“1.0至10.0”意指包括在所列最小值1.0和所列最大值10.0之间的全部子范围(且包括1.0和10.0),也就是说,具有等于或大于1.0的最小值和等于或小于10.0的最大值的全部子范围。本文所列出的任何最大数值限制意指包括纳入本文的全部更小的数值限制,并且本文所列出的任何最小数值限制意指包括纳入本文的全部更大的数值限制。因此,申请人保留修改包括权利要求书的本说明书的权利,以明确描述落入本文明确描述的范围内的任何子范围。Any numerical range listed herein is meant to include all sub-ranges with the same numerical precision included in the listed range. For example, "1.0 to 10.0" means all subranges (and including 1.0 and 10.0) included between the listed minimum value 1.0 and the listed maximum value 10.0, that is, having a minimum value equal to or greater than 1.0 and equal to Or all subranges of the maximum value less than 10.0. Any maximum numerical limitation listed herein is intended to include all smaller numerical limitations incorporated herein, and any minimum numerical limitation listed herein is intended to include all larger numerical limitations incorporated herein. Accordingly, the applicant reserves the right to modify this specification, including the claims, to explicitly describe any sub-scope that falls within the scope explicitly described herein.
需理解的是,在本文中所使用的缩写“HT”意指构成空穴传输层的有机材料,例如HT-I意指第 一有机材料,HT-II意指第二有机材料。It should be understood that the abbreviation "HT" used herein means the organic material constituting the hole transport layer, for example, HT-I means the first organic material, and HT-II means the second organic material.
在附图中,为了清楚起见,层和区域的尺寸可被夸大。还将理解,当层或元件称为在另一层或者基板“之上”时,该层或元件可直接位于该另一层或者基板之上,或者也可存在中间层。此外,还将理解,当层称为在两个层“之间”时,该层可以是这两个层之间的唯一的层,或者也可存在一个或者多个中间层。全文中相同的附图标记表示相同的元件。In the drawings, the size of layers and regions may be exaggerated for clarity. It will also be understood that when a layer or element is referred to as being "on" another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. The same reference numerals indicate the same elements throughout.
下文中,将描述根据实施方案的有机电致发光器件。Hereinafter, an organic electroluminescent device according to an embodiment will be described.
图1示意性地示出了本发明的一个实施方案的有机电致发光器件的剖视图。参照图1,本发明的一个实施方案的有机电致发光器件由下至上依次设置有基板1、第一电极2、空穴传输区域A、发光层6、电子传输区域B和第二电极10,其中空穴传输区域A由下至上依次包括空穴注入层3、空穴传输层4和电子阻挡层5,并且电子传输区域B由下至上依次包括空穴阻挡层7、电子传输层8和电子注入层9。FIG. 1 schematically illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention. Referring to FIG. 1, an organic electroluminescent device according to an embodiment of the present invention is provided with a substrate 1, a first electrode 2, a hole transport region A, a light emitting layer 6, an electron transport region B, and a second electrode 10 in this order from bottom to top. The hole transporting region A includes a hole injection layer 3, the hole transporting layer 4, and an electron blocking layer 5 in order from bottom to top, and the electron transporting region B includes a hole blocking layer 7, electron transporting layer 8, and electrons in order from bottom to top. Injected layer 9.
作为本发明有机电致发光器件的基板,可选用任何常用于有机电致发光器件的基板。实例为透明基板,如玻璃或透明塑料基板;不透明基板,如硅基板;柔性PI膜基板。不同基板具有不同的机械强度、热稳定性、透明性、表面光滑度、防水性,根据性质不同,使用方向不同。在本发明中,优选使用透明基板。基板的厚度没有特别限制。As the substrate of the organic electroluminescent device of the present invention, any substrate commonly used in organic electroluminescent devices can be selected. Examples are transparent substrates such as glass or transparent plastic substrates; opaque substrates such as silicon substrates; flexible PI film substrates. Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water resistance. Depending on the nature, the direction of use is different. In the present invention, a transparent substrate is preferably used. The thickness of the substrate is not particularly limited.
在基板上形成第一电极,第一电极与第二电极可彼此相对。第一电极可以是阳极。第一电极可以是透射电极、半透射电极或者反射电极。当第一电极是透射电极时,第一电极可使用透明金属氧化物来形成,例如铟锡氧化物(ITO)、铟锌氧化物(IZO)、氧化锌(ZnO)或铟锡锌氧化物(ITZO)等。当第一电极是半透射电极或反射电极时,第一电极可包括Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或金属混合物。第一电极层的厚度取决于所使用的材料,通常为50-500nm,优选为70-300nm且更优选为100-200nm。A first electrode is formed on the substrate, and the first electrode and the second electrode may face each other. The first electrode may be an anode. The first electrode may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode. When the first electrode is a transmissive electrode, the first electrode may be formed using a transparent metal oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide ( ITZO) and so on. When the first electrode is a semi-transmissive electrode or a reflective electrode, the first electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a metal mixture. The thickness of the first electrode layer depends on the material used, and is usually 50-500 nm, preferably 70-300 nm, and more preferably 100-200 nm.
设置于第一电极和第二电极之间的有机功能材料层由下至上依次包括空穴传输区域、发光层和电子传输区域。The organic functional material layer provided between the first electrode and the second electrode includes a hole transport region, a light emitting layer, and an electron transport region in this order from bottom to top.
空穴传输区域可设置在第一电极与发光层之间。空穴传输区域可包括空穴注入层、空穴传输层和电子阻挡层,但不限于此。例如,参照图1,空穴传输区域可包括由下至上依次设置在第一电极之上的空穴注入层、空穴传输层和电子阻挡层。The hole transporting region may be disposed between the first electrode and the light emitting layer. The hole transport region may include, but is not limited to, a hole injection layer, a hole transport layer, and an electron blocking layer. For example, referring to FIG. 1, the hole transporting region may include a hole injection layer, a hole transporting layer, and an electron blocking layer disposed on the first electrode in this order from bottom to top.
通常,具有p型性质的有机材料——其易被氧化且当其被氧化时电化学稳定——主要用作空穴注入材料或空穴传输材料。同时,具有n型性质的有机材料——其易被还原且当被还原时电化学稳定——用作电子注入材料或电子传输材料。作为发光层材料,优选既具有p型性质又具有n型性质的材料,当其被氧化和还原时均稳定,还优选当形成激子时具有较高的用于将激子转化为光的发光效率的材料。Generally, organic materials having p-type properties, which are easily oxidized and electrochemically stable when they are oxidized, are mainly used as hole injection materials or hole transport materials. At the same time, organic materials with n-type properties, which are easily reduced and electrochemically stable when reduced, are used as electron injection materials or electron transport materials. As the light-emitting layer material, a material having both p-type and n-type properties is preferred, which is stable when it is oxidized and reduced, and also preferably has high luminescence for converting excitons into light when excitons are formed. Efficient materials.
空穴注入层的材料通常是优选具有高功函数的材料,使得空穴容易地注入有机材料层中。在本发明中,空穴注入层的材料至少含有通式(17)、(18)或(19)所示材料中的一种:The material of the hole injection layer is generally a material that preferably has a high work function, so that holes are easily injected into the organic material layer. In the present invention, the material of the hole injection layer contains at least one of the materials represented by the general formulae (17), (18) or (19):
Figure PCTCN2019084629-appb-000002
Figure PCTCN2019084629-appb-000002
其中,在通式(17)中,F 1-F 3各自独立地代表取代或未取代的C 6-30芳基、取代或未取代的3至30元杂芳基,并且F 1-F 3可以相同或不同; Among them, in the general formula (17), F 1 -F 3 each independently represent a substituted or unsubstituted C 6-30 aryl group, a substituted or unsubstituted 3 to 30 membered heteroaryl group, and F 1 -F 3 Can be the same or different;
在通式(18)和通式(19)中,G 1-G 6各自独立地代表氢、腈基、卤素、酰胺基、烷氧基、酯基、硝基、C-R 11、取代或未取代的C 6-30芳基、3至30元杂芳基,其中R 11为直链或支链的C 1-20烷基,条件是G 1-G 6不同时为氢; In the general formula (18) and the general formula (19), G 1 to G 6 each independently represent hydrogen, nitrile, halogen, amido, alkoxy, ester, nitro, CR 11 , substituted or unsubstituted C 6-30 aryl, 3- to 30-membered heteroaryl, wherein R 11 is a linear or branched C 1-20 alkyl, provided that G 1 -G 6 are not hydrogen at the same time;
其中在杂芳基的情况下,所述杂原子选自N、O和S原子中的至少一个。Wherein in the case of a heteroaryl group, the heteroatom is selected from at least one of N, O, and S atoms.
在本发明的一个优选实施方案中,所使用的空穴注入层的材料选自下述(a)至(j)之一:In a preferred embodiment of the present invention, the material of the hole injection layer used is selected from one of the following (a) to (j):
Figure PCTCN2019084629-appb-000003
Figure PCTCN2019084629-appb-000003
Figure PCTCN2019084629-appb-000004
Figure PCTCN2019084629-appb-000004
本发明的空穴注入层的厚度可以是5-100nm、优选是5-50nm且更优选是5-20nm。The thickness of the hole injection layer of the present invention may be 5 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm.
本发明的空穴传输层可设置在空穴注入层之上。所述空穴传输层材料包括第一有机材料和第二有机材料,其中第一有机材料与第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。此外,所述第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,更优选为-5.35eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.9eV,优选为-5.4eV至-5.7eV,更优选为-5.48eV至-5.68eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|。 The hole transporting layer of the present invention may be provided on the hole injection layer. The hole transport layer material includes a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 1:99 to 99: 1, preferably 10:90 to 90:10, more It is preferably 30:70 to 70:30, based on mass. In addition, the HOMO energy level of the first organic material is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, more preferably -5.35eV to -5.5eV, and the HOMO energy of the second organic material is The order is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and | HOMO first organic material | <| HOMO second organic material |.
图2示意性地示出了本发明的一个实施方案的有机电致发光器件的能量转移机制,其中a代表空穴注入层,b代表空穴传输层,c代表电子阻挡层,d代表发光层的客体,e代表发光层的主体,以及f代表电子传输层。FIG. 2 schematically illustrates an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention, where a represents a hole injection layer, b represents a hole transport layer, c represents an electron blocking layer, and d represents a light emitting layer. , E represents the host of the light-emitting layer, and f represents the electron transport layer.
在一个实施方案中,所述第二有机材料和电子阻挡材料的HOMO能级之间差值的绝对值为≤0.4ev。所述空穴传输材料与电子阻挡层材料之间较小的能量势垒使得空穴可容易地经由空穴传输层注入到电子阻挡层,进而传输至发光层中。In one embodiment, the absolute value of the difference between the HOMO energy levels of the second organic material and the electron blocking material is ≦ 0.4ev. The smaller energy barrier between the hole-transporting material and the electron-blocking layer material allows holes to be easily injected into the electron-blocking layer via the hole-transporting layer, and then transported into the light-emitting layer.
在本发明一个优选的实施方案中,本发明的第一和第二有机材料各自独立地选自通式(1)、通式(2)和通式(3)之一:In a preferred embodiment of the present invention, the first and second organic materials of the present invention are each independently selected from one of the general formula (1), the general formula (2), and the general formula (3):
Figure PCTCN2019084629-appb-000005
Figure PCTCN2019084629-appb-000005
其中,在通式(1)中Among them, in the general formula (1)
X、X 1各自独立地选自单键、碳原子、N-(R 5)、硫原子、氧原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、C 6-20芳基取代的亚烷基中的一种; X and X 1 are each independently selected from a single bond, a carbon atom, N- (R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, One of a linear or branched C 1-20 alkyl-substituted silylene group and a C 6-20 aryl-substituted alkylene group;
如果存在R 5,则其可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; If R 5 is present, it may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group , Linear or branched C 1-20 alkyl-substituted silylene, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one heteroatom selected from N, O, and S Heteroaryl, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl ;
Z代表氮原子或C-R 6,其中R 6可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中两个或更多个R 6基团可彼此连接并且可形成环结构; Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1- 20 alkyl substituted alkyl, straight or branched C 1-20 alkyl substituted silylene, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected from N A heteroaryl group of O, S and O, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl substitutions in which two or more R 6 groups may be connected to each other and may form a ring structure;
Ar 1、Ar 2、Ar 3、Ar 4各自独立地代表单键、直链或支链的C 1-20亚烷基、具有5至30个碳原子的亚芳基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中Ar1、Ar2基团还可连接成环; Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently represent a single bond, a linear or branched C 1-20 alkylene group, an arylene group having 5 to 30 carbon atoms, a linear or branched chain C 1-20 alkyl-substituted silylene, heteroarylene having 5 to 30 carbon atoms and at least one heteroatom selected from N, O, and S, wherein in the case of the latter two, the group The group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, and a C 5-20 heteroaryl group, wherein the Ar1 and Ar2 groups may also be connected to form a ring;
m、n、p、q、s和t等于0或1;且m+n+p+q≥1且m+n+s+t≥1;m, n, p, q, s, and t are equal to 0 or 1; and m + n + p + q≥1 and m + n + s + t≥1;
R 1、R 2、R 3和R 4各自独立地代表氢原子、通式(4)、通式(5)或通式(6)所示的结构,条件是R 1、R 2、R 3和R 4不同时为氢原子; R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the general formula (4), the general formula (5) or the general formula (6), provided that R 1 , R 2 , R 3 And R 4 are not hydrogen atoms at the same time;
Figure PCTCN2019084629-appb-000006
Figure PCTCN2019084629-appb-000006
其中,在通式(4)和通式(5)中:Among them, in the general formula (4) and the general formula (5):
X 2、X 3各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 Alkyl substituted silyl, C 6-20 aryl substituted alkylene, C 1-20 alkyl substituted imine, C 6-20 aryl substituted imine, C 5-20 heteroaryl One of the substituted imines;
Y 1可相同或不同地代表N原子或C-R,其中R可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;其中两个或更多个R基团可彼此连接并且可形成环结构; Y 1 may identically or differently represent an N atom or CR, wherein R may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl substituted alkyl, linear or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected A heteroaryl group from a heteroatom of N, O, and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl, C 6-20 aryl , C 5-20 heteroaryl substitution; wherein two or more R groups can be connected to each other and can form a ring structure;
R 6、R 7各自独立地代表氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基、通式(7)或通式(6)所示结构;其中在芳基和杂芳基的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; R 6 and R 7 each independently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group, a straight chain or a branched group C 1-20 alkyl substituted silyl groups of the chain, aryl groups having 5 to 30 carbon atoms, heteroaryl groups having 5 to 30 carbon atoms and at least one heteroatom selected from N, O and S, A structure represented by formula (7) or formula (6); wherein in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C 1-20 alkyl group, C 6- 20 aryl, C 5-20 heteroaryl substitution;
Figure PCTCN2019084629-appb-000007
Figure PCTCN2019084629-appb-000007
其中,在通式(7)中:Among them, in the general formula (7):
Y 2可相同或不同地代表N原子或C-R 10,其中,R 10可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; Y 2 may identically or differently represent an N atom or CR 10 , wherein R 10 may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a straight chain or Branched C 1-20 alkyl substituted alkyl, straight or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least A heteroaryl heteroaryl group selected from N, O, and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 Aryl, C 5-20 heteroaryl substitution;
X 4、X 5各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 Alkyl substituted silyl, C 6-20 aryl substituted alkylene, C 1-20 alkyl substituted imine, C 6-20 aryl substituted imine, C 5-20 heteroaryl One of the substituted imines;
通式(7)通过并环方式和通式(4)或通式(5)相连,*表示为连接位点,相连时,只能取相邻的两个位点,通式(7)和通式(4)或通式(5)并环连接时,连接位点Y 1表示为碳原子; The general formula (7) is connected to the general formula (4) or the general formula (5) by a ring method, and * is indicated as a connection site. When connected, only two adjacent sites can be taken. When formula (4) or formula (5) is cyclically linked, the connection site Y 1 is represented as a carbon atom;
在通式(6)中:In the general formula (6):
R 8、R 9各自独立地代表具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;R 8、R 9还可连接成环; R 8 and R 9 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, and the group may be Optionally substituted by a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; R 8 and R 9 may also be linked to form a ring;
在通式(2)中:In the general formula (2):
L 1、L 2、L 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构; L 1 , L 2 , and L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, where in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; L 1. L 2 and L 3 can be connected to each other and form a ring structure;
Ar 5、Ar 6、Ar 7各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 5、Ar 6、Ar 7可两两彼此连接并且可形成环结构; Ar 5 , Ar 6 , and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, said group may be optionally substituted by straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; Ar 5 , Ar 6 , Ar 7 can be connected to each other and can form a ring structure;
Ar 5、Ar 6、Ar 7各自还可以独立地表示为通式(4)、通式(5)、通式(6)中的一个,其中所述通式上的基团X 2、X 3、Y 1、R 6、R 7和*具有如上所述的含义; Ar 5 , Ar 6 , and Ar 7 may each be independently represented as one of the general formula (4), the general formula (5), and the general formula (6), wherein the groups X 2 and X 3 on the general formula , Y 1 , R 6 , R 7 and * have the meanings as described above;
在通式(3)中:In the general formula (3):
D 1、D 2、D 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构; D 1 , D 2 , and D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, where in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; L 1. L 2 and L 3 can be connected to each other and form a ring structure;
Ar 8、Ar 9、Ar 10各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 8、Ar 9、Ar 10可两两彼此连接并且可形成环结构; Ar 8 , Ar 9 , and Ar 10 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, said group may be optionally substituted by straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; Ar 8 , Ar 9 , Ar 10 can be connected to each other and can form a ring structure;
Ar 8、Ar 9、Ar 10中至少一个为通式(4)、通式(5)、通式(6)中的一个;其中所述通式上的基团X 2、X 3、Y 1、R 6、R 7和*各自具有如上所述的含义。 At least one of Ar 8 , Ar 9 , and Ar 10 is one of the general formula (4), the general formula (5), and the general formula (6); wherein the groups on the general formula are X 2 , X 3 , and Y 1 , R 6 , R 7 and * each have the meanings described above.
在本发明一个优选的实施方案中,通式(2)表示为通式(9)至通式(12)之一:In a preferred embodiment of the present invention, the general formula (2) is represented as one of the general formula (9) to the general formula (12):
Figure PCTCN2019084629-appb-000008
Figure PCTCN2019084629-appb-000008
其中among them
Ar 5至Ar 7表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms An imino group, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, and a C 5-20 heteroaryl group;
并且L 1-L 3、R 6-R 9、Y 1和X 2-X 3均具有上文所述的含义。 And L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
在本发明一个优选的实施方案中,通式(3)表示为通式(13)至通式(16)之一:In a preferred embodiment of the present invention, the general formula (3) is represented as one of the general formula (13) to the general formula (16):
Figure PCTCN2019084629-appb-000009
Figure PCTCN2019084629-appb-000009
其中among them
Ar 8和Ar 10表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;并且 Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms An imino group, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; and
并且D 1-D 3、R 6-R 9、Y 1和X 2-X 3均具有上文所述的含义。 And D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
在本发明一个优选的实施方案中,所述第一有机材料选自下述化合物之一:In a preferred embodiment of the present invention, the first organic material is selected from one of the following compounds:
Figure PCTCN2019084629-appb-000010
Figure PCTCN2019084629-appb-000010
Figure PCTCN2019084629-appb-000011
Figure PCTCN2019084629-appb-000011
Figure PCTCN2019084629-appb-000012
Figure PCTCN2019084629-appb-000012
Figure PCTCN2019084629-appb-000013
Figure PCTCN2019084629-appb-000013
在本发明一个优选的实施方案中,所述第二有机材料选自下述化合物之一:In a preferred embodiment of the present invention, the second organic material is selected from one of the following compounds:
Figure PCTCN2019084629-appb-000014
Figure PCTCN2019084629-appb-000014
Figure PCTCN2019084629-appb-000015
Figure PCTCN2019084629-appb-000015
Figure PCTCN2019084629-appb-000016
Figure PCTCN2019084629-appb-000016
Figure PCTCN2019084629-appb-000017
Figure PCTCN2019084629-appb-000017
Figure PCTCN2019084629-appb-000018
Figure PCTCN2019084629-appb-000018
Figure PCTCN2019084629-appb-000019
Figure PCTCN2019084629-appb-000019
本发明的空穴传输层材料的空穴迁移率为1×10 -5至1×10 -2cm 2/(V·s)、优选为1×10 -4至1×10 -2cm 2/(V·s)且更优选为1×10 -4至1×10 -3cm 2/(V·s)。 The hole transport layer material of the present invention has a hole mobility of 1 × 10 -5 to 1 × 10 -2 cm 2 / (V · s), preferably 1 × 10 -4 to 1 × 10 -2 cm 2 / (V · s) and more preferably 1 × 10 -4 to 1 × 10 -3 cm 2 / (V · s).
本发明空穴传输层材料的玻璃化转变温度≥120℃,优选≥130℃且更优选≥140℃。The glass transition temperature of the hole transport layer material of the present invention is ≧ 120 ° C., preferably ≧ 130 ° C. and more preferably ≧ 140 ° C.
本发明空穴传输层材料的厚度可为1-200nm、优选为10-100nm。The thickness of the hole transport layer material of the present invention may be 1-200 nm, and preferably 10-100 nm.
电子阻挡层可设置在空穴传输层之上;电子阻挡层的材料优选为具有高T1及低LUMO的材料,这能够阻挡电子损失及能量损失。例如,本发明使用的电子阻挡层可为
Figure PCTCN2019084629-appb-000020
The electron blocking layer may be disposed on the hole transport layer; the material of the electron blocking layer is preferably a material having a high T1 and a low LUMO, which can block electron loss and energy loss. For example, the electron blocking layer used in the present invention may be
Figure PCTCN2019084629-appb-000020
本发明的电子阻挡层的厚度可以是5-200nm、优选是10-150nm且更优选是20-100nm。The thickness of the electron blocking layer of the present invention may be 5 to 200 nm, preferably 10 to 150 nm, and more preferably 20 to 100 nm.
发光层可设置在空穴传输区域之上。发光层的材料是一种通过分别接收来自空穴传输层和电子传输层的空穴和电子,并将所接收的空穴和电子结合而能发出可见光的材料。其具体的实例包括羟基喹啉衍生物的金属络合物、各种金属络合物、蒽衍生物、双苯乙烯苯衍生物、芘衍生物、噁唑衍生物和聚对苯乙烯衍生物等,但不限于此。此外,发光层可以包含主体材料和客体材料。作为本发明有机电致发光器件发光层的主体材料和客体材料,均可以使用现有技术中公知的用于有机电致发光器件的发光层材料,所述主体材料可为例如噻唑衍生物、苯并咪唑衍生物、聚二烷基芴衍生物或4,4′-双(9-咔唑基)联苯(CBP);所述客体材料可为例如喹吖啶酮、香豆素、红荧烯、苝及其衍生物、苯并吡喃衍生物、罗丹明衍生物或氨基苯乙烯衍生物。在本发明的一个优选实施方案中,所使用的发光层主体材料选自下述EMH-1至EMH-22中的一种或多种的组合:The light emitting layer may be disposed on the hole transport region. The material of the light emitting layer is a material capable of emitting visible light by receiving holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining the received holes and electrons. Specific examples thereof include metal complexes of hydroxyquinoline derivatives, various metal complexes, anthracene derivatives, bisstyrene benzene derivatives, fluorene derivatives, oxazole derivatives, and poly-p-styrene derivatives, etc. , But not limited to this. In addition, the light emitting layer may include a host material and a guest material. As the host material and the guest material of the light-emitting layer of the organic electroluminescence device of the present invention, a light-emitting layer material for an organic electroluminescence device known in the prior art can be used. Benzimidazole derivatives, polydialkylfluorene derivatives, or 4,4′-bis (9-carbazolyl) biphenyl (CBP); the guest material may be, for example, quinacridone, coumarin, red fluorescent Alkenes, pyrenes and their derivatives, benzopyran derivatives, rhodamine derivatives or aminostyrene derivatives. In a preferred embodiment of the present invention, the light-emitting layer host material used is selected from a combination of one or more of the following EMH-1 to EMH-22:
Figure PCTCN2019084629-appb-000021
Figure PCTCN2019084629-appb-000021
此外,为了改进荧光或磷光特性,发光材料还可包括磷光或荧光材料。磷光材料的具体实例包括铱、铂等的金属络合物的磷光材料。例如,可以使用Ir(ppy) 3[fac-三(2-苯基吡啶)铱]等绿色磷光材料,FIrpic、FIr6等蓝色磷光材料和Btp2Ir(acac)等红色磷光材料。对于荧光材料,可使用本领域中通常使用的那些。在本发明的一个优选实施方案中,所使用的发光层客体材料选自下述EMD-1至EMD-23之一: In addition, in order to improve the fluorescent or phosphorescent characteristics, the light emitting material may further include a phosphorescent or fluorescent material. Specific examples of the phosphorescent material include phosphorescent materials of metal complexes such as iridium, platinum, and the like. For example, green phosphorescent materials such as Ir (ppy) 3 [fac-tri (2-phenylpyridine) iridium], blue phosphorescent materials such as FIrpic and FIr6, and red phosphorescent materials such as Btp2Ir (acac) can be used. For the fluorescent material, those commonly used in the art may be used. In a preferred embodiment of the present invention, the light-emitting layer guest material used is selected from one of the following EMD-1 to EMD-23:
Figure PCTCN2019084629-appb-000022
Figure PCTCN2019084629-appb-000022
在本发明的发光层中,所使用的主体材料与客体材料的比例为99∶1-70∶30,优选为99∶1-85∶15且更优选为97∶3-87∶13,基于质量计。In the light-emitting layer of the present invention, the ratio of the host material to the guest material used is 99: 1-70: 30, preferably 99: 1-85: 15 and more preferably 97: 3-87: 13, based on mass meter.
此外,为了得到高效率的有机电致发光器件,除了上述所使用的荧光或磷光主客体材料之外,发光层还可采用另外的客体材料,或采用多种客体材料,客体材料可为单纯的荧光材料、延迟荧光(TADF)材料或磷光材料,或由不同的荧光材料、TADF材料、磷光搭配组合,发光层可为单一的发光层材料,也可以为横向或纵向叠加在一起的复合发光层材料。构成上述有机电致发光器件的发光层列举出如下多种构造:In addition, in order to obtain a high-efficiency organic electroluminescent device, in addition to the fluorescent or phosphorescent host and guest materials used above, the light-emitting layer may use another guest material, or a variety of guest materials. The guest material may be simple Fluorescent materials, delayed fluorescence (TADF) materials, or phosphorescent materials, or a combination of different fluorescent materials, TADF materials, and phosphorescence. The light-emitting layer can be a single light-emitting layer material, or it can be a composite light-emitting layer superimposed horizontally or vertically. material. The light-emitting layers constituting the above-mentioned organic electroluminescent device are exemplified by the following various structures:
(1)单一有机发光层材料;(1) a single organic light emitting layer material;
(2)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任一种组合,并且不分前后顺序,如图3所示,;(2) any combination of the blue organic light-emitting layer material and the green, yellow, or red light-emitting layer material, regardless of the order, as shown in FIG. 3;
(3)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并且不分前后顺序,如图4所示;(3) Any combination of blue organic light-emitting layer material and green, yellow, or red light-emitting layer material, regardless of the order, as shown in FIG. 4;
(4)蓝色有机发光层材料、绿色有机发光层材料、红色有机发光层材料横向排布,如图5所示;(4) The blue organic light emitting layer material, the green organic light emitting layer material, and the red organic light emitting layer material are arranged laterally, as shown in FIG. 5;
(5)蓝色有机发光层材料和绿色、黄色或红色发光层材料的的任一种组合,并通过连接层进行电荷传输,形成两叠层装置结构,如图6所示;(5) a combination of a blue organic light-emitting layer material and a green, yellow, or red light-emitting layer material, and charge transfer through the connection layer to form a two-layer device structure, as shown in FIG. 6;
(6)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并通过连接层进行电荷传输,形成三叠层装置结构,如图7所示。(6) Any combination of the blue organic light-emitting layer material and the green, yellow, or red light-emitting layer material, and charge transfer through the connection layer to form a three-layer device structure, as shown in FIG. 7.
优选地,所述有机发光功能层包括这样的发光层,其包括蓝色、绿色、红色、黄色有机发光层材料中的1种或至少2种的组合。Preferably, the organic light emitting functional layer includes a light emitting layer including one or a combination of at least two of blue, green, red, and yellow organic light emitting layer materials.
如上所述,在图3至图5中,G代表光,6代表发光层,EM1、EM2和EM3代表不同的发光层材料。As described above, in FIGS. 3 to 5, G represents light, 6 represents a light emitting layer, and EM1, EM2, and EM3 represent different materials of the light emitting layer.
在图6和7中,6代表发光层,300代表有机发光功能层,610、620和630代表连接层。In FIGS. 6 and 7, 6 represents a light-emitting layer, 300 represents an organic light-emitting functional layer, and 610, 620, and 630 represent connection layers.
为了调节载流子电荷在发光层中的有效结合,上述构成OLED发光体的发光层6的膜厚可根据需要任意调节,或根据需要将不能色彩的发光层交替叠加组合,还可以在邻接发光层的有机层里添加不同功能用途的电荷阻挡层等。优选地,本发明的发光层的厚度可以为5-60nm,优选为10-50nm,更优选为20-45nm。In order to adjust the effective combination of carrier charges in the light-emitting layer, the film thickness of the light-emitting layer 6 constituting the OLED light-emitting body described above can be arbitrarily adjusted as required, or light-emitting layers that cannot be colored can be alternately superimposed and combined as required, and light can be emitted adjacently. In the organic layer of the layer, a charge blocking layer for different functional purposes is added. Preferably, the thickness of the light emitting layer of the present invention may be 5-60 nm, preferably 10-50 nm, and more preferably 20-45 nm.
在本发明中,电子传输区域可由下至上依次包括设置在发光层之上的空穴阻挡层、电子传输层和电子注入层,但不限于此。In the present invention, the electron transporting region includes a hole blocking layer, an electron transporting layer, and an electron injection layer disposed on the light emitting layer in order from bottom to top, but is not limited thereto.
空穴阻挡层为阻挡从阳极注入的空穴穿过发光层而进入阴极,由此延长器件的寿命并提高器件的效能的层。本发明的空穴阻挡层可设置在发光层至上。作为本发明有机电致发光器件的空穴阻挡层材料,可以使用现有技术中公共知的具有空穴阻挡作用的化合物,例如,浴铜灵(称为BCP)等菲咯啉衍生物、铝(III)双(2-甲基-8-喹啉)-4-苯基酚盐(BAlq)等羟基喹啉衍生物的金属络合物、各种稀土类络合物、噁唑衍生物、三唑衍生物、三嗪衍生物、9,9′-(5-(6-([1,1′-联苯]-4-基)-2-苯基嘧啶-4-基)-1,3-亚苯基)双(9H-咔唑)(CAS号:1345338-69-3)等嘧啶衍生物等。本发明的空穴阻挡层的厚度可为2-200nm、优选为5-150nm且更优选为10-100nm。The hole blocking layer is a layer that blocks holes injected from the anode from passing through the light emitting layer and entering the cathode, thereby extending the life of the device and improving the efficiency of the device. The hole blocking layer of the present invention may be provided above the light emitting layer. As the material of the hole blocking layer of the organic electroluminescent device of the present invention, a compound having a hole blocking effect known in the prior art can be used, for example, phenanthroline derivatives such as bath copper spirit (called BCP), aluminum (III) metal complexes of hydroxyquinoline derivatives such as bis (2-methyl-8-quinoline) -4-phenylphenate (BAlq), various rare earth complexes, oxazole derivatives, Triazole derivatives, triazine derivatives, 9,9 ′-(5- (6-([1,1′-biphenyl] -4-yl) -2-phenylpyrimidin-4-yl) -1, Pyrimidine derivatives such as 3-phenylene) bis (9H-carbazole) (CAS number: 1345338-69-3) and the like. The thickness of the hole blocking layer of the present invention may be 2-200 nm, preferably 5-150 nm, and more preferably 10-100 nm.
电子传输层可设置在发光层或(若存在的话)空穴阻挡层之上。电子传输层材料是一种容易接收阴极的电子并将接收的电子转移至发光层的材料。优选具有高的电子迁移率的材料。作为本发明有机电致发光器件的电子传输层,可以使用现有技术中公知的用于有机电致发光器件的电子传输层材料,例如,以Alq 3、BAlq为代表的羟基喹啉衍生物的金属络合物、各种金属络合物、三唑衍生物、、2,4-双(9,9-二甲基-9H-芴-2-基)-6-(萘-2-基)-1,3,5-三嗪(CAS号:1459162-51-6)等三嗪衍生物、2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑(CAS号:561064-11-7,俗称LG201)等咪唑衍生物、三嗪衍生物、噁二唑衍生物、噻二唑衍生物、碳化二亚胺衍生物、喹喔啉衍生物、菲咯啉衍生物、硅基化合物衍生物等。本发明的电子传输层的厚度可以为10-80nm、优选为20-60nm且更优选为25-45nm。 The electron transport layer may be disposed on the light emitting layer or, if present, the hole blocking layer. The electron transport layer material is a material that easily receives electrons from the cathode and transfers the received electrons to the light emitting layer. Materials having high electron mobility are preferred. As the electron-transporting layer of the present invention, the organic electroluminescent device can be used in the prior art known electron transport layer material for organic electroluminescent devices, for example, Alq 3, BAlq as quinolinol derivative represented by the Metal complexes, various metal complexes, triazole derivatives, 2,4-bis (9,9-dimethyl-9H-fluoren-2-yl) -6- (naphthalene-2-yl) Triazine derivatives such as -1,3,5-triazine (CAS number: 1459162-51-6), 2- (4- (9,10-bis (naphthalene-2-yl) anthracen-2-yl) benzene ) -1-phenyl-1H-benzo [d] imidazole (CAS number: 561064-11-7, commonly known as LG201) and other imidazole derivatives, triazine derivatives, oxadiazole derivatives, and thiadiazole derivatives , Carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silicon-based compound derivatives, and the like. The thickness of the electron transport layer of the present invention may be 10-80 nm, preferably 20-60 nm, and more preferably 25-45 nm.
电子注入层可设置在电子传输层之上。电子注入层材料通常是优选具有低功函数的材料,使得电子容易地注入有机功能材料层中。作为本发明有机电致发光器件的电子注入层材料,可以使用现有技术中公知的用于有机电致发光器件的电子注入层材料,例如,锂;锂盐,如8-羟基喹啉锂、氟化锂、碳酸锂或叠氮化锂;或铯盐,氟化铯、碳酸铯或叠氮化铯。本发明的电子注入层的厚度可以是0.1-5nm、优选为0.5-3nm且更优选为0.8-1.5nm。The electron injection layer may be disposed on the electron transport layer. The material of the electron injection layer is generally a material which preferably has a low work function, so that electrons are easily injected into the organic functional material layer. As the material of the electron injecting layer of the organic electroluminescent device of the present invention, an electron injecting layer material for an organic electroluminescent device known in the prior art can be used, for example, lithium; a lithium salt, such as lithium 8-hydroxyquinoline, Lithium fluoride, lithium carbonate, or lithium azide; or cesium salt, cesium fluoride, cesium carbonate, or cesium azide. The thickness of the electron injection layer of the present invention may be 0.1-5 nm, preferably 0.5-3 nm, and more preferably 0.8-1.5 nm.
第二电极可设置在电子传输区域之上。第二电极可以是阴极。第二电极EL2可以是透射电极、半透射电极或者反射电极。当第二电极是透射电极时,第二电极可以包括例如Li、Yb、Ca、LiF/Ca、LiF/Al、Al、Mg、BaF、Ba、Ag或者其化合物或混合物;当第二电极是半透射电极或者反射电极时,第二电极可包括Ag、Mg、Yb、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr、Li、Ca、LiF/Ca、LiF/Al、Mo、Ti或者其化合物或混合物。The second electrode may be disposed above the electron transport region. The second electrode may be a cathode. The second electrode EL2 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode. When the second electrode is a transmissive electrode, the second electrode may include, for example, Li, Yb, Ca, LiF / Ca, LiF / Al, Al, Mg, BaF, Ba, Ag, or a compound or mixture thereof; when the second electrode is a half electrode For a transmissive electrode or a reflective electrode, the second electrode may include Ag, Mg, Yb, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF / Ca, LiF / Al, Mo, Ti, or Its compounds or mixtures.
取决于所用的材料,本发明的有机电致发光器件可为顶部发光型、底部发光型或双面发光型。Depending on the materials used, the organic electroluminescent device of the present invention may be a top emission type, a bottom emission type, or a double-sided emission type.
在有机电致发光器件是顶部发光类型的情况下,第一电极可以是反射电极,而第二电极可以是透射电极或者半透射电极。在有机电致发光器件是底部发光类型的情况下,第一电极可以是透射电极或者半透射电极,而第二电极可以是反射电极。In the case where the organic electroluminescent device is a top emission type, the first electrode may be a reflective electrode, and the second electrode may be a transmissive electrode or a semi-transmissive electrode. In the case where the organic electroluminescent device is a bottom emission type, the first electrode may be a transmissive electrode or a semi-transmissive electrode, and the second electrode may be a reflective electrode.
有机电致发光器件还可包括封装结构。所述封装结构可为防止外界物质例如湿气和氧气进入有机电致发光器件的有机层的保护结构。所述封装结构可为例如罐,如玻璃罐或金属罐;或覆盖有机层整个表面的薄膜。The organic electroluminescent device may further include a packaging structure. The packaging structure may be a protective structure that prevents foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device. The packaging structure may be, for example, a can, such as a glass can or a metal can; or a film covering the entire surface of the organic layer.
在制备有机电致发光器件的过程中,例如可通过在基板上相继层压第一电极、有机功能材料层和第二电极来制备本发明的有机电致发光器件。关于此点,可使用物理气相沉积方法,如溅射法或电子束蒸汽法,或者真空蒸镀法,但不限于此。并且,可通过例如真空沉积法、真空蒸镀法或溶液涂覆法将上述化合物用于形成有机功能材料层。关于此点,溶液涂覆法意指旋涂法、浸涂 法、喷射印刷法、筛网印刷法、喷雾法和辊涂法,但不限于此。真空蒸镀意指在真空环境中,将材料加热并镀到基材上。在本发明中,优选使用真空蒸镀法来形成所述各个层。In the process of preparing an organic electroluminescent device, for example, the organic electroluminescent device of the present invention can be prepared by sequentially laminating a first electrode, an organic functional material layer, and a second electrode on a substrate. In this regard, a physical vapor deposition method such as a sputtering method or an electron beam vapor method, or a vacuum evaporation method may be used, but is not limited thereto. And, the above-mentioned compound can be used to form an organic functional material layer by, for example, a vacuum deposition method, a vacuum evaporation method, or a solution coating method. In this regard, the solution coating method means, but is not limited to, a spin coating method, a dip coating method, a jet printing method, a screen printing method, a spray method, and a roll coating method. Vacuum evaporation means heating and plating a material onto a substrate in a vacuum environment. In the present invention, the respective layers are preferably formed using a vacuum evaporation method.
另外,需要说明的是,本发明所述的用于形成各个层的材料均可以单独成膜而作为单层使用,也可以与其他材料混合后成膜而作为单层使用,还可以为单独成膜的层之间的层叠结构、混合后成膜的层之间的层叠结构或者单独成膜的层与混合后成膜的层的层叠结构。In addition, it should be noted that the materials for forming each layer according to the present invention may be formed into a single layer and used as a single layer, or may be mixed with other materials and formed into a film and used as a single layer. A layered structure between the layers of the film, a layered structure between the layers formed into the film after mixing, or a layered structure of the layer formed into the film alone and the layer formed into the film after mixing.
在本发明的另一方面,涉及一种显示器,其包括一个或多个本发明的有机电致发光器件,并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。In another aspect of the present invention, it relates to a display including one or more organic electroluminescence devices of the present invention, and in the case of including a plurality of devices, the devices are combined horizontally or vertically in combination.
在一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有膜厚和材料均相同的空穴传输层。在另一个优选的实施方案中,显示器由可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有材料相同但膜厚各不相同的空穴传输层。In a preferred embodiment, the display may include a device each having an organic light emitting material layer of three colors of blue, green, and red, and the device has a hole transport layer having the same film thickness and material. In another preferred embodiment, the display consists of a device that can include organic light emitting material layers each having three colors of blue, green, and red, and the devices have hole transport layers of the same material but different film thicknesses.
在另一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有膜厚相同但其材料至少有两种组合的空穴传输层。在又一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有膜厚各不相同并且其材料至少有两种组合的空穴传输层。In another preferred embodiment, the display may include a device each having an organic light emitting material layer of three colors of blue, green, and red, and the device has hole transport with the same film thickness but at least two combinations of materials Floor. In yet another preferred embodiment, the display may include devices each having an organic light-emitting material layer of three colors of blue, green, and red, and the devices have blanks with different film thicknesses and at least two combinations of materials. Cavity transmission layer.
需要说明的是,本文中已经公开了示例性的实施方案,虽然其中使用了特定的术语,但是这些术语仅用于且仅解释为一般和描述性含义,而并非出于限制的目的。除非另有说明,结合特定实施方案描述的特征、特性和/或元件可单独使用或与结合其他实施方案描述的特征、特性和/或元件组合使用。It should be noted that exemplary embodiments have been disclosed herein, and although specific terms are used therein, these terms are used and interpreted only as general and descriptive meanings, and not for limiting purposes. Unless stated otherwise, features, characteristics, and / or elements described in connection with a particular embodiment may be used alone or in combination with features, characteristics, and / or elements described in connection with other embodiments.
以下实施例旨在更好地解释本发明,但本发明的范围不限于此。The following examples are intended to better explain the invention, but the scope of the invention is not limited thereto.
实施例Examples
本文中所使用的检测方法如下:The detection methods used in this article are as follows:
玻璃化转变温度Tg:通过示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;Glass transition temperature Tg: measured by differential scanning calorimetry (DSC, DSC204F1 Differential Scanning Calorimeter, Germany), heating rate 10 ° C / min;
HOMO能级:对于有机光电子材料的HOMO能级的测试有多种方法或仪器手段,包括CV(循环伏安法),UPS(紫外光电子能谱),日本理研计器公司生产的AC系列设备(大气光电子能谱),心地天益公司生产的IPS系列设备(真空光电子能谱)等,除了上述手段以外,还可以通过高斯计算,并结合半经验的判断,确定HOMO能级的水平,准确测量HOMO能级对于研究OLED器件结构搭配非常重要。上述所有HOMO能级确定的手段中,CV法受溶剂影响,数据准确度和再现性比较差,其他包括UPS法,AC法,IPS法,从根本原理来说,都是紫外光电子能谱的测量原理,其中UPS测量不仅需要超高真空,设备价值昂贵,而且因为测量的人,以及仪器设置的不同,数据解析结果存在较大差异。AC法从原理上来说,需要将样品置于有氧的干燥空气环境,氧元素对样品存在一定影响,数据再现性和一致性都比较差,IPS法测量HOMO能级,是将膜材料放置在真空环境中,紫外单色光直接施加在样品表面,通过测量光电子电流,从而确定HOMO能级的大小,属于直接测量。基于以上分析和实践,发明人认为IPS测量法在测量OLED材料的HOMO能级时,再现性、一致性和准确性也最高。本发明所有涉及材料的HOMO能级均为IPS的测量手段。具体测量方法如下:HOMO level: There are many methods or instrumental methods for testing the HOMO level of organic optoelectronic materials, including CV (cyclic voltammetry), UPS (ultraviolet photoelectron spectroscopy), and AC series equipment manufactured by Riken Instrument Co., Ltd. ( Atmospheric photoelectron spectroscopy), IPS series equipment (vacuum photoelectron spectroscopy) produced by Xindi Tianyi Co., Ltd., in addition to the above methods, can also determine the level of HOMO energy level by Gaussian calculation and combined with semi-empirical judgment, and accurately measure The HOMO energy level is very important for studying the structural matching of OLED devices. Among all the above HOMO energy level determination methods, the CV method is affected by solvents, and the data accuracy and reproducibility are relatively poor. Others include the UPS method, AC method, and IPS method. Fundamentally, they are measurements of ultraviolet photoelectron spectroscopy Principle, in which UPS measurement not only requires ultra-high vacuum, the equipment value is expensive, but because of the person who measures, and the instrument settings, the data analysis results vary greatly. In principle, the AC method requires the sample to be placed in an aerobic dry air environment. The oxygen element has a certain effect on the sample. The data reproducibility and consistency are relatively poor. The IPS method measures the HOMO energy level. In a vacuum environment, UV monochromatic light is directly applied to the surface of the sample, and the HOMO energy level is determined by measuring the photoelectron current, which is a direct measurement. Based on the above analysis and practice, the inventors believe that the IPS measurement method has the highest reproducibility, consistency, and accuracy when measuring the HOMO energy level of OLED materials. The HOMO energy levels of all materials involved in the present invention are IPS measurement methods. The specific measurement method is as follows:
利用真空蒸镀设备,在真空度1.0E-5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084629-appb-000023
将材料蒸镀到ITO基板上,其膜厚为60-80nm,然后利用用IPS3测量设备,对样品膜的HOMO能级水平进行测量,测量环境为10-2Pa以下的真空环境;
Using vacuum evaporation equipment, under the pressure of 1.0E-5Pa, the evaporation rate is controlled to
Figure PCTCN2019084629-appb-000023
The material is vapor-deposited on the ITO substrate with a film thickness of 60-80 nm, and then the HOMO energy level of the sample film is measured by using an IPS3 measurement device, and the measurement environment is a vacuum environment below 10-2Pa;
Eg能级:基于材料单膜的紫外分光光度(UV吸收)基线与第一吸收峰的上升侧画切线,用切线和基线交叉点数值算出。Eg energy level: Based on the ultraviolet spectrophotometry (UV absorption) baseline of the single film of the material and the rising side of the first absorption peak, a tangent line is drawn, and the value of the tangent line and the baseline crossing point are used to calculate.
LUMO能级:基于前述HOMO能级与Eg能级的差值计算得出。LUMO energy level: calculated based on the difference between the aforementioned HOMO energy level and Eg energy level.
电极材料的功函数:使用上海大学研发的表面功函数测试仪在大气环境下测试。Work function of electrode material: Tested in atmospheric environment using surface work function tester developed by Shanghai University.
空穴迁移率:将材料制作成单电荷器件,用SCLC方法测定。Hole mobility: The material was made into a single charge device and measured by the SCLC method.
制备空穴传输层材料Preparation of hole transport layer material
I.制备所使用的第一有机材料:I. The first organic material used in the preparation:
制备化合物HT1-1Preparation of compound HT1-1
Figure PCTCN2019084629-appb-000024
Figure PCTCN2019084629-appb-000024
在氮气气氛下,向500ml三口烧瓶中加入0.01mol原料I-1、0.03mol原料II-1、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至 100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.6%,收率70.4%。 Under a nitrogen atmosphere, add 500 mol of raw material I-1, 0.03 mol of raw material II-1, 0.03 mol of sodium tert-butoxide, 5 × 10 -5 mol Pd 2 (dba) 3 and 5 × 10 -5 into a 500 ml three-necked flask. mol of tri-tert-butyl phosphorus, then 150 ml of toluene was added to dissolve it, heated to 100 ° C, refluxed for 24 hours, and the reaction was observed by TLC until the reaction was completed. It was left to cool to room temperature, filtered, and the filtrate was rotary distilled to no fractions. The obtained substance was purified through a silica gel column (petroleum ether as eluent) to obtain the target product, with a purity of 99.6% and a yield of 70.4%.
元素分析结构(分子式C 60H 42N 4):理论值:C,87.99;H,5.17;N,6.84;测试值:C,87.97;H,5.18;N,6.85。 Elemental analysis structure (Molecular formula C 60 H 42 N 4 ): Theoretical value: C, 87.99; H, 5.17; N, 6.84; Test value: C, 87.97; H, 5.18; N, 6.85.
ESI-MS(m/z)(M +):理论值为818.34,实测值为818.62。 ESI-MS (m / z) (M + ): The theoretical value is 818.34, and the measured value is 818.62.
制备化合物HTI-9Preparation of compound HTI-9
Figure PCTCN2019084629-appb-000025
Figure PCTCN2019084629-appb-000025
按化合物HTI-1的合成方法制备,不同在于用原料II-2代替原料II-1,所得目标产物的纯度为99.9%,收率为71.7%。It is prepared according to the synthesis method of compound HTI-1, the difference is that the raw material II-2 is used instead of the raw material II-1. The purity of the obtained target product is 99.9% and the yield is 71.7%.
元素分析结构(分子式C 54H 44N 2):理论值:C,89.96;H,6.15;N,3.89;测试值:C,89.97;H,6.13;N,3.90。 Elemental analysis structure (molecular formula C 54 H 44 N 2 ): Theoretical value: C, 89.96; H, 6.15; N, 3.89; Test value: C, 89.97; H, 6.13; N, 3.90.
ESI-MS(m/z)(M +):理论值为720.35,实测值为720.65。 ESI-MS (m / z) (M + ): The theoretical value is 720.35, and the measured value is 720.65.
制备化合物HTI-28Preparation of compound HTI-28
Figure PCTCN2019084629-appb-000026
Figure PCTCN2019084629-appb-000026
在氮气气氛下,向500ml三口瓶中加入0.01mol原料I-2、0.03mol原料II-3,用混合溶剂(90ml甲苯,45ml乙醇)溶解,然后加入0.04mol Na 2CO 3水溶液(2M)。将混合物搅拌1小时,然后加入1×10 -4mol Pd(PPh 3) 4,加热回流15小时。利用TLC观察反应,直至反应完全。自然冷却,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.6%,收率72.2%。 Under a nitrogen atmosphere, 0.01 mol of raw material I-2 and 0.03 mol of raw material II-3 were added to a 500 ml three-necked flask, dissolved in a mixed solvent (90 ml of toluene, 45 ml of ethanol), and then 0.04 mol of Na 2 CO 3 aqueous solution (2M) was added. The mixture was stirred for 1 hour, and then 1 × 10 -4 mol Pd (PPh 3 ) 4 was added , and heated under reflux for 15 hours. The reaction was observed by TLC until the reaction was complete. It was left to cool, filtered, and the filtrate was rotary distilled to no fractions. The obtained substance was purified through a silica gel column (petroleum ether as eluent) to obtain the target product, with a purity of 99.6% and a yield of 72.2%.
元素分析结构(分子式C 42H 25NO 3):理论值:C,85.26;H,4.26;N,2.37;测试值:C,85.24;H,4.24;N,2.39。 Elemental analysis structure (molecular formula C 42 H 25 NO 3 ): Theoretical value: C, 85.26; H, 4.26; N, 2.37; Test value: C, 85.24; H, 4.24; N, 2.39.
ESI-MS(m/z)(M +):理论值为591.18,实测值为591.35。 ESI-MS (m / z) (M + ): The theoretical value is 591.18, and the measured value is 591.35.
制备化合物HTI-41Preparation of compound HTI-41
Figure PCTCN2019084629-appb-000027
Figure PCTCN2019084629-appb-000027
按化合物HTI-1的合成方法制备,不同在于用原料III-4代替原料II-1,所得目标产物的纯度为99.5%,收率为68.8%。Prepared according to the synthetic method of compound HTI-1, the difference is that raw material III-4 is used instead of raw material II-1, the purity of the obtained target product is 99.5%, and the yield is 68.8%.
元素分析结构(分子式C 72H 54N 4):理论值:C,88.67;H,5.58;N,5.74;测试值:C,88.64;H,5.60;N,5.73。 Elemental analysis structure (Molecular formula C 72 H 54 N 4 ): Theoretical value: C, 88.67; H, 5.58; N, 5.74; Test value: C, 88.64; H, 5.60; N, 5.73.
ESI-MS(m/z)(M +):理论值为974.43,实测值为974.61。 ESI-MS (m / z) (M + ): The theoretical value is 974.43, and the measured value is 974.61.
制备化合物HTI-52Preparation of compound HTI-52
Figure PCTCN2019084629-appb-000028
Figure PCTCN2019084629-appb-000028
按化合物HTI-1的合成方法制备,不同在于用原料III-5代替原料II-1,所得目标产物的纯度为99.8%,收率为72.9%。It is prepared according to the synthetic method of compound HTI-1, the difference is that raw material III-5 is used instead of raw material II-1. The purity of the obtained target product is 99.8%, and the yield is 72.9%.
元素分析结构(分子式C 56H 40N 2):理论值:C,90.78;H,5.44;N,3.78;测试值:C,90.76;H,5.45;N,3.79。 Elemental analysis structure (Molecular formula C 56 H 40 N 2 ): Theoretical value: C, 90.78; H, 5.44; N, 3.78; Test value: C, 90.76; H, 5.45; N, 3.79.
ESI-MS(m/z)(M +):理论值为740.32,实测值为740.62。 ESI-MS (m / z) (M + ): The theoretical value is 740.32, and the measured value is 740.62.
制备化合物HTI-57Preparation of compound HTI-57
Figure PCTCN2019084629-appb-000029
Figure PCTCN2019084629-appb-000029
在氮气气氛下,向500ml三口烧瓶中加入0.015mol原料I-3、0.01mol原料II-6、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.7%,收率77.5%。 Under a nitrogen atmosphere, add 0.015 mol of raw material I-3, 0.01 mol of raw material II-6, 0.03 mol of sodium tert-butoxide, 5 × 10 -5 mol Pd 2 (dba) 3 and 5 × 10 -5 into a 500 ml three-necked flask. mol of tri-tert-butyl phosphorus, then 150 ml of toluene was added to dissolve it, heated to 100 ° C, refluxed for 24 hours, and the reaction was observed by TLC until the reaction was completed. It was left to cool to room temperature, filtered, and the filtrate was rotary distilled to no fractions. The obtained substance was purified through a silica gel column (petroleum ether as eluent) to obtain the target product, with a purity of 99.7% and a yield of 77.5%.
元素分析结构(分子式C 60H 44N 2):理论值:C,90.87;H,5.59;N,3.53;测试值:C,90.86;H,5.58;N,3.56。 Elemental analysis structure (Molecular formula C 60 H 44 N 2 ): Theoretical value: C, 90.87; H, 5.59; N, 3.53; Test value: C, 90.86; H, 5.58; N, 3.56.
ESI-MS(m/z)(M +):理论值为792.35,实测值为792.67。 ESI-MS (m / z) (M + ): The theoretical value is 792.35, and the measured value is 792.67.
制备化合物HTI-63Preparation of compound HTI-63
Figure PCTCN2019084629-appb-000030
Figure PCTCN2019084629-appb-000030
按化合物HTI-57的合成方法制备,不同在于用原料I-4代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.9%,收率为73.9%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-4 is used instead of raw material I-3, and raw material II-7 is used instead of raw material II-6. The purity of the obtained target product is 99.9% and the yield is 73.9%.
元素分析结构(分子式C 52H 37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.50;N,2.08。 Elemental analysis structure (molecular formula C 52 H 37 N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.42; H, 5.50; N, 2.08.
ESI-MS(m/z)(M +):理论值为675.29,实测值为675.58。 ESI-MS (m / z) (M + ): The theoretical value is 675.29, and the measured value is 675.58.
制备化合物HTI-72Preparation of compound HTI-72
Figure PCTCN2019084629-appb-000031
Figure PCTCN2019084629-appb-000031
按化合物HTI-57的合成方法制备,不同在于用原料I-5代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.6%,收率为72.6%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-5 is used instead of raw material I-3, and raw material II-7 is used instead of raw material II-6. The purity of the obtained target product is 99.6%, and the yield is 72.6%.
元素分析结构(分子式C 54H 39N):理论值:C,92.40;H,5.60;N,2.00;测试值:C,92.38;H,5.61;N,2.01。 Elemental analysis structure (molecular formula C 54 H 39 N): Theoretical value: C, 92.40; H, 5.60; N, 2.00; Test value: C, 92.38; H, 5.61; N, 2.01.
ESI-MS(m/z)(M +):理论值为701.31,实测值为701.55。 ESI-MS (m / z) (M + ): The theoretical value is 701.31, and the measured value is 701.55.
制备化合物HTI-86Preparation of compound HTI-86
Figure PCTCN2019084629-appb-000032
Figure PCTCN2019084629-appb-000032
按化合物HTI-57的合成方法制备,不同在于用原料I-6代替原料I-3,用原料II-8代替原料II-6,所得目标产物的纯度为99.9%,收率为75.4%。Prepared according to the synthetic method of compound HTI-57, the difference is that the raw material I-6 is used instead of the raw material I-3, and the raw material II-8 is used instead of the raw material II-6. The purity of the obtained target product is 99.9% and the yield is 75.4%.
元素分析结构(分子式C 52H 39N):理论值:C,92.13;H,5.80;N,2.07;测试值:C,92.11;H,5.82;N,2.07。 Elemental analysis structure (molecular formula C 52 H 39 N): Theoretical value: C, 92.13; H, 5.80; N, 2.07; Test value: C, 92.11; H, 5.82; N, 2.07.
ESI-MS(m/z)(M +):理论值为677.31,实测值为677.51。 ESI-MS (m / z) (M + ): The theoretical value is 677.31, and the measured value is 677.51.
制备化合物HTI-101Preparation of compound HTI-101
Figure PCTCN2019084629-appb-000033
Figure PCTCN2019084629-appb-000033
按化合物HTI-57的合成方法制备,不同在于用原料I-7代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.7%,收率为74.3%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-7 is used instead of raw material I-3, and raw material II-9 is used instead of raw material II-6. The purity of the obtained target product is 99.7%, and the yield is 74.3%.
元素分析结构(分子式C 55H 41NO):理论值:C,90.25;H,5.65;N,1.91;测试值:C,90.24;H,5.64;N,1.90。 Elemental analysis structure (Molecular formula C 55 H 41 NO): Theoretical value: C, 90.25; H, 5.65; N, 1.91; Test value: C, 90.24; H, 5.64; N, 1.90.
ESI-MS(m/z)(M +):理论值为731.32,实测值为731.66。 ESI-MS (m / z) (M + ): The theoretical value is 731.32, and the measured value is 731.66.
制备化合物HTI-114Preparation of compound HTI-114
Figure PCTCN2019084629-appb-000034
Figure PCTCN2019084629-appb-000034
按化合物HTI-57的合成方法制备,不同在于用原料I-8代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.6%,收率为77.6%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-8 is used instead of raw material I-3, and raw material II-7 is used instead of raw material II-6. The purity of the obtained target product is 99.6%, and the yield is 77.6%.
元素分析结构(分子式C 55H 43N):理论值:C,92.01;H,6.04;N,1.95;测试值:C,92.02;H,6.02;N,1.96。 Elemental analysis structure (molecular formula C 55 H 43 N): Theoretical value: C, 92.01; H, 6.04; N, 1.95; Test value: C, 92.02; H, 6.02; N, 1.96.
ESI-MS(m/z)(M +):理论值为717.34,实测值为717.54。 ESI-MS (m / z) (M + ): The theoretical value is 717.34, and the measured value is 717.54.
制备化合物HTI-124Preparation of compound HTI-124
Figure PCTCN2019084629-appb-000035
Figure PCTCN2019084629-appb-000035
按化合物HTI-57的合成方法制备,不同在于用原料I-9代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.7%,收率为78.8%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-9 is used instead of raw material I-3, and raw material II-9 is used instead of raw material II-6. The purity of the obtained target product is 99.7%, and the yield is 78.8%.
元素分析结构(分子式C 54H 41NO):理论值:C,90.09;H,5.74;N,1.95;测试值:C,90.07;H,5.76;N,1.97。 Elemental analysis structure (molecular formula C 54 H 41 NO): Theoretical value: C, 90.09; H, 5.74; N, 1.95; Test value: C, 90.07; H, 5.76; N, 1.97.
ESI-MS(m/z)(M +):理论值为719.32,实测值为719.53。 ESI-MS (m / z) (M + ): The theoretical value is 719.32, and the measured value is 719.53.
制备化合物HTI-134Preparation of compound HTI-134
Figure PCTCN2019084629-appb-000036
Figure PCTCN2019084629-appb-000036
按化合物HTI-57的合成方法制备,不同在于用原料I-10代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.6%,收率为75.1%。Prepared according to the synthetic method of compound HTI-57, the difference is that the raw material I-10 is used instead of the raw material I-3, and the raw material II-9 is used instead of the raw material II-6. The purity of the obtained target product is 99.6%, and the yield is 75.1%.
元素分析结构(分子式C 63H 57N):理论值:C,91.37;H,6.94;N,1.69;测试值:C,91.35;H,6.96;N,1.68。 Elemental analysis structure (Molecular formula C 63 H 57 N): Theoretical value: C, 91.37; H, 6.94; N, 1.69; Test value: C, 91.35; H, 6.96; N, 1.68.
ESI-MS(m/z)(M +):理论值为827.45,实测值为827.77。 ESI-MS (m / z) (M + ): The theoretical value is 827.45, and the measured value is 827.77.
制备化合物HTI-144Preparation of compound HTI-144
Figure PCTCN2019084629-appb-000037
Figure PCTCN2019084629-appb-000037
按化合物HTI-57的合成方法制备,不同在于用原料I-11代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.8%,收率为74.9%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-11 is used instead of raw material I-3, and raw material II-7 is used instead of raw material II-6. The purity of the obtained target product is 99.8%, and the yield is 74.9%.
元素分析结构(分子式C 58H 47N):理论值:C,91.90;H,6.25;N,1.85;测试值:C,91.92;H,6.24;N,1.84。 Elemental analysis structure (Molecular formula C 58 H 47 N): Theoretical value: C, 91.90; H, 6.25; N, 1.85; Test value: C, 91.92; H, 6.24; N, 1.84.
ESI-MS(m/z)(M +):理论值为757.37,实测值为757.57。 ESI-MS (m / z) (M + ): The theoretical value is 757.37, and the measured value is 757.57.
制备化合物HTI-162Preparation of compound HTI-162
Figure PCTCN2019084629-appb-000038
Figure PCTCN2019084629-appb-000038
按化合物HTI-57的合成方法制备,不同在于用原料I-12代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.7%,收率为75.7%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-12 is used instead of raw material I-3, and raw material II-9 is used instead of raw material II-6. The purity of the obtained target product is 99.7%, and the yield is 75.7%.
元素分析结构(分子式C 49H 41N):理论值:C,91.41;H,6.42;N,2.18;测试值:C,91.43;H,6.41;N,2.16。 Elemental analysis structure (Molecular formula C 49 H 41 N): Theoretical value: C, 91.41; H, 6.42; N, 2.18; Test value: C, 91.43; H, 6.41; N, 2.16.
ESI-MS(m/z)(M +):理论值为643.32,实测值为643.60。 ESI-MS (m / z) (M + ): The theoretical value is 643.32, and the measured value is 643.60.
制备化合物HTI-176Preparation of compound HTI-176
Figure PCTCN2019084629-appb-000039
Figure PCTCN2019084629-appb-000039
按化合物HTI-57的合成方法制备,不同在于用原料I-13代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.6%,收率为73.6%。Prepared according to the synthetic method of compound HTI-57, the difference is that raw material I-13 is used instead of raw material I-3 and raw material II-9 is used instead of raw material II-6. The purity of the obtained target product is 99.6%, and the yield is 73.6%.
元素分析结构(分子式C 60H 49N 3):理论值:C,88.74;H,6.08;N,5.17;测试值:C,88.71;H,6.09;N,5.20。 Elemental analysis structure (Molecular formula C 60 H 49 N 3 ): Theoretical value: C, 88.74; H, 6.08; N, 5.17; Test value: C, 88.71; H, 6.09; N, 5.20.
ESI-MS(m/z)(M +):理论值为811.39,实测值为811.65。 ESI-MS (m / z) (M + ): The theoretical value is 811.39, and the measured value is 811.65.
II.制备所使用的第二有机材料:II. The second organic material used in the preparation:
制备化合物HTII-7Preparation of compound HTII-7
Figure PCTCN2019084629-appb-000040
Figure PCTCN2019084629-appb-000040
在氮气气氛下,向500ml三口烧瓶中加入0.015mol原料IV-1、0.01mol原料V-1、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷。然后加入150ml甲苯将其溶解,加热至100℃,回流24小时。利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.5%,收率77.3%。 Under a nitrogen atmosphere, add 0.015 mol of raw material IV-1, 0.01 mol of raw material V-1, 0.03 mol of sodium tert-butoxide, 5 × 10 -5 mol Pd 2 (dba) 3 and 5 × 10 -5 into a 500 ml three-necked flask. mol tri-tert-butyl phosphorus. Then 150 ml of toluene was added to dissolve it, heated to 100 ° C, and refluxed for 24 hours. The reaction was observed by TLC until the reaction was complete. It was left to cool to room temperature, filtered, and the filtrate was rotary distilled to no fractions. The obtained substance was purified through a silica gel column (petroleum ether as eluent) to obtain the target product, with a purity of 99.5% and a yield of 77.3%.
元素分析结构(分子式C 53H 41N 3):理论值:C,88.42;H,5.74;N,5.84;测试值:C,88.43;H,5.75;N,5.82。 Elemental analysis structure (Molecular formula C 53 H 41 N 3 ): Theoretical value: C, 88.42; H, 5.74; N, 5.84; Test value: C, 88.43; H, 5.75; N, 5.82.
ESI-MS(m/z)(M +):理论值为719.33,实测值为719.64。 ESI-MS (m / z) (M + ): The theoretical value is 719.33, and the measured value is 719.64.
制备化合物HTII-21Preparation of compound HTII-21
Figure PCTCN2019084629-appb-000041
Figure PCTCN2019084629-appb-000041
按化合物HTII-7的合成方法制备,不同在于用原料III-2代替原料III-1,用原料IV-2代替原料IV-1,所得目标产物的纯度为99.9%,收率为75.5%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-2 is used instead of raw material III-1, and raw material IV-2 is used instead of raw material IV-1. The purity of the obtained target product is 99.9% and the yield is 75.5%.
元素分析结构(分子式C 54H 39N):理论值:C,92.40;H,5.60;N,2.00;测试值:C,92.41;H,5.61;N,1.98。 Elemental analysis structure (molecular formula C 54 H 39 N): Theoretical value: C, 92.40; H, 5.60; N, 2.00; Test value: C, 92.41; H, 5.61; N, 1.98.
ESI-MS(m/z)(M +):理论值为701.31,实测值为701.52。 ESI-MS (m / z) (M + ): The theoretical value is 701.31, and the measured value is 701.52.
制备化合物HTII-37Preparation of compound HTII-37
Figure PCTCN2019084629-appb-000042
Figure PCTCN2019084629-appb-000042
在氮气气氛下,向500ml三口烧瓶中加入0.03mol原料III-3、0.01mol原料IV-4、0.04mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.7%,收率74.6%。 Under a nitrogen atmosphere, add 0.03 mol of raw material III-3, 0.01 mol of raw material IV-4, 0.04 mol of sodium tert-butoxide, 5 × 10 -5 mol Pd 2 (dba) 3 and 5 × 10 -5 into a 500 ml three-necked flask. mol of tri-tert-butyl phosphorus, then 150 ml of toluene was added to dissolve it, heated to 100 ° C, refluxed for 24 hours, and the reaction was observed by TLC until the reaction was completed. It was left to cool to room temperature, filtered, and the filtrate was rotary distilled to no fractions. The obtained substance was purified through a silica gel column (petroleum ether as eluent) to obtain the target product, with a purity of 99.7% and a yield of 74.6%.
元素分析结构(分子式C 54H 35NO 2):理论值:C,88.86;H,4.83;N,1.92;测试值:C,88.85;H,4.84;N,1.91。 Elemental analysis structure (molecular formula C 54 H 35 NO 2 ): Theoretical value: C, 88.86; H, 4.83; N, 1.92; Test value: C, 88.85; H, 4.84; N, 1.91.
ESI-MS(m/z)(M +):理论值为729.27,实测值为729.45。 ESI-MS (m / z) (M + ): The theoretical value is 729.27, and the measured value is 729.45.
制备化合物HTII-41Preparation of compound HTII-41
Figure PCTCN2019084629-appb-000043
Figure PCTCN2019084629-appb-000043
按化合物HTII-7的合成方法制备,不同在于用原料III-4代替原料III-1,用原料IV-4代替原料IV-1,所得目标产物的纯度为99.8%,收率为76.1%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-4 is used instead of raw material III-1, and raw material IV-4 is used instead of raw material IV-1. The purity of the obtained target product is 99.8%, and the yield is 76.1%.
元素分析结构(分子式C 51H 37NO):理论值:C,90.10;H,5.49;N,2.06;测试值:C,90.11;H,5.47;N,2.07。 Elemental analysis structure (molecular formula C 51 H 37 NO): Theoretical value: C, 90.10; H, 5.49; N, 2.06; Test value: C, 90.11; H, 5.47; N, 2.07.
ESI-MS(m/z)(M +):理论值为679.29,实测值为679.63。 ESI-MS (m / z) (M + ): The theoretical value is 679.29, and the measured value is 679.63.
制备化合物HTII-52Preparation of compound HTII-52
Figure PCTCN2019084629-appb-000044
Figure PCTCN2019084629-appb-000044
按化合物HTII-7的合成方法制备,不同在于用原料III-5代替原料III-1,用原料IV-5代替原料IV-1,所得目标产物的纯度为99.7%,收率为75.6%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-5 is used instead of raw material III-1, and raw material IV-5 is used instead of raw material IV-1. The purity of the obtained target product is 99.7% and the yield is 75.6%.
元素分析结构(分子式C 54H 36N 2O):理论值:C,88.98;H,4.98;N,3.84;测试值:C,88.96;H,4.99;N,3.85。 Elemental analysis structure (molecular formula C 54 H 36 N 2 O): Theoretical value: C, 88.98; H, 4.98; N, 3.84; Test value: C, 88.96; H, 4.99; N, 3.85.
ESI-MS(m/z)(M +):理论值为728.28,实测值为728.56。 ESI-MS (m / z) (M + ): The theoretical value is 728.28, and the measured value is 728.56.
制备化合物HTII-78Preparation of compound HTII-78
Figure PCTCN2019084629-appb-000045
Figure PCTCN2019084629-appb-000045
按化合物HTII-7的合成方法制备,不同在于用原料III-6代替原料III-1,用原料IV-6代替原料IV-1,所得目标产物的纯度为99.9%,收率为75.1%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-6 is used instead of raw material III-1, and raw material IV-6 is used instead of raw material IV-1. The purity of the obtained target product is 99.9% and the yield is 75.1%.
元素分析结构(分子式C 52H 37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.53;N,2.05。 Elemental analysis structure (molecular formula C 52 H 37 N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.42; H, 5.53; N, 2.05.
ESI-MS(m/z)(M +):理论值为675.29,实测值为675.65。 ESI-MS (m / z) (M + ): The theoretical value is 675.29, and the measured value is 675.65.
制备化合物HTII-102Preparation of compound HTII-102
Figure PCTCN2019084629-appb-000046
Figure PCTCN2019084629-appb-000046
按化合物HTII-7的合成方法制备,不同在于用原料III-7代替原料III-1,用原料IV-4代替原料IV-1,所得目标产物的纯度为99.7%,收率为77.4%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-7 is used instead of raw material III-1, and raw material IV-4 is used instead of raw material IV-1. The purity of the obtained target product is 99.7% and the yield is 77.4%.
元素分析结构(分子式C 49H 35N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.53;N,2.05。 Elemental analysis structure (Molecular formula C 49 H 35 N): Theoretical value: C, 92.41; H, 5.52; N, 2.07; Test value: C, 92.42; H, 5.53; N, 2.05.
ESI-MS(m/z)(M +):理论值为637.28,实测值为637.55。 ESI-MS (m / z) (M + ): The theoretical value is 637.28, and the measured value is 637.55.
制备化合物HTII-132Preparation of compound HTII-132
Figure PCTCN2019084629-appb-000047
Figure PCTCN2019084629-appb-000047
按化合物HTII-7的合成方法制备,不同在于用原料III-8代替原料III-1,所得目标产物的纯度为99.7%,收率为75.6%。It is prepared according to the synthetic method of compound HTII-7, except that the raw material III-8 is used instead of the raw material III-1. The purity of the obtained target product is 99.7% and the yield is 75.6%.
元素分析结构(分子式C 55H 41NO):理论值:C,90.25;H,5.65;N,1.91;测试值:C,90.23;H,5.66;N,1.90。 Elemental analysis structure (molecular formula C 55 H 41 NO): Theoretical value: C, 90.25; H, 5.65; N, 1.91; Test value: C, 90.23; H, 5.66; N, 1.90.
ESI-MS(m/z)(M +):理论值为731.32,实测值为731.64。 ESI-MS (m / z) (M + ): The theoretical value is 731.32, and the measured value is 731.64.
制备化合物HTII-148Preparation of compound HTII-148
Figure PCTCN2019084629-appb-000048
Figure PCTCN2019084629-appb-000048
按化合物HTII-7的合成方法制备,不同在于用原料III-9代替原料III-1,,用原料IV-6代替原料IV-1所得目标产物的纯度为99.6%,收率为73.8%。Prepared according to the synthetic method of compound HTII-7, except that the raw material III-9 is used instead of raw material III-1, and the raw material IV-6 is used instead of raw material IV-1 to obtain a target product with a purity of 99.6% and a yield of 73.8%.
元素分析结构(分子式C 52H 39NO):理论值:C,90.01;H,5.67;N,2.02;测试值:C,90.03;H,5.64;N,2.03。 Elemental analysis structure (molecular formula C 52 H 39 NO): Theoretical value: C, 90.01; H, 5.67; N, 2.02; Test value: C, 90.03; H, 5.64; N, 2.03.
ESI-MS(m/z)(M +):理论值为693.61,实测值为693.30。 ESI-MS (m / z) (M + ): The theoretical value is 693.61, and the measured value is 693.30.
制备化合物HTII-164Preparation of compound HTII-164
Figure PCTCN2019084629-appb-000049
Figure PCTCN2019084629-appb-000049
按化合物HTII-7的合成方法制备,不同在于用原料III-10代替原料III-1,用原料IV-7代替原料IV-1,所得目标产物的纯度为99.5%,收率为73.8%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-10 is used instead of raw material III-1, and raw material IV-7 is used instead of raw material IV-1. The purity of the obtained target product is 99.5%, and the yield is 73.8%.
元素分析结构(分子式C 55H 43N):理论值:C,92.01;H,6.04;N,1.95;测试值:C,92.02;H,6.02;N,1.96。 Elemental analysis structure (molecular formula C 55 H 43 N): Theoretical value: C, 92.01; H, 6.04; N, 1.95; Test value: C, 92.02; H, 6.02; N, 1.96.
ESI-MS(m/z)(M +):理论值为717.34,实测值为717.57。 ESI-MS (m / z) (M + ): The theoretical value is 717.34, and the measured value is 717.57.
制备化合物HTII-192Preparation of compound HTII-192
Figure PCTCN2019084629-appb-000050
Figure PCTCN2019084629-appb-000050
按化合物HTII-7的合成方法制备,不同在于用原料III-11代替原料III-1,用原料IV-8代替原料IV-1,所得目标产物的纯度为99.6%,收率为76.1%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-11 is used instead of raw material III-1, and raw material IV-8 is used instead of raw material IV-1. The purity of the obtained target product is 99.6%, and the yield is 76.1%.
元素分析结构(分子式C 54H 39N):理论值:C,92.40;H,5.60;N,2.00;测试值:C,92.41;H,5.58; N,2.01。 Elemental analysis structure (Molecular formula C 54 H 39 N): Theoretical value: C, 92.40; H, 5.60; N, 2.00; Test value: C, 92.41; H, 5.58; N, 2.01.
ESI-MS(m/z)(M +):理论值为701.31,实测值为701.54。 ESI-MS (m / z) (M + ): The theoretical value is 701.31, and the measured value is 701.54.
制备化合物HTII-232Preparation of compound HTII-232
Figure PCTCN2019084629-appb-000051
Figure PCTCN2019084629-appb-000051
按化合物HTII-7的合成方法制备,不同在于用原料III-12代替原料III-1,所得目标产物的纯度为99.7%,收率为73.3%。It is prepared according to the synthetic method of compound HTII-7, except that the raw material III-12 is used instead of the raw material III-1. The purity of the obtained target product is 99.7% and the yield is 73.3%.
元素分析结构(分子式C 63H 57N):理论值:C,91.37;H,6.94;N,1.69;测试值:C,91.36;H,6.93;N,1.70。 Elemental analysis structure (molecular formula C 63 H 57 N): Theoretical value: C, 91.37; H, 6.94; N, 1.69; Test value: C, 91.36; H, 6.93; N, 1.70.
ESI-MS(m/z)(M +):理论值为827.45,实测值为827.71。 ESI-MS (m / z) (M + ): The theoretical value is 827.45, and the measured value is 827.71.
制备化合物HTII-243Preparation of compound HTII-243
Figure PCTCN2019084629-appb-000052
Figure PCTCN2019084629-appb-000052
按化合物HTII-7的合成方法制备,不同在于用原料III-13代替原料III-1,用原料IV-7代替原料IV-1,所得目标产物的纯度为99.5%,收率为73.6%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-13 is used instead of raw material III-1, and raw material IV-7 is used instead of raw material IV-1. The purity of the obtained target product is 99.5% and the yield is 73.6%.
元素分析结构(分子式C 62H 55N):理论值:C,91.47;H,6.81;N,1.72;测试值:C,91.45;H,6.82;N,1.73。 Elemental analysis structure (Molecular formula C 62 H 55 N): Theoretical value: C, 91.47; H, 6.81; N, 1.72; Test value: C, 91.45; H, 6.82; N, 1.73.
ESI-MS(m/z)(M +):理论值为813.43,实测值为813.66。 ESI-MS (m / z) (M + ): The theoretical value is 813.43, and the measured value is 813.66.
制备化合物HTII-266Preparation of compound HTII-266
Figure PCTCN2019084629-appb-000053
Figure PCTCN2019084629-appb-000053
按化合物HTII-7的合成方法制备,不同在于用原料III-14代替原料III-1,用原料IV-9代替原料IV-1,所得目标产物的纯度为99.6%,收率为75.9%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-14 is used instead of raw material III-1, and raw material IV-9 is used instead of raw material IV-1. The purity of the obtained target product is 99.6%, and the yield is 75.9%.
元素分析结构(分子式C 45H 32N 2O):理论值:C,87.63;H,5.23;N,4.54;测试值:C,87.61;H,5.24;N,4.55。 Elemental analysis structure (molecular formula C 45 H 32 N 2 O): Theoretical value: C, 87.63; H, 5.23; N, 4.54; Test value: C, 87.61; H, 5.24; N, 4.55.
ESI-MS(m/z)(M +):理论值为616.25,实测值为616.51。 ESI-MS (m / z) (M + ): The theoretical value is 616.25, and the measured value is 616.51.
制备化合物HTII-277Preparation of compound HTII-277
Figure PCTCN2019084629-appb-000054
Figure PCTCN2019084629-appb-000054
按化合物HTII-7的合成方法制备,不同在于用原料III-15代替原料III-1,用原料IV-10代替原料IV-1,所得目标产物的纯度为99.9%,收率为77.1%。It is prepared according to the synthetic method of compound HTII-7, except that the raw material III-15 is used instead of the raw material III-1, and the raw material IV-10 is used instead of the raw material IV-1.
元素分析结构(分子式C 46H 31NO):理论值:C,90.02;H,5.09;N,2.28;测试值:C,90.01;H,5.07;N,2.29;。 Elemental analysis structure (molecular formula C 46 H 31 NO): Theoretical value: C, 90.02; H, 5.09; N, 2.28; Test value: C, 90.01; H, 5.07; N, 2.29 ;.
ESI-MS(m/z)(M +):理论值为613.24,实测值为613.44。 ESI-MS (m / z) (M + ): The theoretical value is 613.24, and the measured value is 613.44.
制备化合物HTII-314Preparation of compound HTII-314
Figure PCTCN2019084629-appb-000055
Figure PCTCN2019084629-appb-000055
按化合物HTII-7的合成方法制备,不同在于用原料III-16代替原料III-1,用原料IV-11代替原料IV-1,所得目标产物的纯度为99.8%,收率为76.3%。Prepared according to the synthetic method of compound HTII-7, except that raw material III-16 is used instead of raw material III-1, and raw material IV-11 is used instead of raw material IV-1. The purity of the obtained target product is 99.8%, and the yield is 76.3%.
元素分析结构(分子式C 46H 31NO 2):理论值:C,87.73;H,4.96;N,2.22;测试值:C,87.71;H, 4.97;N,2.23。 Elemental analysis structure (molecular formula C 46 H 31 NO 2 ): Theoretical value: C, 87.73; H, 4.96; N, 2.22; Test value: C, 87.71; H, 4.97; N, 2.23.
ESI-MS(m/z)(M +):理论值为629.24,实测值为629.52。 ESI-MS (m / z) (M + ): The theoretical value is 629.24, and the measured value is 629.52.
制备化合物HTII-335Preparation of compound HTII-335
Figure PCTCN2019084629-appb-000056
Figure PCTCN2019084629-appb-000056
按化合物HTII-7的合成方法制备,不同在于用原料III-10代替原料III-1,用原料IV-12代替原料IV-1,所得目标产物的纯度为99.7%,收率为78.4%。Prepared according to the synthetic method of compound HTII-7, the difference is that raw material III-10 is used instead of raw material III-1, and raw material IV-12 is used instead of raw material IV-1.
元素分析结构(分子式C 49H 37NO):理论值:C,89.74;H,5.69;N,2.14;测试值:C,89.74;H,5.69;N,2.14。 Elemental analysis structure (molecular formula C 49 H 37 NO): Theoretical value: C, 89.74; H, 5.69; N, 2.14; Test value: C, 89.74; H, 5.69; N, 2.14.
ESI-MS(m/z)(M +):理论值为655.29,实测值为655.57。 ESI-MS (m / z) (M + ): The theoretical value is 655.29, and the measured value is 655.57.
表1示出了制备的第一和第二有机材料、与其邻接的电子阻挡层材料(EB1)、发光材料的主体材料(EMH-1、EMH-7和EMH-13)以及客体材料(EMD-1、EMD-8和EMD-13)的各能级测试结果。Table 1 shows the prepared first and second organic materials, the electron blocking layer material (EB1) adjacent thereto, the host material (EMH-1, EMH-7, and EMH-13) of the luminescent material, and the guest material (EMD- 1. EMD-8 and EMD-13) test results of each energy level.
表1Table 1
材料名称Material name Tg(℃)Tg (℃) HOMO能级(ev)HOMO energy level (ev) LUMO能级(ev)LUMO energy level (ev) 空穴迁移率(cm 2/(V·s) Hole mobility (cm 2 / (V · s)
EB1EB1 145145 -5.86-5.86 -2.51-2.51 1.2 E-41.2 E-4
EMH-1EMH-1 127127 -6.0-6.0 -3.0-3.0 4.8E-114.8E-11
EMH-7EMH-7 -- -5.82-5.82 -2.55-2.55 --
EMH-13EMH-13 -- -5.8-5.8 -2.64-2.64 --
EMD-1EMD-1 150150 -5.5-5.5 -2.7-2.7 --
EMD-8EMD-8 -- -5.43-5.43 -3.07-3.07 --
EMD-13EMD-13 -- -5.36-5.36 -2.65-2.65 --
HTI-1HTI-1 149.4149.4 -5.27-5.27 -2.26-2.26 7.1 E-47.1 E-4
HTI-9HTI-9 148.4148.4 -5.45-5.45 -2.42-2.42 5.5 E-45.5 E-4
HTI-28HTI-28 128.8128.8 -5.35-5.35 -2.53-2.53 6.2 E-46.2 E-4
HTI-41HTI-41 147.7147.7 -5.44-5.44 -2.43-2.43 4.7 E-44.7 E-4
HTI-52HTI-52 123.6123.6 -5.50-5.50 -2.35-2.35 2.5 E-42.5 E-4
HTI-57HTI-57 131.1131.1 -5.47-5.47 -2.47-2.47 7.1 E-47.1 E-4
HTI-63HTI-63 136.2136.2 -5.49-5.49 -2.41-2.41 8.8 E-48.8 E-4
HTI-72HTI-72 133.6133.6 -5.47-5.47 -2.38-2.38 8.9 E-48.9 E-4
HTI-86HTI-86 135.5135.5 -5.49-5.49 -2.45-2.45 6.8 E-46.8 E-4
HTI-101HTI-101 149.8149.8 -5.45-5.45 -2.39-2.39 6.7 E-46.7 E-4
HTI-114HTI-114 141.9141.9 -5.42-5.42 -2.41-2.41 6.5 E-46.5 E-4
HTI-124HTI-124 145.5145.5 -5.47-5.47 -2.37-2.37 5.4 E-45.4 E-4
HTI-134HTI-134 142.7142.7 -5.43-5.43 -2.43-2.43 7.4 E-47.4 E-4
HTI-144HTI-144 135.2135.2 -5.45-5.45 -2.41-2.41 8.2 E-48.2 E-4
HTI-162HTI-162 136.5136.5 -5.48-5.48 -2.49-2.49 8.1 E-48.1 E-4
HTI-176HTI-176 138.3138.3 -5.46-5.46 -2.37-2.37 5.8 E-45.8 E-4
HTII-7HTII-7 139.4139.4 -5.48-5.48 -2.42-2.42 3.6 E-43.6 E-4
HTII-21HTII-21 132132 -5.58-5.58 -2.59-2.59 6.8 E-46.8 E-4
HTII-37HTII-37 156.6156.6 -5.7-5.7 -2.39-2.39 6.1 E-46.1 E-4
HTII-41HTII-41 122.7122.7 -5.6-5.6 -2.46-2.46 6.6 E-46.6 E-4
HTII-52HTII-52 158.2158.2 -5.7-5.7 -2.4-2.4 5.3 E-45.3 E-4
HTII-78HTII-78 141.3141.3 -5.66-5.66 -2.36-2.36 6.4 E-46.4 E-4
HTII-102HTII-102 145.2145.2 -5.68-5.68 -2.34-2.34 5.7 E-45.7 E-4
HTII-132HTII-132 148.9148.9 -5.54-5.54 -2.35-2.35 6.1 E-46.1 E-4
HTII-148HTII-148 131.4131.4 -5.58-5.58 -2.41-2.41 3.5 E-43.5 E-4
HTII-164HTII-164 145.5145.5 -5.66-5.66 -2.39-2.39 5.4 E-45.4 E-4
HTII-192HTII-192 135.8135.8 -5.5-5.5 -2.35-2.35 9.3 E-49.3 E-4
HTII-232HTII-232 151.1151.1 -5.59-5.59 -2.37-2.37 6.6 E-46.6 E-4
HTII-243HTII-243 148.3148.3 -5.63-5.63 -2.34-2.34 7.6 E-47.6 E-4
HTII-266HTII-266 133.7133.7 -5.66-5.66 -2.4-2.4 5.2 E-45.2 E-4
HTII-277HTII-277 148.9148.9 -5.54-5.54 -2.36-2.36 4.7 E-44.7 E-4
HTII-314HTII-314 146.1146.1 -5.63-5.63 -2.38-2.38 4.3 E-44.3 E-4
HTII-335HTII-335 147.5147.5 -5.61-5.61 -2.35-2.35 4.1 E-44.1 E-4
由表1的结果可以看出,本发明的第一有机材料的HOMO能级在-5.2eV至-5.6eV之间,并且第二有机材料的HOMO能级在-5.4eV至-5.9eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|;并且所述第二有机材料和电子阻挡层材料的HOMO能级之间差值的绝对值≤0.4ev。 As can be seen from the results in Table 1, the HOMO energy level of the first organic material of the present invention is between -5.2eV and -5.6eV, and the HOMO energy level of the second organic material is between -5.4eV and -5.9eV, | HOMOfirst organic material | <| HOMOsecond organic material |; and the absolute value of the difference between the HOMO energy levels of the second organic material and the electron blocking layer material is ≦ 0.4ev.
实施例1Example 1
使用CIC蒸镀设备(长州产业制造),分别将第一有机材料HTI-1和第二有机材料HTII-7放在两个蒸镀源中,在真空度1.0E -5Pa压力下,控制第一有机材料1蒸镀速率为
Figure PCTCN2019084629-appb-000057
控制第二有机材料1蒸镀速率为
Figure PCTCN2019084629-appb-000058
共同混蒸得到本发明的空穴传输层材料1。
Using CIC evaporation equipment (manufactured by Changzhou Industry), the first organic material HTI-1 and the second organic material HTII-7 were placed in two evaporation sources, and controlled under a pressure of 1.0E -5 Pa. The evaporation rate of the first organic material 1 is
Figure PCTCN2019084629-appb-000057
Control the evaporation rate of the second organic material 1 to
Figure PCTCN2019084629-appb-000058
Co-mixing to obtain the hole transport layer material 1 of the present invention.
实施例2Example 2
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000059
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000060
得到空穴传输层材料2。
The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000059
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000060
A hole transport layer material 2 was obtained.
实施例3Example 3
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000061
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000062
得到空穴传输层材料3。
The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000061
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000062
A hole transport layer material 3 was obtained.
实施例4Example 4
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000063
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000064
得到空穴传输层材料4。
The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000063
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000064
A hole transport layer material 4 is obtained.
实施例5Example 5
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000065
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000066
得到空穴传输层材料5。
The preparation process of Example 1 was repeated, except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000065
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000066
A hole transport layer material 5 is obtained.
实施例6Example 6
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-9和第二有机材料HTII-37,得到空穴传输层材料6。The preparation process of Example 1 was repeated, except that the first organic material HTI-9 and the second organic material HTII-37 were used to obtain the hole transport layer material 6.
实施例7Example 7
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-28和第二有机材料HTII-21,得到空穴传输层材料7。The preparation process of Example 1 was repeated, except that the first organic material HTI-28 and the second organic material HTII-21 were used to obtain the hole transport layer material 7.
实施例8Example 8
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-41和第二有机材料HTII-41,得到空穴传输层材料8。The preparation process of Example 1 was repeated, except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 8.
实施例9Example 9
重复实施例3的制备过程,不同之处在于使用第一有机材料HTI-41和第二有机材料HTII-41,得到空穴传输层材料9。The preparation process of Example 3 was repeated, except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 9.
实施例10Example 10
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-52和第二有机材料HTII-52,得到空穴传输层材料10。The preparation process of Example 1 was repeated, except that the first organic material HTI-52 and the second organic material HTII-52 were used to obtain the hole transport layer material 10.
实施例11Example 11
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-57和第二有机材料HTII-78,得到空穴传输层材料11。The preparation process of Example 1 was repeated, except that the first organic material HTI-57 and the second organic material HTII-78 were used to obtain the hole transport layer material 11.
实施例12Example 12
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-63和第二有机材料HTII-102,得到空穴传输层材料12。The manufacturing process of Example 1 was repeated, except that the first organic material HTI-63 and the second organic material HTII-102 were used to obtain the hole transport layer material 12.
实施例13Example 13
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-72和第二有机材料HTII-132,得到空穴传输层材料13。The preparation process of Example 1 was repeated, except that the first organic material HTI-72 and the second organic material HTII-132 were used to obtain the hole transport layer material 13.
实施例14Example 14
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-72和第二有机材料HTII-148,得到空穴传输层材料14。The manufacturing process of Example 1 was repeated, except that the first organic material HTI-72 and the second organic material HTII-148 were used to obtain the hole transport layer material 14.
实施例15Example 15
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-72和第二有机材料HTII-164,得到空穴传输层材料15。The preparation process of Example 2 was repeated, except that the first organic material HTI-72 and the second organic material HTII-164 were used to obtain the hole transport layer material 15.
实施例16Example 16
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-86和第二有机材料HTII-164,得到空穴传输层材料16。The manufacturing process of Example 1 was repeated, except that the first organic material HTI-86 and the second organic material HTII-164 were used to obtain the hole transport layer material 16.
实施例17Example 17
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-101和第二有机材料HTII-192,得到空穴传输层材料17。The preparation process of Example 1 was repeated, except that the first organic material HTI-101 and the second organic material HTII-192 were used to obtain the hole transport layer material 17.
实施例18Example 18
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-114和第二有机材料HTII-192,得到空穴传输层材料18。The preparation process of Example 1 was repeated, except that the first organic material HTI-114 and the second organic material HTII-192 were used to obtain the hole transport layer material 18.
实施例19Example 19
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-124和第二有机材料HTII-232,得到空穴传输层材料19。The preparation process of Example 1 was repeated, except that the first organic material HTI-124 and the second organic material HTII-232 were used to obtain the hole transport layer material 19.
实施例20Example 20
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-243,得到空穴传输层材料20。The manufacturing process of Example 1 was repeated, except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 20.
实施例21Example 21
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-243,得到空穴传输层材料21。The preparation process of Example 2 was repeated, except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 21.
实施例22Example 22
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-243,得到空穴传输层材料22。The preparation process of Example 2 was repeated, except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 22.
实施例23Example 23
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-266,得到空穴传输层材料23。The manufacturing process of Example 1 was repeated, except that the first organic material HTI-134 and the second organic material HTII-266 were used to obtain the hole transport layer material 23.
实施例24Example 24
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-144和第二有机材料HTII-277,得到空穴传输层材料24。The preparation process of Example 1 was repeated, except that the first organic material HTI-144 and the second organic material HTII-277 were used to obtain the hole transport layer material 24.
实施例25Example 25
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-162和第二有机材料HTII-314,得到空穴传输层材料25。The preparation process of Example 1 was repeated, except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 25.
实施例26Example 26
重复实施例5的制备过程,不同之处在于使用第一有机材料HTI-162和第二有机材料HTII-314,得到空穴传输层材料26。The preparation process of Example 5 was repeated, except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 26.
实施例27Example 27
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-176和第二有机材料HTII-335,得到空穴传输层材料27。The preparation process of Example 1 was repeated, except that the first organic material HTI-176 and the second organic material HTII-335 were used to obtain the hole transport layer material 27.
制备有机电致发光器件Preparation of organic electroluminescent device
需要说明的是,真空蒸镀在下述条件下进行:使用CIC蒸镀设备(长州产业制造),在真空度1.0E -5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084629-appb-000067
It should be noted that the vacuum evaporation is performed under the following conditions: using a CIC evaporation equipment (manufactured by Changzhou Industry), and controlling the evaporation rate at a pressure of 1.0E -5 Pa
Figure PCTCN2019084629-appb-000067
器件制备实施例1Device Preparation Example 1
按照以下过程进行:Follow this process:
a)使用透明玻璃作为基板,在其上涂覆厚度为150nm的ITO,作为阳极层,然后分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;a) Use transparent glass as the substrate, apply ITO with a thickness of 150 nm as the anode layer, and then ultrasonically clean each with deionized water, acetone, and ethanol for 15 minutes, and then treat in a plasma cleaner for 2 minutes;
b)在经洗涤的第一电极层上,通过真空蒸镀方法蒸镀HAT-CN,厚度为10nm,这层作为空穴注入层;b) On the washed first electrode layer, HAT-CN is evaporated by a vacuum evaporation method to a thickness of 10 nm, and this layer is used as a hole injection layer;
c)在空穴注入层上,通过真空蒸镀方式蒸镀制备空穴传输层材料的实施例1中获得的空穴传输层材料1,厚度为90nm,该层为空穴传输层;c) On the hole injection layer, the hole transport layer material 1 obtained in Example 1 for preparing the hole transport layer material by vacuum evaporation is used as a hole transport layer; the thickness is 90 nm;
d)在空穴传输层上,通过真空蒸镀方式蒸镀EB1,厚度为20nm,该层为电子阻挡层;d) On the hole transport layer, EB1 is evaporated by vacuum evaporation to a thickness of 20 nm, and this layer is an electron blocking layer;
e)在电子阻挡层上,通过真空蒸镀方式蒸镀发光层材料,主体材料为EMH-7和EMH-9,客体材料为EMD-8,EMH-7、EMH-9和EMD-8质量比为45∶45∶10,厚度为40nm;e) On the electron blocking layer, the light-emitting layer material is evaporated by vacuum evaporation. The host material is EMH-7 and EMH-9, and the guest material is EMD-8. The mass ratio of EMH-7, EMH-9 and EMD-8 45:45:10, thickness is 40nm;
f)在发光层上,通过真空蒸镀方式蒸镀LG201和Liq,LG201和Liq质量比为50∶50,厚度为40nm,该层作为电子传输层;f) LG201 and Liq are vapor-deposited on the light-emitting layer by vacuum evaporation. The mass ratio of LG201 and Liq is 50:50 and the thickness is 40nm. This layer is used as an electron transport layer.
g)在电子传输层上,通过真空蒸镀方式蒸镀LiF,厚度为1nm,该层为电子注入层;g) On the electron transport layer, LiF is deposited by vacuum evaporation to a thickness of 1 nm, and this layer is an electron injection layer;
h)在电子注入层之上,真空蒸镀Al,厚度为100nm,该层为第二电极层。h) Above the electron injection layer, Al is vacuum evaporated to a thickness of 100 nm, and this layer is a second electrode layer.
器件制备实施例2-10Device Preparation Example 2-10
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中分别使用在制备空穴传输层材料的实施例2-10中获得的空穴传输层材料2-10。The process is carried out according to the device preparation example 1, except that in step c) the hole transport layer materials 2-10 obtained in the example 2-10 of preparing the hole transport layer material are used.
器件制备实施例11Device Preparation Example 11
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中空穴传输层的膜厚为160nm;步骤e)中主体材料为EMH-13,客体材料为EMD-8,并且EMH-13和EMD-8质量比为90∶10,厚度为40nm。According to the process of device preparation example 1, the difference is that the thickness of the hole transport layer in step c) is 160 nm; in step e), the host material is EMH-13, the guest material is EMD-8, and EMH-13 The mass ratio with EMD-8 is 90:10, and the thickness is 40nm.
器件制备实施例12-13Device Preparation Examples 12-13
按照器件制备实施例11的过程进行,不同之处在于在步骤c)中分别使用在制备空穴传输层材料的实施例2-3中获得的空穴传输层材料2-3。The process is carried out according to the device preparation example 11 except that the hole transport layer material 2-3 obtained in the embodiment 2-3 for preparing the hole transport layer material is used in step c).
器件制备实施例14-20Device Preparation Examples 14-20
按照器件制备实施例11的过程进行,不同之处在于在步骤c)中使用在制备空穴传输层材料的实施例12-18中获得的空穴传输层材料12-18。It is carried out according to the procedure of Device Preparation Example 11 except that in step c) the hole transport layer materials 12-18 obtained in Examples 12-18 of preparing the hole transport layer materials are used.
器件制备实施例21Device Preparation Example 21
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中空穴传输层的膜厚为50nm;步骤e)中主体材料为EMH-1客体材料为EMD-1,并且EMH-1和EMD-1质量比为95∶5,厚度为25nm。It is carried out according to the process of Device Preparation Example 1 except that the film thickness of the hole transport layer in step c) is 50 nm; the host material in step e) is EMH-1, and the guest material is EMD-1, and EMH-1 and EMD-1 has a mass ratio of 95: 5 and a thickness of 25 nm.
器件制备实施例22-30Device Preparation Examples 22-30
按照器件制备实施例21的过程进行,不同之处在于在步骤c)中分别使用在制备空穴传输层材料的实施例19-27中获得的空穴传输层材料19-27。It is carried out according to the process of Device Preparation Example 21, except that the hole transport layer materials 19-27 obtained in Examples 19-27 of preparing the hole transport layer materials are respectively used in step c).
比较实施例1-10Comparative Examples 1-10
按照器件制备实施例1的过程进行,不同之处在于仅使用下表2中所列的第一有机材料或第二有机材料作为空穴传输层材料。It is performed according to the process of Device Preparation Example 1 except that only the first organic material or the second organic material listed in Table 2 below is used as the material of the hole transport layer.
表2:Table 2:
Figure PCTCN2019084629-appb-000068
Figure PCTCN2019084629-appb-000068
比较实施例11-25Comparative Examples 11-25
按照器件制备实施例11的过程进行,不同之处在于仅使用下表3中所列的第一有机材料或第二有机材料作为空穴传输层材料。It was performed according to the process of Device Preparation Example 11 except that only the first organic material or the second organic material listed in Table 3 below was used as the material of the hole transport layer.
表3:table 3:
Figure PCTCN2019084629-appb-000069
Figure PCTCN2019084629-appb-000069
比较实施例26-38Comparative Examples 26-38
按照器件制备实施例21的过程进行,不同之处在于仅使用下表4中所列的第一有机材料或第二有机材料作为空穴传输层材料。It was performed according to the process of Device Preparation Example 21, except that only the first organic material or the second organic material listed in Table 4 below was used as the material of the hole transport layer.
表4:Table 4:
Figure PCTCN2019084629-appb-000070
Figure PCTCN2019084629-appb-000070
Figure PCTCN2019084629-appb-000071
Figure PCTCN2019084629-appb-000071
表5-7示出了在10mA/cm 2电流密度下测定所制作的有机电致发光器件的性能结果。 Table 5-7 shows the results of measuring the performance of the produced organic electroluminescence device at a current density of 10 mA / cm 2 .
表5:发明实施例1-10和比较实施例1-10所制备的有机电致发光器件的性能结果Table 5: Performance results of organic electroluminescent devices prepared by Inventive Examples 1-10 and Comparative Examples 1-10
Figure PCTCN2019084629-appb-000072
Figure PCTCN2019084629-appb-000072
注:*代表比较实施例Note: * represents comparative example
LT95指的是在电流密度为10mA/cm 2情况下,器件亮度衰减到95%所用时间; LT95 refers to the time it takes for the device brightness to decay to 95% at a current density of 10 mA / cm 2 ;
寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。The life test system is an OLED device life tester which is jointly researched by the owner of the present invention and Shanghai University.
所述注释也适用于以下表6和7。The notes also apply to Tables 6 and 7 below.
表6:发明实施例11-20和比较实施例11-25所制备的有机电致发光器件的性能结果Table 6: Performance results of organic electroluminescent devices prepared by Inventive Examples 11-20 and Comparative Examples 11-25
Figure PCTCN2019084629-appb-000073
Figure PCTCN2019084629-appb-000073
Figure PCTCN2019084629-appb-000074
Figure PCTCN2019084629-appb-000074
表7:发明实施例21-30和比较实施例26-38所制备的有机电致发光器件的性能结果Table 7: Performance results of organic electroluminescent devices prepared by Inventive Examples 21-30 and Comparative Examples 26-38
Figure PCTCN2019084629-appb-000075
Figure PCTCN2019084629-appb-000075
由表5的结果可以看出,与单独使用有机材料作为空穴传输层材料的比较实施例1至10相比,本发明的器件制备实施例1至10所制得的器件的驱动电压明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。由表6的结果可以看出,与比较实施例11至25相比,本发明的器件制备实施例11至20所制得的器件的驱动电压也明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。由表7的结果可以看出,与比较实施例26至38相比,本发明的器件制备实施例21至30所制得的器件的驱动电压也明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。From the results in Table 5, it can be seen that the driving voltages of the devices prepared by the device preparation examples 1 to 10 of the present invention are significantly lower than those of the comparative examples 1 to 10 using the organic material alone as the material of the hole transport layer. , And the luminous brightness, luminous efficiency (that is, current efficiency) and life are significantly improved. As can be seen from the results in Table 6, compared with Comparative Examples 11 to 25, the driving voltages of the devices prepared in Device Preparation Examples 11 to 20 of the present invention were also significantly reduced, and the light emission brightness and light emission efficiency (ie, current Both efficiency and lifespan are significantly improved. From the results in Table 7, it can be seen that compared with Comparative Examples 26 to 38, the driving voltages of the devices prepared in Device Preparation Examples 21 to 30 of the present invention are also significantly reduced, and the light emission brightness and light emission efficiency (ie, current Both efficiency and lifespan are significantly improved.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制。本领域技术人员在不脱离本发明技术方案的宗旨和范围的情况下,对本发明的技术方案进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。Finally, it is explained that the above embodiments are only used to illustrate the technical solution of the present invention, but not limiting. Those skilled in the art without departing from the spirit and scope of the technical solution of the present invention, make modifications or equivalent substitutions to the technical solution of the present invention, which should be covered by the scope of the claims of the present invention.

Claims (12)

  1. 一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:An organic electroluminescent device is provided with a substrate, a first electrode, an organic functional material layer, and a second electrode in this order from bottom to top. The organic functional material layer includes:
    空穴传输区域,位于所述第一电极之上;A hole-transporting region located on the first electrode;
    发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;A light-emitting layer, which is located on the hole-transporting region and includes a host material and a guest material;
    电子传输区域,位于所述发光层之上,An electron-transporting region located above the light-emitting layer,
    其中,所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,The hole transporting region includes a hole injection layer, a hole transporting layer, and an electron blocking layer in this order from bottom to top.
    所述空穴传输层包括第一和第二有机材料,其中第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,更优选为-5.35eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.9eV,优选为-5.4eV至-5.7eV,更优选为-5.48eV至-5.68eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|。 The hole transport layer includes first and second organic materials, wherein the HOMO energy level of the first organic material is -5.2eV to -5.6eV, preferably -5.3eV to -5.5eV, and more preferably -5.35eV to -5.5eV, and the HOMO energy level of the second organic material is -5.4eV to -5.9eV, preferably -5.4eV to -5.7eV, more preferably -5.48eV to -5.68eV, and the HOMO first organic material | <| HOMO Second Organic Material |.
  2. 根据权利要求1所述的有机电致发光器件,其中所述第二有机材料和电子阻挡层材料的HOMO能级之间差值的绝对值≤0.4v。The organic electroluminescent device according to claim 1, wherein an absolute value of a difference between HOMO energy levels of the second organic material and the electron blocking layer material is ≤ 0.4v.
  3. 根据权利要求1或2所述的有机电致发光器件,其中所述第一和第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。The organic electroluminescent device according to claim 1 or 2, wherein the ratio of the first and second organic materials is 1:99 to 99: 1, preferably 10:90 to 90:10, and more preferably 30. : 70 to 70:30, based on mass.
  4. 根据权利要求1至3中任一项所述的有机电致发光器件,其中第一和第二有机材料各自独立地选自通式(1)、通式(2)或通式(3)中任一者:The organic electroluminescent device according to any one of claims 1 to 3, wherein the first and second organic materials are each independently selected from the general formula (1), the general formula (2), or the general formula (3) Either:
    Figure PCTCN2019084629-appb-100001
    Figure PCTCN2019084629-appb-100001
    其中,在通式(1)中Among them, in the general formula (1)
    X、X 1各自独立地选自单键、碳原子、N-(R 5)、硫原子、氧原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、C 6-20芳基取代的亚烷基中的一种; X and X 1 are each independently selected from a single bond, a carbon atom, N- (R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, One of a linear or branched C 1-20 alkyl-substituted silylene group and a C 6-20 aryl-substituted alkylene group;
    如果存在R 5,则其可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; If R 5 is present, it may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group , Linear or branched C 1-20 alkyl-substituted silyl groups, aryl groups having 5 to 30 carbon atoms, having 5 to 30 carbon atoms and at least one heteroatom selected from N, O and S Heteroaryl, wherein in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group;
    Z代表氮原子或C-R 6,其中R 6可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中两个或更多个R 6基团可彼此连接并且可形成环结构; Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1- 20 alkyl substituted alkyl, straight or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected from N, Heteroaryl of heteroatoms of O and S, wherein in the case of the latter two, the group may optionally be a linear or branched C 1-20 alkyl, C 6-20 aryl, C 5 -20 heteroaryl substitutions in which two or more R 6 groups may be connected to each other and may form a ring structure;
    Ar 1、Ar 2、Ar 3、Ar 4各自独立地代表单键、直链或支链的C 1-20亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中Ar 1、Ar 2基团还可直接连接成环或通过C、O、S、N连接成环; Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently represent a single bond, a linear or branched C 1-20 alkylene group, a linear or branched C 1-20 alkyl-substituted silyl group, Arylene having 5 to 30 carbon atoms, heteroarylene having 5 to 30 carbon atoms and at least one heteroatom selected from N, O, and S, wherein in the case of the latter two, the group The group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, and a C 5-20 heteroaryl group, wherein the Ar 1 and Ar 2 groups may also be directly connected to form a ring or through C, O, S, N are connected into a ring;
    m、n、p、q、s和t等于0或1;且m+n+p+q≥1且m+n+s+t≥1;m, n, p, q, s, and t are equal to 0 or 1; and m + n + p + q≥1 and m + n + s + t≥1;
    R 1、R 2、R 3和R 4各自独立地代表氢原子、通式(4)、通式(5)或通式(6)所示的结构,条件是R 1、R 2、R 3和R 4不同时为氢原子; R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the general formula (4), the general formula (5) or the general formula (6), provided that R 1 , R 2 , R 3 And R 4 are not hydrogen atoms at the same time;
    Figure PCTCN2019084629-appb-100002
    Figure PCTCN2019084629-appb-100002
    其中,在通式(4)和通式(5)中:Among them, in the general formula (4) and the general formula (5):
    X 2、X 3各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的 亚烷基、直链或支链的C 1-20烷基取代的硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 Alkyl substituted silyl, C 6-20 aryl substituted alkylene, C 1-20 alkyl substituted imine, C 6-20 aryl substituted imine, C 5-20 heteroaryl One of the substituted imines;
    Y 1可相同或不同地代表N原子或C-R 7,其中R 7可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C 1-20烷基取代的烷基、直链或支链C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;其中两个或更多个R 7基团可彼此连接并且可形成环结构; Y 1 may identically or differently represent an N atom or CR 7 , wherein R 7 may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a straight chain or a branch Chain C 1-20 alkyl substituted alkyl, linear or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, 5 to 30 carbon atoms, and at least one selected A heteroaryl group from a heteroatom of N, O, and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl, C 6-20 aryl , C 5-20 heteroaryl substitution; wherein two or more R 7 groups can be connected to each other and can form a ring structure;
    R 8、R 9各自独立地代表氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基、通式(7)或通式(6)所示结构;其中在芳基和杂芳基的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; R 8 and R 9 each independently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group, a straight chain or a branched group C 1-20 alkyl substituted silyl groups of the chain, aryl groups having 5 to 30 carbon atoms, heteroaryl groups having 5 to 30 carbon atoms and at least one heteroatom selected from N, O and S, A structure represented by formula (7) or formula (6); wherein in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C 1-20 alkyl group, C 6- 20 aryl, C 5-20 heteroaryl substitution;
    Figure PCTCN2019084629-appb-100003
    Figure PCTCN2019084629-appb-100003
    其中,在通式(7)中:Among them, in the general formula (7):
    Y 2可相同或不同地代表N原子或C-R 14,其中,R 14可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;其中两个或更多个R 12基团可彼此连接并且可形成环结构; Y 2 may identically or differently represent an N atom or CR 14 , wherein R 14 may identically or differently represent a hydrogen atom, a tritium atom, a deuterium atom, a tritium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a straight chain or Branched C 1-20 alkyl substituted alkyl, straight or branched C 1-20 alkyl substituted silyl, aryl having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least A heteroaryl heteroaryl group selected from N, O, and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 Aryl, C 5-20 heteroaryl substitution; wherein two or more R 12 groups may be connected to each other and may form a ring structure;
    X 4、X 5各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 Alkyl substituted silylene, C 6-20 aryl substituted alkylene, C 1-20 alkyl substituted imine, C 6-20 aryl substituted imine, C 5-20 heteroaryl One of a group-substituted imine group;
    通式(7)通过并环方式和通式(4)或通式(5)相连,*表示为连接位点,相连时,只能取相邻的两个位点,通式(7)和通式(4)或通式(5)并环连接时,连接位点Y 1表示为碳原子; The general formula (7) is connected to the general formula (4) or the general formula (5) by a ring method, and * is indicated as a connection site. When connected, only two adjacent sites can be taken. When formula (4) or formula (5) is cyclically linked, the connection site Y 1 is represented as a carbon atom;
    在通式(8)中:In the general formula (8):
    R 12、R 13各自独立地代表具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;R 12、R 13还可连接成环; R 12 and R 13 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, and the group may be Optionally substituted by straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; R 12 , R 13 may also be linked to form a ring;
    在通式(2)中:In the general formula (2):
    L 1、L 2、L 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构; L 1 , L 2 , and L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, where in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, C 6-20 aryl group, C 5-20 heteroaryl group; L 1. L 2 and L 3 can be connected to each other and form a ring structure;
    Ar 5、Ar 6、Ar 7各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 5、Ar 6、Ar 7可两两彼此连接并且可形成环结构; Ar 5 , Ar 6 , and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S, Imine having 5 to 30 carbon atoms, said group may be optionally substituted by straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; Ar 5 , Ar 6 , Ar 7 can be connected to each other and can form a ring structure;
    Ar 5、Ar 6、Ar 7各自还可以独立地表示为通式(4)、通式(5)、通式(6)之一,其中所述通式上的基团X 2、X 3、Y 1、R 8、R 9、R 10、R 11和*具有如上所述的含义; Ar 5 , Ar 6 , and Ar 7 can also be independently represented as one of the general formula (4), the general formula (5), and the general formula (6), wherein the groups X 2 , X 3 , Y 1 , R 8 , R 9 , R 10 , R 11 and * have the meanings as described above;
    在通式(3)中:In the general formula (3):
    D 1、D 2、D 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;D 1、D 2、D 3可两两彼此连接并且可形成环结构; D 1 , D 2 , and D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, where in the case of the latter two, the group may be optionally substituted with a linear or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl; D 1. D 2 and D 3 can be connected to each other and form a ring structure;
    Ar 8、Ar 9、Ar 10各自独立地代表氢原子、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 8、Ar 9、Ar 10可两两彼此连接并且可形成环结构; Ar 8 , Ar 9 , and Ar 10 each independently represent a hydrogen atom, an arylene group having 5 to 30 carbon atoms, a sub-heterocycle having 5 to 30 carbon atoms, and at least one hetero atom selected from N, O, and S Aryl, imine having 5 to 30 carbon atoms, said group may be optionally substituted with straight or branched C 1-20 alkyl, C 6-20 aryl, C 5-20 heteroaryl ; Ar 8 , Ar 9 , Ar 10 can be connected to each other and can form a ring structure;
    Ar 8、Ar 9、Ar 10中至少一个为通式(4)、通式(5)、通式(6)中的一个;其中所述通式上的基团X 2、X 3、Y 1、R 8、R 9、R 10、R 11和*各自具有如上所述的含义。 At least one of Ar 8 , Ar 9 , and Ar 10 is one of the general formula (4), the general formula (5), and the general formula (6); wherein the groups on the general formula are X 2 , X 3 , and Y 1 , R 8 , R 9 , R 10 , R 11 and * each have the meanings described above.
  5. 根据权利要求4所述的有机电致发光器件,其中通式(2)表示为通式(9)至通式(12) 之一:The organic electroluminescent device according to claim 4, wherein the general formula (2) is represented as one of the general formula (9) to the general formula (12):
    Figure PCTCN2019084629-appb-100004
    Figure PCTCN2019084629-appb-100004
    其中among them
    Ar 5至Ar 7表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms An imino group, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, and a C 5-20 heteroaryl group;
    并且L 1-L 3、R 6-R 9、Y 1和X 2-X 3均具有权利要求4所述的含义。 And, L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described in claim 4.
  6. 根据权利要求4或5所述的有机电致发光器件,其中所述通式(3)表示为通式(13)至通式(16)之一:The organic electroluminescent device according to claim 4 or 5, wherein the general formula (3) is represented as one of the general formula (13) to the general formula (16):
    Figure PCTCN2019084629-appb-100005
    Figure PCTCN2019084629-appb-100005
    其中among them
    Ar 8和Ar 10表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;并且 Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O, and S, and 5 to 30 carbon atoms An imino group, the group may be optionally substituted with a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; and
    并且D 1-D 3、R 6-R 9、Y 1和X 2-X 3均具有权利要求4所述的含义。 And D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described in claim 4.
  7. 根据权利要求1-6中任一项所述的有机电致发光器件,其特征在于所述空穴传输层的第一有机材料选自下述化合物之一:The organic electroluminescent device according to any one of claims 1-6, wherein the first organic material of the hole transport layer is selected from one of the following compounds:
    Figure PCTCN2019084629-appb-100006
    Figure PCTCN2019084629-appb-100006
    Figure PCTCN2019084629-appb-100007
    Figure PCTCN2019084629-appb-100007
    Figure PCTCN2019084629-appb-100008
    Figure PCTCN2019084629-appb-100008
    Figure PCTCN2019084629-appb-100009
    Figure PCTCN2019084629-appb-100009
  8. 根据权利要求1-6中任一项所述的有机电致发光器件,其特征在于所述空穴传输层的第二有机材料选自下述化合物之一:The organic electroluminescent device according to any one of claims 1-6, wherein the second organic material of the hole transport layer is selected from one of the following compounds:
    Figure PCTCN2019084629-appb-100010
    Figure PCTCN2019084629-appb-100010
    Figure PCTCN2019084629-appb-100011
    Figure PCTCN2019084629-appb-100011
    Figure PCTCN2019084629-appb-100012
    Figure PCTCN2019084629-appb-100012
    Figure PCTCN2019084629-appb-100013
    Figure PCTCN2019084629-appb-100013
    Figure PCTCN2019084629-appb-100014
    Figure PCTCN2019084629-appb-100014
    Figure PCTCN2019084629-appb-100015
    Figure PCTCN2019084629-appb-100015
  9. 根据权利要求1-8中任一项所述的有机电致发光器件,其特征在于,所述空穴传输层的第一有机材料和第二有机材料可以混合后用于电致发光器件制作,也可以在制作有机电致发光器件过程中混合。The organic electroluminescent device according to any one of claims 1 to 8, characterized in that the first organic material and the second organic material of the hole transporting layer can be mixed and used for manufacturing an electroluminescent device, They can also be mixed during the fabrication of organic electroluminescent devices.
  10. 根据权利要求1-9中任一项所述的有机电致发光器件,其中所述器件包括蓝色、绿色、红色或黄色有机发光材料层中的一种或多种组合;不同有机发光材料层横向或纵向叠加组合。The organic electroluminescent device according to any one of claims 1-9, wherein the device comprises one or more combinations of blue, green, red, or yellow organic light emitting material layers; different organic light emitting material layers Horizontal or vertical overlay combination.
  11. 一种显示器,包括一个或多个如权利要求1-10中任一项所述的有机电致发光器件;并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。A display comprising one or more organic electroluminescence devices according to any one of claims 1 to 10; and in a case where a plurality of devices are included, the devices are stacked in a horizontal or vertical combination.
  12. 根据权利要求11所述的显示器,其特征在于,所述显示器包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种组合,所述器件各自具有相同或不同膜厚的空穴传输层,并且所述空穴传输层的材料相同或不同。The display according to claim 11, wherein the display comprises one or more combinations of devices each having an organic light emitting material layer of three colors of blue, green, and red, and each of the devices has the same or Hole transport layers of different film thicknesses, and the materials of the hole transport layers are the same or different.
PCT/CN2019/084629 2018-04-28 2019-04-26 Organic electroluminescent device and display comprising same WO2019206292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810404589.X 2018-04-28
CN201810404589.XA CN110416422B (en) 2018-04-28 2018-04-28 Organic electroluminescent device and display including the same

Publications (2)

Publication Number Publication Date
WO2019206292A1 WO2019206292A1 (en) 2019-10-31
WO2019206292A9 true WO2019206292A9 (en) 2019-11-28

Family

ID=68293484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084629 WO2019206292A1 (en) 2018-04-28 2019-04-26 Organic electroluminescent device and display comprising same

Country Status (2)

Country Link
CN (1) CN110416422B (en)
WO (1) WO2019206292A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504375A (en) * 2018-05-18 2019-11-26 江苏三月光电科技有限公司 A kind of compound hole mobile material and its OLED device
CN110577509A (en) * 2018-06-07 2019-12-17 江苏三月光电科技有限公司 Triarylamine compound, preparation method and application thereof
CN110655486A (en) * 2018-06-29 2020-01-07 江苏三月光电科技有限公司 Compound with dibenzosuberene as core and application thereof
CN113227083A (en) 2018-11-30 2021-08-06 出光兴产株式会社 Compound, material for organic electroluminescent element, and electronic device
CN111662187A (en) * 2019-03-08 2020-09-15 江苏三月光电科技有限公司 Amino-containing organic compound and application thereof
CN112010760B (en) * 2019-05-29 2021-11-02 南京高光半导体材料有限公司 Spirobifluorene organic electroluminescent compound and organic electroluminescent device
WO2020241826A1 (en) 2019-05-31 2020-12-03 出光興産株式会社 Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
CN112250585B (en) * 2019-07-22 2023-11-14 南京高光半导体材料有限公司 Hole transport material and organic electroluminescent device using same
CN111233674A (en) * 2019-09-26 2020-06-05 吉林奥来德光电材料股份有限公司 Fluorene compound, preparation method thereof and organic electroluminescent device
CN112745229B (en) * 2019-10-31 2023-12-05 南京高光半导体材料有限公司 Hole transport material with excellent performance and organic electroluminescent device containing same
CN112778253B (en) * 2019-11-07 2024-02-09 北京鼎材科技有限公司 Organic compound and organic electroluminescent device containing the same
CN110885321A (en) 2019-11-25 2020-03-17 武汉华星光电半导体显示技术有限公司 Hole transport material, preparation method thereof and electroluminescent device
KR20210071555A (en) * 2019-12-06 2021-06-16 덕산네오룩스 주식회사 An organic electronic element comprising the organic compound and an electronic device comprising it
CN111548278B (en) * 2019-12-31 2021-05-28 南京高光半导体材料有限公司 Novel organic electroluminescent compound and organic electroluminescent device
EP4129972A4 (en) 2020-03-31 2024-04-17 Idemitsu Kosan Co.,Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
KR20210138825A (en) * 2020-05-12 2021-11-22 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof
KR20210142026A (en) * 2020-05-14 2021-11-24 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof
CN114122299B (en) * 2020-06-29 2023-12-29 江苏三月科技股份有限公司 Organic electroluminescent device
DE112021003574T5 (en) * 2020-07-03 2023-06-07 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting device, light-emitting device, electronic device, and lighting device
KR102363914B1 (en) 2020-08-20 2022-02-17 삼성디스플레이 주식회사 Light emitting device and electronic device including the same
CN111848493B (en) * 2020-08-28 2022-10-14 长春海谱润斯科技股份有限公司 Derivative containing spirobifluorene and organic electroluminescent device thereof
CN114195747B (en) * 2020-09-18 2023-06-27 广州华睿光电材料有限公司 Aromatic amine organic compound, mixture, composition and organic electronic device
US20220376199A1 (en) * 2020-12-11 2022-11-24 Boe Technology Group Co., Ltd. Organic Light Emitting Device and Display Apparatus
CN114930561B (en) * 2020-12-11 2023-12-26 京东方科技集团股份有限公司 Organic electroluminescent device and display device
KR20220089970A (en) * 2020-12-22 2022-06-29 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof
WO2022173203A1 (en) * 2021-02-09 2022-08-18 주식회사 엘지화학 Compound and organic electronic device comprising same
CN113594395B (en) * 2021-08-26 2024-04-12 长春海谱润斯科技股份有限公司 Organic electroluminescent device
CN114242907B (en) * 2021-11-03 2024-07-26 阜阳欣奕华材料科技有限公司 Organic electroluminescent device and display device
CN114315742B (en) * 2021-12-21 2024-06-28 湖北尚赛光电材料有限公司 Fluorene-containing compound and application thereof
CN114478499A (en) * 2022-01-29 2022-05-13 阜阳欣奕华材料科技有限公司 Spirofluorene anthracene compound and application thereof
CN114426530A (en) * 2022-02-10 2022-05-03 阜阳欣奕华材料科技有限公司 Spirofluorene anthracene compound and application thereof in luminescent layer doping material
WO2024057958A1 (en) * 2022-09-14 2024-03-21 日鉄ケミカル&マテリアル株式会社 Material for photoelectric conversion elements, and photoelectric conversion element
KR20240137391A (en) * 2023-03-08 2024-09-20 삼성에스디아이 주식회사 Organic optoelectronic device and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421540B1 (en) * 2014-11-14 2022-07-14 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescent element
CN104966786B (en) * 2015-07-03 2017-12-22 固安鼎材科技有限公司 A kind of organic electroluminescence device
CN105576146B (en) * 2016-03-23 2017-09-26 京东方科技集团股份有限公司 Luminescent device and its manufacture method and display device
TWI625326B (en) * 2016-09-09 2018-06-01 昱鐳光電科技股份有限公司 Organic light emitting devices

Also Published As

Publication number Publication date
CN110416422B (en) 2021-06-15
WO2019206292A1 (en) 2019-10-31
CN110416422A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2019206292A9 (en) Organic electroluminescent device and display comprising same
WO2019206291A9 (en) Organic electroluminescence device and device comprising same
US10586934B2 (en) Light-emitting element
KR101311934B1 (en) Composition for organic photoelectric device and organic photoelectric device using the same
WO2015105137A1 (en) Light-emitting material, organic light-emitting element, and compound
JP7037543B2 (en) Organic electroluminescent device
Liu et al. Novel bipolar host materials based on 1, 3, 5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off
CN105837498B (en) Organic compound containing dimethylanthracene structure and application thereof
TWI738859B (en) Organic light-emitting element and its light-emitting material and compound
JP7410571B2 (en) Compounds, luminescent materials, delayed phosphors, organic light emitting devices, oxygen sensors, molecular design methods and programs
TWI658117B (en) The light emitting material for organic electroluminescence device
KR101297162B1 (en) Composition for organic photoelectric device and organic photoelectric device using the same
WO2020124771A1 (en) Thermally activated delayed fluorescent compound, preparation method therefor and organic electroluminescent diode device thereof
CN110416256B (en) Organic electroluminescent device and display including the same
TWI542586B (en) Compound having substituted bipyridyl and pyridoindole ring structure, and organic electroluminescent device
JP5252880B2 (en) Oligofluorene compound and organic EL device using the same
JP7198804B2 (en) organic electroluminescent device
CN110504374A (en) A kind of compound hole transport/electronic barrier layer and its OLED device
CN109400585A (en) Bis- pyridine benzene analog derivative of 1,4- and organic electroluminescence device
WO2020211124A1 (en) Thermally activated delayed fluorescence material, preparation method therefor, and organic light-emitting diode device
CN112490390B (en) Novel organic electroluminescent device matched with HIT and EB materials
CN110504375A (en) A kind of compound hole mobile material and its OLED device
JP7094215B2 (en) Thermally activated delayed fluorescent light emitting material and organic electroluminescent device
WO2020211128A1 (en) Thermally activated delayed fluorescence material, preparation method therefor, and organic light-emitting diode device
WO2019087936A1 (en) COMPOUND HAVING π-ELECTRON CONJUGATED UNIT AND CARBAZOLE GROUP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793943

Country of ref document: EP

Kind code of ref document: A1