WO2019206292A1 - Organic electroluminescent device and display comprising same - Google Patents

Organic electroluminescent device and display comprising same Download PDF

Info

Publication number
WO2019206292A1
WO2019206292A1 PCT/CN2019/084629 CN2019084629W WO2019206292A1 WO 2019206292 A1 WO2019206292 A1 WO 2019206292A1 CN 2019084629 W CN2019084629 W CN 2019084629W WO 2019206292 A1 WO2019206292 A1 WO 2019206292A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
alkyl
branched
carbon atoms
Prior art date
Application number
PCT/CN2019/084629
Other languages
French (fr)
Chinese (zh)
Other versions
WO2019206292A9 (en
Inventor
李崇
唐丹丹
张兆超
张小庆
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019206292A1 publication Critical patent/WO2019206292A1/en
Publication of WO2019206292A9 publication Critical patent/WO2019206292A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly to an organic electroluminescent device and a display including the same.
  • the organic electroluminescent device technology can be used for manufacturing new display products as well as for preparing new lighting products, and is expected to replace the existing liquid crystal display and fluorescent lighting, and has a wide application prospect.
  • An organic electroluminescent device is used as a current device. When a voltage is applied to electrodes at both ends thereof and an electric field acts on the positive and negative charges in the organic layer functional material film layer, the positive and negative charges are further recombined in the organic light-emitting layer, that is, Electroluminescence.
  • Organic electroluminescent devices are generally multilayer in structure, and various auxiliary functional layers other than the luminescent layer also play a vital role in device performance.
  • a reasonable device structure can effectively improve the performance of the device, and an electron injecting layer, an electron transporting layer, a hole blocking layer, an emitting layer, an electron blocking layer, a hole transporting layer, and a hole injecting layer are widely used to improve the performance of the device.
  • the carriers (holes and electrons) in the organic electroluminescent device are respectively injected into the device by the two electrodes of the device under the driving of the electric field, and are combined to emit light in the luminescent layer.
  • Hole transport materials used in existing organic electroluminescent devices are known, for example There is a large HOMO level difference between the HOMO level and the electron blocking layer material, and it is easy to form an accumulated charge at the material interface, which affects the lifetime of the OLED device.
  • a reasonable energy level structure facilitates the formation of a step barrier for the energy levels in each layer of the device, reduces the potential barrier of hole injection, and reduces the driving voltage of the device, thereby improving the luminous efficiency and lifetime of the device.
  • the present invention is directed to an organic electroluminescent device having improved luminous efficiency, heat resistance and service life, and a display including the same.
  • An object of the present invention is achieved by providing an organic electroluminescence device which is provided with a substrate, a first electrode, an organic functional material layer and a second electrode in this order from bottom to top,
  • the organic functional material layer includes:
  • a light emitting layer over the hole transporting region, comprising a host material and a guest material
  • An electron transport region located above the light emitting layer,
  • the hole transporting region includes a hole injecting layer, a hole transporting layer and an electron blocking layer in this order from bottom to top.
  • the hole transport layer includes first and second organic materials, wherein the first organic material has a HOMO level of from -5.2 eV to -5.6 eV, preferably from -5.3 eV to -5.5 eV, more preferably from -5.35 eV to -5.5 eV, and the HOMO level of the second organic material is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and
  • an organic electroluminescent device comprising a hole transport layer comprising the first and second organic materials of the present invention
  • a HOMO of the first and second organic materials is defined, the level matching of the anode and the electron blocking The barrier between the layer interfaces is reduced, which facilitates the injection of holes from the anode into the electron blocking layer, improves the hole injection efficiency, reduces the driving voltage of the device, reduces the accumulated charge at the interface contact, and improves the device.
  • Stability and service life in addition, the higher glass transition temperature of the hole transport layer of the present invention improves the heat resistance of the device.
  • the organic film layer composed of two different materials can effectively improve the molecular arrangement and the intermolecular interaction force, so that the film layer has higher stability, reduces the leakage current of the device, and improves the service life of the device.
  • Another object of the present invention is achieved by providing a display comprising the above organic electroluminescent device.
  • Fig. 1 schematically shows a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • Fig. 2 is a view schematically showing an energy transfer mechanism diagram of an organic electroluminescent device according to an embodiment of the present invention.
  • 3 to 7 are schematic views showing a combination structure of light-emitting layers in an organic electroluminescence device comprising the hole transport layer of the present invention.
  • any numerical range recited herein is intended to include all sub-ranges that have the For example, "1.0 to 10.0" means including all subranges (and 1.0 and 10.0) between the listed minimum value of 1.0 and the listed maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and equal to Or all subranges of values less than 10.0. Any of the maximum numerical limits set forth herein are meant to include all of the smaller numerical limits that are included herein, and any minimum numerical limitation listed herein is meant to include all of the greater numerical limitations included herein. The Applicant reserves the right to modify the present specification, including the claims, to clearly describe any sub-ranges that fall within the scope of the invention.
  • HT means an organic material constituting a hole transporting layer
  • HT-I means a first organic material
  • HT-II means a second organic material
  • Fig. 1 schematically shows a cross-sectional view of an organic electroluminescent device of one embodiment of the present invention.
  • an organic electroluminescent device according to an embodiment of the present invention is provided with a substrate 1, a first electrode 2, a hole transporting region A, a light emitting layer 6, an electron transporting region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injecting layer 3, a hole transporting layer 4, and an electron blocking layer 5 in this order from bottom to top
  • the electron transporting region B includes a hole blocking layer 7, an electron transporting layer 8, and electrons in order from bottom to top.
  • Inject layer 9 is provided with a substrate 1, a first electrode 2, a hole transporting region A, a light emitting layer 6, an electron transporting region B, and a second electrode 10 in this order from bottom to top.
  • the hole transporting region A includes a hole injecting layer 3, a hole transporting layer 4, and an electron blocking layer 5 in this order from bottom to top
  • any substrate commonly used for an organic electroluminescence device can be selected.
  • transparent substrates such as glass or transparent plastic substrates; opaque substrates such as silicon substrates; flexible PI film substrates.
  • Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water repellency, and the direction of use is different depending on the nature.
  • a transparent substrate is preferably used.
  • the thickness of the substrate is not particularly limited.
  • a first electrode is formed on the substrate, and the first electrode and the second electrode may face each other.
  • the first electrode can be an anode.
  • the first electrode may be a transmissive electrode, a semi-transmissive electrode or a reflective electrode.
  • the first electrode may be formed using a transparent metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide ( ITZO) and so on.
  • the first electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture of metals.
  • the thickness of the first electrode layer depends on the material used, and is usually from 50 to 500 nm, preferably from 70 to 300 nm and more preferably from 100 to 200 nm.
  • the organic functional material layer disposed between the first electrode and the second electrode includes a hole transporting region, a light emitting layer, and an electron transporting region in order from bottom to top.
  • the hole transporting region may be disposed between the first electrode and the light emitting layer.
  • the hole transporting region may include a hole injecting layer, a hole transporting layer, and an electron blocking layer, but is not limited thereto.
  • the hole transporting region may include a hole injecting layer, a hole transporting layer, and an electron blocking layer disposed on the first electrode in order from bottom to top.
  • an organic material having a p-type property which is easily oxidized and electrochemically stabilized when it is oxidized, is mainly used as a hole injecting material or a hole transporting material.
  • an organic material having an n-type property which is easily reduced and electrochemically stabilized when it is reduced, is used as an electron injecting material or an electron transporting material.
  • a material having both a p-type property and an n-type property is preferable, which is stable when it is oxidized and reduced, and preferably has a high luminescence for converting excitons into light when excitons are formed. Efficiency material.
  • the material of the hole injection layer is usually a material preferably having a high work function, so that holes are easily injected into the organic material layer.
  • the material of the hole injection layer contains at least one of the materials represented by the general formula (17), (18) or (19):
  • F 1 -F 3 each independently represent a substituted or unsubstituted C 6-30 aryl group, a substituted or unsubstituted 3 to 30 membered heteroaryl group, and F 1 -F 3 Can be the same or different;
  • G 1 -G 6 each independently represent hydrogen, nitrile group, halogen, amide group, alkoxy group, ester group, nitro group, CR 11 , substituted or unsubstituted a C 6-30 aryl group, a 3 to 30 membered heteroaryl group, wherein R 11 is a linear or branched C 1-20 alkyl group, provided that G 1 -G 6 are not hydrogen at the same time;
  • the hetero atom is selected from at least one of the N, O and S atoms.
  • the material of the hole injection layer used is selected from one of the following (a) to (j):
  • the hole injection layer of the present invention may have a thickness of 5 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm.
  • the hole transport layer of the present invention may be disposed over the hole injection layer.
  • the hole transport layer material includes a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 1:99 to 99:1, preferably 10:90 to 90:10, It is preferably from 30:70 to 70:30, based on the mass.
  • the first organic material has a HOMO energy level of from -5.2 eV to -5.6 eV, preferably from -5.3 eV to -5.5 eV, more preferably from -5.35 eV to -5.5 eV, and the HOMO energy of the second organic material
  • the grade is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and
  • FIG. 2 is a view schematically showing an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention, wherein a represents a hole injection layer, b represents a hole transport layer, c represents an electron blocking layer, and d represents a light emitting layer.
  • the absolute value of the difference between the HOMO levels of the second organic material and the electron blocking material is ⁇ 0.4 ev.
  • a small energy barrier between the hole transporting material and the electron blocking layer material allows holes to be easily injected into the electron blocking layer via the hole transport layer and further transported into the light emitting layer.
  • the first and second organic materials of the invention are each independently selected from one of the general formula (1), the general formula (2) and the general formula (3):
  • X, X 1 are each independently selected from a single bond, a carbon atom, an N-(R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, One of a linear or branched C 1-20 alkyl substituted silylene group, a C 6-20 aryl substituted alkylene group;
  • R 5 may be the same or differently selected from a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group.
  • a linear or branched C 1-20 alkyl substituted silylene group an aryl group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one selected from the group consisting of N, O and S a heteroaryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group. ;
  • Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a ruthenium atom, a ruthenium atom, a ruthenium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1 - a 20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silylene group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least one selected from N a heteroaryl heteroaryl group of O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, C a 5-20 heteroaryl substitution wherein two or more R 6 groups may be attached to each other and may form a ring structure;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 each independently represent a single bond, a linear or branched C 1-20 alkylene group, an arylene group having 5 to 30 carbon atoms, a straight chain or a branched chain. a C 1-20 alkyl-substituted silylene group, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, wherein in the case of the latter two, the group The group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group, wherein the Ar 1 , Ar 2 groups may also be joined to form a ring;
  • n, p, q, s, and t are equal to 0 or 1; and m+n+p+q ⁇ 1 and m+n+s+t ⁇ 1;
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the formula (4), the formula (5) or the formula (6), provided that R 1 , R 2 , R 3 When it is different from R 4 , it is a hydrogen atom;
  • X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 group.
  • Y 1 may represent N atom or CR identically or differently, wherein R may represent the same or different hydrogen atom, helium atom, rhodium atom, rhodium atom, fluorine atom, cyano group, phosphoric acid or a salt thereof, linear or branched a C 1-20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least one selected a heteroaryl group derived from a hetero atom of N, O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, a C 6-20 aryl group a C 5-20 heteroaryl group; wherein two or more R groups may be attached to each other and may form a ring structure;
  • R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl group-substituted alkyl group, a straight chain or a branch.
  • a C 1-20 alkyl-substituted silane group of a chain an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, a structure represented by the formula (7) or the formula (6); wherein, in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C 1-20 alkyl group, C 6- 20 aryl, C 5-20 heteroaryl substituted;
  • Y 2 may represent the N atom or CR 10 identically or differently, wherein R 10 may represent the same or differently a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear chain or a branched C 1-20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least a heteroaryl group selected from heteroatoms of N, O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 Aryl, C 5-20 heteroaryl substituted;
  • X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 group.
  • the general formula (7) is linked to the general formula (4) or the general formula (5) by a ring-and-loop method, and * is represented as a linking site.
  • * is represented as a linking site.
  • R 8 and R 9 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, which may be Optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; R 8 and R 9 may also be bonded to form a ring;
  • L 1 , L 2 , L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S
  • An aryl group wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; 1 , L 2 , L 3 may be connected to each other and may form a ring structure;
  • Ar 5 , Ar 6 and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, An imido group of 5 to 30 carbon atoms, which group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; Ar 5 , Ar 6 , Ar 7 may be connected to each other two-two and may form a ring structure;
  • Each of Ar 5 , Ar 6 and Ar 7 may also be independently represented as one of the formula (4), the formula (5), and the formula (6), wherein the groups X 2 and X 3 in the formula are , Y 1 , R 6 , R 7 and * have the meanings as described above;
  • D 1 , D 2 , D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S
  • An aryl group wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; 1 , L 2 , L 3 may be connected to each other and may form a ring structure;
  • Ar 8 , Ar 9 and Ar 10 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, An imino group of 5 to 30 carbon atoms, which group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; Ar 8 , Ar 9 , Ar 10 may be connected to each other and may form a ring structure;
  • At least one of Ar 8 , Ar 9 and Ar 10 is one of the formula (4), the formula (5), and the formula (6); wherein the group X 2 , X 3 , Y 1 on the formula And R 6 , R 7 and * each have the meanings as described above.
  • the formula (2) is represented by one of the formulae (9) to (12):
  • Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, and 5 to 30 carbon atoms.
  • Imino group the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
  • L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
  • the formula (3) is represented by one of the formulae (13) to (16):
  • Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, and 5 to 30 carbon atoms.
  • Imino group the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
  • D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
  • the first organic material is selected from one of the following compounds:
  • the second organic material is selected from one of the following compounds:
  • the hole transport layer material of the present invention has a hole mobility of from 1 ⁇ 10 -5 to 1 ⁇ 10 -2 cm 2 /(V ⁇ s), preferably from 1 ⁇ 10 -4 to 1 ⁇ 10 -2 cm 2 / (V ⁇ s) is more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 -3 cm 2 /(V ⁇ s).
  • the hole transport layer material of the present invention has a glass transition temperature of ⁇ 120 ° C, preferably ⁇ 130 ° C and more preferably ⁇ 140 ° C.
  • the hole transport layer material of the present invention may have a thickness of from 1 to 200 nm, preferably from 10 to 100 nm.
  • the electron blocking layer may be disposed over the hole transport layer; the material of the electron blocking layer is preferably a material having a high T1 and a low LUMO, which is capable of blocking electron loss and energy loss.
  • the electron blocking layer used in the present invention may be
  • the electron blocking layer of the present invention may have a thickness of 5 to 200 nm, preferably 10 to 150 nm, and more preferably 20 to 100 nm.
  • the light emitting layer may be disposed over the hole transporting region.
  • the material of the light-emitting layer is a material which can emit visible light by receiving holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining the received holes and electrons. Specific examples thereof include metal complexes of hydroxyquinoline derivatives, various metal complexes, anthracene derivatives, bisstyrenebenzene derivatives, anthracene derivatives, oxazole derivatives, and polyparaphenylene derivatives. , but not limited to this.
  • the light emitting layer may include a host material and a guest material.
  • a light-emitting layer material for an organic electroluminescence device which is known in the art may be used, and the host material may be, for example, a thiazole derivative or a benzene. And an imidazole derivative, a polydialkylfluorene derivative or 4,4'-bis(9-carbazolyl)biphenyl (CBP); the guest material may be, for example, quinacridone, coumarin, red fluorescent Alkene, anthracene and derivatives thereof, benzopyran derivatives, rhodamine derivatives or aminostyrene derivatives.
  • the luminescent layer host material used is selected from the group consisting of one or more of EMH-1 to EMH-22 described below:
  • the luminescent material may also comprise a phosphorescent or fluorescent material.
  • the phosphorescent material include phosphorescent materials of metal complexes of ruthenium, platinum, and the like.
  • a green phosphorescent material such as Ir(ppy) 3 [fac-tris(2-phenylpyridine)fluorene]
  • a blue phosphorescent material such as FIrpic or FIr6
  • a red phosphorescent material such as Btp2Ir (acac)
  • the luminescent layer guest material used is selected from one of the following EMD-1 to EMD-23:
  • the ratio of the host material to the guest material used is from 99:1 to 70:30, preferably from 99:1 to 85:15 and more preferably from 97:3 to 87:13, based on the mass. meter.
  • the luminescent layer may be formed of another guest material or a plurality of guest materials, and the guest material may be simple.
  • a fluorescent material, a delayed fluorescent (TADF) material or a phosphorescent material, or a combination of different fluorescent materials, TADF materials, and phosphorescent light the light emitting layer may be a single light emitting layer material, or may be a composite light emitting layer stacked laterally or vertically. material.
  • the light-emitting layers constituting the above organic electroluminescence device are exemplified by the following various structures:
  • the organic light-emitting functional layer includes a light-emitting layer including one or a combination of at least two of blue, green, red, and yellow organic light-emitting layer materials.
  • G represents light
  • 6 represents a light-emitting layer
  • EM1, EM2, and EM3 represent different light-emitting layer materials.
  • 6 represents a light-emitting layer
  • 300 represents an organic light-emitting functional layer
  • 610, 620 and 630 represent a tie layer.
  • the film thickness of the light-emitting layer 6 constituting the OLED light-emitting body can be arbitrarily adjusted as needed, or the light-emitting layers which are not colorable can be alternately superimposed and combined as needed, and adjacent light can be emitted.
  • a charge blocking layer or the like for different functional uses is added to the organic layer of the layer.
  • the light-emitting layer of the present invention may have a thickness of 5 to 60 nm, preferably 10 to 50 nm, more preferably 20 to 45 nm.
  • the electron transporting region may include a hole blocking layer, an electron transporting layer, and an electron injecting layer disposed on the light emitting layer in this order from the bottom to the top, but is not limited thereto.
  • the hole blocking layer is a layer that blocks holes injected from the anode through the light emitting layer and enters the cathode, thereby extending the life of the device and improving the performance of the device.
  • the hole blocking layer of the present invention may be disposed on the light emitting layer to the top.
  • a compound having a hole blocking function known in the art for example, a phenanthroline derivative such as batholine (referred to as BCP), or aluminum can be used.
  • the hole blocking layer of the present invention may have a thickness of 2 to 200 nm, preferably 5 to 150 nm, and more preferably 10 to 100 nm.
  • the electron transport layer can be disposed over the luminescent layer or, if present, the hole blocking layer.
  • the electron transport layer material is a material that easily receives electrons from the cathode and transfers the received electrons to the light emitting layer. Materials having high electron mobility are preferred.
  • an electron transport layer material for an organic electroluminescence device known in the art for example, a quinolinol derivative typified by Alq 3 or BAlq can be used.
  • Metal complexes various metal complexes, triazole derivatives, 2,4-bis(9,9-dimethyl-9H-indol-2-yl)-6-(naphthalen-2-yl) a triazine derivative such as -1,3,5-triazine (CAS No.: 1459162-51-6), 2-(4-(9,10-di(naphthalen-2-yl)indol-2-yl)benzene Imidazole derivatives such as 1-phenyl-1H-benzo[d]imidazole (CAS No.: 561064-11-7, commonly known as LG201), triazine derivatives, oxadiazole derivatives, thiadiazole derivatives A carbodiimide derivative, a quinoxaline derivative, a phenanthroline derivative, a silicon-based compound derivative or the like.
  • the electron transport layer of the present invention may have a thickness of 10 to 80 nm, preferably 20 to 60 nm, and more preferably 25 to
  • the electron injection layer may be disposed on the electron transport layer.
  • the electron injecting layer material is generally a material preferably having a low work function such that electrons are easily injected into the organic functional material layer.
  • an electron injecting layer material for an organic electroluminescent device known in the art for example, lithium; a lithium salt such as lithium quinolate, can be used. Lithium fluoride, lithium carbonate or lithium azide; or barium salt, barium fluoride, barium carbonate or barium azide.
  • the electron injecting layer of the present invention may have a thickness of 0.1 to 5 nm, preferably 0.5 to 3 nm, and more preferably 0.8 to 1.5 nm.
  • the second electrode may be disposed over the electron transport region.
  • the second electrode can be a cathode.
  • the second electrode EL2 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the second electrode may include, for example, Li, Yb, Ca, LiF/Ca, LiF/Al, Al, Mg, BaF, Ba, Ag, or a compound or mixture thereof; when the second electrode is half
  • the second electrode may include Ag, Mg, Yb, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti or a compound or mixture thereof.
  • the organic electroluminescent device of the present invention may be of a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the first electrode may be a reflective electrode and the second electrode may be a transmissive electrode or a semi-transmissive electrode.
  • the first electrode may be a transmissive electrode or a semi-transmissive electrode, and the second electrode may be a reflective electrode.
  • the organic electroluminescent device may further include a package structure.
  • the package structure may be a protective structure for preventing foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device.
  • the package structure may be, for example, a can, such as a glass jar or a metal can; or a film covering the entire surface of the organic layer.
  • the organic electroluminescent device of the present invention can be prepared, for example, by sequentially laminating a first electrode, an organic functional material layer, and a second electrode on a substrate.
  • a physical vapor deposition method such as a sputtering method or an electron beam vapor method, or a vacuum evaporation method may be used, but is not limited thereto.
  • the above compound can be used to form an organic functional material layer by, for example, a vacuum deposition method, a vacuum evaporation method, or a solution coating method.
  • the solution coating method means a spin coating method, a dip coating method, a jet printing method, a screen printing method, a spray method, and a roll coating method, but is not limited thereto.
  • Vacuum evaporation means heating and plating a material onto a substrate in a vacuum environment. In the present invention, it is preferred to form the respective layers using a vacuum evaporation method.
  • the materials for forming the respective layers described in the present invention may be used as a single layer by separately forming a film, or may be formed as a single layer by mixing with other materials, or may be separately formed.
  • a display in another aspect of the invention, includes one or more of the organic electroluminescent devices of the present invention, and where a plurality of devices are included, the devices are stacked in a lateral or longitudinal direction.
  • the display may comprise a device each having a layer of organic light-emitting material of three colors of blue, green, red, and the device has a hole transport layer of the same film thickness and material.
  • the display is comprised of a device that can include layers of organic light-emitting materials each having three colors of blue, green, and red, and that has a hole transport layer of the same material but different film thicknesses.
  • the display may comprise a device having a layer of organic luminescent material each having three colors of blue, green, red, and the device has a hole transport of the same film thickness but at least two combinations of materials thereof Floor.
  • the display may comprise a device each having a layer of organic light-emitting material of three colors of blue, green, red, and the device has an empty film thickness and at least two combinations of materials thereof Hole transport layer.
  • Glass transition temperature Tg measured by differential scanning calorimetry (DSC, Germany NETZSCH DSC204F1 differential scanning calorimeter), heating rate 10 ° C / min;
  • HOMO energy level There are many methods or instruments for testing the HOMO energy level of organic optoelectronic materials, including CV (cyclic voltammetry), UPS (ultraviolet photoelectron spectroscopy), and AC series equipment manufactured by Riken Keiki Co., Ltd. ( Atmospheric photoelectron spectroscopy), IPS series equipment (vacuum photoelectron spectroscopy) produced by Xindi Tianyi Co., Ltd., in addition to the above methods, can also determine the level of HOMO energy level by Gaussian calculation and combined with semi-empirical judgment. The HOMO level is very important for studying the structural matching of OLED devices.
  • the CV method is affected by solvents, and the data accuracy and reproducibility are relatively poor.
  • Others include UPS method, AC method, IPS method, and fundamentally, all are measurement of ultraviolet photoelectron spectroscopy.
  • UPS UPS measurement requires not only ultra-high vacuum, but also expensive equipment, and there are large differences in data analysis results due to the difference in the person being measured and the instrument settings.
  • the AC method requires the sample to be placed in an aerobic dry air environment. The oxygen element has a certain influence on the sample, and the data reproducibility and consistency are relatively poor.
  • the IPS method measures the HOMO level and places the film material in In a vacuum environment, ultraviolet monochromatic light is directly applied to the surface of the sample, and the photoelectron current is measured to determine the magnitude of the HOMO level, which is a direct measurement. Based on the above analysis and practice, the inventors believe that the IPS measurement method has the highest reproducibility, consistency and accuracy when measuring the HOMO level of OLED materials. All HOMO energy levels of the materials involved in the present invention are measurement means of IPS. The specific measurement method is as follows:
  • the evaporation rate is controlled under a vacuum of 1.0E-5Pa.
  • the material is evaporated onto the ITO substrate to a film thickness of 60-80 nm, and then the HOMO level of the sample film is measured by using an IPS3 measuring device, and the measurement environment is a vacuum environment of 10-2 Pa or less;
  • Eg level based on the UV spectrophotometric (UV absorption) baseline of the material single film and the rising side of the first absorption peak, the tangent line is calculated using the tangent and baseline intersection values.
  • LUMO level calculated based on the difference between the aforementioned HOMO level and the Eg level.
  • Hole mobility The material was fabricated into a single charge device and measured by the SCLC method.
  • Elemental analysis structure (Molecular formula C 60 H 42 N 4 ): Theory: C, 87.99; H, 5.17; N, 6.84; Tests: C, 87.97; H, 5.18; N, 6.85.
  • Elemental analysis structure (Molecular formula C 54 H 44 N 2 ): Theory: C, 89.96; H, 6.15; N, 3.89; Tests: C, 89.97; H, 6.13; N, 3.90.
  • Elemental analysis structure (Molecular formula C 42 H 25 NO 3 ): Theory: C, 85.26; H, 4.26; N, 2.37; Tests: C, 85.24; H, 4.24; N, 2.39.
  • Elemental analysis structure (Molecular formula C 72 H 54 N 4 ): Theory: C, 88.67; H, 5.58; N, 5.74; Tests: C, 88.64; H, 5.60; N, 5.73.
  • Elemental analysis structure (Molecular formula C 56 H 40 N 2 ): Theory: C, 90.78; H, 5.44; N, 3.78; ⁇ / RTI> ⁇ /RTI> C, 90.76; H, 5.45; N, 3.79.
  • Elemental analysis structure (Molecular formula C 60 H 44 N 2 ): Theory: C, 90.87; H, 5.59; N, 3.53; ⁇ / RTI> C, 90.86; H, 5.58; N, 3.56.
  • Elemental analysis structure (Molecular formula C 52 H 37 N): Theory: C, 92.41; H, 5.52; N, 2.07; ⁇ / RTI> C, 92.42; H, 5.50; N, 2.08.
  • Elemental analysis structure (Molecular formula C 54 H 39 N): Theory: C, 92.40; H, 5.60; N, 2.00; ⁇ / RTI> C, 92.38; H, 5.61; N, 2.01.
  • Elemental analysis structure (Molecular formula C 52 H 39 N): Theory: C, 92.13; H, 5.80; N, 2.07;
  • Elemental analysis structure (Molecular formula C 55 H 41 NO): Theory: C, 90.25; H, 5.65; N, 1.91; Tests: C, 90.24; H, 5.64; N, 1.90.
  • Elemental analysis structure (Molecular formula C 55 H 43 N): Theory: C, 92.01; H, 6.04; N, 1.95; Tests: C, 92.02; H, 6.02; N, 1.96.
  • Elemental analysis structure (Molecular formula C 54 H 41 NO): Theory: C, 90.09; H, 5.74; N, 1.95; Tests: C, 90.07; H, 5.76; N, 1.97.
  • Elemental analysis structure (Molecular formula C 58 H 47 N): Theory: C, 91.90; H, 6.25; N, 1.85; Test: C, 91.92; H, 6.24; N, 1.84.
  • Elemental analysis structure (Molecular formula C 49 H 41 N): Theory: C, 91.41; H, 6.42; N, 2.18; Tests: C, 91.43; H, 6.41; N, 2.16.
  • Elemental analysis structure (Molecular formula C 60 H 49 N 3 ): Theory: C, 88.74; H, 6.08; N, 5.17; Tests: C, 88.71; H, 6.09; N, 5.20.
  • Elemental analysis structure (Molecular formula C 53 H 41 N 3 ): Theory: C, 88.42; H, 5.74; N, 5.84; Test: C, 88.43; H, 5.75; N, 5.82.
  • Elemental analysis structure (Molecular formula C 54 H 39 N): Theory: C, 92.40; H, 5.60; N, 2.00; ⁇ / RTI> ⁇ /RTI> C, 92.41; H, 5.61; N, 1.98.
  • Elemental analysis structure (Molecular formula C 54 H 35 NO 2 ): Theory: C, 88.86; H, 4.83; N, 1.92; Tests: C, 88.85; H, 4.84; N, 1.91.
  • Elemental analysis structure (Molecular formula C 51 H 37 NO): Theory: C, 90.10; H, 5.49; N, 2.06; ⁇ / RTI> ⁇ /RTI> C, 90.11; H, 5.47; N, 2.07.
  • Elemental analysis structure (Molecular formula C 54 H 36 N 2 O): Theory: C, 88.98; H, 4.98; N, 3.84; Tests: C, 88.96; H, 4.99; N, 3.85.
  • Elemental analysis structure (Molecular formula C 52 H 37 N): Theory: C, 92.41; H, 5.52; N, 2.07; ⁇ / RTI> C, 92.42; H, 5.53; N, 2.05.
  • Elemental analysis structure (Molecular formula C 49 H 35 N): Theory: C, 92.41; H, 5.52; N, 2.07; ⁇ / RTI> ⁇ /RTI> C, 92.42; H, 5.53; N, 2.05.
  • Elemental analysis structure (Molecular formula C 55 H 41 NO): Theory: C, 90.25; H, 5.65; N, 1.91; Tests: C, 90.23; H, 5.66; N, 1.90.
  • Elemental analysis structure (Molecular formula C 52 H 39 NO): Theory: C, 90.01; H, 5.67; N, 2.02; ⁇ / RTI> ⁇ /RTI> C, 90.03; H, 5.64; N, 2.03.
  • Elemental analysis structure (Molecular formula C 55 H 43 N): Theory: C, 92.01; H, 6.04; N, 1.95; Tests: C, 92.02; H, 6.02; N, 1.96.
  • Elemental analysis structure (Molecular formula C 54 H 39 N): Theory: C, 92.40; H, 5.60; N, 2.00; ⁇ / RTI> C, 92.41; H, 5.58; N, 2.01.
  • Elemental analysis structure (Molecular formula C 63 H 57 N): Theory: C, 91.37; H, 6.94; N, 1.69; Test: C, 91.36; H, 6.93; N, 1.70.
  • Elemental analysis structure (Molecular formula C 62 H 55 N): Theory: C, 91.47; H, 6.81; N, 1.72; Tests: C, 91.45; H, 6.82; N, 1.73.
  • Elemental analysis structure (Molecular formula C 45 H 32 N 2 O): Theory: C, 87.63; H, 5.23; N, 4.54; Tests: C, 87.61; H, 5.24; N, 4.55.
  • Elemental analysis structure (Molecular formula C 46 H 31 NO): Theory: C, 90.02; H, 5.09; N, 2.28; ⁇ / RTI> ⁇ /RTI> ⁇ /RTI> C, 90.01; H, 5.07; N, 2.29;
  • Elemental analysis structure (Molecular formula C 46 H 31 NO 2 ): Theory: C, 87.73; H, 4.96; N, 2.22; Test: C, 87.71; H, 4.97; N, 2.23.
  • Elemental analysis structure (Molecular formula C 49 H 37 NO): Theory: C, 89.74; H, 5.69; N, 2.14; Tests: C, 89.74; H, 5.69; N, 2.14.
  • Table 1 shows the prepared first and second organic materials, the electron blocking layer material (EB1) adjacent thereto, the host materials (EMH-1, EMH-7, and EMH-13) of the luminescent material, and the guest material (EMD- 1, EMD-8 and EMD-13) test results of each level.
  • EB1 electron blocking layer material
  • the HOMO energy level of the first organic material of the present invention is between -5.2 eV and -5.6 eV
  • the HOMO energy level of the second organic material is between -5.4 eV and -5.9 eV
  • the absolute value of the difference between the HOMO levels of the second organic material and the electron blocking layer material is ⁇ 0.4 ev.
  • the first organic material HTI-1 and the second organic material HTII-7 were respectively placed in two evaporation sources, and the pressure was controlled under a vacuum of 1.0E -5 Pa.
  • the evaporation rate of the first organic material 1 is Controlling the evaporation rate of the second organic material 1 is
  • the hole transport layer material 1 of the present invention is obtained by co-mixing.
  • Example 1 The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is The hole transport layer material 2 was obtained.
  • Example 1 The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is The hole transport layer material 3 was obtained.
  • Example 1 The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is The hole transport layer material 4 was obtained.
  • Example 1 The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was The evaporation rate of the second organic material HTII-7 is The hole transport layer material 5 was obtained.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-9 and the second organic material HTII-37 were used to obtain the hole transport layer material 6.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-28 and the second organic material HTII-21 were used to obtain the hole transport layer material 7.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 8.
  • Example 3 The preparation process of Example 3 was repeated except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 9.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-52 and the second organic material HTII-52 were used to obtain the hole transport layer material 10.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-57 and the second organic material HTII-78 were used to obtain the hole transport layer material 11.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-63 and the second organic material HTII-102 were used to obtain the hole transport layer material 12.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-72 and the second organic material HTII-132 were used to obtain the hole transport layer material 13.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-72 and the second organic material HTII-148 were used to obtain the hole transport layer material 14.
  • Example 2 The preparation process of Example 2 was repeated except that the first organic material HTI-72 and the second organic material HTII-164 were used to obtain the hole transport layer material 15.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-86 and the second organic material HTII-164 were used to obtain the hole transport layer material 16.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-101 and the second organic material HTII-192 were used to obtain the hole transport layer material 17.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-114 and the second organic material HTII-192 were used to obtain the hole transport layer material 18.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-124 and the second organic material HTII-232 were used to obtain the hole transport layer material 19.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 20.
  • Example 2 The preparation process of Example 2 was repeated except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 21.
  • Example 2 The preparation process of Example 2 was repeated except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 22.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-134 and the second organic material HTII-266 were used to obtain the hole transport layer material 23.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-144 and the second organic material HTII-277 were used to obtain the hole transport layer material 24.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 25.
  • Example 5 The preparation process of Example 5 was repeated except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 26.
  • Example 1 The preparation process of Example 1 was repeated except that the first organic material HTI-176 and the second organic material HTII-335 were used to obtain the hole transport layer material 27.
  • vacuum evaporation is performed under the following conditions: using a CIC vapor deposition apparatus (manufactured by Changzhou Industry Co., Ltd.), the vapor deposition rate is controlled under a vacuum of 1.0 E -5 Pa.
  • HAT-CN is deposited by a vacuum evaporation method to a thickness of 10 nm, this layer serves as a hole injection layer;
  • the hole transport layer material 1 obtained in Example 1 was prepared by vacuum evaporation to prepare a hole transport layer material having a thickness of 90 nm, the layer being a hole transport layer;
  • EB1 is deposited by vacuum evaporation, the thickness is 20 nm, the layer is an electron blocking layer;
  • the luminescent layer material is evaporated by vacuum evaporation, the host material is EMH-7 and EMH-9, and the guest material is EMD-8, EMH-7, EMH-9 and EMD-8 mass ratio 45:45:10, thickness 40nm;
  • LG201 and Liq are vapor-deposited by vacuum evaporation, the mass ratio of LG201 and Liq is 50:50, and the thickness is 40 nm, and the layer serves as an electron transport layer;
  • the layer is an electron injection layer
  • Al is vacuum-evaporated to a thickness of 100 nm, and the layer is a second electrode layer.
  • the procedure of Device Preparation Example 1 was carried out except that the film thickness of the hole transport layer in step c) was 160 nm; the host material in step e) was EMH-13, the guest material was EMD-8, and EMH-13 The mass ratio to EMD-8 was 90:10 and the thickness was 40 nm.
  • the procedure of Device Preparation Example 1 was carried out except that the film thickness of the hole transport layer in step c) was 50 nm; the host material in step e) was EMH-1, the guest material was EMD-1, and EMH-1 and The EMD-1 mass ratio was 95:5 and the thickness was 25 nm.
  • Device Preparation Example 1 The procedure of Device Preparation Example 1 was carried out except that only the first organic material or the second organic material listed in Table 2 below was used as the hole transport layer material.
  • Device Preparation Example 11 The procedure of Device Preparation Example 11 was carried out except that only the first organic material or the second organic material listed in Table 3 below was used as the hole transport layer material.
  • Device Preparation Example 21 The procedure of Device Preparation Example 21 was carried out except that only the first organic material or the second organic material listed in Table 4 below was used as the hole transport layer material.
  • Tables 5-7 show the performance results of the fabricated organic electroluminescent device at a current density of 10 mA/cm 2 .
  • LT95 refers to the time it takes for the device brightness to decay to 95% at a current density of 10 mA/cm 2 ;
  • the life test system is the OLED device life tester jointly researched by the owner of the invention and Shanghai University.
  • the driving voltages of the devices prepared in the device preparation examples 1 to 10 of the present invention were remarkably lowered as compared with Comparative Examples 1 to 10 in which the organic materials were used alone as the hole transport layer materials. And the luminance, the luminous efficiency (ie, current efficiency), and the lifetime are both significantly improved.
  • the driving voltages of the devices prepared in the device preparation examples 11 to 20 of the present invention were also significantly lower than those of Comparative Examples 11 to 25, and the luminance and the luminous efficiency (i.e., current) were obtained. Both efficiency) and longevity are significantly improved.
  • the driving voltages of the devices prepared in the device preparation examples 21 to 30 of the present invention were also significantly lower than those of Comparative Examples 26 to 38, and the luminance and the luminous efficiency (i.e., current) were obtained. Both efficiency) and longevity are significantly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic electroluminescent device, successively comprising, from bottom to top, a substrate, a first electrode, an organic functional material layer and a second electrode, wherein the organic functional material layer comprises a hole transport zone arranged over the first electrode, a luminous layer arranged over the hole transport zone and comprising host and guest materials, and an electron transport zone arranged over the luminous layer, wherein the hole transport zone successively comprises, from top to bottom, a hole injection layer, a hole transport layer and an electron blocking layer; the hole transport layer comprises first and second organic materials; and the HOMO energy level of the first organic material is within the range of -5.2 eV to -5.6 eV, and the HOMO energy level of the second organic material is within the range of -5.4 eV to -5.9 eV, where |HOMOfirst organic material|< |HOMOsecond organic material|.

Description

有机电致发光器件及包括其的显示器Organic electroluminescent device and display including the same
本发明涉及半导体技术领域,更具体而言,涉及一种有机电致发光器件及包括其的显示器。The present invention relates to the field of semiconductor technology, and more particularly to an organic electroluminescent device and a display including the same.
有机电致发光器件技术既可以用于制造新型显示产品,也可以用于制备新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。有机电致发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用于有机层功能材料膜层中的正负电荷上,正负电荷进一步在有机发光层中复合,即产生有机电致发光。The organic electroluminescent device technology can be used for manufacturing new display products as well as for preparing new lighting products, and is expected to replace the existing liquid crystal display and fluorescent lighting, and has a wide application prospect. An organic electroluminescent device is used as a current device. When a voltage is applied to electrodes at both ends thereof and an electric field acts on the positive and negative charges in the organic layer functional material film layer, the positive and negative charges are further recombined in the organic light-emitting layer, that is, Electroluminescence.
有机电致发光器件一般为多层结构,除了发光层之外的各种辅助功能层对器件性能同样起着至关重要的作用。合理的器件结构能够有效提高器件的性能,电子注入层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层和空穴注入层被广泛用来提高器件的性能。Organic electroluminescent devices are generally multilayer in structure, and various auxiliary functional layers other than the luminescent layer also play a vital role in device performance. A reasonable device structure can effectively improve the performance of the device, and an electron injecting layer, an electron transporting layer, a hole blocking layer, an emitting layer, an electron blocking layer, a hole transporting layer, and a hole injecting layer are widely used to improve the performance of the device.
目前对有机电致发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现有机电致发光器件的性能的不断提升,不但需要有机电致发光器件结构和制备工艺的创新,更需要有机电致发光功能材料的不断研究和创新,制造出更高性能的有机电致发光功能材料。At present, research on improving the performance of organic electroluminescent devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device. In order to realize the continuous improvement of the performance of organic electroluminescent devices, not only the innovation of the structure and preparation process of organic electroluminescent devices, but also the continuous research and innovation of organic electroluminescent functional materials are required to produce higher performance organic electroluminescence. Luminous functional material.
有机电致发光器件中的载流子(空穴和电子)在电场的驱动下分别由器件的两个电极注入到器件中,并在发光层相遇复合发光。已知现有的有机电致发光器件中使用的空穴传输材料,例如 存在HOMO能级和电子阻挡层材料HOMO能级差较大,易在材料界面处形成集聚电荷,影响OLED器件寿命。 The carriers (holes and electrons) in the organic electroluminescent device are respectively injected into the device by the two electrodes of the device under the driving of the electric field, and are combined to emit light in the luminescent layer. Hole transport materials used in existing organic electroluminescent devices are known, for example There is a large HOMO level difference between the HOMO level and the electron blocking layer material, and it is easy to form an accumulated charge at the material interface, which affects the lifetime of the OLED device.
此外,在有机电致发光器件中,并不是所有材料的能级都能很好地匹配,它们之间的势垒严重阻碍空穴的有效注入。合理的能级结构有利于器件各层中的能级形成阶梯势垒,能够降低空穴注入的势垒,降低器件的驱动电压,从而改善器件的发光效率和寿命。In addition, in organic electroluminescent devices, not all of the energy levels of the materials are well matched, and the barrier between them severely hinders the effective injection of holes. A reasonable energy level structure facilitates the formation of a step barrier for the energy levels in each layer of the device, reduces the potential barrier of hole injection, and reduces the driving voltage of the device, thereby improving the luminous efficiency and lifetime of the device.
因此,不断需要开发具有优异的发光效率和寿命的有机电致发光器件。Therefore, there is an ongoing need to develop organic electroluminescent devices having excellent luminous efficiency and longevity.
本发明旨在提供一种具有改善的发光效率、耐热性和使用寿命的有机电致发光器件及包括其的显示器。The present invention is directed to an organic electroluminescent device having improved luminous efficiency, heat resistance and service life, and a display including the same.
本发明的一个目的通过提供一种下述的有机电致发光器件而实现,所述有机电致发光器件由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:An object of the present invention is achieved by providing an organic electroluminescence device which is provided with a substrate, a first electrode, an organic functional material layer and a second electrode in this order from bottom to top, The organic functional material layer includes:
空穴传输区域,位于所述第一电极之上;a hole transporting region located above the first electrode;
发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;a light emitting layer over the hole transporting region, comprising a host material and a guest material;
电子传输区域,位于所述发光层之上,An electron transport region located above the light emitting layer,
其中,所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,Wherein, the hole transporting region includes a hole injecting layer, a hole transporting layer and an electron blocking layer in this order from bottom to top.
所述空穴传输层包括第一和第二有机材料,其中第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,更优选为-5.35eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.9eV,优选为-5.4eV至-5.7eV,更优选为-5.48eV至-5.68eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|。 The hole transport layer includes first and second organic materials, wherein the first organic material has a HOMO level of from -5.2 eV to -5.6 eV, preferably from -5.3 eV to -5.5 eV, more preferably from -5.35 eV to -5.5 eV, and the HOMO level of the second organic material is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and | HOMO first organic material |<|HOMO second organic material |.
在包括含本发明的第一和第二有机材料的空穴传输层的有机电致发光器件中,限定了所述第一和第二有机材料的HOMO,这种能级匹配使阳极与电子阻挡层界面间的势垒减小,这有利于空穴从阳极注入到电子阻挡层中,提高了空穴的注入效率,并降低了器件的驱动电压,降低界面接触处的积聚电荷,提高器件的稳定性和使用寿命;此外,本发明空穴传输层的较高的玻璃化转变温度,提高了器件的耐热性。并且由两种不同材料组合成的有机膜层,可有效改善分子排列和分子间相互作用力,使得膜层稳定性更高,降低了器件的漏电流,提高器件的使用寿命。In an organic electroluminescent device comprising a hole transport layer comprising the first and second organic materials of the present invention, a HOMO of the first and second organic materials is defined, the level matching of the anode and the electron blocking The barrier between the layer interfaces is reduced, which facilitates the injection of holes from the anode into the electron blocking layer, improves the hole injection efficiency, reduces the driving voltage of the device, reduces the accumulated charge at the interface contact, and improves the device. Stability and service life; in addition, the higher glass transition temperature of the hole transport layer of the present invention improves the heat resistance of the device. And the organic film layer composed of two different materials can effectively improve the molecular arrangement and the intermolecular interaction force, so that the film layer has higher stability, reduces the leakage current of the device, and improves the service life of the device.
本发明的另一目的通过提供一种包括上述有机电致发光器件的显示器而实现。Another object of the present invention is achieved by providing a display comprising the above organic electroluminescent device.
图1示意性地示出了本发明一个实施方案的有机电致发光器件的剖视图。Fig. 1 schematically shows a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
图2示意性地示出了本发明一个实施方案的有机电致发光器件的能量转移机制图。Fig. 2 is a view schematically showing an energy transfer mechanism diagram of an organic electroluminescent device according to an embodiment of the present invention.
图3-7示意性地示出了包含本发明空穴传输层的有机电致发光器件中发光层组合结构图。3 to 7 are schematic views showing a combination structure of light-emitting layers in an organic electroluminescence device comprising the hole transport layer of the present invention.
下文中将参照附图更详细地描述本发明,但不意欲限制本发明。The invention is described in more detail hereinafter with reference to the accompanying drawings, but is not intended to limit the invention.
本文中所列出的任何数值范围意指包括纳入所列范围内具有相同数值精度的全部子范围。例如,“1.0至10.0”意指包括在所列最小值1.0和所列最大值10.0之间的全部子范围(且包括1.0和10.0),也就是说,具有等于或大于1.0的最小值和等于或小于10.0的最大值的全部子范围。本文所列出的任何最大数值限制意指包括纳入本文的全部更小的数值限制,并且本文所列出的任何最小数值限制意指包括纳入本文的全部更大的数值限制。因此,申请人保留修改包括权利要求书的本说明书的权利,以明确描述落入本文明确描述的范围内的任何子范围。Any numerical range recited herein is intended to include all sub-ranges that have the For example, "1.0 to 10.0" means including all subranges (and 1.0 and 10.0) between the listed minimum value of 1.0 and the listed maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and equal to Or all subranges of values less than 10.0. Any of the maximum numerical limits set forth herein are meant to include all of the smaller numerical limits that are included herein, and any minimum numerical limitation listed herein is meant to include all of the greater numerical limitations included herein. The Applicant reserves the right to modify the present specification, including the claims, to clearly describe any sub-ranges that fall within the scope of the invention.
需理解的是,在本文中所使用的缩写“HT”意指构成空穴传输层的有机材料,例如HT-I意指第 一有机材料,HT-II意指第二有机材料。It is to be understood that the abbreviation "HT" as used herein means an organic material constituting a hole transporting layer, for example, HT-I means a first organic material, and HT-II means a second organic material.
在附图中,为了清楚起见,层和区域的尺寸可被夸大。还将理解,当层或元件称为在另一层或者基板“之上”时,该层或元件可直接位于该另一层或者基板之上,或者也可存在中间层。此外,还将理解,当层称为在两个层“之间”时,该层可以是这两个层之间的唯一的层,或者也可存在一个或者多个中间层。全文中相同的附图标记表示相同的元件。In the figures, the dimensions of layers and regions may be exaggerated for clarity. It will also be understood that when a layer or element is referred to as being "above" another layer or substrate, the layer or element can be directly over the other layer or substrate, or an intermediate layer can also be present. In addition, it will also be understood that when a layer is referred to as being "between" two layers, the layer may be the only layer between the two layers, or one or more intermediate layers may be present. The same reference numerals are used throughout the drawings to refer to the same elements.
下文中,将描述根据实施方案的有机电致发光器件。Hereinafter, an organic electroluminescent device according to an embodiment will be described.
图1示意性地示出了本发明的一个实施方案的有机电致发光器件的剖视图。参照图1,本发明的一个实施方案的有机电致发光器件由下至上依次设置有基板1、第一电极2、空穴传输区域A、发光层6、电子传输区域B和第二电极10,其中空穴传输区域A由下至上依次包括空穴注入层3、空穴传输层4和电子阻挡层5,并且电子传输区域B由下至上依次包括空穴阻挡层7、电子传输层8和电子注入层9。Fig. 1 schematically shows a cross-sectional view of an organic electroluminescent device of one embodiment of the present invention. Referring to Fig. 1, an organic electroluminescent device according to an embodiment of the present invention is provided with a substrate 1, a first electrode 2, a hole transporting region A, a light emitting layer 6, an electron transporting region B, and a second electrode 10 in this order from bottom to top. The hole transporting region A includes a hole injecting layer 3, a hole transporting layer 4, and an electron blocking layer 5 in this order from bottom to top, and the electron transporting region B includes a hole blocking layer 7, an electron transporting layer 8, and electrons in order from bottom to top. Inject layer 9.
作为本发明有机电致发光器件的基板,可选用任何常用于有机电致发光器件的基板。实例为透明基板,如玻璃或透明塑料基板;不透明基板,如硅基板;柔性PI膜基板。不同基板具有不同的机械强度、热稳定性、透明性、表面光滑度、防水性,根据性质不同,使用方向不同。在本发明中,优选使用透明基板。基板的厚度没有特别限制。As the substrate of the organic electroluminescent device of the present invention, any substrate commonly used for an organic electroluminescence device can be selected. Examples are transparent substrates such as glass or transparent plastic substrates; opaque substrates such as silicon substrates; flexible PI film substrates. Different substrates have different mechanical strength, thermal stability, transparency, surface smoothness, and water repellency, and the direction of use is different depending on the nature. In the present invention, a transparent substrate is preferably used. The thickness of the substrate is not particularly limited.
在基板上形成第一电极,第一电极与第二电极可彼此相对。第一电极可以是阳极。第一电极可以是透射电极、半透射电极或者反射电极。当第一电极是透射电极时,第一电极可使用透明金属氧化物来形成,例如铟锡氧化物(ITO)、铟锌氧化物(IZO)、氧化锌(ZnO)或铟锡锌氧化物(ITZO)等。当第一电极是半透射电极或反射电极时,第一电极可包括Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或金属混合物。第一电极层的厚度取决于所使用的材料,通常为50-500nm,优选为70-300nm且更优选为100-200nm。A first electrode is formed on the substrate, and the first electrode and the second electrode may face each other. The first electrode can be an anode. The first electrode may be a transmissive electrode, a semi-transmissive electrode or a reflective electrode. When the first electrode is a transmissive electrode, the first electrode may be formed using a transparent metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc oxide ( ITZO) and so on. When the first electrode is a semi-transmissive electrode or a reflective electrode, the first electrode may include Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a mixture of metals. The thickness of the first electrode layer depends on the material used, and is usually from 50 to 500 nm, preferably from 70 to 300 nm and more preferably from 100 to 200 nm.
设置于第一电极和第二电极之间的有机功能材料层由下至上依次包括空穴传输区域、发光层和电子传输区域。The organic functional material layer disposed between the first electrode and the second electrode includes a hole transporting region, a light emitting layer, and an electron transporting region in order from bottom to top.
空穴传输区域可设置在第一电极与发光层之间。空穴传输区域可包括空穴注入层、空穴传输层和电子阻挡层,但不限于此。例如,参照图1,空穴传输区域可包括由下至上依次设置在第一电极之上的空穴注入层、空穴传输层和电子阻挡层。The hole transporting region may be disposed between the first electrode and the light emitting layer. The hole transporting region may include a hole injecting layer, a hole transporting layer, and an electron blocking layer, but is not limited thereto. For example, referring to FIG. 1, the hole transporting region may include a hole injecting layer, a hole transporting layer, and an electron blocking layer disposed on the first electrode in order from bottom to top.
通常,具有p型性质的有机材料——其易被氧化且当其被氧化时电化学稳定——主要用作空穴注入材料或空穴传输材料。同时,具有n型性质的有机材料——其易被还原且当被还原时电化学稳定——用作电子注入材料或电子传输材料。作为发光层材料,优选既具有p型性质又具有n型性质的材料,当其被氧化和还原时均稳定,还优选当形成激子时具有较高的用于将激子转化为光的发光效率的材料。Generally, an organic material having a p-type property, which is easily oxidized and electrochemically stabilized when it is oxidized, is mainly used as a hole injecting material or a hole transporting material. At the same time, an organic material having an n-type property, which is easily reduced and electrochemically stabilized when it is reduced, is used as an electron injecting material or an electron transporting material. As the light-emitting layer material, a material having both a p-type property and an n-type property is preferable, which is stable when it is oxidized and reduced, and preferably has a high luminescence for converting excitons into light when excitons are formed. Efficiency material.
空穴注入层的材料通常是优选具有高功函数的材料,使得空穴容易地注入有机材料层中。在本发明中,空穴注入层的材料至少含有通式(17)、(18)或(19)所示材料中的一种:The material of the hole injection layer is usually a material preferably having a high work function, so that holes are easily injected into the organic material layer. In the present invention, the material of the hole injection layer contains at least one of the materials represented by the general formula (17), (18) or (19):
Figure PCTCN2019084629-appb-000002
Figure PCTCN2019084629-appb-000002
其中,在通式(17)中,F 1-F 3各自独立地代表取代或未取代的C 6-30芳基、取代或未取代的3至30元杂芳基,并且F 1-F 3可以相同或不同; Wherein, in the formula (17), F 1 -F 3 each independently represent a substituted or unsubstituted C 6-30 aryl group, a substituted or unsubstituted 3 to 30 membered heteroaryl group, and F 1 -F 3 Can be the same or different;
在通式(18)和通式(19)中,G 1-G 6各自独立地代表氢、腈基、卤素、酰胺基、烷氧基、酯基、硝基、C-R 11、取代或未取代的C 6-30芳基、3至30元杂芳基,其中R 11为直链或支链的C 1-20烷基,条件是G 1-G 6不同时为氢; In the general formula (18) and the general formula (19), G 1 -G 6 each independently represent hydrogen, nitrile group, halogen, amide group, alkoxy group, ester group, nitro group, CR 11 , substituted or unsubstituted a C 6-30 aryl group, a 3 to 30 membered heteroaryl group, wherein R 11 is a linear or branched C 1-20 alkyl group, provided that G 1 -G 6 are not hydrogen at the same time;
其中在杂芳基的情况下,所述杂原子选自N、O和S原子中的至少一个。Wherein in the case of a heteroaryl group, the hetero atom is selected from at least one of the N, O and S atoms.
在本发明的一个优选实施方案中,所使用的空穴注入层的材料选自下述(a)至(j)之一:In a preferred embodiment of the invention, the material of the hole injection layer used is selected from one of the following (a) to (j):
Figure PCTCN2019084629-appb-000003
Figure PCTCN2019084629-appb-000003
Figure PCTCN2019084629-appb-000004
Figure PCTCN2019084629-appb-000004
本发明的空穴注入层的厚度可以是5-100nm、优选是5-50nm且更优选是5-20nm。The hole injection layer of the present invention may have a thickness of 5 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm.
本发明的空穴传输层可设置在空穴注入层之上。所述空穴传输层材料包括第一有机材料和第二有机材料,其中第一有机材料与第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。此外,所述第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,更优选为-5.35eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.9eV,优选为-5.4eV至-5.7eV,更优选为-5.48eV至-5.68eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|。 The hole transport layer of the present invention may be disposed over the hole injection layer. The hole transport layer material includes a first organic material and a second organic material, wherein a ratio of the first organic material to the second organic material is 1:99 to 99:1, preferably 10:90 to 90:10, It is preferably from 30:70 to 70:30, based on the mass. Furthermore, the first organic material has a HOMO energy level of from -5.2 eV to -5.6 eV, preferably from -5.3 eV to -5.5 eV, more preferably from -5.35 eV to -5.5 eV, and the HOMO energy of the second organic material The grade is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and | HOMO first organic material | <|HOMO second organic material |.
图2示意性地示出了本发明的一个实施方案的有机电致发光器件的能量转移机制,其中a代表空穴注入层,b代表空穴传输层,c代表电子阻挡层,d代表发光层的客体,e代表发光层的主体,以及f代表电子传输层。2 is a view schematically showing an energy transfer mechanism of an organic electroluminescent device according to an embodiment of the present invention, wherein a represents a hole injection layer, b represents a hole transport layer, c represents an electron blocking layer, and d represents a light emitting layer. The object, e represents the body of the luminescent layer, and f represents the electron transport layer.
在一个实施方案中,所述第二有机材料和电子阻挡材料的HOMO能级之间差值的绝对值为≤0.4ev。所述空穴传输材料与电子阻挡层材料之间较小的能量势垒使得空穴可容易地经由空穴传输层注入到电子阻挡层,进而传输至发光层中。In one embodiment, the absolute value of the difference between the HOMO levels of the second organic material and the electron blocking material is < 0.4 ev. A small energy barrier between the hole transporting material and the electron blocking layer material allows holes to be easily injected into the electron blocking layer via the hole transport layer and further transported into the light emitting layer.
在本发明一个优选的实施方案中,本发明的第一和第二有机材料各自独立地选自通式(1)、通式(2)和通式(3)之一:In a preferred embodiment of the invention, the first and second organic materials of the invention are each independently selected from one of the general formula (1), the general formula (2) and the general formula (3):
Figure PCTCN2019084629-appb-000005
Figure PCTCN2019084629-appb-000005
其中,在通式(1)中Wherein, in the general formula (1)
X、X 1各自独立地选自单键、碳原子、N-(R 5)、硫原子、氧原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、C 6-20芳基取代的亚烷基中的一种; X, X 1 are each independently selected from a single bond, a carbon atom, an N-(R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, One of a linear or branched C 1-20 alkyl substituted silylene group, a C 6-20 aryl substituted alkylene group;
如果存在R 5,则其可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; If R 5 is present, it may be the same or differently selected from a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group. a linear or branched C 1-20 alkyl substituted silylene group, an aryl group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one selected from the group consisting of N, O and S a heteroaryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group. ;
Z代表氮原子或C-R 6,其中R 6可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中两个或更多个R 6基团可彼此连接并且可形成环结构; Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a ruthenium atom, a ruthenium atom, a ruthenium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1 - a 20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silylene group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least one selected from N a heteroaryl heteroaryl group of O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, C a 5-20 heteroaryl substitution wherein two or more R 6 groups may be attached to each other and may form a ring structure;
Ar 1、Ar 2、Ar 3、Ar 4各自独立地代表单键、直链或支链的C 1-20亚烷基、具有5至30个碳原子的亚芳基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中Ar1、Ar2基团还可连接成环; Ar 1 , Ar 2 , Ar 3 , Ar 4 each independently represent a single bond, a linear or branched C 1-20 alkylene group, an arylene group having 5 to 30 carbon atoms, a straight chain or a branched chain. a C 1-20 alkyl-substituted silylene group, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, wherein in the case of the latter two, the group The group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group, wherein the Ar 1 , Ar 2 groups may also be joined to form a ring;
m、n、p、q、s和t等于0或1;且m+n+p+q≥1且m+n+s+t≥1;m, n, p, q, s, and t are equal to 0 or 1; and m+n+p+q≥1 and m+n+s+t≥1;
R 1、R 2、R 3和R 4各自独立地代表氢原子、通式(4)、通式(5)或通式(6)所示的结构,条件是R 1、R 2、R 3和R 4不同时为氢原子; R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the formula (4), the formula (5) or the formula (6), provided that R 1 , R 2 , R 3 When it is different from R 4 , it is a hydrogen atom;
Figure PCTCN2019084629-appb-000006
Figure PCTCN2019084629-appb-000006
其中,在通式(4)和通式(5)中:Among them, in the general formula (4) and the general formula (5):
X 2、X 3各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 group. Alkyl-substituted silane group, C 6-20 aryl-substituted alkylene group, C 1-20 alkyl-substituted imido group, C 6-20 aryl-substituted imido group, C 5-20 heteroaryl group One of the substituted imido groups;
Y 1可相同或不同地代表N原子或C-R,其中R可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;其中两个或更多个R基团可彼此连接并且可形成环结构; Y 1 may represent N atom or CR identically or differently, wherein R may represent the same or different hydrogen atom, helium atom, rhodium atom, rhodium atom, fluorine atom, cyano group, phosphoric acid or a salt thereof, linear or branched a C 1-20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least one selected a heteroaryl group derived from a hetero atom of N, O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, a C 6-20 aryl group a C 5-20 heteroaryl group; wherein two or more R groups may be attached to each other and may form a ring structure;
R 6、R 7各自独立地代表氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基、通式(7)或通式(6)所示结构;其中在芳基和杂芳基的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; R 6 and R 7 each independently represent a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl group-substituted alkyl group, a straight chain or a branch. a C 1-20 alkyl-substituted silane group of a chain, an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, a structure represented by the formula (7) or the formula (6); wherein, in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C 1-20 alkyl group, C 6- 20 aryl, C 5-20 heteroaryl substituted;
Figure PCTCN2019084629-appb-000007
Figure PCTCN2019084629-appb-000007
其中,在通式(7)中:Among them, in the general formula (7):
Y 2可相同或不同地代表N原子或C-R 10,其中,R 10可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; Y 2 may represent the N atom or CR 10 identically or differently, wherein R 10 may represent the same or differently a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear chain or a branched C 1-20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least a heteroaryl group selected from heteroatoms of N, O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 Aryl, C 5-20 heteroaryl substituted;
X 4、X 5各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 group. Alkyl-substituted silane group, C 6-20 aryl-substituted alkylene group, C 1-20 alkyl-substituted imido group, C 6-20 aryl-substituted imido group, C 5-20 heteroaryl group One of the substituted imido groups;
通式(7)通过并环方式和通式(4)或通式(5)相连,*表示为连接位点,相连时,只能取相邻的两个位点,通式(7)和通式(4)或通式(5)并环连接时,连接位点Y 1表示为碳原子; The general formula (7) is linked to the general formula (4) or the general formula (5) by a ring-and-loop method, and * is represented as a linking site. When connected, only two adjacent sites can be taken, and the general formula (7) and the pass are When the formula (4) or the formula (5) is connected in a loop, the linking site Y 1 is represented as a carbon atom;
在通式(6)中:In the general formula (6):
R 8、R 9各自独立地代表具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;R 8、R 9还可连接成环; R 8 and R 9 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, which may be Optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; R 8 and R 9 may also be bonded to form a ring;
在通式(2)中:In the general formula (2):
L 1、L 2、L 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构; L 1 , L 2 , L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S An aryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; 1 , L 2 , L 3 may be connected to each other and may form a ring structure;
Ar 5、Ar 6、Ar 7各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 5、Ar 6、Ar 7可两两彼此连接并且可形成环结构; Ar 5 , Ar 6 and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, An imido group of 5 to 30 carbon atoms, which group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; Ar 5 , Ar 6 , Ar 7 may be connected to each other two-two and may form a ring structure;
Ar 5、Ar 6、Ar 7各自还可以独立地表示为通式(4)、通式(5)、通式(6)中的一个,其中所述通式上的基团X 2、X 3、Y 1、R 6、R 7和*具有如上所述的含义; Each of Ar 5 , Ar 6 and Ar 7 may also be independently represented as one of the formula (4), the formula (5), and the formula (6), wherein the groups X 2 and X 3 in the formula are , Y 1 , R 6 , R 7 and * have the meanings as described above;
在通式(3)中:In the general formula (3):
D 1、D 2、D 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构; D 1 , D 2 , D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S An aryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; 1 , L 2 , L 3 may be connected to each other and may form a ring structure;
Ar 8、Ar 9、Ar 10各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 8、Ar 9、Ar 10可两两彼此连接并且可形成环结构; Ar 8 , Ar 9 and Ar 10 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, An imino group of 5 to 30 carbon atoms, which group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; Ar 8 , Ar 9 , Ar 10 may be connected to each other and may form a ring structure;
Ar 8、Ar 9、Ar 10中至少一个为通式(4)、通式(5)、通式(6)中的一个;其中所述通式上的基团X 2、X 3、Y 1、R 6、R 7和*各自具有如上所述的含义。 At least one of Ar 8 , Ar 9 and Ar 10 is one of the formula (4), the formula (5), and the formula (6); wherein the group X 2 , X 3 , Y 1 on the formula And R 6 , R 7 and * each have the meanings as described above.
在本发明一个优选的实施方案中,通式(2)表示为通式(9)至通式(12)之一:In a preferred embodiment of the invention, the formula (2) is represented by one of the formulae (9) to (12):
Figure PCTCN2019084629-appb-000008
Figure PCTCN2019084629-appb-000008
其中among them
Ar 5至Ar 7表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, and 5 to 30 carbon atoms. Imino group, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
并且L 1-L 3、R 6-R 9、Y 1和X 2-X 3均具有上文所述的含义。 And L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
在本发明一个优选的实施方案中,通式(3)表示为通式(13)至通式(16)之一:In a preferred embodiment of the invention, the formula (3) is represented by one of the formulae (13) to (16):
Figure PCTCN2019084629-appb-000009
Figure PCTCN2019084629-appb-000009
其中among them
Ar 8和Ar 10表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;并且 Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, and 5 to 30 carbon atoms. Imino group, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
并且D 1-D 3、R 6-R 9、Y 1和X 2-X 3均具有上文所述的含义。 And D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings described above.
在本发明一个优选的实施方案中,所述第一有机材料选自下述化合物之一:In a preferred embodiment of the invention, the first organic material is selected from one of the following compounds:
Figure PCTCN2019084629-appb-000010
Figure PCTCN2019084629-appb-000010
Figure PCTCN2019084629-appb-000011
Figure PCTCN2019084629-appb-000011
Figure PCTCN2019084629-appb-000012
Figure PCTCN2019084629-appb-000012
Figure PCTCN2019084629-appb-000013
Figure PCTCN2019084629-appb-000013
在本发明一个优选的实施方案中,所述第二有机材料选自下述化合物之一:In a preferred embodiment of the invention, the second organic material is selected from one of the following compounds:
Figure PCTCN2019084629-appb-000014
Figure PCTCN2019084629-appb-000014
Figure PCTCN2019084629-appb-000015
Figure PCTCN2019084629-appb-000015
Figure PCTCN2019084629-appb-000016
Figure PCTCN2019084629-appb-000016
Figure PCTCN2019084629-appb-000017
Figure PCTCN2019084629-appb-000017
Figure PCTCN2019084629-appb-000018
Figure PCTCN2019084629-appb-000018
Figure PCTCN2019084629-appb-000019
Figure PCTCN2019084629-appb-000019
本发明的空穴传输层材料的空穴迁移率为1×10 -5至1×10 -2cm 2/(V·s)、优选为1×10 -4至1×10 -2cm 2/(V·s)且更优选为1×10 -4至1×10 -3cm 2/(V·s)。 The hole transport layer material of the present invention has a hole mobility of from 1 × 10 -5 to 1 × 10 -2 cm 2 /(V·s), preferably from 1 × 10 -4 to 1 × 10 -2 cm 2 / (V·s) is more preferably 1 × 10 -4 to 1 × 10 -3 cm 2 /(V·s).
本发明空穴传输层材料的玻璃化转变温度≥120℃,优选≥130℃且更优选≥140℃。The hole transport layer material of the present invention has a glass transition temperature of ≥ 120 ° C, preferably ≥ 130 ° C and more preferably ≥ 140 ° C.
本发明空穴传输层材料的厚度可为1-200nm、优选为10-100nm。The hole transport layer material of the present invention may have a thickness of from 1 to 200 nm, preferably from 10 to 100 nm.
电子阻挡层可设置在空穴传输层之上;电子阻挡层的材料优选为具有高T1及低LUMO的材料,这能够阻挡电子损失及能量损失。例如,本发明使用的电子阻挡层可为
Figure PCTCN2019084629-appb-000020
The electron blocking layer may be disposed over the hole transport layer; the material of the electron blocking layer is preferably a material having a high T1 and a low LUMO, which is capable of blocking electron loss and energy loss. For example, the electron blocking layer used in the present invention may be
Figure PCTCN2019084629-appb-000020
本发明的电子阻挡层的厚度可以是5-200nm、优选是10-150nm且更优选是20-100nm。The electron blocking layer of the present invention may have a thickness of 5 to 200 nm, preferably 10 to 150 nm, and more preferably 20 to 100 nm.
发光层可设置在空穴传输区域之上。发光层的材料是一种通过分别接收来自空穴传输层和电子传输层的空穴和电子,并将所接收的空穴和电子结合而能发出可见光的材料。其具体的实例包括羟基喹啉衍生物的金属络合物、各种金属络合物、蒽衍生物、双苯乙烯苯衍生物、芘衍生物、噁唑衍生物和聚对苯乙烯衍生物等,但不限于此。此外,发光层可以包含主体材料和客体材料。作为本发明有机电致发光器件发光层的主体材料和客体材料,均可以使用现有技术中公知的用于有机电致发光器件的发光层材料,所述主体材料可为例如噻唑衍生物、苯并咪唑衍生物、聚二烷基芴衍生物或4,4′-双(9-咔唑基)联苯(CBP);所述客体材料可为例如喹吖啶酮、香豆素、红荧烯、苝及其衍生物、苯并吡喃衍生物、罗丹明衍生物或氨基苯乙烯衍生物。在本发明的一个优选实施方案中,所使用的发光层主体材料选自下述EMH-1至EMH-22中的一种或多种的组合:The light emitting layer may be disposed over the hole transporting region. The material of the light-emitting layer is a material which can emit visible light by receiving holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining the received holes and electrons. Specific examples thereof include metal complexes of hydroxyquinoline derivatives, various metal complexes, anthracene derivatives, bisstyrenebenzene derivatives, anthracene derivatives, oxazole derivatives, and polyparaphenylene derivatives. , but not limited to this. Further, the light emitting layer may include a host material and a guest material. As the host material and the guest material of the light-emitting layer of the organic electroluminescent device of the present invention, a light-emitting layer material for an organic electroluminescence device which is known in the art may be used, and the host material may be, for example, a thiazole derivative or a benzene. And an imidazole derivative, a polydialkylfluorene derivative or 4,4'-bis(9-carbazolyl)biphenyl (CBP); the guest material may be, for example, quinacridone, coumarin, red fluorescent Alkene, anthracene and derivatives thereof, benzopyran derivatives, rhodamine derivatives or aminostyrene derivatives. In a preferred embodiment of the invention, the luminescent layer host material used is selected from the group consisting of one or more of EMH-1 to EMH-22 described below:
Figure PCTCN2019084629-appb-000021
Figure PCTCN2019084629-appb-000021
此外,为了改进荧光或磷光特性,发光材料还可包括磷光或荧光材料。磷光材料的具体实例包括铱、铂等的金属络合物的磷光材料。例如,可以使用Ir(ppy) 3[fac-三(2-苯基吡啶)铱]等绿色磷光材料,FIrpic、FIr6等蓝色磷光材料和Btp2Ir(acac)等红色磷光材料。对于荧光材料,可使用本领域中通常使用的那些。在本发明的一个优选实施方案中,所使用的发光层客体材料选自下述EMD-1至EMD-23之一: Furthermore, in order to improve the fluorescent or phosphorescent properties, the luminescent material may also comprise a phosphorescent or fluorescent material. Specific examples of the phosphorescent material include phosphorescent materials of metal complexes of ruthenium, platinum, and the like. For example, a green phosphorescent material such as Ir(ppy) 3 [fac-tris(2-phenylpyridine)fluorene], a blue phosphorescent material such as FIrpic or FIr6, and a red phosphorescent material such as Btp2Ir (acac) can be used. For the fluorescent material, those commonly used in the art can be used. In a preferred embodiment of the invention, the luminescent layer guest material used is selected from one of the following EMD-1 to EMD-23:
Figure PCTCN2019084629-appb-000022
Figure PCTCN2019084629-appb-000022
在本发明的发光层中,所使用的主体材料与客体材料的比例为99∶1-70∶30,优选为99∶1-85∶15且更优选为97∶3-87∶13,基于质量计。In the light-emitting layer of the present invention, the ratio of the host material to the guest material used is from 99:1 to 70:30, preferably from 99:1 to 85:15 and more preferably from 97:3 to 87:13, based on the mass. meter.
此外,为了得到高效率的有机电致发光器件,除了上述所使用的荧光或磷光主客体材料之外,发光层还可采用另外的客体材料,或采用多种客体材料,客体材料可为单纯的荧光材料、延迟荧光(TADF)材料或磷光材料,或由不同的荧光材料、TADF材料、磷光搭配组合,发光层可为单一的发光层材料,也可以为横向或纵向叠加在一起的复合发光层材料。构成上述有机电致发光器件的发光层列举出如下多种构造:In addition, in order to obtain a highly efficient organic electroluminescent device, in addition to the fluorescent or phosphorescent host-guest material used above, the luminescent layer may be formed of another guest material or a plurality of guest materials, and the guest material may be simple. A fluorescent material, a delayed fluorescent (TADF) material or a phosphorescent material, or a combination of different fluorescent materials, TADF materials, and phosphorescent light, the light emitting layer may be a single light emitting layer material, or may be a composite light emitting layer stacked laterally or vertically. material. The light-emitting layers constituting the above organic electroluminescence device are exemplified by the following various structures:
(1)单一有机发光层材料;(1) a single organic light-emitting layer material;
(2)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任一种组合,并且不分前后顺序,如图3所示,;(2) any combination of a blue organic light-emitting layer material and a green, yellow or red light-emitting layer material, and without prior order, as shown in FIG. 3;
(3)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并且不分前后顺序,如图4所示;(3) any combination of the blue organic light-emitting layer material and the green, yellow or red light-emitting layer material, and without prior order, as shown in FIG. 4;
(4)蓝色有机发光层材料、绿色有机发光层材料、红色有机发光层材料横向排布,如图5所示;(4) blue organic light-emitting layer material, green organic light-emitting layer material, and red organic light-emitting layer material are arranged horizontally, as shown in FIG. 5;
(5)蓝色有机发光层材料和绿色、黄色或红色发光层材料的的任一种组合,并通过连接层进行电荷传输,形成两叠层装置结构,如图6所示;(5) any combination of a blue organic light-emitting layer material and a green, yellow or red light-emitting layer material, and charge transfer through the connection layer to form a two-layer device structure, as shown in FIG. 6;
(6)蓝色有机发光层材料和绿色、黄色或红色发光层材料的任两种组合,并通过连接层进行电荷传输,形成三叠层装置结构,如图7所示。(6) A combination of any two of the blue organic light-emitting layer material and the green, yellow or red light-emitting layer material, and charge transfer through the connection layer to form a three-layer device structure, as shown in FIG.
优选地,所述有机发光功能层包括这样的发光层,其包括蓝色、绿色、红色、黄色有机发光层材料中的1种或至少2种的组合。Preferably, the organic light-emitting functional layer includes a light-emitting layer including one or a combination of at least two of blue, green, red, and yellow organic light-emitting layer materials.
如上所述,在图3至图5中,G代表光,6代表发光层,EM1、EM2和EM3代表不同的发光层材料。As described above, in FIGS. 3 to 5, G represents light, 6 represents a light-emitting layer, and EM1, EM2, and EM3 represent different light-emitting layer materials.
在图6和7中,6代表发光层,300代表有机发光功能层,610、620和630代表连接层。In Figures 6 and 7, 6 represents a light-emitting layer, 300 represents an organic light-emitting functional layer, and 610, 620 and 630 represent a tie layer.
为了调节载流子电荷在发光层中的有效结合,上述构成OLED发光体的发光层6的膜厚可根据需要任意调节,或根据需要将不能色彩的发光层交替叠加组合,还可以在邻接发光层的有机层里添加不同功能用途的电荷阻挡层等。优选地,本发明的发光层的厚度可以为5-60nm,优选为10-50nm,更优选为20-45nm。In order to adjust the effective binding of the carrier charge in the light-emitting layer, the film thickness of the light-emitting layer 6 constituting the OLED light-emitting body can be arbitrarily adjusted as needed, or the light-emitting layers which are not colorable can be alternately superimposed and combined as needed, and adjacent light can be emitted. A charge blocking layer or the like for different functional uses is added to the organic layer of the layer. Preferably, the light-emitting layer of the present invention may have a thickness of 5 to 60 nm, preferably 10 to 50 nm, more preferably 20 to 45 nm.
在本发明中,电子传输区域可由下至上依次包括设置在发光层之上的空穴阻挡层、电子传输层和电子注入层,但不限于此。In the present invention, the electron transporting region may include a hole blocking layer, an electron transporting layer, and an electron injecting layer disposed on the light emitting layer in this order from the bottom to the top, but is not limited thereto.
空穴阻挡层为阻挡从阳极注入的空穴穿过发光层而进入阴极,由此延长器件的寿命并提高器件的效能的层。本发明的空穴阻挡层可设置在发光层至上。作为本发明有机电致发光器件的空穴阻挡层材料,可以使用现有技术中公共知的具有空穴阻挡作用的化合物,例如,浴铜灵(称为BCP)等菲咯啉衍生物、铝(III)双(2-甲基-8-喹啉)-4-苯基酚盐(BAlq)等羟基喹啉衍生物的金属络合物、各种稀土类络合物、噁唑衍生物、三唑衍生物、三嗪衍生物、9,9′-(5-(6-([1,1′-联苯]-4-基)-2-苯基嘧啶-4-基)-1,3-亚苯基)双(9H-咔唑)(CAS号:1345338-69-3)等嘧啶衍生物等。本发明的空穴阻挡层的厚度可为2-200nm、优选为5-150nm且更优选为10-100nm。The hole blocking layer is a layer that blocks holes injected from the anode through the light emitting layer and enters the cathode, thereby extending the life of the device and improving the performance of the device. The hole blocking layer of the present invention may be disposed on the light emitting layer to the top. As the material of the hole blocking layer of the organic electroluminescent device of the present invention, a compound having a hole blocking function known in the art, for example, a phenanthroline derivative such as batholine (referred to as BCP), or aluminum can be used. (III) a metal complex of a hydroxyquinoline derivative such as bis(2-methyl-8-quinoline)-4-phenylphenolate (BAlq), various rare earth complexes, or an oxazole derivative, a triazole derivative, a triazine derivative, 9,9'-(5-(6-([1,1'-biphenyl]-4-yl)-2-phenylpyrimidin-4-yl)-1, A pyrimidine derivative such as 3-phenylene) bis(9H-carbazole) (CAS No.: 1345338-69-3). The hole blocking layer of the present invention may have a thickness of 2 to 200 nm, preferably 5 to 150 nm, and more preferably 10 to 100 nm.
电子传输层可设置在发光层或(若存在的话)空穴阻挡层之上。电子传输层材料是一种容易接收阴极的电子并将接收的电子转移至发光层的材料。优选具有高的电子迁移率的材料。作为本发明有机电致发光器件的电子传输层,可以使用现有技术中公知的用于有机电致发光器件的电子传输层材料,例如,以Alq 3、BAlq为代表的羟基喹啉衍生物的金属络合物、各种金属络合物、三唑衍生物、、2,4-双(9,9-二甲基-9H-芴-2-基)-6-(萘-2-基)-1,3,5-三嗪(CAS号:1459162-51-6)等三嗪衍生物、2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑(CAS号:561064-11-7,俗称LG201)等咪唑衍生物、三嗪衍生物、噁二唑衍生物、噻二唑衍生物、碳化二亚胺衍生物、喹喔啉衍生物、菲咯啉衍生物、硅基化合物衍生物等。本发明的电子传输层的厚度可以为10-80nm、优选为20-60nm且更优选为25-45nm。 The electron transport layer can be disposed over the luminescent layer or, if present, the hole blocking layer. The electron transport layer material is a material that easily receives electrons from the cathode and transfers the received electrons to the light emitting layer. Materials having high electron mobility are preferred. As the electron transport layer of the organic electroluminescent device of the present invention, an electron transport layer material for an organic electroluminescence device known in the art, for example, a quinolinol derivative typified by Alq 3 or BAlq can be used. Metal complexes, various metal complexes, triazole derivatives, 2,4-bis(9,9-dimethyl-9H-indol-2-yl)-6-(naphthalen-2-yl) a triazine derivative such as -1,3,5-triazine (CAS No.: 1459162-51-6), 2-(4-(9,10-di(naphthalen-2-yl)indol-2-yl)benzene Imidazole derivatives such as 1-phenyl-1H-benzo[d]imidazole (CAS No.: 561064-11-7, commonly known as LG201), triazine derivatives, oxadiazole derivatives, thiadiazole derivatives A carbodiimide derivative, a quinoxaline derivative, a phenanthroline derivative, a silicon-based compound derivative or the like. The electron transport layer of the present invention may have a thickness of 10 to 80 nm, preferably 20 to 60 nm, and more preferably 25 to 45 nm.
电子注入层可设置在电子传输层之上。电子注入层材料通常是优选具有低功函数的材料,使得电子容易地注入有机功能材料层中。作为本发明有机电致发光器件的电子注入层材料,可以使用现有技术中公知的用于有机电致发光器件的电子注入层材料,例如,锂;锂盐,如8-羟基喹啉锂、氟化锂、碳酸锂或叠氮化锂;或铯盐,氟化铯、碳酸铯或叠氮化铯。本发明的电子注入层的厚度可以是0.1-5nm、优选为0.5-3nm且更优选为0.8-1.5nm。The electron injection layer may be disposed on the electron transport layer. The electron injecting layer material is generally a material preferably having a low work function such that electrons are easily injected into the organic functional material layer. As the material of the electron injecting layer of the organic electroluminescent device of the present invention, an electron injecting layer material for an organic electroluminescent device known in the art, for example, lithium; a lithium salt such as lithium quinolate, can be used. Lithium fluoride, lithium carbonate or lithium azide; or barium salt, barium fluoride, barium carbonate or barium azide. The electron injecting layer of the present invention may have a thickness of 0.1 to 5 nm, preferably 0.5 to 3 nm, and more preferably 0.8 to 1.5 nm.
第二电极可设置在电子传输区域之上。第二电极可以是阴极。第二电极EL2可以是透射电极、半透射电极或者反射电极。当第二电极是透射电极时,第二电极可以包括例如Li、Yb、Ca、LiF/Ca、LiF/Al、Al、Mg、BaF、Ba、Ag或者其化合物或混合物;当第二电极是半透射电极或者反射电极时,第二电极可包括Ag、Mg、Yb、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr、Li、Ca、LiF/Ca、LiF/Al、Mo、Ti或者其化合物或混合物。The second electrode may be disposed over the electron transport region. The second electrode can be a cathode. The second electrode EL2 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode. When the second electrode is a transmissive electrode, the second electrode may include, for example, Li, Yb, Ca, LiF/Ca, LiF/Al, Al, Mg, BaF, Ba, Ag, or a compound or mixture thereof; when the second electrode is half When transmitting or reflecting the electrode, the second electrode may include Ag, Mg, Yb, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti or a compound or mixture thereof.
取决于所用的材料,本发明的有机电致发光器件可为顶部发光型、底部发光型或双面发光型。The organic electroluminescent device of the present invention may be of a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
在有机电致发光器件是顶部发光类型的情况下,第一电极可以是反射电极,而第二电极可以是透射电极或者半透射电极。在有机电致发光器件是底部发光类型的情况下,第一电极可以是透射电极或者半透射电极,而第二电极可以是反射电极。In the case where the organic electroluminescent device is of the top emission type, the first electrode may be a reflective electrode and the second electrode may be a transmissive electrode or a semi-transmissive electrode. In the case where the organic electroluminescent device is of the bottom emission type, the first electrode may be a transmissive electrode or a semi-transmissive electrode, and the second electrode may be a reflective electrode.
有机电致发光器件还可包括封装结构。所述封装结构可为防止外界物质例如湿气和氧气进入有机电致发光器件的有机层的保护结构。所述封装结构可为例如罐,如玻璃罐或金属罐;或覆盖有机层整个表面的薄膜。The organic electroluminescent device may further include a package structure. The package structure may be a protective structure for preventing foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device. The package structure may be, for example, a can, such as a glass jar or a metal can; or a film covering the entire surface of the organic layer.
在制备有机电致发光器件的过程中,例如可通过在基板上相继层压第一电极、有机功能材料层和第二电极来制备本发明的有机电致发光器件。关于此点,可使用物理气相沉积方法,如溅射法或电子束蒸汽法,或者真空蒸镀法,但不限于此。并且,可通过例如真空沉积法、真空蒸镀法或溶液涂覆法将上述化合物用于形成有机功能材料层。关于此点,溶液涂覆法意指旋涂法、浸涂 法、喷射印刷法、筛网印刷法、喷雾法和辊涂法,但不限于此。真空蒸镀意指在真空环境中,将材料加热并镀到基材上。在本发明中,优选使用真空蒸镀法来形成所述各个层。In the process of preparing an organic electroluminescent device, the organic electroluminescent device of the present invention can be prepared, for example, by sequentially laminating a first electrode, an organic functional material layer, and a second electrode on a substrate. In this regard, a physical vapor deposition method such as a sputtering method or an electron beam vapor method, or a vacuum evaporation method may be used, but is not limited thereto. Also, the above compound can be used to form an organic functional material layer by, for example, a vacuum deposition method, a vacuum evaporation method, or a solution coating method. In this regard, the solution coating method means a spin coating method, a dip coating method, a jet printing method, a screen printing method, a spray method, and a roll coating method, but is not limited thereto. Vacuum evaporation means heating and plating a material onto a substrate in a vacuum environment. In the present invention, it is preferred to form the respective layers using a vacuum evaporation method.
另外,需要说明的是,本发明所述的用于形成各个层的材料均可以单独成膜而作为单层使用,也可以与其他材料混合后成膜而作为单层使用,还可以为单独成膜的层之间的层叠结构、混合后成膜的层之间的层叠结构或者单独成膜的层与混合后成膜的层的层叠结构。In addition, it should be noted that the materials for forming the respective layers described in the present invention may be used as a single layer by separately forming a film, or may be formed as a single layer by mixing with other materials, or may be separately formed. The laminated structure between the layers of the film, the laminated structure between the layers after film formation after mixing, or the laminated structure of the layer formed separately and the layer formed by mixing.
在本发明的另一方面,涉及一种显示器,其包括一个或多个本发明的有机电致发光器件,并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。In another aspect of the invention, a display is provided that includes one or more of the organic electroluminescent devices of the present invention, and where a plurality of devices are included, the devices are stacked in a lateral or longitudinal direction.
在一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有膜厚和材料均相同的空穴传输层。在另一个优选的实施方案中,显示器由可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有材料相同但膜厚各不相同的空穴传输层。In a preferred embodiment, the display may comprise a device each having a layer of organic light-emitting material of three colors of blue, green, red, and the device has a hole transport layer of the same film thickness and material. In another preferred embodiment, the display is comprised of a device that can include layers of organic light-emitting materials each having three colors of blue, green, and red, and that has a hole transport layer of the same material but different film thicknesses.
在另一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有膜厚相同但其材料至少有两种组合的空穴传输层。在又一个优选的实施方案中,显示器可包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件,并且所述器件具有膜厚各不相同并且其材料至少有两种组合的空穴传输层。In another preferred embodiment, the display may comprise a device having a layer of organic luminescent material each having three colors of blue, green, red, and the device has a hole transport of the same film thickness but at least two combinations of materials thereof Floor. In yet another preferred embodiment, the display may comprise a device each having a layer of organic light-emitting material of three colors of blue, green, red, and the device has an empty film thickness and at least two combinations of materials thereof Hole transport layer.
需要说明的是,本文中已经公开了示例性的实施方案,虽然其中使用了特定的术语,但是这些术语仅用于且仅解释为一般和描述性含义,而并非出于限制的目的。除非另有说明,结合特定实施方案描述的特征、特性和/或元件可单独使用或与结合其他实施方案描述的特征、特性和/或元件组合使用。It is to be understood that the exemplifications of the present invention are intended to be illustrative, and are not intended to be limiting. The features, characteristics, and/or elements described in connection with the specific embodiments may be used alone or in combination with the features, characteristics, and/or elements described in connection with the other embodiments, unless otherwise stated.
以下实施例旨在更好地解释本发明,但本发明的范围不限于此。The following examples are intended to better explain the present invention, but the scope of the present invention is not limited thereto.
实施例Example
本文中所使用的检测方法如下:The detection methods used in this article are as follows:
玻璃化转变温度Tg:通过示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;Glass transition temperature Tg: measured by differential scanning calorimetry (DSC, Germany NETZSCH DSC204F1 differential scanning calorimeter), heating rate 10 ° C / min;
HOMO能级:对于有机光电子材料的HOMO能级的测试有多种方法或仪器手段,包括CV(循环伏安法),UPS(紫外光电子能谱),日本理研计器公司生产的AC系列设备(大气光电子能谱),心地天益公司生产的IPS系列设备(真空光电子能谱)等,除了上述手段以外,还可以通过高斯计算,并结合半经验的判断,确定HOMO能级的水平,准确测量HOMO能级对于研究OLED器件结构搭配非常重要。上述所有HOMO能级确定的手段中,CV法受溶剂影响,数据准确度和再现性比较差,其他包括UPS法,AC法,IPS法,从根本原理来说,都是紫外光电子能谱的测量原理,其中UPS测量不仅需要超高真空,设备价值昂贵,而且因为测量的人,以及仪器设置的不同,数据解析结果存在较大差异。AC法从原理上来说,需要将样品置于有氧的干燥空气环境,氧元素对样品存在一定影响,数据再现性和一致性都比较差,IPS法测量HOMO能级,是将膜材料放置在真空环境中,紫外单色光直接施加在样品表面,通过测量光电子电流,从而确定HOMO能级的大小,属于直接测量。基于以上分析和实践,发明人认为IPS测量法在测量OLED材料的HOMO能级时,再现性、一致性和准确性也最高。本发明所有涉及材料的HOMO能级均为IPS的测量手段。具体测量方法如下:HOMO energy level: There are many methods or instruments for testing the HOMO energy level of organic optoelectronic materials, including CV (cyclic voltammetry), UPS (ultraviolet photoelectron spectroscopy), and AC series equipment manufactured by Riken Keiki Co., Ltd. ( Atmospheric photoelectron spectroscopy), IPS series equipment (vacuum photoelectron spectroscopy) produced by Xindi Tianyi Co., Ltd., in addition to the above methods, can also determine the level of HOMO energy level by Gaussian calculation and combined with semi-empirical judgment. The HOMO level is very important for studying the structural matching of OLED devices. Among all the above HOMO energy level determination methods, the CV method is affected by solvents, and the data accuracy and reproducibility are relatively poor. Others include UPS method, AC method, IPS method, and fundamentally, all are measurement of ultraviolet photoelectron spectroscopy. Principle, in which UPS measurement requires not only ultra-high vacuum, but also expensive equipment, and there are large differences in data analysis results due to the difference in the person being measured and the instrument settings. In principle, the AC method requires the sample to be placed in an aerobic dry air environment. The oxygen element has a certain influence on the sample, and the data reproducibility and consistency are relatively poor. The IPS method measures the HOMO level and places the film material in In a vacuum environment, ultraviolet monochromatic light is directly applied to the surface of the sample, and the photoelectron current is measured to determine the magnitude of the HOMO level, which is a direct measurement. Based on the above analysis and practice, the inventors believe that the IPS measurement method has the highest reproducibility, consistency and accuracy when measuring the HOMO level of OLED materials. All HOMO energy levels of the materials involved in the present invention are measurement means of IPS. The specific measurement method is as follows:
利用真空蒸镀设备,在真空度1.0E-5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084629-appb-000023
将材料蒸镀到ITO基板上,其膜厚为60-80nm,然后利用用IPS3测量设备,对样品膜的HOMO能级水平进行测量,测量环境为10-2Pa以下的真空环境;
Using a vacuum evaporation apparatus, the evaporation rate is controlled under a vacuum of 1.0E-5Pa.
Figure PCTCN2019084629-appb-000023
The material is evaporated onto the ITO substrate to a film thickness of 60-80 nm, and then the HOMO level of the sample film is measured by using an IPS3 measuring device, and the measurement environment is a vacuum environment of 10-2 Pa or less;
Eg能级:基于材料单膜的紫外分光光度(UV吸收)基线与第一吸收峰的上升侧画切线,用切线和基线交叉点数值算出。Eg level: based on the UV spectrophotometric (UV absorption) baseline of the material single film and the rising side of the first absorption peak, the tangent line is calculated using the tangent and baseline intersection values.
LUMO能级:基于前述HOMO能级与Eg能级的差值计算得出。LUMO level: calculated based on the difference between the aforementioned HOMO level and the Eg level.
电极材料的功函数:使用上海大学研发的表面功函数测试仪在大气环境下测试。Work function of the electrode material: It was tested in the atmospheric environment using a surface work function tester developed by Shanghai University.
空穴迁移率:将材料制作成单电荷器件,用SCLC方法测定。Hole mobility: The material was fabricated into a single charge device and measured by the SCLC method.
制备空穴传输层材料Preparation of hole transport layer material
I.制备所使用的第一有机材料:I. Preparation of the first organic material used:
制备化合物HT1-1Preparation of Compound HT1-1
Figure PCTCN2019084629-appb-000024
Figure PCTCN2019084629-appb-000024
在氮气气氛下,向500ml三口烧瓶中加入0.01mol原料I-1、0.03mol原料II-1、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至 100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.6%,收率70.4%。 In a 500 ml three-necked flask, 0.01 mol of the starting material I-1, 0.03 mol of the starting material II-1, 0.03 mol of sodium t-butoxide, 5 × 10 -5 mol of Pd 2 (dba) 3 and 5 × 10 -5 were placed under a nitrogen atmosphere. Mol tri-tert-butylphosphine was dissolved in 150 ml of toluene, heated to 100 ° C, refluxed for 24 hours, and the reaction was observed by TLC until the reaction was completed. It was naturally cooled to room temperature, filtered, and the filtrate was evaporated to dryness. The obtained material was purified through a silica gel column (petrole ether as eluent) to give the desired product with a purity of 99.6% and a yield of 70.4%.
元素分析结构(分子式C 60H 42N 4):理论值:C,87.99;H,5.17;N,6.84;测试值:C,87.97;H,5.18;N,6.85。 Elemental analysis structure (Molecular formula C 60 H 42 N 4 ): Theory: C, 87.99; H, 5.17; N, 6.84; Tests: C, 87.97; H, 5.18; N, 6.85.
ESI-MS(m/z)(M +):理论值为818.34,实测值为818.62。 ESI-MS (m/z) (M + ): calc.
制备化合物HTI-9Preparation of compound HTI-9
Figure PCTCN2019084629-appb-000025
Figure PCTCN2019084629-appb-000025
按化合物HTI-1的合成方法制备,不同在于用原料II-2代替原料II-1,所得目标产物的纯度为99.9%,收率为71.7%。It was prepared according to the synthesis method of the compound HTI-1 except that the raw material II-2 was used instead of the raw material II-1, and the obtained target product had a purity of 99.9% and a yield of 71.7%.
元素分析结构(分子式C 54H 44N 2):理论值:C,89.96;H,6.15;N,3.89;测试值:C,89.97;H,6.13;N,3.90。 Elemental analysis structure (Molecular formula C 54 H 44 N 2 ): Theory: C, 89.96; H, 6.15; N, 3.89; Tests: C, 89.97; H, 6.13; N, 3.90.
ESI-MS(m/z)(M +):理论值为720.35,实测值为720.65。 ESI-MS (m/z) (M + ): calc. 720.35.
制备化合物HTI-28Preparation of compound HTI-28
Figure PCTCN2019084629-appb-000026
Figure PCTCN2019084629-appb-000026
在氮气气氛下,向500ml三口瓶中加入0.01mol原料I-2、0.03mol原料II-3,用混合溶剂(90ml甲苯,45ml乙醇)溶解,然后加入0.04mol Na 2CO 3水溶液(2M)。将混合物搅拌1小时,然后加入1×10 -4mol Pd(PPh 3) 4,加热回流15小时。利用TLC观察反应,直至反应完全。自然冷却,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.6%,收率72.2%。 Under a nitrogen atmosphere, 0.01 mol of the starting material I-2 and 0.03 mol of the starting material II-3 were placed in a 500 ml three-necked flask, dissolved in a mixed solvent (90 ml of toluene, 45 ml of ethanol), and then 0.04 mol of an aqueous Na 2 CO 3 solution (2M) was added. The mixture was stirred for 1 hour, then 1 × 10 -4 mol of Pd(PPh 3 ) 4 was added , and the mixture was heated under reflux for 15 hours. The reaction was observed by TLC until the reaction was completed. It was naturally cooled, filtered, and the filtrate was evaporated to dryness. The obtained material was purified through a silica gel column ( petroleum ether as eluent) to give the desired product with a purity of 99.6% and a yield of 72.2%.
元素分析结构(分子式C 42H 25NO 3):理论值:C,85.26;H,4.26;N,2.37;测试值:C,85.24;H,4.24;N,2.39。 Elemental analysis structure (Molecular formula C 42 H 25 NO 3 ): Theory: C, 85.26; H, 4.26; N, 2.37; Tests: C, 85.24; H, 4.24; N, 2.39.
ESI-MS(m/z)(M +):理论值为591.18,实测值为591.35。 ESI-MS (m/z) (M + ): calc. 591.
制备化合物HTI-41Preparation of compound HTI-41
Figure PCTCN2019084629-appb-000027
Figure PCTCN2019084629-appb-000027
按化合物HTI-1的合成方法制备,不同在于用原料III-4代替原料II-1,所得目标产物的纯度为99.5%,收率为68.8%。Prepared according to the synthesis method of the compound HTI-1, except that the raw material III-4 was used instead of the raw material II-1, and the obtained target product had a purity of 99.5% and a yield of 68.8%.
元素分析结构(分子式C 72H 54N 4):理论值:C,88.67;H,5.58;N,5.74;测试值:C,88.64;H,5.60;N,5.73。 Elemental analysis structure (Molecular formula C 72 H 54 N 4 ): Theory: C, 88.67; H, 5.58; N, 5.74; Tests: C, 88.64; H, 5.60; N, 5.73.
ESI-MS(m/z)(M +):理论值为974.43,实测值为974.61。 ESI-MS (m/z) (M + ): calc.
制备化合物HTI-52Preparation of compound HTI-52
Figure PCTCN2019084629-appb-000028
Figure PCTCN2019084629-appb-000028
按化合物HTI-1的合成方法制备,不同在于用原料III-5代替原料II-1,所得目标产物的纯度为99.8%,收率为72.9%。It was prepared according to the synthesis method of the compound HTI-1 except that the raw material III-5 was used instead of the raw material II-1, and the obtained target product had a purity of 99.8% and a yield of 72.9%.
元素分析结构(分子式C 56H 40N 2):理论值:C,90.78;H,5.44;N,3.78;测试值:C,90.76;H,5.45;N,3.79。 Elemental analysis structure (Molecular formula C 56 H 40 N 2 ): Theory: C, 90.78; H, 5.44; N, 3.78; </ RTI></RTI> C, 90.76; H, 5.45; N, 3.79.
ESI-MS(m/z)(M +):理论值为740.32,实测值为740.62。 ESI-MS (m/z) (M + ): s.
制备化合物HTI-57Preparation of compound HTI-57
Figure PCTCN2019084629-appb-000029
Figure PCTCN2019084629-appb-000029
在氮气气氛下,向500ml三口烧瓶中加入0.015mol原料I-3、0.01mol原料II-6、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.7%,收率77.5%。 In a 500 ml three-necked flask, 0.015 mol of the starting material I-3, 0.01 mol of the starting material II-6, 0.03 mol of sodium t-butoxide, 5 × 10 -5 mol of Pd 2 (dba) 3 and 5 × 10 -5 were placed under a nitrogen atmosphere. Mol tri-tert-butylphosphine was dissolved in 150 ml of toluene, heated to 100 ° C, refluxed for 24 hours, and the reaction was observed by TLC until the reaction was completed. It was naturally cooled to room temperature, filtered, and the filtrate was evaporated to dryness. The obtained material was purified through a silica gel column ( petroleum ether as eluent) to give the desired product, purity 99.7%, yield 77.5%.
元素分析结构(分子式C 60H 44N 2):理论值:C,90.87;H,5.59;N,3.53;测试值:C,90.86;H,5.58;N,3.56。 Elemental analysis structure (Molecular formula C 60 H 44 N 2 ): Theory: C, 90.87; H, 5.59; N, 3.53; </ RTI> C, 90.86; H, 5.58; N, 3.56.
ESI-MS(m/z)(M +):理论值为792.35,实测值为792.67。 ESI-MS (m/z) (M + ): calc. 792.
制备化合物HTI-63Preparation of compound HTI-63
Figure PCTCN2019084629-appb-000030
Figure PCTCN2019084629-appb-000030
按化合物HTI-57的合成方法制备,不同在于用原料I-4代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.9%,收率为73.9%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-4 was used instead of the raw material I-3, and the raw material II-7 was used instead of the raw material II-6, and the obtained target product had a purity of 99.9% and a yield of 73.9%.
元素分析结构(分子式C 52H 37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.50;N,2.08。 Elemental analysis structure (Molecular formula C 52 H 37 N): Theory: C, 92.41; H, 5.52; N, 2.07; </ RTI> C, 92.42; H, 5.50; N, 2.08.
ESI-MS(m/z)(M +):理论值为675.29,实测值为675.58。 ESI-MS (m/z) (M + ): calc.
制备化合物HTI-72Preparation of compound HTI-72
Figure PCTCN2019084629-appb-000031
Figure PCTCN2019084629-appb-000031
按化合物HTI-57的合成方法制备,不同在于用原料I-5代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.6%,收率为72.6%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-5 was used instead of the raw material I-3, and the raw material II-7 was used instead of the raw material II-6, and the obtained target product had a purity of 99.6% and a yield of 72.6%.
元素分析结构(分子式C 54H 39N):理论值:C,92.40;H,5.60;N,2.00;测试值:C,92.38;H,5.61;N,2.01。 Elemental analysis structure (Molecular formula C 54 H 39 N): Theory: C, 92.40; H, 5.60; N, 2.00; </ RTI> C, 92.38; H, 5.61; N, 2.01.
ESI-MS(m/z)(M +):理论值为701.31,实测值为701.55。 ESI-MS (m/z) (M + ): calc. 701.31.
制备化合物HTI-86Preparation of compound HTI-86
Figure PCTCN2019084629-appb-000032
Figure PCTCN2019084629-appb-000032
按化合物HTI-57的合成方法制备,不同在于用原料I-6代替原料I-3,用原料II-8代替原料II-6,所得目标产物的纯度为99.9%,收率为75.4%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-6 was used instead of the raw material I-3, and the raw material II-8 was used instead of the raw material II-6, and the obtained target product had a purity of 99.9% and a yield of 75.4%.
元素分析结构(分子式C 52H 39N):理论值:C,92.13;H,5.80;N,2.07;测试值:C,92.11;H,5.82;N,2.07。 Elemental analysis structure (Molecular formula C 52 H 39 N): Theory: C, 92.13; H, 5.80; N, 2.07;
ESI-MS(m/z)(M +):理论值为677.31,实测值为677.51。 ESI-MS (m/z) (M + ): calc. 677.31.
制备化合物HTI-101Preparation of compound HTI-101
Figure PCTCN2019084629-appb-000033
Figure PCTCN2019084629-appb-000033
按化合物HTI-57的合成方法制备,不同在于用原料I-7代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.7%,收率为74.3%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-7 was used instead of the raw material I-3, and the raw material II-9 was used instead of the raw material II-6, and the obtained target product had a purity of 99.7% and a yield of 74.3%.
元素分析结构(分子式C 55H 41NO):理论值:C,90.25;H,5.65;N,1.91;测试值:C,90.24;H,5.64;N,1.90。 Elemental analysis structure (Molecular formula C 55 H 41 NO): Theory: C, 90.25; H, 5.65; N, 1.91; Tests: C, 90.24; H, 5.64; N, 1.90.
ESI-MS(m/z)(M +):理论值为731.32,实测值为731.66。 ESI-MS (m/z) (M + ): Theory: 731.32.
制备化合物HTI-114Preparation of compound HTI-114
Figure PCTCN2019084629-appb-000034
Figure PCTCN2019084629-appb-000034
按化合物HTI-57的合成方法制备,不同在于用原料I-8代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.6%,收率为77.6%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-8 was used instead of the raw material I-3, and the raw material II-7 was used instead of the raw material II-6, and the obtained target product had a purity of 99.6% and a yield of 77.6%.
元素分析结构(分子式C 55H 43N):理论值:C,92.01;H,6.04;N,1.95;测试值:C,92.02;H,6.02;N,1.96。 Elemental analysis structure (Molecular formula C 55 H 43 N): Theory: C, 92.01; H, 6.04; N, 1.95; Tests: C, 92.02; H, 6.02; N, 1.96.
ESI-MS(m/z)(M +):理论值为717.34,实测值为717.54。 ESI-MS (m/z) (M + ): ???
制备化合物HTI-124Preparation of compound HTI-124
Figure PCTCN2019084629-appb-000035
Figure PCTCN2019084629-appb-000035
按化合物HTI-57的合成方法制备,不同在于用原料I-9代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.7%,收率为78.8%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-9 was used instead of the raw material I-3, and the raw material II-9 was used instead of the raw material II-6, and the obtained target product had a purity of 99.7% and a yield of 78.8%.
元素分析结构(分子式C 54H 41NO):理论值:C,90.09;H,5.74;N,1.95;测试值:C,90.07;H,5.76;N,1.97。 Elemental analysis structure (Molecular formula C 54 H 41 NO): Theory: C, 90.09; H, 5.74; N, 1.95; Tests: C, 90.07; H, 5.76; N, 1.97.
ESI-MS(m/z)(M +):理论值为719.32,实测值为719.53。 ESI-MS (m/z) (M + ): s.
制备化合物HTI-134Preparation of compound HTI-134
Figure PCTCN2019084629-appb-000036
Figure PCTCN2019084629-appb-000036
按化合物HTI-57的合成方法制备,不同在于用原料I-10代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.6%,收率为75.1%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-10 was used instead of the raw material I-3, and the raw material II-9 was used instead of the raw material II-6, and the obtained target product had a purity of 99.6% and a yield of 75.1%.
元素分析结构(分子式C 63H 57N):理论值:C,91.37;H,6.94;N,1.69;测试值:C,91.35;H,6.96;N,1.68。 Elemental analysis structure (Molecular formula C 63 H 57 N): Theory: C, 91.37; H, 6.94; N, 1.69; Found: C, 91.35; H, 6.96; N, 1.68.
ESI-MS(m/z)(M +):理论值为827.45,实测值为827.77。 ESI-MS (m/z) (M + ): Found: 827.
制备化合物HTI-144Preparation of compound HTI-144
Figure PCTCN2019084629-appb-000037
Figure PCTCN2019084629-appb-000037
按化合物HTI-57的合成方法制备,不同在于用原料I-11代替原料I-3,用原料II-7代替原料II-6,所得目标产物的纯度为99.8%,收率为74.9%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-11 was used instead of the raw material I-3, and the raw material II-7 was used instead of the raw material II-6, and the obtained target product had a purity of 99.8% and a yield of 74.9%.
元素分析结构(分子式C 58H 47N):理论值:C,91.90;H,6.25;N,1.85;测试值:C,91.92;H,6.24;N,1.84。 Elemental analysis structure (Molecular formula C 58 H 47 N): Theory: C, 91.90; H, 6.25; N, 1.85; Test: C, 91.92; H, 6.24; N, 1.84.
ESI-MS(m/z)(M +):理论值为757.37,实测值为757.57。 ESI-MS (m/z) (M + ): calc.
制备化合物HTI-162Preparation of compound HTI-162
Figure PCTCN2019084629-appb-000038
Figure PCTCN2019084629-appb-000038
按化合物HTI-57的合成方法制备,不同在于用原料I-12代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.7%,收率为75.7%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-12 was used instead of the raw material I-3, and the raw material II-9 was used instead of the raw material II-6, and the obtained target product had a purity of 99.7% and a yield of 75.7%.
元素分析结构(分子式C 49H 41N):理论值:C,91.41;H,6.42;N,2.18;测试值:C,91.43;H,6.41;N,2.16。 Elemental analysis structure (Molecular formula C 49 H 41 N): Theory: C, 91.41; H, 6.42; N, 2.18; Tests: C, 91.43; H, 6.41; N, 2.16.
ESI-MS(m/z)(M +):理论值为643.32,实测值为643.60。 ESI-MS (m/z) (M + ): Theory: 643.32.
制备化合物HTI-176Preparation of compound HTI-176
Figure PCTCN2019084629-appb-000039
Figure PCTCN2019084629-appb-000039
按化合物HTI-57的合成方法制备,不同在于用原料I-13代替原料I-3,用原料II-9代替原料II-6,所得目标产物的纯度为99.6%,收率为73.6%。Prepared according to the synthesis method of the compound HTI-57, except that the raw material I-13 was used instead of the raw material I-3, and the raw material II-9 was used instead of the raw material II-6, and the obtained target product had a purity of 99.6% and a yield of 73.6%.
元素分析结构(分子式C 60H 49N 3):理论值:C,88.74;H,6.08;N,5.17;测试值:C,88.71;H,6.09;N,5.20。 Elemental analysis structure (Molecular formula C 60 H 49 N 3 ): Theory: C, 88.74; H, 6.08; N, 5.17; Tests: C, 88.71; H, 6.09; N, 5.20.
ESI-MS(m/z)(M +):理论值为811.39,实测值为811.65。 ESI-MS (m/z) (M + ): s.
II.制备所使用的第二有机材料:II. Preparation of the second organic material used:
制备化合物HTII-7Preparation of compound HTII-7
Figure PCTCN2019084629-appb-000040
Figure PCTCN2019084629-appb-000040
在氮气气氛下,向500ml三口烧瓶中加入0.015mol原料IV-1、0.01mol原料V-1、0.03mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷。然后加入150ml甲苯将其溶解,加热至100℃,回流24小时。利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.5%,收率77.3%。 In a 500 ml three-necked flask, 0.015 mol of the starting material IV-1, 0.01 mol of the starting material V-1, 0.03 mol of sodium t-butoxide, 5 × 10 -5 mol of Pd 2 (dba) 3 and 5 × 10 -5 were placed under a nitrogen atmosphere. Mol tri-tert-butyl phosphate. It was then dissolved by adding 150 ml of toluene, heated to 100 ° C, and refluxed for 24 hours. The reaction was observed by TLC until the reaction was completed. It was naturally cooled to room temperature, filtered, and the filtrate was evaporated to dryness. The obtained material was purified through a silica gel column (petrole ether as eluent) to give the desired product, purity 99.5%, yield 77.3%.
元素分析结构(分子式C 53H 41N 3):理论值:C,88.42;H,5.74;N,5.84;测试值:C,88.43;H,5.75;N,5.82。 Elemental analysis structure (Molecular formula C 53 H 41 N 3 ): Theory: C, 88.42; H, 5.74; N, 5.84; Test: C, 88.43; H, 5.75; N, 5.82.
ESI-MS(m/z)(M +):理论值为719.33,实测值为719.64。 ESI-MS (m/z) (M + ): s.
制备化合物HTII-21Preparation of Compound HTII-21
Figure PCTCN2019084629-appb-000041
Figure PCTCN2019084629-appb-000041
按化合物HTII-7的合成方法制备,不同在于用原料III-2代替原料III-1,用原料IV-2代替原料IV-1,所得目标产物的纯度为99.9%,收率为75.5%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-2 was used instead of the raw material III-1, and the raw material IV-2 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.9% and a yield of 75.5%.
元素分析结构(分子式C 54H 39N):理论值:C,92.40;H,5.60;N,2.00;测试值:C,92.41;H,5.61;N,1.98。 Elemental analysis structure (Molecular formula C 54 H 39 N): Theory: C, 92.40; H, 5.60; N, 2.00; </ RTI></RTI> C, 92.41; H, 5.61; N, 1.98.
ESI-MS(m/z)(M +):理论值为701.31,实测值为701.52。 ESI-MS (m/z) (M + ): calc. 701.31.
制备化合物HTII-37Preparation of compound HTII-37
Figure PCTCN2019084629-appb-000042
Figure PCTCN2019084629-appb-000042
在氮气气氛下,向500ml三口烧瓶中加入0.03mol原料III-3、0.01mol原料IV-4、0.04mol叔丁醇钠、5×10 -5mol Pd 2(dba) 3和5×10 -5mol三叔丁基磷,然后加入150ml甲苯将其溶解,加热至100℃,回流24小时,利用TLC观察反应,直至反应完全。自然冷却至室温,过滤,将滤液旋蒸至无馏分。所得物质通过硅胶柱(石油醚作为洗脱剂)纯化,得到目标产物,纯度99.7%,收率74.6%。 In a 500 ml three-necked flask, 0.03 mol of the starting material III-3, 0.01 mol of the starting material IV-4, 0.04 mol of sodium t-butoxide, 5 × 10 -5 mol of Pd 2 (dba) 3 and 5 × 10 -5 were placed under a nitrogen atmosphere. Mol tri-tert-butylphosphine was dissolved in 150 ml of toluene, heated to 100 ° C, refluxed for 24 hours, and the reaction was observed by TLC until the reaction was completed. It was naturally cooled to room temperature, filtered, and the filtrate was evaporated to dryness. The obtained material was purified through a silica gel column (petrole ether as eluent) to give the desired product, purity 99.7%, yield 74.6%.
元素分析结构(分子式C 54H 35NO 2):理论值:C,88.86;H,4.83;N,1.92;测试值:C,88.85;H,4.84;N,1.91。 Elemental analysis structure (Molecular formula C 54 H 35 NO 2 ): Theory: C, 88.86; H, 4.83; N, 1.92; Tests: C, 88.85; H, 4.84; N, 1.91.
ESI-MS(m/z)(M +):理论值为729.27,实测值为729.45。 ESI-MS (m/z) (M + ): calc.
制备化合物HTII-41Preparation of compound HTII-41
Figure PCTCN2019084629-appb-000043
Figure PCTCN2019084629-appb-000043
按化合物HTII-7的合成方法制备,不同在于用原料III-4代替原料III-1,用原料IV-4代替原料IV-1,所得目标产物的纯度为99.8%,收率为76.1%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-4 was used instead of the raw material III-1, and the raw material IV-4 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.8% and a yield of 76.1%.
元素分析结构(分子式C 51H 37NO):理论值:C,90.10;H,5.49;N,2.06;测试值:C,90.11;H,5.47;N,2.07。 Elemental analysis structure (Molecular formula C 51 H 37 NO): Theory: C, 90.10; H, 5.49; N, 2.06; </ RTI></RTI> C, 90.11; H, 5.47; N, 2.07.
ESI-MS(m/z)(M +):理论值为679.29,实测值为679.63。 ESI-MS (m/z) (M + ): calc.
制备化合物HTII-52Preparation of compound HTII-52
Figure PCTCN2019084629-appb-000044
Figure PCTCN2019084629-appb-000044
按化合物HTII-7的合成方法制备,不同在于用原料III-5代替原料III-1,用原料IV-5代替原料IV-1,所得目标产物的纯度为99.7%,收率为75.6%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-5 was used instead of the raw material III-1, and the raw material IV-5 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.7% and a yield of 75.6%.
元素分析结构(分子式C 54H 36N 2O):理论值:C,88.98;H,4.98;N,3.84;测试值:C,88.96;H,4.99;N,3.85。 Elemental analysis structure (Molecular formula C 54 H 36 N 2 O): Theory: C, 88.98; H, 4.98; N, 3.84; Tests: C, 88.96; H, 4.99; N, 3.85.
ESI-MS(m/z)(M +):理论值为728.28,实测值为728.56。 ESI-MS (m/z) (M + ): s.
制备化合物HTII-78Preparation of compound HTII-78
Figure PCTCN2019084629-appb-000045
Figure PCTCN2019084629-appb-000045
按化合物HTII-7的合成方法制备,不同在于用原料III-6代替原料III-1,用原料IV-6代替原料IV-1,所得目标产物的纯度为99.9%,收率为75.1%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-6 was used instead of the raw material III-1, and the raw material IV-6 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.9% and a yield of 75.1%.
元素分析结构(分子式C 52H 37N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.53;N,2.05。 Elemental analysis structure (Molecular formula C 52 H 37 N): Theory: C, 92.41; H, 5.52; N, 2.07; </ RTI> C, 92.42; H, 5.53; N, 2.05.
ESI-MS(m/z)(M +):理论值为675.29,实测值为675.65。 ESI-MS (m/z) (M + ): calc.
制备化合物HTII-102Preparation of compound HTII-102
Figure PCTCN2019084629-appb-000046
Figure PCTCN2019084629-appb-000046
按化合物HTII-7的合成方法制备,不同在于用原料III-7代替原料III-1,用原料IV-4代替原料IV-1,所得目标产物的纯度为99.7%,收率为77.4%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-7 was used instead of the raw material III-1, and the raw material IV-4 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.7% and a yield of 77.4%.
元素分析结构(分子式C 49H 35N):理论值:C,92.41;H,5.52;N,2.07;测试值:C,92.42;H,5.53;N,2.05。 Elemental analysis structure (Molecular formula C 49 H 35 N): Theory: C, 92.41; H, 5.52; N, 2.07; </ RTI></RTI> C, 92.42; H, 5.53; N, 2.05.
ESI-MS(m/z)(M +):理论值为637.28,实测值为637.55。 ESI-MS (m/z) (M + ): calc. 637.28.
制备化合物HTII-132Preparation of compound HTII-132
Figure PCTCN2019084629-appb-000047
Figure PCTCN2019084629-appb-000047
按化合物HTII-7的合成方法制备,不同在于用原料III-8代替原料III-1,所得目标产物的纯度为99.7%,收率为75.6%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-8 was used instead of the raw material III-1, and the obtained target product had a purity of 99.7% and a yield of 75.6%.
元素分析结构(分子式C 55H 41NO):理论值:C,90.25;H,5.65;N,1.91;测试值:C,90.23;H,5.66;N,1.90。 Elemental analysis structure (Molecular formula C 55 H 41 NO): Theory: C, 90.25; H, 5.65; N, 1.91; Tests: C, 90.23; H, 5.66; N, 1.90.
ESI-MS(m/z)(M +):理论值为731.32,实测值为731.64。 ESI-MS (m/z) (M + ): Theory: 731.32, found 731.64.
制备化合物HTII-148Preparation of Compound HTII-148
Figure PCTCN2019084629-appb-000048
Figure PCTCN2019084629-appb-000048
按化合物HTII-7的合成方法制备,不同在于用原料III-9代替原料III-1,,用原料IV-6代替原料IV-1所得目标产物的纯度为99.6%,收率为73.8%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-9 was used instead of the raw material III-1, and the purity of the target product obtained by substituting the raw material IV-6 for the raw material IV-1 was 99.6%, and the yield was 73.8%.
元素分析结构(分子式C 52H 39NO):理论值:C,90.01;H,5.67;N,2.02;测试值:C,90.03;H,5.64;N,2.03。 Elemental analysis structure (Molecular formula C 52 H 39 NO): Theory: C, 90.01; H, 5.67; N, 2.02; </ RTI></RTI> C, 90.03; H, 5.64; N, 2.03.
ESI-MS(m/z)(M +):理论值为693.61,实测值为693.30。 ESI-MS (m/z) (M + ): calc.
制备化合物HTII-164Preparation of Compound HTII-164
Figure PCTCN2019084629-appb-000049
Figure PCTCN2019084629-appb-000049
按化合物HTII-7的合成方法制备,不同在于用原料III-10代替原料III-1,用原料IV-7代替原料IV-1,所得目标产物的纯度为99.5%,收率为73.8%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-10 was used instead of the raw material III-1, and the raw material IV-7 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.5% and a yield of 73.8%.
元素分析结构(分子式C 55H 43N):理论值:C,92.01;H,6.04;N,1.95;测试值:C,92.02;H,6.02;N,1.96。 Elemental analysis structure (Molecular formula C 55 H 43 N): Theory: C, 92.01; H, 6.04; N, 1.95; Tests: C, 92.02; H, 6.02; N, 1.96.
ESI-MS(m/z)(M +):理论值为717.34,实测值为717.57。 ESI-MS (m/z) (M + ): ???
制备化合物HTII-192Preparation of compound HTII-192
Figure PCTCN2019084629-appb-000050
Figure PCTCN2019084629-appb-000050
按化合物HTII-7的合成方法制备,不同在于用原料III-11代替原料III-1,用原料IV-8代替原料IV-1,所得目标产物的纯度为99.6%,收率为76.1%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-11 was used instead of the raw material III-1, and the raw material IV-8 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.6% and a yield of 76.1%.
元素分析结构(分子式C 54H 39N):理论值:C,92.40;H,5.60;N,2.00;测试值:C,92.41;H,5.58; N,2.01。 Elemental analysis structure (Molecular formula C 54 H 39 N): Theory: C, 92.40; H, 5.60; N, 2.00; </ RTI> C, 92.41; H, 5.58; N, 2.01.
ESI-MS(m/z)(M +):理论值为701.31,实测值为701.54。 ESI-MS (m/z) (M + ): calc. 701.31.
制备化合物HTII-232Preparation of compound HTII-232
Figure PCTCN2019084629-appb-000051
Figure PCTCN2019084629-appb-000051
按化合物HTII-7的合成方法制备,不同在于用原料III-12代替原料III-1,所得目标产物的纯度为99.7%,收率为73.3%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-12 was used instead of the raw material III-1, and the obtained target product had a purity of 99.7% and a yield of 73.3%.
元素分析结构(分子式C 63H 57N):理论值:C,91.37;H,6.94;N,1.69;测试值:C,91.36;H,6.93;N,1.70。 Elemental analysis structure (Molecular formula C 63 H 57 N): Theory: C, 91.37; H, 6.94; N, 1.69; Test: C, 91.36; H, 6.93; N, 1.70.
ESI-MS(m/z)(M +):理论值为827.45,实测值为827.71。 ESI-MS (m/z) (M + ): Found: 827.
制备化合物HTII-243Preparation of Compound HTII-243
Figure PCTCN2019084629-appb-000052
Figure PCTCN2019084629-appb-000052
按化合物HTII-7的合成方法制备,不同在于用原料III-13代替原料III-1,用原料IV-7代替原料IV-1,所得目标产物的纯度为99.5%,收率为73.6%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-13 was used instead of the raw material III-1, and the raw material IV-7 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.5% and a yield of 73.6%.
元素分析结构(分子式C 62H 55N):理论值:C,91.47;H,6.81;N,1.72;测试值:C,91.45;H,6.82;N,1.73。 Elemental analysis structure (Molecular formula C 62 H 55 N): Theory: C, 91.47; H, 6.81; N, 1.72; Tests: C, 91.45; H, 6.82; N, 1.73.
ESI-MS(m/z)(M +):理论值为813.43,实测值为813.66。 ESI-MS (m/z) (M + ): calc.
制备化合物HTII-266Preparation of Compound HTII-266
Figure PCTCN2019084629-appb-000053
Figure PCTCN2019084629-appb-000053
按化合物HTII-7的合成方法制备,不同在于用原料III-14代替原料III-1,用原料IV-9代替原料IV-1,所得目标产物的纯度为99.6%,收率为75.9%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-14 was used instead of the raw material III-1, and the raw material IV-9 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.6% and a yield of 75.9%.
元素分析结构(分子式C 45H 32N 2O):理论值:C,87.63;H,5.23;N,4.54;测试值:C,87.61;H,5.24;N,4.55。 Elemental analysis structure (Molecular formula C 45 H 32 N 2 O): Theory: C, 87.63; H, 5.23; N, 4.54; Tests: C, 87.61; H, 5.24; N, 4.55.
ESI-MS(m/z)(M +):理论值为616.25,实测值为616.51。 ESI-MS (m/z) (M + ): s.
制备化合物HTII-277Preparation of compound HTII-277
Figure PCTCN2019084629-appb-000054
Figure PCTCN2019084629-appb-000054
按化合物HTII-7的合成方法制备,不同在于用原料III-15代替原料III-1,用原料IV-10代替原料IV-1,所得目标产物的纯度为99.9%,收率为77.1%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-15 was used instead of the raw material III-1, and the raw material IV-10 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.9% and a yield of 77.1%.
元素分析结构(分子式C 46H 31NO):理论值:C,90.02;H,5.09;N,2.28;测试值:C,90.01;H,5.07;N,2.29;。 Elemental analysis structure (Molecular formula C 46 H 31 NO): Theory: C, 90.02; H, 5.09; N, 2.28; </ RTI></RTI></RTI> C, 90.01; H, 5.07; N, 2.29;
ESI-MS(m/z)(M +):理论值为613.24,实测值为613.44。 ESI-MS (m/z) (M + ): calc.
制备化合物HTII-314Preparation of compound HTII-314
Figure PCTCN2019084629-appb-000055
Figure PCTCN2019084629-appb-000055
按化合物HTII-7的合成方法制备,不同在于用原料III-16代替原料III-1,用原料IV-11代替原料IV-1,所得目标产物的纯度为99.8%,收率为76.3%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-16 was used instead of the raw material III-1, and the raw material IV-11 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.8% and a yield of 76.3%.
元素分析结构(分子式C 46H 31NO 2):理论值:C,87.73;H,4.96;N,2.22;测试值:C,87.71;H, 4.97;N,2.23。 Elemental analysis structure (Molecular formula C 46 H 31 NO 2 ): Theory: C, 87.73; H, 4.96; N, 2.22; Test: C, 87.71; H, 4.97; N, 2.23.
ESI-MS(m/z)(M +):理论值为629.24,实测值为629.52。 ESI-MS (m/z) (M + ): calc. 629.24.
制备化合物HTII-335Preparation of Compound HTII-335
Figure PCTCN2019084629-appb-000056
Figure PCTCN2019084629-appb-000056
按化合物HTII-7的合成方法制备,不同在于用原料III-10代替原料III-1,用原料IV-12代替原料IV-1,所得目标产物的纯度为99.7%,收率为78.4%。Prepared according to the synthesis method of the compound HTII-7, except that the raw material III-10 was used instead of the raw material III-1, and the raw material IV-12 was used instead of the raw material IV-1, and the obtained target product had a purity of 99.7% and a yield of 78.4%.
元素分析结构(分子式C 49H 37NO):理论值:C,89.74;H,5.69;N,2.14;测试值:C,89.74;H,5.69;N,2.14。 Elemental analysis structure (Molecular formula C 49 H 37 NO): Theory: C, 89.74; H, 5.69; N, 2.14; Tests: C, 89.74; H, 5.69; N, 2.14.
ESI-MS(m/z)(M +):理论值为655.29,实测值为655.57。 ESI-MS (m/z) (M + ): calc.
表1示出了制备的第一和第二有机材料、与其邻接的电子阻挡层材料(EB1)、发光材料的主体材料(EMH-1、EMH-7和EMH-13)以及客体材料(EMD-1、EMD-8和EMD-13)的各能级测试结果。Table 1 shows the prepared first and second organic materials, the electron blocking layer material (EB1) adjacent thereto, the host materials (EMH-1, EMH-7, and EMH-13) of the luminescent material, and the guest material (EMD- 1, EMD-8 and EMD-13) test results of each level.
表1Table 1
材料名称Material name Tg(℃)Tg (°C) HOMO能级(ev)HOMO energy level (ev) LUMO能级(ev)LUMO energy level (ev) 空穴迁移率(cm 2/(V·s) Hole mobility (cm 2 /(V·s)
EB1EB1 145145 -5.86-5.86 -2.51-2.51 1.2 E-41.2 E-4
EMH-1EMH-1 127127 -6.0-6.0 -3.0-3.0 4.8E-114.8E-11
EMH-7EMH-7 -- -5.82-5.82 -2.55-2.55 --
EMH-13EMH-13 -- -5.8-5.8 -2.64-2.64 --
EMD-1EMD-1 150150 -5.5-5.5 -2.7-2.7 --
EMD-8EMD-8 -- -5.43-5.43 -3.07-3.07 --
EMD-13EMD-13 -- -5.36-5.36 -2.65-2.65 --
HTI-1HTI-1 149.4149.4 -5.27-5.27 -2.26-2.26 7.1 E-47.1 E-4
HTI-9HTI-9 148.4148.4 -5.45-5.45 -2.42-2.42 5.5 E-45.5 E-4
HTI-28HTI-28 128.8128.8 -5.35-5.35 -2.53-2.53 6.2 E-46.2 E-4
HTI-41HTI-41 147.7147.7 -5.44-5.44 -2.43-2.43 4.7 E-44.7 E-4
HTI-52HTI-52 123.6123.6 -5.50-5.50 -2.35-2.35 2.5 E-42.5 E-4
HTI-57HTI-57 131.1131.1 -5.47-5.47 -2.47-2.47 7.1 E-47.1 E-4
HTI-63HTI-63 136.2136.2 -5.49-5.49 -2.41-2.41 8.8 E-48.8 E-4
HTI-72HTI-72 133.6133.6 -5.47-5.47 -2.38-2.38 8.9 E-48.9 E-4
HTI-86HTI-86 135.5135.5 -5.49-5.49 -2.45-2.45 6.8 E-46.8 E-4
HTI-101HTI-101 149.8149.8 -5.45-5.45 -2.39-2.39 6.7 E-46.7 E-4
HTI-114HTI-114 141.9141.9 -5.42-5.42 -2.41-2.41 6.5 E-46.5 E-4
HTI-124HTI-124 145.5145.5 -5.47-5.47 -2.37-2.37 5.4 E-45.4 E-4
HTI-134HTI-134 142.7142.7 -5.43-5.43 -2.43-2.43 7.4 E-47.4 E-4
HTI-144HTI-144 135.2135.2 -5.45-5.45 -2.41-2.41 8.2 E-48.2 E-4
HTI-162HTI-162 136.5136.5 -5.48-5.48 -2.49-2.49 8.1 E-48.1 E-4
HTI-176HTI-176 138.3138.3 -5.46-5.46 -2.37-2.37 5.8 E-45.8 E-4
HTII-7HTII-7 139.4139.4 -5.48-5.48 -2.42-2.42 3.6 E-43.6 E-4
HTII-21HTII-21 132132 -5.58-5.58 -2.59-2.59 6.8 E-46.8 E-4
HTII-37HTII-37 156.6156.6 -5.7-5.7 -2.39-2.39 6.1 E-46.1 E-4
HTII-41HTII-41 122.7122.7 -5.6-5.6 -2.46-2.46 6.6 E-46.6 E-4
HTII-52HTII-52 158.2158.2 -5.7-5.7 -2.4-2.4 5.3 E-45.3 E-4
HTII-78HTII-78 141.3141.3 -5.66-5.66 -2.36-2.36 6.4 E-46.4 E-4
HTII-102HTII-102 145.2145.2 -5.68-5.68 -2.34-2.34 5.7 E-45.7 E-4
HTII-132HTII-132 148.9148.9 -5.54-5.54 -2.35-2.35 6.1 E-46.1 E-4
HTII-148HTII-148 131.4131.4 -5.58-5.58 -2.41-2.41 3.5 E-43.5 E-4
HTII-164HTII-164 145.5145.5 -5.66-5.66 -2.39-2.39 5.4 E-45.4 E-4
HTII-192HTII-192 135.8135.8 -5.5-5.5 -2.35-2.35 9.3 E-49.3 E-4
HTII-232HTII-232 151.1151.1 -5.59-5.59 -2.37-2.37 6.6 E-46.6 E-4
HTII-243HTII-243 148.3148.3 -5.63-5.63 -2.34-2.34 7.6 E-47.6 E-4
HTII-266HTII-266 133.7133.7 -5.66-5.66 -2.4-2.4 5.2 E-45.2 E-4
HTII-277HTII-277 148.9148.9 -5.54-5.54 -2.36-2.36 4.7 E-44.7 E-4
HTII-314HTII-314 146.1146.1 -5.63-5.63 -2.38-2.38 4.3 E-44.3 E-4
HTII-335HTII-335 147.5147.5 -5.61-5.61 -2.35-2.35 4.1 E-44.1 E-4
由表1的结果可以看出,本发明的第一有机材料的HOMO能级在-5.2eV至-5.6eV之间,并且第二有机材料的HOMO能级在-5.4eV至-5.9eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|;并且所述第二有机材料和电子阻挡层材料的HOMO能级之间差值的绝对值≤0.4ev。 As can be seen from the results of Table 1, the HOMO energy level of the first organic material of the present invention is between -5.2 eV and -5.6 eV, and the HOMO energy level of the second organic material is between -5.4 eV and -5.9 eV, and | HOMO first organic material | < | HOMO second organic material |; and the absolute value of the difference between the HOMO levels of the second organic material and the electron blocking layer material is ≤ 0.4 ev.
实施例1Example 1
使用CIC蒸镀设备(长州产业制造),分别将第一有机材料HTI-1和第二有机材料HTII-7放在两个蒸镀源中,在真空度1.0E -5Pa压力下,控制第一有机材料1蒸镀速率为
Figure PCTCN2019084629-appb-000057
控制第二有机材料1蒸镀速率为
Figure PCTCN2019084629-appb-000058
共同混蒸得到本发明的空穴传输层材料1。
Using the CIC evaporation equipment (manufactured by Changzhou Industry Co., Ltd.), the first organic material HTI-1 and the second organic material HTII-7 were respectively placed in two evaporation sources, and the pressure was controlled under a vacuum of 1.0E -5 Pa. The evaporation rate of the first organic material 1 is
Figure PCTCN2019084629-appb-000057
Controlling the evaporation rate of the second organic material 1 is
Figure PCTCN2019084629-appb-000058
The hole transport layer material 1 of the present invention is obtained by co-mixing.
实施例2Example 2
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000059
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000060
得到空穴传输层材料2。
The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000059
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000060
The hole transport layer material 2 was obtained.
实施例3Example 3
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000061
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000062
得到空穴传输层材料3。
The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000061
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000062
The hole transport layer material 3 was obtained.
实施例4Example 4
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000063
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000064
得到空穴传输层材料4。
The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000063
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000064
The hole transport layer material 4 was obtained.
实施例5Example 5
重复实施例1的制备过程,不同之处在于第一有机材料HTI-1的蒸镀速率为
Figure PCTCN2019084629-appb-000065
第二有机材料HTII-7的蒸镀速率为
Figure PCTCN2019084629-appb-000066
得到空穴传输层材料5。
The preparation process of Example 1 was repeated except that the evaporation rate of the first organic material HTI-1 was
Figure PCTCN2019084629-appb-000065
The evaporation rate of the second organic material HTII-7 is
Figure PCTCN2019084629-appb-000066
The hole transport layer material 5 was obtained.
实施例6Example 6
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-9和第二有机材料HTII-37,得到空穴传输层材料6。The preparation process of Example 1 was repeated except that the first organic material HTI-9 and the second organic material HTII-37 were used to obtain the hole transport layer material 6.
实施例7Example 7
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-28和第二有机材料HTII-21,得到空穴传输层材料7。The preparation process of Example 1 was repeated except that the first organic material HTI-28 and the second organic material HTII-21 were used to obtain the hole transport layer material 7.
实施例8Example 8
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-41和第二有机材料HTII-41,得到空穴传输层材料8。The preparation process of Example 1 was repeated except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 8.
实施例9Example 9
重复实施例3的制备过程,不同之处在于使用第一有机材料HTI-41和第二有机材料HTII-41,得到空穴传输层材料9。The preparation process of Example 3 was repeated except that the first organic material HTI-41 and the second organic material HTII-41 were used to obtain the hole transport layer material 9.
实施例10Example 10
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-52和第二有机材料HTII-52,得到空穴传输层材料10。The preparation process of Example 1 was repeated except that the first organic material HTI-52 and the second organic material HTII-52 were used to obtain the hole transport layer material 10.
实施例11Example 11
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-57和第二有机材料HTII-78,得到空穴传输层材料11。The preparation process of Example 1 was repeated except that the first organic material HTI-57 and the second organic material HTII-78 were used to obtain the hole transport layer material 11.
实施例12Example 12
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-63和第二有机材料HTII-102,得到空穴传输层材料12。The preparation process of Example 1 was repeated except that the first organic material HTI-63 and the second organic material HTII-102 were used to obtain the hole transport layer material 12.
实施例13Example 13
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-72和第二有机材料HTII-132,得到空穴传输层材料13。The preparation process of Example 1 was repeated except that the first organic material HTI-72 and the second organic material HTII-132 were used to obtain the hole transport layer material 13.
实施例14Example 14
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-72和第二有机材料HTII-148,得到空穴传输层材料14。The preparation process of Example 1 was repeated except that the first organic material HTI-72 and the second organic material HTII-148 were used to obtain the hole transport layer material 14.
实施例15Example 15
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-72和第二有机材料HTII-164,得到空穴传输层材料15。The preparation process of Example 2 was repeated except that the first organic material HTI-72 and the second organic material HTII-164 were used to obtain the hole transport layer material 15.
实施例16Example 16
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-86和第二有机材料HTII-164,得到空穴传输层材料16。The preparation process of Example 1 was repeated except that the first organic material HTI-86 and the second organic material HTII-164 were used to obtain the hole transport layer material 16.
实施例17Example 17
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-101和第二有机材料HTII-192,得到空穴传输层材料17。The preparation process of Example 1 was repeated except that the first organic material HTI-101 and the second organic material HTII-192 were used to obtain the hole transport layer material 17.
实施例18Example 18
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-114和第二有机材料HTII-192,得到空穴传输层材料18。The preparation process of Example 1 was repeated except that the first organic material HTI-114 and the second organic material HTII-192 were used to obtain the hole transport layer material 18.
实施例19Example 19
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-124和第二有机材料HTII-232,得到空穴传输层材料19。The preparation process of Example 1 was repeated except that the first organic material HTI-124 and the second organic material HTII-232 were used to obtain the hole transport layer material 19.
实施例20Example 20
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-243,得到空穴传输层材料20。The preparation process of Example 1 was repeated except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 20.
实施例21Example 21
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-243,得到空穴传输层材料21。The preparation process of Example 2 was repeated except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 21.
实施例22Example 22
重复实施例2的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-243,得到空穴传输层材料22。The preparation process of Example 2 was repeated except that the first organic material HTI-134 and the second organic material HTII-243 were used to obtain the hole transport layer material 22.
实施例23Example 23
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-134和第二有机材料HTII-266,得到空穴传输层材料23。The preparation process of Example 1 was repeated except that the first organic material HTI-134 and the second organic material HTII-266 were used to obtain the hole transport layer material 23.
实施例24Example 24
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-144和第二有机材料HTII-277,得到空穴传输层材料24。The preparation process of Example 1 was repeated except that the first organic material HTI-144 and the second organic material HTII-277 were used to obtain the hole transport layer material 24.
实施例25Example 25
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-162和第二有机材料HTII-314,得到空穴传输层材料25。The preparation process of Example 1 was repeated except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 25.
实施例26Example 26
重复实施例5的制备过程,不同之处在于使用第一有机材料HTI-162和第二有机材料HTII-314,得到空穴传输层材料26。The preparation process of Example 5 was repeated except that the first organic material HTI-162 and the second organic material HTII-314 were used to obtain the hole transport layer material 26.
实施例27Example 27
重复实施例1的制备过程,不同之处在于使用第一有机材料HTI-176和第二有机材料HTII-335,得到空穴传输层材料27。The preparation process of Example 1 was repeated except that the first organic material HTI-176 and the second organic material HTII-335 were used to obtain the hole transport layer material 27.
制备有机电致发光器件Preparation of organic electroluminescent devices
需要说明的是,真空蒸镀在下述条件下进行:使用CIC蒸镀设备(长州产业制造),在真空度1.0E -5Pa压力下,控制蒸镀速率为
Figure PCTCN2019084629-appb-000067
It is to be noted that vacuum evaporation is performed under the following conditions: using a CIC vapor deposition apparatus (manufactured by Changzhou Industry Co., Ltd.), the vapor deposition rate is controlled under a vacuum of 1.0 E -5 Pa.
Figure PCTCN2019084629-appb-000067
器件制备实施例1Device preparation example 1
按照以下过程进行:Follow the process below:
a)使用透明玻璃作为基板,在其上涂覆厚度为150nm的ITO,作为阳极层,然后分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;a) using transparent glass as a substrate, coating thereon ITO having a thickness of 150 nm, as an anode layer, and then ultrasonically cleaning with deionized water, acetone, ethanol for 15 minutes, respectively, and then treating in a plasma cleaner for 2 minutes;
b)在经洗涤的第一电极层上,通过真空蒸镀方法蒸镀HAT-CN,厚度为10nm,这层作为空穴注入层;b) on the washed first electrode layer, HAT-CN is deposited by a vacuum evaporation method to a thickness of 10 nm, this layer serves as a hole injection layer;
c)在空穴注入层上,通过真空蒸镀方式蒸镀制备空穴传输层材料的实施例1中获得的空穴传输层材料1,厚度为90nm,该层为空穴传输层;c) on the hole injection layer, the hole transport layer material 1 obtained in Example 1 was prepared by vacuum evaporation to prepare a hole transport layer material having a thickness of 90 nm, the layer being a hole transport layer;
d)在空穴传输层上,通过真空蒸镀方式蒸镀EB1,厚度为20nm,该层为电子阻挡层;d) on the hole transport layer, EB1 is deposited by vacuum evaporation, the thickness is 20 nm, the layer is an electron blocking layer;
e)在电子阻挡层上,通过真空蒸镀方式蒸镀发光层材料,主体材料为EMH-7和EMH-9,客体材料为EMD-8,EMH-7、EMH-9和EMD-8质量比为45∶45∶10,厚度为40nm;e) On the electron blocking layer, the luminescent layer material is evaporated by vacuum evaporation, the host material is EMH-7 and EMH-9, and the guest material is EMD-8, EMH-7, EMH-9 and EMD-8 mass ratio 45:45:10, thickness 40nm;
f)在发光层上,通过真空蒸镀方式蒸镀LG201和Liq,LG201和Liq质量比为50∶50,厚度为40nm,该层作为电子传输层;f) on the light-emitting layer, LG201 and Liq are vapor-deposited by vacuum evaporation, the mass ratio of LG201 and Liq is 50:50, and the thickness is 40 nm, and the layer serves as an electron transport layer;
g)在电子传输层上,通过真空蒸镀方式蒸镀LiF,厚度为1nm,该层为电子注入层;g) on the electron transport layer, vapor deposition of LiF by vacuum evaporation, the thickness is 1 nm, the layer is an electron injection layer;
h)在电子注入层之上,真空蒸镀Al,厚度为100nm,该层为第二电极层。h) On top of the electron injecting layer, Al is vacuum-evaporated to a thickness of 100 nm, and the layer is a second electrode layer.
器件制备实施例2-10Device Preparation Example 2-10
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中分别使用在制备空穴传输层材料的实施例2-10中获得的空穴传输层材料2-10。The procedure of Device Preparation Example 1 was carried out except that the hole transport layer materials 2-10 obtained in Examples 2 to 10 for preparing the hole transport layer material were respectively used in the step c).
器件制备实施例11Device Preparation Example 11
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中空穴传输层的膜厚为160nm;步骤e)中主体材料为EMH-13,客体材料为EMD-8,并且EMH-13和EMD-8质量比为90∶10,厚度为40nm。The procedure of Device Preparation Example 1 was carried out except that the film thickness of the hole transport layer in step c) was 160 nm; the host material in step e) was EMH-13, the guest material was EMD-8, and EMH-13 The mass ratio to EMD-8 was 90:10 and the thickness was 40 nm.
器件制备实施例12-13Device Preparation Example 12-13
按照器件制备实施例11的过程进行,不同之处在于在步骤c)中分别使用在制备空穴传输层材料的实施例2-3中获得的空穴传输层材料2-3。The procedure of Device Preparation Example 11 was carried out except that the hole transport layer material 2-3 obtained in Example 2-3 for preparing a hole transport layer material was separately used in the step c).
器件制备实施例14-20Device Preparation Examples 14-20
按照器件制备实施例11的过程进行,不同之处在于在步骤c)中使用在制备空穴传输层材料的实施例12-18中获得的空穴传输层材料12-18。The procedure of Device Preparation Example 11 was carried out except that the hole transport layer materials 12-18 obtained in Examples 12-18 for preparing the hole transport layer material were used in the step c).
器件制备实施例21Device Preparation Example 21
按照器件制备实施例1的过程进行,不同之处在于在步骤c)中空穴传输层的膜厚为50nm;步骤e)中主体材料为EMH-1客体材料为EMD-1,并且EMH-1和EMD-1质量比为95∶5,厚度为25nm。The procedure of Device Preparation Example 1 was carried out except that the film thickness of the hole transport layer in step c) was 50 nm; the host material in step e) was EMH-1, the guest material was EMD-1, and EMH-1 and The EMD-1 mass ratio was 95:5 and the thickness was 25 nm.
器件制备实施例22-30Device Preparation Examples 22-30
按照器件制备实施例21的过程进行,不同之处在于在步骤c)中分别使用在制备空穴传输层材料的实施例19-27中获得的空穴传输层材料19-27。The procedure of Device Preparation Example 21 was carried out except that the hole transport layer materials 19-27 obtained in Examples 19-27 for preparing the hole transport layer material were respectively used in the step c).
比较实施例1-10Comparative Examples 1-10
按照器件制备实施例1的过程进行,不同之处在于仅使用下表2中所列的第一有机材料或第二有机材料作为空穴传输层材料。The procedure of Device Preparation Example 1 was carried out except that only the first organic material or the second organic material listed in Table 2 below was used as the hole transport layer material.
表2:Table 2:
Figure PCTCN2019084629-appb-000068
Figure PCTCN2019084629-appb-000068
比较实施例11-25Comparative Example 11-25
按照器件制备实施例11的过程进行,不同之处在于仅使用下表3中所列的第一有机材料或第二有机材料作为空穴传输层材料。The procedure of Device Preparation Example 11 was carried out except that only the first organic material or the second organic material listed in Table 3 below was used as the hole transport layer material.
表3:table 3:
Figure PCTCN2019084629-appb-000069
Figure PCTCN2019084629-appb-000069
比较实施例26-38Comparative Examples 26-38
按照器件制备实施例21的过程进行,不同之处在于仅使用下表4中所列的第一有机材料或第二有机材料作为空穴传输层材料。The procedure of Device Preparation Example 21 was carried out except that only the first organic material or the second organic material listed in Table 4 below was used as the hole transport layer material.
表4:Table 4:
Figure PCTCN2019084629-appb-000070
Figure PCTCN2019084629-appb-000070
Figure PCTCN2019084629-appb-000071
Figure PCTCN2019084629-appb-000071
表5-7示出了在10mA/cm 2电流密度下测定所制作的有机电致发光器件的性能结果。 Tables 5-7 show the performance results of the fabricated organic electroluminescent device at a current density of 10 mA/cm 2 .
表5:发明实施例1-10和比较实施例1-10所制备的有机电致发光器件的性能结果Table 5: Performance results of organic electroluminescent devices prepared in Inventive Examples 1-10 and Comparative Examples 1-10
Figure PCTCN2019084629-appb-000072
Figure PCTCN2019084629-appb-000072
注:*代表比较实施例Note: * represents the comparative example
LT95指的是在电流密度为10mA/cm 2情况下,器件亮度衰减到95%所用时间; LT95 refers to the time it takes for the device brightness to decay to 95% at a current density of 10 mA/cm 2 ;
寿命测试系统为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。The life test system is the OLED device life tester jointly researched by the owner of the invention and Shanghai University.
所述注释也适用于以下表6和7。The notes also apply to Tables 6 and 7 below.
表6:发明实施例11-20和比较实施例11-25所制备的有机电致发光器件的性能结果Table 6: Performance results of organic electroluminescent devices prepared in Inventive Examples 11-20 and Comparative Examples 11-25
Figure PCTCN2019084629-appb-000073
Figure PCTCN2019084629-appb-000073
Figure PCTCN2019084629-appb-000074
Figure PCTCN2019084629-appb-000074
表7:发明实施例21-30和比较实施例26-38所制备的有机电致发光器件的性能结果Table 7: Performance results of organic electroluminescent devices prepared in Inventive Examples 21-30 and Comparative Examples 26-38
Figure PCTCN2019084629-appb-000075
Figure PCTCN2019084629-appb-000075
由表5的结果可以看出,与单独使用有机材料作为空穴传输层材料的比较实施例1至10相比,本发明的器件制备实施例1至10所制得的器件的驱动电压明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。由表6的结果可以看出,与比较实施例11至25相比,本发明的器件制备实施例11至20所制得的器件的驱动电压也明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。由表7的结果可以看出,与比较实施例26至38相比,本发明的器件制备实施例21至30所制得的器件的驱动电压也明显降低,并且发光亮度、发光效率(即电流效率)和寿命均显著提高。As can be seen from the results of Table 5, the driving voltages of the devices prepared in the device preparation examples 1 to 10 of the present invention were remarkably lowered as compared with Comparative Examples 1 to 10 in which the organic materials were used alone as the hole transport layer materials. And the luminance, the luminous efficiency (ie, current efficiency), and the lifetime are both significantly improved. As can be seen from the results of Table 6, the driving voltages of the devices prepared in the device preparation examples 11 to 20 of the present invention were also significantly lower than those of Comparative Examples 11 to 25, and the luminance and the luminous efficiency (i.e., current) were obtained. Both efficiency) and longevity are significantly improved. As can be seen from the results of Table 7, the driving voltages of the devices prepared in the device preparation examples 21 to 30 of the present invention were also significantly lower than those of Comparative Examples 26 to 38, and the luminance and the luminous efficiency (i.e., current) were obtained. Both efficiency) and longevity are significantly improved.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制。本领域技术人员在不脱离本发明技术方案的宗旨和范围的情况下,对本发明的技术方案进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。Finally, the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Modifications or equivalents of the technical solutions of the present invention are intended to be included within the scope of the claims of the present invention without departing from the spirit and scope of the invention.

Claims (12)

  1. 一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:An organic electroluminescent device, which is provided with a substrate, a first electrode, an organic functional material layer and a second electrode in this order from bottom to top, the organic functional material layer comprising:
    空穴传输区域,位于所述第一电极之上;a hole transporting region located above the first electrode;
    发光层,位于所述空穴传输区域之上,其包括主体材料和客体材料;a light emitting layer over the hole transporting region, comprising a host material and a guest material;
    电子传输区域,位于所述发光层之上,An electron transport region located above the light emitting layer,
    其中,所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,Wherein, the hole transporting region includes a hole injecting layer, a hole transporting layer and an electron blocking layer in this order from bottom to top.
    所述空穴传输层包括第一和第二有机材料,其中第一有机材料的HOMO能级为-5.2eV至-5.6eV,优选为-5.3eV至-5.5eV,更优选为-5.35eV至-5.5eV,且第二有机材料的HOMO能级为-5.4eV至-5.9eV,优选为-5.4eV至-5.7eV,更优选为-5.48eV至-5.68eV,并且|HOMO 第一有机材料|<|HOMO 第二有机材料|。 The hole transport layer includes first and second organic materials, wherein the first organic material has a HOMO level of from -5.2 eV to -5.6 eV, preferably from -5.3 eV to -5.5 eV, more preferably from -5.35 eV to -5.5 eV, and the HOMO level of the second organic material is -5.4 eV to -5.9 eV, preferably -5.4 eV to -5.7 eV, more preferably -5.48 eV to -5.68 eV, and | HOMO first organic material |<|HOMO second organic material |.
  2. 根据权利要求1所述的有机电致发光器件,其中所述第二有机材料和电子阻挡层材料的HOMO能级之间差值的绝对值≤0.4v。The organic electroluminescent device according to claim 1, wherein an absolute value of a difference between HOMO levels of said second organic material and electron blocking layer material is ≤ 0.4 volt.
  3. 根据权利要求1或2所述的有机电致发光器件,其中所述第一和第二有机材料的比例为1∶99至99∶1,优选为10∶90至90∶10,更优选为30∶70至70∶30,基于质量计。The organic electroluminescent device according to claim 1 or 2, wherein the ratio of the first and second organic materials is from 1:99 to 99:1, preferably from 10:90 to 90:10, more preferably 30. : 70 to 70: 30, based on mass.
  4. 根据权利要求1至3中任一项所述的有机电致发光器件,其中第一和第二有机材料各自独立地选自通式(1)、通式(2)或通式(3)中任一者:The organic electroluminescent device according to any one of claims 1 to 3, wherein the first and second organic materials are each independently selected from the group consisting of the formula (1), the formula (2) or the formula (3) Either:
    Figure PCTCN2019084629-appb-100001
    Figure PCTCN2019084629-appb-100001
    其中,在通式(1)中Wherein, in the general formula (1)
    X、X 1各自独立地选自单键、碳原子、N-(R 5)、硫原子、氧原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、C 6-20芳基取代的亚烷基中的一种; X, X 1 are each independently selected from a single bond, a carbon atom, an N-(R 5 ), a sulfur atom, an oxygen atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, One of a linear or branched C 1-20 alkyl substituted silylene group, a C 6-20 aryl substituted alkylene group;
    如果存在R 5,则其可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; If R 5 is present, it may be the same or differently selected from a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl-substituted alkyl group. a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one selected from the group consisting of N, O and S a heteroaryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
    Z代表氮原子或C-R 6,其中R 6可相同或不同地选自氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中两个或更多个R 6基团可彼此连接并且可形成环结构; Z represents a nitrogen atom or CR 6 , wherein R 6 may be the same or differently selected from a hydrogen atom, a ruthenium atom, a ruthenium atom, a ruthenium atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear or branched C 1 - a 20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least one selected from the group consisting of N, Heteroaryl heteroaryl groups of O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5 group a -20heteroaryl group, wherein two or more R 6 groups are attached to each other and may form a ring structure;
    Ar 1、Ar 2、Ar 3、Ar 4各自独立地代表单键、直链或支链的C 1-20亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代,其中Ar 1、Ar 2基团还可直接连接成环或通过C、O、S、N连接成环; Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently represent a single bond, a linear or branched C 1-20 alkylene group, a linear or branched C 1-20 alkyl substituted silyl group, An arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, wherein in the case of the latter two, the group The group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group, wherein the Ar 1 and Ar 2 groups may also be directly joined to form a ring or through C, O, S, and N are connected into a ring;
    m、n、p、q、s和t等于0或1;且m+n+p+q≥1且m+n+s+t≥1;m, n, p, q, s, and t are equal to 0 or 1; and m+n+p+q≥1 and m+n+s+t≥1;
    R 1、R 2、R 3和R 4各自独立地代表氢原子、通式(4)、通式(5)或通式(6)所示的结构,条件是R 1、R 2、R 3和R 4不同时为氢原子; R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a structure represented by the formula (4), the formula (5) or the formula (6), provided that R 1 , R 2 , R 3 When it is different from R 4 , it is a hydrogen atom;
    Figure PCTCN2019084629-appb-100002
    Figure PCTCN2019084629-appb-100002
    其中,在通式(4)和通式(5)中:Among them, in the general formula (4) and the general formula (5):
    X 2、X 3各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的 亚烷基、直链或支链的C 1-20烷基取代的硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 2 and X 3 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 group. Alkyl-substituted silane group, C 6-20 aryl-substituted alkylene group, C 1-20 alkyl-substituted imido group, C 6-20 aryl-substituted imido group, C 5-20 heteroaryl group One of the substituted imido groups;
    Y 1可相同或不同地代表N原子或C-R 7,其中R 7可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C 1-20烷基取代的烷基、直链或支链C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;其中两个或更多个R 7基团可彼此连接并且可形成环结构; Y 1 may represent the N atom or CR 7 identically or differently, wherein R 7 may represent the same or different hydrogen atom, helium atom, germanium atom, germanium atom, fluorine atom, cyano group, phosphoric acid or a salt thereof, a straight chain or a branch. a C 1-20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least one selected a heteroaryl group derived from a hetero atom of N, O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, a C 6-20 aryl group a C 5-20 heteroaryl group; wherein two or more R 7 groups may be attached to each other and may form a ring structure;
    R 8、R 9各自独立地代表氢原子、氕原子、氘原子、氚原子、氟原子、磷酸或其盐、直链或支链的C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基、通式(7)或通式(6)所示结构;其中在芳基和杂芳基的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a phosphoric acid or a salt thereof, a linear or branched C 1-20 alkyl group-substituted alkyl group, a straight chain or a branch. a C 1-20 alkyl-substituted silane group of a chain, an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, a structure represented by the formula (7) or the formula (6); wherein, in the case of an aryl group and a heteroaryl group, the group may be optionally a linear or branched C 1-20 alkyl group, C 6- 20 aryl, C 5-20 heteroaryl substituted;
    Figure PCTCN2019084629-appb-100003
    Figure PCTCN2019084629-appb-100003
    其中,在通式(7)中:Among them, in the general formula (7):
    Y 2可相同或不同地代表N原子或C-R 14,其中,R 14可相同或不同地代表氢原子、氕原子、氘原子、氚原子、氟原子、氰基、磷酸或其盐、直链或支链C 1-20烷基取代的烷基、直链或支链的C 1-20烷基取代的硅烷基、具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;其中两个或更多个R 12基团可彼此连接并且可形成环结构; Y 2 may represent the N atom or CR 14 identically or differently, wherein R 14 may represent the same or differently a hydrogen atom, a halogen atom, a halogen atom, a halogen atom, a fluorine atom, a cyano group, a phosphoric acid or a salt thereof, a linear chain or a branched C 1-20 alkyl-substituted alkyl group, a linear or branched C 1-20 alkyl-substituted silane group, an aryl group having 5 to 30 carbon atoms, having 5 to 30 carbon atoms, and at least a heteroaryl group selected from heteroatoms of N, O and S, wherein in the case of the latter two, the group may be optionally a linear or branched C 1-20 alkyl group, C 6-20 Aryl, C 5-20 heteroaryl substituted; wherein two or more R 12 groups may be attached to each other and may form a ring structure;
    X 4、X 5各自独立地代表单键、氧原子、硫原子、亚乙烯基、直链或支链的C 1-20烷基取代的亚烷基、直链或支链的C 1-20烷基取代的亚硅烷基、C 6-20芳基取代的亚烷基、C 1-20烷基取代的亚胺基、C 6-20芳基取代的亚胺基、C 5-20杂芳基取代的亚胺基中的一种; X 4 and X 5 each independently represent a single bond, an oxygen atom, a sulfur atom, a vinylidene group, a linear or branched C 1-20 alkyl-substituted alkylene group, a linear or branched C 1-20 group. Alkyl-substituted silylene group, C 6-20 aryl-substituted alkylene group, C 1-20 alkyl-substituted imido group, C 6-20 aryl-substituted imido group, C 5-20 heteroaryl One of the substituted imido groups;
    通式(7)通过并环方式和通式(4)或通式(5)相连,*表示为连接位点,相连时,只能取相邻的两个位点,通式(7)和通式(4)或通式(5)并环连接时,连接位点Y 1表示为碳原子; The general formula (7) is linked to the general formula (4) or the general formula (5) by a ring-and-loop method, and * is represented as a linking site. When connected, only two adjacent sites can be taken, and the general formula (7) and the pass are When the formula (4) or the formula (5) is connected in a loop, the linking site Y 1 is represented as a carbon atom;
    在通式(8)中:In the general formula (8):
    R 12、R 13各自独立地代表具有5至30个碳原子的芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的杂芳基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;R 12、R 13还可连接成环; R 12 and R 13 each independently represent an aryl group having 5 to 30 carbon atoms, a heteroaryl group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, which may be Optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; R 12 and R 13 may also be bonded to form a ring;
    在通式(2)中:In the general formula (2):
    L 1、L 2、L 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;L 1、L 2、L 3可两两彼此连接并且可形成环结构; L 1 , L 2 , L 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S An aryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; 1 , L 2 , L 3 may be connected to each other and may form a ring structure;
    Ar 5、Ar 6、Ar 7各自独立地代表具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 5、Ar 6、Ar 7可两两彼此连接并且可形成环结构; Ar 5 , Ar 6 and Ar 7 each independently represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, An imido group of 5 to 30 carbon atoms, which group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; Ar 5 , Ar 6 , Ar 7 may be connected to each other two-two and may form a ring structure;
    Ar 5、Ar 6、Ar 7各自还可以独立地表示为通式(4)、通式(5)、通式(6)之一,其中所述通式上的基团X 2、X 3、Y 1、R 8、R 9、R 10、R 11和*具有如上所述的含义; Each of Ar 5 , Ar 6 and Ar 7 may also be independently represented by one of the formula (4), the formula (5), and the formula (6), wherein the groups X 2 and X 3 in the formula are Y 1 , R 8 , R 9 , R 10 , R 11 and * have the meanings as described above;
    在通式(3)中:In the general formula (3):
    D 1、D 2、D 3各自独立地代表单键、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基,其中在后两者的情况下,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;D 1、D 2、D 3可两两彼此连接并且可形成环结构; D 1 , D 2 , D 3 each independently represent a single bond, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S An aryl group, wherein in the case of the latter two, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group; 1 , D 2 , D 3 may be connected to each other and may form a ring structure;
    Ar 8、Ar 9、Ar 10各自独立地代表氢原子、具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;Ar 8、Ar 9、Ar 10可两两彼此连接并且可形成环结构; Ar 8 , Ar 9 and Ar 10 each independently represent a hydrogen atom, an arylene group having 5 to 30 carbon atoms, a hetero atom having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S An aryl group, an imido group of 5 to 30 carbon atoms, which group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group ; Ar 8 , Ar 9 , Ar 10 may be connected to each other and may form a ring structure;
    Ar 8、Ar 9、Ar 10中至少一个为通式(4)、通式(5)、通式(6)中的一个;其中所述通式上的基团X 2、X 3、Y 1、R 8、R 9、R 10、R 11和*各自具有如上所述的含义。 At least one of Ar 8 , Ar 9 and Ar 10 is one of the formula (4), the formula (5), and the formula (6); wherein the group X 2 , X 3 , Y 1 on the formula And R 8 , R 9 , R 10 , R 11 and * each have the meanings as described above.
  5. 根据权利要求4所述的有机电致发光器件,其中通式(2)表示为通式(9)至通式(12) 之一:The organic electroluminescent device according to claim 4, wherein the formula (2) is represented by one of the formulae (9) to (12):
    Figure PCTCN2019084629-appb-100004
    Figure PCTCN2019084629-appb-100004
    其中among them
    Ar 5至Ar 7表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代; Ar 5 to Ar 7 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, and 5 to 30 carbon atoms. Imino group, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
    并且L 1-L 3、R 6-R 9、Y 1和X 2-X 3均具有权利要求4所述的含义。 And L 1 -L 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings as set forth in claim 4.
  6. 根据权利要求4或5所述的有机电致发光器件,其中所述通式(3)表示为通式(13)至通式(16)之一:The organic electroluminescent device according to claim 4 or 5, wherein the general formula (3) is represented by one of the general formulae (13) to (16):
    Figure PCTCN2019084629-appb-100005
    Figure PCTCN2019084629-appb-100005
    其中among them
    Ar 8和Ar 10表示具有5至30个碳原子的亚芳基、具有5至30个碳原子和至少一个选自N、O和S的杂原子的亚杂芳基、5至30个碳原子的亚胺基,所述基团可任选被直链或支链的C 1-20烷基、C 6-20芳基、C 5-20杂芳基取代;并且 Ar 8 and Ar 10 represent an arylene group having 5 to 30 carbon atoms, a heteroarylene group having 5 to 30 carbon atoms and at least one hetero atom selected from N, O and S, and 5 to 30 carbon atoms. Imino group, the group may be optionally substituted by a linear or branched C 1-20 alkyl group, a C 6-20 aryl group, a C 5-20 heteroaryl group;
    并且D 1-D 3、R 6-R 9、Y 1和X 2-X 3均具有权利要求4所述的含义。 And D 1 -D 3 , R 6 -R 9 , Y 1 and X 2 -X 3 all have the meanings as set forth in claim 4.
  7. 根据权利要求1-6中任一项所述的有机电致发光器件,其特征在于所述空穴传输层的第一有机材料选自下述化合物之一:The organic electroluminescent device according to any one of claims 1 to 4, wherein the first organic material of the hole transport layer is selected from one of the following compounds:
    Figure PCTCN2019084629-appb-100006
    Figure PCTCN2019084629-appb-100006
    Figure PCTCN2019084629-appb-100007
    Figure PCTCN2019084629-appb-100007
    Figure PCTCN2019084629-appb-100008
    Figure PCTCN2019084629-appb-100008
    Figure PCTCN2019084629-appb-100009
    Figure PCTCN2019084629-appb-100009
  8. 根据权利要求1-6中任一项所述的有机电致发光器件,其特征在于所述空穴传输层的第二有机材料选自下述化合物之一:The organic electroluminescent device according to any one of claims 1 to 6, wherein the second organic material of the hole transport layer is selected from one of the following compounds:
    Figure PCTCN2019084629-appb-100010
    Figure PCTCN2019084629-appb-100010
    Figure PCTCN2019084629-appb-100011
    Figure PCTCN2019084629-appb-100011
    Figure PCTCN2019084629-appb-100012
    Figure PCTCN2019084629-appb-100012
    Figure PCTCN2019084629-appb-100013
    Figure PCTCN2019084629-appb-100013
    Figure PCTCN2019084629-appb-100014
    Figure PCTCN2019084629-appb-100014
    Figure PCTCN2019084629-appb-100015
    Figure PCTCN2019084629-appb-100015
  9. 根据权利要求1-8中任一项所述的有机电致发光器件,其特征在于,所述空穴传输层的第一有机材料和第二有机材料可以混合后用于电致发光器件制作,也可以在制作有机电致发光器件过程中混合。The organic electroluminescent device according to any one of claims 1 to 8, wherein the first organic material and the second organic material of the hole transport layer are mixed and used for electroluminescent device fabrication. It is also possible to mix during the production of the organic electroluminescent device.
  10. 根据权利要求1-9中任一项所述的有机电致发光器件,其中所述器件包括蓝色、绿色、红色或黄色有机发光材料层中的一种或多种组合;不同有机发光材料层横向或纵向叠加组合。The organic electroluminescent device according to any one of claims 1 to 9, wherein the device comprises one or more combinations of blue, green, red or yellow organic light-emitting material layers; different organic light-emitting material layers Horizontal or vertical overlay combination.
  11. 一种显示器,包括一个或多个如权利要求1-10中任一项所述的有机电致发光器件;并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。A display comprising one or more organic electroluminescent devices according to any of claims 1-10; and in the case of comprising a plurality of devices, the devices are combined laterally or vertically.
  12. 根据权利要求11所述的显示器,其特征在于,所述显示器包括各自具有蓝、绿、红三种颜色的有机发光材料层的器件中的一种或多种组合,所述器件各自具有相同或不同膜厚的空穴传输层,并且所述空穴传输层的材料相同或不同。The display according to claim 11, wherein said display comprises one or more combinations of devices each having a layer of organic light-emitting materials of three colors of blue, green, and red, said devices each having the same or Hole transport layers of different film thicknesses, and the materials of the hole transport layers are the same or different.
PCT/CN2019/084629 2018-04-28 2019-04-26 Organic electroluminescent device and display comprising same WO2019206292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810404589.X 2018-04-28
CN201810404589.XA CN110416422B (en) 2018-04-28 2018-04-28 Organic electroluminescent device and display including the same

Publications (2)

Publication Number Publication Date
WO2019206292A1 true WO2019206292A1 (en) 2019-10-31
WO2019206292A9 WO2019206292A9 (en) 2019-11-28

Family

ID=68293484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084629 WO2019206292A1 (en) 2018-04-28 2019-04-26 Organic electroluminescent device and display comprising same

Country Status (2)

Country Link
CN (1) CN110416422B (en)
WO (1) WO2019206292A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112403A1 (en) * 2019-12-06 2021-06-10 덕산네오룩스 주식회사 Organic electronic element comprising organic compound, and electronic device comprising same
KR20210086504A (en) * 2019-12-31 2021-07-08 난징고광반도체재료유한회사 Novel organic electroluminescent compound and organic electroluminescent device
WO2022003491A1 (en) * 2020-07-03 2022-01-06 株式会社半導体エネルギー研究所 Organic compound, light-emitting device, light-emitting apparatus, electronic machine, and lighting apparatus
CN114242907A (en) * 2021-11-03 2022-03-25 阜阳欣奕华材料科技有限公司 Organic electroluminescent device and display device
WO2022139445A1 (en) * 2020-12-22 2022-06-30 덕산네오룩스 주식회사 Organic electric element containing compound for organic electric element, and electronic device thereof
WO2022173203A1 (en) * 2021-02-09 2022-08-18 주식회사 엘지화학 Compound and organic electronic device comprising same
KR20220162113A (en) 2020-03-31 2022-12-07 이데미쓰 고산 가부시키가이샤 Chemical compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices
US11527722B2 (en) * 2020-08-20 2022-12-13 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus including the same
US11548877B2 (en) 2018-11-30 2023-01-10 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device, and electronic device
US11744149B2 (en) 2019-05-31 2023-08-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504375A (en) * 2018-05-18 2019-11-26 江苏三月光电科技有限公司 A kind of compound hole mobile material and its OLED device
CN110577509A (en) * 2018-06-07 2019-12-17 江苏三月光电科技有限公司 Triarylamine compound, preparation method and application thereof
CN110655486A (en) * 2018-06-29 2020-01-07 江苏三月光电科技有限公司 Compound with dibenzosuberene as core and application thereof
CN111662187A (en) * 2019-03-08 2020-09-15 江苏三月光电科技有限公司 Amino-containing organic compound and application thereof
CN112010760B (en) * 2019-05-29 2021-11-02 南京高光半导体材料有限公司 Spirobifluorene organic electroluminescent compound and organic electroluminescent device
CN112250585B (en) * 2019-07-22 2023-11-14 南京高光半导体材料有限公司 Hole transport material and organic electroluminescent device using same
CN111233674A (en) * 2019-09-26 2020-06-05 吉林奥来德光电材料股份有限公司 Fluorene compound, preparation method thereof and organic electroluminescent device
CN112745229B (en) * 2019-10-31 2023-12-05 南京高光半导体材料有限公司 Hole transport material with excellent performance and organic electroluminescent device containing same
CN112778253B (en) * 2019-11-07 2024-02-09 北京鼎材科技有限公司 Organic compound and organic electroluminescent device containing the same
CN110885321A (en) 2019-11-25 2020-03-17 武汉华星光电半导体显示技术有限公司 Hole transport material, preparation method thereof and electroluminescent device
KR20210138825A (en) * 2020-05-12 2021-11-22 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof
KR20210142026A (en) * 2020-05-14 2021-11-24 덕산네오룩스 주식회사 An organic electronic element comprising compound for organic electronic element and an electronic device thereof
CN114122299B (en) * 2020-06-29 2023-12-29 江苏三月科技股份有限公司 Organic electroluminescent device
CN111848493B (en) * 2020-08-28 2022-10-14 长春海谱润斯科技股份有限公司 Derivative containing spirobifluorene and organic electroluminescent device thereof
CN114195747B (en) * 2020-09-18 2023-06-27 广州华睿光电材料有限公司 Aromatic amine organic compound, mixture, composition and organic electronic device
US20220376199A1 (en) * 2020-12-11 2022-11-24 Boe Technology Group Co., Ltd. Organic Light Emitting Device and Display Apparatus
CN114930561B (en) * 2020-12-11 2023-12-26 京东方科技集团股份有限公司 Organic electroluminescent device and display device
CN113594395B (en) * 2021-08-26 2024-04-12 长春海谱润斯科技股份有限公司 Organic electroluminescent device
CN114315742B (en) * 2021-12-21 2024-06-28 湖北尚赛光电材料有限公司 Fluorene-containing compound and application thereof
CN114478499A (en) * 2022-01-29 2022-05-13 阜阳欣奕华材料科技有限公司 Spirofluorene anthracene compound and application thereof
CN114426530A (en) * 2022-02-10 2022-05-03 阜阳欣奕华材料科技有限公司 Spirofluorene anthracene compound and application thereof in luminescent layer doping material
WO2024057958A1 (en) * 2022-09-14 2024-03-21 日鉄ケミカル&マテリアル株式会社 Material for photoelectric conversion elements, and photoelectric conversion element
KR20240137391A (en) * 2023-03-08 2024-09-20 삼성에스디아이 주식회사 Organic optoelectronic device and display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966786A (en) * 2015-07-03 2015-10-07 北京鼎材科技有限公司 Organic electroluminescent device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421540B1 (en) * 2014-11-14 2022-07-14 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescent element
CN105576146B (en) * 2016-03-23 2017-09-26 京东方科技集团股份有限公司 Luminescent device and its manufacture method and display device
TWI625326B (en) * 2016-09-09 2018-06-01 昱鐳光電科技股份有限公司 Organic light emitting devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966786A (en) * 2015-07-03 2015-10-07 北京鼎材科技有限公司 Organic electroluminescent device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11548877B2 (en) 2018-11-30 2023-01-10 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device, and electronic device
US12048242B2 (en) 2019-05-31 2024-07-23 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US11744149B2 (en) 2019-05-31 2023-08-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2021112403A1 (en) * 2019-12-06 2021-06-10 덕산네오룩스 주식회사 Organic electronic element comprising organic compound, and electronic device comprising same
KR20210086504A (en) * 2019-12-31 2021-07-08 난징고광반도체재료유한회사 Novel organic electroluminescent compound and organic electroluminescent device
KR102279004B1 (en) * 2019-12-31 2021-07-19 난징고광반도체재료유한회사 Novel organic electroluminescent compound and organic electroluminescent device
US11678569B2 (en) 2020-03-31 2023-06-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
KR20220162113A (en) 2020-03-31 2022-12-07 이데미쓰 고산 가부시키가이샤 Chemical compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices
WO2022003491A1 (en) * 2020-07-03 2022-01-06 株式会社半導体エネルギー研究所 Organic compound, light-emitting device, light-emitting apparatus, electronic machine, and lighting apparatus
US11527722B2 (en) * 2020-08-20 2022-12-13 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus including the same
US12035621B2 (en) 2020-08-20 2024-07-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus including the same
WO2022139445A1 (en) * 2020-12-22 2022-06-30 덕산네오룩스 주식회사 Organic electric element containing compound for organic electric element, and electronic device thereof
WO2022173203A1 (en) * 2021-02-09 2022-08-18 주식회사 엘지화학 Compound and organic electronic device comprising same
CN114242907A (en) * 2021-11-03 2022-03-25 阜阳欣奕华材料科技有限公司 Organic electroluminescent device and display device

Also Published As

Publication number Publication date
WO2019206292A9 (en) 2019-11-28
CN110416422B (en) 2021-06-15
CN110416422A (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2019206292A1 (en) Organic electroluminescent device and display comprising same
WO2019206291A1 (en) Organic electroluminescence device and device comprising same
TWI468494B (en) Organic electroluminescent elements
WO2017010489A1 (en) Organic electroluminescence element and electronic device
JP7037543B2 (en) Organic electroluminescent device
TWI658117B (en) The light emitting material for organic electroluminescence device
TW201434828A (en) Compound having diazatriphenylene ring structure, and organic electroluminescent device
KR20100131745A (en) Composition for organic photoelectric device and organic photoelectric device using the same
CN103314463B (en) Organic electroluminescent device, compositionss and Organnic electroluminescent device
TW201130843A (en) Organic electroluminescent element
KR20190065277A (en) Organic light emitting devices, light emitting materials and compounds used therefor
KR101297162B1 (en) Composition for organic photoelectric device and organic photoelectric device using the same
CN110416256B (en) Organic electroluminescent device and display including the same
TWI542586B (en) Compound having substituted bipyridyl and pyridoindole ring structure, and organic electroluminescent device
JP2015106661A (en) Organic electroluminescent element and electronic device
JP5252880B2 (en) Oligofluorene compound and organic EL device using the same
CN116761868A (en) Organic electroluminescent element, organic electroluminescent display device, and electronic apparatus
CN102696127A (en) Organic EL element and organic light-emitting device
CN110504374A (en) A kind of compound hole transport/electronic barrier layer and its OLED device
WO2020211124A1 (en) Thermally activated delayed fluorescence material, preparation method therefor, and organic light-emitting diode device
TW201622203A (en) Novel compound and organic electroluminescent device comprising same
JP6860765B1 (en) Compounds and organic light emitting devices containing them
CN110504375A (en) A kind of compound hole mobile material and its OLED device
US20130306961A1 (en) Organic light emitting device and materials for use in same
JP7094215B2 (en) Thermally activated delayed fluorescent light emitting material and organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793943

Country of ref document: EP

Kind code of ref document: A1